Sample records for mode iii loading

  1. Comparison of Mode II and III Monotonic and Fatigue Delamination Onset Behavior for Carbon/Toughened Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming

    1997-01-01

    Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.

  2. 3-D Mixed Mode Delamination Fracture Criteria - An Experimentalist's Perspective

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2006-01-01

    Many delamination failure criteria based on fracture toughness have been suggested over the past few decades, but most only covered the region containing mode I and mode II components of loading because that is where toughness data existed. With new analysis tools, more 3D analyses are being conducted that capture a mode III component of loading. This has increased the need for a fracture criterion that incorporates mode III loading. The introduction of a pure mode III fracture toughness test has also produced data on which to base a full 3D fracture criterion. In this paper, a new framework for visualizing 3D fracture criteria is introduced. The common 2D power law fracture criterion was evaluated to produce unexpected predictions with the introduction of mode III and did not perform well in the critical high mode I region. Another 2D criterion that has been shown to model a wide range of materials well was used as the basis for a new 3D criterion. The new criterion is based on assumptions that the relationship between mode I and mode III toughness is similar to the relation between mode I and mode II and that a linear interpolation can be used between mode II and mode III. Until mixed-mode data exists with a mode III component of loading, 3D fracture criteria cannot be properly evaluated, but these assumptions seem reasonable.

  3. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    NASA Astrophysics Data System (ADS)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  4. Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4

    NASA Astrophysics Data System (ADS)

    Heirani, Hasan; Farhangdoost, Khalil

    2018-01-01

    Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris' law. Results show neither Richard's nor Tanaka's equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard's equivalent SIF formula is more suitable than Tanaka's formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, d a/d N increases as K eq decreases.

  5. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  6. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  7. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI {dy4140} steel from 10-6 to 10-2 mm per cycle.

  8. Debonding of Stitched Composite Joints: Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  9. Characterization of the Edge Crack Torsion (ECT) Test for Mode III Fracture Toughness Measurement of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2004-01-01

    The edge crack torsion (ECT) test is designed to initiate mode III delamination growth in composite laminates. An ECT specimen is a rectangular laminate, containing an edge delamination at the laminate mid-plane. Torsion load is applied to the specimens, resulting in relative transverse shear sliding of the delaminated faces. The test data reduction schemes are intended to yield initiation values of critical mode III strain energy release rate, G(sub IIIc), that are constant with delamination length. The test has undergone several design changes during its development. The objective of this paper was to determine the suitability of the current ECT test design as a mode III fracture test. To this end, ECT tests were conducted on specimens manufactured from IM7/8552 and specimens made from S2/8552 tape laminates. Several specimens, each with different delamination lengths are tested. Detailed, three-dimensional finite element analyses of the specimens were performed. The analysis results were used to calculate the distribution of mode I, mode II, and mode III strain energy release rate along the delamination front. The results indicated that mode III-dominated delamination growth would be initiated from the specimen center. However, in specimens of both material types, the measured values of G(sub IIIc) exhibited significant dependence on delamination length. Furthermore, there was a large amount of scatter in the data. Load-displacement response of the specimens exhibited significant deviation from linearity before specimen failure. X-radiographs of a sample of specimens revealed that damage was initiated in the specimens prior to failure. Further inspection of the failure surfaces is required to identify the damage and determine that mode III delamination is initiated in the specimens.

  10. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  11. Delamination and Stitched Failure in Stitched Composite Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and finite element study. The experimental program was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The experimentally determined debond length vs. applied load was used as an input parameter in the finite element analysis of both configurations. The strain energy release rates at the debond from were calculated using plate finite elements. Nonlinear fastener elements were used to model the stitches and multipoint constraints were used to model the contact problem. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches were effective in reducing mode I to zero, but had less of an effect on modes II and III.

  12. Characterization of the Edge Crack Torsion (ECT) Test for Mode III Fracture Toughness Measurement of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.

    2004-01-01

    The edge crack torsion (ECT) test is designed to initiate mode III delamination growth in composite laminates. The test has undergone several design changes during its development. The objective of this paper was to determine the suitability of the current ECT test design a mode III fracture test. To this end, ECT tests were conducted on specimens manufactured from IM7/8552 and S2/8552 tape laminates. Three-dimensional finite element analyses were performed. The analysis results were used to calculate the distribution of mode I, mode II, and mode III strain energy release rate along the delamination front. The results indicated that mode IIIdominated delamination growth would be initiated from the specimen center. However, in specimens of both material types, the measured values of GIIIc exhibited significant dependence on delamination length. Load-displacement response of the specimens exhibited significant deviation from linearity before specimen failure. X-radiographs of a sample of specimens revealed that damage was initiated in the specimens prior to failure. Further inspection of the failure surfaces is required to identify the damage and determine that mode III delamination is initiated in the specimens.

  13. A surface crack in shells under mixed-mode loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.; Erdogan, F.

    1988-01-01

    The present consideration of a shallow shell's surface crack under general loading conditions notes that while the mode I state can be separated, modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions, and then to consider a shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell; Reissner's transverse shear theory is used to formulate the problem under the assumption that the shell is subjected to all five moment and stress resultants.

  14. A comparison of pure mode I and mixed mode I-III cracking of an adhesive containing an open knit cloth carrier

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Crosley, P. B.; Johnson, W. S.

    1988-01-01

    Static and fatigue tests were carried out on two commercial modified epoxy film adhesives with a wide open knit polyester carrier in order to compare crack resistance in mode I and mixed mode I-III loading. The carrier cloth is found to have a significant influence on the cracking behavior of the adhesives. The open air net carrier used in this study separates from the adhesive in mode I cracking but shreds during mixed-mode crack extension. This decreases the opening mode toughness but increases the mixed-mode toughness as compared with results obtained earlier using a heavier knit carrier. The results suggest that the type of carrier may have a far larger influence on crack resistance than is generally recognized.

  15. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE PAGES

    Mei, J.; Dong, P.; Kalnaus, S.; ...

    2017-07-21

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  16. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, J.; Dong, P.; Kalnaus, S.

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  17. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less

  18. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  19. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission

    NASA Astrophysics Data System (ADS)

    Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan

    2017-08-01

    Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.

  20. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  1. Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Jia, Z. Y.; Wang, F. J.; Fu, R.; Guo, H. B.; Cheng, D.; Zhang, B. Y.

    2017-06-01

    Drilling is inevitable for CFRP components’ assembling process in the aviation industry. The exit damage frequently occurs and affects the load carrying capacity of components. Consequently, it is of great urgency to enhance drilling exit quality on CFRP components. The article aims to guide the reasonable choice of drill helical direction and effectively reduce exit damage. Exit observation experiments are carried out with left-hand helical, right-hand helical and straight one-shot drill drilling T800S CFRP laminates separately. The development rules of exit damage and delamination factor curves are obtained. Combined with loading conditions and fracture modes of push-out burrs, and thrust force curves, the influence of drill helical direction on exit damage development is derived. It is found that the main fracture modes for left-hand helical, right-hand helical, and straight one-shot drill are mode I, extrusive fracture, mode III respectively. Among them, mode III has the least effect on exit damage development. Meanwhile, the changing rate of thrust force is relative slow for right-hand helical and straight one-shot drill in the thrust force increasing phase of stage II, which is disadvantaged for exit damage development. Therefore, straight one-shot drill’s exit quality is the best.

  2. Piezoelectric control of columns prone to instabilities and nonlinear modal interaction

    NASA Astrophysics Data System (ADS)

    Sridharan, Srinivasan; Kim, Sunjung

    2008-06-01

    This paper attempts to unravel the issues of piezoelectric control of structures prone to nonlinear static and dynamic instabilities. A simple yet typical example is considered, namely the problem of a simply supported axially compressed imperfect column on an elastic softening foundation. Here the significant nonlinearity arises from the softening foundation. The column is so designed as to have coincident critical loads for the first two modes of buckling. Piezoelectric actuators/sensors are deemed to be attached to a column in regions of maximum strain at several locations along the length of the column. The issues involved in (i) enhancing the static buckling load, (ii) suppression of vibrations as the column is compressed to a load close to its dynamic instability load and (iii) enhancing the dynamic instability load are investigated and discussed. It is shown that there is a premium price to pay for enhancing the buckling capacity of the column, be it static or dynamic. The paper concludes by alluding to the possibility of a failure of patch control if a higher-order shortwave mode happens to be the governing principal mode of the structure.

  3. The effect of transverse shear in a cracked plate under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The problem of an elastic plate containing a through crack and subjected to twisting moments or transverse shear loads is considered. By using a bending theory which allows the satisfaction of the boundary conditions on the crack surface regarding the normal and the twisting moments and the transverse shear load separately, it is found that the resulting asymptotic stress field around the crack tip becomes identical to that given by the elasticity solutions of the plane strain and antiplane shear problems. The problem is solved for uniformly distributed or concentrated twisting moment or transverse shear load and the normalized Mode II and Mode III stress-intensity factors are tabulated. The results also include the effect of the Poisson's ratio and material orthotropy for specially orthotropic materials on the stress-intensity factors.

  4. The Fundamental Solutions for the Stress Intensity Factors of Modes I, II And III. The Axially Symmetric Problem

    NASA Astrophysics Data System (ADS)

    Rogowski, B.

    2015-05-01

    The subject of the paper are Green's functions for the stress intensity factors of modes I, II and III. Green's functions are defined as a solution to the problem of an elastic, transversely isotropic solid with a penny-shaped or an external crack under general axisymmetric loadings acting along a circumference on the plane parallel to the crack plane. Exact solutions are presented in a closed form for the stress intensity factors under each type of axisymmetric ring forces as fundamental solutions. Numerical examples are employed and conclusions which can be utilized in engineering practice are formulated.

  5. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  6. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    NASA Astrophysics Data System (ADS)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  7. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  8. Effect of loading modes and hydrogen on fracture toughness of a low activation ferritic/martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Jones, R.H.; Gelles, D.S.

    1995-12-31

    Various mixed-mode I/III critical J-integrals (J{sub TQ}) were examined for a low activation ferritic/martensitic stainless steel (F-82H) at ambient temperature. A determination of J{sub TQ} was made using modified compact-tension specimens. Different ratios of tension/shear stress were achieved by varying the principal axis of the crack plane between 0 and 55 degrees from the load line. A specimen with 0 degree crack angle was the same as a standard mode 1 compact tension specimen. J{sub IIIQ} was determined using triple-pantleg like specimens. The results showed that F-82H steel was a tough steel. Both J{sub IQ} and J{sub IIIQ} were aboutmore » 500 kJ/m{sup 2}, and the mode 1 tearing modulus (dJ{sub I}/da) was about (360 mJ/m{sup 3}). However, J{sub TQ} and mixed-mode tearing modulus (dJ{sub T}/da) values varied with the crack angles and were lower than their mode I and mode III counterparts. Both the minimum J{sub TQ} and dJ{sub T}/da values occurred at a crack angle between 35 and 55 degrees [P{sub iii}/(P{sub iii} + P{sub i}) = 0.4 and 0.6]. Effects of hydrogen (H) on the J{sub TQ} values were also examined at ambient temperature. The specimens were charged with H at a H{sub 2} gas pressure of 138 MPa at 300 C for two weeks, which resulted in a H content of 4 ppm(wt). Results showed that H decreased overall J{sub TQ} and dJ{sub T}/da values from those without H. However, the presence of H did not change the dependence of J{sub TQ} and dJ{sub T}/da values on the crack angles. Both J{sub IQ} and dJ{sub I}/da exhibited the highest relative values. The minimum values of both J{sub TQ} and dJ{sub T}/da occurred at a crack angle between 35 and 55{degree}. The J{sub min} with H was 100 kJ/m{sup 2}, only 25% of J{sub IQ} without H. The morphology of fracture surfaces was consistent with the change of J{sub TQ} and dJ{sub T}/da values. A mechanism of the combined effect of H and mixed-mode on J{sub TQ} and dJ{sub T}/da is discussed.« less

  9. Mixed mode stress-intensity-factors in mode-3 loaded middle crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.

    1992-01-01

    A three dimensional stress analysis of a middle-crack tension specimen subjected to mode-3 type loading was performed using fracture mechanics based finite element code FRAC3D. Three-dimensional stress intensity factors were calculated for a range of specimen thicknesses that represent the structures used in aerospace and nuclear industries. Calculated SIF for very thick specimen (thickness-to-crack length b/a greater than or equal to 30) agreed very well with the antiplane solution in the literature. The K(sub II) stress field exists near the intersection of the crack front and free surface in a boundary-layer region covers the complete thickness of the plate and K(sub II) dominates all through the thickness. For very thin plates (b/a is less than .1), the average K(sub II) is larger than K(sub III) (about 25% for b/a = 0.1).

  10. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain

    2015-12-01

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  11. The Hybrid III upper and lower neck response in compressive loading scenarios with known human injury outcomes.

    PubMed

    Toomey, D E; Yang, K H; Van Ee, C A

    2014-01-01

    Physical biomechanical surrogates are critical for testing the efficacy of injury-mitigating safety strategies. The interpretation of measured Hybrid III neck loads in test scenarios resulting in compressive loading modes would be aided by a further understanding of the correlation between the mechanical responses in the Hybrid III neck and the probability of injury in the human cervical spine. The anthropomorphic test device (ATD) peak upper and lower neck responses were measured during dynamic compressive loading conditions comparable to those of postmortem human subject (PMHS) experiments. The peak ATD response could then be compared to the PMHS injury outcomes. A Hybrid III 50th percentile ATD head and neck assembly was tested under conditions matching those of male PMHS tests conducted on an inverted drop track. This includes variation in impact plate orientation (4 sagittal plane and 2 frontal plane orientations), impact plate surface friction, and ATD initial head/neck orientation. This unique matched data with known injury outcomes were used to evaluate existing ATD neck injury criteria. The Hybrid III ATD head and neck assembly was found to be robust and repeatable under severe loading conditions. The initial axial force response of the ATD head and neck is very comparable to PMHS experiments up to the point of PMHS cervical column buckle or material failure. An ATD lower neck peak compressive force as low as 6,290 N was associated with an unstable orthopedic cervical injury in a PMHS under equivalent impact conditions. ATD upper neck peak compressive force associated with a 5% probability of unstable cervical orthopedic injury ranged from as low as 3,708 to 3,877 N depending on the initial ATD neck angle. The correlation between peak ATD compressive neck response and PMHS test outcome in the current study resulted in a relationship between axial load and injury probability consistent with the current Hybrid III injury assessment reference values. The results add to the current understanding of cervical injury probability based on ATD neck compressive loading in that it is the only known study, in addition to Mertz et al. (1978), formulated directly from ATD compressive loading scenarios with known human injury outcomes.

  12. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    PubMed

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  13. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.

  14. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  15. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  16. Comparative structural neck responses of the THOR-NT, Hybrid III, and human in combined tension-bending and pure bending.

    PubMed

    Dibb, Alan T; Nightingale, Roger W; Chancey, V Carol; Fronheiser, Lucy E; Tran, Laura; Ottaviano, Danielle; Meyers, Barry S

    2006-11-01

    This study evaluated the biofidelity of both the Hybrid III and the THOR-NT anthropomorphic test device (ATD) necks in quasistatic tension-bending and pure-bending by comparing the responses of both the ATDs with results from validated computational models of the living human neck. This model was developed using post-mortem human surrogate (PMHS) osteoligamentous response corridors with effective musculature added (Chancey, 2005). Each ATD was tested using a variety of end-conditions to create the tension-bending loads. The results were compared using absolute difference, RMS difference, and normalized difference metrics. The THOR-NT was tested both with and without muscle cables. The THOR-NT was also tested with and without the central safety cable to test the effect of the cable on the behavior of the ATD. The Hybrid III was stiffer than the model for all tension-bending end conditions. Quantitative measurement of the differences in response showed more close agreement between the THOR-NT and the model than the Hybrid III and the model. By contrast, no systematic differences were observed in the head kinematics. The muscle cables significantly stiffened the THOR-NT by effectively reducing the laxity from the occipital condyle (OC) joint. The cables also shielded the OC upper neck load cell from a significant portion of the applied loads. The center safety significantly stiffened the response and decreased the fidelity, particularly in modes of loading in which tensile forces were large and bending moments small. This study compares ATD responses to computational models in which the models include PMHS response corridors while correcting for problems associated with cadaveric muscle. While controversial and requiring considerable diligence, these kinds of approaches show promise in assessing ATD biofidelity.

  17. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  18. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1992-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  19. The Effect of Basis Selection on Thermal-Acoustic Random Response Prediction Using Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2004-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for prediction of geometrically nonlinear response due to combined thermal-acoustic loadings. As with any such method, the accuracy of the solution is dictated by the selection of the modal basis, through which the nonlinear modal stiffness is determined. In this study, a suite of available bases are considered including (i) bending modes only; (ii) coupled bending and companion modes; (iii) uncoupled bending and companion modes; and (iv) bending and membrane modes. Comparison of these solutions with numerical simulation in physical degrees-of-freedom indicates that inclusion of any membrane mode variants (ii - iv) in the basis affects the bending displacement and stress response predictions. The most significant effect is on the membrane displacement, where it is shown that only the type (iv) basis accurately predicts its behavior. Results are presented for beam and plate structures in the thermally pre-buckled regime.

  20. Biomechanical comparison of three different plate configurations for comminuted clavicle midshaft fracture fixation.

    PubMed

    Uzer, Gokcer; Yildiz, Fatih; Batar, Suat; Bozdag, Ergun; Kuduz, Hacer; Bilsel, Kerem

    2017-12-01

    The aim of this study was to compare the fixation rigidity of anterior, anterosuperior, and superior plates in the treatment of comminuted midshaft clavicle fractures. Six-hole titanium alloy plates were produced according to anatomic features of fourth-generation artificial clavicle models for anterior (group I; n = 14), anterosuperior (group II; n = 14), and superior (group III; n = 14) fixation. After plate fixation, 5-mm segments were resected from the middle third of each clavicle to create comminuted fracture models. Half the models from each group were tested under rotational forces; the other half were tested under 3-point bending forces. Failure modes, stiffness values, and failure loads were recorded. All models fractured at the level of the distalmost screw during the failure torque, whereas several failure modes were observed in 3-point bending tests. The mean stiffness values of groups I to III were 636 ± 78, 767 ± 72, and 745 ± 214 N ∙ mm/deg (P = .171), respectively, for the torsional tests and 38 ± 5, 20 ± 3, and 13 ± 2 N/mm, respectively, for the bending tests (P < .001 for group I vs. groups II and III; P = .015 for group II vs. group III). The mean failure torque values of groups I to III were 8248 ± 2325, 12,638 ± 1749, and 10,643 ± 1838 N ∙ mm (P = .02 for group I vs. II), respectively, and the mean failure loads were 409 ± 81, 360 ± 122, and 271 ± 87 N, respectively (P = .108). In the surgical treatment of comminuted midshaft clavicle fractures, the fixation strength of anterosuperior plating was greater than that of anterior plating under rotational forces and similar to that of superior plating. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Dynamic energy release rate in couple-stress elasticity

    NASA Astrophysics Data System (ADS)

    Morini, L.; Piccolroaz, A.; Mishuris, G.

    2013-07-01

    This paper is concerned with energy release rate for dynamic steady state crack problems in elastic materials with microstructures. A Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behaviour of the material is described by the theory of couple-stress elasticity developed by Koiter. A general expression for the dynamic J-integral including both traslational and micro-rotational inertial contributions is derived, and the conservation of this integral on a path surrounding the crack tip is demonstrated.

  2. In vitro evaluation of the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with composite fillings after cyclic loading

    PubMed Central

    Sadighpour, Leyla; Fallahi Sichani, Babak; Kharazi Fard, Mohamd Javad

    2014-01-01

    PURPOSE There is insufficient data regarding the durability of porcelain laminate veneers bonded to existing composite fillings. The aim of the present study was to evaluate the fracture resistance and microleakage of porcelain laminate veneers bonded to teeth with existing composite fillings. MATERIALS AND METHODS Thirty maxillary central incisors were divided into three groups (for each group, n=10): intact teeth (NP), teeth with class III composite fillings (C3) and teeth with class IV cavities (C4). Porcelain laminate veneers were made using IPS-Empress ceramic and bonded with Panavia F2 resin cement. The microleakage of all of the specimens was tested before and after cyclic loading (1 × 106 cycles, 1.2 Hz). The fracture resistance values (N) were measured using a universal testing machine, and the mode of failure was also examined. The statistical analyses were performed using one-way ANOVA and Tukey post hoc tests (α=.05). RESULTS There was a significant difference in the mean microleakage of group C4 compared with group NT (P=.013). There was no significant difference in the fracture loads among the groups. CONCLUSION The microleakage and failure loads of porcelain laminate veneers bonded to intact teeth and teeth with standard class III composite fillings were not significantly different. PMID:25177471

  3. A biomechanical study of artificial cervical discs using computer simulation.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2008-04-15

    A virtual simulation model of the subaxial cervical spine was used to study the biomechanical effects of various disc prosthesis designs. To study the biomechanics of different design features of cervical disc arthroplasty devices. Disc arthroplasty is an alternative approach to cervical fusion surgery for restoring and maintaining motion at a diseased spinal segment. Different types of cervical disc arthroplasty devices exist and vary based on their placement and degrees of motion offered. A virtual dynamic model of the subaxial cervical spine was used to study 3 different prosthetic disc designs (PDD): (1) PDD-I: The center of rotation of a spherical joint located at the mid C5-C6 disc, (2) PDD-II: The center of rotation of a spherical joint located 6.5 mm below the mid C5-C6 disc, and (3) PDD-III: The center of rotation of a spherical joint in a plane located at the C5-C6 disc level. A constrained spherical joint placed at the disc level (PDD-I) significantly increased facet loads during extension. Lowering the rotational axis of the spherical joint towards the subjacent body (PDD-II) caused a marginal increase in facet loading during flexion, extension, and lateral bending. Lastly, unconstraining the spherical joint to move freely in a plane (PDD-III) minimized facet load build up during all loading modes. The simulation model showed the impact simple design changes may have on cervical disc dynamics. The predicted facet loads calculated from computer model have to be validated in the experimental study.

  4. Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, D.; Shetty, D. K.

    1988-01-01

    Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.

  5. A simple cohesive zone model that generates a mode-mixity dependent toughness

    DOE PAGES

    Reedy, Jr., E. D.; Emery, J. M.

    2014-07-24

    A simple, mode-mixity dependent toughness cohesive zone model (MDG c CZM) is described. This phenomenological cohesive zone model has two elements. Mode I energy dissipation is defined by a traction–separation relationship that depends only on normal separation. Mode II (III) dissipation is generated by shear yielding and slip in the cohesive surface elements that lie in front of the region where mode I separation (softening) occurs. The nature of predictions made by analyses that use the MDG c CZM is illustrated by considering the classic problem of an elastic layer loaded by rigid grips. This geometry, which models a thinmore » adhesive bond with a long interfacial edge crack, is similar to that which has been used to measure the dependence of interfacial toughness on crack-tip mode-mixity. The calculated effective toughness vs. applied mode-mixity relationships all display a strong dependence on applied mode-mixity with the effective toughness increasing rapidly with the magnitude of the mode-mixity. The calculated relationships also show a pronounced asymmetry with respect to the applied mode-mixity. As a result, this dependence is similar to that observed experimentally, and calculated results for a glass/epoxy interface are in good agreement with published data that was generated using a test specimen of the same type as analyzed here.« less

  6. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  7. Mixed-Mode Bending Method for Delamination Testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John R., Jr.

    1990-01-01

    A mixed mode delamination test procedure was developed combining double cantilever beam (DCB) mode I loading and end-notch fixture (ENF) mode II loading on a split unidirectional laminate. By loading with a lever, a single applied load simultaneously produces mode I and mode II bending loads on the specimen. This mixed-mode bending (MMB) test was analyzed using both finite-element procedures and beam theory to calculate the mode I and mode II components of strain-energy release rate G(sub I) and G(sub II), respectively. A wide range of G(sub I)/G(sub II) ratios can be produced by varying the load position on the lever. As the delamination extended, the G(sub I)/G(sub II) ratios varied by less than 5%. Beam theory equations agreed closely with the finite-element results and provide a basis for selection of G(sub I)/G(sub II) test ratios and a basis for computing the mode I and mode II components of measured delamination toughness. The MMB test was demonstrated using AS4/PEEK (APC2) unidirectional laminates. The MMB test introduced in this paper is rather simple and is believed to offer several advantages over most current mixed-mode test.

  8. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    PubMed Central

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  9. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  10. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  11. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.

  12. Earthquake Energy Dissipation in Light of High-Velocity, Slip-Pulse Shear Experiments

    NASA Astrophysics Data System (ADS)

    Reches, Z.; Liao, Z.; Chang, J. C.

    2014-12-01

    We investigated the energy dissipation during earthquakes by analysis of high-velocity shear experiments conducted on room-dry, solid samples of granite, tonalite, and dolomite sheared at slip-velocity of 0.0006-1m/s, and normal stress of 1-11.5MPa. The experimental fault were loaded in one of three modes: (1) Slip-pulse of abrupt, intense acceleration followed by moderate deceleration; (2) Impact by a spinning, heavy flywheel (225 kg); and (3) Constant velocity loading. We refer to energy dissipation in terms of power-density (PD=shear stress*slip-velocity; units of MW/m^2), and Coulomb-energy-density (CED= mechanical energy/normal stress; units of m). We present two aspects: Relative energy dissipation of the above loading modes, and relative energy dissipation between impact experiments and moderate earthquakes. For the first aspect, we used: (i) the lowest friction coefficient of the dynamic weakening; (ii) the work dissipated before reaching the lowest friction; and (iii) the cumulative mechanical work during the complete run. The results show that the slip-pulse/impact modes are energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. Thus, for a finite amount of pre-seismic crustal energy, the efficiency of slip-pulse would amplify earthquake instability. For the second aspect, we compare the experimental CED of the impact experiments to the reported breakdown energy (EG) of moderate earthquakes, Mw = 5.6 to 7.2 (Chang et al., 2012). In is commonly assumed that the seismic EG is a small fraction of the total earthquake energy, and as expected in 9 out of 11 examined earthquakes, EG was 0.005 to 0.07 of the experimental CED. We thus speculate that the experimental relation of Coulomb-energy-density to total slip distance, D, CED = 0.605 × D^0.933, is a reasonable estimate of total earthquake energy, a quantity that cannot be determined from seismic data.

  13. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-01

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal ``off'' state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an ``open'' configuration of the hairpin probe and a CRET signal ``on'' state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal ``off'' state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an ``open'' configuration of the hairpin probe and a CRET signal ``on'' state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing. Electronic supplementary information (ESI) available: Sequences of RNA and DNA used in this study, relationship of the proposed three modes, CRET mechanism of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein system, calculation of the surface coverage of hairpin probe I-1 on MGO, control experiment, comparison between different modes for microRNA detection, and advantages of the proposed strategy. See DOI: 10.1039/c4nr06603k

  14. The mixed-mode bending method for delamination testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John H., Jr.

    1989-01-01

    A mixed-mode bending (MMB) test procedure is presented which combines double cantilever beam mode-I loading and end-notch flexure mode II loading on a split, unidirectional laminate. The MMB test has been analyzed by FEM and by beam theory in order to ascertain the mode I and mode II components' respective strain energy release rates, G(I) and G(II); these analyses indicate that a wide range of G(I)/G(II) ratios can be generated by varying the applied load's position on the loading lever. The MMB specimen analysis and test procedures are demonstrated for the case of AS4/PEEK unidirectional laminates.

  15. Sorption of Eu(III) on granite: EPMA, LA-ICP-MS, batch and modeling studies.

    PubMed

    Fukushi, Keisuke; Hasegawa, Yusuke; Maeda, Koushi; Aoi, Yusuke; Tamura, Akihiro; Arai, Shoji; Yamamoto, Yuhei; Aosai, Daisuke; Mizuno, Takashi

    2013-11-19

    Eu(III) sorption on granite was assessed using combined microscopic and macroscopic approaches in neutral to acidic conditions where the mobility of Eu(III) is generally considered to be high. Polished thin sections of the granite were reacted with solutions containing 10 μM of Eu(III) and were analyzed using EPMA and LA-ICP-MS. On most of the biotite grains, Eu enrichment up to 6 wt % was observed. The Eu-enriched parts of biotite commonly lose K, which is the interlayer cation of biotite, indicating that the sorption mode of Eu(III) by the biotite is cation exchange in the interlayer. The distributions of Eu appeared along the original cracks of the biotite. Those occurrences indicate that the prior water-rock interaction along the cracks engendered modification of biotite to possess affinity to the Eu(III). Batch Eu(III) sorption experiments on granite and biotite powders were conducted as functions of pH, Eu(III) loading, and ionic strength. The macroscopic sorption behavior of biotite was consistent with that of granite. At pH > 4, there was little pH dependence but strong ionic strength dependence of Eu(III) sorption. At pH < 4, the sorption of Eu(III) abruptly decreased with decreased pH. The sorption behavior at pH > 4 was reproducible reasonably by the modeling considering single-site cation exchange reactions. The decrease of Eu(III) sorption at pH < 4 was explained by the occupation of exchangeable sites by dissolved cationic species such as Al and Fe from granite and biotite in low-pH conditions. Granites are complex mineral assemblages. However, the combined microscopic and macroscopic approaches revealed that elementary reactions by a single mineral phase can be representative of the bulk sorption reaction in complex mineral assemblages.

  16. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  17. Inductrack III configuration--a maglev system for high loads

    DOEpatents

    Post, Richard F

    2015-03-24

    Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.

  18. Inductrack III configuration--a maglev system for high loads

    DOEpatents

    Post, Richard F

    2013-11-12

    Inductrack III configurations are suited for use in transporting heavy freight loads. Inductrack III addresses a problem associated with the cantilevered track of the Inductrack II configuration. The use of a cantilevered track could present mechanical design problems in attempting to achieve a strong enough track system such that it would be capable of supporting very heavy loads. In Inductrack III, the levitating portion of the track can be supported uniformly from below, as the levitating Halbach array used on the moving vehicle is a single-sided one, thus does not require the cantilevered track as employed in Inductrack II.

  19. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  20. Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue

    NASA Technical Reports Server (NTRS)

    Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard

    2008-01-01

    Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.

  1. Analysis of shear buckling of cylindrical shells. II - Effects of combined loadings

    NASA Astrophysics Data System (ADS)

    Kokubo, Kunio; Nagashima, Hideaki; Takayanagi, Masaaki; Madokoro, Manabu; Mochizuki, Akira; Ikeuchi, Hisaaki

    1992-03-01

    Cylindrical shells subjected to lateral loads buckle in shear or bending buckling modes. The effects of combined loadings are investigated by developing a special-purpose FEM program using the 8-node isoparametric shell element. Three types of loading, lateral and axial loads, and pure bending moments are considered. For short cylindrical shells, shear buckling modes are dominant, but elephant-foot bulges take place with an increase in bending moments. Effects of axial loads on shear buckling and the elephant-foot bulge are investigated. In the case of shear buckling the axial load affects the buckling mode as well as the buckling load. For bending bucklings, the axial loads have a great effect on the buckling load.

  2. Effect of axial load on mode shapes and frequencies of beams

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1975-01-01

    An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.

  3. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-28

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal "off" state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an "open" configuration of the hairpin probe and a CRET signal "on" state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.

  4. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less

  5. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  6. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  7. Effective As(III) Removal by A Multi-Charged Hydroacid Complex Draw Solute Facilitated Forward Osmosis-Membrane Distillation (FO-MD) Processes.

    PubMed

    Ge, Qingchun; Han, Gang; Chung, Tai-Shung

    2016-03-01

    Effective removal of As(III) from water by an oxalic acid complex with the formula of Na3[Cr(C2O4)3] (Na-Cr-OA) is demonstrated via an forward osmosis-membrane distillation (FO-MD) hybrid system in this study. Na-Cr-OA first proved its superiority as a draw solute with high water fluxes and negligible reverse fluxes in FO, then a systematic investigation of the Na-Cr-OA promoted FO process was conducted to ascertain the factors in As(III) removal. Relatively high water fluxes of 28 LMH under the FO mode and 74 LMH under the pressure retarded osmosis (PRO) mode were achieved when using a 1000 ppm As(III) solution as the feed and 1.0 M Na-Cr-OA as the draw solution at 60 °C. As(III) removal with a water recovery up to 21.6% (FO mode) and 48.3% (PRO mode) were also achieved in 2 h. An outstanding As(III) rejection with 30-3000 μg/L As(III) in the permeate was accomplished when As(III) feed solutions varied from 5 × 10(4) to 1 × 10(6) μg/L, superior to the best FO performance reported for As(III) removal. Incorporating MD into FO not only makes As(III) removal sustainable by reconcentrating the Na-Cr-OA solution simultaneously, but also reduces the As(III) concentration below 10 μg/L in the product water, meeting the WHO standard.

