Sample records for mode shape functions

  1. Experimental determination of the particle motions associated with the low order acoustic modes in enclosures

    NASA Technical Reports Server (NTRS)

    Byrne, K. P.; Marshall, S. E.

    1983-01-01

    A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.

  2. Effect of axial load on mode shapes and frequencies of beams

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1975-01-01

    An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.

  3. Using active shape modeling based on MRI to study morphologic and pitch-related functional changes affecting vocal structures and the airway.

    PubMed

    Miller, Nicola A; Gregory, Jennifer S; Aspden, Richard M; Stollery, Peter J; Gilbert, Fiona J

    2014-09-01

    The shape of the vocal tract and associated structures (eg, tongue and velum) is complicated and varies according to development and function. This variability challenges interpretation of voice experiments. Quantifying differences between shapes and understanding how vocal structures move in relation to each other is difficult using traditional linear and angle measurements. With statistical shape models, shape can be characterized in terms of independent modes of variation. Here, we build an active shape model (ASM) to assess morphologic and pitch-related functional changes affecting vocal structures and the airway. Using a cross-sectional study design, we obtained six midsagittal magnetic resonance images from 10 healthy adults (five men and five women) at rest, while breathing out, and while listening to, and humming low and high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built using these (60) images. Principal component analysis was used to identify independent modes of variation, and statistical analysis was performed using one-way repeated-measures analysis of variance. Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. Modes 1 and 9 were significantly associated with humming low and high notes (P < 0.001) and showed coordinated changes affecting the cervical spine, vocal structures, and airway. Mode 2 highlighted wide structural variations between subjects. This study highlights the potential of active shape modeling to advance understanding of factors underlying morphologic and pitch-related functional variations affecting vocal structures and the airway in health and disease. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Moving mode shape function approach for spinning disk and asymmetric disc brake squeal

    NASA Astrophysics Data System (ADS)

    Kang, Jaeyoung

    2018-06-01

    The solution approach of an asymmetric spinning disk under stationary friction loads requires the mode shape function fixed in the disk in the assumed mode method when the equations of motion is described in the space-fixed frame. This model description will be termed the 'moving mode shape function approach' and it allows us to formulate the stationary contact load problem in both the axisymmetric and asymmetric disk cases. Numerical results show that the eigenvalues of the time-periodic axisymmetric disk system are time-invariant. When the axisymmetry of the disk is broken, the positive real parts of the eigenvalues highly vary with the rotation of the disk in the slow speeds in such application as disc brake squeal. By using the Floquet stability analysis, it is also shown that breaking the axisymmetry of the disc alters the stability boundaries of the system.

  5. Orthogonal basis with a conicoid first mode for shape specification of optical surfaces.

    PubMed

    Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez

    2016-03-07

    A rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.

  6. Characterization of the Modal Characteristics of Structures Operating in Dense Liquid Oxygen Turbopumps

    NASA Technical Reports Server (NTRS)

    Chiu, Joseph; Brown, Andrew M.

    2017-01-01

    A number of valuable conclusions can be drawn from this study. First, knockdown factors for a specific fluid are not constant but instead are dependent on the mode shape, although the largest this variability gets is about 10% for LOX, the densest fluid. The factors decrease the most for lower frequency shapes and less for higher ones. It follows, therefore, that mode number mismatch between air and fluid operation becomes not only possible, but common, as a knockdown factor for a particular mode shape may be higher than for another mode shape. Since this is a function of added mass, the mismatch is more prevalent for higher density fluids, but it initiates even for very low density ones. Another important conclusion reached is that it appears that the basic mode shapes of a structure do not change if it is fully symmetric, which includes its geometry and boundary conditions. There is some indication of small changes in the relative magnitudes within the mode shape. This conclusion is evident in the results from the cantilever rectangular plate and the inducer, which are not symmetric, and the fixed-fixed plate and the annular disk, which are. For non-symmetric structures, though, the mode shapes almost universally change for dense fluids, as shown by the very low MAC calculations. For the inducer in particular, the changes follow a trend of reduced parabolic and sine wavelengths with increasing density. It is critical to recognize the change in mode shape for several reasons. First, model updating with modal test becomes problematic if the shapes change. Second, design to avoid resonance is highly critical on the mode shape for modes other than the primary ones, as resonance is only a factor when the excitation shape matches the mode shape. Finally, application of the modal superposition method of forced response analysis is dependent on the use of accurate mode shapes. A more-refined assessment of the "knockdown" factor values and ranges than any previously reported in the literature for a realistic engineering structure is also presented in this paper. This data is of tremendous benefit for preliminary analysis and design, where a quick estimate is necessary. These results are important not just for rocket engine turbomachinery, but for water pumps and turbines, propellers, and any other structure operating in a heavy fluid with dynamic excitation. The clear avenue for future work for this endeavor is to expand the analytical techniques discussed in the literature to develop analytical expressions and justification for the mode shape changes and associated frequency knockdowns. These expressions must be able to accurately predict the functional relationship to the shapes, which will enable accurate tracing of the mode number from vacuum analysis (or testing in air) to analysis and operation in the intended fluid environment.

  7. Extracting a shape function for a signal with intra-wave frequency modulation.

    PubMed

    Hou, Thomas Y; Shi, Zuoqiang

    2016-04-13

    In this paper, we develop an effective and robust adaptive time-frequency analysis method for signals with intra-wave frequency modulation. To handle this kind of signals effectively, we generalize our data-driven time-frequency analysis by using a shape function to describe the intra-wave frequency modulation. The idea of using a shape function in time-frequency analysis was first proposed by Wu (Wu 2013 Appl. Comput. Harmon. Anal. 35, 181-199. (doi:10.1016/j.acha.2012.08.008)). A shape function could be any smooth 2π-periodic function. Based on this model, we propose to solve an optimization problem to extract the shape function. By exploring the fact that the shape function is a periodic function with respect to its phase function, we can identify certain low-rank structure of the signal. This low-rank structure enables us to extract the shape function from the signal. Once the shape function is obtained, the instantaneous frequency with intra-wave modulation can be recovered from the shape function. We demonstrate the robustness and efficiency of our method by applying it to several synthetic and real signals. One important observation is that this approach is very stable to noise perturbation. By using the shape function approach, we can capture the intra-wave frequency modulation very well even for noise-polluted signals. In comparison, existing methods such as empirical mode decomposition/ensemble empirical mode decomposition seem to have difficulty in capturing the intra-wave modulation when the signal is polluted by noise. © 2016 The Author(s).

  8. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  9. Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends

    NASA Technical Reports Server (NTRS)

    Robertson, D. K.

    1985-01-01

    Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.

  10. Experimental strain modal analysis for beam-like structure by using distributed fiber optics and its damage detection

    NASA Astrophysics Data System (ADS)

    Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo

    2017-07-01

    Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.

  11. Enhanced method to reconstruct mode shapes of continuous scanning measurements using the Hilbert Huang transform and the modal analysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongsuh; Hussain, Syed Hassaan; Wang, Semyung, E-mail: smwang@gist.ac.kr

    2014-09-15

    Generally, it is time consuming to experimentally identify the operating deflection shape or mode shape of a structure. To overcome this problem, the Hilbert Huang transform (HHT) technique has been recently proposed. This technique is used to extract the mode shape from measurements that continuously measure the vibration of a region of interest within a structure using a non-contact laser sensor. In previous research regarding the HHT, two technical processes were needed to obtain the mode shape for each mode. The purpose of this study is to improve and complement our previous research, and for this purpose, a modal analysismore » approach is adapted without using the two technical processes to obtain an accurate un-damped impulse response of each mode for continuous scanning measurements. In addition, frequency response functions for each type of beam are derived, making it possible to make continuously scanned measurements along a straight profile. In this paper, the technical limitations and drawbacks of the damping compensation technique used in previous research are identified. In addition, the separation of resonant frequency (the Doppler effect) that occurs in continuous scanning measurements and the separation of damping phenomenon are also observed. The proposed method is quantitatively verified by comparing it with the results obtained from a conventional approach to estimate the mode shape with an impulse response.« less

  12. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    PubMed

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  13. Complex mode indication function and its applications to spatial domain parameter estimation

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    This paper introduces the concept of the Complex Mode Indication Function (CMIF) and its application in spatial domain parameter estimation. The concept of CMIF is developed by performing singular value decomposition (SVD) of the Frequency Response Function (FRF) matrix at each spectral line. The CMIF is defined as the eigenvalues, which are the square of the singular values, solved from the normal matrix formed from the FRF matrix, [ H( jω)] H[ H( jω)], at each spectral line. The CMIF appears to be a simple and efficient method for identifying the modes of the complex system. The CMIF identifies modes by showing the physical magnitude of each mode and the damped natural frequency for each root. Since multiple reference data is applied in CMIF, repeated roots can be detected. The CMIF also gives global modal parameters, such as damped natural frequencies, mode shapes and modal participation vectors. Since CMIF works in the spatial domain, uneven frequency spacing data such as data from spatial sine testing can be used. A second-stage procedure for accurate damped natural frequency and damping estimation as well as mode shape scaling is also discussed in this paper.

  14. Interaction function of oscillating coupled neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2013-01-01

    Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210

  15. High-resolution investigation of longitudinal modes of a GaN-based blue laser diode

    NASA Astrophysics Data System (ADS)

    Al-Basheer, Watheq; Aljalal, Abdulaziz; Gasmi, Khaled; Adigun, Taofeek O.

    2017-05-01

    Typical emission spectra of GaN-based blue laser diodes are known to have irregular shapes. Hence, well-resolved study of their spectra may help in understanding the origin of their spectral shapes irregularity. In this paper, the spectra of a commercial GaN-based blue laser diode are studied as a function of injection current and temperature using a spectrometer with highresolution of 0.003-nm over the spectral region 440 - 450 nm. The obtained laser spectra are used to track the longitudinal modes evolution as a function of operating currents and temperatures as well as to precisely map single mode operation. In addition, yielded laser spectra will be utilized to evaluate few parameters related to the laser diode, such as mode spacing, optical gain, slope efficiency and threshold current at certain temperature.

  16. Correlation of finite element free vibration predictions using random vibration test data. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1994-01-01

    Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.

  17. Characterization of identification errors and uses in localization of poor modal correlation

    NASA Astrophysics Data System (ADS)

    Martin, Guillaume; Balmes, Etienne; Chancelier, Thierry

    2017-05-01

    While modal identification is a mature subject, very few studies address the characterization of errors associated with components of a mode shape. This is particularly important in test/analysis correlation procedures, where the Modal Assurance Criterion is used to pair modes and to localize at which sensors discrepancies occur. Poor correlation is usually attributed to modeling errors, but clearly identification errors also occur. In particular with 3D Scanning Laser Doppler Vibrometer measurement, many transfer functions are measured. As a result individual validation of each measurement cannot be performed manually in a reasonable time frame and a notable fraction of measurements is expected to be fairly noisy leading to poor identification of the associated mode shape components. The paper first addresses measurements and introduces multiple criteria. The error measures the difference between test and synthesized transfer functions around each resonance and can be used to localize poorly identified modal components. For intermediate error values, diagnostic of the origin of the error is needed. The level evaluates the transfer function amplitude in the vicinity of a given mode and can be used to eliminate sensors with low responses. A Noise Over Signal indicator, product of error and level, is then shown to be relevant to detect poorly excited modes and errors due to modal property shifts between test batches. Finally, a contribution is introduced to evaluate the visibility of a mode in each transfer. Using tests on a drum brake component, these indicators are shown to provide relevant insight into the quality of measurements. In a second part, test/analysis correlation is addressed with a focus on the localization of sources of poor mode shape correlation. The MACCo algorithm, which sorts sensors by the impact of their removal on a MAC computation, is shown to be particularly relevant. Combined with the error it avoids keeping erroneous modal components. Applied after removal of poor modal components, it provides spatial maps of poor correlation, which help localizing mode shape correlation errors and thus prepare the selection of model changes in updating procedures.

  18. Scattering from arbitrarily shaped microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.

    1992-01-01

    The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.

  19. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    NASA Astrophysics Data System (ADS)

    Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos

    2011-02-01

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

  20. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  1. A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes

    NASA Astrophysics Data System (ADS)

    Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat

    2018-07-01

    In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.

  2. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  3. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    PubMed

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  4. Two-mode elliptical-core weighted fiber sensors for vibration analysis

    NASA Technical Reports Server (NTRS)

    Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.

    1992-01-01

    Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.

  5. Influence of super-horizon modes on correlation functions during inflation

    NASA Astrophysics Data System (ADS)

    Deutsch, Anne-Sylvie

    2018-05-01

    Coupling between sub- and super-Hubble modes can affect the locally observed statistics of our universe. In the context of Quasi-Single Field Inflation, we can compute correlation functions and derive the influence of those unobservable modes on observed correlation functions as well as on the inferred cosmological parameters. We study how different classes of diagrams affect the bispectrum in the squeezed limit; in particular, while contact-like diagrams leave the scaling between the long and short modes unchanged, exchange-like diagrams do modify the shape of the bispectrum. We show that the mass of the hidden sector field can hence be biased by an unavoidable cosmic variance that can reach a 1-σ uncertainty of Script O(10%) for a weakly non-Gaussian universe. Finally, we go beyond the bispectrum and show how couplings between unobservable and observable modes can affect generic correlation functions with arbitrary order non-derivative self-interactions.

  6. Geometric Analysis of Wing Sections

    DOT National Transportation Integrated Search

    1995-04-01

    This paper describes a new geometric analysis procedure for wing sections. This procedure is based on the normal mode analysis for continuous functions. A set of special shape functions is introduced to represent the geometry of the wing section. The...

  7. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.

  8. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  9. Comparison of gating methods for the real-time analysis of left ventricular function in nonimaging blood pool studies.

    PubMed

    Beard, B B; Stewart, J R; Shiavi, R G; Lorenz, C H

    1995-01-01

    Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating.

  10. Comparison of gating methods for the real-time analysis of left ventricular function in nonimaging blood pool studies

    PubMed Central

    Beard, Brian B.; Stewart, James R.; Shiavi, Richard G.; Lorenz, Christine H.

    2018-01-01

    Background Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. Methods and Results A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Conclusions Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating. PMID:9420820

  11. STIS E140M Sensitivity Curves

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.

    2017-08-01

    The spectrophotometric white dwarf G191-B2B will be observed with the E140M grating to obtain an updated set of sensitivity curves for this highly used mode. Spectroscopic sensitivity monitoring observations of BD+284211 have shown that the blaze function shapes have changed since SM4 and now limit the relative photometric flux accuracy of 14 of 43 E140M spectral orders to 5-10% at the edges. The blaze function shape changes have hindered attempts to determine the post-SM4 temporal blaze function shifts for this grating. Given the popularity of this unique FUV mode, with almost full simultaneous coverage of 1144 to 1710 A in a single observation, and consideration of the STIS archival legacy, we request 1 orbit to re-observe G191-B2B with the E140/1425 setting.

  12. Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics, production version (SOUSSA-P 1.1). Volume 1: Theoretical manual. [Green function

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1980-01-01

    Recent developments of the Green's function method and the computer program SOUSSA (Steady, Oscillatory, and Unsteady Subsonic and Supersonic Aerodynamics) are reviewed and summarized. Applying the Green's function method to the fully unsteady (transient) potential equation yields an integro-differential-delay equation. With spatial discretization by the finite-element method, this equation is approximated by a set of differential-delay equations in time. Time solution by Laplace transform yields a matrix relating the velocity potential to the normal wash. Premultiplying and postmultiplying by the matrices relating generalized forces to the potential and the normal wash to the generalized coordinates one obtains the matrix of the generalized aerodynamic forces. The frequency and mode-shape dependence of this matrix makes the program SOUSSA useful for multiple frequency and repeated mode-shape evaluations.

  13. Spatially Resolved Measurement of the Stress Tensor in Thin Membranes Using Bending Waves

    NASA Astrophysics Data System (ADS)

    Waitz, Reimar; Lutz, Carolin; Nößner, Stephan; Hertkorn, Michael; Scheer, Elke

    2015-04-01

    The mode shape of bending waves in thin silicon and silicon-carbide membranes is measured as a function of space and time, using a phase-shift interferometer with stroboscopic light. The mode shapes hold information about all the relevant mechanical parameters of the samples, including the spatial distribution of static prestress. We present a simple algorithm to obtain a map of the lateral tensor components of the prestress, with a spatial resolution much better than the wavelength of the bending waves. The method is not limited to measuring the stress of bending waves. It is applicable in almost any situation, where the fields determining the state of the system can be measured as a function of space and time.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpes, Nathan; Kumar, Prashant; Abdelkefi, Abdessattar

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. Inmore » this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.« less

  15. Statistical-mechanics theory of active mode locking with noise.

    PubMed

    Gordon, Ariel; Fischer, Baruch

    2004-05-01

    Actively mode-locked lasers with noise are studied employing statistical mechanics. A mapping of the system to the spherical model (related to the Ising model) of ferromagnets in one dimension that has an exact solution is established. It gives basic features, such as analytical expressions for the correlation function between modes, and the widths and shapes of the pulses [different from the Kuizenga-Siegman expression; IEEE J. Quantum Electron. QE-6, 803 (1970)] and reveals the susceptibility to noise of mode ordering compared with passive mode locking.

  16. Multilayer modal actuator-based piezoelectric transformers.

    PubMed

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  17. Automated finite element modeling of the lumbar spine: Using a statistical shape model to generate a virtual population of models.

    PubMed

    Campbell, J Q; Petrella, A J

    2016-09-06

    Population-based modeling of the lumbar spine has the potential to be a powerful clinical tool. However, developing a fully parameterized model of the lumbar spine with accurate geometry has remained a challenge. The current study used automated methods for landmark identification to create a statistical shape model of the lumbar spine. The shape model was evaluated using compactness, generalization ability, and specificity. The primary shape modes were analyzed visually, quantitatively, and biomechanically. The biomechanical analysis was performed by using the statistical shape model with an automated method for finite element model generation to create a fully parameterized finite element model of the lumbar spine. Functional finite element models of the mean shape and the extreme shapes (±3 standard deviations) of all 17 shape modes were created demonstrating the robust nature of the methods. This study represents an advancement in finite element modeling of the lumbar spine and will allow population-based modeling in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. L-shaped piezoelectric motor--part II: analytical modeling.

    PubMed

    Avirovik, Dragan; Karami, M Amin; Inman, Daniel; Priya, Shashank

    2012-01-01

    This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM). © 2012 IEEE

  19. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  20. Vibration mode and vibration shape under excitation of a three phase model transformer core

    NASA Astrophysics Data System (ADS)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  1. Digital computer program DF1758 fully coupled natural frequencies and mode shapes of a helicopter rotor blade

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.

    1975-01-01

    The analytical techniques and computer program developed in the fully-coupled rotor vibration study are described. The rotor blade natural frequency and mode shape analysis was implemented in a digital computer program designated DF1758. The program computes collective, cyclic, and scissor modes for a single blade within a specified range of frequency for specified values of rotor RPM and collective angle. The analysis includes effects of blade twist, cg offset from reference axis, and shear center offset from reference axis. Coupled inplane, out-of-plane, and torsional vibrations are considered. Normalized displacements, shear forces and moments may be printed out and Calcomp plots of natural frequencies as a function of rotor RPM may be produced.

  2. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  3. Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature

    NASA Astrophysics Data System (ADS)

    Dixit, Saurabh; Shukla, A. K.

    2018-06-01

    In this article, single-walled carbon nanotubes (SWCNTs) are synthesized at room temperature using pulsed laser ablation of ferrocene mixed graphitic target. Radial breathing mode (RBM) reveals the presence of semiconducting SWCNTs of multiple diameters. Quantum confinement model is developed for Raman line-shape of G - feature. It is invoked here that G-feature is the manifestation of TO phonons in the semiconducting SWCNTs. Disorder in the SWCNTs is studied here as a function of the concentration of ferrocene in the graphitic target using X-ray diffraction analysis, oscillator strength of G - feature and D mode and Raman line-shape model of G - feature. Furthermore, phonon softening of G - feature of semiconducting SWCNTs is observed as a function of the diameter of nanotube.

  4. Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Vikulenkov, Andrey V.; Uspenskiy, Evgeniy S.

    2018-05-01

    A vibration protection system under consideration consists of a payload connected to a vibrating housing by shape memory alloy (SMA) slotted springs. To provide an arrest function two permanent magnets are inserted into the system. The slotted SMA elements are preliminary deformed in the martensitic state. Activation of one element by heating initiates force and displacement generation, which provide an arrest of the payload by magnets. The magnets also secure the arrest mode after cooling of the SMA element. Activation of the other element results in uncaging of the payload and switching to the vibration isolation mode. Computer simulations of arrest and uncaging when the housing is quiescent or producing sine-wave displacements were carried out. Functional-mechanical behavior of SMA parts was described by means of a microstructural model.

  5. Mode Shape Estimation Algorithms Under Ambient Conditions: A Comparative Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dosiek, Luke; Zhou, Ning; Pierre, John W.

    Abstract—This paper provides a comparative review of five existing ambient electromechanical mode shape estimation algorithms, i.e., the Transfer Function (TF), Spectral, Frequency Domain Decomposition (FDD), Channel Matching, and Subspace Methods. It is also shown that the TF Method is a general approach to estimating mode shape and that the Spectral, FDD, and Channel Matching Methods are actually special cases of it. Additionally, some of the variations of the Subspace Method are reviewed and the Numerical algorithm for Subspace State Space System IDentification (N4SID) is implemented. The five algorithms are then compared using data simulated from a 17-machine model of themore » Western Electricity Coordinating Council (WECC) under ambient conditions with both low and high damping, as well as during the case where ambient data is disrupted by an oscillatory ringdown. The performance of the algorithms is compared using the statistics from Monte Carlo Simulations and results from measured WECC data, and a discussion of the practical issues surrounding their implementation, including cases where power system probing is an option, is provided. The paper concludes with some recommendations as to the appropriate use of the various techniques. Index Terms—Electromechanical mode shape, small-signal stability, phasor measurement units (PMU), system identification, N4SID, subspace.« less

  6. Drive Train Normal Modes Analysis for the ERDA/NASA 100-Kilowatt Wind Turbine Generator

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Miller, D. R.; Spera, D. A.

    1977-01-01

    Natural frequencies, as a function of power were determined using a finite element model. Operating conditions investigated were operation with a resistive electrical load and operation synchronized to an electrical utility grid. The influence of certain drive train components on frequencies and mode shapes is shown. An approximate method for obtaining drive train natural frequencies is presented.

  7. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  8. Vectorial model for guided-mode resonance gratings

    NASA Astrophysics Data System (ADS)

    Fehrembach, A.-L.; Gralak, B.; Sentenac, A.

    2018-04-01

    We propose a self-consistent vectorial method, based on a Green's function technique, to describe the resonances that appear in guided-mode resonance gratings. The model provides intuitive expressions of the reflectivity and transmittivity matrices of the structure, involving coupling integrals between the modes of a planar reference structure and radiative modes. When one mode is excited, the diffracted field for a suitable polarization can be written as the sum of a resonant and a nonresonant term, thus extending the intuitive approach used to explain the Fano shape of the resonance in scalar configurations. When two modes are excited, we derive a physical analysis in a configuration which requires a vectorial approach. We provide numerical validations of our model. From a technical point of view, we show how the Green's tensor of our planar reference structure can be expressed as two scalar Green's functions, and how to deal with the singularity of the Green's tensor.

  9. The WFIRST Galaxy Survey Exposure Time Calculator

    NASA Technical Reports Server (NTRS)

    Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien

    2013-01-01

    This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.

  10. Dynamics of shaping ultrashort optical dissipative solitary pulses in the actively mode-locked semiconductor laser with an external long-haul single-mode fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Moreno Zarate, Pedro

    2010-02-01

    We describe the conditions of shaping regular trains of optical dissipative solitary pulses, excited by multi-pulse sequences of periodic modulating signals, in the actively mode-locked semiconductor laser heterostructure with an external long-haul single-mode silicon fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. The presented model for the analysis includes three principal contributions associated with the modulated gain, optical losses, as well as linear and nonlinear phase shifts. In fact, the trains of optical dissipative solitary pulses appear within simultaneous presenting and a balance of mutually compensating interactions between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in the combined cavity. Within such a model, a contribution of the nonlinear Ginzburg-Landau operator to shaping the parameters of optical dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions. Finally, the results of the illustrating proof-of-principle experiments are briefly presented and discussed in terms of optical dissipative solitary pulses.

  11. Coupled-mode theory and Fano resonances in guided-mode resonant gratings: the conical diffraction mounting.

    PubMed

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2017-01-23

    We study resonances of guided-mode resonant gratings in conical mounting. By developing 2D time-dependent coupled-mode theory we obtain simple approximations of the transmission and reflection coefficients. Being functions of the incident light's frequency and in-plane wave vector components, the obtained approximations can be considered as multi-variable generalizations of the Fano line shape. We show that the approximations are in good agreement with the rigorously calculated transmission and reflection spectra. We use the developed theory to investigate angular tolerances of the considered structures and to obtain mode excitation conditions. In particular, we obtain the cross-polarization mode excitation conditions in the case of conical mounting.

  12. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  13. Robustness properties of LQG optimized compensators for collocated rate sensors

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1994-01-01

    In this paper we study the robustness with respect to stability of the closed-loop system with collocated rate sensor using LQG (mean square rate) optimized compensators. Our main result is that the transmission zeros of the compensator are precisely the structure modes when the actuator/sensor locations are 'pinned' and/or 'clamped': i.e., motion in the direction sensed is not allowed. We have stability even under parameter mismatch, except in the unlikely situation where such a mode frequency of the assumed system coincides with an undamped mode frequency of the real system and the corresponding mode shape is an eigenvector of the compensator transfer function matrix at that frequency. For a truncated modal model - such as that of the NASA LaRC Phase Zero Evolutionary model - the transmission zeros of the corresponding compensator transfer function can be interpreted as the structure modes when motion in the directions sensed is prohibited.

  14. Dynamic modes of quasispherical vesicles: exact analytical solutions.

    PubMed

    Guedda, M; Abaidi, M; Benlahsen, M; Misbah, C

    2012-11-01

    In this paper we introduce a simple mathematical analysis to reexamine vesicle dynamics in the quasispherical limit (small deformation) under a shear flow. In this context, a recent paper [Misbah, Phys. Rev. Lett. 96, 028104 (2006)] revealed a dynamic referred to as the vacillating-breathing (VB) mode where the vesicle main axis oscillates about the flow direction and the shape undergoes a breathinglike motion, as well as the tank-treading and tumbling (TB) regimes. Our goal here is to identify these three modes by obtaining explicit analytical expressions of the vesicle inclination angle and the shape deformation. In particular, the VB regime is put in evidence and the transition dynamics is discussed. Not surprisingly, our finding confirms the Keller-Skalak solutions (for rigid particles) and shows that the VB and TB modes coexist, and whether one prevails over the other depends on the initial conditions. An interesting additional element in the discussion is the prediction of the TB and VB modes as functions of a control parameter Γ, which can be identified as a TB-VB parameter.

  15. Scaling analysis of Anderson localizing optical fibers

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Mafi, Arash

    2017-02-01

    Anderson localizing optical fibers (ALOF) enable a novel optical waveguiding mechanism; if a narrow beam is scanned across the input facet of the disordered fiber, the output beam follows the transverse position of the incoming wave. Strong transverse disorder induces several localized modes uniformly spread across the transverse structure of the fiber. Each localized mode acts like a transmission channel which carries a narrow input beam along the fiber without transverse expansion. Here, we investigate scaling of transverse size of the localized modes of ALOF with respect to transverse dimensions of the fiber. Probability density function (PDF) of the mode-area is applied and it is shown that PDF converges to a terminal shape at transverse dimensions considerably smaller than the previous experimental implementations. Our analysis turns the formidable numerical task of ALOF simulations into a much simpler problem, because the convergence of mode-area PDF to a terminal shape indicates that a much smaller disordered fiber, compared to previous numerical and experimental implementations, provides all the statistical information required for the precise analysis of the fiber.

  16. A new boundary integral approach to the determination of the resonant modes of arbitrary shaped cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcioni, P.; Bressan, M.; Perregrini, L.

    1995-08-01

    Computer codes for the electromagnetic analysis of arbitrarily shaped cavities are very important for many applications, in particular for the design of interaction structures for particle accelerators. The design of accelerating cavities results in complicated shapes, that are obtained carrying on repeated analyses to optimize a number of parameters, such as Q-factors, beam coupling impedances, higher-order-mode spectrum, and so on. The interest in the calculation of many normalized modes derives also from the important role they play in the eigenvector expansion of the electromagnetic field in a closed region. The authors present an efficient algorithm to determine the resonant frequenciesmore » and the normalized modal fields of arbitrarily shaped cavity resonators filled with a lossless, isotropic, and homogeneous medium. The algorithm is based on the boundary integral method (BIM). The unknown current flowing on the cavity wall is considered inside a spherical resonator, rather than in free-space, as it is usual in the standard BIM. The electric field is expressed using the Green`s function of the spherical resonator, approximated by a real rational function of the frequency. Consequently, the discretized problem can be cast into the form of a real matrix linear eigenvalue problem, whose eigenvalues and eigenvectors yield the resonant frequencies and the associated modal currents. Since the algorithm does not require any frequency-by-frequency recalculation of the system matrices, computing time is much shorter than in the standard BIM, especially when many resonances must be found.« less

  17. Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Wahi, P.

    2015-03-01

    We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.

  18. Discrete shaped strain sensors for intelligent structures

    NASA Technical Reports Server (NTRS)

    Andersson, Mark S.; Crawley, Edward F.

    1992-01-01

    Design of discrete, highly distributed sensor systems for intelligent structures has been studied. Data obtained indicate that discrete strain-averaging sensors satisfy the functional requirements for distributed sensing of intelligent structures. Bartlett and Gauss-Hanning sensors, in particular, provide good wavenumber characteristics while meeting the functional requirements. They are characterized by good rolloff rates and positive Fourier transforms for all wavenumbers. For the numerical integration schemes, Simpson's rule is considered to be very simple to implement and consistently provides accurate results for five sensors or more. It is shown that a sensor system that satisfies the functional requirements can be applied to a structure that supports mode shapes with purely sinusoidal curvature.

  19. An EGO-like optimization framework for sensor placement optimization in modal analysis

    NASA Astrophysics Data System (ADS)

    Morlier, Joseph; Basile, Aniello; Chiplunkar, Ankit; Charlotte, Miguel

    2018-07-01

    In aircraft design, ground/flight vibration tests are conducted to extract aircraft’s modal parameters (natural frequencies, damping ratios and mode shapes) also known as the modal basis. The main problem in aircraft modal identification is the large number of sensors needed, which increases operational time and costs. The goal of this paper is to minimize the number of sensors by optimizing their locations in order to reconstruct a truncated modal basis of N mode shapes with a high level of accuracy in the reconstruction. There are several methods to solve sensors placement optimization (SPO) problems, but for this case an original approach has been established based on an iterative process for mode shapes reconstruction through an adaptive Kriging metamodeling approach so called efficient global optimization (EGO)-SPO. The main idea in this publication is to solve an optimization problem where the sensors locations are variables and the objective function is defined by maximizing the trace of criteria so called AutoMAC. The results on a 2D wing demonstrate a reduction of sensors by 30% using our EGO-SPO strategy.

  20. Dynamics of nonspherical microbubble oscillations above instability threshold

    NASA Astrophysics Data System (ADS)

    Guédra, Matthieu; Cleve, Sarah; Mauger, Cyril; Blanc-Benon, Philippe; Inserra, Claude

    2017-12-01

    Time-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time from the recordings of two synchronous high-speed cameras located at 90∘. The temporal dynamics of finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability threshold. The experimental results are compared with recent theories accounting for nonlinearities and mode coupling, highlighting particular effects inherent to these mechanisms (saturation of the instability, triggering of nonparametric shape modes). Finally, the amplitude of the nonspherical oscillations is given as function of the driving pressure both for quadrupolar and octupolar bubbles.

  1. A novel frequency tuned wireless actuator with snake-like motion

    NASA Astrophysics Data System (ADS)

    Zhang, Kewei; Zhu, Qianke; Chai, Yuesheng

    2016-07-01

    In this work, we propose a novel wireless actuator which is composed of magnetostrictive material/copper bi-layer film. The actuator can be controlled to move like a snake bi-directionally along a pipe by tuning the frequency of external magnetic field near its first order resonant frequency. The governing equation for the actuator is established and the vibration mode shape function is derived. Theoretical analysis shows that motion of the actuator is achieved by asymmetric vibration mode shape, specific vibration bending deformation, and effective net total impacting force. The simulation and experimental results well confirm the theoretical analysis. This work provides contribution to the development of wireless micro robots and autonomous magnetostrictive sensors.

  2. A strategy for reducing gross errors in the generalized Born models of implicit solvation

    PubMed Central

    Onufriev, Alexey V.; Sigalov, Grigori

    2011-01-01

    The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947

  3. Vibration mode shape recognition using image processing

    NASA Astrophysics Data System (ADS)

    Wang, Weizhuo; Mottershead, John E.; Mares, Cristinel

    2009-10-01

    Currently the most widely used method for comparing mode shapes from finite elements and experimental measurements is the modal assurance criterion (MAC), which can be interpreted as the cosine of the angle between the numerical and measured eigenvectors. However, the eigenvectors only contain the displacement of discrete coordinates, so that the MAC index carries no explicit information on shape features. New techniques, based upon the well-developed philosophies of image processing (IP) and pattern recognition (PR) are considered in this paper. The Zernike moment descriptor (ZMD), Fourier descriptor (FD), and wavelet descriptor (WD) are the most popular shape descriptors due to their outstanding properties in IP and PR. These include (1) for the ZMD-rotational invariance, expression and computing efficiency, ease of reconstruction and robustness to noise; (2) for the FD—separation of the global shape and shape-details by low and high frequency components, respectively, invariance under geometric transformation; (3) for the WD—multi-scale representation and local feature detection. Once a shape descriptor has been adopted, the comparison of mode shapes is transformed to a comparison of multidimensional shape feature vectors. Deterministic and statistical methods are presented. The deterministic problem of measuring the degree of similarity between two mode shapes (possibly one from a vibration test and the other from a finite element model) may be carried out using Pearson's correlation. Similar shape feature vectors may be arranged in clusters separated by Euclidian distances in the feature space. In the statistical analysis we are typically concerned with the classification of a test mode shape according to clusters of shape feature vectors obtained from a randomised finite element model. The dimension of the statistical problem may often be reduced by principal component analysis. Then, in addition to the Euclidian distance, the Mahalanobis distance, defining the separation of the test point from the cluster in terms of its standard deviation, becomes an important measure. Bayesian decision theory may be applied to formally minimise the risk of misclassification of the test shape feature vector. In this paper the ZMD is applied to the problem of mode shape recognition for a circular plate. Results show that the ZMD has considerable advantages over the traditional MAC index when identifying the cyclically symmetric mode shapes that occur in axisymmetric structures at identical frequencies. Mode shape recognition of rectangular plates is carried out by the FD. Also, the WD is applied to the problem of recognising the mode shapes in the thin and thick regions of a plate with different thicknesses. It shows the benefit of using the WD to identify mode-shapes having both local and global components. The comparison and classification of mode shapes using IP and PR provides a 'toolkit' to complement the conventional MAC approach. The selection of a particular shape descriptor and classification method will depend upon the problem in hand and the experience of the analyst.

  4. Dynamic characterization of AFM probes by laser Doppler vibrometry and stroboscopic holographic methodologies

    NASA Astrophysics Data System (ADS)

    Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.

    2006-08-01

    In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.

  5. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm

    PubMed Central

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848

  6. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams.

    PubMed

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-04-12

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.

  7. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.

    2018-04-01

    We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.

  8. Inducible growth mode switches influence Valonia rhizoid differentiation.

    PubMed

    Elvira, Paul Rommel; Sekida, Satoko; Okuda, Kazuo

    2013-02-01

    Cell differentiation and cell type commitment are an integral part of plant growth and development. Investigations on how environmental conditions affect the formation of shoots, roots, and rhizoids can help illustrate how plants determine cell fate and overall morphology. In this study, we evaluated the role of substratum and light on rhizoid differentiation in the coenocytic green alga, Valonia aegagropila. Elongating rhizoids displayed varying growth modes and cell shape upon exposure to different substrata and light conditions. It was found that soft substrata and dark incubation promoted rhizoid elongation via tip growth while subsequent exposure to light prevented tip growth and instead induced swelling in the apical region of rhizoids. Swelling was accompanied by the accumulation of protoplasm in the rhizoid tip through expansion of the cell wall and uninhibited cytoplasmic streaming. Subsequent diffuse growth led to the transformation from slender, rod-shaped rhizoids into spherical thallus-like structures that required photosynthesis. Further manipulation of light regimes caused vacillating cell growth redirections. An elongating V. aegagropila rhizoid cell thus appears capable of growth mode switching that is regulated by immediate environmental conditions thereby influencing ultimate cell shape and function. This is the first description of inducible, multiple growth mode shifts in a single intact plant cell that directly impact its differentiation.

  9. Electro-optic holography method for determination of surface shape and deformation

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1998-06-01

    Current demanding engineering analysis and design applications require effective experimental methodologies for characterization of surface shape and deformation. Such characterization is of primary importance in many applications, because these quantities are related to the functionality, performance, and integrity of the objects of interest, especially in view of advances relating to concurrent engineering. In this paper, a new approach to characterization of surface shape and deformation using a simple optical setup is described. The approach consists of a fiber optic based electro-optic holography (EOH) system based on an IR, temperature tuned laser diode, a single mode fiber optic directional coupler assembly, and a video processing computer. The EOH can be arranged in multiple configurations which include, the three-camera, three- illumination, and speckle correlation modes.In particular, the three-camera mode is described, as well as a brief description of the procedures for obtaining quantitative 3D shape and deformation information. A representative application of the three-camera EOH system demonstrates the viability of the approach as an effective engineering tool. A particular feature of this system and the procedure described in this paper is that the 3D quantitative data are written to data files which can be readily interfaced to commercial CAD/CAM environments.

  10. Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Strauch, Matthias; Konijnenberg, Sander; Shao, Yifeng; Urbach, H. Paul

    2017-02-01

    Liquid lenses are used to correct for low order wavefront aberrations. Electrowetting liquid lenses can nowadays control defocus and astigmatism effectively, so they start being used for ophthalmology applications. To increase the performance and applicability, we introduce a new driving mechanism to create, detect and correct higher order aberrations using standing waves on the liquid interface. The speed of a liquid lens is in general limited, because the liquid surface cannot follow fast voltage changes, while providing a spherical surface. Surface waves are created instead and with them undesired aberrations. We try to control those surface waves to turn them into an effective wavefront shaping tool. We introduce a model, which treats the liquid lens as a circular vibrating membrane with adjusted boundary conditions. Similar to tunable acoustic gradient (TAG) lenses, the nature of the surface modes are predicted to be Bessel functions. Since Bessel functions are a full set of orthogonal basis functions any surface can be created as a linear combination of different Bessel functions. The model was investigated experimentally in two setups. First the point spread functions were studied and compared to a simulation of the intensity distribution created by Fresnel propagated Bessel surfaces. Second the wavefronts were measured directly using a spatial light modulator. The surface resonance frequencies confirm the predictions made by the model as well as the wavefront measurements. By superposition of known surface modes, it is possible to create new surface shapes, which can be used to simulate and measure the human eye.

  11. Damage localization by statistical evaluation of signal-processed mode shapes

    NASA Astrophysics Data System (ADS)

    Ulriksen, M. D.; Damkilde, L.

    2015-07-01

    Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.

  12. Association of incident symptomatic hip osteoarthritis with differences in hip shape by active shape modeling: the Johnston County Osteoarthritis Project.

    PubMed

    Nelson, Amanda E; Liu, Felix; Lynch, John A; Renner, Jordan B; Schwartz, Todd A; Lane, Nancy E; Jordan, Joanne M

    2014-01-01

    To investigate hip shape by active shape modeling (ASM) as a potential predictor of incident radiographic hip osteoarthritis (RHOA) and symptomatic hip osteoarthritis (SRHOA). All hips developing RHOA from baseline (Kellgren/Lawrence [K/L] grade 0/1) to mean 6-year followup (K/L grade ≥2, 190 hips) and 1:1 control hips (K/L grade 0/1 at both times, 192 hips) were included. Proximal femur shape was defined on baseline anteroposterior pelvis radiographs and submitted to ASM, producing a mean shape and continuous variables representing independent modes of shape variation. Mode scores (n = 14, explaining 95% of shape variance) were simultaneously included in logistic regression models with incident RHOA and SRHOA as dependent variables, adjusted for intraperson correlations, sex, race, body mass index (BMI), baseline K/L grade, and/or symptoms. We evaluated 382 hips from 342 individuals: 61% women and 83% white, with mean age 62 years and mean BMI 29 kg/m(2) . Several modes differed by sex and race, but no modes were associated with incident RHOA overall. Among men only, modes 1 and 2 were significantly associated (for a 1-SD decrease in mode 1 score: odds ratio [OR] 1.7 [95% confidence interval (95% CI) 1.1-2.5] and for a 1-SD increase in mode 2 score: OR 1.5 [95% CI 1.0-2.2]) with incident RHOA. A 1-SD decrease in mode 2 or 3 score increased the odds of SRHOA by 50%. This study confirms other reports that variations in proximal femur shape have a modest association with incident hip OA. The observation of proximal femur shape associations with hip symptoms requires further investigation. Copyright © 2014 by the American College of Rheumatology.

  13. Suboptimal artificial potential function sliding mode control for spacecraft rendezvous with obstacle avoidance

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Qiao, Dong; Xu, Jingwen

    2018-02-01

    Sub-Optimal Artificial Potential Function Sliding Mode Control (SOAPF-SMC) is proposed for the guidance and control of spacecraft rendezvous considering the obstacles avoidance, which is derived based on the theories of artificial potential function (APF), sliding mode control (SMC) and state dependent riccati equation (SDRE) technique. This new methodology designs a new improved APF to describe the potential field. It can guarantee the value of potential function converge to zero at the desired state. Moreover, the nonlinear terminal sliding mode is introduced to design the sliding mode surface with the potential gradient of APF, which offer a wide variety of controller design alternatives with fast and finite time convergence. Based on the above design, the optimal control theory (SDRE) is also employed to optimal the shape parameter of APF, in order to add some degree of optimality in reducing energy consumption. The new methodology is applied to spacecraft rendezvous with the obstacles avoidance problem, which is simulated to compare with the traditional artificial potential function sliding mode control (APF-SMC) and SDRE to evaluate the energy consumption and control precision. It is demonstrated that the presented method can avoiding dynamical obstacles whilst satisfying the requirements of autonomous rendezvous. In addition, it can save more energy than the traditional APF-SMC and also have better control accuracy than the SDRE.

  14. Multibody dynamics: Modeling component flexibility with fixed, free, loaded, constraint, and residual modes

    NASA Technical Reports Server (NTRS)

    Spanos, John T.; Tsuha, Walter S.

    1989-01-01

    The assumed-modes method in multibody dynamics allows the elastic deformation of each component in the system to be approximated by a sum of products of spatial and temporal functions commonly known as modes and modal coordinates respectively. The choice of component modes used to model articulating and non-articulating flexible multibody systems is examined. Attention is directed toward three classical Component Mode Synthesis (CMS) methods whereby component normal modes are generated by treating the component interface (I/F) as either fixed, free, or loaded with mass and stiffness contributions from the remaining components. The fixed and free I/F normal modes are augmented by static shape functions termed constraint and residual modes respectively. A mode selection procedure is outlined whereby component modes are selected from the Craig-Bampton (fixed I/F plus constraint), MacNeal-Rubin (free I/F plus residual), or Benfield-Hruda (loaded I/F) mode sets in accordance with a modal ordering scheme derived from balance realization theory. The success of the approach is judged by comparing the actuator-to-sensor frequency response of the reduced order system with that of the full order system over the frequency range of interest. A finite element model of the Galileo spacecraft serves as an example in demonstrating the effectiveness of the proposed mode selection method.

  15. WE-AB-207B-07: Dose Cloud: Generating “Big Data” for Radiation Therapy Treatment Plan Optimization Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkerts, MM; University of California San Diego, La Jolla, California; Long, T

    Purpose: To provide a tool to generate large sets of realistic virtual patient geometries and beamlet doses for treatment optimization research. This tool enables countless studies exploring the fundamental interplay between patient geometry, objective functions, weight selections, and achievable dose distributions for various algorithms and modalities. Methods: Generating realistic virtual patient geometries requires a small set of real patient data. We developed a normalized patient shape model (PSM) which captures organ and target contours in a correspondence-preserving manner. Using PSM-processed data, we perform principal component analysis (PCA) to extract major modes of variation from the population. These PCA modes canmore » be shared without exposing patient information. The modes are re-combined with different weights to produce sets of realistic virtual patient contours. Because virtual patients lack imaging information, we developed a shape-based dose calculation (SBD) relying on the assumption that the region inside the body contour is water. SBD utilizes a 2D fluence-convolved scatter kernel, derived from Monte Carlo simulations, and can compute both full dose for a given set of fluence maps, or produce a dose matrix (dose per fluence pixel) for many modalities. Combining the shape model with SBD provides the data needed for treatment plan optimization research. Results: We used PSM to capture organ and target contours for 96 prostate cases, extracted the first 20 PCA modes, and generated 2048 virtual patient shapes by randomly sampling mode scores. Nearly half of the shapes were thrown out for failing anatomical checks, the remaining 1124 were used in computing dose matrices via SBD and a standard 7-beam protocol. As a proof of concept, and to generate data for later study, we performed fluence map optimization emphasizing PTV coverage. Conclusions: We successfully developed and tested a tool for creating customizable sets of virtual patients suitable for large-scale radiation therapy optimization research.« less

  16. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.

  17. Parameterization of Photon Tunneling with Application to Ice Cloud Optical Properties at Terrestrial Wavelengths

    NASA Astrophysics Data System (ADS)

    Mitchell, D. L.

    2006-12-01

    Sometimes deep physical insights can be gained through the comparison of two theories of light scattering. Comparing van de Hulst's anomalous diffraction approximation (ADA) with Mie theory yielded insights on the behavior of the photon tunneling process that resulted in the modified anomalous diffraction approximation (MADA). (Tunneling is the process by which radiation just beyond a particle's physical cross-section may undergo large angle diffraction or absorption, contributing up to 40% of the absorption when wavelength and particle size are comparable.) Although this provided a means of parameterizing the tunneling process in terms of the real index of refraction and size parameter, it did not predict the efficiency of the tunneling process, where an efficiency of 100% is predicted for spheres by Mie theory. This tunneling efficiency, Tf, depends on particle shape and ranges from 0 to 1.0, with 1.0 corresponding to spheres. Similarly, by comparing absorption efficiencies predicted by the Finite Difference Time Domain Method (FDTD) with efficiencies predicted by MADA, Tf was determined for nine different ice particle shapes, including aggregates. This comparison confirmed that Tf is a strong function of ice crystal shape, including the aspect ratio when applicable. Tf was lowest (< 0.36) for aggregates and plates, and largest (> 0.9) for quasi- spherical shapes. A parameterization of Tf was developed in terms of (1) ice particle shape and (2) mean particle size regarding the large mode (D > 70 mm) of the ice particle size distribution. For the small mode, Tf is only a function of ice particle shape. When this Tf parameterization is used in MADA, absorption and extinction efficiency differences between MADA and FDTD are within 14% over the terrestrial wavelength range 3-100 mm for all size distributions and most crystal shapes likely to be found in cirrus clouds. Using hyperspectral radiances, it is demonstrated that Tf can be retrieved from ice clouds. Since Tf is a function of ice particle shape, this may provide a means of retrieving qualitative information on ice particle shape.

  18. Inertial sensor and method of use

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The inertial sensor of the present invention utilizes a proof mass suspended from spring structures forming a nearly degenerate resonant structure into which a perturbation is introduced, causing a split in frequency of the two modes so that the mode shape become uniquely defined, and to the first order, remains orthogonal. The resonator is provided with a mass or inertia tensor with off-diagonal elements. These off-diagonal elements are large enough to change the mode shape of the two nearly degenerate modes from the original coordinate frame. The spring tensor is then provided with a compensating off-diagonal element, such that the mode shape is again defined in the original coordinate frame. The compensating off-diagonal element in the spring tensor is provided by a biasing voltage that softens certain elements in the spring tensor. Acceleration disturbs the compensation and the mode shape again changes from the original coordinate frame. By measuring the change in the mode shape, the acceleration is measured.

  19. Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports

    NASA Astrophysics Data System (ADS)

    Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian

    2018-02-01

    This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.

  20. Mode detuning in systems of weakly coupled oscillators

    NASA Astrophysics Data System (ADS)

    Spencer, Ross L.; Robertson, Richard D.

    2001-11-01

    A system of weakly magnetically coupled oscillating blades is studied experimentally, computationally, and theoretically. It is found that when the uncoupled natural frequencies of the blades are nearly equal, the normal modes produced by the coupling are almost impossible to find experimentally if the random variation level in the system parameters is on the order of (or larger than) the relative differences between mode frequencies. But if the uncoupled natural frequencies are made to vary (detuned) in a smooth way such that the total relative spread in natural frequency exceeds the random variations, normal modes are rather easy to find. And if the detuned uncoupled frequencies of the system are parabolically distributed, the modes are found to be shaped like Hermite functions.

  1. Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Peterson, Randall

    1994-01-01

    A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.

  2. Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.

    PubMed

    Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo

    2016-10-19

    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.

  3. Modal content of noise generated by a coaxial jet in a pipe

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Johnston, J. P.

    1978-01-01

    Noise generated by air flow through a coaxial obstruction in a long, straight pipe was investigated with concentration on the modal characteristics of the noise field inside the pipe and downstream of the restriction. Two measurement techniques were developed for separation of the noise into the acoustic duct modes. The instantaneous mode separation technique uses four microphones, equally spaced in the circumferential direction, at the same axial location. The time-averaged mode separation technique uses three microphones mounted at the same axial location. A matrix operation on time-averaged data produces the modal pressure levels. This technique requires the restrictive assumption that the acoustic modes are uncorrelated with each other. The measured modal pressure spectra were converted to modal power spectra and integrated over the frequency range 200-6000 Hz. The acoustic efficiency levels (acoustic power normalized by jet kinetic energy flow), when plotted vs. jet Mach number, showed a strong dependence on the ratio of restriction diameter to pipe diameter. The acoustic energy flow analyses based on the thermodynamic energy equation and on the results of Mohring both resulted in orthogonality properties for the eigenfunctions of the radial mode shape equation. These orthogonality relationships involve the eigenvalues and derivatives of the radial mode shape functions.

  4. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    PubMed Central

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-01-01

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. PMID:23966183

  5. Characterization of the bell-shaped vibratory angular rate gyro.

    PubMed

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-08-07

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.

  6. Tailored magnetoelastic sensor geometry for advanced functionality in wireless biliary stent monitoring systems

    NASA Astrophysics Data System (ADS)

    Green, Scott R.; Gianchandani, Yogesh B.

    2010-07-01

    This paper presents three types of wireless magnetoelastic resonant sensors with specific functionalities for monitoring sludge accumulation within biliary stents. The first design uses a geometry with a repeated cell shape that provides two well-separated resonant mode shapes and associated frequencies to permit spatial localization of mass loading. The second design implements a pattern with specific variation in feature densities to improve sensitivity to mass loading. The third design uses narrow ribbons joined by flexible couplers; this design adopts the advantages in flexibility and expandability of the other designs while maintaining the robust longitudinal mode shapes of a ribbon-shaped sensor. The sensors are batch patterned using photochemical machining from 25 µm thick 2605SA1 Metglas™, an amorphous Fe-Si alloy. Accumulation of biliary sludge is simulated with paraffin or gelatin, and the effects of viscous bile are simulated with a range of silicone fluids. Results from the first design show that the location of mass loads can be resolved within ~5 mm along the length of the sensor. The second design offers twice the sensitivity to mass loads (3000-36 000 ppm mg-1) of other designs. The third design provides a wide range of loading (sensitive to at least 10× the mass of the sensor) and survives compression into a 2 mm diameter tube as would be required for catheter-based delivery.

  7. Has pollination mode shaped the evolution of ficus pollen?

    PubMed

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism.

  8. Has Pollination Mode Shaped the Evolution of Ficus Pollen?

    PubMed Central

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    Background The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Methods and Main Findings Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Conclusions Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism. PMID:24465976

  9. Contribution of Cage-Shaped Structure of Physalins to Their Mode of Action in Inhibition of NF-κB Activation.

    PubMed

    Ozawa, Masaaki; Morita, Masaki; Hirai, Go; Tamura, Satoru; Kawai, Masao; Tsuchiya, Ayako; Oonuma, Kana; Maruoka, Keiji; Sodeoka, Mikiko

    2013-08-08

    A library of oxygenated natural steroids, including physalins, withanolides, and perulactones, coupled with the synthetic cage-shaped right-side structure of type B physalins, was constructed. SAR studies for inhibition of NF-κB activation showed the importance of both the B-ring and the oxygenated right-side partial structure. The 5β,6β-epoxy derivatives of both physalins and withanolides showed similar profiles of inhibition of NF-κB activation and appeared to act on NF-κB signaling via inhibition of phosphorylation and degradation of IκBα. In contrast, type B physalins with C5-C6 olefin functionality inhibited nuclear translocation and DNA binding of RelA/p50 protein dimer, which lie downstream of IκBα degradation, although withanolides having the same AB-ring functionality did not. These results indicated that the right-side partial structure of these steroids influences their mode of action.

  10. Infrared Reflectance Spectroscopy of Porous Silicas

    NASA Astrophysics Data System (ADS)

    Guiton, Theresa Anne

    Fourier transform infrared (FTIR) specular reflectance spectroscopy was used to examine the fundamental phonon behavior of a series of porous silicas including porous Vycor, xerogels, aerogels, and colloidal solids. The spectra were deconvoluted using Kramers-Kronig analysis techniques, and the corresponding optical constants were determined via the Fresnel equations. The resulting spectra represent the first compilation of such data for low density silicas. The porous silicas revealed unique resonance modes for the imaginary dielectric function and energy loss function. A key distinction amongst the spectra was the change in the band shape of the antisymmetric Si-O-Si stretching modes. For instance, as the porosity level of the particulate systems increased, the peak maxima of the imaginary dielectric functions shifted to higher frequencies while the peak maxima of the associated energy loss function shifted to lower frequencies. In essence, with increasing porosity, the peak maxima of the imaginary dielectric functions and the energy loss functions were converging towards frequencies intermediate to the transverse optical and longitudinal optical modes of fused silica. A similar trend was not observed for the semi-continuous silica matrices. Maxwell Garnett effective medium modeling verified that these modes were a function of the porous microstructure and can be attributed to surface phonon modes. The effect of surface phonon modes was also evident in the absorption coefficient data. However, contrary to the traditional view that changes in the absorption spectra of porous silicas are strictly due to molecular structure, this study has demonstrated that variations can be attributed--both qualitatively and quantitatively--to electrostatic screening effects of finite particles.