  8. Fracture Mechanics of Thin, Cracked Plates Under Tension, Bending and Out-of-Plane Shear Loading

    NASA Technical Reports Server (NTRS)

    Zehnder, Alan T.; Hui, C. Y.; Potdar, Yogesh; Zucchini, Alberto

    1999-01-01

    Cracks in the skin of aircraft fuselages or other shell structures can be subjected to very complex stress states, resulting in mixed-mode fracture conditions. For example, a crack running along a stringer in a pressurized fuselage will be subject to the usual in-plane tension stresses (Mode-I) along with out-of-plane tearing stresses (Mode-III like). Crack growth and initiation in this case is correlated not only with the tensile or Mode-I stress intensity factor, K(sub I), but depends on a combination of parameters and on the history of crack growth. The stresses at the tip of a crack in a plate or shell are typically described in terms of either the small deflection Kirchhoff plate theory. However, real applications involve large deflections. We show, using the von-Karman theory, that the crack tip stress field derived on the basis of the small deflection theory is still valid for large deflections. We then give examples demonstrating the exact calculation of energy release rates and stress intensity factors for cracked plates loaded to large deflections. The crack tip fields calculated using the plate theories are an approximation to the actual three dimensional fields. Using three dimensional finite element analyses we have explored the relationship between the three dimensional elasticity theory and two dimensional plate theory results. The results show that for out-of-plane shear loading the three dimensional and Kirchhoff theory results coincide at distance greater than h/2 from the crack tip, where h/2 is the plate thickness. Inside this region, the distribution of stresses through the thickness can be very different from the plate theory predictions. We have also explored how the energy release rate varies as a function of crack length to plate thickness using the different theories. This is important in the implementation of fracture prediction methods using finite element analysis. Our experiments show that under certain conditions, during fatigue crack growth, the presence of out-of-plane shear loads induces a great deal of contact and friction on the crack surfaces, dramatically reducing crack growth rate. A series of experiments and a proposed computational approach for accounting for the friction is discussed.

  9. Multimode power processor

    DOEpatents

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  10. Multimode power processor

    DOEpatents

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  11. Fracture modes of high modulus graphite/epoxy angleplied laminates subjected to off-axis tensile loads

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1980-01-01

    Angelplied laminates of high modulus graphite fiber/epoxy were studied in several ply configurations at various tensile loading angles to the zero ply direction in order to determine the effects of ply orientations on tensile properties, fracture modes, and fracture surface characteristics of the various plies. It was found that fracture modes in the plies of angleplied laminates can be characterized by scanning electron microscope observation. The characteristics for a given fracture mode are similar to those for the same fracture mode in unidirectional specimens. However, no simple load angle range can be associated with a given fracture mode.

  12. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2017-04-01

    A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders

    PubMed

    Shin; Rose

    1999-06-01

    Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.

  14. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  15. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    PubMed

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  16. Multi-load Groups Coordinated Load Control Strategy Considering Power Network Constraints

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Zhao, Binchao; Wang, Jun; Zhang, Guohui; Wang, Xin

    2017-05-01

    Loads with energy storage property can actively participate in power balance for power systems, this paper takes air conditioner as a controllable load example, proposing a multi-load groups coordinated load control strategy considering power network constraints. Firstly, two load control modes considering recovery of load diversity are designed, blocking power oscillation of aggregated air conditioners. As the same time, air conditioner temperature setpoint recovery control strategy is presented to avoid power recovery peak. Considering inherent characteristics of two load control modes, an coordinated load control mode is designed by combining the both. Basing on this, a multi-load groups coordinated load control strategy is proposed. During the implementing of load control, power network constraints should be satisfied. An indice which can reflect the security of power system operating is defined. By minimizing its value through optimization, the change of air conditioning loads’ aggregated power on each load bus can be calculated. Simulations are conducted on an air conditioners group and New England 10-generator 39-bus system, verifying the effectiveness of the proposed multi-load groups coordinated load control strategy considering power network constraints.

  17. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  18. Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33

    PubMed Central

    Round, A. R.; Franke, D.; Moritz, S.; Huchler, R.; Fritsche, M.; Malthan, D.; Klaering, R.; Svergun, D. I.; Roessle, M.

    2008-01-01

    There is a rapidly increasing interest in the use of synchrotron small-angle X-ray scattering (SAXS) for large-scale studies of biological macromolecules in solution, and this requires an adequate means of automating the experiment. A prototype has been developed of an automated sample changer for solution SAXS, where the solutions are kept in thermostatically controlled well plates allowing for operation with up to 192 samples. The measuring protocol involves controlled loading of protein solutions and matching buffers, followed by cleaning and drying of the cell between measurements. The system was installed and tested at the X33 beamline of the EMBL, at the storage ring DORIS-III (DESY, Hamburg), where it was used by over 50 external groups during 2007. At X33, a throughput of approximately 12 samples per hour, with a failure rate of sample loading of less than 0.5%, was observed. The feedback from users indicates that the ease of use and reliability of the user operation at the beamline were greatly improved compared with the manual filling mode. The changer is controlled by a client–server-based network protocol, locally and remotely. During the testing phase, the changer was operated in an attended mode to assess its reliability and convenience. Full integration with the beamline control software, allowing for automated data collection of all samples loaded into the machine with remote control from the user, is presently being implemented. The approach reported is not limited to synchrotron-based SAXS but can also be used on laboratory and neutron sources. PMID:25484841

  19. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M

    2017-08-01

    Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.

  20. A Comparison of Tension and Compression Creep in a Polymeric Composite and the Effects of Physical Aging on Creep Behavior

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine

    1996-01-01

    Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

  1. Effets de l'humidite sur la propagation du delaminage dans un composite carbone/epoxy sollicite en mode mixte I/II

    NASA Astrophysics Data System (ADS)

    LeBlanc, Luc R.

    Les materiaux composites sont de plus en plus utilises dans des domaines tels que l'aerospatiale, les voitures a hautes performances et les equipements sportifs, pour en nommer quelques-uns. Des etudes ont demontre qu'une exposition a l'humidite nuit a la resistance des composites en favorisant l'initiation et la propagation du delaminage. De ces etudes, tres peu traitent de l'effet de l'humidite sur l'initiation du delaminage en mode mixte I/II et aucune ne traite des effets de l'humidite sur le taux de propagation du delaminage en mode mixte I/II dans un composite. La premiere partie de cette these consiste a determiner les effets de l'humidite sur la propagation du delaminage lors d'une sollicitation en mode mixte I/II. Des eprouvettes d'un composite unidirectionnel de carbone/epoxy (G40-800/5276-1) ont ete immergees dans un bain d'eau distillee a 70°C jusqu'a leur saturation. Des essais experimentaux quasi-statiques avec des chargements d'une gamme de mixites des modes I/II (0%, 25%, 50%, 75% et 100%) ont ete executes pour determiner les effets de l'humidite sur la resistance au delaminage du composite. Des essais de fatigue ont ete realises, avec la meme gamme de mixite des modes I/II, pour determiner 1'effet de 1'humidite sur l'initiation et sur le taux de propagation du delaminage. Les resultats des essais en chargement quasi-statique ont demontre que l'humidite reduit la resistance au delaminage d'un composite carbone/epoxy pour toute la gamme des mixites des modes I/II, sauf pour le mode I ou la resistance au delaminage augmente apres une exposition a l'humidite. Pour les chargements en fatigue, l'humidite a pour effet d'accelerer l'initiation du delaminage et d'augmenter le taux de propagation pour toutes les mixites des modes I/II. Les donnees experimentales recueillies ont ete utilisees pour determiner lesquels des criteres de delaminage en statique et des modeles de taux de propagation du delaminage en fatigue en mode mixte I/II proposes dans la litterature representent le mieux le delaminage du composite etudie. Une courbe de regression a ete utilisee pour determiner le meilleur ajustement entre les donnees experimentales et les criteres de delaminage en statique etudies. Une surface de regression a ete utilisee pour determiner le meilleur ajustement entre les donnees experimentales et les modeles de taux de propagation en fatigue etudies. D'apres les ajustements, le meilleur critere de delaminage en statique est le critere B-K et le meilleur modele de propagation en fatigue est le modele de Kenane-Benzeggagh. Afin de predire le delaminage lors de la conception de pieces complexes, des modeles numeriques peuvent etre utilises. La prediction de la longueur de delaminage lors des chargements en fatigue d'une piece est tres importante pour assurer qu'une fissure interlaminaire ne va pas croitre excessivement et causer la rupture de cette piece avant la fin de sa duree de vie de conception. Selon la tendance recente, ces modeles sont souvent bases sur l'approche de zone cohesive avec une formulation par elements finis. Au cours des travaux presentes dans cette these, le modele de progression du delaminage en fatigue de Landry & LaPlante (2012) a ete ameliore en y ajoutant le traitement des chargements en mode mixte I/II et en y modifiant l'algorithme du calcul de la force d'entrainement maximale du delaminage. Une calibration des parametres de zone cohesive a ete faite a partir des essais quasi-statiques experimentaux en mode I et II. Des resultats de simulations numeriques des essais quasi-statiques en mode mixte I/II, avec des eprouvettes seches et humides, ont ete compares avec les essais experimentaux. Des simulations numeriques en fatigue ont aussi ete faites et comparees avec les resultats experimentaux du taux de propagation du delaminage. Les resultats numeriques des essais quasi-statiques et de fatigue ont montre une bonne correlation avec les resultats experimentaux pour toute la gamme des mixites des modes I/II etudiee.

  2. Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Chuangqiang; Wu, Chunya; Chen, Mingjun; Zheng, Ting; Chen, Ni; Cummings, Peter T.

    2016-10-01

    To investigate the topographical dependency of protein adsorption, molecular dynamics simulations were employed to describe the adsorption behavior of the tenth type-III module of fibronectin (FN-III10) on nanostructured rutile (110) surfaces. The results indicated that the residence time of adsorbed FN-III10 largely relied on its binding mode (direct or indirect) with the substrate and the region for protein migration on the periphery (protrusion) or in the interior (cavity or groove) of nanostructures. In the direct binding mode, FN-III10 molecules were found to be 'trapped' at the anchoring sites of rutile surface, or even penetrate deep into the interior of nanostructures, regardless of the presented geometrical features. In the indirect binding mode, FN-III10 molecules were indirectly connected to the substrate via a hydrogen-bond network (linking FN-III10 and interfacial hydrations). The facets created by nanostructures, which exerted restraints on protein migration, were suggested to play an important role in the stability of indirect FN-III10-rutile binding. However, a doubly unfavorable situation - indirect FN-III10-rutile connections bridged by a handful of mediating waters and few constraints on movement of protein provided by nanostructures - would result in an early desorption of protein.

  3. A study of the progression of damage in an axially loaded Branta leucopsis femur using X-ray computed tomography and digital image correlation

    PubMed Central

    Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J.

    2017-01-01

    This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms. PMID:28652932

  4. A study of the progression of damage in an axially loaded Branta leucopsis femur using X-ray computed tomography and digital image correlation.

    PubMed

    Mustansar, Zartasha; McDonald, Samuel A; Sellers, William Irvin; Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J; Margetts, Lee

    2017-01-01

    This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.

  5. Analysis of influence of different pressure and different depth of pvd on soft foundation treatment

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, XueKui

    2018-02-01

    According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.

  6. A Hybrid Converter for Improving Light Load Efficiency

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi

    In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.

  7. Buses retrofitting with diesel particle filters: Real-world fuel economy and roadworthiness test considerations.

    PubMed

    Fleischman, Rafael; Amiel, Ran; Czerwinski, Jan; Mayer, Andreas; Tartakovsky, Leonid

    2018-05-01

    Retrofitting older vehicles with diesel particulate filter (DPF) is a cost-effective measure to quickly and efficiently reduce particulate matter emissions. This study experimentally analyzes real-world performance of buses retrofitted with CRT DPFs. 18 in-use Euro III technology urban and intercity buses were investigated for a period of 12months. The influence of the DPF and of the vehicle natural aging on buses fuel economy are analyzed and discussed. While the effect of natural deterioration is about 1.2%-1.3%, DPF contribution to fuel economy penalty is found to be 0.6% to 1.8%, depending on the bus type. DPF filtration efficiency is analyzed throughout the study and found to be in average 96% in the size range of 23-560nm. Four different load and non-load engine operating modes are investigated on their appropriateness for roadworthiness tests. High idle is found to be the most suitable regime for PN diagnostics considering particle number filtration efficiency. Copyright © 2017. Published by Elsevier B.V.

  8. Sonographic assessment of changes in diaphragmatic kinetics induced by inspiratory resistive loading.

    PubMed

    Soilemezi, Eleni; Tsagourias, Matthew; Talias, Michael A; Soteriades, Elpidoforos S; Makrakis, Vasilios; Zakynthinos, Epaminondas; Matamis, Dimitrios

    2013-04-01

    Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  9. Modeling of sheet metal fracture via cohesive zone model and application to spot welds

    NASA Astrophysics Data System (ADS)

    Wu, Joseph Z.

    Even though the cohesive zone model (CZM) has been widely used to analyze ductile fracture, it is not yet clearly understood how to calibrate the cohesive parameters including the specific work of separation (the work of separation per unit crack area) and the peak stress. A systematic approach is presented to first determine the cohesive values for sheet metal and then apply the calibrated model to various structure problems including the failure of spot welds. Al5754-0 was chosen for this study since it is not sensitive to heat treatment so the effect of heat-affected-zone (HAZ) can be ignored. The CZM has been applied to successfully model both mode-I and mode-III fracture for various geometries including Kahn specimens, single-notch specimens, and deep double-notch specimens for mode-I and trouser specimens for mode-III. The mode-I fracture of coach-peel spot-weld nugget and the mixed-mode fracture of nugget pull-out have also been well simulated by the CZM. Using the mode-I average specific work of separation of 13 kJ/m2 identified in a previous work and the mode-III specific work of separation of 38 kJ/m 2 found in this thesis, the cohesive peak stress has been determined to range from 285 MPa to 600 MPa for mode-I and from 165 MPa to 280 MPa for mode-III, depending on the degree of plastic deformation. The uncertainty of these cohesive values has also been examined. It is concluded that, if the specific work of separation is a material constant, the peak stress changes with the degree of plastic deformation and is therefore geometry-dependent.

  10. Stress intensities for cracks emanating from pin-loaded holes

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Jolles, M.; Peters, W. H.

    1977-01-01

    A series of stress freezing photoelastic experiments were conducted on large plates containing central holes with cracks emanating from the edge formed by the intersection of the hole with the plate surface. Loads were applied through rigid pins with neat fits in the holes. Stress-intensity factors (SIF) were estimated by a computer assisted least squares analysis of the photoelastic data taken from slices near the points of intersection of the flaw border with the hole boundary and the plate surface. Results indicate that the local mode of loading changes from Mode 1 near the hole boundary to mixed mode near the plate surface. The analysis is extended to include mixed mode loading, and results are compared with an existing approximate theory.

  11. Study on Impact of Electric Vehicles Charging Models on Power Load

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  13. Apoprotein isolation and activation, and vibrational structure of the Helicobacter mustelae iron urease

    PubMed Central

    Carter, Eric L.; Proshlyakov, Denis A.; Hausinger, Robert P.

    2011-01-01

    The micro-aerophilic pathogen Helicobacter mustelae synthesizes an oxygen-labile, iron-containing urease (UreA2B2) in addition to its standard nickel-containing enzyme (UreAB). An apoprotein form of the iron urease was prepared from ureA2B2-expressing recombinant Escherichia coli cells that were grown in minimal medium. Temperature-dependent circular dichroism measurements of holoprotein and apoprotein demonstrate an enhancement of thermal stability associated with the UreA2B2 metallocenter. In parallel to the situation reported for nickel activation of the standard urease apoprotein, incubation of UreA2B2 apoprotein with ferrous ions and bicarbonate generated urease activity in a portion of the nascent active sites. In addition, ferrous ions were shown to be capable of reductively activating the oxidized metallocenter. Resonance Raman spectra of the inactive, aerobically-purified UreA2B2 holoprotein exhibit vibrations at 495 cm−1 and 784 cm−1, consistent with νs and νas modes of an Fe(III)-O-Fe(III) center; these modes undergo downshifts upon binding of urea and were unaffected by changes in pH. The low-frequency mode also exhibits an isotopic shift from 497 to 476 cm−1 upon 16O/18O bulk water isotope substitution. Expression of subunits of the conventional nickel-containing Klebsiella aerogenes urease in cells grown in rich medium without nickel resulted in iron incorporation into a portion of the protein. The inactive iron-loaded species exhibited a UV-visible spectrum similar to oxidized UreA2B2 and was capable of being reductively activated under anoxic conditions. Results from these studies more clearly define the formation and unique properties of the iron urease metallocenter. PMID:22196017

  14. Thermal analysis of the intact mandibular premolar: a finite element analysis.

    PubMed

    Oskui, I Z; Ashtiani, M N; Hashemi, A; Jafarzadeh, H

    2013-09-01

    To obtain temperature distribution data through human teeth focusing on the pulp-dentine junction (PDJ). A three-dimensional tooth model was reconstructed using computer-aided design software from computed tomographic images. Subsequently, temperature distribution was numerically determined through the tooth for three different heat loads. Loading type I was equivalent to a 60° C mouth temperature for 1 s. Loading type II started with a 60° C mouth temperature, decreasing linearly to 37° C over 10 s. Loading type III repeated the pattern of type II in three consecutive cycles, with a 5 s resting time between cycles. The maximum temperatures of the pulp were 37.9° C, 39.0° C and 41.2° C for loading types I, II, and III, respectively. The largest temperature rise occurred with the cyclic loading, that is, type III. For the heat loads considered, the predicted peak temperatures at the PDJ were less than the reported temperature thresholds of irreversible pulpal damage. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    PubMed

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture resistance and bonding to tooth.

  16. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    NASA Astrophysics Data System (ADS)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  17. Determination of stress intensity factors for interface cracks under mixed-mode loading

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.

  18. Complexation of Curium(III) with DTPA at 10–70 °C: Comparison with Eu(III)–DTPA in Thermodynamics, Luminescence, and Coordination Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Guoxin; Zhang, Zhiyong; Martin, Leigh R.

    Separation of trivalent actinides (An(III)) from trivalent lanthanides (Ln(III)) is a challenging task because of their nearly identical chemical properties. Diethylenetriaminepentaacetate (DTPA), a key reagent used in the TALSPEAK process that effectively separates An(III) from Ln(III), is believed to play a critical role in the An(III)/Ln(III) separation. However, the underlying principles for the separation based on the difference in the complexation of DTPA with An(III) and Ln(III) remain unclear. In this work, the complexation of DTPA with Cm(III) at 10-70 ºC was investigated by spectrophotometry, luminescence spectroscopy, and microcalorimetry, in conjunction with computational methods. The binding strength, the enthalpy ofmore » complexation, the coordination modes, and the luminescence properties are compared between the Cm(III)-DTPA and Eu(III)-DTPA systems. The experimental and computational data have demonstrated that the difference between Cm(III) and Eu(III) in the binding strength with DTPA can be attributed to the stronger covalence bonding between Cm(III) and the nitrogen donors of DTPA.« less

  19. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  20. Experimental investigation of leaky lamb modes by an optically induced grating.

    PubMed

    Van de Rostyne, Kris; Glorieux, Christ; Gao, Weimin; Lauriks, Walter; Thoen, Jan

    2002-09-01

    By removing the symmetry of a free plate configuration, fluid loading significantly modifies the nature of acoustic waves travelling along a plate, and it even gives existence to new acoustic modes. We present theoretical predictions for the existence, dispersive behavior, and spatial distribution of leaky Lamb waves in a fluid-loaded film. Although Lamb modes are often investigated by studying the radiated fluid waves resulting from their leakage, here their properties are assessed by detecting the wave displacements directly using laser beam deflection. By using crossed laser beam excitation, the detection and analysis of the different modes is done at a fixed wavelength, allowing one to verify the existence, the velocity, and the damping of each predicted mode in a simple and unambiguous way. Our theoretical predictions for the nature of the modes in a water-loaded Plexiglas film, including parts of looping modes, are experimentally confirmed.

  1. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  2. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    PubMed

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  3. Instability-related delamination growth in thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  4. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.

    2007-01-01

    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  5. Hypoglycaemic action of stevioside and a barley and brewer’s yeast based preparation in the experimental model on mice

    PubMed Central

    Cekic, Vlada; Vasovic, Velibor; Jakovljevic, Vida; Mikov, Momir; Sabo, Ana

    2011-01-01

    The aim of this study was to investigate influence of the preparation based on barley and brewer’s yeast extracts with chromium (BBCr) and stevioside (S) on fasting glycaemia and glycaemia in mice after glucose, adrenalin and alloxan application. The animals were divided into three groups: glucose 500 mgkg-1 (I); adrenalin 0.2 mgkg-1(II) and alloxan 100 mg kg-1 (III) and into subgroups according to the substance they received: stevioside 20 mg kg-1 (I-S, II-S, III-S); BBCr 750 mg kg-1(I-BBCr, II-BBCr, III-BBCr) and saline 1ml/100g (III-placebo). Glycaemia was measured before and after 7-day treatment with stevioside or BBCr in the following conditions: fasting, 30min after glucose load (I) or 45min after adrenaline load (II). In group III glycaemia was measured before and after 12-day treatment with S, BBCr or placebo and alloxan application (7th, 8th and 10th days of treatment ). BBCr significantly reduced fasting glycaemia in I and II groups and glycaemia values after the glucose load (I-BBCr: 9.20 ± 0.61 vs. 7.42 ± 0.59 mmol/L, p = 0.01). Stevioside significantly reduced glycaemia after the adrenalin load (II-S: 13.45 ± 0.71 vs. 11.65 ± 1.19 mmol/L; p = 0.03). In the III-BBCr glycaemia values did not indicate the development of alloxan-induced diabetes and were significantly lower than in the III-placebo (8.6 ± 3.16 vs. 18.8 ± 5.53 mmol/L; p < 0.05). In conclusion, BBCr caused a significant decrease of fasting glycaemia, significant reduction of glycaemia after glucose load and prevented onset of alloxan-induced diabetes. Stevioside caused the decrease of adrenalin-induced hyperglycaemia. PMID:21342135

  6. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  7. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  8. Design and Flight Test of a Cable Angle Feedback Control System for Improving Helicopter Slung Load Operations at Low Speed

    DTIC Science & Technology

    2014-04-01

    improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3

  9. A Power Regulation and Droop Mode Control Method for a Stand-Alone Load Fed from a PV-Current Source Inverter

    NASA Astrophysics Data System (ADS)

    Khayamy, Mehdy; Ojo, Olorunfemi

    2015-04-01

    A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.

  10. Dynamic Snap-Through of Thin-Walled Structures by a Reduced Order Method

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced order analysis, four categories of modal basis functions are identified including those having symmetric transverse (ST), anti-symmetric transverse (AT), symmetric in-plane (SI), and anti-symmetric in-plane (AI) displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the AT and SI modes must be included in the basis as they participate in the snap-through behavior.

  11. Dynamic Snap-Through of Thermally Buckled Structures by a Reduced Order Method

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2007-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced-order analysis, four categories of modal basis functions are identified including those having symmetric transverse, anti-symmetric transverse, symmetric in-plane, and anti-symmetric in-plane displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the anti-symmetric transverse and symmetric in-plane modes must be included in the basis as they participate in the snap-through behavior.

  12. Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies.

    PubMed

    Endrizzi, Francesco; Melchior, Andrea; Tolazzi, Marilena; Rao, Linfeng

    2015-08-21

    The complex formation between a cyclic ligand glutarimidoxioxime (denoted as HL(III) in this paper) and UO2(2+) is studied by potentiometry and microcalorimetry. Glutarimidoxioxime (HL(III)), together with glutarimidedioxime (H2L(I)) and glutardiamidoxime (H2L(II)), belongs to a family of amidoxime derivatives with prospective applications as binding agents for the recovery of uranium from seawater. An optimized procedure of synthesis that leads to the preparation of glutarimidoxioxime in the absence of other amidoxime byproducts is described in this paper. Speciation models based on the thermodynamic results from this study indicate that, compared with H2L(I) and H2L(II), HL(III) forms a much weaker complex with UO2(2+), UO2(L(III))(+), and cannot effectively compete with the hydrolysis equilibria of UO2(2+) under neutral or alkaline conditions. DFT computations, taking into account the solvation by including discrete hydration water molecules and bulk solvent effects, were performed to evaluate the structures and energies of the possible isomers of UO2(L(III))(+). Differing from the tridentate or η(2)-coordination modes previously found in the U(vi) complexes with amidoxime-related ligands, a bidentate mode, involving the oxygen of the oxime group and the nitrogen of the imino group, is found to be the most probable mode in UO2(L(III))(+). The bidentate coordination mode seems to be stabilized by the formation of a hydrogen bond between the carbonyl group of HL(III) and a water molecule in the hydration sphere of UO2(2+).

  13. Bulk semiconducting scintillator device for radiation detection

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  14. Modeling of Beams’ Multiple-Contact Mode with an Application in the Design of a High-g Threshold Microaccelerometer

    PubMed Central

    Li, Kai; Chen, Wenyuan; Zhang, Weiping

    2011-01-01

    Beam’s multiple-contact mode, characterized by multiple and discrete contact regions, non-uniform stoppers’ heights, irregular contact sequence, seesaw-like effect, indirect interaction between different stoppers, and complex coupling relationship between loads and deformation is studied. A novel analysis method and a novel high speed calculation model are developed for multiple-contact mode under mechanical load and electrostatic load, without limitations on stopper height and distribution, providing the beam has stepped or curved shape. Accurate values of deflection, contact load, contact region and so on are obtained directly, with a subsequent validation by CoventorWare. A new concept design of high-g threshold microaccelerometer based on multiple-contact mode is presented, featuring multiple acceleration thresholds of one sensitive component and consequently small sensor size. PMID:22163897

  15. A microbial fuel cell operating at low pH using an acidophile, Acidiphilium cryptum.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P; Cesar, Scott A; O'Neill, Hugh Michael

    2008-01-01

    A microbial fuel cell using an acidophilic microorganism, Acidiphilium cryptum, as the anode biocatalyst was investigated. The mode of electron transfer by this organism to the electrode was studied. Electricity production in the presence of a mediator was demonstrated using its natural electron acceptor, iron, as well as phenosafranin as the electron mediating agent. Production of Fe(II), as a result of iron reduction, at a pH of 4.0 or below was found to support electricity production. Accumulation of the oxidized iron, Fe(III) as a result of electron donation to the electrode, however, restricted higher current output. Addition of nitrilotriacetic acidmore » helped resolve the problem by redissolution of deposited Fe(III). Further, use of phenosafranin as a secondary mediator resulted in improvement in power output. At a cell loading equivalent to OD600 of 1.0, a power output of 12.7 mW/m2 was obtained in a two-chamber air-sparged fuel cell. Potential for direct electron transfer was also investigated but not detected under the conditions studied.« less

  16. Improved Transient and Steady-State Performances of Series Resonant ZCS High-Frequency Inverter-Coupled Voltage Multiplier Converter with Dual Mode PFM Control Scheme

    NASA Astrophysics Data System (ADS)

    Chu, Enhui; Gamage, Laknath; Ishitobi, Manabu; Hiraki, Eiji; Nakaoka, Mutsuo

    The A variety of switched-mode high voltage DC power supplies using voltage-fed type or current-fed type high-frequency transformer resonant inverters using MOS gate bipolar power transistors; IGBTs have been recently developed so far for a medical-use X-ray high power generator. In general, the high voltage high power X-ray generator using voltage-fed high frequency inverter with a high voltage transformer link has to meet some performances such as (i) short rising period in start transient of X-ray tube voltage (ii) no overshoot transient response in tube voltage, (iii) minimized voltage ripple in periodic steady-state under extremely wide load variations and filament heater current fluctuation conditions of the X-ray tube. This paper presents two lossless inductor snubber-assisted series resonant zero current soft switching high-frequency inverter using a diode-capacitor ladder type voltage multiplier called Cockcroft-Walton circuit, which is effectively implemented for a high DC voltage X-ray power generator. This DC high voltage generator which incorporates pulse frequency modulated series resonant inverter using IGBT power module packages is based on the operation principle of zero current soft switching commutation scheme under discontinuous resonant current and continuous resonant current transition modes. This series capacitor compensated for transformer resonant power converter with a high frequency transformer linked voltage boost multiplier can efficiently work a novel selectively-changed dual mode PFM control scheme in order to improve the start transient and steady-state response characteristics and can completely achieve stable zero current soft switching commutation tube filament current dependent for wide load parameter setting values with the aid of two lossless inductor snubbers. It is proved on the basis of simulation and experimental results in which a simple and low cost control implementation based on selectively-changed dual-mode PFM for high-voltage X-ray DC-DC power converter with a voltage multiplier strategy has some specified voltage pattern tracking voltage response performances under rapid rising time and no overshoot in start transient tube voltage as well as the minimized steady-state voltage ripple in tube voltage.

  17. Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.

    2015-01-01

    The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.

  18. Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.

    2009-07-01

    Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.

  19. Do English Listening Outcome and Cognitive Load Change for Different Media Delivery Modes in U-Learning?

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih

    2014-01-01

    Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media delivery modes produce the best results for English listening comprehension. The present study examined the effect of media delivery mode (sound and text vs. sound) on English listening comprehension and cognitive load. Participants…

  20. Application of attachment modes in the control of large space structures

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1989-01-01

    Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.

  1. Manual handling methods evaluation based on oxygen consumption

    NASA Astrophysics Data System (ADS)

    Nurmianto, E.; Ciptomulyono, U.; Suparno; Kromodihardjo, S.; Setijono, H.; Arief, N. A.

    2018-04-01

    Mining industry has become one of the largest industries in Indonesia, now competing in billions dollar market, with numbers people employed. Deliveries of a Return Rolls (RR) involve the use of a hand truck and, in many cases, a shoulder/elbow-mode of carriage. Workers usually prefer to the Gendong (carrying on the small of the back or the hip, supported by the waist and arm) mode or Manggul (carrying on some stuff shoulder) mode, because they feel safer by carrying RR on the shoulder/elbow. In this study, the physiological workload involved in shoulder/elbow-mode carrying was investigated, especially focusing on the effects of load weight and inclination. To measure heart rate and oxygen uptake while carrying on the shoulder/elbow, a laboratory experiment was conducted and safety guidelines for such tasks were proposed, based on the experimental results. Four healthy male subjects performed shoulder/elbow-mode carrying, weight between 20 and 24 kg: (1) on inclination of 10o, (2) 20o and (3) 30o. The results showed that inclination involved an increased physiological burden, and that a load of 24 kg entailed a significantly higher physiological cost than carrying a load of 20 kg. Although shoulder/elbow-mode carrying has some advantages, the worker should be advised to carry a load of less than 20 kg, to avoid a high physiological load. During shoulder/elbow-mode carrying, it is also recommended that a person prepare more training in order to have muscular strength.

  2. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  3. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.

  4. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  5. Multibody dynamics: Modeling component flexibility with fixed, free, loaded, constraint, and residual modes

    NASA Technical Reports Server (NTRS)

    Spanos, John T.; Tsuha, Walter S.

    1989-01-01

    The assumed-modes method in multibody dynamics allows the elastic deformation of each component in the system to be approximated by a sum of products of spatial and temporal functions commonly known as modes and modal coordinates respectively. The choice of component modes used to model articulating and non-articulating flexible multibody systems is examined. Attention is directed toward three classical Component Mode Synthesis (CMS) methods whereby component normal modes are generated by treating the component interface (I/F) as either fixed, free, or loaded with mass and stiffness contributions from the remaining components. The fixed and free I/F normal modes are augmented by static shape functions termed constraint and residual modes respectively. A mode selection procedure is outlined whereby component modes are selected from the Craig-Bampton (fixed I/F plus constraint), MacNeal-Rubin (free I/F plus residual), or Benfield-Hruda (loaded I/F) mode sets in accordance with a modal ordering scheme derived from balance realization theory. The success of the approach is judged by comparing the actuator-to-sensor frequency response of the reduced order system with that of the full order system over the frequency range of interest. A finite element model of the Galileo spacecraft serves as an example in demonstrating the effectiveness of the proposed mode selection method.

  6. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  7. Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson’s disease

    PubMed Central

    Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M.; Latash, Mark L.

    2017-01-01

    Background Postural instability is one of most disabling motor symptoms in Parkinson’s disease. Indices of multi-muscle synergies are new measurements of postural stability. Objectives We explored the effects of dopamine-replacement drugs on multi-muscle synergies stabilizing center of pressure coordinate and their adjustments prior to a self-triggered perturbation in patients with Parkinson’s disease. We hypothesized that both synergy indices and synergy adjustments would be improved on dopaminergic drugs. Methods Patients at Hoehn-Yahr stages II and III performed whole-body tasks both off- and on-drugs while standing. Muscle modes were identified as factors in the muscle activation space. Synergy indices stabilizing center of pressure in the anterior-posterior direction were quantified in the muscle mode space during a load-release task. Results Dopamine-replacement drugs led to more consistent organization of muscles in stable groups (muscle modes). On-drugs patients showed larger indices of synergies and anticipatory synergy adjustments. In contrast, no medication effects were seen on anticipatory postural adjustments or other performance indices. Conclusions Dopamine-replacement drugs lead to significant changes in characteristics of multi-muscle synergies in Parkinson’s disease. Studies of synergies may provide a biomarker sensitive to problems with postural stability and agility and to efficacy of dopamine-replacement therapy. PMID:28110044

  8. An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON

    NASA Astrophysics Data System (ADS)

    Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny

    2016-07-01

    Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.

  9. Is the Pharmacological Mode of Action of Chromium(III) as a Second Messenger?

    PubMed

    Vincent, John B

    2015-07-01

    Although recent studies have shown that chromium (as the trivalent ion) is not an essential trace element, it has been demonstrated to generate beneficial effects at pharmacologically relevant doses on insulin sensitivity and cholesterol levels of rodent models of insulin insensitivity, including models of type 2 diabetes. The mode of action of Cr(III) at a molecular level is still an area of active debate; however, the movement of Cr(III) in the body, particularly in response to changes in insulin concentration, suggests that Cr(III) could act as a second messenger, amplifying insulin signaling. The evidence for the pharmacological mechanism of Cr(III)'s ability to increase insulin sensitivity by acting as a second messenger is reviewed, and proposals for testing this hypothesis are described.

  10. Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes

    DOE PAGES

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...

    2017-06-22

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  11. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  12. Fatigue of dental ceramics.

    PubMed

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Surface loading of a viscoelastic earth-I. General theory

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Mitrovica, Jerry X.

    1999-06-01

    We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.

  14. Comparison of modal superposition methods for the analytical solution to moving load problems.

    DOT National Transportation Integrated Search

    1994-01-01

    The response of bridge structures to moving loads is investigated using modal superposition methods. Two distinct modal superposition methods are available: the modedisplacement method and the mode-acceleration method. While the mode-displacement met...

  15. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Nondestructive test procedure—(1) Dead load plus live load. (i) Noting figure A-1, measure and record initial... the truss equal to the full dead load of roof and ceiling. Measure and record deflections. (iii) Maintaining the dead load, add live load in approximate 1/4 design live load increments. Measure the...

  16. 24 CFR 3280.402 - Test procedure for roof trusses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Nondestructive test procedure—(1) Dead load plus live load. (i) Noting figure A-1, measure and record initial... the truss equal to the full dead load of roof and ceiling. Measure and record deflections. (iii) Maintaining the dead load, add live load in approximate 1/4 design live load increments. Measure the...

  17. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1990-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  18. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  19. Vessel Loading Observations

    DOT National Transportation Integrated Search

    1999-01-01

    Vessel Loading Observations Procedures for P.L. 480, Titles II & III, : Section 416(b) and Food for Progress programs. Notice advises steamship lines and other interested parties that the vessel loading observation (VLO) procedure will continue to be...

  20. Synthesis, structure, and catalytic activity of novel trinuclear rare-earth metal amido complexes incorporating μ-η5:η1 bonding indolyl and μ3-oxo groups.

    PubMed

    Yang, Song; Zhu, Xiancui; Zhou, Shuangliu; Wang, Shaowu; Feng, Zhijun; Wei, Yun; Miao, Hui; Guo, Liping; Wang, Fenhua; Zhang, Guangchao; Gu, Xiaoxia; Mu, Xiaolong

    2014-02-14

    The reactions of different pyrrolyl-functionalized indoles with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) produced different kinds of rare-earth metal amido complexes. Reactions of N-((1H-pyrrol-2-yl)methylene)-2-(1H-indol-3-yl)ethanamine with rare-earth metal amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Er, Dy, Eu, Y) in toluene or THF at temperatures of 75-80 °C afforded the novel trinuclear rare-earth metal amido complexes incorporating the indolyl ligand in μ-η(5):η(1) bonding modes and a μ3-O group, which is believed to originate from cleavage of the THF ring based on experimental results. Reactions of 2-(1H-indol-3-yl)-N-((1-methyl-1H-pyrrol-2-yl)methylene)ethanamine with rare-earth metal(III) amides [(Me3Si)2N]3RE(III)(μ-Cl)Li(THF)3 (RE = Yb, Dy) produced mononuclear ytterbium and dysprosium amides having the indolyl ligand in an η(1) bonding fashion. The results indicate that substituents not only have an influence on reactivity, but also have an influence on the bonding of the indolyl ligands with metals. The catalytic activities of the novel lanthanide amido complexes for the hydrophosphonylation of both aromatic and aliphatic aldehydes and ketones were explored. The results indicate that these complexes display a high catalytic activity for the C-P bond formation under mild conditions when using low catalyst loadings (0.1 mol% for aldehydes and ketones). Thus, it provides a potential way to prepare α-hydroxy phosphonates.

  1. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    DOEpatents

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  2. Dynamic Response of the Hybrid III 3 Year Old Dummy Head and Neck During Side Air Bag Loading

    PubMed Central

    Duma, Stefan M.; Crandall, Jeff R.; Pilkey, Walter D.; Seki, Kazuhiro; Aoki, Takashi

    1998-01-01

    This paper presents the results from fourteen (n = 14) tests designed to evaluate the response and injury potential of a Hybrid III 3 year old dummy subject to loading by a deploying seat mounted side air bag. An instrumented Hybrid III 3 year old dummy was used for tests in two different occupant positions chosen to maximize head and neck loading. Four seat mounted thoracic side air bags were used that varied only in the level of inflator output. NHTSA’s neck injury criteria for complex loading, referred to as Nij, was modified to include moment values for both anterioposterior and lateral directions. The results of this testing indicate that side air bag loading can result in forces and moments approaching injury threshold values. While there is considerable uncertainty as to the validity of published injury criteria due to the lack of child biomechanical data, this study demonstrates the sensitivity of child response to initial position which may provide insight into placement and geometry of side airbag systems. Furthermore, the data indicates a relationship between airbag inflator properties and child dummy response for a given airbag geometry. Recently, automobile manufacturers have begun implementing side air bags as a safety feature to mitigate injuries resulting from side impact collisions. Unlike the case for the passenger side air bag, the injury potential to an out-of-position child in side airbag loading has not been presented in the literature. The purpose of this research is to evaluate the response of a Hybrid III 3 year old dummy subject to loading by a deploying side air bag.

  3. Fracture mode during cyclic loading of implant-supported single-tooth restorations.

    PubMed

    Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus

    2012-08-01

    Fracture of veneering ceramics in zirconia-based restorations has frequently been reported. Investigation of the fracture mode of implant-supported ceramic restorations by using clinically relevant laboratory protocols is needed. This study compared the mode of fracture and number of cyclic loads until veneering fracture when ceramic and metal ceramic restorations with different veneering ceramics were supported by implants. Thirty-two implant-supported single-tooth restorations were fabricated. The test group was composed of 16 ceramic restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed by descriptive analysis and the Mann-Whitney test (α=.05). The differences in loading cycles until veneering fracture were estimated with the Cox proportional hazards analysis. Veneering fracture was the most frequently observed fracture mode. The severity of fractures was significantly more in ceramic restorations than in metal ceramic restorations. Significantly more loading cycles until veneering fracture were estimated with metal ceramic restorations veneered with glass-ceramics than with other restorations. The metal ceramic restorations demonstrated fewer and less severe fractures and resisted more cyclic loads than the ceramic restorations, particularly when the metal ceramic crowns were veneered with glass-ceramics. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Peridynamics for failure and residual strength prediction of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Colavito, Kyle

    Peridynamics is a reformulation of classical continuum mechanics that utilizes integral equations in place of partial differential equations to remove the difficulty in handling discontinuities, such as cracks or interfaces, within a body. Damage is included within the constitutive model; initiation and propagation can occur without resorting to special crack growth criteria necessary in other commonly utilized approaches. Predicting damage and residual strengths of composite materials involves capturing complex, distinct and progressive failure modes. The peridynamic laminate theory correctly predicts the load redistribution in general laminate layups in the presence of complex failure modes through the use of multiple interaction types. This study presents two approaches to obtain the critical peridynamic failure parameters necessary to capture the residual strength of a composite structure. The validity of both approaches is first demonstrated by considering the residual strength of isotropic materials. The peridynamic theory is used to predict the crack growth and final failure load in both a diagonally loaded square plate with a center crack, as well as a four-point shear specimen subjected to asymmetric loading. This study also establishes the validity of each approach by considering composite laminate specimens in which each failure mode is isolated. Finally, the failure loads and final failure modes are predicted in a laminate with various hole diameters subjected to tensile and compressive loads.

  5. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  6. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  7. Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.

    2007-01-01

    A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.

  8. Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Xu, Jiqiang; Lu, Wenzhou; Wu, Lei

    2017-05-01

    There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.

  9. Solid-State Kinetic Investigations of Nonisothermal Reduction of Iron Species Supported on SBA-15

    PubMed Central

    2017-01-01

    Iron oxide catalysts supported on nanostructured silica SBA-15 were synthesized with various iron loadings using two different precursors. Structural characterization of the as-prepared FexOy/SBA-15 samples was performed by nitrogen physisorption, X-ray diffraction, DR-UV-Vis spectroscopy, and Mössbauer spectroscopy. An increasing size of the resulting iron species correlated with an increasing iron loading. Significantly smaller iron species were obtained from (Fe(III), NH4)-citrate precursors compared to Fe(III)-nitrate precursors. Moreover, smaller iron species resulted in a smoother surface of the support material. Temperature-programmed reduction (TPR) of the FexOy/SBA-15 samples with H2 revealed better reducibility of the samples originating from Fe(III)-nitrate precursors. Varying the iron loading led to a change in reduction mechanism. TPR traces were analyzed by model-independent Kissinger method, Ozawa, Flynn, and Wall (OFW) method, and model-dependent Coats-Redfern method. JMAK kinetic analysis afforded a one-dimensional reduction process for the FexOy/SBA-15 samples. The Kissinger method yielded the lowest apparent activation energy for the lowest loaded citrate sample (Ea ≈ 39 kJ/mol). Conversely, the lowest loaded nitrate sample possessed the highest apparent activation energy (Ea ≈ 88 kJ/mol). For samples obtained from Fe(III)-nitrate precursors, Ea decreased with increasing iron loading. Apparent activation energies from model-independent analysis methods agreed well with those from model-dependent methods. Nucleation as rate-determining step in the reduction of the iron oxide species was consistent with the Mampel solid-state reaction model. PMID:29230346

  10. Fatigue behavior of a cross-ply metal matrix composite at elevated temperature under strain controlled mode. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, L.B.

    1994-12-01

    This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6/Ti-15-3, (O/9O)2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427 deg C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e.more » combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes.« less

  11. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.

    PubMed

    Olmon, R L; Raschke, M B

    2012-11-09

    The goal of antenna design at optical frequencies is to deliver optical electromagnetic energy to loads in the form of, e.g., atoms, molecules or nanostructures, or to enhance the radiative emission from such structures, or both. A true optical antenna would, on a qualitatively new level, control the light-matter interaction on the nanoscale for controlled optical signal transduction, radiative decay engineering, quantum coherent control, and super-resolution microscopy, and provide unprecedented sensitivity in spectroscopy. Resonant metallic structures have successfully been designed to approach these goals. They are called optical antennas in analogy to radiofrequency (RF) antennas due to their capability to collect and control electromagnetic fields at optical frequencies. However, in contrast to the RF, where exact design rules for antennas, waveguides, and antenna-load matching in terms of their impedances are well established, substantial physical differences limit the simple extension of the RF concepts into the optical regime. Key distinctions include, for one, intrinsic material resonances including quantum state excitations (metals, metal oxides, semiconductor homo- and heterostructures) and extrinsic resonances (surface plasmon/phonon polaritons) at optical frequencies. Second, in the absence of discrete inductors, capacitors, and resistors, new design strategies must be developed to impedance match the antenna to the load, ultimately in the form of a vibrational, electronic, or spin excitation on the quantum level. Third, there is as yet a lack of standard performance metrics for characterizing, comparing and quantifying optical antenna performance. Therefore, optical antenna development is currently challenged at all the levels of design, fabrication, and characterization. Here we generalize the ideal antenna-load interaction at optical frequencies, characterized by three main steps: (i) far-field reception of a propagating mode exciting an antenna resonance, (ii) subsequent transformation of that mode into a nanoscale spatial localization, and (iii) near-field coupling via an enhanced local density of states to a quantum load. These three steps define the goal of efficient transformation of incident radiation into a quantum excitation in an impedance-matched fashion. We review the physical basis of the light-matter interaction at the transition from the RF to optical regime, discuss the extension of antenna theory as needed for the design of impedance-matched optical antenna-load coupled systems, and provide several examples of the state of the art in design strategies and suggest future extensions. We furthermore suggest new performance metrics based on the combination of electric vector field, field enhancement and capture cross section measurement to aid in comparison between different antenna designs and optimization of optical antenna performance within the physical parameter space.

  12. The structure of Ca2+-loaded S100A2 at 1.3-Å resolution.

    PubMed

    Koch, Michael; Fritz, Günter

    2012-05-01

    S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 Å resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ © 2012 The Authors Journal compilation © 2012 FEBS.

  13. A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Cheng, Z.; Yu, X.

    2016-02-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.

  14. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Vibrational spectra of carboxylato complexes—III. Trinuclear 'basic' acetates and formates of chromium(III), iron(III) and other transition metals

    NASA Astrophysics Data System (ADS)

    Johnson, M. K.; Powell, D. B.; Cannon, R. D.

    The i.r. and Raman spectra of a series of complexes [M III3O(OOCR) 6L 3]X· xH 2O (M = Cr, Fe, Mn, Ru, Rh; L = H 2O, pyridine, γ-picoline; X = Cl, Br, I, NO 3, ClO 3, ClO 4, BF 4) have been analysed in detail. The vibrational modes of the central M 3O and the three surrounding MO 4 units, are identified. The metal—nitrogen stretching vibrations and the MOH 2 modes are assigned. The 'basic' chromium(III) formate is shown to be [Cr 3O(OOCH) 6(OH 2) 2(OOCH)] xH 2O, containing monodentate, inner-sphere coordinated formate ion. The use of the symmetric and asymmetric OCO stretching frequencies in characterizing bridging carboxylate ions is discussed.

  16. Effects of severity of gross motor disability on anticipatory postural adjustments while standing in individuals with bilateral spastic cerebral palsy.

    PubMed

    Tomita, Hidehito; Fukaya, Yoshiki; Takagi, Yukina; Yokozawa, Asami

    2016-10-01

    Although individuals with bilateral spastic cerebral palsy (BSCP) exhibit several deficits in anticipatory postural adjustments (APAs) while standing, effects of severity of motor disability on their APAs are unclear. To determine whether individuals with BSCP exhibit severity-dependent deficits in APAs. Seven individuals with level II BSCP (BSCP-II group) and seven with level III BSCP (BSCP-III group) according to the Gross Motor Function Classification System and seven healthy controls lifted a load under two different load conditions. Anticipatory activities of the erector spinae (ES), medial hamstring (MH), and gastrocnemius (GCM) were smaller in the two BSCP groups than in the control group. Although the anticipatory GCM activity was similar between the BSCP groups, the ES and MH activities were larger in the BSCP-II group than in the BSCP-III group. In the BSCP-II group, an increase in anticipatory activity with an increase in load was observed in the MH, but not in the GCM. In the BSCP-III group, load-related modulation was not found in the MH or GCM. The present findings suggest that in individuals with BSCP with severe motor disability, APA deficits extend to more proximal parts of the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A structured analysis of in vitro failure loads and failure modes of fiber, metal, and ceramic post-and-core systems.

    PubMed

    Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J

    2004-01-01

    This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.

  18. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites

    DOE PAGES

    Sutherlin, Kyle D.; Liu, Lei V.; Lee, Yong-Min; ...

    2016-11-02

    Fe III-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here in this paper, we present the NRVS spectra of side-on Fe III-peroxy and end-on Fe III-hydroperoxy model complexes and assignmore » these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe–O–O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.« less

  19. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherlin, Kyle D.; Liu, Lei V.; Lee, Yong-Min

    Fe III-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here in this paper, we present the NRVS spectra of side-on Fe III-peroxy and end-on Fe III-hydroperoxy model complexes and assignmore » these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe–O–O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.« less

  20. Nuclear Resonance Vibrational Spectroscopic Definition of Peroxy Intermediates in Nonheme Iron Sites.

    PubMed

    Sutherlin, Kyle D; Liu, Lei V; Lee, Yong-Min; Kwak, Yeonju; Yoda, Yoshitaka; Saito, Makina; Kurokuzu, Masayuki; Kobayashi, Yasuhiro; Seto, Makoto; Que, Lawrence; Nam, Wonwoo; Solomon, Edward I

    2016-11-02

    Fe III -(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here, we present the NRVS spectra of side-on Fe III -peroxy and end-on Fe III -hydroperoxy model complexes and assign these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe-O-O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of Fe III -peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.

  1. Failure mode and effects analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil.

    PubMed

    Teixeira, Flavia C; de Almeida, Carlos E; Saiful Huq, M

    2016-01-01

    The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of risk priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.

  2. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  3. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  4. Guidelines and Parameter Selection for the Simulation of Progressive Delamination

    NASA Technical Reports Server (NTRS)

    Song, Kyongchan; Davila, Carlos G.; Rose, Cheryl A.

    2008-01-01

    Turon s methodology for determining optimal analysis parameters for the simulation of progressive delamination is reviewed. Recommended procedures for determining analysis parameters for efficient delamination growth predictions using the Abaqus/Standard cohesive element and relatively coarse meshes are provided for single and mixed-mode loading. The Abaqus cohesive element, COH3D8, and a user-defined cohesive element are used to develop finite element models of the double cantilever beam specimen, the end-notched flexure specimen, and the mixed-mode bending specimen to simulate progressive delamination growth in Mode I, Mode II, and mixed-mode fracture, respectively. The predicted responses are compared with their analytical solutions. The results show that for single-mode fracture, the predicted responses obtained with the Abaqus cohesive element correlate well with the analytical solutions. For mixed-mode fracture, it was found that the response predicted using COH3D8 elements depends on the damage evolution criterion that is used. The energy-based criterion overpredicts the peak loads and load-deflection response. The results predicted using a tabulated form of the BK criterion correlate well with the analytical solution and with the results predicted with the user-written element.

  5. Evaluation of the Edge Crack Torsion (ECT) Test for Mode 3 Interlaminar Fracture Toughness of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; Lee, Edward W.; OBrien, T. Kevin; Lee, Shaw Ming

    1996-01-01

    An analytical and experimental investigation was carried out on G40-800/R6376 graphite epoxy laminates to evaluate the Edge Crack Torsion (ECT) test as a candidate for a standard Mode 3 interlaminar fracture toughness test for laminated composites. The ECT test consists of a (90/(+/- 45)(sub 3)/(+/- 45)(sub 3)/90))(sub s) laminate with a delamination introduced by a non-adhesive film at the mid-plane along one edge and loaded in a special fixture to create torsion along the length of the laminate. Dye penetrate enhanced X-radiograph of failed specimens revealed that the delamination initiated at the middle of the specimen length and propagated in a self similar manner along the laminate mid-plane. A three-dimensional finite element analysis was performed that indicated that a pure Mode 3 delamination exists at the middle of specimen length away from both ends. At the ends near the loading point a small Mode 2 component exists. However, the magnitude of this Mode 2 strain energy release rate at the loading point is small compared to the magnitude of Mode 3 component in the mid-section of the specimen. Hence, the ECT test yielded the desired Mode 3 delamination. The Mode 3 fracture toughness was obtained from a compliance calibration method and was in good agreement with the finite element results. Mode 2 End-Notched Flexure (ENF) tests and Mode 1 Double Cantilever Beam (DCB) tests were also performed for the same composite material. The Mode 1 fracture toughness was much smaller than both the Mode 2 and Mode 3 fracture toughness. The Mode 2 fracture toughness was found to be 75% of the Mode 3 fracture toughness.

  6. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  7. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    PubMed Central

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  8. Research on the Operation Mode of Intelligent-town Energy Internet Based on Source-Load Interaction

    NASA Astrophysics Data System (ADS)

    Li, Hao; Li, Wen; Miao, Bo; Li, Bin; Liu, Chang; Lv, Zhipeng

    2018-01-01

    On the background of the rise of intelligence and the increasing deepening of “Internet +”application, the energy internet has become the focus of the energy research field. This paper, based on the fundamental understanding on the energy internet of the intelligent town, discusses the mode of energy supply in the source-load interactive region, and gives an in-depth study on the output characteristics of the energy supply side and the load characteristics of the demand side, so as to derive the law of energy-load interaction of the intelligent-town energy internet.

  9. Evaluation of the hybrid III and Q-series pediatric ATD upper neck loads as compared to pediatric volunteers in low-speed frontal crashes.

    PubMed

    Seacrist, Thomas; Mathews, Emily A; Balasubramanian, Sriram; Maltese, Matthew R; Arbogast, Kristy B

    2013-11-01

    Debate exists in the automotive community regarding the validity of the pediatric ATD neck response and corresponding neck loads. Previous research has shown that the pediatric ATDs exhibit hyper-flexion and chin-to-chest contact resulting in overestimations of neck loads and neck injury criteria. Our previous work comparing the kinematics of the Hybrid III and Q-series 6 and 10-year-old ATDs to pediatric volunteers in low-speed frontal sled tests revealed decreased ATD cervical and thoracic spine excursions. These kinematic differences may contribute to the overestimation of upper neck loads by the ATD. The current study compared upper neck loads of the Hybrid III and Q-series 6 and 10-year-old ATDs against size-matched male pediatric volunteers in low-speed frontal sled tests. A 3-D near-infrared target tracking system quantified the position of markers on the ATD and pediatric volunteers (head top, nasion, bilateral external auditory meatus). Shear force (F x ), axial force (F z ), bending moment (M y ), and head angular acceleration ([Formula: see text]) were calculated about the upper neck using standard equations of motion. In general, the ATDs underestimated axial force and overestimated bending moment compared to the human volunteers. The Hybrid III 6, Q6, and Q10 exhibited reduced head angular acceleration and modest increases in upper neck shear compared to the pediatric volunteers. The reduction in axial force and bending moment has important implications for neck injury predictions as both are used when calculating N ij . These analyses provide insight into the biofidelity of the pediatric ATD upper neck loads in low-speed crash environments.

  10. An Experiment on Isomerism in Metal-Amino Acid Complexes.

    ERIC Educational Resources Information Center

    Harrison, R. Graeme; Nolan, Kevin B.

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…

  11. User document for computer programs for ring-stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1973-01-01

    A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.

  12. 25 CFR 547.11 - What are the minimum technical standards for money and credit handling?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... GAMES § 547.11 What are the minimum technical standards for money and credit handling? This section... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii...

  13. 25 CFR 547.11 - What are the minimum technical standards for money and credit handling?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... GAMES § 547.11 What are the minimum technical standards for money and credit handling? This section... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii...

  14. 25 CFR 547.11 - What are the minimum technical standards for money and credit handling?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... GAMES § 547.11 What are the minimum technical standards for money and credit handling? This section... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii...

  15. 25 CFR 547.11 - What are the minimum technical standards for money and credit handling?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii... specifically designed to prevent repetition of validation numbers; and (B) Has some form of checkcode or other...

  16. 25 CFR 547.11 - What are the minimum technical standards for money and credit handling?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii... specifically designed to prevent repetition of validation numbers; and (B) Has some form of checkcode or other...

  17. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1988-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  18. Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm-1 mode

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; Zhu, Ke; Liu, Yulong; Zhang, Lin; Boydston-White, Susie; Cheng, Gangge; Pu, Yang; Bidyut, Das; Alfano, Robert R.

    2015-03-01

    RR spectra of brain normal tissue, gliomas in low grade I and II, and malignant glioma tumors in grade III and IV were measured using a confocal micro Raman spectrometer. This report focus on the relative contents of tryptophan (W) in various grades of brain glioma tumors by the intrinsic molecular resonance Raman (RR) spectroscopy method using the 1588cm-1 of tryptophan mode by 532 nm excitation. The RR spectra of key fingerprints of tryptophan, with a main vibrational mode at 1588cm-1 (W8b), were observed. It was found that tryptophan contribution was accumulated in grade I to IV gliomas and the mode of 1588cm-1 in grade III and IV malignant gliomas were enhanced by resonance.

  19. Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water

    NASA Astrophysics Data System (ADS)

    Xiong, Qi; Li, Hongjuan; Lu, Zhanpeng; Chen, Junjie; Xiao, Qian; Ma, Jiarong; Ru, Xiangkun

    2018-01-01

    The microstructure of A508III/309L/308L weld clad and the properties of the oxide films formed in simulated pressurized water reactor primary water at 290 °C were characterized. The A508III heat-affected zone (HAZ) consisted primarily of a decarburization zone with ferrite near the fusion line and a following pearlite structure with fine grains. A high hardness region in the HAZ could be the result of C-enrichment. M23C6 and M7C3 precipitates were observed in element transition zone. 308L stainless steel (SS) containing ∼ 12% ferrites exhibited both ferritic-austenitic solidification mode (FA mode, δ→γ) and austenitic-ferritic solidification mode (AF mode, γ→δ), whereas 309L SS containing ∼ 9% ferrites exhibited only FA mode. The A508III surface oxide film was mainly Fe3O4 in deaerated high-temperature water. The coarse grain zone covered with few oxide particles was different from other types of film on the other region of HAZ and the bulk zone. More pitting appears on 309L SS after immersion in deaerated high-temperature water due to the dissolution of inclusions. SS surface oxide films consisted primarily of spinels. The oxide film on SS was divided into two layers. Ni was concentrated mainly at the oxide/substrate interface. The oxide film formed on 309L was thicker than that on the 308L. The ferrite in the stainless steel could improve the oxidation resistance.

  20. Fracture resistance and primary failure mode of endodontically treated teeth restored with a carbon fiber-reinforced resin post system in vitro.

    PubMed

    Raygot, C G; Chai, J; Jameson, D L

    2001-01-01

    This study was undertaken to characterize the fracture resistance and mode of fracture of endodontically treated incisors restored with cast post-and-core, prefabricated stainless steel post, or carbon fiber-reinforced composite post systems. Ten endodontically treated teeth restored with each technique were subjected to a compressive load delivered at a 130-degree angle to the long axis until the first sign of failure was noted. The fracture load and the mode of fracture were recorded. The failure loads registered in the three groups were not significantly different. Between 70%, and 80% of teeth from any of the three groups displayed fractures that were located above the simulated bone level. The use of carbon fiber-reinforced composite posts did not change the fracture resistance or the failure mode of endodontically treated central incisors compared to the use of metallic posts.

  1. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  2. Stabilization of a Quadrotor With Uncertain Suspended Load Using Sliding Mode Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xu; Liu, Rui; Zhang, Jiucai

    2016-08-21

    The stability and trajectory control of a quadrotor carrying a suspended load with a fixed known mass has been extensively studied in recent years. However, the load mass is not always known beforehand in practical applications. This mass uncertainty brings uncertain disturbances to the quadrotor system, causing existing controllers to have a worse performance or to be collapsed. To improve the quadrotor's stability in this situation, we investigate the impacts of the uncertain load mass on the quadrotor. By comparing the simulation results of two controllers -- the proportional-derivative (PD) controller and the sliding mode controller (SMC) driven by amore » sliding mode disturbance of observer (SMDO), the quadrotor's performance is verified to be worse as the uncertainty increases. The simulation results also show a controller with stronger robustness against disturbances is better for practical applications.« less

  3. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  4. Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation

    NASA Astrophysics Data System (ADS)

    Wei, Xialu; Maximenko, Andrey L.; Back, Christina; Izhvanov, Oleg; Olevsky, Eugene A.

    2017-07-01

    Theoretical studies on the densification kinetics of the new spark plasma sinter-forging (SPS-forging) consolidation technique and of the regular SPS have been carried out based on the continuum theory of sintering. Both modelling and verifying experimental results indicate that the loading modes play important roles in the densification efficiency of SPS of porous ZrC specimens. Compared to regular SPS, SPS-forging is shown to be able to enhance the densification more significantly during later sintering stages. The derived analytical constitutive equations are utilised to evaluate the high-temperature creep parameters of ZrC under SPS conditions. SPS-forging and regular SPS setups are combined to form a new SPS hybrid loading mode with the purpose of reducing shape irregularity in the SPS-forged specimens. Loading control is imposed to secure the geometry as well as the densification of ZrC specimens during hybrid SPS process.

  5. III-Nitride Nanowire Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Jeremy Benjamin

    2014-07-01

    In recent years there has been a tremendous interest in nanoscale optoelectronic devices. Among these devices are semiconductor nanowires whose diameters range from 10-100 nm. To date, nanowires have been grown using many semiconducting material systems and have been utilized as light emitting diodes, photodetectors, and solar cells. Nanowires possess a relatively large index contrast relative to their dielectric environment and can be used as lasers. A key gure of merit that allows for nanowire lasing is the relatively high optical con nement factor. In this work, I discuss the optical characterization of 3 types of III-nitride nanowire laser devices.more » Two devices were designed to reduce the number of lasing modes to achieve singlemode operation. The third device implements low-group velocity mode lasing with a photonic crystal constructed of an array of nanowires. Single-mode operation is necessary in any application where high beam quality and single frequency operation is required. III-Nitride nanowire lasers typically operate in a combined multi-longitudinal and multi-transverse mode state. Two schemes are introduced here for controlling the optical modes and achieving single-mode op eration. The rst method involves reducing the diameter of individual nanowires to the cut-o condition, where only one optical mode propagates in the wire. The second method employs distributed feedback (DFB) to achieve single-mode lasing by placing individual GaN nanowires onto substrates with etched gratings. The nanowire-grating substrate acted as a distributed feedback mirror producing single mode operation at 370 nm with a mode suppression ratio (MSR) of 17 dB. The usage of lasers for solid state lighting has the potential to further reduce U.S. lighting energy usage through an increase in emitter e ciency. Advances in nanowire fabrication, speci cally a two-step top-down approach, have allowed for the demonstration of a multi-color array of lasers on a single chip that emit vertically. By tuning the geometrical properties of the individual lasers across the array, each individual nanowire laser produced a di erent emission wavelength yielding a near continuum of laser wavelengths. I successfully fabricated an array of emitters spanning a bandwidth of 60 nm on a single chip. This was achieved in the blue-violet using III-nitride photonic crystal nanowire lasers.« less

  6. Laboratory Reconstructions of Real World Frontal Crash Configurations using the Hybrid III and THOR Dummies and PMHS.

    PubMed

    Petitjean, Audrey; Lebarbe, Matthieu; Potier, Pascal; Trosseille, Xavier; Lassau, Jean-Pierre

    2002-11-01

    Load-limiting belt restraints have been present in French cars since 1995. An accident study showed the greater effectiveness in thorax injury prevention using a 4 kN load limiter belt with an airbag than using a 6 kN load limiter belt without airbag. The criteria for thoracic tolerance used in regulatory testing is the sternal deflection for all restraint types, belt and/or airbag restraint. This criterion does not assess the effectiveness of the restraint 4 kN load limiter belt with airbag observed in accidentology. To improve the understanding of thoracic tolerance, frontal sled crashes were performed using the Hybrid III and THOR dummies and PMHS. The sled configuration and the deceleration law correspond to those observed in the accident study. Restraint conditions evaluated are the 6 kN load-limiting belt and the 4 kN load-limiting belt with an airbag. Loads between the occupant and the sled environment were recorded. Various measurements (including thoracic deflections and head, thorax and pelvis accelerations and angular velocities on the dummies) characterize the dummy and PMHS behavior. PMHS anthropometry and injuries were noted. This study presents the test methodology and the results used to evaluate dummy ability to discriminate both restraint types and dummy measurement ability to be representative of thoracic injury risk for all restraint types. The injury results of the PMHS tests showed the same tendency as the accident study. Some of the criteria proposed in the literature did not show a better protection of the 4 kN load limiter belt with airbag restraint, in particular thoracic deflection maxima for both dummies. The four thoracic deflections measured on the THOR and Hybrid III dummies may allow more accurate analysis of the loading pattern and therefore of injury risk.

  7. Experimental strength of restorations with fibre posts at different stages, with and without using a simulated ligament.

    PubMed

    Pérez-González, A; González-Lluch, C; Sancho-Bru, J L; Rodríguez-Cervantes, P J; Barjau-Escribano, A; Forner-Navarro, L

    2012-03-01

    The aim of this study was to analyse the strength and failure mode of teeth restored with fibre posts under retention and flexural-compressive loads at different stages of the restoration and to analyse whether including a simulated ligament in the experimental setup has any effect on the strength or the failure mode. Thirty human maxillary central incisors were distributed in three different groups to be restored with simulation of different restoration stages (1: only post, 2: post and core, 3: post-core and crown), using Rebilda fibre posts. The specimens were inserted in resin blocks and loaded by means of a universal testing machine until failure under tension (stage 1) and 50º flexion (stages 2-3). Half the specimens in each group were restored using a simulated ligament between root dentine and resin block and the other half did not use this element. Failure in stage 1 always occurred at the post-dentine interface, with a mean failure load of 191·2 N. Failure in stage 2 was located mainly in the core or coronal dentine (mean failure load of 505·9 N). Failure in stage 3 was observed in the coronal dentine (mean failure load 397·4 N). Failure loads registered were greater than expected masticatory loads. Fracture modes were mostly reparable, thus indicating that this post is clinically valid at the different stages of restoration studied. The inclusion of the simulated ligament in the experimental system did not show a statistically significant effect on the failure load or the failure mode. © 2011 Blackwell Publishing Ltd.

  8. Elite Junior Australian Football Players Experience Significantly Different Loads Across Levels of Competition and Training Modes.