  11. The Fundamental Solutions for the Stress Intensity Factors of Modes I, II And III. The Axially Symmetric Problem

    NASA Astrophysics Data System (ADS)

    Rogowski, B.

    2015-05-01

    The subject of the paper are Green's functions for the stress intensity factors of modes I, II and III. Green's functions are defined as a solution to the problem of an elastic, transversely isotropic solid with a penny-shaped or an external crack under general axisymmetric loadings acting along a circumference on the plane parallel to the crack plane. Exact solutions are presented in a closed form for the stress intensity factors under each type of axisymmetric ring forces as fundamental solutions. Numerical examples are employed and conclusions which can be utilized in engineering practice are formulated.

  12. Stroboscopic Interferometer for Measuring Mirror Vibrations

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Robers, Ted

    2005-01-01

    Stroboscopic interferometry is a technique for measuring the modes of vibration of mirrors that are lightweight and, therefore, unavoidably flexible. The technique was conceived especially for modal characterization of lightweight focusing mirror segments to be deployed in outer space; however, the technique can be applied to lightweight mirrors designed for use on Earth as well as the modal investigation of other optical and mechanical structures. To determine the modal structure of vibration of a mirror, it is necessary to excite the mirror by applying a force that varies periodically with time at a controllable frequency. The excitation can utilize sinusoidal, square, triangular, or even asynchronous waveforms. Because vibrational modes occur at specific resonant frequencies, it is necessary to perform synchronous measurements and sweep the frequency to locate the significant resonant modes. For a given mode it is possible to step the phase of data acquisition in order to capture the modal behavior over a single cycle of the resonant frequency. In order to measure interferometrically the vibrational response of the mirror at a given frequency, an interferometer must be suitably aligned with the mirror and adjustably phase-locked with the excitation signal. As in conventional stroboscopic photography, the basic idea in stroboscopic interferometry is to capture an image of the shape of a moving object (in this case, the vibrating mirror) at a specified instant of time in the vibration cycle. Adjusting the phase difference over a full cycle causes the interference fringes to vary over the full range of motion for the mode at the excitation frequency. The interference-fringe pattern is recorded as a function of the phase difference, and, from the resulting data, the surface shape of the mirror for the given mode is extracted. In addition to the interferometer and the mirror to be tested, the equipment needed for stroboscopic interferometry includes an arbitrary-function generator (that is, a signal generator), an oscilloscope, a trigger filter, and an advanced charge-coupled-device (CCD) camera. The optical components are positioned to form a pupil image of the mirror under test on the CCD chip, so that the interference pattern representative of the instantaneous mirror shape is imaged on the CCD chip.

  13. Properties of Spectral Shapes of Whistler-Mode Emissions

    NASA Astrophysics Data System (ADS)

    Macusova, E.; Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.

    2014-12-01

    Whistler-mode emissions play an important role in wave-particle interactions occurring in the radiation belt region. Whistler mode chorus emissions consist of discrete wave packets which exhibit different spectral shapes. Rising tones (events with positive value of the frequency sweep rate) are frequently observed. Other categories of chorus spectral shapes, such as falling tones, hooks, broadband patterns, are also known. Whistler-mode emissions can additionally occur as hiss or combinations of hiss with discrete patterns. In this study, we have analyzed more than 11 years of high-time resolution measurements provided by the Wideband Data (WBD) instrument onboard four Cluster spacecraft to identify different spectral shapes of whistler mode emissions. We determine the distribution of individual groups of chorus spectral shapes in the Earth's magnetosphere and the effect of the different geomagnetic conditions on their occurrence. We focus on average polarization and propagation properties of the different types of spectral shapes, obtained during visually identified time intervals from multicomponent measurements of the STAFF-SA instrument recorded with a time resolution of 4 seconds.

  14. Radiation Losses Due to Tapering of a Double-Core Optical Waveguide

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)

    2001-01-01

    The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.

  15. Scaling of mode shapes from operational modal analysis using harmonic forces

    NASA Astrophysics Data System (ADS)

    Brandt, A.; Berardengo, M.; Manzoni, S.; Cigada, A.

    2017-10-01

    This paper presents a new method for scaling mode shapes obtained by means of operational modal analysis. The method is capable of scaling mode shapes on any structure, also structures with closely coupled modes, and the method can be used in the presence of ambient vibration from traffic or wind loads, etc. Harmonic excitation can be relatively easily accomplished by using general-purpose actuators, also for force levels necessary for driving large structures such as bridges and highrise buildings. The signal processing necessary for mode shape scaling by the proposed method is simple and the method can easily be implemented in most measurement systems capable of generating a sine wave output. The tests necessary to scale the modes are short compared to typical operational modal analysis test time. The proposed method is thus easy to apply and inexpensive relative to some other methods for scaling mode shapes that are available in literature. Although it is not necessary per se, we propose to excite the structure at, or close to, the eigenfrequencies of the modes to be scaled, since this provides better signal-to-noise ratio in the response sensors, thus permitting the use of smaller actuators. An extensive experimental activity on a real structure was carried out and the results reported demonstrate the feasibility and accuracy of the proposed method. Since the method utilizes harmonic excitation for the mode shape scaling, we propose to call the method OMAH.

  16. Visualization of the Mode Shapes of Pressure Oscillation in a Cylindrical Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xin; Qi, Yunliang; Wang, Zhi

    Our work describes a novel experimental method to visualize the mode shapes of pressure oscillation in a cylindrical cavity. Acoustic resonance in a cavity is a grand old problem that has been under investigation (using both analytical and numerical methods) for more than a century. In this article, a novel method based on high speed imaging of combustion chemiluminescence was presented to visualize the mode shapes of pressure oscillation in a cylindrical cavity. By generating high-temperature combustion gases and strong pressure waves simultaneously in a cylindrical cavity, the pressure oscillation can be inferred due to the chemiluminescence emissions of themore » combustion products. We can then visualized the mode shapes by reconstructing the images based on the amplitudes of the luminosity spectrum at the corresponding resonant frequencies. Up to 11 resonant mode shapes were clearly visualized, each matching very well with the analytical solutions.« less

  17. Re-Framing the World Wide Web

    ERIC Educational Resources Information Center

    Black, August

    2011-01-01

    The research presented in this dissertation studies and describes how technical standards, protocols, and application programming interfaces (APIs) shape the aesthetic, functional, and affective nature of our most dominant mode of online communication, the World Wide Web (WWW). I examine the politically charged and contentious battle over browser…

  18. Design and characterization of an integrated surface ion trap and micromirror optical cavity.

    PubMed

    Van Rynbach, Andre; Schwartz, George; Spivey, Robert F; Joseph, James; Vrijsen, Geert; Kim, Jungsang

    2017-08-10

    We have fabricated and characterized laser-ablated micromirrors on fused silica substrates for constructing stable Fabry-Perot optical cavities. We highlight several design features which allow these cavities to have lengths in the 250-300 μm range and be integrated directly with surface ion traps. We present a method to calculate the optical mode shape and losses of these micromirror cavities as functions of cavity length and mirror shape, and confirm that our simulation model is in good agreement with experimental measurements of the intracavity optical mode at a test wavelength of 780 nm. We have designed and tested a mechanical setup for dampening vibrations and stabilizing the cavity length, and explore applications for these cavities as efficient single-photon sources when combined with trapped Yb171 + ions.

  19. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams

    PubMed Central

    Guzzinati, Giulio; Béché, Armand; Lourenço-Martins, Hugo; Martin, Jérôme; Kociak, Mathieu; Verbeeck, Jo

    2017-01-01

    Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations' symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations' symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria. PMID:28401942

  20. Analysis of Drop Oscillations Excited by an Electrical Point Force in AC EWOD

    NASA Astrophysics Data System (ADS)

    Oh, Jung Min; Ko, Sung Hee; Kang, Kwan Hyoung

    2008-03-01

    Recently, a few researchers have reported the oscillation of a sessile drop in AC EWOD (electrowetting on dielectrics), and some of its consequences. The drop oscillation problem in AC EWOD is associated with various applications based on electrowetting such as LOC (lab-on-a-chip), liquid lens, and electronic display. However, no theoretical analysis of the problem has been attempted yet. In the present paper, we propose a theoretical model to analyze the oscillation by applying the conventional method to analyze the drop oscillation. The domain perturbation method is used to derive the shape mode equations under the assumptions of weak viscous flow and small deformation. The Maxwell stress is exerted on the three-phase contact line of the droplet like a point force. The force is regarded as a delta function, and is decomposed into the driving forces of each shape mode. The theoretical results on the shape and the frequency responses are compared with experiments, which shows a qualitative agreement.

  1. Accurate Estimate of Some Propagation Characteristics for the First Higher Order Mode in Graded Index Fiber with Simple Analytic Chebyshev Method

    NASA Astrophysics Data System (ADS)

    Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas

    2013-03-01

    Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.

  2. Disparate modes of evolution shaped modern prion (PRNP) and prion-related doppel (PRND) variation in domestic cattle

    USDA-ARS?s Scientific Manuscript database

    Previous investigations aimed at determining whether the mammalian prion protein actually facilitates tangible molecular aspects of either a discrete or pleiotropic functional niche have been debated, especially given the apparent absence of overt behavioral or physiological phenotypes associated wi...

  3. An experimental system for the study of active vibration control - Development and modeling

    NASA Astrophysics Data System (ADS)

    Batta, George R.; Chen, Anning

    A modular rotational vibration system designed to facilitate the study of active control of vibrating systems is discussed. The model error associated with four common types of identification problems has been studied. The general multiplicative uncertainty shape for a vibration system is small in low frequencies, large at high frequencies. The frequency-domain error function has sharp peaks near the frequency of each mode. The inability to identify a high-frequency mode causes an increase of uncertainties at all frequencies. Missing a low-frequency mode causes the uncertainties to be much larger at all frequencies than missing a high-frequency mode. Hysteresis causes a small increase of uncertainty at low frequencies, but its overall effect is relatively small.

  4. Cloaking of arbitrarily shaped objects with homogeneous coatings

    NASA Astrophysics Data System (ADS)

    Forestiere, Carlo; Dal Negro, Luca; Miano, Giovanni

    2014-05-01

    We present a theory for the cloaking of arbitrarily shaped objects and demonstrate electromagnetic scattering cancellation through designed homogeneous coatings. First, in the small-particle limit, we expand the dipole moment of a coated object in terms of its resonant modes. By zeroing the numerator of the resulting rational function, we accurately predict the permittivity values of the coating layer that abates the total scattered power. Then, we extend the applicability of the method beyond the small-particle limit, deriving the radiation corrections of the scattering-cancellation permittivity within a perturbation approach. Our method permits the design of invisibility cloaks for irregularly shaped devices such as complex sensors and detectors.

  5. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    DOE PAGES

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for η e, exp ~2.2 with higher growth ratesmore » for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less

  6. Bound states and propagating modes in quantum wires with sharp bends and/or constrictions

    NASA Astrophysics Data System (ADS)

    Razavy, M.

    1997-06-01

    A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.

  7. Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies

    PubMed Central

    Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.

    2014-01-01

    We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857

  8. Transverse discrete breathers in unstrained graphene

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi

    2017-02-01

    Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.

  9. Tensor Minkowski Functionals: first application to the CMB

    NASA Astrophysics Data System (ADS)

    Ganesan, Vidhya; Chingangbam, Pravabati

    2017-06-01

    Tensor Minkowski Functionals (TMFs) are tensor generalizations of the usual Minkowski Functionals which are scalar quantities. We introduce them here for use in cosmological analysis, in particular to analyze the Cosmic Microwave Background (CMB) radiation. They encapsulate information about the shapes of structures and the orientation of distributions of structures. We focus on one of the TMFs, namely W21,1, which is the (1,1) rank tensor generalization of the genus. The ratio of the eigenvalues of the average of W21,1 over all structures, α, encodes the net orientation of the structures; and the average of the ratios of the eigenvalues of W21,1 for each structure, β, encodes the net intrinsic anisotropy of the structures. We have developed a code that computes W21,1, and from it α and β, for a set of structures on the 2-dimensional Euclidean plane. We use it to compute α and β as functions of chosen threshold levels for simulated Gaussian and isotropic CMB temperature and E mode fields. We obtain the value of α to be one for both temperature and E mode, which means that we recover the statistical isotropy of density fluctuations that we input in the simulations. We find that the standard ΛCDM model predicts a charateristic shape of β for temperature and E mode as a function of the threshold, and the average over thresholds is β~ 0.62 for temperature and β~ 0.63 for E mode. Accurate measurements of α and β can be used to test the standard model of cosmology and to search for deviations from it. For this purpose we compute α and β for temperature and E mode data of various data sets from PLANCK mission. We compare the values measured from observed data with those obtained from simulations to which instrument beam and noise characteristics of the 44GHz frequency channel have been added (which are provided as part of the PLANCK data release). We find very good agreement of β and α between all PLANCK temperature data sets with ΛCDM expectations. E mode data show good agreement for β but α for all data sets deviate from ΛCDM predictions higher than 3-σ. It is most likely that the deviations are probing the anisotropy of the noise field and beam characteristics of the detector rather than the true E mode signal since for 44GHz the signal-to-noise ratio is well below one. This will be further investigated after the full PLANCK data becomes publicly available.

  10. Derivation and experimental validation of an analytical criterion for the identification of self-excited modes in drilling systems

    NASA Astrophysics Data System (ADS)

    Hohl, Andreas; Tergeist, Mathias; Oueslati, Hatem; Jain, Jayesh R.; Herbig, Christian; Ostermeyer, Georg-Peter; Reckmann, Hanno

    2015-04-01

    Drilling system applications are subject to torsional vibrations that are induced by self-excitation mechanisms. A common mechanism is a falling characteristic of contact or cutting forces with respect to the relative velocity between the bit and the formation. To mitigate the effects of this mechanism, it is important to identify modes that are the most likely to be excited. However, in complex structures the identification of critical mode shapes is no trivial task. This paper discusses a criterion derived to identify critical torsional modes in drilling systems that are prone to self-excitation. Basic assumptions are a falling (velocity-weakening) characteristic of the contact forces and only one contributing mode. Multiple contact forces along the structure can be considered with different contact characteristics. Contributing parameters are angular eigenfrequency, deflection of the mode shape at the contact points, modal damping of the examined mode, and the slope of the characteristic of the contact forces at the operating point. In a case study of a drilling system the derived criterion is tested. The case study focuses on torsional vibrations excited by cutting forces observed in field measurements with high amplitudes and accelerations. The corresponding modes are localized to the so-called bottomhole assembly (BHA) at the end of the drilling system. Numerical results from a finite element analysis are compared to downhole measurements to verify the critical modes that are identified with the criterion. In addition, mass and stiffness changes along the structure are intentionally induced to beneficially influence mode shapes. Results indicate that reducing the mode shape at the source of vibration (bit) decreases the excitability of this mode shape.

  11. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the boundary. This insight is used to develop diagrams that delineate regions of stability from instability based on the breakup mechanism, in parameter ranges of ultrasound frequency and amplitude relevant to medical applications.

  12. Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: A first-principles study

    NASA Astrophysics Data System (ADS)

    Hu, Mengli; Yang, Zhixiong; Zhou, Wenzhe; Li, Aolin; Pan, Jiangling; Ouyang, Fangping

    2018-04-01

    By using density functional theory (DFT) and nonequilibrium Green's function (NEGF), field effect transistor (FET) based on zigzag shaped phosphorene nanoribbons (ZPNR) are investigated. The FETs are constructed with bare-edged ZPNRs as electrodes and H, Cl or OH adsorbed ZPNRs as channel. It is found FETs with the three kinds of channel show similar transport properties. The FET is p-type with a maximum current on/off ratio of 104 and a minimum off-current of 1 nA. The working mode of FETs is dependent on the parity of channel length. It can be either enhancement mode or depletion mode and the off-state current shows an even-odd oscillation. The current oscillations are interpreted with density of states (DOS) analysis and methods of evolution operator and tight-binding Hamiltonian. Operating mechanism of the designed FETs is also presented with projected local density of states and band diagrams.

  13. The physics of the unconventional motility strategy of euglenids

    NASA Astrophysics Data System (ADS)

    Arroyo, Marino; Noselli, Giovanni; Desimone, Antonio

    Euglenids are a family of unicellular protists, which use flagella to move in a fluid. However, they are also capable of performing elegantly concerted large amplitude deformations of the cell shape, in what is known as metaboly. To perform metaboly, euglenids use an elaborate cortical complex capable of actively imposing spatially modulated shear deformations on the cell surface. This mode of cell deformation has been linked to motility, but biophysical studies have demonstrated that it leads to very small swimming velocities as compared to flagellar locomotion. Furthermore, why would these cells possess two elaborate apparatus for the same function remains unclear. In this work, we combine experimental observations of euglena gracilis cells with theoretical models to shed light into the function of metaboly. The theoretical models account for the force generation and shape evolution at the cell envelop, together with the mechanical interaction of the cell with its environment. We characterize the efficiency of the two modes of locomotion of this cells in terms of the physical nature of their environment. ERC AdG 340685 MicroMotility.

  14. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  15. Acoustic transmission and radiation analysis of adaptive shape-memory alloy reinforced laminated plates

    NASA Astrophysics Data System (ADS)

    Liang, C.; Rogers, C. A.; Fuller, C. R.

    1991-02-01

    A theoretical analysis of sound transmission/radiation of shape-memory alloy (SMA) hybrid composite panels is presented. Unlike other composite materials, SMA hybrid composite is dynamically tunable by electrical activation of the SMA fibers and has numerous active control capabilities. Two of the concepts that will be briefly described and utilized in this paper are referred to as active property tuning (APT) and active strain energy tuning (ASET). Tuning or activating the embedded shape-memory alloy fibers in conventional composite materials changes the overall stiffness of the SMA hybrid composite structure and consequently changes natural frequency and mode shapes. The sound transmission and radiation from a composite panel is related to its frequency and mode shapes. Because of the capability to change both the natural frequency and mode shapes, the acoustic characteristics of SMA hybrid composite plates can be changed as well. The directivity pattern, radiation efficiency, and transmission loss of laminated composite materials are investigated based on 'composite' mode shapes in order to derive a basic understanding of the nature and authority of acoustic control by use of SMA hybrid composites.

  16. Modal identities for elastic bodies, with application to vehicle dynamics and control

    NASA Technical Reports Server (NTRS)

    Hughes, P. C.

    1980-01-01

    It is a standard procedure to analyze a flexible vehicle in terms of its vibration frequencies and mode shapes. However, the entire mode shape is not needed per se, but two integrals of the mode shape, pi and hi, which correspond to the momentum and angular momentum in Mode i. Together with the natural frequencies omega-i, these modal parameters satisfy several important identities, 25 of which are derived in this paper. Expansions in terms of both constrained and unconstrained modes are considered. A simple illustrative example is included. The paper concludes with some remarks on the theoretical and practical utility of these results, and several potential extensions to the theory are suggested.

  17. Shaping effects on toroidal magnetohydrodynamic modes in the presence of plasma and wall resistivity

    NASA Astrophysics Data System (ADS)

    Rhodes, Dov J.; Cole, A. J.; Brennan, D. P.; Finn, J. M.; Li, M.; Fitzpatrick, R.; Mauel, M. E.; Navratil, G. A.

    2018-01-01

    This study explores the effects of plasma shaping on magnetohydrodynamic mode stability and rotational stabilization in a tokamak, including both plasma and wall resistivity. Depending upon the plasma shape, safety factor, and distance from the wall, the β-limit for rotational stabilization is given by either the resistive-plasma ideal-wall (tearing mode) limit or the ideal-plasma resistive-wall (resistive wall mode) limit. In order to explore this broad parameter space, a sharp-boundary model is developed with a realistic geometry, resonant tearing surfaces, and a resistive wall. The β-limit achievable in the presence of stabilization by rigid plasma rotation, or by an equivalent feedback control with imaginary normal-field gain, is shown to peak at specific values of elongation and triangularity. It is shown that the optimal shaping with rotation typically coincides with transitions between tearing-dominated and wall-dominated mode behavior.

  18. Programmable controlled mode-locked fiber laser using a digital micromirror device.

    PubMed

    Liu, Wu; Fan, Jintao; Xie, Chen; Song, Youjian; Gu, Chenlin; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-05-15

    A digital micromirror device (DMD)-based arbitrary spectrum amplitude shaper is incorporated into a large-mode-area photonic crystal fiber laser cavity. The shaper acts as an in-cavity programmable filter and provides large tunable dispersion from normal to anomalous. As a result, mode-locking is achieved in different dispersion regimes with watt-level high output power. By programming different filter profiles on the DMD, the laser generates femtosecond pulse with a tunable central wavelength and controllable bandwidth. Under conditions of suitable cavity dispersion and pump power, design-shaped spectra are directly obtained by varying the amplitude transfer function of the filter. The results show the versatility of the DMD-based in-cavity filter for flexible control of the pulse dynamics in a mode-locked fiber laser.

  19. Shape fluctuations of nearly spherical lipid vesicles and emulsion droplets.

    PubMed

    Bivas, Isak

    2010-06-01

    It is known that the relaxation of the shape fluctuations of nearly spherical lipid vesicles is accompanied by a lateral displacement of the monolayers, comprising their bilayers. In this work a dissipation mechanism of the mechanical energy stored in the fluctuation is revealed that concerns the viscous friction of the flow in the liquid around the vesicle caused by this displacement. The time correlation functions of each of the vesicle's fluctuation modes are calculated as a function of the mechanical and rheological properties of the system which are the tension of the vesicle bilayer, its bending elasticities at free and blocked flip-flop, the viscosities of the liquids bathing the bilayer, the friction coefficient between the two monolayers, as well as the vesicle's dimensions: its bilayer thickness and radius. The correlations of the shape fluctuations of nearly spherical emulsion droplets are also calculated for different viscosities of the liquid inside and outside the droplet.

  20. Tuning the resonance frequencies and mode shapes in a large range multi-degree of freedom micromirror.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Bishop, David J

    2017-04-03

    The ability to actively shift the primary resonance of a 2D scanning micromirror allows the user to set the scanning direction, set the scanning frequency, and lift otherwise degenerate modes in a symmetrically designed system. In most cases, resonant scanning micromirrors require frequency stability in order to perform imaging and projection functions properly. This paper suggests a method to tune the tip and tilt resonant frequencies in real time while actively suppressing or allowing degeneracy of the two modes in a symmetric electrothermal micromirror. We show resonant frequency tuning with a range of degeneracy separation of 470 Hz or by approximately ±15% and controllable coupling.

  1. Design and simulation of the surface shape control system for membrane mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  2. Comparison of FRF measurements and mode shapes determined using optically image based, laser, and accelerometer measurements

    NASA Astrophysics Data System (ADS)

    Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan

    2011-08-01

    Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).

  3. Functionalized AFM probes for force spectroscopy: eigenmode shapes and stiffness calibration through thermal noise measurements.

    PubMed

    Laurent, Justine; Steinberger, Audrey; Bellon, Ludovic

    2013-06-07

    The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response? And more importantly for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques?In this paper, the influence of the colloidal mass loading on the eigenmode shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without beads attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by mass loading. However the oscillation behavior of higher resonances presents a marked difference: with a particle glued at its extremity, the nodes of the modes are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness.

  4. Vibrational modes of thin oblate clouds of charge

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Spencer, Ross L.

    2002-07-01

    A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.

  5. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  6. Analysis of structural dynamic data from Skylab. Volume 2: Skylab analytical and test model data

    NASA Technical Reports Server (NTRS)

    Demchak, L.; Harcrow, H.

    1976-01-01

    The orbital configuration test modal data, analytical test correlation modal data, and analytical flight configuration modal data are presented. Tables showing the generalized mass contributions (GMCs) for each of the thirty tests modes are given along with the two dimensional mode shape plots and tables of GMCs for the test correlated analytical modes. The two dimensional mode shape plots for the analytical modes and uncoupled and coupled modes of the orbital flight configuration at three development phases of the model are included.

  7. On-line, adaptive state estimator for active noise control

    NASA Technical Reports Server (NTRS)

    Lim, Tae W.

    1994-01-01

    Dynamic characteristics of airframe structures are expected to vary as aircraft flight conditions change. Accurate knowledge of the changing dynamic characteristics is crucial to enhancing the performance of the active noise control system using feedback control. This research investigates the development of an adaptive, on-line state estimator using a neural network concept to conduct active noise control. In this research, an algorithm has been developed that can be used to estimate displacement and velocity responses at any locations on the structure from a limited number of acceleration measurements and input force information. The algorithm employs band-pass filters to extract from the measurement signal the frequency contents corresponding to a desired mode. The filtered signal is then used to train a neural network which consists of a linear neuron with three weights. The structure of the neural network is designed as simple as possible to increase the sampling frequency as much as possible. The weights obtained through neural network training are then used to construct the transfer function of a mode in z-domain and to identify modal properties of each mode. By using the identified transfer function and interpolating the mode shape obtained at sensor locations, the displacement and velocity responses are estimated with reasonable accuracy at any locations on the structure. The accuracy of the response estimates depends on the number of modes incorporated in the estimates and the number of sensors employed to conduct mode shape interpolation. Computer simulation demonstrates that the algorithm is capable of adapting to the varying dynamic characteristics of structural properties. Experimental implementation of the algorithm on a DSP (digital signal processing) board for a plate structure is underway. The algorithm is expected to reach the sampling frequency range of about 10 kHz to 20 kHz which needs to be maintained for a typical active noise control application.

  8. Observations of disk-shaped bodies in free flight at terminal velocity

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.; Tate, D. L.

    1973-01-01

    Ten disk-shaped models of a proposed nuclear heat source module were released from an aircraft and observed by radar. The initial launch attitude, spin rate, and mass of the models were varied. Significant differences were observed in the mode of flight and terminal velocity among models of different mass and launch attitudes. The data were analyzed to yield lift and drag coefficients as a function of Reynolds number. The total sea-level velocity of the models was found to be well correlated as a function of mass per unit frontal area. The demonstrated terminal velocity of the modular disk heat source, about 27 m/sec for this specific design, is only 33% of that of existing heat source designs.

  9. Statistical shape modelling of hip and lumbar spine morphology and their relationship in the MRC National Survey of Health and Development.

    PubMed

    Pavlova, Anastasia V; Saunders, Fiona R; Muthuri, Stella G; Gregory, Jennifer S; Barr, Rebecca J; Martin, Kathryn R; Hardy, Rebecca J; Cooper, Rachel; Adams, Judith E; Kuh, Diana; Aspden, Richard M

    2017-08-01

    The anatomical shape of bones and joints is important for their proper function but quantifying this, and detecting pathological variations, is difficult to do. Numerical descriptions would also enable correlations between joint shapes to be explored. Statistical shape modelling (SSM) is a method of image analysis employing pattern recognition statistics to describe and quantify such shapes from images; it uses principal components analysis to generate modes of variation describing each image in terms of a set of numerical scores after removing global size variation. We used SSM to quantify the shapes of the hip and the lumbar spine in dual-energy x-ray absorptiometry (DXA) images from 1511 individuals in the MRC National Survey of Health and Development at ages 60-64 years. We compared shapes of both joints in men and women and hypothesised that hip and spine shape would be strongly correlated. We also investigated associations with height, weight, body mass index (BMI) and local (hip or lumber spine) bone mineral density. In the hip, all except one of the first 10 modes differed between men and women. Men had a wider femoral neck, smaller neck-shaft angle, increased presence of osteophytes and a loss of the femoral head/neck curvature compared with women. Women presented with a flattening of the femoral head and greater acetabular coverage of the femoral head. Greater weight was associated with a shorter, wider femoral neck and larger greater and lesser trochanters. Taller height was accompanied by a flattening of the curve between superior head and neck and a larger lesser trochanter. Four of the first eight modes describing lumbar spine shape differed between men and women. Women tended to have a more lordotic spine than men with relatively smaller but caudally increasing anterior-posterior (a-p) vertebral diameters. Men were more likely to have a straighter spine with larger vertebral a-p diameters relative to vertebral height than women, increasing cranially. A weak correlation was found between body weight and a-p vertebral diameter. No correlations were found between shape modes and height in men, whereas in women there was a weak positive correlation between height and evenness of spinal curvature. Linear relationships between hip and spine shapes were weak and inconsistent in both sexes, thereby offering little support for our hypothesis. In conclusion, men and women entering their seventh decade have small but statistically significant differences in the shapes of their hips and their spines. Associations with height, weight, BMI and BMD are small and correspond to subtle variations whose anatomical significance is not yet clear. Correlations between hip and spine shapes are small. © 2017 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  10. Analysis of Docudrama Techniques and Negotiating One's Identity in David Edgar's "Pentecost"

    ERIC Educational Resources Information Center

    Al Sharadgeh, Samer Ziyad

    2018-01-01

    Edgar manages to invert the subordinate function of generally accepted objective indicators of membership of a particular national group--language, religion, common history, and territory--into the essential mode of imperative distinction shaping the unique national identity. In other words, it is the fresco and the value assigned to it that…

  11. A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing

    NASA Astrophysics Data System (ADS)

    Xia, Xiaoyuan; Zhang, Zhixiang; Li, Xinxin

    2008-03-01

    Second torsion-mode resonance is proposed for microcantilever biosensors for ultra-high mass-weighing sensitivity and resolution. By increasing both the resonant frequency and Q-factor, the higher mode torsional resonance is favorable for improving the mass-sensing performance. For the first time, a Latin-cross-shaped second-mode resonant cantilever is constructed and optimally designed for both signal-readout and resonance-exciting elements. The cantilever sensor is fabricated by using silicon micromachining techniques. The transverse piezoresistive sensing element and the specific-shaped resonance-exciting loop are successfully integrated in the cantilever. Alpha-fetoprotein (AFP) antibody-antigen specific binding is implemented for the sensing experiment. The proposed cantilever sensor is designed with significantly superior sensitivity to the previously reported first torsion-mode one. After analysis with an Allan variance algorithm, which can be easily embedded in the sensing system, the Latin-cross-shaped second torsion-mode resonant cantilever is evaluated with ultra-high mass resolution. Therefore, the high-performance integrated micro-sensor is promising for on-the-spot bio-molecule detection.

  12. Optimization of natural frequencies of a slender beam shaped in a linear combination of its mode shapes

    NASA Astrophysics Data System (ADS)

    Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo

    2017-06-01

    This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.

  13. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  14. Fourier band-power E/B-mode estimators for cosmic shear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Matthew R.; Rozo, Eduardo

    We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compactmore » and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.« less

  15. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  16. Photoacoustic imaging optimization with raw signal deconvolution and empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Chengwen; Wang, Jing; Qin, Yu; Zhan, Hongchen; Yuan, Jie; Cheng, Qian; Wang, Xueding

    2018-02-01

    Photoacoustic (PA) signal of an ideal optical absorb particle is a single N-shape wave. PA signals of a complicated biological tissue can be considered as the combination of individual N-shape waves. However, the N-shape wave basis not only complicates the subsequent work, but also results in aliasing between adjacent micro-structures, which deteriorates the quality of the final PA images. In this paper, we propose a method to improve PA image quality through signal processing method directly working on raw signals, which including deconvolution and empirical mode decomposition (EMD). During the deconvolution procedure, the raw PA signals are de-convolved with a system dependent point spread function (PSF) which is measured in advance. Then, EMD is adopted to adaptively re-shape the PA signals with two constraints, positive polarity and spectrum consistence. With our proposed method, the built PA images can yield more detail structural information. Micro-structures are clearly separated and revealed. To validate the effectiveness of this method, we present numerical simulations and phantom studies consist of a densely distributed point sources model and a blood vessel model. In the future, our study might hold the potential for clinical PA imaging as it can help to distinguish micro-structures from the optimized images and even measure the size of objects from deconvolved signals.

  17. Detection and estimation of defects in a circular plate using operational deflection shapes

    NASA Astrophysics Data System (ADS)

    Pai, Perngjin F.; Oh, Yunje; Kim, Byeong-Seok

    2002-06-01

    This paper investigates dynamic characteristics (mode shapes and natural frequencies) and defect detection of circular plates using a scanning laser vibrometer. Exact dynamic characteristics of a circular aluminum plate having a clamped inner rim and a free outer rim are obtained using two methods; one uses Bessel functions and the other uses a multiple shooting method. An in-house finite element code GESA is also used to analyze the circular plate using the DKT plate element. Numerical results show that some reports in the literature are incorrect and that high-frequency Operational Deflection Shapes (ODSs) are needed in order to locate small defects. Detection of two defects in the circular aluminum plate is experimentally studied using the distributions of RMS velocities under broadband periodic chirp excitations. RMS velocities of ODSs, symmetry breaking of ODSs, splitting of natural frequencies and ODSs, and a Boundary Effect Detection (BED) method. The BED method is non-destructive and model-independent; it processes experimental ODSs to reveal extra local boundary effects caused by defects to reveal locations of defects. Experimental results show that small defects in circular plates can be pinpointed by these approaches. Moreover, a new concept of using the balance of elastic and kinetic energies within a mode cell for detecting defects in two- dimensional structures of irregular shapes is proposed.

  18. Dynamic boundary layer based neural network quasi-sliding mode control for soft touching down on asteroid

    NASA Astrophysics Data System (ADS)

    Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun

    2017-04-01

    Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.

  19. High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.

    PubMed

    Li, Ming; Guan, Qingbao; Dingemans, Theo J

    2018-05-21

    We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.

  20. High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets

    PubMed Central

    2018-01-01

    We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899

  1. Buckling analysis of non-prismatic columns based on modified vibration modes

    NASA Astrophysics Data System (ADS)

    Rahai, A. R.; Kazemi, S.

    2008-10-01

    In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.

  2. Quadratic resonance in the three-dimensional oscillations of inviscid drops with surface tension

    NASA Technical Reports Server (NTRS)

    Natarajan, R.; Brown, R. A.

    1986-01-01

    The moderate-amplitude, three-dimensional oscillations of an inviscid drop are described in terms of spherical harmonics. Specific oscillation modes are resonantly coupled by quadratic nonlinearities caused by inertia, capillarity, and drop deformation. The equations describing the interactions of these modes are derived from the variational principle for the appropriate Lagrangian by expressing the modal amplitudes to be functions of a slow time scale and by preaveraging the Lagrangian over the time scale of the primary oscillations. Stochastic motions are predicted for nonaxisymmetric deformations starting from most initial conditions, even those arbitrarily close to the axisymmetric shapes. The stochasticity is characterized by a redistribution of the energy contained in the initial deformation over all the degrees of freedom of the interacting modes.

  3. Turbulent transport measurements with a laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.

    1972-01-01

    The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection.

  4. Intra-band gap in Lamb modes propagating in a periodic solid structure

    NASA Astrophysics Data System (ADS)

    Pierre, J.; Rénier, M.; Bonello, B.; Hladky-Hennion, A.-C.

    2012-05-01

    A laser ultrasonic technique is used to measure the dispersion of Lamb waves at a few MHz, propagating in phononic crystals made of dissymmetric air inclusions drilled throughout silicon plates. It is shown that the specific shape of the inclusions is at the origin of the intra-band gap that opens within the second Brillouin zone, at the crossing of both flexural and dilatational zero-order modes. The magnitude of the intra-band gap is measured as a function of the dissymmetry rate of the inclusions. Experimental data and the computed dispersion curves are in very good agreement.

  5. Developmental process emerges from extended brain-body-behavior networks

    PubMed Central

    Byrge, Lisa; Sporns, Olaf; Smith, Linda B.

    2014-01-01

    Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251

  6. A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint.

    PubMed

    Li, Xiaoniu; Yao, Zhiyuan; Yang, Mojian

    2017-06-01

    A novel large thrust-weight ratio V-shaped linear ultrasonic motor with a flexible joint is proposed in this paper. The motor is comprised of a V-shaped transducer, a slider, a clamp, and a base. The V-shaped transducer consists of two piezoelectric beams connected through a flexible joint to form an appropriate coupling angle. The V-shaped motor is operated in the coupled longitudinal-bending mode. Longitudinal and bending movements are transferred by the flexible joint between the two beams. Compared with the coupled longitudinal-bending mode of the single piezoelectric beam or the symmetrical and asymmetrical modes of the previous V-shaped transducer, the coupled longitudinal-bending mode of the V-shaped transducer with a flexible joint provides higher vibration efficiency and more convenient mode conformance adjustment. A finite element model of the V-shaped transducer is created to numerically study the influence of geometrical parameters and to determine the final geometrical parameters. In this paper, three prototypes were then fabricated and experimentally investigated. The modal test results match well with the finite element analysis. The motor mechanical output characteristics of three different coupling angles θ indicate that V-90 (θ = 90°) is the optimal angle. The mechanical output experiments conducted using the V-90 prototype (Size: 59.4 mm × 30.7 mm × 4 mm) demonstrate that the maximum unloaded speed is 1.2 m/s under a voltage of 350 Vpp, and the maximum output force is 15 N under a voltage of 300 Vpp. The proposed novel V-shaped linear ultrasonic motor has a compact size and a simple structure with a large thrust-weight ratio (0.75 N/g) and high speed.

  7. Application of attachment modes in the control of large space structures

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1989-01-01

    Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.

  8. Statistically generated weighted curve fit of residual functions for modal analysis of structures

    NASA Technical Reports Server (NTRS)

    Bookout, P. S.

    1995-01-01

    A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

  9. Free vibration of composite re-bars in reinforced structures

    NASA Astrophysics Data System (ADS)

    Kadioglu, Fethi

    2005-11-01

    The effect of composite rebar's shape in reinforced concrete beam-type structures on the natural frequencies and modes shapes is investigated through finite element analysis in this paper. Steel rebars are being replaced with composite rebars due to their better ability to resist corrosion in reinforced concrete structures for many infrastructure applications. A variety of composite rebar shapes can be obtained through the pultrusion process. It will be interesting to investigate their shape on free vibration characteristics. The results of natural frequencies and mode shapes are presented and compared for the different composite rebar shapes. The effects of various boundary conditions for different rebar shapes are also investigated.

  10. On-Demand Microwave Generator of Shaped Single Photons

    NASA Astrophysics Data System (ADS)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  11. Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers.

    PubMed

    Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha

    2007-08-20

    We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.

  12. Dynamic characteristics of a wind turbine blade using 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Carr, Jennifer; Lundstrom, Troy; Niezrecki, Christopher; Avitabile, Peter; Slattery, Micheal

    2012-04-01

    Digital image correlation (DIC) has been becoming increasingly popular as a means to perform structural health monitoring because of its full-field, non-contacting measurement ability. In this paper, 3D DIC techniques are used to identify the mode shapes of a wind turbine blade. The blade containing a handful of optical targets is excited at different frequencies using a shaker as well as a pluck test. The response is recorded using two PHOTRON™ high speed cameras. Time domain data is transferred to the frequency domain to extract mode shapes and natural frequencies using an Operational Modal Approach. A finite element model of the blade is also used to compare the mode shapes. Furthermore, a modal hammer impact test is performed using a more conventional approach with an accelerometer. A comparison of mode shapes from the photogrammetric, finite element, and impact test approaches are presented to show the accuracy of the DIC measurement approach.

  13. A Coupled Approach for Structural Damage Detection with Incomplete Measurements

    NASA Technical Reports Server (NTRS)

    James, George; Cao, Timothy; Kaouk, Mo; Zimmerman, David

    2013-01-01

    This historical work couples model order reduction, damage detection, dynamic residual/mode shape expansion, and damage extent estimation to overcome the incomplete measurements problem by using an appropriate undamaged structural model. A contribution of this work is the development of a process to estimate the full dynamic residuals using the columns of a spring connectivity matrix obtained by disassembling the structural stiffness matrix. Another contribution is the extension of an eigenvector filtering procedure to produce full-order mode shapes that more closely match the measured active partition of the mode shapes using a set of modified Ritz vectors. The full dynamic residuals and full mode shapes are used as inputs to the minimum rank perturbation theory to provide an estimate of damage location and extent. The issues associated with this process are also discussed as drivers of near-term development activities to understand and improve this approach.

  14. Multipoint propagators in cosmological gravitational instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardeau, Francis; Crocce, Martin; Scoccimarro, Roman

    2008-11-15

    We introduce the concept of multipoint propagators between linear cosmic fields and their nonlinear counterparts in the context of cosmological perturbation theory. Such functions express how a nonlinearly evolved Fourier mode depends on the full ensemble of modes in the initial density field. We identify and resum the dominant diagrams in the large-k limit, showing explicitly that multipoint propagators decay into the nonlinear regime at the same rate as the two-point propagator. These analytic results generalize the large-k limit behavior of the two-point propagator to arbitrary order. We measure the three-point propagator as a function of triangle shape in numericalmore » simulations and confirm the results of our high-k resummation. We show that any n-point spectrum can be reconstructed from multipoint propagators, which leads to a physical connection between nonlinear corrections to the power spectrum at small scales and higher-order correlations at large scales. As a first application of these results, we calculate the reduced bispectrum at one loop in renormalized perturbation theory and show that we can predict the decrease in its dependence on triangle shape at redshift zero, when standard perturbation theory is least successful.« less

  15. Reconstruction of the in-plane mode shape of a rotating tire with a continuous scanning measurement using the Hilbert-Huang transform.

    PubMed

    Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter

    2015-02-01

    Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.

  16. Customized shaping of vibration modes by acoustic metamaterial synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  17. Haptic adaptation to slant: No transfer between exploration modes

    PubMed Central

    van Dam, Loes C. J.; Plaisier, Myrthe A.; Glowania, Catharina; Ernst, Marc O.

    2016-01-01

    Human touch is an inherently active sense: to estimate an object’s shape humans often move their hand across its surface. This way the object is sampled both in a serial (sampling different parts of the object across time) and parallel fashion (sampling using different parts of the hand simultaneously). Both the serial (moving a single finger) and parallel (static contact with the entire hand) exploration modes provide reliable and similar global shape information, suggesting the possibility that this information is shared early in the sensory cortex. In contrast, we here show the opposite. Using an adaptation-and-transfer paradigm, a change in haptic perception was induced by slant-adaptation using either the serial or parallel exploration mode. A unified shape-based coding would predict that this would equally affect perception using other exploration modes. However, we found that adaptation-induced perceptual changes did not transfer between exploration modes. Instead, serial and parallel exploration components adapted simultaneously, but to different kinaesthetic aspects of exploration behaviour rather than object-shape per se. These results indicate that a potential combination of information from different exploration modes can only occur at down-stream cortical processing stages, at which adaptation is no longer effective. PMID:27698392

  18. Towards automated human gait disease classification using phase space representation of intrinsic mode functions

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Patra, Sayantani; Pratiher, Souvik

    2017-06-01

    A novel analytical methodology for segregating healthy and neurological disorders from gait patterns is proposed by employing a set of oscillating components called intrinsic mode functions (IMF's). These IMF's are generated by the Empirical Mode Decomposition of the gait time series and the Hilbert transformed analytic signal representation forms the complex plane trace of the elliptical shaped analytic IMFs. The area measure and the relative change in the centroid position of the polygon formed by the Convex Hull of these analytic IMF's are taken as the discriminative features. Classification accuracy of 79.31% with Ensemble learning based Adaboost classifier validates the adequacy of the proposed methodology for a computer aided diagnostic (CAD) system for gait pattern identification. Also, the efficacy of several potential biomarkers like Bandwidth of Amplitude Modulation and Frequency Modulation IMF's and it's Mean Frequency from the Fourier-Bessel expansion from each of these analytic IMF's has been discussed for its potency in diagnosis of gait pattern identification and classification.

  19. Bone shape difference between control and osteochondral defect groups of the ankle joint.

    PubMed

    Tümer, N; Blankevoort, L; van de Giessen, M; Terra, M P; de Jong, P A; Weinans, H; Tuijthof, G J M; Zadpoor, A A

    2016-12-01

    The etiology of osteochondral defects (OCDs), for which the ankle (talocrural) joint is one of the common sites, is not yet fully understood. In this study, we hypothesized that bone shape plays a role in development of OCDs. Therefore, we quantitatively compared the morphology of the talus and the distal tibia between an OCD group and a control group. The shape variations of the talus and distal tibia were described separately by constructing two statistical shape models (SSMs) based on the segmentation of the bones from ankle computed tomography (CT) scans obtained from control (i.e., 35 CT scans) and OCD (i.e., 37 CT scans) groups. The first five modes of shape variation for the SSM corresponding to each bone were statistically compared between control and OCD groups using an analysis of variance (ANOVA) corrected with the Bonferroni for multiple comparisons. The first five modes of variation in the SSMs respectively represented 49% and 40% of the total variance of talus and tibia. Less than 5% of the variance per mode was described by the higher modes. Mode 5 of the talus (P = 0.004) primarily describing changes in the vertical neck angle and Mode 1 of the tibia (P < 0.0001) representing variations at the medial malleolus, showed statistically significant difference between the control and OCD groups. Shape differences exist between control and OCD groups. This indicates that a geometry modulated biomechanical behavior of the talocrural joint may be a risk factor for OCD. Copyright © 2016. Published by Elsevier Ltd.

  20. A Modal Analysis of Submerged Composite Plates Using Digital Speckle Pattern Interferometry

    DTIC Science & Technology

    1991-05-01

    the drive point. The underwater mode shapes were slightly deformed compared to the in- air modes which is probably due to modal coupling by the dense...modes according to Leissa. The mode shapes in water are very similar to those in air with a small amount of distortion due to modal coupling by the fluid...and cantilever boundarv conditions is described in this thesis. The vibrations of the plates are studies in air and when Submerged in a water tank to

  1. Access to a new plasma edge state with high density and pressures using the quiescent H mode

    DOE PAGES

    Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...

    2014-09-24

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  2. Entanglement near the optical instability point in damped four wave mixing systems

    NASA Astrophysics Data System (ADS)

    Chiangga, S.; Temnuch, W.; Frank, T. D.

    2018-06-01

    Entanglement of electromagnetic field modes of signal and idler photons generated by four-wave mixing (FWM) devices is a quantum phenomenon that has been examined in various experimental and theoretical studies. The focus of this theoretical study is on two aspects of this phenomenon: the emergence of signal and idler photons due to an optical instability and the entanglement of the signal and idler modes above the instability threshold. For simple FWM devices that are subjected to damping it is shown that the signal and idler modes are entangled close to the point of optical instability at which the signal and idler photons emerges. The degree of entanglement as measured by a particular entanglement function proposed earlier in the literature assumes at the point of optical instability a unique value that is independent of the model parameters of the devices. The value is slightly higher than the value reported in a FWM experiment by Boyer et al (2008 Science 321 544). Numerical simulations suggest that the aforementioned entanglement function is U-shaped such that the degree of entanglement at the instability point is the maximal possible one and represents the optimal value. A similar U-shaped pattern was observed in an FWM experiment conducted by Lawrie et al (2016 Appl. Phys. Lett. 108 151107). Our semi-analytical findings are derived within the framework of the positive P representation of quantum optical processes and are compared with the aforementioned experimental observations by Boyer et al and Lawrie et al.

  3. Scoring mode and age-related effects on youth soccer teams' defensive performance during small-sided games.

    PubMed

    Almeida, Carlos Humberto; Duarte, Ricardo; Volossovitch, Anna; Ferreira, António Paulo

    2016-07-01

    This study aimed to examine the scoring mode (line goal, double goal or central goal) and age-related effects on the defensive performance of youth soccer players during 4v4 small-sided games (SSGs). Altogether, 16 male players from 2 age groups (U13, n = 8, mean age: 12.61 ± 0.65 years; U15, n = 8, 14.86 ± 0.47 years) were selected as participants. In six independent sessions, participants performed the three SSGs each during 10-min periods. Teams' defensive performance was analysed at every instant ball possession was regained through the variables: ball-recovery type, ball-recovery sector, configuration of play and defence state. Multinomial logistic regression analysis used in this study revealed the following significant main effects of scoring mode and age: (1) line goal (vs. central goal) increased the odds of regaining possession through tackle and in the defensive midfield sector, and decreased the odds of successful interceptions; (2) double goal (vs. central goal) decreased the odds of regaining possession through turnover won and with elongated playing shapes; (3) the probability of regaining possession through interception significantly decreased with age. Moreover, as youth players move forward in age groups, teams tend to structurally evolve from elongated playing shapes to flattened shapes and, at a behavioural level, from defending in depth to more risky flattened configurations. Overall, by manipulating the scoring mode in SSGs, coaches can promote functional and coadaptive behaviours between teams not only in terms of configurations of play, but also on the pitch locations that teams explore to regain possession.

  4. Design and aerodynamic characteristics of a span morphing wing

    NASA Astrophysics Data System (ADS)

    Yu, Yuemin; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.

  5. Predicting OA progression to total hip replacement: can we do better than risk factors alone using active shape modelling as an imaging biomarker?

    PubMed

    Barr, Rebecca J; Gregory, Jennifer S; Reid, David M; Aspden, Richard M; Yoshida, Kanako; Hosie, Gillian; Silman, Alan J; Alesci, Salvatore; Macfarlane, Gary J

    2012-03-01

    Previously, active shape modelling (ASM) of the proximal femur was shown to identify those individuals at highest risk of developing radiographic OA. Here we determine whether ASM predicts the need for total hip replacement (THR) independent of Kellgren-Lawrence grade (KLG) and other known risk factors. A retrospective cohort study of 141 subjects consulting primary care with new hip pain was conducted. Pelvic radiographs taken on recruitment were assessed for KLG, centre-edge angle, acetabular depth and femoral head migration. Clinical factors (duration of pain, use of a stick and physical function) were collected by self-completed questionnaires. ASM differences between shape mode scores at baseline for individuals who underwent THR during the 5-year follow-up (n = 27) and those whose OA did not progress radiographically (n = 75) were compared. A 1 s.d. reduction in baseline ASM mode 2 score was associated with an 81% reduction in odds of THR (OR = 0.19, 95% CI 0.52, 0.70) after adjustment for KLG, radiographic and clinical factors. A similar reduction in odds of THR was associated with a 1 s.d. reduction in mode 3 (OR = 0.45, 95% CI 0.28, 0.71) and a 1 s.d. increase in mode 4 score (OR = 2.8, 95% CI 1.7, 4.7), although these associations were no longer significant after adjustment for KLG and clinical factors. ASM of the hip joint is a reliable early biomarker of radiographic OA severity, which can improve the ability to identify patients at higher risk of rapid progression and poor outcome even when KLG and clinical risk factors are taken into account.

  6. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  7. Contact resonances of U-shaped atomic force microscope probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFMmore » research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.« less

  8. Experimental Demonstration on Air Cavity Mode of Violin Using Holed Sheets of Paper

    ERIC Educational Resources Information Center

    Matsutani, Akihiro

    2018-01-01

    The fundamental air cavity mode (A0) of a violin was investigated from the viewpoint of its dependence on the opening area and shape by using holed sheets of paper. The dependences of the frequency response of the A0 cavity mode on the shape, opening area, and orientation of the openings were observed. It was also demonstrated that the change of…

  9. The political economy of rentier states: A case study of Saudi Arabia in the oil era, 1950-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimly, R.K.

    Utilizing the political economy approach, this study offers a systematic analysis of state-society relations in Saudi Arabia during both the pre-oil era and the oil era. The study emphasizes the interpenetration between the state and civil society, and the structural implications of various modes of production. In the pre-oil era, state formation is largely explained as the results of the contradictions between two coexisting modes of production: the pastoral-nomadic mode and the tributary-mercantile mode. The state was a mercantile sedentary response to the dominance of pastoral nomadism and its interference with trade especially in the central region of Najd. Themore » pre-oil state had two major characteristics: it heavily favored sedentary interest to the benefit of the merchant class and the expense of nomads; and, it was a minimalist state with limited socioeconomic functions and highly underdeveloped apparatuses. The oil phenomenon transformed the socioeconomic structure of the country by making distinct rentier mode of production dominant. Oil rent depends on the transfer of external surplus, its size is large, and it accrues directly to the state. Therefore, the rentier state occupies a remarkable position: it directly owns the major source of surplus, shapes the social structure by recycling oil rent, and operates independent of domestic extraction. Despite the expansion in the functions and size of the state apparatuses during the oil era, the rentier state is not autonomous from societal penetration. Rather, the very interventionist capabilities of the state that make it more relevant are utilized by private dominant interests that are able to penetrate and capture various and strategic parts of the state. These dominant interests, on the other hand, are shaped by the state, and their evolution into a coherent and fully developed class is dependent on their ability to penetrate it.« less

  10. Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition

    NASA Astrophysics Data System (ADS)

    Leymann, H. A. M.; Hopfmann, C.; Albert, F.; Foerster, A.; Khanbekyan, M.; Schneider, C.; Höfling, S.; Forchel, A.; Kamp, M.; Wiersig, J.; Reitzenstein, S.

    2013-05-01

    We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic S-shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon autocorrelation function g(2)(τ) of the light emission confirms the onset of lasing in the first mode with g(2)(0) approaching unity above threshold. In contrast, strong photon bunching associated with superthermal values of g(2)(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon cross-correlation measurements revealing a clear anticorrelation between emission events of the two modes. The experimental studies are in qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by a phenomenological birth-death model extended to two interacting modes, which reveals that the photon probability distribution of each mode has a double-peak structure, indicating switching behavior of the modes for pump rates around threshold.

  11. High-Q, in-plane modes of nanomechanical resonators operated in air

    NASA Astrophysics Data System (ADS)

    Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.

    2009-05-01

    Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.