    PubMed

    Lathlean, Timothy J H; Gastin, Paul B; Newstead, Stuart; Finch, Caroline F

    2018-07-01

    Lathlean, TJH, Gastin, PB, Newstead, S, and Finch, CF. Elite junior Australian football players experience significantly different loads across levels of competition and training modes. J Strength Cond Res 32(7): 2031-2038, 2018-Well-developed physical qualities such as high jumping ability, running endurance, acceleration, and speed can help aspiring junior elite Australian football (AF) players transition to the Australian Football League competition. To do so, players need to experience sufficient load to enhance their physical resilience without increasing their risk of negative outcomes in terms of impaired wellness or injury. The aim of this study was to investigate the differences in load for different levels of competition and training modes across one competitive season. Elite junior AF players (n = 562, aged 17.7 ± 0.3, range: 16-18 years) were recruited from 9 teams across the under-18 state league competition in Victoria. All players recorded their training and match intensities according to the session rating of perceived exertion method. Training sessions were categorized according to skills, strength, conditioning, and other activities, whereas matches were identified according to level of competition. The loads in U18 state league matches (656.7 ± 210.9 au) were significantly higher (p = 0.027) than those in school matches (643.3 ± 260.9 au) and those in U18 representative matches (617.2 ± 175.4). Players, who undertook more than one match per week, experienced significantly less load in subsequent matches (p < 0.001). Furthermore, U18 state league training sessions carried the most load when compared with other training modes. This article highlights that different combinations of training and match involvement affect overall player load, which may predispose players to negative outcomes such as impaired wellness or increased injury risk.

  9. Development and implementation of a novel measure for quantifying training loads in rowing: the T2minute method.

    PubMed

    Tran, Jacqueline; Rice, Anthony J; Main, Luana C; Gastin, Paul B

    2014-04-01

    The systematic management of training requires accurate training load measurement. However, quantifying the training of elite Australian rowers is challenging because of (a) the multicenter, multistate structure of the national program; (b) the variety of training undertaken; and (c) the limitations of existing methods for quantifying the loads accumulated from varied training formats. Therefore, the purpose of this project was to develop a new measure for quantifying training loads in rowing (the T2minute method). Sport scientists and senior coaches at the National Rowing Center of Excellence collaborated to develop the measure, which incorporates training duration, intensity, and mode to quantify a single index of training load. To account for training at different intensities, the method uses standardized intensity zones (T zones) established at the Australian Institute of Sport. Each zone was assigned a weighting factor according to the curvilinear relationship between power output and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be "harder" or "easier" than on-water rowing. A common measurement unit, the T2minute, was defined to normalize sessions in different modes to a single index of load; one T2minute is equivalent to 1 minute of on-water single scull rowing at T2 intensity (approximately 60-72% VO2max). The T2minute method was successfully implemented to support national training strategies in Australian high performance rowing. By incorporating duration, intensity, and mode, the T2minute method extends the concepts that underpin current load measures, providing 1 consistent system to quantify loads from varied training formats.

  10. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  11. The Effect of Anthropomorphic Test Device Lower Leg Surrogate Selection on Impact Mitigating System Evaluation in Low- and High-Rate Loading Conditions.

    PubMed

    Quenneville, Cheryl E; Fournier, Ed; Shewchenko, Nicholas

    2017-09-01

    The lower legs are at risk of substantial injury during events such as frontal automotive crashes and antivehicular mine blasts. Loading to occupants can be assessed using an instrumented anthropomorphic test device (ATD), whose measurements can be compared to established injury criteria. NATO's AEP-55 STANAG 4569 recognizes two surrogates for lower leg injury assessments from impacts with intruding floor pans resulting from underbelly blast loads; (1) the rigid Hybrid III instrumented lower leg, and; (2) the compliant MILitary Lower eXtremity (MIL-LX). The established injury criterion for the Hybrid III leg specifies a maximum lower tibia compressive load of 5.4 kN, whereas the MIL-LX limit is 2.6 kN measured at the upper tibia for similar injury severity levels. The difference in compliance between the two legs could affect the evaluation of protection levels, resulting in an over- or under-estimation of the force attenuation of energy attenuating (EA) floor mats. The responses of the two lower leg surrogates were evaluated at impact velocities up to 12 m/s, representing floor intrusions during antivehicle mine blasts. An air cannon was used to accelerate a rigid or padded floor plate into the sole of the surrogate lower legs, loading them axially, in order to assess the protective capability of commercial EA floor mats. The peak load from the lower and upper load cells in the Hybrid III and MIL-LX legs were compared to identify at what point their respective injury criteria would be exceeded in both the padded and unpadded conditions. Comparisons of the surrogate legs' responses resulted in different evaluations of risk, with the Hybrid III leg exceeding its limit at an impact speed of 6.0 m/s, and the MIL-LX exceeding its limit at 5.5 m/s (for tests including an EA product). Furthermore, the inclusion of an EA mat had a greater relative protective effect on the Hybrid III than the MIL-LX leg, with padding reducing the force to 17 to 34% of the unpadded condition for the Hybrid III, versus 67 to 89% of the unpadded condition for the MIL-LX. The load reduction was found to be velocity dependent for both surrogates. These results indicate that the two surrogates are not equivalent in their assessment of protective capability. Therefore, the selection of ATD leg for testing of EA mats (and other protective devices) will influence the evaluation of these systems, and more robust metrics are required to identify which is the most appropriate surrogate for evaluating injury to the lower limb. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Flavia C., E-mail: flavitiz@gmail.com; Almeida, Carlos E. de; Saiful Huq, M.

    Purpose: The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. Methods: The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of riskmore » priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. Results: The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. Conclusions: The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.« less

  13. Simplified data reduction methods for the ECT test for mode 3 interlaminar fracture toughness

    NASA Technical Reports Server (NTRS)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    Simplified expressions for the parameter controlling the load point compliance and strain energy release rate were obtained for the Edge Crack Torsion (ECT) specimen for mode 3 interlaminar fracture toughness. Data reduction methods for mode 3 toughness based on the present analysis are proposed. The effect of the transverse shear modulus, G(sub 23), on mode 3 interlaminar fracture toughness characterization was evaluated. Parameters influenced by the transverse shear modulus were identified. Analytical results indicate that a higher value of G(sub 23) results in a low load point compliance and lower mode 3 toughness estimation. The effect of G(sub 23) on the mode 3 toughness using the ECT specimen is negligible when an appropriate initial delamination length is chosen. A conservative estimation of mode 3 toughness can be obtained by assuming G(sub 23) = G(sub 12) for any initial delamination length.

  14. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  15. Optical microfiber-loaded surface plasmonic TE-pass polarizer

    NASA Astrophysics Data System (ADS)

    Ma, Youqiao; Farrell, Gerald; Semenova, Yuliya; Li, Binghui; Yuan, Jinhui; Sang, Xinzhu; Yan, Binbin; Yu, Chongxiu; Guo, Tuan; Wu, Qiang

    2016-04-01

    We propose a novel optical microfiber-loaded plasmonic TE-pass polarizer consisting of an optical microfiber placed on top of a silver substrate and demonstrate its performance both numerically by using the finite element method (FEM) and experimentally. The simulation results show that the loss in the fundamental TE mode is relatively low while at the same time the fundamental TM mode suffers from a large metal dissipation loss induced by excitation of the microfiber-loaded surface plasmonic mode. The microfiber was fabricated using the standard microheater brushing-tapering technique. The measured extinction ratio over the range of the C-band wavelengths is greater than 20 dB for the polarizer with a microfiber diameter of 4 μm, which agrees well with the simulation results.

  16. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  17. Effects of Swept Tips on V-22 Whirl Flutter and Loads

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2005-01-01

    A CAMRAD II model of the V-22 Osprey tiltrotor was constructed for the purpose of analyzing the effects of blade design changes on whirl flutter. The model incorporated a dual load-path grip/yoke assembly, a swashplate coupled to the transmission case, and a drive train. A multiple-trailer free wake was used for loads calculations. The effects of rotor design changes on whirl-mode stability were calculated for swept blades and offset tip masses. A rotor with swept tips and inboard tuning masses was examined in detail to reveal the mechanisms by which these design changes affect stability and loads. Certain combinations of design features greatly increased whirl-mode stability, with (at worst) moderate increases to loads.

  18. Conception d'un système de mesure automatisé pour la caractérisation expérimentale des moteurs piézo-électriquesAn automated test system for piezoelectric motors

    NASA Astrophysics Data System (ADS)

    Ferreira, A.

    1996-04-01

    This paper describes an automated test system for piezoelectric motors allowing the experimental characterization of its electromechanical behaviour. In the first part, an experimental method is given for evaluation of losses generated in the different mechanisms of conversion: electric energy into ultrasonic vibrating energy and ultrasonic vibrating energy into mechanical energy of revolving motion. In the second part, the present method is experimentally validated on a travelling-wave-type rotary motor (Shinsei USR-60). The free stator vibration is analysed by a laser vibrometer which gives a picture both of amplitude and of phase vibration. This result allows one to obtain an identification of vibrations modes and an evaluation of ultrasonic vibrating energy and electromechanical efficiency. To characterize the working of the complete motor, the no-load working mode is first considered. The measurement of its maximal mechanical characteristics (maximal no-load rotating speed, maximal driving torque) with respect to axial load allows the choice of optimum axial load. For this optimum value, the load working mode is, finally, investigated for the evaluation of load characteristics and conversion losses.

  19. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    NASA Technical Reports Server (NTRS)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  20. Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.

    PubMed

    Kang, WenJie; Hu, Gang; Zhu, PeiDong; Liu, Qiang; Hang, Zhi; Liu, Xin

    2018-05-24

    Many previous works only focused on the cascading failure of global coupling of one-to-one structures in interdependent networks, but the local coupling of dual coupling structures has rarely been studied due to its complex structure. This will result in a serious consequence that many conclusions of the one-to-one structure may be incorrect in the dual coupling network and do not apply to the smart grid. Therefore, it is very necessary to subdivide the dual coupling link into a top-down coupling link and a bottom-up coupling link in order to study their influence on network robustness by combining with different coupling modes. Additionally, the power flow of the power grid can cause the load of a failed node to be allocated to its neighboring nodes and trigger a new round of load distribution when the load of these nodes exceeds their capacity. This means that the robustness of smart grids may be affected by four factors, i.e., load redistribution, local coupling, dual coupling link and coupling mode; however, the research on the influence of those factors on the network robustness is missing. In this paper, firstly, we construct the smart grid as a two-layer network with a dual coupling link and divide the power grid and communication network into many subnets based on the geographical location of their nodes. Secondly, we define node importance ( N I ) as an evaluation index to access the impact of nodes on the cyber or physical network and propose three types of coupling modes based on N I of nodes in the cyber and physical subnets, i.e., Assortative Coupling in Subnets (ACIS), Disassortative Coupling in Subnets (DCIS), and Random Coupling in Subnets (RCIS). Thirdly, a cascading failure model is proposed for studying the effect of local coupling of dual coupling link in combination with ACIS, DCIS, and RCIS on the robustness of the smart grid against a targeted attack, and the survival rate of functional nodes is used to assess the robustness of the smart grid. Finally, we use the IEEE 118-Bus System and the Italian High-Voltage Electrical Transmission Network to verify our model and obtain the same conclusions: (I) DCIS applied to the top-down coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or ACIS, (II) ACIS applied to a bottom-up coupling link is better able to enhance the robustness of the smart grid against a targeted attack than RCIS or DCIS, and (III) the robustness of the smart grid can be improved by increasing the tolerance α . This paper provides some guidelines for slowing down the speed of the cascading failures in the design of architecture and optimization of interdependent networks, such as a top-down link with DCIS, a bottom-up link with ACIS, and an increased tolerance α .

  1. Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load.

    PubMed

    Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C

    2011-10-01

    Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.

  2. Analysis of optimal design of low temperature economizer

    NASA Astrophysics Data System (ADS)

    Song, J. H.; Wang, S.

    2017-11-01

    This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.

  3. Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2017-05-01

    Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.« less

  5. Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle

    NASA Astrophysics Data System (ADS)

    Ajiatmo, Dwi; Robandi, Imam

    2017-03-01

    This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.

  6. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.

  7. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  8. Structural validity of the Dutch-language version of the WAIS-III in a psychiatric sample.

    PubMed

    van der Heijden, Paul; van den Bos, Pancras; Mol, Bart; Kessels, Roy P C

    2013-01-01

    The Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV; Wechsler, 2008 ) no longer provides the "traditional" Verbal IQ and Performance IQ deviation scores. In the current study, we investigated the structural validity of these scores in the scale's predecessor, the WAIS-Third Edition (WAIS-III; Wechsler, 1997c ), which is still widely used in clinical practice, especially outside the United States. Confirmative (CFA) and exploratory factor analyses (EFA) were performed on WAIS-III data from a Dutch sample of 247 psychiatric patients. Four competing models were tested in the CFA on 11 subtests. The model that fit the data best was a model in which subtests loaded on the four factor indexes (i.e., 3 Verbal Comprehension subtests, 3 Perceptual Organization subtests, 3 Working Memory subtests, and 2 Processing Speed subtests) as proposed by the manual (Wechsler, 1997b ). In the EFA on 13 subtests with four factors extracted, all subtests were found to load on the factors in accordance with the WAIS-III test manual. However, Picture Arrangement, Arithmetic, and Picture Completion showed only moderate loadings on the proposed factors. Implications for clinical practice are discussed.

  9. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  10. Buckling analysis of non-prismatic columns based on modified vibration modes

    NASA Astrophysics Data System (ADS)

    Rahai, A. R.; Kazemi, S.

    2008-10-01

    In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.

  11. Fractography of composite delamination

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.

    1989-01-01

    Delamination is a major failure mode of carbon fiber organic matrix composites. It can occur under a variety of loading conditions. Efforts to develop predictive models of the delamination of carbon fiber composites are hampered by a lack of information about the micromechanics of impact damage and delamination growth. Crack formation and propagation in these materials cannot be observed in sufficient detail to determine micro-damage using currently available nondestructive methods such as acoustic backscattering or x ray imaging. Consequently, destructive methods are required. Delamination of composites in Mode I, Mode II and after low energy impact loads were investigated using metallographic techniques of potting the failed specimens, sectioning and examining the cut sections for damage modes.

  12. Optimized undulator to generate low energy photons from medium to high energy accelerators

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Chiu, Mau-Sen; Luo, Hao-Wen; Yang, Chin-Kang; Huang, Jui-Che; Jan, Jyh-Chyuan; Hwang, Ching-Shiang

    2017-07-01

    While emitting low energy photons from a medium or high energy storage ring, the on-axis heat load on the beam line optics can become a critical issue. In addition, the heat load in the bending magnet chamber, especially in the vertical and circular polarization mode of operation may cause some concern. In this work, we compare the heat loads for the APPLE-II and the Knot-APPLE, both optimized to emit 10 eV photons from the 3 GeV TPS. Under this constraint the heat load analysis, synchrotron radiation performance and features in various polarization modes are presented. Additional consideration is given to beam dynamics effect.

  13. [Cyclic fatigue of Vita mark II machinable ceramics under Hertzian's contact].

    PubMed

    Liu, Wei-Cai; Zhang, Zhi-Shen; Huang, Cheng-Min; Chao, Yong-Lie; Wan, Qian-Bing

    2006-08-01

    To investigate the cyclic fatigue modes of Vita mark II machinable ceramics under Hertzian's contact. Hertzian's contact technique (WC spheres r = 3.18 mm) was used to investigate the cyclic fatigue of Vita mark II machinable ceramic. All specimens were fatigued by cyclic loading in moist environment, furthermore, surviving strength was examined by three point test and morphology damage observation. In homogeneous Vita mark II machinable ceramics, two fatigue damage modes existed after cyclic loading with spheres under moist environment, including conventional tensile-driven cone cracking (brittle mode) and shear-driven microdamage accumulation (quasi-plastic mode). The latter generated radial cracks and deeply penetrating secondary cone crack. Initial strength degradation were caused by the cone cracks, subsequent and much more deleterious loss was caused by radial cracks. Cyclic fatigue modes of Vita mark II machinable ceramics includes brittle and quasi-plastic mode.

  14. [DETERMINATION OF THE OPTIMAL SAFE MODE OF PHYSICAL ACTIVITY FOR THE MILITARY SERVANTS UNDER CONDITIONS CLOSE TO FIGHTING].

    PubMed

    Chernozub, A; Radchenko, Y

    2015-01-01

    The paper presents the results of research, allowing to establish the need for and feasibility of an integrated method to determine the most effective but at the same time safe modes of load to the body troops. We found that despite the rather promising application of our proposed mode of load of high intensity (Ra = 0.71) to increase the level of physical military training as soon as possible in time of peace (with a minimum set of combat equipment), problematic issue is that in most cases there is a complete-mismatch achieved in the degree of physical development of the body of military requirements and the challenges posed in terms of direct hostilities. Using the integral method developed by us we determine the safest modes of exercise for the military servants to optimize the most appropriate parameters of volume and intensity of the load, and speed up the adaptive changes in their body to enhance maximum performance at this stage of preparation.

  15. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    NASA Astrophysics Data System (ADS)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  16. Cdc45-induced loading of human RPA onto single-stranded DNA

    PubMed Central

    Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut

    2017-01-01

    Abstract Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. PMID:28100698

  17. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  18. Advanced Technology Blade testing on the XV-15 Tilt Rotor Research Aircraft

    NASA Technical Reports Server (NTRS)

    Wellman, Brent

    1992-01-01

    The XV-15 Tilt Rotor Research Aircraft has just completed the first series of flight tests with the Advanced Technology Blade (ATB) rotor system. The ATB are designed specifically for flight research and provide the ability to alter blade sweep and tip shape. A number of problems were encountered from first installation through envelope expansion to airplane mode flight that required innovative solutions to establish a suitable flight envelope. Prior to operation, the blade retention hardware had to be requalified to a higher rated centrifugal load, because the blade weight was higher than expected. Early flights in the helicopter mode revealed unacceptably high vibratory control system loads which required a temporary modification of the rotor controls to achieve higher speed flight and conversion to airplane mode. The airspeed in airplane mode was limited, however, because of large static control loads. Furthermore, analyses based on refined ATB blade mass and inertia properties indicated a previously unknown high-speed blade mode instability, also requiring airplane-mode maximum airspeed to be restricted. Most recently, a structural failure of an ATB cuff (root fairing) assembly retention structure required a redesign of the assembly. All problems have been addressed and satisfactory solutions have been found to allow continued productive flight research of the emerging tilt rotor concept.

  19. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    NASA Astrophysics Data System (ADS)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  20. The Effects of Response Modes and Cues on Language Learning, Cognitive Load and Self-Efficacy Beliefs in Web-Based Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Huang, Kun

    2014-01-01

    An experiment was conducted to examine how different response modes for practice questions and the presence or absence of cues influenced students' self-efficacy beliefs, perceived cognitive load, and performance in language recall and recognition tasks. One hundred fifty-seven 6th grade students were randomly assigned to one of four conditions:…

  1. A Planar Quasi-Static Constraint Mode Tire Model

    DTIC Science & Technology

    2015-07-10

    strikes a balance between simple tire models that lack the fidelity to make accurate chassis load predictions and computationally intensive models that...strikes a balance between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load predictions...UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris

  2. Mode tunable p-type Si nanowire transistor based zero drive load logic inverter.

    PubMed

    Moon, Kyeong-Ju; Lee, Tae-Il; Lee, Sang-Hoon; Han, Young-Uk; Ham, Moon-Ho; Myoung, Jae-Min

    2012-07-25

    A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.

  3. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  4. Risk-Informed Mean Recurrence Intervals for Updated Wind Maps in ASCE 7-16.

    PubMed

    McAllister, Therese P; Wang, Naiyu; Ellingwood, Bruce R

    2018-05-01

    ASCE 7 is moving toward adopting load requirements that are consistent with risk-informed design goals characteristic of performance-based engineering (PBE). ASCE 7-10 provided wind maps that correspond to return periods of 300, 700, and 1,700 years for Risk Categories I, II, and combined III/IV, respectively. The risk targets for Risk Categories III and IV buildings and other structures (designated as essential facilities) are different in PBE. The reliability analyses reported in this paper were conducted using updated wind load data to (1) confirm that the return periods already in ASCE 7-10 were also appropriate for risk-informed PBE, and (2) to determine a new risk-based return period for Risk Category IV. The use of data for wind directionality factor, K d , which has become available from recent wind tunnel tests, revealed that reliabilities associated with wind load combinations for Risk Category II structures are, in fact, consistent with the reliabilities associated with the ASCE 7 gravity load combinations. This paper shows that the new wind maps in ASCE 7-16, which are based on return periods of 300, 700, 1,700, and 3,000 years for Risk Categories I, II, III, and IV, respectively), achieve the reliability targets in Section 1.3.1.3 of ASCE 7-16 for nonhurricane wind loads.

  5. NASA Structural Analysis Report on the American Airlines Flight 587 Accident - Local Analysis of the Right Rear Lug

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S; Glaessgen, Edward H.; Mason, Brian H; Krishnamurthy, Thiagarajan; Davila, Carlos G

    2005-01-01

    A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. From the analyses conducted and presented in this paper, the following conclusions were drawn. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985-certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003- subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs. I.

  6. Structural Analysis of the Right Rear Lug of American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Glaessgen, Edward H.; Mason, Brian H.; Krishnamurthy, Thiagarajan; Davila, Carlos G.

    2006-01-01

    A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985- certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003-subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs.

  7. Efficient vibration mode analysis of aircraft with multiple external store configurations

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1988-01-01

    A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.

  8. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  9. Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet

    NASA Astrophysics Data System (ADS)

    Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu

    2016-11-01

    To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.

  10. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope.

    PubMed

    Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J

    2012-02-01

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  11. Effects of electrical loads containing non-resistive components on electromagnetic vibration energy harvester performance

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei

    2018-02-01

    To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.

  12. Analysis of Biomechanical Effects of Different Sites and Modes of Orthodontic Loading On Arch Expansion in a Preadolescent Mandible: An FEA Study.

    PubMed

    Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo

    2018-05-11

    The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.

  13. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  14. Stress Distribution and Damage Mode of Ceramic-Dentin Bilayer Systems

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Cem; Demiroz, S. Suna; Mehmetov, Emirullah; Uysal, Hakan

    The aim of this study was to evaluate the damage modes of ceramic systems bonded to dentin under Hertzian indentation. Single-cycle Hertzian contact test over 150-850 N load range was applied randomly to 210 ceramic-dentin bilayer disc specimens of zirconia or IPS Empress II -1 mm, -1.5 mm and of feldspathic porcelain -1 mm, -1.5 mm, -2 mm. Optical microscopy was employed for the identification of quasiplastic mode and radial cracks. Finite element analysis was used to analyze the stress distribution. Our results showed that the degree of damage in both modes evolved progressively and the origin changed with contact load. Stress location and value were consistent with the mechanical test results. It was concluded that microstructure and thickness of the material have a significant effect on the damage modes of ceramic layer systems.

  15. Resistance to vertical fracture of MTA-filled roots.

    PubMed

    EL-Ma'aita, Ahmad M; Qualtrough, Alison J E; Watts, David C

    2014-02-01

    To investigate the effect of MTA root canal fillings on the resistance to vertical root fracture (VRF) over different time intervals. Freshly extracted anterior human teeth with single canals and minimal curvatures were decoronated, instrumented to size 50/.05 ProTaper file, irrigated with 1%NaOCl and randomly allocated to one of three groups (n = 36): (i) filled with MTA, (ii) filled with gutta-percha and sealer and (iii) unfilled roots used as a negative control. Each group was subdivided into three subgroups (n = 12) according to the storage time of 48 h, 1 and 6 months at 37°C in synthetic tissue fluid (STF). Following the storage periods, filled roots were mounted in acrylic supports, and the periodontal ligament was simulated using elastomeric impression material. Vertical loading was carried out with a ball-ended steel cylinder fitted on a universal testing machine at 1 mm/min crosshead speed. The maximum force at fracture (F-max) and the fracture mode were recorded for each root. Data were statistically analysed using two-way anova and Bonferroni post hoc tests. The mean F-max was significantly higher in the MTA subgroups after 1 and 6 months compared with all other subgroups. Two modes of fracture were identified: split and comminuted. The mean F-max values recorded with the latter were significantly higher compared with the former (P < 0.001). In all groups, split fracture was the most dominant mode apart from the MTA/1 month and MTA/6 month groups. MTA increases the resistance to VRF of endodontically treated teeth and influences the mode of fracture after 1 and 6 month of storage in STF compared with gutta-percha and sealer. © 2013 John Wiley & Sons A/S.

  16. Metering error quantification under voltage and current waveform distortion

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  17. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  18. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  19. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  20. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  1. Recovering bridge deflections from collocated acceleration and strain measurements

    NASA Astrophysics Data System (ADS)

    Bell, M.; Ma, T. W.; Xu, N. S.

    2015-04-01

    In this research, an internal model based method is proposed to estimate the displacement profile of a bridge subjected to a moving traffic load using a combination of acceleration and strain measurements. The structural response is assumed to be within the linear range. The deflection profile is assumed to be dominated by the fundamental mode of the bridge, therefore only requiring knowledge of the first mode. This still holds true under a multiple vehicle loading situation as the high mode shapes don't impact the over all response of the structure. Using the structural modal parameters and partial knowledge of the moving vehicle load, the internal models of the structure and the moving load can be respectively established, which can be used to form an autonomous state-space representation of the system. The structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations and strains. Reliable estimates of structural displacements are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulation of a simply supported single span concrete bridge subjected to a moving traffic load.

  2. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  3. Determination of elastomeric foam parameters for simulations of complex loading.

    PubMed

    Petre, M T; Erdemir, A; Cavanagh, P R

    2006-08-01

    Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.

  4. An Analysis of the Joint Modular Intermodal Distribution System

    DTIC Science & Technology

    2007-06-01

    the differing airframes. “Two methods are available to move a CROP-load of ammunition: 1. Reconfigure the load from the CROP onto multiple 463L...used among the services lack: • Transportability across different modes without re-handling/packaging • Quick reconfiguration for onward movement...numerous linkages among different channels of distribution. In the world of integrated logistics, that means that ground, rail, air, and sea modes of

  5. 10 CFR Appendix B to Subpart B of... - Uniform Test Method for Measuring Nominal Full Load Efficiency of Electric Motors

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor...) or (b).), which are listed in order of preference. (ii) Page 17, subclause 6.4.1.3., No-load test... no-load until the input has stabilized. (iii) Page 40, subclause 8.6.3, Termination of test, the...

  6. 10 CFR Appendix B to Subpart B of... - Uniform Test Method for Measuring Nominal Full Load Efficiency of Electric Motors

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor...) or (b).), which are listed in order of preference. (ii) Page 17, subclause 6.4.1.3., No-load test... no-load until the input has stabilized. (iii) Page 40, subclause 8.6.3, Termination of test, the...

  7. 10 CFR Appendix B to Subpart B of... - Uniform Test Method for Measuring Nominal Full Load Efficiency of Electric Motors

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Indirect Measurement of the Stray-Load Loss and Direct Measurement of the Stator Winding (I2R), Rotor...) or (b).), which are listed in order of preference. (ii) Page 17, subclause 6.4.1.3., No-load test... no-load until the input has stabilized. (iii) Page 40, subclause 8.6.3, Termination of test, the...

  8. Experimental characterization and macro-modeling of mechanical strength of multi-sheets and multi-materials spot welds under pure and mixed modes I and II

    NASA Astrophysics Data System (ADS)

    Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric

    2015-09-01

    Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.

  9. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading.

    PubMed

    Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.

  10. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068

  11. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... your own testing. If you submit certification test data collected with both discrete-mode and ramped...-use operation. (d) For full-load operating modes, operate the engine at wide-open throttle. (e) See 40...

  12. A study of subsurface wastewater infiltration systems for distributed rural sewage treatment.

    PubMed

    Qin, Wei; Dou, Junfeng; Ding, Aizhong; Xie, En; Zheng, Lei

    2014-08-01

    Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration ofa pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.

  13. Cell-selfish modes of evolution and mutations directed after transcriptional bypass.

    PubMed

    Holmquist, Gerald P

    2002-12-29

    During transcription, prokaryotic and eukaryotic RNA polymerases bypass and misread (transcriptional mutagenesis) several classes of DNA lesions. For example, misreading of 8-OH-dG generates mRNAs containing G to T transversions. After translation, if the mutant protein briefly allowed the cell a growth-DNA replication advantage, then precocious DNA replication would bypass that unrepaired 8-OH-dG and misinsert dA opposite the directing DNA lesion with a higher probability than would be experienced for 8-OH-G lesions at other positions in otherwise identical neighboring cells. Such retromutations would have been tested for their imparted growth advantage as mRNA before they became heritable DNA mutations. The logical properties of a mode of evolution that utilizes directed-retromutagenesis were compared one by one with those of the standard neo-Darwinian mode. The retromutagenesis mode, while minimizing mutational load, is cell-selfish; fitness is for an immediate growth advantage rather than future reproductive potential. In prokaryotes, an evolutionary mode that involves standard Darwinian fitness testing of novel alleles in the genetic background of origin followed by clonal expansion also favors cell-selfish allele combinations when linkage disequilibrium is practiced. For metazoa and plants to have evolved organized tissues, cell-selfish modes of evolution represent systems-poisons that must be totally suppressed. The feedback loops that allow evolution to be cell-serving in prokaryotes are actively blocked in eukaryotes by traits that restrict fitness to future reproductive potential. These traits include (i) delay of fitness testing until after the mutation is made permanently heritable, (ii) diploidy to further delay fitness testing, (iii) segregation of somatic lines from germ lines, (iv) testing of novel alleles against randomized allele combinations constructed by obligate sex, and (v) obligate genetic death to insure that that the most basic systems unit of selfish allele combinatorial uniqueness is the species instead of the cell. The analyses indicate that modes of evolution in addition to our neo-Darwinian one could have existed utilizing known molecular mechanisms. The evolution of multicellularity was as much the discarding of old cell-selfish habits as the acquisition of new altruistic ones.

  14. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.

  15. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  16. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation.

    PubMed

    Shao, Haifeng; Keyvaninia, Shahram; Vanwolleghem, Mathias; Ducournau, Guillaume; Jiang, Xiaoqing; Morthier, Geert; Lampin, Jean-Francois; Roelkens, Gunther

    2014-11-15

    We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.357 THz is generated. The central operating frequency and the emitted terahertz wave linewidth are analyzed, along with their dependency on the bias current applied to the laser diode and ambient temperature.

  17. Chracterization of class III peroxidases from switchgrass

    USDA-ARS?s Scientific Manuscript database

    Class III peroxidases (CIIIPRX) catalyze the oxidation of monolignols, generate radicals, and ultimately lead to the formation of lignin. In general, CIIIPRX genes encode a large number of isozymes with ranges of in vitro substrate specificities. In order to elucidate the mode of substrate specifici...

  18. Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  19. Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2005-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  20. Sliding mode controller with modified sliding function for DC-DC Buck Converter.

    PubMed

    Naik, B B; Mehta, A J

    2017-09-01

    This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.

  2. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  3. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  4. Delamination Fracture in Graphite/Epoxy Materials.

    DTIC Science & Technology

    1986-06-01

    stress fields for the two loading conditions. Figures 7-10 indicate the results of a finite element analysis % for the test coupons loaded in mode I and...results somewhat approximate, the difference in the shape of the Srespective stress fields and the different rates of decay of the _ stress fields...Shear deformation is dominant feature .: observed. 1000x (all). 7. ay stress contour plot of split laminate beam tested under . mode I conditions. 8

  5. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  6. Fracture modes in human teeth.

    PubMed

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  7. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  8. Cdc45-induced loading of human RPA onto single-stranded DNA.

    PubMed

    Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank

    2017-04-07

    Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.

    2012-01-01

    Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.

  10. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 2; Behavior Under 3g End-of-Flight Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H.,Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle super lightweight (SLWT) external liquid-oxygen (LO2) tank are presented for an important end-of-flight loading condition. These results illustrate an important type of response mode for thin-walled shells, that are subjected to combined mechanical and thermal loads, that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the aft dome of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of a short-wavelength bending deformation in the aft elliptical dome of the LO2 tank that grows in amplitude in a stable manner with increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the aft dome. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shell generally require a large-scale, high fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 1.9 times the values of the operational loads considered.

  11. Dynamic plasticity and failure of high-purity alumina under shock loading.

    PubMed

    Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K

    2006-08-01

    Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.

  12. Effect of adhesive interleaving and discontinuous plies on failure of composite laminates subject to transverse normal loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1989-01-01

    Results of a series of tests to determine the effects of adhesive interleaving and discontinuous plies (plies with end-to-end gaps) on the displacements, failure loads and failure modes of graphite-epoxy laminates subjected to transverse normal loads are presented. Adhesive interleaving can be used to contain local damage within a group of plies, i.e., to arrest crack propagation on the interlaminate level, and it can increase the amount of normal displacement the laminate can withstand before failure. However, the addition of adhesive interleaving to a laminate does not significantly increase its load carrying capability. A few discontinuous plies in a laminate can reduce the normal displacement and load at failure by 10 to 40 percent compared to a laminate with no discontinuous plies, but the presence of the ply discontinuities does not generally change the failure location or the failure mode of the laminate.

  13. Load power device and system for real-time execution of hierarchical load identification algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  14. Determination of mixed mode (I/II) SIFs of cracked orthotropic materials

    NASA Astrophysics Data System (ADS)

    Chakraborty, D.; Chakraborty, Debaleena; Murthy, K. S. R. K.

    2018-05-01

    Strain gage techniques have been successfully but sparsely used for the determination of stress intensity factors (SIFs) of orthotropic materials. For mode I cases, few works have been reported on the strain gage based determination of mode I SIF of orthotropic materials. However, for mixed mode (I/II) cases, neither a theoretical development of a strain gage based technique nor any recommended guidelines for minimum number of strain gages and their locations were reported in the literature for determination of mixed mode SIFs. The authors for the first time came up with a theoretical proposition to successfully use strain gages for determination of mixed mode SIFs of orthotropic materials [1]. Based on these formulations, the present paper discusses a finite element (FE) based numerical simulation of the proposed strain gage technique employing [902/0]10S carbon-epoxy laminates with a slant edge crack. An FE based procedure has also been presented for determination of the optimal radial locations of the strain gages apriori to actual experiments. To substantiate the efficacy of the proposed technique, numerical simulations for strain gage based determination of mixed mode SIFs have been conducted. Results show that it is possible to accurately determine the mixed mode SIFs of orthotropic laminates when the strain gages are placed within the optimal radial locations estimated using the present formulation.

  15. Comparison of torsional and longitudinal modes using phacoemulsification parameters.

    PubMed

    Rekas, Marek; Montés-Micó, Robert; Krix-Jachym, Karolina; Kluś, Adam; Stankiewicz, Andrzej; Ferrer-Blasco, Teresa

    2009-10-01

    To compare phacoemulsification parameters of torsional and longitudinal ultrasound modes. Ophthalmology Department, Military Health Service Institute, Warsaw, Poland. This prospective study evaluated eyes 1, 7, and 30 days after phacoemulsification with an Infiniti Vision System using the torsional or longitudinal ultrasound (US) mode. Cataract classification was according to the Lens Opacities Classification System II. Nucleus fragmentation was by the phaco-chop and quick-chop methods. Primary outcome measures were phaco time, mean phaco power, mean torsional amplitude, and aspiration time. Total energy, defined as cumulative dissipated energy (CDE) x aspiration time, and the effective coefficient, defined as aspiration time/phaco time, were also calculated. Four hundred eyes were evaluated. The CDE was statistically significantly lower in the torsional mode for nucleus grades I, II, and III (P<.001) but not for grade IV (P>.05). Aspiration time was statistically significantly shorter in the torsional mode than in the longitudinal mode for nucleus grades III and IV (P<.05). Total energy was significantly lower in the torsional mode for all nucleus densities (P<.05). The effective coefficient was significantly lower in the longitudinal mode except for nucleus grade I (P<.05). Torsional phacoemulsification was more effective than longitudinal phacoemulsification in the amount of applied fluid and the quantity of US energy expended. With the torsional method, it was possible to maintain a constant ratio of amount of fluid flow to quantity of US energy used, regardless of nucleus density.

  16. Where have we gone wrong? Perceptual load does not affect selective attention.

    PubMed

    Benoni, Hanna; Tsal, Yehoshua

    2010-06-18

    The theory of perceptual load (Lavie & Tsal, 1994) proposes that with low load in relevant processing left over resources spill over to process irrelevant distractors. Interference could only be prevented under High-Load Conditions where relevant processing exhausts attentional resources. The theory is based primarily on the finding that distractor interference obtained in low load displays, when the target appears alone, is eliminated in high load displays when it is embedded among neutral letters. However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large displays is diluted by the presence of the neutral letters. We separated the possible effects of load and dilution by adding dilution displays that were high in dilution and low in perceptual load. In the first experiment these displays contained as many letters as the high load displays, but their neutral letters were clearly distinguished from the target, thereby allowing for a low load processing mode. In the second experiment we presented identical multicolor displays in the Dilution and High-Load Conditions. However, in the former the target color was known in advance (thereby preserving a low load processing mode) whereas in the latter it was not. In both experiments distractor interference was completely eliminated under the Dilution Condition. Thus, it is dilution not perceptual load affecting distractor processing. 2010 Elsevier Ltd. All rights reserved.

  17. Damage assessment in PRC and RC beams by dynamic tests

    NASA Astrophysics Data System (ADS)

    Capozucca, R.

    2011-07-01

    The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.

  18. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  19. Hybrid III-V/silicon lasers

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.

    2014-05-01

    The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.

  20. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  1. Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong

    2018-01-01

    A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.

  2. Preparation of novel alginate based anion exchanger from Ulva japonica and its application for the removal of trace concentrations of fluoride from water.

    PubMed

    Paudyal, Hari; Pangeni, Bimala; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Ghimire, Kedar Nath; Alam, Shafiq

    2013-11-01

    A green seaweed, Ulva japonica, was modified by loading multivalent metal ions such as Zr(IV) and La(III) after CaCl2 cross-linking to produce metal loaded cross-linked seaweed (M-CSW) adsorbents, which were characterized by elemental analysis, functional groups identification, and metal content determination. Maximum sorption potential for fluoride was drastically increased after La(III) and Zr(IV) loading, which were evaluated as 0.58 and 0.95 mmol/g, respectively. Loaded fluoride was quantitatively desorbed by using dilute alkaline solution for its regeneration. Mechanism of fluoride adsorption was inferred in terms of ligand exchange reaction between hydroxyl ion on co-ordination sphere of the loaded metal ions of M-CSW and fluoride ion in aqueous solution. Application of M-CSW for the treatment of actual waste plating solution exhibited successful removal of fluoride to clear the effluent and environmental standards in Japan, suggesting high possibility of its application for the treatment of fluoride rich waste water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System.

    PubMed

    Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang

    2017-12-06

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

  4. Influence of Fault Surface Heterogeneity on Apparent Frictional Strength, Slip Mode and Rupture Mode: Insights from Meter-Scale Rock Friction Experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Fukuyama, E.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2016-12-01

    Influence of fault zone heterogeneity on the behavior of fault motion has been studied in many aspects, such as strain partitioning, heat generation, slip mode, rupture mode, and effective friction law. However, a multi-scale investigation of fault behavior due to heterogeneity was difficult in nature, because of the limited access to natural fault zones at the seismogenic depth and the lack of in situ high-resolution observations. To overcome these difficulties, we study the behavior of a meter-scale synthetic fault made of Indian metagabbro during laboratory direct shear experiments, utilizing high-density arrays of strain gauges mounted close to the fault. We focus on two target experiments that are loaded under the same normal stress of 6.7 MPa and loading rate of 0.01 mm/s, but with different initial surface conditions. To change the surface condition, we applied a fast loading experiment under a rate of 1 mm/s between the two target experiments. It turned out the fast loading activated many foreshocks before the mainshock and caused a roaming of the mainshock nucleation site. These features were closely related to the re-distribution of the real contact area and surface wear, which together reflected a more heterogeneous state of the surface condition. During the first target experiment before the fast loading, the synthetic fault moved in a classic stick-slip fashion and the typical rupture mode was subshear within the range of the fault length. However, during the second target experiment, the synthetic fault inherited the heterogeneous features generated from the previous fast loading, showing a macroscopic creep-like behavior that actually consisted of many small stick-slip events. The apparent frictional strength increased while the recurrence interval and the stress drop decreased, compared to the levels seen in the first target experiment. The rupture mode became more complicated; supershear phases sometimes emerged but may only exist transiently. Their occurrence or termination showed a strong correlation with the local stress field characterized by short-range coherence. These observations highlight the role of surface heterogeneity in influencing fault motion, both macroscopically and locally, and have important implications for understanding the behavior of natural faults.

  5. Parietal EEG alpha suppression time of memory retrieval reflects memory load while the alpha power of memory maintenance is a composite of the visual process according to simultaneous and successive Sternberg memory tasks.

    PubMed

    Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo

    2013-10-25

    The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of hoof angle on joint contact area in the equine metacarpophalangeal joint following simulated impact loading ex vivo.

    PubMed

    McCarty, C A; Thomason, J J; Gordon, K; Hurtig, M; Bignell, W

    2015-11-01

    To add to the existing data on impact loading of the metacarpophalangeal (MCP) joint as a precursor to assessing the potential role of impact in joint disease. To examine the effect of impact loading on contact areas of the first phalanx (P1) and proximal sesamoids (PS) with the third metacarpal (McIII) under 3 hoof-strike conditions (toe-first, flat, heel-first). Randomised, repeated controlled experiment using cadaver material. Eight cadaver limbs were subjected to randomised, repeated controlled trials where the hoof was struck by a pendulum impact machine (impact velocity 3.55 m/s) under 3 strike conditions. Data from pressure sensitive film placed over medial and lateral McIII condyles and lateromedially across the dorsal aspect of McIII were quantified: total areas of P1 and PS contact (cm(2) ) at maximum recorded pressure; centroid locations of contact areas relative to the sagittal ridge (cm) and transverse ridge (cm) and dispersion of pixels (cm(4) ) for each McIII condyle (medial/lateral). The effect of the strike conditions on each variable were statistically tested using repeated-measures ANOVA (α = 0.05). Contact area between P1 and McIII condyles fell in well-defined areas bounded by the sagittal and transverse ridge, contact areas from PS were smaller and widely dispersed across McIII palmar border. Ratio of contact area of P1 to PS was 2.83 (P<0001). Hoof strike had no significant effect on contact area (P>0.54) CONCLUSIONS: Contact at impact (primarily from P1 and distally situated on McIII), contrasts with contact areas at midstance from both P1 and PS, symmetrically placed. Under impact, the greatest contact area was on the dorsal aspect of the medial condyle and coincides with the area subjected to the greatest increase in subchondral bone stiffening in joint disease. © 2014 EVJ Ltd.

  7. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.

    2006-09-01

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.

  8. Biomechanical comparison of anterior cervical plating and combined anterior/lateral mass plating.

    PubMed

    Adams, M S; Crawford, N R; Chamberlain, R H; Bse; Sonntag, V K; Dickman, C A

    2001-01-01

    Previous studies showed anterior plates of older design to be inadequate for stabilizing the cervical spine in all loading directions. No studies have investigated enhancement in stability obtained by combining anterior and posterior plates. To determine which modes of loading are stabilized by anterior plating after a cervical burst fracture and to determine whether adding posterior plating further significantly stabilizes the construct. A repeated-measures in vitro biomechanical flexibility experiment was performed to investigate how surgical destabilization and subsequent addition of hardware components alter spinal stability. Six human cadaveric specimens were studied. Angular range of motion (ROM) and neutral zone (NZ) were quantified during flexion, extension, lateral bending, and axial rotation. Nonconstraining, nondestructive torques were applied while recording three-dimensional motion optoelectronically. Specimens were tested intact, destabilized by simulated burst fracture with posterior distraction, plated anteriorly with a unicortical locking system, and plated with a combined anterior/posterior construct. The anterior plate significantly (p<.05) reduced the ROM relative to normal in all modes of loading and significantly reduced the NZ in flexion and extension. Addition of the posterior plates further significantly reduced the ROM in all modes of loading and reduced the NZ in lateral bending. Anterior plating systems are capable of substantially stabilizing the cervical spine in all modes of loading after a burst fracture. The combined approach adds significant stability over anterior plating alone in treating this injury but may be unnecessary clinically. Further study is needed to assess the added clinical benefits of the combined approach and associated risks.

  9. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  10. Energy efficient fluid powered linear actuator with variable area

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  11. Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading

    DTIC Science & Technology

    2012-03-01

    prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates

  12. Development of a hybrid mode linear transformer driver stage

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Meng; Zhou, Liangji; Tian, Qing; Guo, Fan; Wang, Lingyun; Qing, Yanling; Zhao, Yue; Dai, Yingmin; Han, Wenhui; Chen, Lin; Xie, Weiping

    2018-02-01

    At present, the mainstream technologies of primary power sources of large pulse power devices adopt Marx or linear transformer driver (LTD) designs. Based on the analysis of the characteristics of these two types of circuit topologies, the concept of a hybrid mode LTD stage based on Marx branches is proposed. The analysis shows that the hybrid mode LTD stage can realize the following goals: (a) to reduce the energy and power handled by the basic components (switch and capacitor) to lengthen their lifetime; (b) to reduce the requirements of the multipath synchronous trigger system; and (c) to improve the maintainability of the LTD stage by using independent Marx generators instead of "traditional LTD bricks." To verify the technique, a hybrid mode LTD stage consisting of 50 branches (four-stage compact Marx generators) was designed, manufactured and tested. The stage has a radius of about 3.3 m and a height of 0.6 m. The single Marx circuit's load current is about 21 kA, with a rise time of ˜90 ns (10%-90%), under the conditions of capacitors charged to ±40 kV and a 6.9 Ω matched load. The whole stage's load current is ˜1 MA , with a rise time of ˜112 ns (10%-90%), when the capacitors are charged to ±45 kV and the matched load is 0.14 Ω .

  13. Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.

    2014-03-01

    Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.

  14. Comparison of three different orthodontic wires for bonded lingual retainer fabrication

    PubMed Central

    Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan

    2012-01-01

    Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930

  15. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    PubMed Central

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  16. The Evaluation of a Test Device for Human Occupant Restraint (THOR) Under Vertical Loading Conditions: Part 1 - Experimental Setup and Results

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Annett, Martin S.

    2013-01-01

    A series of 16 vertical tests were conducted on a Test Device for Human Occupant Restraint (THOR) - NT 50th percentile Anthropomorphic Test Device (ATD) at NASA Langley Research Center (LaRC). The purpose of the tests conducted at NASA LaRC was threefold. The first was to add vertical response data to the growing test database for THOR-NT development and validation. Second, the THOR-NT analytical computational models currently in development must be validated for the vertical loading environment. The computational models have been calibrated for frontal crash environments with concentration on accurately replicating head/neck, thoracic, and lower extremity responses. Finally, familiarity with the THOR ATD is necessary because NASA is interested in evaluating advanced ATDs for use in future flight and research projects. The THOR was subjected to vertical loading conditions ranging between 5 and 16 g in magnitude and 40 to 120 milliseconds (msec) in duration. It was also tested under conditions identical to previous tests conducted on the Hybrid II and III ATDs to allow comparisons to be made. Variations in the test setup were also introduced, such as the addition of a footrest in an attempt to offload some of the impact load into the legs. A full data set of the THOR-NT ATD will be presented and discussed. Results from the tests show that the THOR was largely insensitive to differences in the loading conditions, perhaps due in part to their small magnitudes. THOR responses, when compared to the Hybrid II and III in the lumbar region, demonstrated that the THOR more closely resembled the straight spine Hybrid setup. In the neck region, the THOR behaved more like the Hybrid III. However in both cases, the responses were not identical, indicating that the THOR would show differences in response than the Hybrid II and III ATDs when subjected to identical impact conditions. The addition of a footrest did not significantly affect the THOR response due to the nature of how the loading conditions were applied.

  17. Ethanol mediated As(III) adsorption onto Zn-loaded pinecone biochar: Experimental investigation, modeling, and optimization using hybrid artificial neural network-genetic algorithm approach.

    PubMed

    Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck

    2017-04-01

    Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.

  18. Synthesis and spectral studies of platinum metal complexes of benzoin thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Offiong, Offiong E.

    1994-11-01

    The platinum metal chelates of benzoin thiosemicarbazone obtained with Ru(III), Rh(III), Ir(III), Pd(II) and Pt(II) were prepared from their corresponding halide salts. The complexes were characterized by elemental analysis, conductance measurement, IR, Raman, 1H-NMR, 13C-NMR and UV-visible spectra studies. Various ligand field parameters and nephelauxetic parameters were also calculated. The mode of bonding and the geometry of the ligand environment around the metal ion have been discussed in the light of the available data obtained. Complexes of Ru(III), Rh(III) and Ir(III) are six-coordinate octahedral, while Pd(II) and Pt(II) halide complexes are four-coordinated with halides bridging.

  19. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract.

    PubMed

    Fakhry, Mohamed A; El Shazly, Malak I

    2011-01-01

    To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used.

  20. Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract

    PubMed Central

    Fakhry, Mohamed A; Shazly, Malak I El

    2011-01-01

    Purpose To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Settings Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Methodology Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Results Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Conclusion Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used. PMID:21792288

  1. Neighborhood crime and transit station access mode choice - phase III of neighborhood crime and travel behavior.

    DOT National Transportation Integrated Search

    2015-08-01

    This report provides the findings from the third phase of a three-part study about the influences of neighborhood crimes on travel : mode choice. While previous phases found evidence that high levels of neighborhood crime discourage people from choos...

  2. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  3. Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

  4. 18 CFR 12.35 - Specific inspection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Seismicity; (ix) Internal stress and hydrostatic pressures in project structures or their foundations or... structures; (iii) The structural adequacy and stability of structures under all credible loading conditions... project works to withstand the loading or overtopping which may occur from a flood up to the probable...

  5. 18 CFR 12.35 - Specific inspection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Seismicity; (ix) Internal stress and hydrostatic pressures in project structures or their foundations or... structures; (iii) The structural adequacy and stability of structures under all credible loading conditions... project works to withstand the loading or overtopping which may occur from a flood up to the probable...

  6. Targeted delivery of doxorubicin into tumor cells by nanostructured lipid carriers conjugated to anti-EGFRvIII monoclonal antibody.

    PubMed

    Abdolahpour, Saeideh; Toliyat, Tayebeh; Omidfar, Kobra; Modjtahedi, Helmout; Wong, Albert J; Rasaee, Mohammad Javad; Kashanian, Susan; Paknejad, Maliheh

    2018-02-01

    Epidermal growth factor receptor variant III (EGFRvIII) is the most common variant of the EGF receptor in many human tumors. This variant is tumor specific and highly immunogenic, thus, it can be used as a target for targeted drug delivery toward tumor cells. The major aim of this study was to develop an EGFRvIII-mediated drug delivery system by anti-EGFRvIII monoclonal antibody (MAb) conjugated to doxorubicin (Dox)-loaded nanostructured lipid carriers (NLC) to enhance the targeting specificity and cytotoxic effect of Dox on EGFRvIII-overexpressing cell line. In our study, Dox was chosen as a hydrophobic cytotoxic drug and drug-loaded nanostructured lipid carriers (Dox-NLC) was prepared by solvent emulsification/evaporation method. In order to conjugate anti-EGFRvIII MAb to Dox-NLC, DSPE-PEG2000-NHS (1,2-distearoylphosphatidylethanolamine-polyethylene glycol 2000-NHS) was used as a linker. Physicochemical characteristics of antibody conjugated Dox-NLC (MAb-Dox-NLC), including particle size, zeta potential, entrapment efficiency and in vitro Dox release were investigated. Cytotoxicity of MAb-Dox-NLC against NIH-3T3 and HC2 20d2/c (EGFRvIII-transfected NIH-3T3) cell lines was evaluated. The MAb-Dox-NLC appeared to enhance the cytotoxic activity of targeted NLC against HC2 20d2/c cells. The cellular uptake percentage of targeted NLC by HC2 20d2/c cells was higher than that of NIH-3T3 cells, indicating that EGFRvIII can specifically target HC2 20d2/c cells. In conclusion, anti-EGFRvIII MAb-targeted NLC may be considered as an effective nanocarrier for targeted drug delivery.

  7. Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Weigel, Andreas; Schröder, Olaf; Brüning, Thomas; Müller, Michael; Hallier, Ernst; Westphal, Götz

    2006-08-01

    Particle emissions of diesel engines (DEP) content polycyclic aromatic hydrocarbons (PAH) these compounds cause a strong mutagenicity of solvent extracts of DEP. We investigated the influence of fuel properties, nitrogen oxides (NO( x )), and an oxidation catalytic converter (OCC) on the mutagenic effects of DEP. The engine was fuelled with common diesel fuel (DF), low-sulphur diesel fuel (LSDF), rapeseed oil methyl ester (RME), and soybean oil methyl ester (SME) and run at five different load modes in two series with and without installation of an OCC in the exhaust pipe. Particles from the cooled and diluted exhaust were sampled onto glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The mutagenicity of the extracts was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Without OCC the number of revertant colonies was lower in extracts of LSDF than in extracts of DF. The lowest numbers of revertant colonies were induced by the plant oil derived fuels. In three load modes, operation with the OCC led to a reduction of the mutagenicity. However, direct mutagenic effects under heavy duty conditions (load mode A) were significantly increased for RME (TA98, TA100) and SME (TA98). A consistent but not significant increase in direct mutagenicity was observed for DF and LSDF at load mode A, and for DF at idling (load mode E) when emissions were treated with the OCC. These results raise concern over the use of oxidation catalytic converters with diesel engines. We hypothesise that the OCC increases formation of direct acting mutagens under certain conditions by the reaction of NO( x ) with PAH resulting in the formation of nitrated-PAH. Most of these compounds are powerful direct acting mutagens.

  8. Stiffness-generated rigid-body mode shapes for Lanczos eigensolution with SUPORT DOF by way of a MSC/NASTRAN DMAP alter

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.

    1994-01-01

    When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.

  9. Direct restoration of endodontically treated maxillary central incisors: post or no post at all?

    PubMed

    von Stein-Lausnitz, Manja; Bruhnke, M; Rosentritt, M; Sterzenbach, G; Bitter, K; Frankenberger, R; Naumann, M

    2018-04-30

    The aim of this ex-vivo study was to evaluate the impact of cavity size and glass-fiber post (GFP) placement on the load capability of endodontically treated maxillary incisors directly restored with resin composite. Ninety-six extracted human maxillary central incisors were endodontically treated and distributed to four groups (n = 24): access cavity (A), access cavity and uni-proximal class III cavity (U), access cavity and bi-proximal class III cavity (B), and decoronated tooth (D). Specimens were restored with resin composite, and 12 specimen of each group received an adhesively placed glass-fiber post (P). Prior to linear loading, specimens were exposed to thermo-mechanical loading (TCML). Statistical analysis was performed using log-rank test after TCML, Kruskall-Wallis and Mann-Whitney U test to compare load capabilities (F max) . Significantly more failures occurred in group D for specimens without GFP during TCML (p = 0.001). F max (mean (SD) in N was (A) 513 (124), (AP) 554 (201), (U) 438 (171), (UP) 537 (232) (B) 483 (219), (BP) 536 (281), D 143 (181), and DP 500 (331), and differed significantly among groups (p = 0.003). Pair-wise comparison revealed lower F max values for group D compared to all other groups (p < 0.034) except group DP. Endodontically treated maxillary central incisors with cavity sizes up to bi-proximal class III may be successfully directly restored with resin composite. Post placement shows no additional effect except for decoronated endodontically treated incisors. Endodontically treated incisors with access cavities to class III cavities can be successfully restored with resin composite. Post placement for decoronated ETT is recommended.

  10. Mechanical behavior and fracture characteristics of off-axis fiber composites. 1: Experimental investigation. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1977-01-01

    The mechanical behavior, fracture surfaces, and fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated experimentally. The investigation included the generation of stress-strain-to-fracture data and scanning electron microscope studies of the fractured surfaces. The results led to the identification of fracture modes and distinct fracture surface characteristics for off-axis tensile loading. The results also led to the formulation of critical for identifying and characterizing these fracture modes and their associated fracture surfaces. The results presented and discussed herein were used in the theoretical investigation and comparisons described in Part 2. These results should also provide a good foundation for identifying, characterizing, and quantifying fracture modes in both off-axis and angle-plied laminates.

  11. Mode 1 crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  12. Active Control of Low-Speed Fan Tonal Noise Using Actuators Mounted in Stator Vanes: Part III Results

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Remington, Paul J.; Walker, Bruce E.

    2003-01-01

    A test program to demonstrate simplification of Active Noise Control (ANC) systems relative to standard techniques was performed on the NASA Glenn Active Noise Control Fan from May through September 2001. The target mode was the m = 2 circumferential mode generated by the rotor-stator interaction at 2BPF. Seven radials (combined inlet and exhaust) were present at this condition. Several different error-sensing strategies were implemented. Integration of the error-sensors with passive treatment was investigated. These were: (i) an in-duct linear axial array, (ii) an induct steering array, (iii) a pylon-mounted array, and (iv) a near-field boom array. The effect of incorporating passive treatment was investigated as well as reducing the actuator count. These simplified systems were compared to a fully ANC specified system. Modal data acquired using the Rotating Rake are presented for a range of corrected fan rpm. Simplified control has been demonstrated to be possible but requires a well-known and dominant mode signature. The documented results here in are part III of a three-part series of reports with the same base title. Part I and II document the control system and error-sensing design and implementation.

  13. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    PubMed

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Up-and-down chopper circuit

    DOEpatents

    Goffeau, Jacques R.

    1979-01-01

    An improved Up-and-Down Chopper Circuit is provided which is useful for voltage regulation in a bi-directional DC power system. In the down mode, power is switched from a DC power source to a lower voltage energy storing load while in the up mode stored energy in the load is transferred to the higher voltage source. The system uses Darlington transistor switches in a conventional connection. The improvement relates to circuit additions to eliminate the effects of inter-electrode capacitance inherent with this Darlington transistor switching arrangement.

  15. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-11-15

    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  16. Solar maximum mission panel jettison analysis remote manipulator system

    NASA Technical Reports Server (NTRS)

    Bauer, R. B.

    1980-01-01

    A study is presented of the development of the Remote Manipulator System (RMS) configurations for jettison of the solar panels on the Solar Maximum Mission/Multimission Satellite. A valid RMS maneuver between jettison configurations was developed. Arm and longeron loads and effector excursions due to the solar panel jettison were determined to see if they were within acceptable limits. These loads and end effector excursions were analyzed under two RMS modes, servos active in position hold submode, and in the brakes on mode.

  17. Vibration analysis of a hydro generator for different operating regimes

    NASA Astrophysics Data System (ADS)

    Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.

    2017-01-01

    Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.

  18. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru; Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  19. Empirical modeling of Single-Event Upset (SEU) in NMOS depletion-mode-load static RAM (SRAM) chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Smith, S. L.; Atwood, G. E.

    1986-01-01

    A detailed experimental investigation of single-event upset (SEU) in static RAM (SRAM) chips fabricated using a family of high-performance NMOS (HMOS) depletion-mode-load process technologies, has been done. Empirical SEU models have been developed with the aid of heavy-ion data obtained with a three-stage tandem van de Graaff accelerator. The results of this work demonstrate a method by which SEU may be empirically modeled in NMOS integrated circuits.

  20. Heterogeneous Silicon III-V Mode-Locked Lasers

    NASA Astrophysics Data System (ADS)

    Davenport, Michael Loehrlein

    Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.

  1. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott

    2010-02-01

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  2. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocar, B.; Borch, T; Fendorf, S

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II){sub (aq)} concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III){sub (s)} depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less

  3. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott

    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within themore » zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.« less

  4. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  5. Higher order acoustoelastic Lamb wave propagation in stressed plates.

    PubMed

    Pei, Ning; Bond, Leonard J

    2016-11-01

    Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S 1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.

  6. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.

    PubMed

    Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma

    2013-10-15

    Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes.

  7. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.

  8. Decadal variability of drought conditions over the southern part of Europe based on Principal Oscillation Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Tallaksen, Lena M.; Scholz, Patrick

    2017-04-01

    This study introduces a novel method of estimating the decay time, mean period and forcing statistics of drought conditions over large spatial domains, demonstrated here for southern part of Europe (10°E - 40°E, 35°N - 50°N). It uses a two-dimensional stochastically forced damped linear oscillator model with the model parameters estimated from a Principal Oscillation Pattern (POP) analysis and associated observed power spectra. POP is a diagnostic technique that aims to derive the space-time characteristics of a data set objectively. This analysis is performed on an extended observational time series of 114 years (1902 - 2015) of the Standardized Precipitation Evapotranspiration Index for an accumulation period of 12 months (SPEI12), based on the Climate Research Unit (CRU TS v. 3.24) data set. The POP analysis reveals four exceptionally stable modes of variability, which together explain more than 62% of the total explained variance. The most stable POP mode, which explains 16.3% of the total explained variance, is characterized by a period of oscillation of 14 years and a decay time of 31 years. The real part of POP1 is characterized by a monopole-like structure with the highest loadings over Portugal, western part of Spain and Turkey. The second stable mode, which explains 15.9% of the total explained variance, is characterized by a period of oscillation of 20 years and a decay time of 26.4 years. The spatial structure of the real part of POP2 has a dipole-like structure with the highest positive loadings over France, southern Germany and Romania and negative loadings over southern part of Spain. The third POP mode, in terms of stability, explains 14.0% of the total variance and is characterized by a period of oscillation of 33 years and a decay time of 43.5 years. The real part of POP3 is characterized by negative loadings over the eastern part of Europe and positive loadings over Turkey. The fourth stable POP mode, explaining 15.5% of the total variance, is characterized by an oscillation of 65 years and a damping time of 54 years. The spatial structure of POP4 is characterized by positive loadings over France and negative loadings over the southern part of the Iberian Peninsula and the eastern part of Europe. The stable POP modes identified could be related to preferred modes of climate variability that are characterized by similar oscillation periods (e.g. the Atlantic Multidecadal Oscillation, which is defined as a coherent pattern of variability in basin-wide North Atlantic sea surface temperatures with a period of 60-80 years). The decadal components identified by the POP analysis can be used operationally by decision makers as early predictors of drought conditions over the southern part of Europe.

  9. Mechanical stability analysis on spherical sandwich sheet at low temperature loading conditions

    NASA Astrophysics Data System (ADS)

    Wang, Shanshuai; Li, Shuhui; Li, Zhimin

    2013-12-01

    The spherical sandwich sheet (S-S-S) is generally used in the aerospace industry, for example, the airplane, the rocket's fairing, the spacecraft and the satellite for the purpose of heat-insulation, weight-saving and dimension-reducing. The stability of the S-S-S is of general concern because of its particularly thin but large size. For some S-S-S used in fuel tank storing liquid oxygen of the rocket, it must be facing low temperature down to about -183 °C. Low temperature condition affects the stability of the S-S-S and then causes buckling of the structure. In this paper, a finite element (FE) model is established for evaluating the stability of the S-S-S via the sequential coupling mode. The material mechanical properties related to temperature are concerned in the FE model. The buckling modes and critical buckling loading are predicted accurately, since the FE model includes heat transfer simulating, thermal stress computing, buckling and post buckling process. It is found that the thermal stress generated from the low temperature loading reduces the critical buckling loading and changes the buckling modes of the S-S-S.

  10. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  11. Dynamic properties of III-V polytypes from density-functional theory

    NASA Astrophysics Data System (ADS)

    Benyahia, N.; Zaoui, A.; Madouri, D.; Ferhat, M.

    2017-03-01

    The recently discovered hexagonal wurtzite phase of several III-V nanowires opens up strong opportunity to engineer optoelectronic and transport properties of III-V materials. Herein, we explore the dynamical and dielectric properties of cubic (3C) and wurtzite (2H) III-V compounds (AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb). For cubic III-V compounds, our calculated phonon frequencies agree well with neutron diffraction and Raman-scattering measurements. In the case of 2H III-V materials, our calculated phonon modes at the zone-center Γ point are in distinguished agreement with available Raman-spectroscopy measurements of wurtzite GaAs, InP, GaP, and InAs nanowires. Particularly, the "fingerprint" of the wurtzite phase, which is our predicted E2(high) phonon mode, at 261 cm-1(GaAs), 308 cm-1(InP), 358 cm-1(GaP), and 214 cm-1(InAs) matches perfectly the respective Raman values of 258 cm-1, 306.4 cm-1, 353 cm-1, and 213.7 cm-1 for GaAs, InP, GaP, and InAs. Moreover, the dynamic charges and high-frequency dielectric constants are predicted for III-V materials in both cubic (3C) and hexagonal (2H) crystal polytypes. It is found that the dielectric properties of InAs and InSb contrast markedly from those of other 2H III-V compounds. Furthermore, InAs and InSb evidence relative strong anisotropy in their dielectric constants and Born effective charges, whereas GaP evinces the higher Born effective charge anisotropy of 2H III-V compounds.

  12. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    PubMed

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  13. CE dual-homing protection in layer 1 VPN

    NASA Astrophysics Data System (ADS)

    Du, Shu; Peng, Yunfeng; Long, Keping

    2008-11-01

    Layer 1 VPN (L1VPN) extends the notion of VPN to the optical domain to provide virtually dedicated circuit like leased lines, so that the security is more enhanced. Despite their secure gains from channel isolation, VPNs still suffer fragilities resulting from link-failures or node-failures. Extensive activities on survivability designs for wavelength-routed optical networks are proposed, including various protection and restoration schemes, but concerns on network edge are rare. Dual-homing is an effective skill to achieve survivability gains for L1VPNs. There are two dual-homing mode: Active/Standby mode and Load-Sharing mode In this paper, we investigate the problem of PE assignment, which is the key of dual-homing design and is NP-hard. We formulate it as an integer programming problem, and propose heuristic solutions. Simulation results show that the proposed solutions work in a correct and effective way and the Load-Sharing mode has higher bandwidth efficiency than Active/Standby mode.

  14. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.

    PubMed

    Ma, Lin; Weisman, Catherine; Baltean-Carlès, Diana; Delbende, Ivan; Bauwens, Luc

    2015-08-01

    The influence of a resistive load on the starting performance of a standing-wave thermoacoustic engine is investigated numerically. The model used is based upon a low Mach number assumption; it couples the two-dimensional nonlinear flow and heat exchange within the thermoacoustic active cell with one-dimensional linear acoustics in the loaded resonator. For a given engine geometry, prescribed temperatures at the heat exchangers, prescribed mean pressure, and prescribed load, results from a simulation in the time domain include the evolution of the acoustic pressure in the active cell. That signal is then analyzed, extracting growth rate and frequency of the dominant modes. For a given load, the temperature difference between the two sides is then varied; the most unstable mode is identified and so is the corresponding critical temperature ratio between heater and cooler. Next, varying the load, a stability diagram is obtained, potentially with a predictive value. Results are compared with those derived from Rott's linear theory as well as with experimental results found in the literature.

  15. Stiffnesses of a solid-rocket motor from an ambient vibration survey

    NASA Technical Reports Server (NTRS)

    Rubin, S.; Searle, G. A.; Wagner, R. G.