  12. Centrality of Social Interaction in Human Brain Function.

    PubMed

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Electron heating and the Electrical Asymmetry Effect in capacitively coupled RF discharges

    NASA Astrophysics Data System (ADS)

    Schulze, Julian

    2011-10-01

    For applications of capacitive radio frequency discharges, the control of particle distribution functions at the substrate surface is essential. Their spatio-temporal shape is the result of complex heating mechanisms of the respective species. Enhanced process control, therefore, requires a detailed understanding of the heating dynamics. There are two known modes of discharge operation: α- and γ-mode. In α-mode, most ionization is caused by electron beams generated by the expanding sheaths and field reversals during sheath collapse, while in γ-mode secondary electrons dominate the ionisation. In strongly electronegative discharges, a third heating mode is observed. Due to the low electron density in the discharge center the bulk conductivity is reduced and a high electric field is generated to drive the RF current through the discharge center. In this field, electrons are accelerated and cause significant ionisation in the bulk. This bulk heating mode is observed experimentally and by PIC simulations in CF4 discharges. The electron dynamics and mode transitions as a function of driving voltage and pressure are discussed. Based on a detailed understanding of the heating dynamics, the concept of separate control of the ion mean energy and flux in classical dual-frequency discharges is demonstrated to fail under process relevant conditions. To overcome these limitations of process control, the Electrical Asymmetry Effect (EAE) is proposed in discharges driven at multiple consecutive harmonics with adjustable phase shifts between the driving frequencies. Its concept and a recipe to optimize the driving voltage waveform are introduced. The functionality of the EAE in different gases and first applications to large area solar cell manufacturing are discussed. Finally, limitations caused by the bulk heating in strongly electronegative discharges are outlined.

  14. Modal analysis of a nonuniform string with end mass and variable tension

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Galaboff, Z. J.

    1983-01-01

    Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.

  15. Material-independent modes for electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Forestiere, Carlo; Miano, Giovanni

    2016-11-01

    In this Rapid Communication, we introduce a representation of the electromagnetic field for the analysis and synthesis of the full-wave scattering by a homogeneous dielectric object of arbitrary shape in terms of a set of eigenmodes independent of its permittivity. The expansion coefficients are rational functions of the permittivity. This approach naturally highlights the role of plasmonic and photonic modes in any scattering process and suggests a straightforward methodology to design the permittivity of the object to pursue a prescribed tailoring of the scattered field. We discuss in depth the application of the proposed approach to the analysis and design of the scattering properties of a dielectric sphere.

  16. Angle-resolved and polarization-dependent investigation of cross-shaped frequency-selective surface terahertz filters

    NASA Astrophysics Data System (ADS)

    Ferraro, A.; Zografopoulos, D. C.; Caputo, R.; Beccherelli, R.

    2017-04-01

    The spectral response of a terahertz (THz) filter is investigated in detail for different angles of incidence and polarization of the incoming THz wave. The filter is fabricated by patterning an aluminum frequency-selective surface of cross-shaped apertures on a thin foil of the low-loss cyclo-olefin polymer Zeonor. Two different types of resonances are observed, namely, a broadline resonance stemming from the transmittance of the slot apertures and a series of narrowline guided-mode resonances, with the latter being investigated by employing the grating theory. Numerical simulations of the filter transmittance based on the finite-element method agree with experimental measurements by means of THz time domain spectroscopy (THz-TDS). The results reveal extensive possibilities for tuning the guided-mode resonances by mechanically adjusting the incidence or polarization angle, while the fundamental broadline resonance is not significantly affected. Such filters are envisaged as functional elements in emerging THz systems for filtering or sensing applications.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  18. Atomic force microscopy study of erythrocyte shape and membrane structure after treatment with a dihydropyridinic drug

    NASA Astrophysics Data System (ADS)

    Girasole, M.; Cricenti, A.; Generosi, R.; Congiu-Castellano, A.; Boffi, F.; Arcovito, A.; Boumis, G.; Amiconi, G.

    2000-06-01

    The overall shape and membrane surface of human erythrocytes (RBCs) in the presence of nifedipine (a dihydropyridinic drug used in the clinical treatment of hypertension and angina pectoris) were imaged by contact-mode atomic force microscopy. Nifedipine induces in RBCs relevant morphological changes the extent of which increases as a function of drug concentration and incubation time. The modifications have been interpreted as mainly due to insertion of nifedipine into the outer layer of the RBC membrane. The potential effect of nifedipine as a hemoglobin denaturant has been ruled out by x-ray absorption near-edge structure and optical spectroscopies.

  19. Particle-in-cell Simulations of Waves in a Plasma Described by Kappa Velocity Distribution as Observed in the Saturńs Magnetosphere

    NASA Astrophysics Data System (ADS)

    Alves, M. V.; Barbosa, M. V. G.; Simoes, F. J. L., Jr.

    2016-12-01

    Observations have shown that several regions in space plasmas exhibit non-Maxwellian distributions with high energy superthermal tails. Kappa velocity distribution functions can describe many of these regions and have been used since the 60's. They suit well to represent superthermal tails in solar wind as well as to obtain plasma parameters of plasma within planetary magnetospheres. A set of initial velocities following kappa distribution functions is used in KEMPO1 particle simulation code to analyze the normal modes of wave propagation. Initial conditions are determined using observed characteristics for Saturńs magnetosphere. Two electron species with different temperatures and densities and ions as a third species are used. Each electron population is described by a different kappa index. Particular attention is given to perpendicular propagation, Bernstein modes, and parallel propagation, Langmuir and electron-acoustic modes. The dispersion relation for the Bernstein modes is strongly influenced by the shape of the velocity distribution and consequently by the value of kappa index. Simulation results are compared with numerical solutions of the dispersion relation obtained in the literature and they are in good agreement.

  20. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

    PubMed

    Kessels, Michael M; Qualmann, Britta

    2015-09-01

    A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.

  1. A symmetry measure for damage detection with mode shapes

    NASA Astrophysics Data System (ADS)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  2. Variations in Hip Shape Are Associated with Radiographic Knee Osteoarthritis: Cross-sectional and Longitudinal Analyses of the Johnston County Osteoarthritis Project.

    PubMed

    Nelson, Amanda E; Golightly, Yvonne M; Renner, Jordan B; Schwartz, Todd A; Liu, Felix; Lynch, John A; Gregory, Jenny S; Aspden, Richard M; Lane, Nancy E; Jordan, Joanne M

    2016-02-01

    Hip shape by statistical shape modeling (SSM) is associated with hip radiographic osteoarthritis (rOA). We examined associations between hip shape and knee rOA given the biomechanical interrelationships between these joints. Bilateral baseline hip shape assessments [for those with at least 1 hip with a Kellgren-Lawrence arthritis grading scale (KL) 0 or 1] from the Johnston County Osteoarthritis Project were available. Proximal femur shape was defined on baseline pelvis radiographs and evaluated by SSM, producing mean shape and continuous variables representing independent modes of variation (14 modes = 95% of shape variance). Outcomes included prevalent [baseline KL ≥ 2 or total knee replacement (TKR)], incident (baseline KL 0/1 with followup ≥ 2), and progressive knee rOA (KL increase of ≥ 1 or TKR). Limb-based logistic regression models for ipsilateral and contralateral comparisons were adjusted for age, sex, race, body mass index (BMI), and hip rOA, accounting for intraperson correlations. We evaluated 681 hips and 682 knees from 342 individuals (61% women, 83% white, mean age 62 yrs, BMI 29 kg/m(2)). Ninety-nine knees (15%) had prevalent rOA (4 knees with TKR). Lower modes 2 and 3 scores were associated with ipsilateral prevalent knee rOA, and only lower mode 3 scores were associated with contralateral prevalent knee rOA. No statistically significant associations were seen for incident or progressive knee rOA. Variations in hip shape were associated with prevalent, but not incident or progressive, knee rOA in this cohort, and may reflect biomechanical differences between limbs, genetic influences, or common factors related to both hip shape and knee rOA.

  3. Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.

    2014-03-01

    We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.

  4. Functional Morphometric Analysis of the Furcula in Mesozoic Birds

    PubMed Central

    Close, Roger A.; Rayfield, Emily J.

    2012-01-01

    The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations. PMID:22666324

  5. Investigation of Association Between Hip Osteoarthritis Susceptibility Loci and Radiographic Proximal Femur Shape

    PubMed Central

    Thiagarajah, Shankar; Wilkinson, J. Mark; Panoutsopoulou, Kalliope; Day‐Williams, Aaron G.; Cootes, Timothy F.; Wallis, Gillian A.; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Chapman, Kay; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Timothy D.; Valdes, Ana M.; Wallis, Gillian A.; Mark Wilkinson, J.; Zeggini, Eleftheria

    2015-01-01

    Objective To test whether previously reported hip morphology or osteoarthritis (OA) susceptibility loci are associated with proximal femur shape as represented by statistical shape model (SSM) modes and as univariate or multivariate quantitative traits. Methods We used pelvic radiographs and genotype data from 929 subjects with unilateral hip OA who had been recruited previously for the Arthritis Research UK Osteoarthritis Genetics Consortium genome‐wide association study. We built 3 SSMs capturing the shape variation of the OA‐unaffected proximal femur in the entire mixed‐sex cohort and for male/female‐stratified cohorts. We selected 41 candidate single‐nucleotide polymorphisms (SNPs) previously reported as being associated with hip morphology (for replication analysis) or OA (for discovery analysis) and for which genotype data were available. We performed 2 types of analysis for genotype–phenotype associations between these SNPs and the modes of the SSMs: 1) a univariate analysis using individual SSM modes and 2) a multivariate analysis using combinations of SSM modes. Results The univariate analysis identified association between rs4836732 (within the ASTN2 gene) and mode 5 of the female SSM (P = 0.0016) and between rs6976 (within the GLT8D1 gene) and mode 7 of the mixed‐sex SSM (P = 0.0003). The multivariate analysis identified association between rs5009270 (near the IFRD1 gene) and a combination of modes 3, 4, and 9 of the mixed‐sex SSM (P = 0.0004). Evidence of associations remained significant following adjustment for multiple testing. All 3 SNPs had previously been associated with hip OA. Conclusion These de novo findings suggest that rs4836732, rs6976, and rs5009270 may contribute to hip OA susceptibility by altering proximal femur shape. PMID:25939412

  6. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.

    PubMed

    Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav

    2012-12-01

    Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.

  7. Ultra-wideband surface plasmonic Y-splitter.

    PubMed

    Gao, Xi; Zhou, Liang; Yu, Xing Yang; Cao, Wei Ping; Li, Hai Ou; Ma, Hui Feng; Cui, Tie Jun

    2015-09-07

    We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.

  8. Genetic interactions between a phospholipase A2 and the Rim101 pathway components in S. cerevisiae reveal a role for this pathway in response to changes in membrane composition and shape

    PubMed Central

    Mattiazzi, M.; Jambhekar, A.; Kaferle, P.; DeRisi, J. L.; Križaj, I.

    2010-01-01

    Modulating composition and shape of biological membranes is an emerging mode of regulation of cellular processes. We investigated the global effects that such perturbations have on a model eukaryotic cell. Phospholipases A2 (PLA2s), enzymes that cleave one fatty acid molecule from membrane phospholipids, exert their biological activities through affecting both membrane composition and shape. We have conducted a genome-wide analysis of cellular effects of a PLA2 in the yeast Saccharomyces cerevisiae as a model system. We demonstrate functional genetic and biochemical interactions between PLA2 activity and the Rim101 signaling pathway in S. cerevisiae. Our results suggest that the composition and/or the shape of the endosomal membrane affect the Rim101 pathway. We describe a genetically and functionally related network, consisting of components of the Rim101 pathway and the prefoldin, retromer and SWR1 complexes, and predict its functional relation to PLA2 activity in a model eukaryotic cell. This study provides a list of the players involved in the global response to changes in membrane composition and shape in a model eukaryotic cell, and further studies are needed to understand the precise molecular mechanisms connecting them. Electronic supplementary material The online version of this article (doi:10.1007/s00438-010-0533-8) contains supplementary material, which is available to authorized users. PMID:20379744

  9. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.

  10. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.

    PubMed

    Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A

    2012-05-01

    This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.

  11. Dynamic testing and analysis of extension-twist-coupled composite tubular spars

    NASA Astrophysics Data System (ADS)

    Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.

  12. Dynamic testing and analysis of extension-twist-coupled composite tubular spars

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.

    1992-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.

  13. To 3D or Not to 3D, That Is the Question: Do 3D Surface Analyses Improve the Ecomorphological Power of the Distal Femur in Placental Mammals?

    PubMed Central

    Gould, Francois D. H.

    2014-01-01

    Improvements in three-dimensional imaging technologies have renewed interest in the study of functional and ecological morphology. Quantitative approaches to shape analysis are used increasingly to study form-function relationships. These methods are computationally intensive, technically demanding, and time-consuming, which may limit sampling potential. There have been few side-by-side comparisons of the effectiveness of such approaches relative to more traditional analyses using linear measurements and ratios. Morphological variation in the distal femur of mammals has been shown to reflect differences in locomotor modes across clades. Thus I tested whether a geometric morphometric analysis of surface shape was superior to a multivariate analysis of ratios for describing ecomorphological patterns in distal femoral variation. A sample of 164 mammalian specimens from 44 genera was assembled. Each genus was assigned to one of six locomotor categories. The same hypotheses were tested using two methods. Six linear measurements of the distal femur were taken with calipers, from which four ratios were calculated. A 3D model was generated with a laser scanner, and analyzed using three dimensional geometric morphometrics. Locomotor category significantly predicted variation in distal femoral morphology in both analyses. Effect size was larger in the geometric morphometric analysis than in the analysis of ratios. Ordination reveals a similar pattern with arboreal and cursorial taxa as extremes on a continuum of morphologies in both analyses. Discriminant functions calculated from the geometric morphometric analysis were more accurate than those calculated from ratios. Both analysis of ratios and geometric morphometric surface analysis reveal similar, biologically meaningful relationships between distal femoral shape and locomotor mode. The functional signal from the morphology is slightly higher in the geometric morphometric analysis. The practical costs of conducting these sorts of analyses should be weighed against potentially slight increases in power when designing protocols for ecomorphological studies. PMID:24633081

  14. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  15. Measurements of ultrafine particles from a gas-turbine burning biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; Minutolo, P.

    2010-04-15

    Measurements of ultrafine particles have been performed at the exhaust of a low emission microturbine for power generation. This device has been fuelled with liquid fuels, including a commercial diesel oil, a mixture of the diesel oil with a biodiesel and kerosene, and tested under different loads. Primarily attention has been focused on the measurements of the size distribution functions of the particles emitted from the system by using particle differential mobility analysis. A bimodal size distribution function of the particle emitted has been found in all the examined conditions. Burning diesel oil, the first mode of the size distributionmore » function of the combustion-formed particles is centered at around 2-3 nm, whereas the second mode is centered at about 20-30 nm. The increase of the turbine load and the addition of 50% of biodiesel has not caused changes in the shape of size distribution of the particles. A slightly decrease of the amount of particle formed has been found. By using kerosene the amount of emitted particles increases of more than one order of magnitude. Also the shape of the size distribution function changes with the first mode shifted towards larger particles of the order of 8-10 nm but with a lower emission of larger 20-30 nm particles. Overall, in this conditions, the mass concentration of particles is increased respect to the diesel oil operation. Particle sizes measured with the diesel oil have been compared with the results on a diesel engine operated in the same power conditions and with the same fuel. Measurements have showed that the mean sizes of the formed particles do not change in the two combustion systems. However, diesel engine emits a number concentration of particles more than two orders of magnitude higher in the same conditions of power and with the same fuel. By running the engine in more premixed-like conditions, the size distribution function of the particles approaches that measured by burning kerosene in the microturbine indicating that the distribution function of the sizes of the emitted particles can be strongly affected by combustion conditions. (author)« less

  16. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties

    NASA Technical Reports Server (NTRS)

    Nadim, Ali

    1996-01-01

    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  17. Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, X. L.; Ma, Y.; Zhang, J. S.; Xu, J.; Wu, X. F.; Zhang, Y.; Han, X. B.; Fu, Q.; Liao, Z. M.; Chen, L.; Yu, D. P.

    2010-09-01

    The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control.

  18. Excitation of trapped modes from a metasurface composed of only Z-shaped meta-atoms

    NASA Astrophysics Data System (ADS)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; Lupu, Anatole; de Lustrac, André; Priou, Alain

    2013-10-01

    A printed planar Z-shaped meta-atom has recently been proposed as an alternative design to the conventional electric-LC resonator for achieving negative permittivity. Transforming the LC topology of the resonator helps to facilitate transposition of geometrical parameters for the optical regime and also to improve the metamaterial homogeneity. In this work, we discuss about the excitation of a dark or trapped mode in such Z-shaped meta-atom. The electromagnetic behavior of the meta-atom has been investigated through both simulations and experiments in the microwave regime. Our results show that the Z meta-atom exhibits a trapped mode resonance. Depending on the orientation of the polarized electromagnetic field with respect to the Z atom topology and the incident plane, the excitation of the dark mode can lead either to a narrowband resonance in reflection or to a very asymmetric Fano-like resonance in transmission, analog of electromagnetically induced transparency. Compared to other structures, the Z meta-atom presents the advantage of having the dark mode resonance spectrally spaced with respect to the bright mode resonances, which could simplify the observation of the dark mode at much shorter wavelengths.

  19. Multimodality and Learning: Exploring Concept Development and Student Engagement in a Physics Classroom

    NASA Astrophysics Data System (ADS)

    Bonner, David

    This teacher research study examined multimodality in relation to teaching and learning of waves in a high school physics class from a sociocultural perspective. Qualitative analysis of classroom multimodal discourse, using ethnographic and grounded theory techniques, was used to explore and document the co-construction of concepts and the grammatical aspects of the modalities in which these concepts were developed. The findings centered on the evolution of form and function of two prevalent modes that emerged--gesturing and diagramming, --and on the evolution of two major thematic patterns across various modes--understanding and measuring wave characteristics, as well as learning about relationships between various wave characteristics from experimental data. The study revealed that students developed conceptual understandings using different modalities that shaped their meaning making and articulation of ideas. Students' conceptions of the grammar (form and function) of a particular mode co-developed with both the concepts and the grammars of other modes. Each mode's meaning was not developed in isolation from each other; instead, the intertwining, transduction, combination, and hybridization of modes offered powerful opportunities for meaning making. As students transduced among modalities, each mode afforded unique meaning-making opportunities that contributed to the class's collective meaning and development of ideas. However, the sequence of students' transduction represented a learned practice developed discursively throughout the unit. Students' engagement in one mode influenced the ways in which students called upon and utilized other modes, and in some cases, modes were combined while retaining their individual grammars (combination), or blended together into new modes with their own grammar (hybridization). The findings of this study suggest several implications for practice. Availability of, and access to, multimodality, modeling the grammars of various modalities, and a teacher's careful planning and consideration of the sequence of transduction among modes are especially important to physics teaching and learning. Students' multimodal engagement with science ideas and the role that grammars of modes play in constructing meaning represent potentially fruitful areas for future science education research.

  20. Development of an omni-directional shear horizontal mode magnetostrictive patch transducer

    NASA Astrophysics Data System (ADS)

    Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin

    2018-04-01

    The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.

  1. Lasing in optimized two-dimensional iron-nail-shaped rod photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Soon-Yong; Moon, Seul-Ki; Yang, Jin-Kyu, E-mail: jinkyuyang@kongju.ac.kr

    2016-03-15

    We demonstrated lasing at the Γ-point band-edge (BE) modes in optimized two-dimensional iron-nail-shaped rod photonic crystals by optical pulse pumping at room temperature. As the radius of the rod increased quadratically toward the edge of the pattern, the quality factor of the Γ-point BE mode increased up to three times, and the modal volume decreased to 56% compared with the values of the original Γ-point BE mode because of the reduction of the optical loss in the horizontal direction. Single-mode lasing from an optimized iron-nail-shaped rod array with an InGaAsP multiple quantum well embedded in the nail heads was observedmore » at a low threshold pump power of 160 μW. Real-image-based numerical simulations showed that the lasing actions originated from the optimized Γ-point BE mode and agreed well with the measurement results, including the lasing polarization, wavelength, and near-field image.« less

  2. Particle compositions with a pre-selected cell internalization mode

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro (Inventor); Decuzzi, Paolo (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  3. First-order irreversible thermodynamic approach to a simple energy converter

    NASA Astrophysics Data System (ADS)

    Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.

    2008-01-01

    Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.

  4. Surfactant and nonlinear drop dynamics in microgravity

    NASA Astrophysics Data System (ADS)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu & Apfel (1991) and Tian et al. (1997). Values for Triton for concentrations of 0.017 to 2 CMC range from 0.01 to 0.05 surface poise (sp) for ks . For BSA, the fitting of the experimental data was highly sensitive to ms over a wide range of ks . Setting ks = 1 sp for 1 CMC drops ms , was found to increase from 0.07 to 0.28 sp linearly with the square root of time, indicating that surface shear viscosity is proportional to the surface concentration in the diffusion-controlled regime. The same time dependence was found for 2 CMC drops. However, the fitted shear viscosity was nearly half that of the 1 CMC concentration over the same time frame.

  5. Characteristic Exponent of Normal and Oblique Rolls in Homeotropically Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Saraswati, V.; Nugroho, F.

    2018-04-01

    Soft-mode turbulence (SMT) is one of an experimental example of spatiotemporal chaos, observed in electroconvection system of homeotropically aligned nematic liquid crystal (NLC), due to a non-linear interaction between Nambu-Goldstone mode denoted by the C(r)- director and the convective mode q(r). There are two types of stripe patterns in the SMT, namely normal rolls (NR) and oblique rolls (OR) which separated by a point of applied frequency, called the Lifshitz frequency (f L ). We report a study of the phase transition from normal to oblique rolls by observing the patterns with an applied frequency below and beyond of fL . The temporal fluctuations of the pattern images had been analyzed using autocorrelation function. It fits with Kohlrausch Williams Watts (KWW) function, showing there is a dynamical glass-forming liquid in the transition of NR-OR regime. Also, we found a new type of defect in the NR regime which never been reported before, a dynamic defect which takes the shape of a ring first to a spot in the end.

  6. Aeroelastic Response from Indicial Functions with a Finite Element Model of a Suspension Bridge

    NASA Astrophysics Data System (ADS)

    Mikkelsen, O.; Jakobsen, J. B.

    2017-12-01

    The present paper describes a comprehensive analysis of the aeroelastic bridge response in time-domain, with a finite element model of the structure. The main focus is on the analysis of flutter instability, accounting for the wind forces generated by the bridge motion, including twisting as well as vertical and horizontal translation, i.e. all three global degrees of freedom. The solution is obtained by direct integration of the equations of motion for the bridge-wind system, with motion-dependent forces approximated from flutter derivatives in terms of rational functions. For the streamlined bridge box-girder investigated, the motion dependent wind forces related to the along-wind response are found to have a limited influence on the flutter velocity. The flutter mode shapes in the time-domain and the frequency domain are consistent, and composed of the three lowest symmetrical vertical modes coupled with the first torsional symmetric mode. The method applied in this study provides detailed response estimates and contributes to an increased understanding of the complex aeroelastic behaviour of long-span bridges.

  7. A source array for generating higher order acoustic modes in circular ducts

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.; Reethof, G.

    1976-01-01

    A unique source array has been developed for the generation of both spinning and non-spinning higher order modes in a circular duct. The array consists of two concentric rings of sources. Through individual control of the response of each element, the array provided phase and amplitude control in the radial as well as circumferential directions. Radial modes shapes were measured in a 12-inch diameter anechoically-terminated hollow duct. These modes could be generated at their cut-off frequency and throughout a frequency range extending to the cut-off frequency for the next higher order radial mode. Comparisons are given between theory and experiment for the generation of specific modes. The radial dependence of the measured mode shapes was enhanced considerably by the design of this array. The results indicate a significant improvement over previous mode generation mechanisms. The contamination of the generated mode by additional spurious modes is also considered for variations between individual elements within the source array.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.Y. Fu; L.P. Ku; M.H. Redi

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less

  9. Finite element analysis and cadaveric cinematic analysis of fixation options for anteriorly implanted trabecular metal interbody cages.

    PubMed

    Berjano, Pedro; Blanco, Juan Francisco; Rendon, Diego; Villafañe, Jorge Hugo; Pescador, David; Atienza, Carlos Manuel

    2015-11-01

    To assess, with finite element analysis and an in vitro biomechanical study in cadaver, whether the implementation of an anterior interbody cage made of hedrocel with nitinol shape memory staples in compression increases the stiffness of the stand-alone interbody cage and to compare these constructs' stiffness to other constructs common in clinical practice. A biomechanical study with a finite element analysis and cadaveric testing assessed the stiffness of different fixation modes for the L4-L5 functional spinal unit: intact spine, destabilized spine with discectomy, posterior pedicle-screw fixation, anterior stand-alone interbody cage, anterior interbody cage with bilateral pedicle screws and anterior interbody cage with two shape memory staples in compression. These modalities of vertebral fixation were compared in four loading modes (flexion, extension, lateral bending, and axial rotation). The L4-L5 spinal unit with an anterior interbody cage and two staples was stiffer than the stand-alone cage. The construct stiffness was similar to that of a model of posterior pedicular stabilization. The stiffness was lower than that of the anterior cage plus bilateral pedicle-screw fixation. The use of an anterior interbody implant with shape memory staples in compression may be an alternative to isolated posterior fixation and to anterior isolated implants, with increased stiffness.

  10. The Three-Dimensional Point Spread Function of Aberration-Corrected Scanning Transmission Electron Microscopy

    PubMed Central

    Lupini, A.R.; de Jonge, N.

    2012-01-01

    Aberration-correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional imaging by depth-sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two-dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three-dimensions in an attempt to better understand the depth-resolution in this mode. Examples are presented of how aberrations change the probe shape in three-dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full width at half maximum approaches that of the aberration corrected STEM with a standard aperture. PMID:21878149

  11. Calculations of the variability of ice cloud radiative properties at selected solar wavelengths

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Zdunkowski, W. G.; Cox, S. K.

    1980-01-01

    This study shows that there is surprising little difference in values of reflectance, absorptance, and transmittance for many of the intermediate-size particle spectra. Particle size distributions with mode radii ranging from approximately 50 to 300 microns, irrespective of particle shape and nearly independent of the choice of size distribution representation, give relatively similar flux values. The very small particle sizes, however, have significantly larger values of reflectance and transmittance with corresponding smaller values of absorptance than do the larger particle sizes. The very large particle modes produce very small values of reflectance and transmittance along with very large values of absorptance. Such variations are particularly noticeable when plotted as a function of wavelength.

  12. Widened photonic functionality of asymmetric high-index contrast/photonic crystal gratings

    NASA Astrophysics Data System (ADS)

    Nguyen, Hai Son; Dubois, Florian; Letartre, Xavier; Leclercq, Jean-Louis; Seassal, Christian; Viktorovitch, Pierre

    2016-03-01

    In this presentation we emphasize that, within the variety of parameters usable for the design of HCGs, the transverse (vertical) symmetry properties of HCGs provide a power-full joystick for the dispersion engineering of guided mode resonances. We concentrate on asymmetric HCGs designed to accommodate guided mode resonances with ultra-flat zero-curvature dispersion characteristics (or photons with ultra-heavy effective mass), as well as with Dirac cone shaped linear dispersion characteristics. Examples of the great potential of this family of asymmetric HCGs will include the development of a platform for polaritonic devices and the production of micro-lasers particularly suited for hybrid III-V / silicon heterogeneous photonic integration, along CMOS compatible technological schemes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaysset, Adrien; Manfrini, Mauricio; Pourtois, Geoffrey

    The functionality of a cross-shaped Spin Torque Majority Gate is explored by means of micromagnetic simulations. The different input combinations are simulated varying material parameters, current density and size. The main failure mode is identified: above a critical size, a domain wall can be pinned at the center of the cross, preventing further propagation of the information. By simulating several phase diagrams, the key parameters are obtained and the operating condition is deduced. A simple relation between the domain wall width and the size of the Spin Torque Majority Gate determines the working range. Finally, a correlation is found betweenmore » the energy landscape and the main failure mode. We demonstrate that a macrospin behavior ensures a reliable majority gate operation.« less

  14. Cued American English: A Variety in the Visual Mode

    ERIC Educational Resources Information Center

    Portolano, Marlana

    2008-01-01

    Cued American English (CAE) is a visual variety of English derived from a mode of communication called Cued Speech (CS). CS, or cueing, is a system of communication for use with the deaf, which consists of hand shapes, hand placements, and mouth shapes that signify the phonemic information conventionally conveyed through speech in spoken…

  15. Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-01

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  16. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  17. Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence.

    PubMed

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Anton, Jean-Luc; Roth, Muriel; Nazarian, Bruno; Velay, Jean-Luc

    2008-05-01

    Fast and accurate visual recognition of single characters is crucial for efficient reading. We explored the possible contribution of writing memory to character recognition processes. We evaluated the ability of adults to discriminate new characters from their mirror images after being taught how to produce the characters either by traditional pen-and-paper writing or with a computer keyboard. After training, we found stronger and longer lasting (several weeks) facilitation in recognizing the orientation of characters that had been written by hand compared to those typed. Functional magnetic resonance imaging recordings indicated that the response mode during learning is associated with distinct pathways during recognition of graphic shapes. Greater activity related to handwriting learning and normal letter identification was observed in several brain regions known to be involved in the execution, imagery, and observation of actions, in particular, the left Broca's area and bilateral inferior parietal lobules. Taken together, these results provide strong arguments in favor of the view that the specific movements memorized when learning how to write participate in the visual recognition of graphic shapes and letters.

  18. Prediction of peak shape in hydro-organic and micellar-organic liquid chromatography as a function of mobile phase composition.

    PubMed

    Baeza-Baeza, J J; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2007-09-07

    A simple model is proposed that relates the parameters describing the peak width with the retention time, which can be easily predicted as a function of mobile phase composition. This allows the further prediction of peak shape with global errors below 5%, using a modified Gaussian model with a parabolic variance. The model is useful in the optimisation of chromatographic resolution to assess an eventual overlapping of close peaks. The dependence of peak shape with mobile phase composition was studied for mobile phases containing acetonitrile in the presence and absence of micellised surfactant (micellar-organic and hydro-organic reversed-phase liquid chromatography, RPLC). In micellar RPLC, both modifiers (surfactant and acetonitrile) were observed to decrease or improve the efficiencies in the same percentage, at least in the studied concentration ranges. The study also revealed that the problem of achieving smaller efficiencies in this chromatographic mode, compared to hydro-organic RPLC, is not only related to the presence of surfactant covering the stationary phase, but also to the smaller concentration of organic solvent in the mobile phase.

  19. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  20. The association of proximal femoral shape and incident radiographic hip OA in elderly women.

    PubMed

    Lynch, J A; Parimi, N; Chaganti, R K; Nevitt, M C; Lane, N E

    2009-10-01

    Variations in femoral head shape are reported to predict incident hip osteoarthritis (OA). This study evaluated if proximal femur shape at baseline was a risk factor for incident radiographic hip OA (RHOA) after 8.3 years of follow-up in a cohort of elderly Caucasian women. Supine pelvic radiographs were obtained as part of the Study of Osteoporotic Fractures (SOF) at baseline and Visit 5 (8.3 years later), and were scored for RHOA. A nested case-control study was performed: hips were eligible for inclusion if they had no prevalent RHOA in either hip at baseline. Cases of incident RHOA were defined as no RHOA at baseline and RHOA in their right hip present at Visit 5 [or right total hip replacement (THR) for OA between baseline for follow-up] and a random selection of one half of all incident RHOA cases plus right THR cases (n=102) were chosen. A random selection (n=249) of control subjects who had no RHOA in their right hip at both baseline and follow-up visit were included for comparison. The shape of the right proximal femur was outlined on a digitized baseline radiograph and a statistical image analysis technique, Active Shape Modeling (ASM), was used to generate 10 unique and independent "modes" or variations in shape, which explained 95% of the variance in the shape of the proximal femurs studied. Any hip shape was therefore described as the average shape plus a linear combination of these 10 independent modes of variation. The values for each of these 10 modes for each hip analyzed were entered into a logistic regression model as independent predictors of incident RHOA adjusting for covariates. The incident RHOA cases were slightly taller, heavier and had higher total hip bone mineral density (BMD) than control subjects (P<0.05), but were otherwise similar demographically. Results of ASM showed that Modes 1, 2 and 3 together explained 81% of the variance in proximal femur shape among all subjects analyzed. Modes 3, 5, 9 which accounted for 8.9%, 3.3% and 0.8% of the variance respectively, were significant predictors of incident RHOA with adjusted odds-ratios ranging from 1.61 to 1.99 (P<0.001) for every 1 standard deviation (SD) increase in the mode score. These results suggest that variations in the relative sizes of the femoral head and neck at baseline are modest determinants of incident RHOA in elderly Caucasian women.

  1. Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy.

    PubMed

    Gramazio, Federico; Lorenzoni, Matteo; Pérez-Murano, Francesc; Rull Trinidad, Enrique; Staufer, Urs; Fraxedas, Jordi

    2017-01-01

    We present a combined theoretical and experimental study of the dependence of resonant higher harmonics of rectangular cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample's surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic (in resonance with the 2nd flexural mode) on these parameters, which can be expressed in terms of a gun-shaped function. This analytical expression can be regarded as a practical tool for extracting qualitative information from AFM measurements and it can be extended to any resonant harmonics. The experiments confirm the predicted dependence in the explored 3-45 N/m force constant range and 2-345 GPa sample's stiffness range. For force constants around 25 N/m, the amplitude of the 6th harmonic exhibits the largest sensitivity for ultrasharp tips (tip radius below 10 nm) and polymers (Young's modulus below 20 GPa).

  2. Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles

    DOE PAGES

    Bakhti, Saïd; Tishchenko, Alexandre V.; Zambrana-Puyalto, Xavier; ...

    2016-09-01

    In this work we theoretically and experimentally analyze the resonant behavior of individual 3 × 3 gold particle oligomers illuminated under normal and oblique incidence. While this structure hosts both dipolar and quadrupolar electric and magnetic delocalized modes, only dipolar electric and quadrupolar magnetic modes remain at normal incidence. These modes couple into a strongly asymmetric spectral response typical of a Fano-like resonance. In the basis of the coupled mode theory, an analytical representation of the optical extinction in terms of singular functions is used to identify the hybrid modes emerging from the electric and magnetic mode coupling and tomore » interpret the asymmetric line profiles. Especially, we demonstrate that the characteristic Fano line shape results from the spectral interference of a broad hybrid mode with a sharp one. This structure presents a special feature in which the electric field intensity is confined on different lines of the oligomer depending on the illumination wavelength relative to the Fano dip. This Fano-type resonance is experimentally observed performing extinction cross section measurements on arrays of gold nano-disks. The vanishing of the Fano dip when increasing the incidence angle is also experimentally observed in accordance with numerical simulations.« less

  3. Multi-damage identification based on joint approximate diagonalisation and robust distance measure

    NASA Astrophysics Data System (ADS)

    Cao, S.; Ouyang, H.

    2017-05-01

    Mode shapes or operational deflection shapes are highly sensitive to damage and can be used for multi-damage identification. Nevertheless, one drawback of this kind of methods is that the extracted spatial shape features tend to be compromised by noise, which degrades their damage identification accuracy, especially for incipient damage. To overcome this, joint approximate diagonalisation (JAD) also known as simultaneous diagonalisation is investigated to estimate mode shapes (MS’s) statistically. The major advantage of JAD method is that it efficiently provides the common Eigen-structure of a set of power spectral density matrices. In this paper, a new criterion in terms of coefficient of variation (CV) is utilised to numerically demonstrate the better noise robustness and accuracy of JAD method over traditional frequency domain decomposition method (FDD). Another original contribution is that a new robust damage index (DI) is proposed, which is comprised of local MS distortions of several modes weighted by their associated vibration participation factors. The advantage of doing this is to include fair contributions from changes of all modes concerned. Moreover, the proposed DI provides a measure of damage-induced changes in ‘modal vibration energy’ in terms of the selected mode shapes. Finally, an experimental study is presented to verify the efficiency and noise robustness of JAD method and the proposed DI. The results show that the proposed DI is effective and robust under random vibration situations, which indicates that it has the potential to be applied to practical engineering structures with ambient excitations.

  4. Anharmonicity in a double hydrogen transfer reaction studied in a single porphycene molecule on a Cu(110) surface.

    PubMed

    Liu, S; Baugh, D; Motobayashi, K; Zhao, X; Levchenko, S V; Gawinkowski, S; Waluk, J; Grill, L; Persson, M; Kumagai, T

    2018-05-07

    Anharmonicity plays a crucial role in hydrogen transfer reactions in hydrogen-bonding systems, which leads to a peculiar spectral line shape of the hydrogen stretching mode as well as highly complex intra/intermolecular vibrational energy relaxation. Single-molecule study with a well-defined model is necessary to elucidate a fundamental mechanism. Recent low-temperature scanning tunnelling microscopy (STM) experiments revealed that the cis↔cis tautomerization in a single porphycene molecule on Cu(110) at 5 K can be induced by vibrational excitation via an inelastic electron tunnelling process and the N-H(D) stretching mode couples with the tautomerization coordinate [Kumagai et al. Phys. Rev. Lett. 2013, 111, 246101]. Here we discuss a pronounced anharmonicity of the N-H stretching mode observed in the STM action spectra and the conductance spectra. Density functional theory calculations find a strong intermode coupling of the N-H stretching with an in-plane bending mode within porphycene on Cu(110).

  5. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    USGS Publications Warehouse

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  6. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  7. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    NASA Technical Reports Server (NTRS)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  8. Optimal design application on the advanced aeroelastic rotor blade

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Jones, R.

    1985-01-01

    The vibration and performance optimization procedure using regression analysis was successfully applied to an advanced aeroelastic blade design study. The major advantage of this regression technique is that multiple optimizations can be performed to evaluate the effects of various objective functions and constraint functions. The data bases obtained from the rotorcraft flight simulation program C81 and Myklestad mode shape program are analytically determined as a function of each design variable. This approach has been verified for various blade radial ballast weight locations and blade planforms. This method can also be utilized to ascertain the effect of a particular cost function which is composed of several objective functions with different weighting factors for various mission requirements without any additional effort.

  9. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures

    NASA Astrophysics Data System (ADS)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih

    2017-08-01

    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  10. Fabrication of longitudinally arbitrary shaped fiber tapers

    NASA Astrophysics Data System (ADS)

    Nold, J.; Plötner, M.; Böhme, S.; Sattler, B.; deVries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.

    2018-02-01

    We present our current results on the fabrication of arbitrary shaped fiber tapers on our tapering rig using a CO2-laser as heat source. Single mode excitation of multimode fibers as well as changing the fiber geometry in an LPG-like fashion is presented. It is shown that this setup allows for reproducible fabrication of single-mode excitation tapers to extract the fundamental mode (M2 < 1.1) from a 30 μm core having an NA of 0.09.

  11. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  12. A new method to extract modal parameters using output-only responses

    NASA Astrophysics Data System (ADS)

    Kim, Byeong Hwa; Stubbs, Norris; Park, Taehyo

    2005-04-01

    This work proposes a new output-only modal analysis method to extract mode shapes and natural frequencies of a structure. The proposed method is based on an approach with a single-degree-of-freedom in the time domain. For a set of given mode-isolated signals, the un-damped mode shapes are extracted utilizing the singular value decomposition of the output energy correlation matrix with respect to sensor locations. The natural frequencies are extracted from a noise-free signal that is projected on the estimated modal basis. The proposed method is particularly efficient when a high resolution of mode shape is essential. The accuracy of the method is numerically verified using a set of time histories that are simulated using a finite-element method. The feasibility and practicality of the method are verified using experimental data collected at the newly constructed King Storm Water Bridge in California, United States.

  13. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  14. Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

    PubMed

    Dick, Taylor J M; Wakeling, James M

    2017-12-01

    When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.

  15. Tunable deformation modes shape contractility in active biopolymer networks

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret

    Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.

  16. On fluttering modes for aircraft wing model in subsonic air flow.

    PubMed

    Shubov, Marianna A

    2014-12-08

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author's papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the 'generalized resolvent operator', which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this 'circle of instability'. Explicit estimate of the 'instability radius' in terms of model parameters is given.

  17. On fluttering modes for aircraft wing model in subsonic air flow

    PubMed Central

    Shubov, Marianna A.

    2014-01-01

    The paper deals with unstable aeroelastic modes for aircraft wing model in subsonic, incompressible, inviscid air flow. In recent author’s papers asymptotic, spectral and stability analysis of the model has been carried out. The model is governed by a system of two coupled integrodifferential equations and a two-parameter family of boundary conditions modelling action of self-straining actuators. The Laplace transform of the solution is given in terms of the ‘generalized resolvent operator’, which is a meromorphic operator-valued function of the spectral parameter λ, whose poles are called the aeroelastic modes. The residues at these poles are constructed from the corresponding mode shapes. The spectral characteristics of the model are asymptotically close to the ones of a simpler system, which is called the reduced model. For the reduced model, the following result is shown: for each value of subsonic speed, there exists a radius such that all aeroelastic modes located outside the circle of this radius centred at zero are stable. Unstable modes, whose number is always finite, can occur only inside this ‘circle of instability’. Explicit estimate of the ‘instability radius’ in terms of model parameters is given. PMID:25484610

  18. Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers.

    PubMed

    Lapchuk, Anatoly S; Shin, Dongho; Jeong, Ho-Seop; Kyong, Chun Su; Shin, Dong-Ik

    2005-12-10

    The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two identical metal layers is investigated. A simple model based on mode matching to predict the properties of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e., in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide should be stretched along one side to produce propagation conditions for the fundamental mode.

  19. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    NASA Technical Reports Server (NTRS)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  20. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  1. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang

    2017-10-01

    Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms a long and narrow trough between nebkhas by the "funnelling effect". This process forces sand towards lee slopes, which transform from concave (original barchans) into convex, ultimately resulting in the formation of palmate parabolic dunes.

  2. Fringe-projection profilometry based on two-dimensional empirical mode decomposition.

    PubMed

    Zheng, Suzhen; Cao, Yiping

    2013-11-01

    In 3D shape measurement, because deformed fringes often contain low-frequency information degraded with random noise and background intensity information, a new fringe-projection profilometry is proposed based on 2D empirical mode decomposition (2D-EMD). The fringe pattern is first decomposed into numbers of intrinsic mode functions by 2D-EMD. Because the method has partial noise reduction, the background components can be removed to obtain the fundamental components needed to perform Hilbert transformation to retrieve the phase information. The 2D-EMD can effectively extract the modulation phase of a single direction fringe and an inclined fringe pattern because it is a full 2D analysis method and considers the relationship between adjacent lines of a fringe patterns. In addition, as the method does not add noise repeatedly, as does ensemble EMD, the data processing time is shortened. Computer simulations and experiments prove the feasibility of this method.

  3. Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy.

    PubMed

    Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A

    2013-01-23

    The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.

  4. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    PubMed

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  5. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly.

    PubMed

    Rolhauser, Andrés G; Pucheta, Eduardo

    2017-03-01

    How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly. © 2017 by the Ecological Society of America.

  6. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  7. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  8. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    NASA Astrophysics Data System (ADS)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  9. Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge

    NASA Astrophysics Data System (ADS)

    Yashar, Ahmed; Ferguson, Neil; Ghandchi-Tehrani, Maryam

    2018-04-01

    The natural frequencies and mode shapes of the flapwise and chordwise vibrations of a rotating cracked Euler-Bernoulli beam are investigated using a simplified method. This approach is based on obtaining the lateral deflection of the cracked rotating beam by subtracting the potential energy of a rotating massless spring, which represents the crack, from the total potential energy of the intact rotating beam. With this new method, it is assumed that the admissible function which satisfies the geometric boundary conditions of an intact beam is valid even in the presence of a crack. Furthermore, the centrifugal stiffness due to rotation is considered as an additional stiffness, which is obtained from the rotational speed and the geometry of the beam. Finally, the Rayleigh-Ritz method is utilised to solve the eigenvalue problem. The validity of the results is confirmed at different rotational speeds, crack depth and location by comparison with solid and beam finite element model simulations. Furthermore, the mode shapes are compared with those obtained from finite element models using a Modal Assurance Criterion (MAC).

  10. Comparison of modal analysis results of laser vibrometry and nearfield acoustical holography measurements of an aluminum plate

    NASA Astrophysics Data System (ADS)

    Potter, Jennifer L.

    2011-12-01

    Noise and vibration has long been sought to be reduced in major industries: automotive, aerospace and marine to name a few. Products must be tested and pass certain levels of federally regulated standards before entering the market. Vibration measurements are commonly acquired using accelerometers; however limitations of this method create a need for alternative solutions. Two methods for non-contact vibration measurements are compared: Laser Vibrometry, which directly measures the surface velocity of the aluminum plate, and Nearfield Acoustic Holography (NAH), which measures sound pressure in the nearfield, and using Green's Functions, reconstructs the surface velocity at the plate. The surface velocity from each method is then used in modal analysis to determine the comparability of frequency, damping and mode shapes. Frequency and mode shapes are also compared to an FEA model. Laser Vibrometry is a proven, direct method for determining surface velocity and subsequently calculating modal analysis results. NAH is an effective method in locating noise sources, especially those that are not well separated spatially. Little work has been done in incorporating NAH into modal analysis.

  11. The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2013-01-01

    The effect of crack interactions on stress intensity factors is examined for a periodic array of coplanar penny-shaped cracks. Kachanov’s approximate method for crack interactions (Int. J. Solid. Struct. 1987; 23(1):23–43) is employed to analyze both hexagonal and square crack configurations. In approximating crack interactions, the solution converges when the total truncation number of the cracks is 109. As expected, due to high density packing crack interaction in the hexagonal configuration is stronger than that in the square configuration. Based on the numerical results, convenient fitting equations for quick evaluation of the mode I stress intensity factors are obtained as a function of crack density and angle around the crack edge for both crack configurations. Numerical results for the mode II and III stress intensity factors are presented in the form of contour lines for the case of Poisson’s ratio ν =0.3. Possible errors for these problems due to Kachanov’s approximate method are estimated. Good agreement is observed with the limited number of results available in the literature and obtained by different methods. PMID:27175035

  12. Simulations of High Speed Fragment Trajectories

    NASA Astrophysics Data System (ADS)

    Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis

    2017-11-01

    Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.

  13. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2014-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  14. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander Wong

    2013-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  15. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  16. Dual-probe near-field fiber head with gap servo control for data storage applications.

    PubMed

    Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D

    2007-10-29

    We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.

  17. Goldstone-like phonon modes in a (111)-strained perovskite

    NASA Astrophysics Data System (ADS)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  18. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures

    NASA Astrophysics Data System (ADS)

    Shi, Binkai; Qiao, Pizhong

    2018-03-01

    Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.

  19. Design, modeling and control of a novel multi functional translational-rotary micro ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Tuncdemir, Safakcan

    The major goal of this thesis was to design and develop an actuator, which is capable of producing translational and rotary output motions in a compact structure with simple driving conditions, for the needs of small-scale actuators for micro robotic systems. Piezoelectric ultrasonic motors were selected as the target actuator schemes because of their unbeatable characteristics in the meso-scale range, which covers the structure sizes from hundred micrometers to ten millimeters and with operating ranges from few nanometers to centimeters. In order to meet the objectives and the design constraints, a number of key research tasks had to be undertaken. The design constraints and objectives were so stringent and entangled that none of the existing methods in literature could solve the research problems individually. Therefore, several unique methods were established to accomplish the research objectives. The methods produced novel solutions at every stage of design, development and modeling of the multi functional micro ultrasonic motor. Specifically, an ultrasonic motor utilizing slanted ceramics on a brass rod was designed. Because of the unique slanted ceramics design, longitudinal and torsional mode vibration modes could be obtained on the same structure. A ring shaped mobile element was loosely fitted on the metal rod stator. The mobile element moved in translational or rotational, depending on whether the vibration mode was longitudinal or torsional. A new ultrasonic motor drive method was required because none of the existing ultrasonic motor drive techniques were able to provide both output modes in a compact and cylindrical structure with the use of single drive source. By making use of rectangular wave drive signals, saw-tooth shaped displacement profile could be obtained at longitudinal and torsional resonance modes. Thus, inheriting the operating principle of smooth impact drive method, a new resonance type inertial drive was introduced. This new technique combines the advantages of inertial method with resonance drive. The motor that combines inertial drive at resonance will be a new type of ultrasonic motor, according to the classification of vibration types. A method to analyze the stator vibration by incorporating the piezoelectric loss coefficients was developed. By using the model, natural frequencies of the operating modes were predicted and exact formulations of the vibration displacements in longitudinal and torsional modes were obtained. The vibration model was in perfect agreement with the ATILA finite element analysis simulations even for different design parameters. The model was also used in design optimization and for theoretical explanation of the newly introduced motor drive technique. The theoretical analysis of the operating principle was verified with finite element analysis simulations and by vibration measurements. Several prototypes of motor were built in order to realize the dual function output as the main objective of this research. Translational output was observed for rectangular wave input signals at the resonance frequency of the fundamental longitudinal mode.The output mode changed to the rotational mode when the operating frequency switched for the fundamental torsional mode. While the mode of motor could be switched by switching the operating frequency, the direction of motion could be reversed by switching the duty cycle of rectangular input signals from D % to (100-D) %. A prototype (5 mm diameter, 25 mm total length produced 55 mm/s (translational) and 3 rad/s (rotary) speed under 40 mN blocking force, when the input signal was 40 V pp rectangular with 33% duty cycle. The motor speed at translational mode was characterized for different input voltage and output force. The meso-scale ultrasonic motor which utilizes smooth impact drive method, provided a unique ability to produce dual function with prominent output characteristics in a compact structure by using simple drive conditions.

  20. Frequency response function (FRF) based updating of a laser spot welded structure

    NASA Astrophysics Data System (ADS)

    Zin, M. S. Mohd; Rani, M. N. Abdul; Yunus, M. A.; Sani, M. S. M.; Wan Iskandar Mirza, W. I. I.; Mat Isa, A. A.

    2018-04-01

    The objective of this paper is to present frequency response function (FRF) based updating as a method for matching the finite element (FE) model of a laser spot welded structure with a physical test structure. The FE model of the welded structure was developed using CQUAD4 and CWELD element connectors, and NASTRAN was used to calculate the natural frequencies, mode shapes and FRF. Minimization of the discrepancies between the finite element and experimental FRFs was carried out using the exceptional numerical capability of NASTRAN Sol 200. The experimental work was performed under free-free boundary conditions using LMS SCADAS. Avast improvement in the finite element FRF was achieved using the frequency response function (FRF) based updating with two different objective functions proposed.

  1. Analysis and test of a 16-foot radial rib reflector developmental model

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  2. Lamping process and application of ultra small U-shaped, whispery gallery mode (WGM) based optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Chang, Yuan Cheng; Chiang, Chia Chin

    2015-07-01

    This study success to smaller and control the diameter of single mode optical fiber whispery gallery mode (WGM) to diameter 0.8 mm nonetching and nontaping treated. The sensitivity of this type ultra-small U-shape WGM strengthens neither etching nor taping fibre. The sensitivity we apply to thermo test depends on wavelength shift from 40 ~ 96°C (R2 = 0.99 ). The specially characteristics of the optical fiber could be tested for temperature, refraction, vibration, concussion, and CO2 detection.

  3. A NASTRAN primer for the analysis of rotating flexible blades

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Aiello, Robert A.; Ernst, Michael A.; Mcgee, Oliver G.

    1987-01-01

    This primer provides documentation for using MSC NASTRAN in analyzing rotating flexible blades. The analysis of these blades includes geometrically nonlinear (large displacement) analysis under centrifugal loading, and frequency and mode shape (normal modes) determination. The geometrically nonlinear analysis using NASTRAN Solution sequence 64 is discussed along with the determination of frequencies and mode shapes using Solution Sequence 63. A sample problem with the complete NASTRAN input data is included. Items unique to rotating blade analyses, such as setting angle and centrifugal softening effects are emphasized.

  4. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    NASA Astrophysics Data System (ADS)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  5. High frequency mode shapes characterisation using Digital Image Correlation and phase-based motion magnification

    NASA Astrophysics Data System (ADS)

    Molina-Viedma, A. J.; Felipe-Sesé, L.; López-Alba, E.; Díaz, F.

    2018-03-01

    High speed video cameras provide valuable information in dynamic events. Mechanical characterisation has been improved by the interpretation of the behaviour in slow-motion visualisations. In modal analysis, videos contribute to the evaluation of mode shapes but, generally, the motion is too subtle to be interpreted. In latest years, image treatment algorithms have been developed to generate a magnified version of the motion that could be interpreted by naked eye. Nevertheless, optical techniques such as Digital Image Correlation (DIC) are able to provide quantitative information of the motion with higher sensitivity than naked eye. For vibration analysis, mode shapes characterisation is one of the most interesting DIC performances. Full-field measurements provide higher spatial density than classical instrumentations or Scanning Laser Doppler Vibrometry. However, the accurateness of DIC is reduced at high frequencies as a consequence of the low displacements and hence it is habitually employed in low frequency spectra. In the current work, the combination of DIC and motion magnification is explored in order to provide numerical information in magnified videos and perform DIC mode shapes characterisation at unprecedented high frequencies through increasing the amplitude of displacements.

  6. Improved Abutting Edges For Welding In Keyhole Mode

    NASA Technical Reports Server (NTRS)

    Harwing, Dennis D.; Sanders, John M.

    1994-01-01

    Welds of better quality made, and/or heat input reduced. Improved shapes devised for abutting edges of metal pieces to be joined by plasma arc welding in keyhole mode, in which gas jet maintains molten hole ("keyhole") completely through thickness of weld joint. Edges of metal pieces to be welded together machined to provide required combination gap and shaped, thin sections. Shapes and dimensions chosen to optimize weld in various respects; e.g., to enhance penetration of keyhole or reduce heat input to produce joint of given thickness.

  7. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.

    PubMed

    Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P

    2013-02-15

    We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.

  8. Effects of the shape anisotropy and biasing field on the magnetization reversal process of the diamond-shaped NiFe nano films

    NASA Astrophysics Data System (ADS)

    Xu, Sichen; Yin, Jianfeng; Tang, Rujun; Zhang, Wenxu; Peng, Bin; Zhang, Wanli

    2017-11-01

    The effects of the planar shape anisotropy and biasing field on the magnetization reversal process (MRP) of the diamond-shaped NiFe nano films have been investigated by micromagnetic simulations. Results show that when the length to width ratio (LWR) of the diamond-shaped film is small, the MRP of the diamond-shaped films are sensitive to LWR. But when LWR is larger than 2, a stable domain switching mode is observed which nucleates from the center of the diamond and then expands to the edges. At a fixed LWR, the magnitude of the switching fields decrease with the increase of the biasing field, but the domain switching mode is not affected by the biasing field. Further analysis shows that demagnetization energy dominates over the MRP of the diamond-shaped films. The above LWR dependence of MRP can be well explained by a variation of the shape anisotropic factor with LWR.

  9. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  10. Extending the physics basis of quiescent H-mode toward ITER relevant parameters

    DOE PAGES

    Solomon, W. M.; Burrell, K. H.; Fenstermacher, M. E.; ...