    1988-01-01

    Experience with many spacecraft configurations boosted by a variety of launch vehicles indicates that the maximum loads experienced throughout most of the structure are inertial in origin. These loads arise from the dynamic elastic response of the flight vehicle to the transient disturbances of launch and flight, and are highly dependent on the dynamic characteristics of both the spacecraft and the launch vehicle. It has proved to be most advantageous, in the analysis of this critical dependency of loads upon vehicle dynamic properties, to establish a mathematical model in terms of normal mode characteristics. In this way, the vibration behavior of an elastomechanical structure (or substructure) can be described by means of the so-called modal or natural degrees of freedom. The conduct of a mode survey test and the use of a suitably test-verified model in loads analyses is essential to the flight worthiness certification process of space systems. The desirability of such tests is confirmed by the fact that, almost invariably, significant deficiencies in the analytical models are revealed by the results. Therefore, this experimental program was undertaken to determine those properties of a solid-propellant rocket motor (SRM) which are required to characterize a dynamic model. Random ambient-excited accelerations were measured at a series of stations along the motor for the purpose of identifying the motor beam-like stiffnesses in bending, shear, and torsion. From a system identification point of view, it is significant that stiffness properties of a subsystem (the motor) are determined from modes of the full system (motor/stand configuration) using mode shape data of the subsystem only. This contrasts with traditional system identification approaches which rely upon complete system mode shapes.

  16. Improving prediction accuracy of cooling load using EMD, PSR and RBFNN

    NASA Astrophysics Data System (ADS)

    Shen, Limin; Wen, Yuanmei; Li, Xiaohong

    2017-08-01

    To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

  17. Structural Loads Analysis for Wave Energy Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi

    2017-06-03

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less

  18. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  19. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  20. Panel Stiffener Debonding Analysis using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2008-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out -of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer fo to, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  1. Panel-Stiffener Debonding and Analysis Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2007-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  2. Thick shell tectonics on one-plate planets - Applications to Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Saunders, R. S.; Phillips, R. J.; Sleep, N. H.

    1982-01-01

    Using the zero frequency equations of a self-gravitating elastic spherical shell overlying a strengthless fluid, a theory for stress distribution in thick lithospheric shells on one-plate planets is developed. For both the compensated and flexural modes, stress distributions in lithospheres are reviewed. For compensated modes, surface stresses depend only on surface topography, whereas for flexural modes it is shown that, for long wavelengths, stress trajectories are mainly dependent on the lithospheric lateral density distribution and not on elastic properties. Computational analyses are performed for Mars, and it is found that isostatically compensated models correctly predict the graben structure in the immediate Tharsis region and a flexural loading model is satisfactory in explaining the graben in the regions surrounding Tharsis. A three-stage model for the evolution of Tharsis is hypothesized: isostasy with north-south graben formation on Tharsis, followed by flexural loading and radial graben formation on the perimeter of Tharsis, followed by a last stage of loading with little or no regional deformation.

  3. Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3

    NASA Astrophysics Data System (ADS)

    Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori

    1997-10-01

    Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.

  4. Proceedings of the Second Workshop on Numerical Analysis of Human and Surrogate Response to Accelerative Loading

    DTIC Science & Technology

    2018-02-01

    Dissection  2 primary experimental loading cases Tissue-Level Characterization Quasi -Static Bending (Hueur et al., 2006) High-Rate Combined...Yang Hybrid III Crash-Dummy Lower Ext. under High Speed Vertical Loading: A Combined Experimental and Computational Study Wayne State 14:05...25 Tusit Weerasooriya Mechanical Response of Human and Animal Bones: Overview of ARL Experimental Research ARL 11:50 Wayne Chen

  5. DC switching regulated power supply for driving an inductive load

    DOEpatents

    Dyer, George R.

    1986-01-01

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  6. DC switching regulated power supply for driving an inductive load

    DOEpatents

    Dyer, G.R.

    1983-11-29

    A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.

  7. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  8. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1990-01-01

    The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).

  9. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  10. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  11. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  12. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  13. 40 CFR 92.107 - Fuel flow measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (iii) If the mass of fuel consumed is measured electronically (load cell, load beam, etc.), the error... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Fuel flow measurement. 92.107 Section...) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.107 Fuel flow...

  14. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    PubMed

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System

    PubMed Central

    Li, Xiangfei; Lin, Yuliang

    2017-01-01

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017

  16. Low-temperature and highly enhanced NO2 sensing performance of Au-functionalized WO3 microspheres with a hierarchical nanostructure

    NASA Astrophysics Data System (ADS)

    Shen, Yanbai; Bi, Hongshan; Li, Tingting; Zhong, Xiangxi; Chen, Xiangxiang; Fan, Anfeng; Wei, Dezhou

    2018-03-01

    Hierarchically nanostructured WO3 microspheres that had two types of Au functionalization modes (i.e., Au-loaded mode and Au-doped mode) were characterized in terms of their microstructure and NO2 sensing performance. Pure, Au-loaded, and Au-doped WO3 microspheres were synthesized using a hydrothermal method, followed by a dipping method for Au-loaded WO3 microspheres. Microstructure characterization indicated that uniform microspheres with 3-6 μm in diameter were assembled from numerous well-defined individual WO3 nanorods with a single crystal hexagonal structure. The morphology and size of the WO3 microspheres were not affected by the functionalization of the Au nanoparticles, and the W, O, and Au elements were well-distributed in the WO3 microspheres. The NO2 sensing properties indicated that the Au nanoparticles not only improved the sensor response and reproducibility but also decreased the operating temperature at which the sensor response reached a maximum. Gas sensors based on pure, Au-loaded, and Au-doped WO3 microspheres exhibited a linear relationship between the sensor response and NO2 concentration. The sensing performance was significantly enhanced in the following order: pure, Au-loaded, and Au-doped WO3 microspheres. This result is due to the modulation of the depletion layer via oxygen adsorption as well as chemical and electronic sensitization of Au nanoparticles.

  17. Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.

  18. Modeling of the fracture behavior of spot welds using advanced micro-mechanical damage models

    NASA Astrophysics Data System (ADS)

    Sommer, Silke

    2010-06-01

    This paper presents the modeling of deformation and fracture behavior of resistance spot welded joints in DP600 steel sheets. Spot welding is still the most commonly used joining technique in automotive engineering. In overloading situations like crash joints are often the weakest link in a structure. For those reasons, crash simulations need reliable and applicable tools to predict the load bearing capacity of spot welded components. Two series of component tests with different spot weld diameters have shown that the diameter of the weld nugget is the main influencing factor affecting fracture mode (interfacial or pull-out fracture), load bearing capacity and energy absorption. In order to find a correlation between nugget diameter, load bearing capacity and fracture mode, the spot welds are simulated with detailed finite element models containing base metal, heat affected zone and weld metal in lap-shear loading conditions. The change in fracture mode from interfacial to pull-out or peel-out fracture with growing nugget diameter under lap-shear loading was successfully modeled using the Gologanu-Leblond model in combination with the fracture criteria of Thomason and Embury. A small nugget diameter is identified to be the main cause for interfacial fracture. In good agreement with experimental observations, the calculated pull-out fracture initiates in the base metal at the boundary to the heat affected zone.

  19. Effect of the treadmill training factors on the locomotor ability after space flight

    NASA Astrophysics Data System (ADS)

    Lysova, Nataliya; Fomina, Elena

    Training on the treadmill constitutes the central component of the Russian system of countermeasures against the negative effects of microgravity. Effectiveness of the treadmill training is influenced by three main factors. Namely, these are intensity (velocity and regularity), axial loading with the use of elastic bungee cords and percentage of time for training on the non-motorized treadmill within the overall training program. Previously we have demonstrated the significance of each factor separately: intensity (Kozlovskaya I.B. et al., 2011), passive mode (Fomina E.V. et al., 2012) and axial loading (Fomina E.V. et al., 2013). The Russian system of in-flight countermeasures gives preference to interval training sessions in which walking alternates with short episodes of intensive running. Locomotion on the non-motorized treadmill should make approx. 30% of the total time of locomotor training. The ISS RS treadmill can be utilized with the motor in motion (active mode) or out of motion so that the cosmonaut has to push the belt with his feet (passive mode). Axial loading of the cosmonaut must be 60-70% of his body weight. However, there is a huge variety of strategies cosmonauts choose of when they exercise on the treadmill in the course of long-duration ISS missions. Purpose of the investigation was comparative analysis of different locomotion training regimens from the standpoint of their effectiveness in microgravity. Criteria of effectiveness evaluation were the results of the locomotion test that includes walking along the fixed support at the preset rate of 90 steps/min. Peak amplitude on the m. soleus electromyogram was analyzed. The experiment was performed with participation of 18 Russian members of extended ISS missions. Each locomotion training factors was rated using the score scale from 0 to 10: Intensity (0 to 10), Percentage of passive mode training (recommended 30% was taken as 10 and could go down to 0 if the passive mode was not applied) and Axial loading (10 was taken as recommended 70% of the body weight). Significant differences in the m. soleus peak amplitude were found between groups of cosmonauts with different sums of the rating scores. On the third day post landing, myogram amplitudes in the group with the rating score sums < 11 were much higher in comparison with the group in which the rating score sums exceeded 12. These data strongly supported high preventive effectiveness of the locomotor training with the optimal combination of the factors of intensity, percentage of passive mode training and axial loading. Besides, they brought out the possibility of training regimen individualization by “tailoring” two factors, i.e. passive mode and axial loading.

  20. Inducer Hydrodynamic Forces in a Cavitating Environment

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.

    2004-01-01

    Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional cavitation modes at lower inlet pressures, these conditions proved unreachable with the rotating balance installed due to the intense dynamic environment. The sensed radial load was less influenced by flow coefficient than by cavitation number or cavitation mode although the flow coefficient range was relatively narrow. Transition from symmetric tip vortex to alternate-blade cavitation corresponded to changes in both radial load magnitude and radial load orientation relative to the inducer. Sensed moments indicated that the effective load center moved downstream during this change in cavitation mode. An occurrence of "higher+rdex cavitation" was also detected in both the stationary pressures and the rotating balance data although the frequency of the phenomena was well above the reliable bandwidth of the rotating balance. In summary the experimental tests proved both the concept and device s capability despite the limitations and confirmed that hydrodynamically-induced forces and moments develop in response to the unbalanced pressure field, which is, in turn, a product of the cavitation environment.

  1. Dynamic deformation and fracture of single crystal silicon: Fracture modes, damage laws, and anisotropy

    DOE PAGES

    Huang, J. Y.; E, J. C.; Huang, J. W.; ...

    2016-05-25

    Impact fracture of single-crystal Si is critical to long-term reliability of electronic devices and solar cells for its wide use as components or substrates in semiconductor industry. Single-crystal Si is loaded along two different crystallographic directions with a split Hopkinson pressure bar integrated with an in situ x-ray imaging and diffraction system. Bulk stress histories are measured, simultaneously with x-ray phase contrast imaging (XPCI) and Laue diffraction. Damage evolution is quantified with grayscale maps from XPCI. Single-crystal Si exhibits pronounced anisotropy in fracture modes, and thus fracture strengths and damage evolution. For loading along [11¯ 0] and viewing along [001],more » (1¯1¯0)[11¯ 0] cleavage is activated and induces horizontal primary cracks followed by perpendicular wing cracks. However, for loading along [011¯] and viewing along [111], random nucleation and growth of shear and tensile-splitting crack networks lead to catastrophic failure of materials with no cleavage. The primary-wing crack mode leads to a lower characteristic fracture strength due to predamage, but a more concentrated strength distribution, i.e., a higher Weibull modulus, compared to the second loading case. Furthermore, the sequential primary cracking, wing cracking and wing-crack coalescence processes result in a gradual increase of damage with time, deviating from theoretical predictions. Particle size and aspect ratios of fragments are discussed with postmortem fragment analysis, which verifies fracture modes observed in XPCI.« less

  2. Investigation of precipitate refinement in Mg alloys by an analytical composite failure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabei, Ali; Li, Dongsheng; Lavender, Curt A.

    2015-10-01

    An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature.more » In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.« less

  3. Effects of diesel exhaust aftertreatment devices on concentrations and size distribution of aerosols in underground mine air.

    PubMed

    Bugarski, Aleksandar D; Schnakenberg, George H; Hummer, Ion A; Cauda, Emanuele; Janisko, Samuel I; Patts, Larry D

    2009-09-01

    Three types of uncatalyzed diesel particulate filter (DPF) systems, three types of high-temperature disposable filter elements (DFEs), and one diesel oxidation catalytic converter (DOC) were evaluated in underground mine conditions for their effects on the concentrations and size distributions of diesel aerosols. Those effects were compared with the effects of a standard muffler. The experimental work was conducted directly in an underground environment using a unique diesel laboratory developed in an underground experimental mine. The DPF systems reduced total mass of aerosols in the mine air approximately 10-fold for light-load and 20-fold or more for high-load test conditions. The DFEs offered similar reductions in aerosol mass concentrations. The efficiency of the new DFEs significantly increased with accumulation of operating time and buildup of diesel particulate matter in the porous structure of the filter elements. A single laundering process did not exhibit substantial effects on performance of the filter element The effectiveness of DPFs and DFEs in removing aerosols by number was strongly influenced by engine operating mode. The concentrations of nucleation mode aerosols in the mine air were found to be substantially higher for both DPFs and DFEs when the engine was operated at high-load modes than at low-load modes. The effects of the DOC on mass and number concentrations of aerosols in mine air were relatively minor when compared to those of the DPF and DFE systems.

  4. Effects of oxygen plasma treatment on domestic aramid fiber III reinforced bismaleimide composite interfacial properties

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze

    2017-12-01

    Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.

  5. A Mode Propagation Database Suitable for Code Validation Utilizing the NASA Glenn Advanced Noise Control Fan and Artificial Sources

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2014-01-01

    The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.

  6. Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel

    NASA Astrophysics Data System (ADS)

    Fu, Liang; Wu, Changli; Tang, Weiping

    2018-02-01

    The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.

  7. Moving mode shape function approach for spinning disk and asymmetric disc brake squeal

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyoung

    2018-06-01

    The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.

  8. Less-invasive stabilization of rib fractures by intramedullary fixation: a biomechanical evaluation.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William; Fitzpatrick, Daniel; Madey, Steven

    2010-05-01

    This study evaluated intramedullary fixation of rib fractures with Kirschner wires and novel ribs splints. We hypothesized that rib splints can provide equivalent fixation strength while avoiding complications associated with Kirschner wires, namely wire migration and cutout. The durability, strength, and failure modes of rib fracture fixation with Kirschner wires and rib splints were evaluated in 22 paired human ribs. First, intact ribs were loaded to failure to determine their strength. After fracture fixation with Kirschner wires and rib splints, fixation constructs were dynamically loaded to 360,000 cycles at five times the respiratory load to determine their durability. Finally, constructs were loaded to failure to determine residual strength and failure modes. All constructs sustained dynamic loading without failure. Dynamic loading caused three times more subsidence in Kirschner wire constructs (1.2 mm +/- 1.4 mm) than in rib splint constructs (0.4 mm +/- 0.2 mm, p = 0.09). After dynamic loading, rib splint constructs remained 48% stronger than Kirschner wire constructs (p = 0.001). Five of 11 Kirschner wire constructs failed catastrophically by cutting through the medial cortex, leading to complete loss of stability and wire migration through the lateral cortex. The remaining six constructs failed by wire bending. Rib splint constructs failed by development of fracture lines along the superior and interior cortices. No splint construct failed catastrophically, and all splint constructs retained functional reduction and fixation. Because of their superior strength and absence of catastrophic failure mode, rib splints can serve as an attractive alternative to Kirschner wires for intramedullary stabilization of rib fractures, especially in the case of posterior rib fractures where access for plating is limited.

  9. Residential Saudi load forecasting using analytical model and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Al-Harbi, Ahmad Abdulaziz

    In recent years, load forecasting has become one of the main fields of study and research. Short Term Load Forecasting (STLF) is an important part of electrical power system operation and planning. This work investigates the applicability of different approaches; Artificial Neural Networks (ANNs) and hybrid analytical models to forecast residential load in Kingdom of Saudi Arabia (KSA). These two techniques are based on model human modes behavior formulation. These human modes represent social, religious, official occasions and environmental parameters impact. The analysis is carried out on residential areas for three regions in two countries exposed to distinct people activities and weather conditions. The collected data are for Al-Khubar and Yanbu industrial city in KSA, in addition to Seattle, USA to show the validity of the proposed models applied on residential load. For each region, two models are proposed. First model is next hour load forecasting while second model is next day load forecasting. Both models are analyzed using the two techniques. The obtained results for ANN next hour models yield very accurate results for all areas while relatively reasonable results are achieved when using hybrid analytical model. For next day load forecasting, the two approaches yield satisfactory results. Comparative studies were conducted to prove the effectiveness of the models proposed.

  10. Brittle fracture in viscoelastic materials as a pattern-formation process

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  11. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    PubMed

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  12. Acidic deposition, plant pests, and the fate of forest ecosystems.

    PubMed

    Gragnani, A; Gatto, M; Rinaldi, S

    1998-12-01

    We present and analyze a nonlinear dynamical system modelling forest-pests interactions and the way they are affected by acidic deposition. The model includes mechanisms of carbon and nitrogen exchange between soil and vegetation, biomass decomposition and microbial mineralization, and defoliation by pest grazers, which are partially controlled by avian or mammalian predators. Acidic deposition is assumed to directly damage vegetation, to decrease soil pH, which in turn damages roots and inhibits microbial activity, and to predispose trees to increased pest attack. All the model parameters are set to realistic values except the inflow of protons to soil and the predation mortality inflicted to the pest which are allowed to vary inside reasonable ranges. A numerical bifurcation analysis with respect to these two parameters is carried out. Five functioning modes are uncovered: (i) pest-free equilibrium; (ii) pest persisting at endemic equilibrium; (iii) forest-pest permanent oscillations; (iv) bistable behavior with the system converging either to pest-free equilibrium or endemic pest presence in accordance with initial conditions; (v) bistable behavior with convergence to endemic pest presence or permanent oscillations depending on initial conditions. Catastrophic bifurcations between the different behavior modes are possible, provided the abundance of predators is not too small. Numerical simulation shows that increasing acidic load can lead the forest to collapse in a short time period without important warning signals. Copyright 1998 Academic Press.

  13. Principle and Basic Characteristics of Variable-Magnetic-Force Memory Motors

    NASA Astrophysics Data System (ADS)

    Sakai, Kazuto; Yuki, Kazuaki; Hashiba, Yutaka; Takahashi, Norio; Yasui, Kazuya; Kovudhikulrungsri, Lilit

    A reduction in the power consumed by motors is required for energy saving in the case of electrical appliances and electric vehicles (EV). The motors used for operating these apparatus operate at variable speeds. Further, the motors operate with small load in stationary mode and with large load in start-up mode. A permanent magnet motor can operate at the rated power with a high efficiency. However, the efficiency is lower at small load or high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that depresses voltage at high speed leads to significant copper loss. Therefore, we have developed a new technique for controlling the magnetic force of permanent magnet on the basis of the load or speed of the motor. In this paper, we propose the novel motor that can vary magnetic flux and we clarify the principle.

  14. Mode I crack surface displacements for a round compact specimen subject to a couple and force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1979-01-01

    Mode I displacement coefficients along the crack surface are presented for a radially cracked round compact specimen, treated as a plane elastostatic problem, subjected to two types of loading; a uniform tensile stress and a nominal bending stress distribution across the net section. By superposition the resultant displacement coefficient or the corresponding influence coefficient can be obtained for any practical load location. Load line displacements are presented for A/D ratios ranging from 0.40 to 0.95, where A is the crack length measured from the crack mouth to the crack tip and D is the specimen diameter. Through a linear extrapolation procedure crack mouth displacements are also obtained. Experimental evidence shows that the results of this study are valid over the range of A/D ratios analyzed for a practical pin loaded round compact specimen.

  15. Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Swanson, T. D.

    1985-01-01

    The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.

  16. Improvement of loading and transport bodies of tunneling machines

    NASA Astrophysics Data System (ADS)

    Nosenko, A. S.; Isakov, V. S.; Domnitskiy, A. A.; Shemshura, E. A.; Zubov, V. V.

    2017-10-01

    The article discusses the use of sets of equipment for mining and construction of road tunnels with the use of a self-propelled vehicle and bunker loaders to transport the mined rock. A patented design of the tunneling combine loading body, which allows adjusting its performance and power consumption in the loading mode, is considered. Reducing stress in extreme situations will make it possible to avoid overloading the drive and increase the reliability of the combine as a whole. The scheme of one of the most promising variants of the wedge bunker loader with variable geometry of the conveying elements is presented. The proposed design solves the problem of “locking” the material in narrow parts of the conveying body or in places where loading and transport bodies of different width are connected, as well as in the blast-and-heap mode of the loader.

  17. Adaptive torque estimation of robot joint with harmonic drive transmission

    NASA Astrophysics Data System (ADS)

    Shi, Zhiguo; Li, Yuankai; Liu, Guangjun

    2017-11-01

    Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.

  18. Sensitized terbium(III) macrocyclic-phthalimide complexes as luminescent pH switches.

    PubMed

    Chen, Gaoyun; Wardle, Nicholas J; Sarris, Jason; Chatterton, Nicholas P; Bligh, S W Annie

    2013-10-21

    Four new macrocyclic-phthalimide ligands were synthesised via the coupling of N-(3-bromopropyl)phthalimide either to cyclen (1,4,7,10-tetraazacyclododecane) itself or its carboxylate-functionalized analogues, and photophysical studies were carried out on their corresponding Tb(III) complexes in aqueous media as a function of pH. Luminescence intensities of Tb·L1a–Tb·L3a were in ‘switched off’ mode under acidic conditions (pH < 4), and were activated on progression to basic conditions as the phthalimido functions therein were hydrolysed to their corresponding phthalamates Tb·L1b–Tb·L3b. Emission of phthalamate-based macrocyclic Tb(III) complexes Tb·L1b–Tb·L3b was in ‘switched on’ mode between pH 4 and 11, exhibiting high quantum yields (Φ) and long lifetimes (τ) of the order of milliseconds at pH ~ 6. Tb(III) emissions were found to decline with increasing number of chromophores. The values of Φ and τ were 46% and 2.4 ms respectively for Tb·L1b at pH ~ 6 when activated. This is the best pH-dependent sensor based on a Tb(III) complex reported to date, benefiting from the macrocyclic architecture of the ligand.

  19. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains

    DOE PAGES

    Guo, Emily Z.; Xu, Zhaohui

    2015-02-05

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). In this paper, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed thatmore » IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. Finally, these observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.« less

  1. Mathematical modeling and numerical simulation of unilateral dynamic rupture propagation along very-long reverse faults

    NASA Astrophysics Data System (ADS)

    Hirano, S.

    2017-12-01

    For some great earthquakes, dynamic rupture propagates unilaterally along a horizontal direction of very-long reverse faults (e.g., the Mw9.1 Sumatra earthquake in 2004, the Mw8.0 Wenchuan earthquake in 2008, and the Mw8.8 Maule earthquake in 2010, etc.). It seems that barriers or creeping sections may not lay along the opposite region of the co-seismically ruptured direction. In fact, in the case of Sumatra, the Mw8.6 earthquake occurred in the opposite region only three months after the mainshock. Mechanism of unilateral mode-II rupture along a material interface has been investigated theoretically and numerically. For mode-II rupture propagating along a material interface, an analytical solution implies that co-seismic stress perturbation depends on the rupture direction (Weertman, 1980 JGR; Hirano & Yamashita, 2016 BSSA), and numerical modeling of plastic yielding contributes to simulating the unilateral rupture (DeDonteny et al., 2011 JGR). However, mode-III rupture may dominate for the very-long reverse faults, and it can be shown that stress perturbation due to mode-III rupture does not depend on the rupture direction. Hence, an effect of the material interface is insufficient to understand the mechanism of unilateral rupture along the very-long reverse faults. In this study, I consider a two-dimensional bimaterial system with interfacial dynamic mode-III rupture under an obliquely pre-stressed configuration (i.e., the maximum shear direction of the background stress is inclined from the interfacial fault). First, I derived an analytical solution of regularized elastic stress field around a steady-state interfacial slip pulse using the method of Rice et al. (2005 BSSA). Then I found that the total stress, which is the sum of the background stress and co-seismic stress perturbation, depends on the rupture direction even in the mode-III case. Second, I executed a finite difference numerical simulation with a plastic yielding model of Andrews (1978 JGR; 2005 JGR) and succeeded in a simulation of unilateral rupture propagation in some parameter ranges (see figure). This unilateral rupture might be caused by energy dissipation due to the plastic yielding process that concentrates in the vicinity of only one rupture tip depending on the rupture direction.

  2. A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading

    NASA Technical Reports Server (NTRS)

    Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.

    2006-01-01

    A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.

  3. GENE EXPRESSION PROFILING OF MOUSE SKIN AND PAPILLOMAS FOLLOWING CHRONIC EXPOSURE TO MONOMETHYLARSONOUS ACID IN K6/ODC TRANSGENIC MICE

    EPA Science Inventory

    Methylarsonous acid [MMA(III)], a common metabolite of inorganic arsenic metabolism, increases tumor frequency in the skin of K6/ODC transgenic mice following a chronic exposure. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcin...

  4. Rhenium Disulfide Depletion-Load Inverter

    NASA Astrophysics Data System (ADS)

    McClellan, Connor; Corbet, Chris; Rai, Amritesh; Movva, Hema C. P.; Tutuc, Emanuel; Banerjee, Sanjay K.

    2015-03-01

    Many semiconducting Transition Metal Dichalcogenide (TMD) materials have been effectively used to create Field-Effect Transistor (FET) devices but have yet to be used in logic designs. We constructed a depletion-load voltage inverter using ultrathin layers of Rhenium Disulfide (ReS2) as the semiconducting channel. This ReS2 inverter was fabricated on a single micromechanically-exfoliated flake of ReS2. Electron beam lithography and physical vapor deposition were used to construct Cr/Au electrical contacts, an Alumina top-gate dielectric, and metal top-gate electrodes. By using both low (Aluminum) and high (Palladium) work-function metals as two separate top-gates on a single ReS2 flake, we create a dual-gated depletion mode (D-mode) and enhancement mode (E-mode) FETs in series. Both FETs displayed current saturation in the output characteristics as a result of the FET ``pinch-off'' mechanism and On/Off current ratios of 105. Field-effect mobilities of 23 and 17 cm2V-1s-1 and subthreshold swings of 97 and 551 mV/decade were calculated for the E-mode and D-mode FETs, respectively. With a supply voltage of 1V, at low/negative input voltages the inverter output was at a high logic state of 900 mV. Conversely with high/positive input voltages, the inverter output was at a low logic state of 500 mV. The inversion of the input signal demonstrates the potential for using ReS2 in future integrated circuit designs and the versatility of depletion-load logic devices for TMD research. NRI SWAN Center and ARL STTR Program.

  5. Single-Lap-Joint Screening of Hysol EA 9309NA Epoxy Adhesive

    DTIC Science & Technology

    2017-05-01

    1 Fig. 2 Load vs. displacement for RT (no conditioning) samples .................... 6 Fig. 3...Load vs. displacement for RT (hot/wet conditioning) samples ............ 7 Fig. 5 Failure surface for RT (hot/wet conditioning) samples. MSAT ID...20140469, mode of failure = adhesive. ................................................. 8 Fig. 6 Load vs. displacement for ET samples (66 °C postcure

  6. Comparing the Use of Dynamic Response Index (DRI) and Lumbar Load as Relevant Spinal Injury Metrics

    DTIC Science & Technology

    2014-01-09

    reproducible results in greater detail under controlled testing conditions • Biofidelic enhancements to the Hybrid III design were made which support...occupants 4) General discussion on continued use of DRI as a design criterion for spinal injuries given the availability of the more direct Lumbar...load from fully encumbered ATDs in underbody blast testing . 15. SUBJECT TERMS DRI, Lumbar Load, Blast, LSDYNA, MADYMO, occupant, injury, pelvic

  7. Millimeter-Wave Generation Via Plasma Three-Wave Mixing

    DTIC Science & Technology

    1988-06-01

    are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave

  8. Next-generation foundations for special trackwork : phase I.

    DOT National Transportation Integrated Search

    2013-02-01

    This report reviews the dynamic load environment and failure modes of special trackwork frog foundations. Key measurements taken under a 39,000-pound wheel load traffic at the Facility for Accelerated Service Testing were used to develop and calibrat...

  9. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  10. Mode 2 fatigue crack growth specimen development

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Gross, B.; Srawley, J. E.

    1983-01-01

    A Mode II test specimen was developed which has potential application in understanding phemonena associated with mixed mode fatigue failures in high performance aircraft engine bearing races. The attributes of the specimen are: it contains one single ended notch, which simplifiers data gathering and reduction; the fatigue crack grous in-line with the direction of load application; a single axis test machine is sufficient to perform testing; and the Mode I component is vanishingly small.

  11. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis.

    PubMed

    McLaren, Shaun J; Macpherson, Tom W; Coutts, Aaron J; Hurst, Christopher; Spears, Iain R; Weston, Matthew

    2018-03-01

    The associations between internal and external measures of training load and intensity are important in understanding the training process and the validity of specific internal measures. We aimed to provide meta-analytic estimates of the relationships, as determined by a correlation coefficient, between internal and external measures of load and intensity during team-sport training and competition. A further aim was to examine the moderating effects of training mode on these relationships. We searched six electronic databases (Scopus, Web of Science, PubMed, MEDLINE, SPORTDiscus, CINAHL) for original research articles published up to September 2017. A Boolean search phrase was created to include search terms relevant to team-sport athletes (population; 37 keywords), internal load (dependent variable; 35 keywords), and external load (independent variable; 81 keywords). Articles were considered for meta-analysis when a correlation coefficient describing the association between at least one internal and one external measure of session load or intensity, measured in the time or frequency domain, was obtained from team-sport athletes during normal training or match-play (i.e., unstructured observational study). The final data sample included 122 estimates from 13 independent studies describing 15 unique relationships between three internal and nine external measures of load and intensity. This sample included 295 athletes and 10,418 individual session observations. Internal measures were session ratings of perceived exertion (sRPE), sRPE training load (sRPE-TL), and heart-rate-derived training impulse (TRIMP). External measures were total distance (TD), the distance covered at high and very high speeds (HSRD ≥ 13.1-15.0 km h -1 and VHSRD ≥ 16.9-19.8 km h -1 , respectively), accelerometer load (AL), and the number of sustained impacts (Impacts > 2-5 G). Distinct training modes were identified as either mixed (reference condition), skills, metabolic, or neuromuscular. Separate random effects meta-analyses were conducted for each dataset (n = 15) to determine the pooled relationships between internal and external measures of load and intensity. The moderating effects of training mode were examined using random-effects meta-regression for datasets with at least ten estimates (n = 4). Magnitude-based inferences were used to interpret analyses outcomes. During all training modes combined, the external load relationships for sRPE-TL were possibly very large with TD [r = 0.79; 90% confidence interval (CI) 0.74 to 0.83], possibly large with AL (r = 0.63; 90% CI 0.54 to 0.70) and Impacts (r = 0.57; 90% CI 0.47 to 0.64), and likely moderate with HSRD (r = 0.47; 90% CI 0.32 to 0.59). The relationship between TRIMP and AL was possibly large (r = 0.54; 90% CI 0.40 to 0.66). All other relationships were unclear or not possible to infer (r range 0.17-0.74, n = 10 datasets). Between-estimate heterogeneity [standard deviations (SDs) representing unexplained variation; τ] in the pooled internal-external relationships were trivial to extremely large for sRPE (τ range = 0.00-0.47), small to large for sRPE-TL (τ range = 0.07-0.31), and trivial to moderate for TRIMP (τ range= 0.00-0.17). The internal-external load relationships during mixed training were possibly very large for sRPE-TL with TD (r = 0.82; 90% CI 0.75 to 0.87) and AL (r = 0.81; 90% CI 0.74 to 0.86), and TRIMP with AL (r = 0.72; 90% CI 0.55 to 0.84), and possibly large for sRPE-TL with HSRD (r = 0.65; 90% CI 0.44 to 0.80). A reduction in these correlation magnitudes was evident for all other training modes (range of the change in r when compared with mixed training - 0.08 to - 0.58), with these differences being unclear to possibly large. Training mode explained 24-100% of the between-estimate variance in the internal-external load relationships. Measures of internal load derived from perceived exertion and heart rate show consistently positive associations with running- and accelerometer-derived external loads and intensity during team-sport training and competition, but the magnitude and uncertainty of these relationships are measure and training mode dependent.

  12. Abutments with reduced diameter for both cement and screw retentions: analysis of failure modes and misfit of abutment-crown-connections after cyclic loading.