    2015-06-26

    Recent experiments on DIII-D have addressed several long-standing issues needed to establish quiescent H-mode (QH-mode) as a viable operating scenario for ITER. In the past, QH-mode was associated with low density operation, but has now been extended to high normalized densities compatible with operation envisioned for ITER. Through the use of strong shaping, QH-mode plasmas have been maintained at high densities, both absolute (more » $$\\bar{n}$$ e ≈ 7 × 10 19 m ₋3) and normalized Greenwald fraction ($$\\bar{n}$$ e/n G > 0.7). In these plasmas, the pedestal can evolve to very high pressure and edge current as the density is increased. High density QH-mode operation with strong shaping has allowed access to a previously predicted regime of very high pedestal dubbed “Super H-mode”. Calculations of the pedestal height and width from the EPED model are quantitatively consistent with the experimentally observed density evolution. The confirmation of the shape dependence of the maximum density threshold for QH-mode helps validate the underlying theoretical model of peeling- ballooning modes for ELM stability. In general, QH-mode is found to achieve ELM- stable operation while maintaining adequate impurity exhaust, due to the enhanced impurity transport from an edge harmonic oscillation, thought to be a saturated kink- peeling mode driven by rotation shear. In addition, the impurity confinement time is not affected by rotation, even though the energy confinement time and measured E×B shear are observed to increase at low toroidal rotation. Together with demonstrations of high beta, high confinement and low q 95 for many energy confinement times, these results suggest QH-mode as a potentially attractive operating scenario for the ITER Q=10 mission.« less

  11. The historical bases of the Rayleigh and Ritz methods

    NASA Astrophysics Data System (ADS)

    Leissa, A. W.

    2005-11-01

    Rayleigh's classical book Theory of Sound was first published in 1877. In it are many examples of calculating fundamental natural frequencies of free vibration of continuum systems (strings, bars, beams, membranes, plates) by assuming the mode shape, and setting the maximum values of potential and kinetic energy in a cycle of motion equal to each other. This procedure is well known as "Rayleigh's Method." In 1908, Ritz laid out his famous method for determining frequencies and mode shapes, choosing multiple admissible displacement functions, and minimizing a functional involving both potential and kinetic energies. He then demonstrated it in detail in 1909 for the completely free square plate. In 1911, Rayleigh wrote a paper congratulating Ritz on his work, but stating that he himself had used Ritz's method in many places in his book and in another publication. Subsequently, hundreds of research articles and many books have appeared which use the method, some calling it the "Ritz method" and others the "Rayleigh-Ritz method." The present article examines the method in detail, as Ritz presented it, and as Rayleigh claimed to have used it. It concludes that, although Rayleigh did solve a few problems which involved minimization of a frequency, these solutions were not by the straightforward, direct method presented by Ritz and used subsequently by others. Therefore, Rayleigh's name should not be attached to the method.

  12. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    PubMed

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  13. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    PubMed Central

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-01-01

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering. PMID:27999245

  14. Millimeter wave radar system on a rotating platform for combined search and track functionality with SAR imaging

    NASA Astrophysics Data System (ADS)

    Aulenbacher, Uwe; Rech, Klaus; Sedlmeier, Johannes; Pratisto, Hans; Wellig, Peter

    2014-10-01

    Ground based millimeter wave radar sensors offer the potential for a weather-independent automatic ground surveillance at day and night, e.g. for camp protection applications. The basic principle and the experimental verification of a radar system concept is described, which by means of an extreme off-axis positioning of the antenna(s) combines azimuthal mechanical beam steering with the formation of a circular-arc shaped synthetic aperture (SA). In automatic ground surveillance the function of search and detection of moving ground targets is performed by means of the conventional mechanical scan mode. The rotated antenna structure designed as a small array with two or more RX antenna elements with simultaneous receiver chains allows to instantaneous track multiple moving targets (monopulse principle). The simultaneously operated SAR mode yields areal images of the distribution of stationary scatterers. For ground surveillance application this SAR mode is best suited for identifying possible threats by means of change detection. The feasibility of this concept was tested by means of an experimental radar system comprising of a 94 GHz (W band) FM-CW module with 1 GHz bandwidth and two RX antennas with parallel receiver channels, placed off-axis at a rotating platform. SAR mode and search/track mode were tested during an outdoor measurement campaign. The scenery of two persons walking along a road and partially through forest served as test for the capability to track multiple moving targets. For SAR mode verification an image of the area composed of roads, grassland, woodland and several man-made objects was reconstructed from the measured data.

  15. Strongly coupled modes of M and H for perpendicular resonance

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Saslow, Wayne M.

    2018-05-01

    We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .

  16. Finite element solution of low bond number sloshing

    NASA Technical Reports Server (NTRS)

    Wohlen, R. L.; Park, A. C.; Warner, D. M.

    1975-01-01

    The dynamics of liquid propellant in a low Bond number environment which are critical to the design of spacecraft systems with respect to orbital propellant transfer and attitude control system were investigated. Digital computer programs were developed for the determination of liquid free surface equilibrium shape, lateral slosh natural vibration mode shapes, and frequencies for a liquid in a container of arbitrary axisymmetric shape with surface tension forces the same order of magnitude as acceleration forces. A finite volume element representation of the liquid was used for the vibration analysis. The liquid free surface equilibrium shapes were computed for several tanks at various contact angles and ullage volumes. A configuration was selected for vibration analysis and lateral slosh mode shapes and natural frequencies were obtained. Results are documented.

  17. Confined Three-Dimensional Plasmon Modes inside a Ring-Shaped Nanocavity on a Silver Film Imaged by Cathodoluminescence Microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Zhang, Jiasen; Xu, Jun; Yu, Dapeng

    2011-03-01

    The confined modes of surface plasmon polaritons in boxing ring-shaped nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control. This work is supported by NSFC (10804003, 61036005 and 11074015), the national 973 program of China (2007CB936203, 2009CB623703), MOST and NSFC/RGC (N HKUST615/06).

  18. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  19. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  20. Improving image-quality of interference fringes of out-of-plane vibration using temporal speckle pattern interferometry and standard deviation for piezoelectric plates.

    PubMed

    Chien-Ching Ma; Ching-Yuan Chang

    2013-07-01

    Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.

  1. Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsi; Chiang, Hsin-Yuan

    2016-06-01

    This study modeled two diaphragms comprising a pair of indium tin oxide (ITO) transparent plates sandwiching a vibrating diaphragm to create circular (30 mm radius) and annular (30 mm outer and 3 mm inner radius) push-pull electrostatic speakers. We then measured the displacement amplitudes and mode shapes produced by the devices. Vibration characteristics were used to predict sound pressure levels (SPLs) using the lumped parameter method (LPM) and distributed parameter method (DPM). The two measurement results obtained using a laser system were compared to the SPLs obtained using traditional acoustic measurement (AM) from 20 Hz to 20 kHz in order to verify our predictions. When using LPM and DPM, the SPL prediction results in the first three symmetric modes were in good agreement with the AM results. Under the assumption of linear operations, the DPM and amplitude-fluctuation electronic speckle pattern interferometry (ESPI) techniques proved effective in determining the visualization of mode shape (0,1)-(0,3). The use of ITO plates is a practical technique for the prediction of SPL, as well as measurement of mode shapes. The four evaluation methods, i.e. LPM, DPM, ESPI and AM, present a high degree of consistency with regard to vibrational mode and sound radiation characteristics.

  2. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  3. Estimating the weak-lensing rotation signal in radio cosmic shear surveys

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel B.; Whittaker, Lee; Camera, Stefano; Brown, Michael L.

    2017-09-01

    Weak lensing has become an increasingly important tool in cosmology and the use of galaxy shapes to measure cosmic shear has become routine. The weak-lensing distortion tensor contains two other effects in addition to the two components of shear: the convergence and rotation. The rotation mode is not measurable using the standard cosmic shear estimators based on galaxy shapes, as there is no information on the original shapes of the images before they were lensed. Due to this, no estimator has been proposed for the rotation mode in cosmological weak-lensing surveys, and the rotation mode has never been constrained. Here, we derive an estimator for this quantity, which is based on the use of radio polarization measurements of the intrinsic position angles of galaxies. The rotation mode can be sourced by physics beyond Λ cold dark matter (ΛCDM), and also offers the chance to perform consistency checks of ΛCDM and of weak-lensing surveys themselves. We present simulations of this estimator and show that, for the pedagogical example of cosmic string spectra, this estimator could detect a signal that is consistent with the constraints from Planck. We examine the connection between the rotation mode and the shear B modes and thus how this estimator could help control systematics in future radio weak-lensing surveys.

  4. Instability Paths in the Kirchhoff-Plateau Problem

    NASA Astrophysics Data System (ADS)

    Giusteri, Giulio G.; Franceschini, Paolo; Fried, Eliot

    2016-08-01

    The Kirchhoff-Plateau problem concerns the equilibrium shapes of a system in which a flexible filament in the form of a closed loop is spanned by a soap film, with the filament being modeled as a Kirchhoff rod and the action of the spanning surface being solely due to surface tension. Adopting a variational approach, we define an energy associated with shape deformations of the system and then derive general equilibrium and (linear) stability conditions by considering the first and second variations of the energy functional. We analyze in detail the transition to instability of flat circular configurations, which are ground states for the system in the absence of surface tension, when the latter is progressively increased. Such a theoretical study is particularly useful here, since the many different perturbations that can lead to instability make it challenging to perform an exhaustive experimental investigation. We generalize previous results, since we allow the filament to possess a curved intrinsic shape and also to display anisotropic flexural properties (as happens when the cross section of the filament is noncircular). This is accomplished by using a rod energy which is familiar from the modeling of DNA filaments. We find that the presence of intrinsic curvature is necessary to obtain a first buckling mode which is not purely tangent to the spanning surface. We also elucidate the role of twisting buckling modes, which become relevant in the presence of flexural anisotropy.

  5. Electrodynamic eigenmodes in cellular morphology.

    PubMed

    Cifra, M

    2012-09-01

    Eigenmodes of the spherical and ellipsoidal dielectric electromagnetic resonator have been analysed. The sizes and shape of the resonators have been chosen to represent the shape of the interphase and dividing animal cell. Electromagnetic modes that have shape exactly suitable for positioning of the sufficiently large organelles in cell (centrosome, nucleus) have been identified. We analysed direction and magnitude of dielectrophoretic force exerted on large organelles by electric field of the modes. We found that the TM(1m1) mode in spherical resonator acts by centripetal force which drags the large organelles which have higher permittivity than the cytosol to the center of the cell. TM-kind of mode in the ellipsoidal resonator acts by force on large polarizable organelles in a direction that corresponds to the movement of the centrosomes (also nucleus) observed during the cell division, i.e. to the foci of the ellipsoidal cell. Minimal required force (10(-16) N), gradient of squared electric field and corresponding energy (10(-16) J) of the mode have been calculated to have biological significance within the periods on the order of time required for cell division. Minimal required energy of the mode, in order to have biological significance, can be lower in the case of resonance of organelle with the field of the cellular resonator mode. In case of sufficient energy in the biologically relevant mode, electromagnetic field of the mode will act as a positioning or steering mechanism for centrosome and nucleus in the cell, thus contribute to the spatial and dynamical self-organization in biological systems. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Early identification of radiographic osteoarthritis of the hip using an active shape model to quantify changes in bone morphometric features: can hip shape tell us anything about the progression of osteoarthritis?

    PubMed

    Gregory, Jennifer S; Waarsing, Jan H; Day, Judd; Pols, Huibert A; Reijman, Max; Weinans, Harrie; Aspden, Richard M

    2007-11-01

    Few methods exist to measure the progression of osteoarthritis (OA) or to identify people at high risk of developing OA. Striking radiographic changes include deformation of the femoral head and osteophyte growth, which are usually measured semiquantitatively following visual assessment. In this study, an active shape model (ASM) of the proximal femur was used to determine whether morphologic changes to the bone could be quantified and used as a marker of hip OA. One hundred ten subjects who had no signs of radiographic hip OA at baseline (Kellgren/Lawrence [K/L] scores 0-1) were selected from the Rotterdam Study cohort of subjects ages > or = 55 years. To measure the progression of OA, subjects were followed up with radiographic assessment after 6 years. At the 6-year followup, 55 subjects had established OA (K/L score 3), and in 12 of these OA subjects, the progression of the disease required a total hip replacement (THR). Age- and sex-matched control subjects had a K/L score of 0 at followup. Using the ASM, subjects were assessed for shape changes in the femoral head and neck before, during, and after the development of radiographic OA. Scores of shape variance, or mode scores, were assigned for 10 modes of variation in each subject, and differences in mode scores were determined. During followup, significant changes in shape of the proximal femur occurred within the OA group from baseline to followup (P < 0.0001 for mode 1 and P = 0.002 for mode 6) but not within the control group. At baseline (all subjects having K/L scores 0-1), there were significant differences in mode 6 between the OA group and the control group (P = 0.020), and in modes 3 and 6 between the OA subjects who underwent THR and the remaining OA subjects (P = 0.012 and P = 0.019, respectively). Compared with traditional scoring methods, the ASM can be used more precisely to quantify the deforming effect of OA on the proximal femur and to identify, at an earlier stage of disease, those subjects at highest risk of developing radiographic OA or needing a THR. The ASM may therefore be useful as an imaging biomarker in the assessment of patients with hip OA.

  7. Tachyonic instability of the scalar mode prior to the QCD critical point based on the functional renormalization-group method in the two-flavor case

    NASA Astrophysics Data System (ADS)

    Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji

    2017-10-01

    We establish and elucidate the physical meaning of the appearance of an acausal mode in the sigma mesonic channel, found in the previous work by the present authors, when the system approaches the Z2 critical point. The functional renormalization-group method is applied to the two-flavor quark-meson model with varying current quark mass mq even away from the physical value at which the pion mass is reproduced. We first determine the whole phase structure in the three-dimensional space (T ,μ ,mq) consisting of temperature T , quark chemical potential μ and mq, with the tricritical point, O(4) and Z2 critical lines being located; they altogether make a winglike shape quite reminiscent of those known in the condensed matters with a tricritical point. We then calculate the spectral functions ρσ ,π(ω ,p ) in the scalar and pseudoscalar channel around the critical points. We find that the sigma mesonic mode becomes tachyonic with a superluminal velocity at finite momenta before the system reaches the Z2 point from the lower density, even for mq smaller than the physical value. One of the possible implications of the appearance of such a tachyonic mode at finite momenta is that the assumed equilibrium state with a uniform chiral condensate is unstable toward a state with an inhomogeneous σ condensate. No such anomalous behavior is found in the pseudoscalar channel. We find that the σ -to-2 σ coupling due to finite mq plays an essential role for the drastic modification of the spectral function.

  8. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has beenmore » obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.« less

  9. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  10. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.

    2017-08-01

    Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.

  11. Phase transition analysis of V-shaped liquid crystal: Combined temperature-dependent FTIR and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena

    2018-01-01

    Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.

  12. Rigid body mode identification of the PAH-2 helicopter using the eigensystem realization algorithm

    NASA Technical Reports Server (NTRS)

    Schenk, Axel; Pappa, Richard S.

    1992-01-01

    The rigid body modes of the PAH-2 'Tiger' helicopter were identified using the Eigensystem Realization Algorithm (ERA). This work complements ground vibration tests performed using DLR's traditional phase resonance technique and the ISSPA (Identification of Structural System Parameters) method. Rigid body modal parameters are important for ground resonance prediction. Time-domain data for ERA were obtained by inverse Fourier transformation of frequency response functions measured with stepped-sine excitation. Mode purity (based on the Phase Resonance Criterion) was generally equal to or greater than corresponding results obtained in the ground vibration tests. All identified natural frequencies and mode shapes correlate well with corresponding ground vibration test results. The modal identification approach discussed in this report has become increasingly attractive in recent years due to the steadily declining cost and increased performance of scientific computers. As illustrated in this application, modern time-domain methods can be successfully applied to data acquired using DLR's existing test equipment. Some suggestions are made for future applications of time domain modal identification in this manner.

  13. Using Extractive FTIR to Measure N2O from Medium Heavy ...

    EPA Pesticide Factsheets

    This pilot project was designed to confirm that an FTIR could generate useful real-time data for non-regulated tailpipe emissions of concern to the EPA. This ability to generate useful modal data could be demonstrated if the mode shapes of regulated emissions measured by reference methods corroborated the mode shapes generated by the FTIR. For this purpose comparisons were to be made to CO2 and NOx. The purpose of this study was to determine whether the FTIR could be useful in better understanding the conditions under which N2O was emitted from the tailpipe. The study was designed to see whether there was correlation of the CO2 and NOx emissions as measured by CEMs and measured by the FTIR as well as the mode shapes of the real time data

  14. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  15. Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    NASA Technical Reports Server (NTRS)

    Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.

    1983-01-01

    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.

  16. Modeling of Electrochemical Copying in a Finite-Width Cell

    NASA Astrophysics Data System (ADS)

    Zhitnikov, V. P.; Sherykhalina, N. M.; Zaripov, A. A.

    2017-11-01

    The problem of modeling of electrochemical machining is reduced to the solution of the Schwartz problem on a parametrical rectangle with the use of theta-functions. Various conditions (non-equipotentiality of electrodes and inconstancy of current efficiency) at the boundary of a processed surface are considered. Nonstationary, quasistationary, stationary, and limit solutions are studied. Results of machining of surfaces by tool electrodes of various shapes are given. It is shown that machining mode parameters significantly affect the dissolved layer size necessary for obtaining high-precision copying.

  17. Effects of Cutout Orientations on Natural Frequencies and Mode Shapes of Curved Rectangular Composite Panels.

    DTIC Science & Technology

    1986-12-01

    line perpendicular to the midsurface to remain straight and perpendicular under deformation is the equivalent to ignoring the shear strains in planes...perpendicular to the -. nidsurface, or vxz=vyz=0 , where z is the direction normal to the midsurface in Figure 1. In addition, the normals are 4...integration, but are functions of x and y only, the coordinates in the plane of the laminate midsurface E43. 13 S.* e .. .’. . . o ’ . J

  18. Control pole placement relationships

    NASA Technical Reports Server (NTRS)

    Ainsworth, O. R.

    1982-01-01

    Using a simplified Large Space Structure (LSS) model, a technique was developed which gives algebraic relationships for the unconstrained poles. The relationships, which were obtained by this technique, are functions of the structural characteristics and the control gains. Extremely interesting relationships evolve for the case when the structural damping is zero. If the damping is zero, the constrained poles are uncoupled from the structural mode shapes. These relationships, which are derived for structural damping and without structural damping, provide new insight into the migration of the unconstrained poles for the CFPPS.

  19. YAP Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Eric M.

    2004-05-20

    The YAP software library computes (1) electromagnetic modes, (2) electrostatic fields, (3) magnetostatic fields and (4) particle trajectories in 2d and 3d models. The code employs finite element methods on unstructured grids of tetrahedral, hexahedral, prism and pyramid elements, with linear through cubic element shapes and basis functions to provide high accuracy. The novel particle tracker is robust, accurate and efficient, even on unstructured grids with discontinuous fields. This software library is a component of the MICHELLE 3d finite element gun code.

  20. Thermal bistability-based method for real-time optimization of ultralow-threshold whispering gallery mode microlasers.

    PubMed

    Lin, Guoping; Candela, Y; Tillement, O; Cai, Zhiping; Lefèvre-Seguin, V; Hare, J

    2012-12-15

    A method based on thermal bistability for ultralow-threshold microlaser optimization is demonstrated. When sweeping the pump laser frequency across a pump resonance, the dynamic thermal bistability slows down the power variation. The resulting line shape modification enables a real-time monitoring of the laser characteristic. We demonstrate this method for a functionalized microsphere exhibiting a submicrowatt laser threshold. This approach is confirmed by comparing the results with a step-by-step recording in quasi-static thermal conditions.

  1. Active shape modeling of the hip in the prediction of incident hip fracture.

    PubMed

    Baker-LePain, Julie C; Luker, Kali R; Lynch, John A; Parimi, Neeta; Nevitt, Michael C; Lane, Nancy E

    2011-03-01

    The objective of this study was to evaluate right proximal femur shape as a risk factor for incident hip fracture using active shape modeling (ASM). A nested case-control study of white women 65 years of age and older enrolled in the Study of Osteoporotic Fractures (SOF) was performed. Subjects (n = 168) were randomly selected from study participants who experienced hip fracture during the follow-up period (mean 8.3 years). Controls (n = 231) had no fracture during follow-up. Subjects with baseline radiographic hip osteoarthritis were excluded. ASM of digitized right hip radiographs generated 10 independent modes of variation in proximal femur shape that together accounted for 95% of the variance in proximal femur shape. The association of ASM modes with incident hip fracture was analyzed by logistic regression. Together, the 10 ASM modes demonstrated good discrimination of incident hip fracture. In models controlling for age and body mass index (BMI), the area under receiver operating characteristic (AUROC) curve for hip shape was 0.813, 95% confidence interval (CI) 0.771-0.854 compared with models containing femoral neck bone mineral density (AUROC = 0.675, 95% CI 0.620-0.730), intertrochanteric bone mineral density (AUROC = 0.645, 95% CI 0.589-0.701), femoral neck length (AUROC = 0.631, 95% CI 0.573-0.690), or femoral neck width (AUROC = 0.633, 95% CI 0.574-0.691). The accuracy of fracture discrimination was improved by combining ASM modes with femoral neck bone mineral density (AUROC = 0.835, 95% CI 0.795-0.875) or with intertrochanteric bone mineral density (AUROC = 0.834, 95% CI 0.794-0.875). Hips with positive standard deviations of ASM mode 4 had the highest risk of incident hip fracture (odds ratio = 2.48, 95% CI 1.68-3.31, p < .001). We conclude that variations in the relative size of the femoral head and neck are important determinants of incident hip fracture. The addition of hip shape to fracture-prediction tools may improve the risk assessment for osteoporotic hip fractures. Copyright © 2011 American Society for Bone and Mineral Research.

  2. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae).

    PubMed

    Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E

    2011-07-01

    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  3. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  4. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  5. Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.

    PubMed

    Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I

    2018-02-12

    Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.

  6. Autonomous Modal Identification of the Space Shuttle Tail Rudder

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; James, George H., III; Zimmerman, David C.

    1997-01-01

    Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.

  7. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator.

    PubMed

    Zhang, Kun; Wang, Yue; Wu, Yi-Hui

    2017-08-01

    We achieved enhanced Fano resonance by coupling a bottle resonator with a special non-adiabatic tapered fiber, where there is a high intensity distribution ratio between high-order and fundamental modes in the tapered region, as well as single mode propagation in the waist region. The resonance line shape is theoretically proved to be related to the intensity distribution ratio of the two fiber modes and their phase shift. An enhanced Fano line shape with an extinction ratio over 15 dB is experimentally reached by improving the intensity distribution ratio and tuning the phase shift. The results can remarkably improve the sensitivity of whispering-gallery mode microresonators in the field of optical sensing.

  8. Low-threshold photonic-band-edge laser using iron-nail-shaped rod array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jae-Hyuck; No, You-Shin; Hwang, Min-Soo

    2014-03-03

    We report the experimental demonstration of an optically pumped rod-type photonic-crystal band-edge laser. The structure consists of a 20 × 20 square lattice array of InGaAsP iron-nail-shaped rods. A single-mode lasing action is observed with a low threshold of ∼90 μW and a peak wavelength of 1451.5 nm at room temperature. Measurements of the polarization-resolved mode images and lasing wavelengths agree well with numerical simulations, which confirm that the observed lasing mode originates from the first Γ-point transverse-electric-like band-edge mode. We believe that this low-threshold band-edge laser will be useful for the practical implementation of nanolasers.

  9. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    NASA Astrophysics Data System (ADS)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  10. Automatic superposition of drug molecules based on their common receptor site

    NASA Astrophysics Data System (ADS)

    Kato, Yuichi; Inoue, Atsushi; Yamada, Miho; Tomioka, Nobuo; Itai, Akiko

    1992-10-01

    We have prevously developed a new rational method for superposing molecules in terms of submolecular physical and chemical properties, but not in terms of atom positions or chemical structures as has been done in the conventional methods. The program was originally developed for interactive use on a three-dimensional graphic display, providing goodness-of-fit indices on molecular shape, hydrogen bonds, electrostatic interactions and others. Here, we report a new unbiased searching method for the best superposition of molecules, covering all the superposing modes and conformational freedom, as an additional function of the program. The function is based on a novel least-squares method which superposes the expected positions and orientations of hydrogen bonding partners in the receptor that are deduced from both molecules. The method not only gives reliability and reproducibility to the result of the superposition, but also allows us to save labor and time. It is demonstrated that this method is very efficient for finding the correct superposing mode in such systems where hydrogen bonds play important roles.

  11. The dynamics and control of large flexible space structures, 3. Part A: Shape and orientation control of a platform in orbit using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.

    1980-01-01

    The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.

  12. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping

    PubMed Central

    Heras, Begoña; Totsika, Makrina; Peters, Kate M.; Paxman, Jason J.; Gee, Christine L.; Jarrott, Russell J.; Perugini, Matthew A.; Whitten, Andrew E.; Schembri, Mark A.

    2014-01-01

    Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure–function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular “Velcro-like” mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms. PMID:24335802

  13. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes.

    PubMed

    Luijsterburg, Martijn S; White, Malcolm F; van Driel, Roel; Dame, Remus Th

    2008-01-01

    The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.

  14. Plethystic vertex operators and boson-fermion correspondences

    NASA Astrophysics Data System (ADS)

    Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.

    2016-10-01

    We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.

  15. Acoustics of Korean percussion instruments: Pyeongyeong and pyeonjong

    NASA Astrophysics Data System (ADS)

    Yoo, Junehee

    2005-11-01

    The pyeongyeong and the pyeonjong have long been cherished as standard instruments in Korean court music. Pyeongyeong is a set of sixteen L-shaped chime stones and pyeonjong is a set of sixteen oval chime bells. To figure out the acoustical properties of the pyeongyeong and the pyeonjong, the vibrational modes are obtained by using FFT analyzers, accelerometer scanning, TV holography, and impact hammer testing. Especially to test the geometry effects on the tuning, the finite element method is introduced. The pyeongyeong covers one and one third octave from 528.6 Hz to 1262.8 Hz. The nominal frequency of the first stone, whangjong, is 528.6 Hz which is 17.6 cents higher than 523.25 Hz, the frequency of the C5 note in the A440 tempered scale. The second mode is tuned to about 1.5 times the nominal frequency, which means the second partial is tuned to be a perfect fifth above the nominal. The third mode is tuned to about 2.3 times the nominal frequency. Mode shapes of a gyeong from three different methods agree with each other. In most cases, the modes seem to be combinations of bending and torsional motion. The calculated results by using the finite element method show that the ratio frequencies of higher modes rise as the vertex angle of a gyeong changes from 90 degrees to 180 degrees. The curvatures of the baseline affect the tuning of the stone, but the effects are smaller than those of the vertex angle. The geometry of the gyeong affects the tuning of the stone. The pyeonjong covers one and one third octave from 267.95 Hz to 634.74 Hz. The nominal frequency of the first bell, whangiong , is 267.95 Hz. The second mode (i.e. (2,0)b) is tuned to about 1.09 times the nominal frequency (i.e. (2,0)a) mode. The third mode (i.e. (3,0)b) is tuned to about 2.62 times the nominal frequency. The fourth mode (3,0), is tuned 2.72 times the nominal frequency, a perfect fourth plus 39 cents above the octave. Mode shapes of the bells, determined by electronic TV holography, are described by m, the number of nodal meridians and n, the number of nodal circles. Like Chinese two-tone bells, the bells in pyeonjong have "a" and "b" modes with the same (m, n) designation. The mode shapes agree very well with the results from former studies.