    PubMed

    Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira

    2017-04-01

    The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than conventional. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  14. A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems

    NASA Astrophysics Data System (ADS)

    Propes, Nicholas C.; Vachtsevanos, George

    2003-08-01

    Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or "shock" operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

  15. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    NASA Astrophysics Data System (ADS)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part affects the propagation fracture toughness values of the repair. Repairs conducted on surfaces with partially ground top plies possess higher fracture toughness values than those conducted on surfaces with complete top plies ground off. The three top repair resin candidates were then evaluated against the base repair resin under fatigue loading. The specimen configuration and testing method were chosen so as to be able to test hand layup repairs under tension -- tension cyclic loading. It was observed that all three new repair resins perform better than the base repair resin. The selection of the optimum repair resin was based on results from mode I and fatigue testing. Global manufacturing regulations and standards were also of prime concern. The final new repair resin is being used by the company in all of its plants over the globe. The balance of this work involves study of the effect of mixed mode I -- mode II loading on the strength of repairs conducted on fiber reinforced composite parts using hand lay-up technique. The specimens for this part were similar to those manufactured for mode I testing but with different dimensions and layup. They were made and tested in accordance with ASTM D 6671 (Standard Test Method for Mixed Mode I -- Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites). Comparison was made between the fracture toughness of the above chosen optimum repair resin and the base repair resin. At least two levels of mode mixture GII/G (Mode II fracture toughness / Mode I and II fracture toughness) were examined. Also, two levels of grinding were considered (complete ply vs. partial ply ground off) in order to establish the influence of varying top-ply grinding depths on the strength of hand layup repairs conducted on fiberglass composite structures. The results of this work have the potential to improve the repair process for current fiberglass wind turbine blades.

  16. 40 CFR 63.2338 - What parts of my plant does this subpart cover?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transfer racks at which organic liquids are loaded into or unloaded out of transport vehicles and/or...) Storage tanks storing organic liquids; (ii) Transfer racks loading or unloading organic liquids; (iii... and a transfer rack subject to this subpart; and (v) Pipelines that transfer organic liquids directly...

  17. 24 CFR 3280.306 - Windstorm protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., and across the surface of the full roof structure, as uplift loading. For Wind Zones II and III, the... the structure may be used to resist these wind loading effects in all Wind Zones. (1) The provisions... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices...

  18. 24 CFR 3280.306 - Windstorm protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., and across the surface of the full roof structure, as uplift loading. For Wind Zones II and III, the... the structure may be used to resist these wind loading effects in all Wind Zones. (1) The provisions... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices...

  19. 40 CFR 62.15305 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... oxides emissions. (4) All 1-hour average concentrations of carbon monoxide emissions. (5) All 1-hour... carbon monoxide emissions. (4) All 4-hour block arithmetic average load levels of your municipal waste... combustion units only, nitrogen oxides emissions. (iii) Carbon monoxide emissions. (iv) Load levels of your...

  20. Influence of standing or seated pelvis on dummy responses in rear impacts.

    PubMed

    Viano, David C; Parenteau, Chantal S; Burnett, Roger

    2012-03-01

    There is a question whether the standing or seated pelvis should be used in Hybrid III dummy evaluations of seats and belt restraint systems in severe rear impacts. This study compares the standing and seated Hybrid III pelvis in matched rear sled tests. Sixteen sled tests were found at 10, 16 and 24 km/h rear delta V in Ford's archives where matched tests were run with the standing and seated pelvis in a belted Hybrid III dummy. Two new tests were conducted at 40 km/h rear delta V to extend the severity range. The head, chest and pelvis were instrumented with triaxial accelerometers and the upper and lower neck, thoracic spine and lumbar spine had transducers measuring triaxial loads and moments. Belt Loads were measured. High-speed video recorded different views of the dummy motion. Dummy kinematics and biomechanical responses were compared for all of the data with the two different Hybrid III pelvic designs. In the 40 km/h sled tests, the dummy motion and excursion were essentially similar with the standing and seated pelvis. The similarities included the lap belt interaction with the pelvis and the leg movement upward flexing the hip joint. Overall, similar biomechanic and kinematic responses were found, including the pelvic acceleration, spinal forces and moments. For the lower speed tests at 10, 16 and 24 km/h, the motion sequence was also similar with the two different pelvises, including the upward movement of the legs as the seat was loaded and rebound kinematics. The biomechanical responses were similar. The seated pelvis involves only a small portion of the upper leg molded into the vinyl skin of the pelvis and does not limit leg rotation at the hip joint. Furthermore, lap belt loads were minimal during the rearward movement of the dummy. The matched testing showed no significant difference in occupant kinematics or biomechanical responses between the standing and seated pelvis in rear sled tests. The Hybrid III dummy with the seated pelvis is suitable for FMVSS 301 and other testing of seats and belt restraint systems in severe rear impacts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading

    PubMed Central

    Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-01-01

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278

  2. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading.

    PubMed

    Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong

    2018-03-28

    In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.

  3. An assessment of spacecraft target mode selection methods

    NASA Astrophysics Data System (ADS)

    Mercer, J. F.; Aglietti, G. S.; Remedia, M.; Kiley, A.

    2017-11-01

    Coupled Loads Analyses (CLAs), using finite element models (FEMs) of the spacecraft and launch vehicle to simulate critical flight events, are performed in order to determine the dynamic loadings that will be experienced by spacecraft during launch. A validation process is carried out on the spacecraft FEM beforehand to ensure that the dynamics of the analytical model sufficiently represent the behavior of the physical hardware. One aspect of concern is the containment of the FEM correlation and update effort to focus on the vibration modes which are most likely to be excited under test and CLA conditions. This study therefore provides new insight into the prioritization of spacecraft FEM modes for correlation to base-shake vibration test data. The work involved example application to large, unique, scientific spacecraft, with modern FEMs comprising over a million degrees of freedom. This comprehensive investigation explores: the modes inherently important to the spacecraft structures, irrespective of excitation; the particular 'critical modes' which produce peak responses to CLA level excitation; an assessment of several traditional target mode selection methods in terms of ability to predict these 'critical modes'; and an indication of the level of correlation these FEM modes achieve compared to corresponding test data. Findings indicate that, although the traditional methods of target mode selection have merit and are able to identify many of the modes of significance to the spacecraft, there are 'critical modes' which may be missed by conventional application of these methods. The use of different thresholds to select potential target modes from these parameters would enable identification of many of these missed modes. Ultimately, some consideration of the expected excitations is required to predict all modes likely to contribute to the response of the spacecraft in operation.

  4. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    NASA Astrophysics Data System (ADS)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a significant factor that should be taken into account in design and operation of the pressure armour wires of flexible pipes at high contact pressure if the bulk cyclic load superimposes with the friction force. As predicted by the numerical procedure and further by experimental investigations, the surface cracks initiating on the wire in this condition are self arresting after propagating into a certain depth.

  5. The Interaction of Surface Hydration and Vocal Loading on Voice Measures.

    PubMed

    Fujiki, Robert Brinton; Chapleau, Abigail; Sundarrajan, Anusha; McKenna, Victoria; Sivasankar, M Preeti

    2017-03-01

    Vocal loading tasks provide insight regarding the mechanisms underlying healthy laryngeal function. Determining the manner in which the larynx can most efficiently be loaded is a complex task. The goal of this study was to determine if vocal loading could be achieved in 30 minutes by altering phonatory mode. Owing to the fact that surface hydration facilitates efficient vocal fold oscillation, the effects of environmental humidity on vocal loading were also examined. This study also investigated whether the detrimental effects of vocal loading could be attenuated by increasing environmental humidity. Sixteen vocally healthy adults (8 men, 8 women) completed a 30-minute vocal loading task in low and moderate humidity. The order of humidities was counterbalanced across subjects. The vocal loading task consisted of reading with elevated pitch and pressed vocal quality and low pitch and pressed and/or raspy vocal quality in the presence of 65 dB ambient, multi-talker babble noise. Significant effects were observed for (1) cepstral peak prominence on soft sustained phonation at 10th and 80th pitches, (2) perceived phonatory effort, and (3) perceived tiredness ratings. No loading effects were observed for cepstral peak prominence on the rainbow passage, although fundamental frequency on the rainbow passage increased post loading. No main effect was observed for humidity. Following a 30-minute vocal loading task involving altering laryngeal vibratory mode in combination with increased volume. Also, moderate environmental humidity did not significantly attenuate the negative effects of loading. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Control Method for Video Guidance Sensor System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are commands is permitted only when the system is in the carried out. Further, acceptance of reset and diagnostic standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  7. Control method for video guidance sensor system

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)

    2005-01-01

    A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.

  8. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqiang; Yu, Tongxi

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  9. Dielectric loaded surface plasmon waveguides for datacom applications

    NASA Astrophysics Data System (ADS)

    Weeber, J.-C.; Hassan, K.; Nielsen, M. G.; Pitilakis, A.; Tsilipakos, O.; Kriezis, E. E.; Fatome, J.; Finot, C.; Markey, L.; Albrektsen, O.; Bozhevolnyi, S. I.; Dereux, A.

    2012-04-01

    We rst report on design, fabrication and characterizations of thermally-controlled plasmonic routers relying on the interference of a plasmonic and a photonic mode supported by wide enough dielectric loaded waveguides. We show that, by owing a current through the gold lm on which the dielectric waveguides are deposited, the length of the beating created by the interference of the two modes can be controlled accurately. By operating such a plasmonic dual-mode interferometer switch, symmetric extinction ratio of 7dB are obtained at the output ports of a 2x2 router. Next, we demonstrate ber-to-ber characterizations of stand-alone dielectric loaded surface plasmon waveguide (DLSPPW) devices by using grating couplers. The couplers are comprised of dielectric loaded gratings with carefully chosen periods and duty-cycles close to 0.5. We show that insertion loss below 10dB per coupler can be achieved with optimized gratings. This coupling scheme is used to operate Bit-Error-Rate (BER) measurements for the transmission of a 10Gbits/s signal along a stand-alone straight DLSPPW. We show in particular that these waveguides introduce a rather small BER power penalty (below 1dB) demonstrating the suitability of this plasmonic waveguiding platform for high-bit rate transmission.

  10. Plasma Radiation Source on the Basis of the Gas Puff with Outer Plasma Shell in the Circuit of a Mega-Ampere Load Current Doubler

    NASA Astrophysics Data System (ADS)

    Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.

    2017-12-01

    Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.

  11. Synergistic Effects of Temperature, Oxidation and Multicracking Modes on Damage Evolution and Life Prediction of 2D Woven Ceramic-Matrix Composites under Tension-Tension Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-08-01

    In this paper, the synergistic effects of temperature, oxidation and multicracking modes on damage evolution and life prediction in 2D woven ceramic-matrix composites (CMCs) have been investigated. The damage parameter of fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of CMCs. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperature, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composite fatigue fractures. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/SiC at 1000, 1200 and 1300 °C in air and steam condition have been predicted. The synergistic effects of temperature, oxidation, fatigue peak stress, and multicracking modes on the evolution of interface shear stress and fatigue hysteresis dissipated energy versus cycle numbers curves have been analyzed.

  12. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  13. Equal-mobility bed load transport in a small, step-pool channel in the Ouachita Mountains

    Treesearch

    Daniel A. Marion; Frank Weirich

    2003-01-01

    Abstract: Equal-mobility transport (EMT) of bed load is more evident than size-selective transport during near-bankfull flow events in a small, step-pool channel in the Ouachita Mountains of central Arkansas. Bed load transport modes were studied by simulating five separate runoff events with peak discharges between 0.25 and 1.34 m3...

  14. Kinetics of oxidation of an organic amine with a Cr(V) salen complex in homogeneous aqueous solution and on the surface of mesoporous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szajna-Fuller, Ewa; Huang, Yulin; Rapp, Jennifer L.

    2009-03-09

    A comparative study of catalytic activity under homogeneous and heterogeneous conditions was carried out using the (salen)Cr{sup III}-catalyzed oxidation of tetramethylbenzidine (TMB) with iodosobenzene as a model reaction. Amine-functionalized mesoporous silica nanoparticles (MSN) were synthesized in a co-condensation reaction and functionalized with salen via a covalent Si-C bond. A Cr(III) complex of this supported ligand, MSN-(salen)Cr{sup III}, was prepared and characterized. Data from powder XRD, BET isotherms and BJH pore size distribution all showed that MSN-(salen)Cr{sup III} still had the typical MSN high surface area, narrow pore size distribution, and ordered hexagonal pore structure, which were further confirmed by transmissionmore » electron microscopy (TEM) images. {sup 13}C and {sup 29}Si solid-state NMR data provided structural information about the catalyst and verified successful functionalization of the salen ligand and coordination to Cr(III). No unreacted salen or Cr(III) were observed. The loadings of salen and salen-Cr{sup III} complex were determined via TGA and EDX, respectively. Both measurements indicated that approximately 0.5 mmol/g of catalyst was loaded on the surface of MSN. The oxidation of TMB with iodosobenzene using MSN-(salen)Cr{sup III} as a heterogeneous catalyst exhibited both similarities and differences with the analogous homogeneous reaction using (salen)Cr{sup III}(H{sub 2}O){sup +} as a catalyst in aqueous acetonitrile. In the presence of 0.10 M HClO{sub 4}, the two catalytic reactions proceeded at similar rates and generated the doubly oxidized product TMB{sup 2+}. In the absence of acid, the radical cation TMB{sup +} was produced. The kinetics of the heterogeneous reaction in the absence of added acid responded to concentrations of all three reagents, i.e. (salen)Cr{sup III}, TMB, and PhIO.« less

  15. The effect of thickness on fatigue crack propagation in 7475-T731 aluminum alloy sheet

    NASA Technical Reports Server (NTRS)

    Daiuto, R. A.; Hillberry, B. M.

    1984-01-01

    Tests were conducted on three thicknesses of 7475-T731 aluminum alloy sheet to investigate the effect of thickness on fatigue crack propagation under constant amplitude loading conditions and on retardation following a single peak overload. Constant amplitude loading tests were performed at stress ratios of 0.05 and 0.75 to obtain data for conditions with crack closure and without crack closure, respectively. At both stress ratios a thickness effect was clearly evident, with thicker specimens exhibiting higher growth rates in the transition from plane strain to plane stress region. The effect of thickness for a stress ratio of 0.05 corresponded well with the fracturing mode transitions observed on the specimens. A model based on the strain energy release rate which accounted for the fracture mode transition was found to correlate the thickness effects well. The specimens tested at the stress ratio of 0.75 did not make the transition from tensile mode to shear mode, indicating that another mechanism besides crack closure or fracture mode transition was active.

  16. Accumulo/Hadoop, MongoDB, and Elasticsearch Performance for Semi Structured Intrusion Detection (IDS) Data

    DTIC Science & Technology

    2016-11-01

    iii Contents List of Figures v 1. Introduction 1 2. Background 1 3. Yahoo ! Cloud Serving Benchmark (YCSB) 2 3.1 Data Loading and Performance...transactional system. 3. Yahoo ! Cloud Serving Benchmark (YCSB) 3.1 Data Loading and Performance Testing Framework When originally setting out to perform the...that referred to a data loading and performance testing framework, Yahoo ! Cloud Serving Benchmark (YCSB).12 This framework is freely available and

  17. Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques

    PubMed Central

    Baldassarri, Marta; Zhang, Yu; Thompson, Van P.; Rekow, Elizabeth D.; Stappert, Christian F. J.

    2011-01-01

    Summary Objectives To compare fatigue failure modes and reliability of hand-veneered and over-pressed implant-supported three-unit zirconium-oxide fixed-dental-prostheses(FDPs). Methods Sixty-four custom-made zirconium-oxide abutments (n=32/group) and thirty-two zirconium-oxide FDP-frameworks were CAD/CAM manufactured. Frameworks were veneered with hand-built up or over-pressed porcelain (n=16/group). Step-stress-accelerated-life-testing (SSALT) was performed in water applying a distributed contact load at the buccal cusp-pontic-area. Post failure examinations were carried out using optical (polarized-reflected-light) and scanning electron microscopy (SEM) to visualize crack propagation and failure modes. Reliability was compared using cumulative-damage step-stress analysis (Alta-7-Pro, Reliasoft). Results Crack propagation was observed in the veneering porcelain during fatigue. The majority of zirconium-oxide FDPs demonstrated porcelain chipping as the dominant failure mode. Nevertheless, fracture of the zirconium-oxide frameworks was also observed. Over-pressed FDPs failed earlier at a mean failure load of 696 ± 149 N relative to hand-veneered at 882 ± 61 N (profile I). Weibull-stress-number of cycles-unreliability-curves were generated. The reliability (2-sided at 90% confidence bounds) for a 400N load at 100K cycles indicated values of 0.84 (0.98-0.24) for the hand-veneered FDPs and 0.50 (0.82-0.09) for their over-pressed counterparts. Conclusions Both zirconium-oxide FDP systems were resistant under accelerated-life-time-testing. Over-pressed specimens were more susceptible to fatigue loading with earlier veneer chipping. PMID:21557985

  18. Effects of single bond-ion and single bond-diradical form on the stretching vibration of Cdbnd N bridging bond in 4,4‧-disubstituted benzylidene anilines

    NASA Astrophysics Data System (ADS)

    Cao, Chao-Tun; Bi, Yakun; Cao, Chenzhong

    2016-06-01

    Fifty-seven samples of model compounds, 4,4‧-disubstituted benzylidene anilines, p-X-ArCH = NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νCdbnd N of the Cdbnd N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νCdbnd N, that is there are mainly three modes in the stretching vibration of Cdbnd N bond: (I) polar double bond form Cdbnd N, (II) single bond-ion form C+-N- and (III) single bond-diradical form Crad -Nrad . The contributions of the forms (I) and (II) to the change of νCdbnd N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

  19. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer.

    PubMed

    Benafan, O; Padula, S A; Skorpenske, H D; An, K; Vaidyanathan, R

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel(®) 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N·m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ∼1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  20. Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine.

    PubMed

    Dreischarf, Marcel; Rohlmann, Antonius; Bergmann, Georg; Zander, Thomas

    2012-07-01

    In in vitro studies of the lumbar spine simplified loading modes (compressive follower force, pure moment) are usually employed to simulate the standard load cases flexion-extension, axial rotation and lateral bending of the upper body. However, the magnitudes of these loads vary widely in the literature. Thus the results of current studies may lead to unrealistic values and are hardly comparable. It is still unknown which load magnitudes lead to a realistic simulation of maximum lateral bending. A validated finite element model of the lumbar spine was used in an optimisation study to determine which magnitudes of the compressive follower force and bending moment deliver results that fit best with averaged in vivo data. The best agreement with averaged in vivo measured data was found for a compressive follower force of 700 N and a lateral bending moment of 7.8 Nm. These results show that loading modes that differ strongly from the optimised one may not realistically simulate maximum lateral bending. The simplified but in vitro applicable loading cannot perfectly mimic the in vivo situation. However, the optimised magnitudes are those which agree best with averaged in vivo measured data. Its consequent application would lead to a better comparability of different investigations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel® 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 N.m, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ˜1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  2. State-plane analysis of parallel resonant converter

    NASA Technical Reports Server (NTRS)

    Oruganti, R.; Lee, F. C.

    1985-01-01

    A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.

  3. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  4. Research of Modulation of Bilateral Frequency Difference Based on Load Mode

    NASA Astrophysics Data System (ADS)

    Lin, Shenghong; Mao, Chizu; Zhu, Jianquan; Lu, Junyu

    2017-05-01

    Owning to high reliability, simple operation and easy acquirement of signals, modulation of bilateral frequency difference (MBFD) in HVDC is worthy for application in practical engineering. With the example of an AC/DC hybrid network and the software PSD-BPA, this paper analyses the effect of MBFD to DC block. The modulators parameters are setting by means of simulation. Two types of loads modes are considered to research the impact of them on simulation. The results indicate that in cooperation with operation modes adjusting at AC system, MBFD will effectively release the impact from DC block and shortage of reactive power caused by rapid variation of DC power owning to modulation. To achieve the best effect, only modulators of some HVDC systems instead of all of them are opened.

  5. Correlations among void shape distributions, dynamic damage mode, and loading kinetics [Correlations among spall void shape distributions, damage mode and shock loading kinetics

    DOE PAGES

    Brown, A. D.; Pham, Q.; Fortin, E. V.; ...

    2016-11-10

    Here, three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipientmore » transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent.« less

  6. Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2001-01-01

    An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.

  7. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Reid, M. A.

    1985-01-01

    The Cr(III) complexes present in the acidified chromium solutions used in the iron-chromium redox energy storage system have been isolated and identified as Cr(H2O)6(3+) and Cr(H2O)5Cl(2+) by ion-exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles have been followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations of the Cr(III) species calculated using Beer's law. During the charge mode, Cr(H2O)5Cl(2+) is reduced to Cr(H2O)5Cl(+), and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(2+). Electrode potential measurements also support this interpretation. Hysteresis effects in the charge-discharge curves can be explained by the slow attainment of equilibrium between Cr(H2O)6(3+) and Cr(H2O)5Cl(2+).

  8. On-off intermittency and intermingledlike basins in a granular medium.

    PubMed

    Schmick, Malte; Goles, Eric; Markus, Mario

    2002-12-01

    Molecular dynamic simulations of a medium consisting of disks in a periodically tilted box yield two dynamic modes differing considerably in the total potential and kinetic energies of the disks. Depending on parameters, these modes display the following features: (i) hysteresis (coexistence of the two modes in phase space); (ii) intermingledlike basins of attraction (uncertainty exponent indistinguishable from zero); (iii) two-state on-off intermittency; and (iv) bimodal velocity distributions. Bifurcations are defined by a cross-shaped phase diagram.

  9. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon (Open Access Publisher’s Version)

    DTIC Science & Technology

    2016-01-04

    Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon Article in Scientific Reports · January 2016 DOI : 10.1038/srep18860 CITATIONS 5 READS...1Scientific RepoRts | 6:18860 | DOI : 10.1038/srep18860 www.nature.com/scientificreports Printed Large-Area Single-Mode Photonic Crystal Bandedge...bandgap group III-V materials on Si1,4–11 through wafer bonding, printing, and direct-growth. Most lasers demonstrated so far are edge-emitting

  10. Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution.

    PubMed

    Ye, Shuxin; Jin, Weiping; Huang, Qing; Hu, Ying; Li, Yan; Li, Jing; Li, Bin

    2017-01-01

    Composites based on deacetylated konjac glucomannan (Da-KGM) and graphene oxide (GO) aerogels with iron and manganese oxides (FMBO) for effective removal of arsenic from contaminated water. Da-KGM, which was used as supporting composite matrix here, were firstly treated with GO and loaded FMBO. The obtained Da-KGM/GO/FMBO composite aerogels were characterized by compression test, thermo gravimetric analysis (TGA), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The characteristic results showed that addition of GO exhibited enhanced mechanical properties towards Da-KGM aerogels. What's more, results of FTIR indicated the strong intermolecular hydrogen bond interaction between KGM and GO. Batch adsorption tests were used to evaluate arsenic removal capacity. Da-KGM/GO loaded FMBO composite aerogels exhibited high adsorption ability for arsenite [As(III)] and arsenate [As(V)]. The adsorption results showed that the arsenic for both arsenite [As(III)] and arsenate [As(V)] removal process followed a pseudo-second-order rate equation and Langmuir monolayer adsorption. The maximum As(III) and As(V) uptake capacity of Da-KGM/GO(10%)/FMBO composite aerogels reached 30.21mgg -1 and 12.08mgg -1 respectively according to Langmuir isotherm at pH 7 and 323K. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Experimental studies of breaking of elastic tired wheel under variable normal load

    NASA Astrophysics Data System (ADS)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.

  12. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    NASA Technical Reports Server (NTRS)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  13. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less

  14. Design and Experimental Evaluation of a Robust Position Controller for an Electrohydrostatic Actuator Using Adaptive Antiwindup Sliding Mode Scheme

    PubMed Central

    Lee, Ji Min; Park, Sung Hwan; Kim, Jong Shik

    2013-01-01

    A robust control scheme is proposed for the position control of the electrohydrostatic actuator (EHA) when considering hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. To reduce overshoot due to a saturation of electric motor and to realize robustness against load disturbance and lumped system uncertainties such as varying parameters and modeling error, this paper proposes an adaptive antiwindup PID sliding mode scheme as a robust position controller for the EHA system. An optimal PID controller and an optimal anti-windup PID controller are also designed to compare control performance. An EHA prototype is developed, carrying out system modeling and parameter identification in designing the position controller. The simply identified linear model serves as the basis for the design of the position controllers, while the robustness of the control systems is compared by experiments. The adaptive anti-windup PID sliding mode controller has been found to have the desired performance and become robust against hardware saturation, load disturbance, and lumped system uncertainties and nonlinearities. PMID:23983640

  15. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints.

    PubMed

    Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng

    2018-05-01

    The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Cardiac Amyloid Load: A Prognostic and Predictive Biomarker in Patients With Light-Chain Amyloidosis.

    PubMed

    Kristen, Arnt V; Brokbals, Eva; Aus dem Siepen, Fabian; Bauer, Ralf; Hein, Selina; Aurich, Matthias; Riffel, Johannes; Behrens, Hans-Michael; Krüger, Sandra; Schirmacher, Peter; Katus, Hugo A; Röcken, Christoph

    2016-07-05

    Cardiac amyloid load has not been analyzed for its effect on mortality in patients with amyloid light-chain (AL) cardiac amyloidosis. This study retrospectively compared histological amyloid load with common clinical predictors of mortality. This study assessed 216 patients with histologically confirmed cardiac amyloidosis at a single center with electrocardiography, echocardiography, and laboratory testing. AL amyloid deposits were usually distributed in a reticular/pericellular pattern, whereas transthyretin amyloid (ATTR) more commonly showed patchy deposits. Median amyloid load was 30.5%; no amyloid load was above 70%. During follow-up (median 19.1 months), 112 patients died. Chemotherapy had a significant effect on overall survival in AL amyloidosis (16.2 months vs. 1.4 months; p = 0.003). Patients with <20% AL amyloid load who responded to chemotherapy showed significantly better survival than nonresponders. According to univariate analysis, predictors of survival in AL amyloidosis included sex, Karnofsky index, New York Heart Association (NYHA) functional class, diastolic blood pressure, estimated glomerular filtration rate, N-terminal pro-B-type natriuretic peptide, mineralocorticoid receptor antagonists, low voltage, ineligibility for chemotherapy, response to chemotherapy, and amyloid load. Independent predictors of mortality by multivariate analysis included NYHA functional class (III vs. II), estimated glomerular filtration rate, responders to chemotherapy, and amyloid load. In ATTR amyloidosis, survival correlated with NYHA functional class, diastolic blood pressure, and use of diuretic agents. Following Cox regression analysis, NYHA functional class (III vs. II; p < 0.05) remained the only independent predictor of patient survival in ATTR amyloidosis. Early identification of subjects with AL amyloid is essential given that in late-stage disease with extensive amyloid load, our data suggested that outcomes are not affected by administration of chemotherapy. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    PubMed

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  18. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    NASA Astrophysics Data System (ADS)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  19. An improved measurement of Vickers indentation behaviour through enhanced instrumentation

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Reuben, R. L.; Ahmed, R.

    2011-01-01

    This work presents an enhanced instrumented Vickers indentation technique capable of recording force, displacement and acoustic emission (AE) during loading condition. Four materials were chosen for examination; copper, aluminium, steel and as-sprayed HVOF WC-12%Co coating. Results indicate that force-displacement (P-h) profiles are essentially bilinear with two characteristic slopes separated by a distinct displacement arrest for all loads above 98 N. The P-h curve indicates three distinct loading stages (I, II and III) and the stage III mechanical energy increases with loads. About 66% of the hardened steel indentations but only about 18% of the as-sprayed HVOF WC-12%Co coating indentations exhibited an AE record that could be separated into three distinct zones (A, B and C). Where zoning was possible the AE corresponding to a zone correlated well with the AE associated with a loading stage. It is concluded that plastic deformation in soft metals produced little AE, whereas brittle fracture in hardened steel and as-sprayed HVOF WC-12%Co coating produced significant AE. AE may or may not be focused onto particular stages of the indentation and a full measure of crack prevalence would require fractal dimension analysis, which is time consuming, offering a motivation for AE-based indentation testing.

  20. Perform Experiments on LINUS-O and LTX Imploding Liquid Liner Fusion Systems.

    DTIC Science & Technology

    1982-08-27

    EXPERIMENTS .. .. .. ... 3 III. HOMOPOLAR GENERATOR/INDUCTOR POWER SUPPLY EXPERIMENTS. 11 IV. PLASMA SWITCH EXPERIMENTS. .. .. .. .... . ..... 18 V... homopolar generator (HPG) inductive load system. 0 Conduct an electromagnetic pulse (EMP) simulation demonstration using the NRL HPG/inductive storage...suggest solutions to the unstable flow problem, the research was suspended due to the program redirection. -10- IT III. HOMOPOLAR GENERATOR/INDUCTOR POWER

  1. 40 CFR 144.28 - Requirements for Class I, II, and III wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... proposed test or measurement to be made; (D) The amount, size, and location (by depth) of casing to be left..., internal pressure, and axial loading; (iv) Hole size; (v) Size and grade of all casing strings; and (vi... Class III wells the owner or operator shall provide to the Director a qualitative analysis and ranges in...

  2. Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads

    NASA Technical Reports Server (NTRS)

    Murri, G. B.; Guynn, E. G.

    1986-01-01

    A major source of delamination damage in laminated composite materials is from low-velocity impact. In thin composite laminates under point loads, matrix cracks develop first in the plies, and delaminations then grow from these cracks at the ply interfaces. The purpose of this study was to quantify the combined effects of bending and transverse shear loads on delamination initiation from matrix cracks. Graphite-epoxy laminates with 90 deg. plies on the outside were used to provide a two-dimensional simulation of the damage due to low-velocity impact. Three plate bending problems were considered: a 4-point bending, 3-point bending, and an end-clamped center-loaded plate. Under bending, a matrix crack will form on the tension side of the laminate, through the outer 90 deg. plies and parallel to the fibers. Delaminations will then grow in the interface between the cracked 90 deg. ply and the next adjacent ply. Laminate plate theory was used to derive simple equations relating the total strain energy release rate, G, associated with the delamination growth from a 90 deg. ply crack to the applied bending load and laminate stiffness properties. Three different lay-ups were tested and results compared. Test results verified that the delamination always formed at the interface between the cracked 90 deg. ply and the next adjacent ply. Calculated values for total G sub c from the analysis showed good agreement for all configurations. The analysis was able to predict the delamination onset load for the cases considered. The result indicated that the opening mode component (Mode I) for delamination growth from a matrix crack may be much larger than the component due to interlaminar shear (Mode II).

  3. Crystal structure of the Yersinia type III secretion protein YscE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phan, Jason; Austin, Brian P.; Waugh, David S.

    2010-12-06

    The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.

  4. Effect of Cortical Screw Diameter on Reduction and Stabilization of Type III Distal Phalanx Fractures: An Equine Cadaveric Study.

    PubMed

    Kay, Alastair T; Durgam, Sushmitha; Stewart, Matthew; Joslyn, Stephen; Schaeffer, David J; Horn, Gavin; Kesler, Richard; Chew, Peter

    2016-11-01

    To compare reduction of type III distal phalangeal fractures using 4.5 and 5.5 mm cortical screws placed in lag fashion and an intact hoof capsule model. Cadaveric experimental study. Hooves from 12 adult horses (n=24). Sagittal fractures were created in pairs of distal phalanges after distal interphalangeal joint disarticulation and were reduced with either 4.5 or 5.5 mm cortical screws placed in lag fashion. Contralateral phalanges served as non-reduced controls. Fracture reduction following screw placement was assessed by comparing pre-reduction and post-reduction fracture gap measurements from radiographs using paired t-tests. Effects of incremental loading (0, 135, 270, 540, 800, 1070, and 1335 kg) on fracture gaps in 6 phalanges reduced with 4.5 mm screws and 5 phalanges reduced with 5.5 mm screws were measured from fluoroscopic images and assessed by 2-way ANOVA. Significance was set at P<.05. Type III distal phalanx fractures were reliably created. Only 5.5 mm cortical screws, not 4.5 mm screws, significantly reduced fracture gaps and constrained fracture gap expansion 3 cm distal to the articular surface. Compressive loading closed the fracture gaps at the articular surface in both non-reduced control groups and those reduced with either 5.5 or 4.5 mm screws. The 5.5 mm cortical screws were more effective than 4.5 mm screws in reducing type III distal phalanx fractures and restricting distal fracture gap expansion under load. © Copyright 2016 by The American College of Veterinary Surgeons.

  5. Uptake and release of metal ions by transferrin and interaction with receptor 1.

    PubMed

    El Hage Chahine, Jean-Michel; Hémadi, Miryana; Ha-Duong, Nguyêt-Thanh

    2012-03-01

    For a metal to follow the iron acquisition pathway, four conditions are required: 1-complex formation with transferrin; 2-interaction with receptor 1; 3-metal release in the endosome; and 4-metal transport to cytosol. This review deals with the mechanisms of aluminum(III), cobalt(III), uranium(VI), gallium(III) and bismuth(III) uptake by transferrin and interaction with receptor 1. The interaction of the metal-loaded transferrin with receptor 1 takes place in one or two steps: a very fast first step (μs to ms) between the C-lobe and the helical domain of the receptor, and a second slow step (2-6h) between the N-lobe and the protease-like domain. In transferrin loaded with metals other than iron, the dissociation constants for the interaction of the C-lobe with TFR are in a comparable range of magnitudes 10 to 0.5μM, whereas those of the interaction of the N-lobe are several orders of magnitudes lower or not detected. Endocytosis occurs in minutes, which implies a possible internalization of the metal-loaded transferrin with only the C-lobe interacting with the receptor. A competition with iron is possible and implies that metal internalization is more related to kinetics than thermodynamics. As for metal release in the endosome, it is faster than the recycling time of transferrin, which implies its possible liberation in the cell. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Mode-mismatched confocal thermal-lens microscope with collimated probe beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Humberto, E-mail: hcabrera@ictp.it; Centro Multidisciplinartio de Ciencias, Instituto Venezolano de Investigaciones Científicas; Korte, Dorota

    2015-05-15

    We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol’s absorption coefficient at 532.8 nm. Additionally, the presented techniquemore » is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect.« less

  7. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was lost during launch. Subsequent analyses indicated that had a GVT been conducted on the vehicle, problems with vehicle modes and control may have been discovered and corrected, avoiding loss of the vehicle/mission. This paper will address GVT planning, set-up, conduction and analyses, for the Saturn and Shuttle programs, and also focus on the current and on-going planning for the Ares I and V IVGVT.

  8. Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume.

    PubMed

    Li, Yongchao; Jin, Zhaohui; Li, Tielong; Li, Shujing

    2011-01-01

    Silica fume supported-Fe(0) nanoparticles (SF-Fe(0)) were prepared using commercial silica fume as a support. The feasibility of using this SF-Fe(0) for reductive immobilization of Cr(VI) was investigated through batch tests. Compared with unsupported Fe(0), SF-Fe(0) was significantly more active in Cr(VI) removal especially in 84 wt% silica fume loading. Silica fume had also been found to inhibit the formation of Fe(III)/Cr(III) precipitation on Fe nanoparticles' surface, which was increasing the deactivation resistance of iron. Cr(VI) was removed through physical adsorption of Cr(VI) onto the SF-Fe(0) surface and subsequent reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) could be expressed by pseudo first-order reaction kinetics. The rate constant increased with the increase in iron loading but decreased with the increase in initial Cr(VI) concentration. Furthermore, column tests showed that the SF-Fe(0) could be readily transported in model soil.

  9. Acoustic emission monitoring of degradation of cross ply laminates.

    PubMed

    Aggelis, D G; Barkoula, N M; Matikas, T E; Paipetis, A S

    2010-06-01

    The scope of this study is to relate the acoustic activity of damage in composites to the failure mechanisms associated with these materials. Cross ply fiber reinforced composites were subjected to tensile loading with recording of their acoustic activity. Acoustic emission (AE) parameters were employed to monitor the transition of the damage mechanism from transverse cracking (mode I) to delamination (mode II). Wave propagation measurements in between loading steps revealed an increase in the relative amplitude of the propagated wave, which was attributed to the development of delamination that confined the wave to the top longitudinal plies of the composite.

  10. Characterization of crack growth under combined loading

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Smith, F. W.; Holston, A., Jr.

    1977-01-01

    Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.

  11. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  12. The Aerosol Coarse Mode Initiative

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Adhikari, N.; Air, D.; Kassianov, E.; Barnard, J.

    2014-12-01

    Many areas of the world show an aerosol volume distribution with a significant coarse mode and sometimes a dominant coarse mode. The large coarse mode is usually due to dust, but sea salt aerosol can also play an important role. However, in many field campaigns, the coarse mode tends to be ignored, because it is difficult to measure. This lack of measurements leads directly to a concomitant "lack of analysis" of this mode. Because, coarse mode aerosols can have significant effects on radiative forcing, both in the shortwave and longwave spectrum, the coarse mode -- and these forcings -- should be accounted for in atmospheric models. Forcings based only on fine mode aerosols have the potential to be misleading. In this paper we describe examples of large coarse modes that occur in areas of large aerosol loading (Mexico City, Barnard et al., 2010) as well as small loadings (Sacramento, CA; Kassianov et al., 2012; and Reno, NV). We then demonstrate that: (1) the coarse mode can contribute significantly to radiative forcing, relative to the fine mode, and (2) neglecting the coarse mode may result in poor comparisons between measurements and models. Next we describe -- in general terms -- the limitations of instrumentation to measure the coarse mode. Finally, we suggest a new initiative aimed at examining coarse mode aerosol generation mechanisms; transport and deposition; chemical composition; visible and thermal IR refractive indices; morphology; microphysical behavior when deposited on snow and ice; and specific instrumentation needs. Barnard, J. C., J. D. Fast, G. Paredes-Miranda, W. P. Arnott, and A. Laskin, 2010: Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign, Atmospheric Chemistry and Physics, 10, 7325-7340. Kassianov, E. I., M. S. Pekour, and J. C. Barnard, 2012: Aerosols in Central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing, Geophys. Res. Lett., 39, L20806, doi:10.1029/2012GL053469.

  13. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  14. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90... Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and II engines and 2-mode test cycle for Class I-A, III, IV, and V engines when testing spark-ignition engines...

  15. Human La binds mRNAs through contacts to the poly(A) tail.

    PubMed

    Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A

    2018-05-04

    In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3'OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3'OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.

  16. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  17. Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Morton, John

    1992-01-01

    The feasibility of using scale model testing for predicting the full-scale behavior of flat composite coupons loaded in tension and beam-columns loaded in flexure is examined. Classical laws of similitude are applied to fabricate and test replica model specimens to identify scaling effects in the load response, strength, and mode of failure. Experiments were performed on graphite-epoxy composite specimens having different laminate stacking sequences and a range of scaled sizes. From the experiments it was deduced that the elastic response of scaled composite specimens was independent of size. However, a significant scale effect in strength was observed. In addition, a transition in failure mode was observed among scaled specimens of certain laminate stacking sequences. A Weibull statistical model and a fracture mechanics based model were applied to predict the strength scale effect since standard failure criteria cannot account for the influence of absolute specimen size on strength.

  18. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.

  19. A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension-compression mode

    NASA Astrophysics Data System (ADS)

    Vatandoost, Hossein; Norouzi, Mahmood; Masoud Sajjadi Alehashem, Seyed; Smoukov, Stoyan K.

    2017-06-01

    Tension-compression operation in MR elastomers (MREs) offers both the most compact design and superior stiffness in many vertical load-bearing applications, such as MRE bearing isolators in bridges and buildings, suspension systems and engine mounts in cars, and vibration control equipment. It suffers, however, from lack of good computational models to predict device performance, and as a result shear-mode MREs are widely used in the industry, despite their low stiffness and load-bearing capacity. We start with a comprehensive review of modeling of MREs and their dynamic characteristics, showing previous studies have mostly focused on dynamic behavior of MREs in shear mode, though the MRE strength and MR effect are greatly decreased at high strain amplitudes, due to increasing distance between the magnetic particles. Moreover, the characteristic parameters of the current models assume either frequency, or strain, or magnetic field are constant; hence, new model parameters must be recalculated for new loading conditions. This is an experimentally time consuming and computationally expensive task, and no models capture the full dynamic behavior of the MREs at all loading conditions. In this study, we present an experimental setup to test MREs in a coupled tension-compression mode, as well as a novel phenomenological model which fully predicts the stress-strain material behavior as a function of magnetic flux density, loading frequency and strain. We use a training set of experiments to find the experimentally derived model parameters, from which can predict by interpolation the MRE behavior in a relatively large continuous range of frequency, strain and magnetic field. We also challenge the model to make extrapolating predictions and compare to additional experiments outside the training experimental data set with good agreement. Further development of this model would allow design and control of engineering structures equipped with tension-compression MREs and all the advantages they offer.

  20. Relationships between interdecadal variability and extreme precipitation events in South America during the monsoon season

    NASA Astrophysics Data System (ADS)

    Grimm, Alice; Laureanti, Nicole; Rodakoviski, Rodrigo

    2016-04-01

    This study aims to clarify the impact of interdecadal climate oscillations (periods of 8 years and longer) on the frequency of extreme precipitation events over South America in the monsoon season (austral spring and summer), and determine the influence of these oscillations on the daily precipitation frequency distribution. Interdecadal variability modes of precipitation during the monsoon season are provided by a continental-scale rotated empirical orthogonal function analysis for the 60 years period 1950-2009. The main disclosed modes are robust, since they are reproduced for different periods. They can produce differences around 50% in monthly precipitation between opposite phases. Oceanic and atmospheric anomalous fields associated with these modes indicate that they have physical basis. The first modes in spring and summer display highest correlation with the Interdecadal Pacific Oscillation (IPO) SST mode, while the second modes have strongest correlation with the Atlantic Multidecadal Oscillation (AMO) SST mode. However, there are also other influences on these modes. As the most dramatic consequences of climate variability stem from its influence on the frequency of extreme precipitation events, it is important to also assess this influence, since variations in monthly or seasonal precipitation do not necessarily imply significant alterations in their extreme events. This study seeks to answer the questions: i) Do opposite phases of the main interdecadal modes of seasonal precipitation produce significant anomalies in the frequency of extreme events? ii) Does the interdecadal variability of the frequency of extreme events show similar spatial and temporal structure as the interdecadal variability of the seasonal precipitation? iii) Does the interdecadal variability change the daily precipitation probability distribution between opposite phases? iv) In this case, which ranges of daily precipitation are most affected? The significant anomalies of the extreme events frequency in opposite phases of the interdecadal oscillations display spatial patterns very similar to those of the corresponding modes. In addition, the modes of extreme events frequency bear similarity to the modes of seasonal precipitation, although a complete assessment of this similarity is not possible with the daily data available. The Kolmogorov-Smirnov test is applied to the daily precipitation series for positive and negative phases of the interdecadal modes, in regions with high factor loadings. It shows, with significance level better than 0.01, that daily precipitation from opposite phases pertains to different frequency distributions. Further analyses disclose clearly that there is much greater relative impact of the interdecadal oscillations on the extreme ranges of daily rainfall than in the ranges of moderate and light rainfall. This impact is more linear is spring than in summer. Acknowledgments: This work was supported by: Inter-American Institute for Global Change Research (IAI) CRN3035 which is supported by the US National Science Foundation (Grant GEO-1128040), European Community's Seventh Framework Programme under Grant Agreement n° 212492 (CLARIS LPB), and CNPq-Brazil (National Council for Scientific and Technologic Development).

  1. The structure of [MnIII6 CrIII]3+ single-molecule magnets deposited in submono-layers and monolayers on surfaces studied by means of molecular resolved atomic force microscopy (AFM) and Kelvin Probe Force Microscopy in UHV

    NASA Astrophysics Data System (ADS)

    Heinzmann, U.; Gryzia, A.; Volkmann, T.; Brechling, A.; Hoeke, V.; Glaser, T.

    2014-04-01

    Single molecule magnets (SMM) deposited in submonolayers and monolayers have been analyzed with respect to their structures by means of non-contact AFM (topographic as well as damping mode) and Kelvin Probe Force Microscopy with molecular resolution.

  2. Effects of mechanical loading on the expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in a rat spinal deformity model.

    PubMed

    Kaspiris, Angelos; Chronopoulos, Efstathios; Grivas, Theodoros B; Vasiliadis, Elias; Khaldi, Lubna; Lamprou, Margarita; Lelovas, Pavlos P; Papaioannou, Nikolaos; Dontas, Ismene A; Papadimitriou, Evangelia

    2016-02-01

    Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE PAGES

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...

    2018-01-01

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  4. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  5. Nonlinear dynamic analysis of a rotor-bearing-seal system under two loading conditions

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Li, Hui; Niu, Heqiang; Song, Rongze; Wen, Bangchun

    2013-11-01

    The operating speed of the rotating machinery often exceeds the second or even higher order critical speeds to pursue higher efficiency. Thus, how to restrain the higher order mode instability caused by the nonlinear oil-film force and seal force at high speed as far as possible has become more and more important. In this study, a lumped mass model of a rotor-bearing-seal system considering the gyroscopic effect is established. The graphite self-lubricating bearing and the sliding bearing are simulated by a spring-damping model and a nonlinear oil-film force model based on the assumption of short bearings, respectively. The seal is simulated by Muszynska nonlinear seal force model. Effects of the seal force and oil-film force on the first and second mode instabilities are investigated under two loading conditions which are determined by API Standard 617 (Axial and Centrifugal Compressors and Expander-compressors for Petroleum, Chemical and Gas Industry Services, Seventh Edition). The research focuses on the effects of exciting force forms and their magnitudes on the first and second mode whips in a rotor-bearing-seal system by using the spectrum cascades, vibration waveforms, orbits and Poincaré maps. The first and second mode instability laws are compared by including and excluding the seal effect in a rotor system with single-diameter shaft and two same discs. Meanwhile, the instability laws are also verified in a rotor system with multi-diameter shaft and two different discs. The results show that the second loading condition (out-of-phase unbalances of two discs) and the nonlinear seal force can mainly restrain the first mode instability and have slight effects on the second mode instability. This study may contribute to a further understanding about the higher order mode instability of such a rotor system with fluid-induced forces from the oil-film bearings and seals.

  6. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple method to perform loading effect correction for measurements of black carbon using multiple portable aethalometers.

  7. Fracture under combined modes in 4340 steel

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    An experimental investigation was conducted to study the interaction of combined modes of loading on crack instability in the presence of the opening and sliding modes of stress intensity factors, the opening and tearing modes of stress intensity factors, and all three modes of stress intensity factors. Through-cracked and surface-cracked flat and round specimens, and round notched bar specimens fabricated from high strength 4340 steel were used for the investigation. The results are evaluated to determine fracture criteria under the combined modes of stress intensity factors for the 4340 steel. These results are compared with the results of other investigators obtained for different materials.

  8. Airlift Operation Modeling Using Discrete Event Simulation (DES)

    DTIC Science & Technology

    2009-12-01

    Java ......................................................................................................20 2. Simkit...JRE Java Runtime Environment JVM Java Virtual Machine lbs Pounds LAM Load Allocation Mode LRM Landing Spot Reassignment Mode LEGO Listener Event...SOFTWARE DEVELOPMENT ENVIRONMENT The following are the software tools and development environment used for constructing the models. 1. Java Java

  9. Microstrip Antenna Generates Circularly Polarized Beam

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  10. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model.

    PubMed

    Blaker, Carina L; Little, Christopher B; Clarke, Elizabeth C

    2017-08-01

    Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Ductile fracture mechanism of low-temperature In-48Sn alloy joint under high strain rate loading.

    PubMed

    Kim, Jong-Woong; Jung, Seung-Boo

    2012-04-01

    The failure behaviors of In-48Sn solder ball joints under various strain rate loadings were investigated with both experimental and finite element modeling study. The bonding force of In-48Sn solder on an Ni plated Cu pad increased with increasing shear speed, mainly due to the high strain-rate sensitivity of the solder alloy. In contrast to the cases of Sn-based Pb-free solder joints, the transition of the fracture mode from a ductile mode to a brittle mode was not observed in this solder joint system due to the soft nature of the In-48Sn alloy. This result is discussed in terms of the relationship between the strain-rate of the solder alloy, the work-hardening effect and the resulting stress concentration at the interfacial regions.

  12. On-line preconcentration and speciation of arsenic by flow injection hydride generation atomic absorption spectrophotometry.

    PubMed

    Narcise, Cristine Ingrid S; Coo, Lilibeth Dlc; Del Mundo, Florian R

    2005-12-15

    A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.

  13. Genotoxicity of Tri- and Hexavalent Chromium Compounds In Vivo and Their Modes of Action on DNA Damage In Vitro

    PubMed Central

    Fang, Zhijia; Zhao, Min; Zhen, Hong; Chen, Lifeng; Shi, Ping; Huang, Zhiwei

    2014-01-01

    Chromium occurs mostly in tri- and hexavalent states in the environment. Hexavalent chromium [Cr(VI)] compounds are extensively used in diverse industries, and trivalent chromium [Cr(III)] salts are used as micronutrients and dietary supplements. In the present work, we report that they both induce genetic mutations in yeast cells. They both also cause DNA damage in both yeast and Jurkat cells and the effect of Cr(III) is greater than that of Cr(VI). We further show that Cr(III) and Cr(VI) cause DNA damage through different mechanisms. Cr(VI) intercalates DNA and Cr(III) interferes base pair stacking. Based on our results, we conclude that Cr(III) can directly cause genotoxicity in vivo. PMID:25111056

  14. Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.

    2013-11-05

    This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more finemore » dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.« less

  15. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes ofmore » operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.« less

  16. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  17. Tension fatigue of glass/epoxy and graphite/epoxy tapered laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; Obrien, T. Kevin; Salpekar, Satish A.

    1990-01-01

    Symmetric tapered laminates with internally dropped plies were tested with two different layups and two materials, S2/SP250 glass/epoxy and IM6/1827I graphite/epoxy. The specimens were loaded in cyclic tension until they delaminated unstably. Each combination of material and layup had a unique failure mode. Calculated values of strain energy release rate, G, from a finite element analysis model of delamination along the taper, and for delamination from a matrix ply crack, were used with mode I fatigue characterization data from tests of the tested materials to calculate expected delamination onset loads. Calculated values were compared to the experimental results. The comparison showed that when the calculated G was chosen according to the observed delamination failures, the agreement between the calculated and measured delamination onset loads was reasonable for each combination of layup and material.

  18. Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator

    NASA Astrophysics Data System (ADS)

    Xu, Jin

    2016-01-01

    This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.

  19. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Yang, Zefeng

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire coremore » of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.« less

  20. 29 CFR Appendix E to Subpart M of... - Sample Fall Protection Plan

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system shall not be used when the wind is strong enough to cause loads with large surface areas to swing out of radius, or result in loss of control of the load, or when weather conditions cause the walking... column is through the slab opening, there will no longer exist a fall hazard at this location. III...

  1. 29 CFR Appendix E to Subpart M of... - Sample Fall Protection Plan

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system shall not be used when the wind is strong enough to cause loads with large surface areas to swing out of radius, or result in loss of control of the load, or when weather conditions cause the walking... column is through the slab opening, there will no longer exist a fall hazard at this location. III...

  2. 29 CFR Appendix E to Subpart M of... - Sample Fall Protection Plan

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system shall not be used when the wind is strong enough to cause loads with large surface areas to swing out of radius, or result in loss of control of the load, or when weather conditions cause the walking... column is through the slab opening, there will no longer exist a fall hazard at this location. III...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J. Y.; E, J. C.; Huang, J. W.

    Impact fracture of single-crystal Si is critical to long-term reliability of electronic devices and solar cells for its wide use as components or substrates in semiconductor industry. Single-crystal Si is loaded along two different crystallographic directions with a split Hopkinson pressure bar integrated with an in situ x-ray imaging and diffraction system. Bulk stress histories are measured, simultaneously with x-ray phase contrast imaging (XPCI) and Laue diffraction. Damage evolution is quantified with grayscale maps from XPCI. Single-crystal Si exhibits pronounced anisotropy in fracture modes, and thus fracture strengths and damage evolution. For loading along [11¯ 0] and viewing along [001],more » (1¯1¯0)[11¯ 0] cleavage is activated and induces horizontal primary cracks followed by perpendicular wing cracks. However, for loading along [011¯] and viewing along [111], random nucleation and growth of shear and tensile-splitting crack networks lead to catastrophic failure of materials with no cleavage. The primary-wing crack mode leads to a lower characteristic fracture strength due to predamage, but a more concentrated strength distribution, i.e., a higher Weibull modulus, compared to the second loading case. Furthermore, the sequential primary cracking, wing cracking and wing-crack coalescence processes result in a gradual increase of damage with time, deviating from theoretical predictions. Particle size and aspect ratios of fragments are discussed with postmortem fragment analysis, which verifies fracture modes observed in XPCI.« less

  4. Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.

    2009-01-01

    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.

  5. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  6. Electric load management and energy conservation

    NASA Technical Reports Server (NTRS)

    Kheir, N. A.

    1976-01-01

    Electric load management and energy conservation relate heavily to the major problems facing power industry at present. The three basic modes of energy conservation are identified as demand reduction, increased efficiency and substitution for scarce fuels. Direct and indirect load management objectives are to reduce peak loads and have future growth in electricity requirements in such a manner to cause more of it to fall off the system's peak. In this paper, an overview of proposed and implemented load management options is presented. Research opportunities exist for the evaluation of socio-economic impacts of energy conservation and load management schemes specially on the electric power industry itself.

  7. Development and verification of real-time controllers for the F/A-18 vertical fin buffet load alleviation

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Viresh, Wickramasinghe; Zimcik, David

    2006-03-01

    Twin-tail fighter aircraft such as the F/A-18 may experience intense buffet loads at high angles of attack flight conditions and the broadband buffet loads primarily excite the first bending and torsional modes of the vertical fin that results in severe vibration and dynamic stresses on the vertical fin structures. To reduce the premature fatigue failure of the structure and to increase mission availability, a novel hybrid actuation system was developed to actively alleviate the buffet response of a full-scale F/A-18 vertical fin. A hydraulic rudder actuator was used to control the bending mode of the fin by engaging the rudder inertial force. Multiple Macro Fiber Composites actuators were surface mounted to provide induced strain actuation authority to control the torsional mode. Experimental system identification approach was selected to obtain a state-space model of the system using open-loop test data. An LQG controller was developed to minimize the dynamic response of the vertical fin at critical locations. Extensive simulations were conducted to evaluate the control authority of the actuators and the performance of the controller under various buffet load cases and levels. Closed-loop tests were performed on a full-scale F/A-18 empennage and the results validated the effectiveness of the real-time controller as well as the development methodology. In addition, the ground vibration test demonstrated that the hybrid actuation system is a feasible solution to alleviate the vertical tail buffet loads in high performance fighter aircraft.

  8. Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Kondori, Babak; Benzerga, A. Amine

    2014-07-01

    The microscopic damage mechanisms operating in a hot-rolled magnesium alloy AZ31B are investigated under both uniaxial and controlled triaxial loadings. Their connection to macroscopic fracture strains and fracture mode (normal vs shear) is elucidated using postmortem fractography, interrupted tests, and microscopic analysis. The fracture locus (strain-to-failure vs stress triaxiality) exhibits a maximum at moderate triaxiality, and the strain-to-failure is found to be greater in notched specimens than in initially smooth ones. A transition from twinning-induced fracture under uniaxial loading to microvoid coalescence fracture under triaxial loading is evidenced. It is argued that this transition accounts in part for the observed greater ductility in notched bars. The evolution of plastic anisotropy with stress triaxiality is also investigated. It is inferred that anisotropic plasticity at a macroscopic scale suffices to account for the observed transition in the fracture mode from flat (triaxial loading) to shear-like (uniaxial loading). Damage is found to initiate at second-phase particles and deformation twins. Fracture surfaces of broken specimens exhibit granular morphology, coarse splits, twin-sized crack traces, as well as shallow and deep dimples, in proportions that depend on the overall stress triaxiality and fracture mode. An important finding is that AZ31B has a greater tolerance to ductile damage accumulation than has been believed thus far, based on the fracture behavior in uniaxial specimens. Another finding, common to both tension and compression, is the increase in volumetric strain, the microscopic origins of which remain to be elucidated.

  9. Field data collection of miscellaneous electrical loads in Northern California: Initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry

    This report describes efforts to measure energy use of miscellaneous electrical loads (MELs) in 880 San Francisco Bay Area homes during the summer of 2012. Ten regions were selected for metering: Antioch, Berkeley, Fremont, Livermore, Marin County (San Rafael, Novato, Fairfax, and Mill Valley), Oakland/Emeryville, Pleasanton, Richmond, San Leandro, and Union City. The project focused on three major categories of devices: entertainment (game consoles, set-top boxes, televisions and video players), home office (computers, monitors and network equipment), and kitchen plug-loads (coffee/espresso makers, microwave ovens/toaster ovens/toasters, rice/slow cookers and wine chillers). These categories were important to meter because they either dominatedmore » the estimated overall energy use of MELs, are rapidly changing, or there are very little energy consumption data published. A total of 1,176 energy meters and 143 other sensors were deployed, and 90% of these meters and sensors were retrieved. After data cleaning, we obtained 711 valid device energy use measurements, which were used to estimate, for a number of device subcategories, the average time spent in high power, low power and “off” modes, the average energy use in each mode, and the average overall energy use. Consistent with observations made in previous studies, we find on average that information technology (IT) devices (home entertainment and home office equipment) consume more energy (15.0 and 13.0 W, respectively) than non-IT devices (kitchen plug-loads; 4.9 W). Opportunities for energy savings were identified in almost every device category, based on the time spent in various modes and/or the power levels consumed in those modes. Future reports will analyze the collected data in detail by device category and compare results to those obtained from prior studies.« less

  10. Effect of dust and anthropogenic aerosols on columnar aerosol optical properties over Darjeeling (2200 m asl), eastern Himalayas, India.

    PubMed

    Chatterjee, Abhijit; Ghosh, Sanjay K; Adak, Anandamay; Singh, Ajay K; Devara, Panuganti C S; Raha, Sibaji

    2012-01-01

    The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca(2+)) during pre-monsoon (Apr-May) which was higher by 162% than its annual mean whereas during winter (Dec-Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO(4)(2-) and black carbon) were higher (76% for black carbon and 96% for fine mode SO(4)(2-)) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas.

  11. A Modified Edge Crack Torsion Test for Measurement of Mode III Fracture Toughness of Laminated Tape Composites

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Davidson, Barry D.; Ratcliffe, James G.

    2016-01-01

    Modifications to the edge crack torsion (ECT) test are studied to improve the reliability of this test for measuring the mode-III fracture toughness, G (sub IIIc), of laminated tape fiber-reinforced polymeric (FRP) composites. First, the data reduction methods currently used in the ECT test are evaluated and deficiencies in their accuracy are discussed. An alternative data reduction technique, which uses a polynomial form to represent ECT specimen compliance solution, is evaluated and compared to FEA (finite element analysis) results. Second, seven batches of ECT specimens are tested, each batch containing specimens with a preimplanted midplane edge delamination and midplane plies with orientations of plus theta divided by minus theta, with theta ranging from 0 degrees to 90 degrees in 15-degree increments. Tests on these specimens show that intralaminar cracking occurs in specimens from all batches except for which theta = 15 degrees and 30 degrees. Tests on specimens of these two batches are shown to result in mode-III delamination growth at the intended ply interface. The findings from this study are encouraging steps towards the use of the ECT test as a standardized method for measuring G (sub IIIc), although further modification to the data reduction method is required to make it suitable for use as part of a standardized test method.

  12. The effect of fatigue and environment on the adhesion and delamination of thin polymer films

    NASA Astrophysics Data System (ADS)

    Snodgrass, Jeffrey Matthew

    Polymers are increasingly used in the interconnect and packaging levels of microelectronic devices. Thus, adhesion of polymer films to their adjacent inorganic layers is critical to the manufacturability and reliability of microelectronic components. Weak interfacial adhesion can result in delamination, causing a loss of package hermeticity or the failure of electrical contacts. Recently, interface fracture mechanics techniques have been applied to the problem of thin film delamination and are now used to measure interface adhesion. These techniques allow for characterization of interface adhesion in terms of the critical strain energy release rate, GC, in units of J/m2. In this dissertation, studies are described that quantify the effects of fundamental parameters on the critical adhesion and resistance to subcritical (time-dependent) delamination of benzocyclobutene (BCB)/silica and epoxy underfill/polyimide interfaces. Results are presented detailing the action of small-molecule adhesion promoters on the critical interface adhesion energy of BCB/silica. Silane coupling agents with different functional end groups were used to increase chemical bonding at this interface in order to achieve optimized adhesion. Testing was performed at different mode mixities to evaluate the effect of loading mode on the polymer interface fracture. Subcritical debonding data were measured under two different loading conditions and results are presented in terms of the debond growth rate as a function of applied strain energy release rate. Monotonic loading was used to examine environment-assisted delamination processes, while fatigue loading was used to understand the effects of thermomechanical cycling. Debond growth rates over the range of 10-3 to 10-9 m/s were characterized under mode I and mixed-mode loading. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the fracture surfaces of these interfaces and to generate detailed information about the debond fracture path and mechanisms. The AFM and XPS results suggest that the failure mode of BCB/silica interfaces is cohesive in the BCB layer, in a region very close to the interface. Mechanical fatigue was found to considerably accelerate subcritical debond growth rates and decrease debond growth thresholds to as low as 25% of the critical adhesion energy. Fatigue loading produced fatigue striations on the BCB surface with a striation height of ˜1--2 nm and a spacing that was correlated with the debond growth rate. Finally, a model is presented for the mechanism of striation formation.

  13. Critical current degradation behaviour of GdBCO CC tapes in pure torsion and combined tension-torsion modes

    NASA Astrophysics Data System (ADS)

    Gorospe, Alking; Bautista, Zhierwinjay; Shin, Hyung-Seop

    2016-10-01

    Coated conductor (CC) tapes utilized in high-current-density superconducting cables are commonly subjected to different loading modes, primarily torsion and tension especially in the case of twisted stacked-tape cable. Torsion load can occur due to twisting along the length or when winding the CC tapes around a former, while tension load can occur due to pre-tension when coiled and as a hoop stress when the coil is energized. In this study, electromechanical properties of single CC tapes under torsion load were investigated using a new test apparatus. The results could provide basic information for cable designers to fully characterize stacked cables. Copper-electroplated and brass-laminated CC tapes fabricated with different deposition techniques were subjected to pure torsion and combined tension-torsion loading. The critical current, I c degradation behaviours of CC tapes under torsional deformation were examined. Also, the effect of further external lamination on the I c degradation behaviour of the CC tapes under such loading conditions was investigated. In the case of the combined tension-torsion test, short samples were subjected to twist pitches of 200 mm and 100 mm. Critical parameters including reversible axial stress and strain in such twist pitch conditions were also investigated.

  14. An Experimental Study of Incremental Surface Loading of an Elastic Plate: Application to Volcano Tectonics

    NASA Technical Reports Server (NTRS)

    Williams, K. K.; Zuber, M. T.

    1995-01-01

    Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.

  15. Development of Benchmark Examples for Delamination Onset and Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    An approach for assessing the delamination propagation and growth capabilities in commercial finite element codes was developed and demonstrated for the Virtual Crack Closure Technique (VCCT) implementations in ABAQUS. The Double Cantilever Beam (DCB) specimen was chosen as an example. First, benchmark results to assess delamination propagation capabilities under static loading were created using models simulating specimens with different delamination lengths. For each delamination length modeled, the load and displacement at the load point were monitored. The mixed-mode strain energy release rate components were calculated along the delamination front across the width of the specimen. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. The calculated critical loads and critical displacements for delamination onset for each delamination length modeled were used as a benchmark. The load/displacement relationship computed during automatic propagation should closely match the benchmark case. Second, starting from an initially straight front, the delamination was allowed to propagate based on the algorithms implemented in the commercial finite element software. The load-displacement relationship obtained from the propagation analysis results and the benchmark results were compared. Good agreements could be achieved by selecting the appropriate input parameters, which were determined in an iterative procedure.

  16. Divertor-leg instability for finite beta and radially-tilted divertor plate

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.; Ryutov, D. D.

    2004-11-01

    Plasma in the divertor leg may experience a fast instability caused by sheath boundary conditions (BC). Perturbations cannot penetrate beyond the X point because of very strong shearing in its vicinity. Accordingly, this instability could increase cross-field transport in the divertor leg, and thereby reduce the heat load on the divertor plate, without having any appreciable negative effect on core plasma confinement. A way of describing the role of shearing in terms of the surface resistivity attributed to a ``control plane'' below the X point has recently been suggested (Contr. Plasma Phys., v. 44, p. 168, 2004). We use this BC, plus sheath BC at the divertor plate. We include effects of finite beta and of the radial tilt of the divertor plate. We optimize the radial tilt in order to maximize radial transport in divertor legs. We discuss experimental signatures of the instability: i) phase velocity and wave-numbers of the most unstable modes; ii) correlations between fluctuations of various parameters; and iii) the differences between fluctuations in the common and private flux regions.

  17. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  18. 77 FR 8946 - Notice of Application for Special Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... service motor vehicles for use in transporting a corrosive solid material in alternative packaging. (modes... the ``Nature of Application'' portion of the table below as follows: 1--Motor vehicle, 2--Rail freight... limitations and certain loading and stowage requirements. (mode 4) 15536-N ......... WavesinSolids LLC, 49 CFR...

  19. Mechanical switching of ferroelectric domains beyond flexoelectricity

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Liu, Jianyi; Ma, Lele; Liu, Linjie; Jiang, G. L.; Zheng, Yue

    2018-02-01

    The resurgence of interest in flexoelectricity has prompted discussions on the feasibility of switching ferroelectric domains 'non-electrically'. In this work, we perform three-dimensional thermodynamic simulations in combination with ab initio calculations and effective Hamiltonian simulations to demonstrate the great effects of surface screening and surface bonding on ferroelectric domain switching triggered by local tip loading. A three-dimensional simulation scheme has been developed to capture the tip-induced domain switching behavior in ferroelectric thin films by adequately taking into account the surface screening effect and surface bonding effect of the ferroelectric film, as well as the finite elastic stiffness of the substrate and the electrode layers. The major findings are as follows. (i) Compared with flexoelectricity, surface effects can be overwhelming and lead to much more efficient mechanical switching caused by tip loading. (ii) The surface-assisted mechanical switching can be bi-directional without the necessity of reversing strain gradients. (iii) A mode transition from local to propagating domain switching occurs when the screening below a critical value. A ripple effect of domain switching appears with the formation of concentric loop domains. (iv) The ripple effect can lead to 'domain interference' and a deterministic writing of confined loop domain patterns by local excitations. Our study reveals the hidden switching mechanisms of ferroelectric domains and the possible roles of surface in mechanical switching. The ripple effect of domain switching, which is believed to be general in dipole systems, broadens our current knowledge of domain engineering.

  20. Design of a 4 1/2 stage turbine with a stage loading factor of 4.66 and high specific work output

    NASA Technical Reports Server (NTRS)

    Webster, P. F.

    1976-01-01

    The aerodynamic design of a highly loaded multistage fan drive turbine is discussed. Turbine flowpath and airfoil sections are presented along with respective pressure and velocity distributions. Vibrational modes are identified in the expected turbine operating range.

Top