  16. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  17. Motorizing fibres with geometric zero-energy modes

    NASA Astrophysics Data System (ADS)

    Baumann, Arthur; Sánchez-Ferrer, Antoni; Jacomine, Leandro; Martinoty, Philippe; Le Houerou, Vincent; Ziebert, Falko; Kulić, Igor M.

    2018-06-01

    Responsive materials1-3 have been used to generate structures with built-in complex geometries4-6, linear actuators7-9 and microswimmers10-12. These results suggest that complex, fully functional machines composed solely from shape-changing materials might be possible13. Nonetheless, to accomplish rotary motion in these materials still relies on the classical wheel and axle motifs. Here we explore geometric zero-energy modes to elicit rotary motion in elastic materials in the absence of a rigid wheel travelling around an axle. We show that prestrained polymer fibres closed into rings exhibit self-actuation and continuous motion when placed between two heat baths due to elastic deformations that arise from rotational-symmetry breaking around the rod's axis. Our findings illustrate a simple but robust model to create active motion in mechanically prestrained objects.

  18. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    NASA Astrophysics Data System (ADS)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  19. Experimental phase-space-based optical amplification of scar modes.

    PubMed

    Michel, C; Tascu, S; Doya, V; Aschiéri, P; Blanc, W; Legrand, O; Mortessagne, F

    2012-04-01

    Wave billiards which are chaotic in the geometrical limit are known to support nongeneric spatially localized modes called scar modes. The interaction of the scar modes with gain has been recently investigated in optics in microcavity lasers and vertical-cavity surface-emitting lasers. Exploiting the localization properties of scar modes in their wave-analogous phase-space representation, we report experimental results of scar mode selection by gain in a doped D-shaped optical fiber.

  20. The effects of solvent on the conformation and the collective motions of protein: Normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum

    NASA Astrophysics Data System (ADS)

    Kitao, Akio; Hirata, Fumio; Gō, Nobuhiro

    1991-12-01

    The effects of solvent on the conformation and dynamics of protein is studied by computer simulation. The dynamics is studied by focusing mainly on collective motions of the protein molecule. Three types of simulation, normal mode analysis, molecular dynamics in vacuum, and molecular dynamics in water are applied to melittin, the major component of bee venom. To define collective motions principal, component analysis as well as normal mode analysis has been carried out. The principal components with large fluctuation amplitudes have a very good correspondence with the low-frequency normal modes. Trajectories of the molecular dynamics simulation are projected onto the principal axes. From the projected motions time correlation functions are calculated. The results indicate that the very-low-frequency modes, whose frequencies are less than ≈ 50 cm -1, are overdamping in water with relaxation times roushly twice as long as the period of the oscillatory motion. Effective Langevin mode analysis is carried out by using the friction coefficient matrix determined from the velocity correlation function calculated from the molecular dynamics trajectory in water. This analysis reproduces the results of the simulation in water reasonably well. The presence of the solvent water is found also to affect the shape of the potential energy surface in such a way that it produces many local minima with low-energy barriers in between, the envelope of which is given by the surface in vacuum. Inter-minimum transitions endow the conformational dynamics of proteins in water another diffusive character, which already exists in the intra-minimum collective motions.

  1. Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory

    2018-02-01

    Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.

  2. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet.

    PubMed

    Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-01

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11-13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  3. Conceptual Framework of Modes of Problem Solving Action (MPSA): Implications for Internet Teaching and Learning.

    ERIC Educational Resources Information Center

    Lai, Su-Huei

    The conceptual framework of the Modes of Problem Solving Action (MPSA) model integrates Dewey's pragmatism, critical science theory, and theory regarding the three modes of inquiry. The MPSA model is formulated in the shape of a matrix. Horizontally, there are the following modes: technical, interpretive, and emancipating. Vertically, there are…

  4. A method to identify the main mode of machine tool under operating conditions

    NASA Astrophysics Data System (ADS)

    Wang, Daming; Pan, Yabing

    2017-04-01

    The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.

  5. Mode shape analysis using a commercially available peak store video frame buffer

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.

    1994-01-01

    Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and resynthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non-integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the 'peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.

  6. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.

    PubMed

    Koh, Kah How; Kobayashi, Takeshi; Lee, Chengkuo

    2011-07-18

    A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5 μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65 mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27 Hz and 70 Hz) into one signal to be used to actuate the mirror.

  7. Mode shape analysis using a commercially available "peak-store" video frame buffer

    NASA Astrophysics Data System (ADS)

    Snow, Walter L.; Childers, Brooks A.

    1994-10-01

    Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and re synthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the `peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.

  8. Dynamic behaviour of a rotating cracked beam

    NASA Astrophysics Data System (ADS)

    Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil

    2016-09-01

    This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.

  9. Updating the Finite Element Model of the Aerostructures Test Wing Using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Pak, Chan-Gi

    2009-01-01

    Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the aerostructures test wing (ATW), which was designed and tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

  10. Updating the Finite Element Model of the Aerostructures Test Wing using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Lung, Shun-fat; Pak, Chan-gi

    2009-01-01

    Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

  11. Accretion mode of oceanic ridges governed by axial mechanical strength

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  12. Asymmetry between absorption and photoluminescence line shapes of TPD: spectroscopic fingerprint of the twisted biphenyl core.

    PubMed

    Scholz, Reinhard; Gisslén, Linus; Himcinschi, Cameliu; Vragović, Igor; Calzado, Eva M; Louis, Enrique; San Fabián Maroto, Emilio; Díaz-García, María A

    2009-01-08

    We analyze absorption, photoluminescence (PL), and resonant Raman spectra of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), with the aim of providing a microscopic interpretation of a significant Stokes shift of about 0.5 eV that makes this material suitable for stimulated emission. The optical spectra were measured for TPD dissolved in toluene and chloroform, as well as for polystyrene films doped with varying amounts of TPD. In addition, we measured preresonant and resonant Raman spectra, giving direct access to the vibrational modes elongated in the relaxed excited geometry of the molecule. The experimental data are interpreted with calculations of the molecular geometry in the electronic ground state and the optically excited state using density functional theory. Several strongly elongated high-frequency modes within the carbon rings results in a vibronic progression with a calculated spacing of 158 meV, corroborated by the observation of vibrational sidebands in the PL spectra. The peculiarities of the potential energy surfaces related to a twisting around the central bond in the biphenyl core of TPD allow to quantify the asymmetry between the line shapes observed in absorption and emission.

  13. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    PubMed Central

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  14. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  15. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    NASA Astrophysics Data System (ADS)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  16. Experimental dynamic characterizations and modelling of disk vibrations for HDDs.

    PubMed

    Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua

    2008-01-01

    Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.

  17. An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew

    2014-01-01

    Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.

  18. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  19. Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm.

    PubMed

    Heck, Martijn J R; Salumbides, Edcel J; Renault, Amandine; Bente, Erwin A J M; Oei, Yok-Siang; Smit, Meint K; van Veldhoven, René; Nötzel, Richard; Eikema, Kjeld S E; Ubachs, Wim

    2009-09-28

    For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.

  20. Pulse evolution and mode selection characteristics in a TEA-CO2 laser perturbed by injection of external radiation

    NASA Technical Reports Server (NTRS)

    Flamant, P. H.; Menzies, R. T.; Kavaya, M. J.; Oppenheim, U. P.

    1983-01-01

    A grating-tunable TEA-CO2 laser with an unstable resonator cavity, modified to allow injection of CW CO2 laser radiation at the resonant transition line by means of an intracavity NaCl window, has been used to study the coupling requirements for generation of single frequency pulses. The width and shape of the mode selection region, and the dependence of the gain-switched spike buildup time and the pulse shapes on the intensity and detuning frequency of the injected radiation are reported. Comparisons of the experimental results with previously reported mode selection behavior are discussed.

  1. Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braecher, T.; Sebastian, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern

    2013-04-01

    We present the generation of propagating backward volume (BV) spin waves in a T shaped Ni{sub 81}Fe{sub 19} microstructure. These waves are created from counterpropagating Damon Eshbach spin waves, which are excited using microstrip antennas. By employing Brillouin light scattering microscopy, we show how the phase relation between the counterpropagating waves determines the mode generated in the center of the structure, and prove its propagation inside the longitudinally magnetized part of the T shaped microstructure. This gives access to the effective generation of backward volume spin waves with full control over the generated transverse mode.

  2. High sensitive nonlinear modulation magnetoelectric magnetic sensors with a magnetostrictive metglas structure based on bell-shaped geometry

    NASA Astrophysics Data System (ADS)

    Ma, Jiashuai; Jiao, Jie; Fang, Cong; Zhao, Xiangyong; Luo, Haosu

    2016-05-01

    In this paper both linear and nonlinear magnetoelectric (ME) effects have been investigated intensively. In order to obtain magnetic amplification, we fabricated 3 multi-push-pull mode magnetoelectric laminated composites metglas/PMNT/metglas based on dumbbell-shaped metglas. The linear magnetoelectric charge coefficient is enhanced to 2600 pC/Oe at 2 Hz based on dumbbell-shaped metglas and it increases as the end-flange width of the dumbbell-shaped metglas increases at 2 Hz, respectively. Based on these 3 ME composites, we establish an active mode nonlinear modulation system for ME magnetic sensor, the sensitivity of which are enhanced to 80, 100 and 102 pT / √ Hz at 1 Hz for the composites with the end-flange width 20, 15 and 10 mm, respectively, via nonlinear ME modulation method. Strain distribution simulations illustrate the theoretically accurate amplification of the dumbbell-shaped geometry. The center strains of 3 dumbbell-shaped metglas decrease as the width of end-flanges decreases

  3. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  4. TE modes of UV-laser generated waveguides in a planar polymer chip of parabolic refractive index profile

    NASA Astrophysics Data System (ADS)

    Shams El-Din, M. A.

    2018-04-01

    The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.

  5. Regularized quasinormal modes for plasmonic resonators and open cavities

    NASA Astrophysics Data System (ADS)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  6. Shuttle structural dynamics characteristics: The analysis and verification

    NASA Technical Reports Server (NTRS)

    Modlin, C. T., Jr.; Zupp, G. A., Jr.

    1985-01-01

    The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.

  7. Imaging nanoclusters in the constant height mode of the dynamic SFM.

    PubMed

    Barth, Clemens; Pakarinen, Olli H; Foster, Adam S; Henry, Claude R

    2006-04-14

    For the first time, high quality images of metal nanoclusters which were recorded in the constant height mode of a dynamic scanning force microscope (dynamic SFM) are shown. Surfaces of highly ordered pyrolytic graphite (HOPG) were used as a test substrate since metal nanoclusters with well defined and symmetric shapes can be created by epitaxial growth. We performed imaging of gold clusters with sizes between 5 and 15 nm in both scanning modes, constant Δf mode and constant height mode, and compared the image contrast. We notice that clusters in constant height images appear much sharper, and exhibit more reasonable lateral shapes and sizes in comparison to images recorded in the constant Δf mode. With the help of numerical simulations we show that only a microscopically small part of the tip apex (nanotip) is probably the main contributor for the image contrast formation. In principle, the constant height mode can be used for imaging surfaces of any material, e.g. ionic crystals, as shown for the system Au/NaCl(001).

  8. Damage methodology approach on a composite panel based on a combination of Fringe Projection and 2D Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Felipe-Sesé, Luis; Díaz, Francisco A.

    2018-02-01

    The recent improvement in accessibility to high speed digital cameras has enabled three dimensional (3D) vibration measurements employing full-field optical techniques. Moreover, there is a need to develop a cost-effective and non-destructive testing method to quantify the severity of damages arising from impacts and thus, enhance the service life. This effect is more interesting in composite structures since possible internal damage has low external manifestation. Those possible damages have been previously studied experimentally by using vibration testing. Namely, those analyses were focused on variations in the modal frequencies or, more recently, mode shapes variations employing punctual accelerometers or vibrometers. In this paper it is presented an alternative method to investigate the severity of damage on a composite structure and how the damage affects to its integrity through the analysis of the full field modal behaviour. In this case, instead of punctual measurements, displacement maps are analysed by employing a combination of FP + 2D-DIC during vibration experiments in an industrial component. In addition, to analyse possible mode shape changes, differences between damaged and undamaged specimens are studied by employing a recent methodology based on Adaptive Image Decomposition (AGMD) procedure. It will be demonstrated that AGMD Image decomposition procedure, which decompose the displacement field into shape descriptors, is capable to detect and quantify the differences between mode shapes. As an application example, the proposed approach has been evaluated on two large industrial components (car bonnets) made of short-fibre reinforced composite. Specifically, the evolution of normalized AGMD shape descriptors has been evaluated for three different components with different damage levels. Results demonstrate the potential of the presented approach making it possible to measure the severity of a structural damage by evaluating the mode shape based in the analysis of its shape descriptors.

  9. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  10. Beam shaping to improve the free-electron laser performance at the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y.; Bane, K. L. F.; Colocho, W.

    2016-10-27

    A new operating mode has been developed for the Linac Coherent Light Source (LCLS) in which we shape the longitudinal phase space of the electron beam. This mode of operation is realized using a horizontal collimator located in the middle of the first bunch compressor to truncate the head and tail of the beam. With this method, the electron beam longitudinal phase space and current profile are reshaped, and improvement in lasing performance can be realized. As a result, we present experimental studies at the LCLS of the beam shaping effects on the free-electron laser performance.

  11. Evolution of two-dimensional plasma parameters in the plane of the wafer during the E- to H- and H- to E-mode transition in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Park, Il-Seo; Kim, Kyung-Hyun; Kim, Tae-Woo; Kim, Kwan-Youg; Moon, Ho-Jun; Chung, Chin-Wook

    2018-05-01

    The evolution of plasma parameters during the transition from E- to H- and from H- to E-mode is measured at the wafer level two-dimensionally at low and high pressures. The plasma parameters, such as electron density and electron temperature, are obtained through a floating harmonic sideband method. During the E- to H-mode transition, while the electron kinetics remains in the non-local regime at low pressure, the electron kinetics is changed from the non-local to the local regime at high pressure. The two-dimensional profiles of the electron density at two different pressures have similar convex shape despite different electron kinetics. However, in the case of the electron temperature, at high pressure, the profiles of the electron temperature are changed from flat to convex shape. These results can be understood by the diffusion of the plasma to the wafer-level probe. Moreover, between the transition of E to H and reverse H to E, hysteresis is observed even at the wafer level. The hysteresis is clearly shown at high pressure compared to low pressure. This can be explained by a variation of collisional energy loss including effects of electron energy distribution function (bi-Maxwellian, Maxwellian, Druyvesteyn distribution) on the rate constant and multistep ionization of excited state atoms. During the E- to H-mode transition, Maxwellization is caused by increased electron‑electron collisions, which reduces the collisional energy loss at high pressure (Druyvesteyn distribution) and increases it at low pressure (bi-Maxwellian distribution). Thus, the hysteresis is intensified at high pressure because the reduced collisional energy loss leads to higher ionization efficiency.

  12. Information Geometry for Landmark Shape Analysis: Unifying Shape Representation and Deformation

    PubMed Central

    Peter, Adrian M.; Rangarajan, Anand

    2010-01-01

    Shape matching plays a prominent role in the comparison of similar structures. We present a unifying framework for shape matching that uses mixture models to couple both the shape representation and deformation. The theoretical foundation is drawn from information geometry wherein information matrices are used to establish intrinsic distances between parametric densities. When a parameterized probability density function is used to represent a landmark-based shape, the modes of deformation are automatically established through the information matrix of the density. We first show that given two shapes parameterized by Gaussian mixture models (GMMs), the well-known Fisher information matrix of the mixture model is also a Riemannian metric (actually, the Fisher-Rao Riemannian metric) and can therefore be used for computing shape geodesics. The Fisher-Rao metric has the advantage of being an intrinsic metric and invariant to reparameterization. The geodesic—computed using this metric—establishes an intrinsic deformation between the shapes, thus unifying both shape representation and deformation. A fundamental drawback of the Fisher-Rao metric is that it is not available in closed form for the GMM. Consequently, shape comparisons are computationally very expensive. To address this, we develop a new Riemannian metric based on generalized ϕ-entropy measures. In sharp contrast to the Fisher-Rao metric, the new metric is available in closed form. Geodesic computations using the new metric are considerably more efficient. We validate the performance and discriminative capabilities of these new information geometry-based metrics by pairwise matching of corpus callosum shapes. We also study the deformations of fish shapes that have various topological properties. A comprehensive comparative analysis is also provided using other landmark-based distances, including the Hausdorff distance, the Procrustes metric, landmark-based diffeomorphisms, and the bending energies of the thin-plate (TPS) and Wendland splines. PMID:19110497

  13. Renormalization of dijet operators at order 1 /Q 2 in soft-collinear effective theory

    NASA Astrophysics Data System (ADS)

    Goerke, Raymond; Inglis-Whalen, Matthew

    2018-05-01

    We make progress towards resummation of power-suppressed logarithms in dijet event shapes such as thrust, which have the potential to improve high-precision fits for the value of the strong coupling constant. Using a newly developed formalism for Soft-Collinear Effective Theory (SCET), we identify and compute the anomalous dimensions of all the operators that contribute to event shapes at order 1 /Q 2. These anomalous dimensions are necessary to resum power-suppressed logarithms in dijet event shape distributions, although an additional matching step and running of observable-dependent soft functions will be necessary to complete the resummation. In contrast to standard SCET, the new formalism does not make reference to modes or λ-scaling. Since the formalism does not distinguish between collinear and ultrasoft degrees of freedom at the matching scale, fewer subleading operators are required when compared to recent similar work. We demonstrate how the overlap subtraction prescription extends to these subleading operators.

  14. Effects of antiperspirant aluminum percent composition and mode of application on mock microcalcifications in mammography.

    PubMed

    Mesurolle, Benoît; Ceccarelli, Joan; Karp, Igor; Sun, Simon; El-Khoury, Mona

    2014-02-01

    Active ingredients in antiperspirants - namely, aluminum-based complexes - can produce radiopaque particles on mammography, mimicking microcalcifications. The present study was designed to investigate whether the appearance of antiperspirant induced radiopaque particles observed on mammograms is dependent on the percentage of aluminum-based complexes in antiperspirants and/or on their mode of application. A total of 43 antiperspirants with aluminum-based complex percentages ranging between 16% and 25% were tested. Each antiperspirant was applied to a single use plastic shield and then placed on an ultrasound gel pad, simulating breast tissue. Two experiments were performed, comparing antiperspirants based on (1) their percentage of aluminum-based complexes (20 antiperspirants) and (2) their mode of applications (solid, gel, and roll-on) (26 antiperspirants). Two experienced, blinded radiologists read images produced in consensus and assessed the appearance of radiopaque particles based on their density and shape. In experiment 1, there was no statistically significant association between the percent aluminum composition of invisible solid antiperspirants and the density or shape of the radiopaque particles (p-values>0.05). In experiment 2, there was a statistically significant association between the shape of the radiopaque particles and the mode of application of the antiperspirant (p-value=0.0015). Our study suggests that the mammographic appearance of the radiopaque antiperspirant particles is not related to their percent composition of aluminum complexes. However, their mode of application appears to influence the shape of radiopaque particles, solid antiperspirants mimicking microcalcifications the most and roll-on antiperspirants the least. Copyright © 2013. Published by Elsevier Ireland Ltd.

  15. Vocal fold contact patterns based on normal modes of vibration.

    PubMed

    Smith, Simeon L; Titze, Ingo R

    2018-05-17

    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-12-01

    We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

  17. Modal identification of structures by a novel approach based on FDD-wavelet method

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2014-02-01

    An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.

  18. Effect of acoustic radiation on the stability of spherical bubble oscillations

    NASA Astrophysics Data System (ADS)

    Gumerov, Nail A.

    1998-07-01

    A recent analysis of the stability of spherical bubble oscillations shows that the high order shape modes are parametrically unstable with respect to small but finite perturbations [Z. C. Feng and L. G. Leal, J. Fluid Mech. 266, 209 (1994)]. Using a heuristic approach it is shown here that the acoustic radiation due to the liquid compressibility plays an important role in stabilization of the high frequency modes and overall stability of the bubble spherical shape.

  19. A new position measurement system using a motion-capture camera for wind tunnel tests.

    PubMed

    Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok

    2013-09-13

    Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements.

  20. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    PubMed Central

    Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok

    2013-01-01

    Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements. PMID:24064600

  1. Sampling considerations for modal analysis with damping

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Wakin, Michael B.; Gilbert, Anna C.

    2015-03-01

    Structural health monitoring (SHM) systems are critical for monitoring aging infrastructure (such as buildings or bridges) in a cost-effective manner. Wireless sensor networks that sample vibration data over time are particularly appealing for SHM applications due to their flexibility and low cost. However, in order to extend the battery life of wireless sensor nodes, it is essential to minimize the amount of vibration data these sensors must collect and transmit. In recent work, we have studied the performance of the Singular Value Decomposition (SVD) applied to the collection of data and provided new finite sample analysis characterizing conditions under which this simple technique{also known as the Proper Orthogonal Decomposition (POD){can correctly estimate the mode shapes of the structure. Specifically, we provided theoretical guarantees on the number and duration of samples required in order to estimate a structure's mode shapes to a desired level of accuracy. In that previous work, however, we considered simplified Multiple-Degree-Of-Freedom (MDOF) systems with no damping. In this paper we consider MDOF systems with proportional damping and show that, with sufficiently light damping, the POD can continue to provide accurate estimates of a structure's mode shapes. We support our discussion with new analytical insight and experimental demonstrations. In particular, we study the tradeoffs between the level of damping, the sampling rate and duration, and the accuracy to which the structure's mode shapes can be estimated.

  2. Transmuting Common Substances: The Cold Fusion Controversy and the Rhetoric of Science.

    ERIC Educational Resources Information Center

    Thacker, Brad; Stratman, James F.

    1995-01-01

    Explores the relationship among forensic, deliberative, and epideictic modes of rhetoric in the cold fusion controversy. Shows the interactions between three modes of rhetoric. Examines the ways in which the modes have shaped the emerging scientific consensus. Supports Robert Sanders' contention that rhetorical practices interact with scientific…

  3. Dynamics and Embedded Internet of Things Input Shaping Control for Overhead Cranes Transporting Multibody Payloads.

    PubMed

    Peláez, Gerardo; Vaugan, Joshua; Izquierdo, Pablo; Rubio, Higinio; García-Prada, Juan Carlos

    2018-06-04

    Input shaping is an Optimal Control feedforward strategy whose ability to define how and when a flexible dynamical system defined by Ordinary Differential Equations (ODEs) and computer controlled would move into its operative space, without command induced unwanted dynamics, has been exhaustively demonstrated. This work examines the issue of Embedded Internet of Things (IoT) Input Shaping with regard to real time control of multibody oscillatory systems whose dynamics are better described by differential algebraic equations (DAEs). An overhead crane hanging a double link multibody payload has been appointed as a benchmark case; it is a multibody, multimode system. This might be worst scenario to implement Input Shaping. The reasons can be found in the wide array of constraints that arise. Firstly, the reliability of the multibody model was tested on a Functional Mock-Up Interface (FMI) with the two link payload suspended from the trolley by comparing the experimental video tapping signals in time domain faced with the signals extracted from the multibody model. The FFTs of the simulated and the experimental signal contain the same frequency harmonics only with somewhat different power due to the real world light damping in the joints. The application of this approach may be extended to other cases i.e., the usefulness of mobile hydraulic cranes is limited because the payload is supported by an overhead cable under tension that allows oscillation to occur during crane motion. If the payload size is not negligible small when compared with the cable length may introduce an additional oscillatory mode that creates a multibody double pendulum. To give the insight into the double pendulum dynamics by Lagrangian methods two slender rods as payloads are analyzed dealing with the overhead crane and a composite revolute-revolute joint is proposed to model the cable of the hydraulic crane, both assumptions facilitates an affordable analysis. This allows developing a general study of this type of multibody payloads dynamics including its normal modes, modes ratios plus ranges of frequencies expected. Input Shapers were calculated for those multimodes of vibration by convolving Specified Insensitivity (SI) shapers for each mode plus a novel Direct SI-SI shaper well suited to reduce the computational requirements, i.e., the number of the shaper taps, to carry out the convolution sum in real time by the IoT device based on a single microcontroller working as the command generator. Several comparisons are presented for the shaped and unshaped responses using both the multibody model, the experimental FMI set-up and finally a real world hydraulic crane under slewing motion commanded by an analog Joystick connected by two RF modules 802.15.4 to the IoT device that carry out the convolution sum in real time. Input Shaping improves the performances for all the cases.

  4. An Adaptive B-Spline Neural Network and Its Application in Terminal Sliding Mode Control for a Mobile Satcom Antenna Inertially Stabilized Platform.

    PubMed

    Zhang, Xiaolei; Zhao, Yan; Guo, Kai; Li, Gaoliang; Deng, Nianmao

    2017-04-28

    The mobile satcom antenna (MSA) enables a moving vehicle to communicate with a geostationary Earth orbit satellite. To realize continuous communication, the MSA should be aligned with the satellite in both sight and polarization all the time. Because of coupling effects, unknown disturbances, sensor noises and unmodeled dynamics existing in the system, the control system should have a strong adaptability. The significant features of terminal sliding mode control method are robustness and finite time convergence, but the robustness is related to the large switching control gain which is determined by uncertain issues and can lead to chattering phenomena. Neural networks can reduce the chattering and approximate nonlinear issues. In this work, a novel B-spline curve-based B-spline neural network (BSNN) is developed. The improved BSNN has the capability of shape changing and self-adaption. In addition, the output of the proposed BSNN is applied to approximate the nonlinear function in the system. The results of simulations and experiments are also compared with those of PID method, non-singularity fast terminal sliding mode (NFTSM) control and radial basis function (RBF) neural network-based NFTSM. It is shown that the proposed method has the best performance, with reliable control precision.

  5. Fundamental limits on isoplanatic correction with multiconjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Lloyd-Hart, Michael; Milton, N. Mark

    2003-10-01

    We investigate the performance of a general multiconjugate adaptive optics (MCAO) system in which signals from multiple reference beacons are used to drive several deformable mirrors in the optical beam train. Taking an analytic approach that yields a detailed view of the effects of low-order aberration modes defined over the metapupil, we show that in the geometrical optics approximation, N deformable mirrors conjugated to different ranges can be driven to correct these modes through order N with unlimited isoplanatic angle, regardless of the distribution of turbulence along the line of sight. We find, however, that the optimal deformable mirror shapes are functions of target range, so the best compensation for starlight is in general not the correction that minimizes the wave-front aberration in a laser guide beacon. This introduces focal anisoplanatism in the wave-front measurements that can be overcome only through the use of beacons at several ranges. We derive expressions for the number of beacons required to sense the aberration to arbitrary order and establish necessary and sufficient conditions on their geometry for both natural and laser guide stars. Finally, we derive an expression for the residual uncompensated error by mode as a function of field angle, target range, and MCAO system geometry.

  6. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE PAGES

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    2016-02-01

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  7. Laser dissection sampling modes for direct mass spectral analysis [using a hybrid optical microscopy/laser ablation liquid vortex capture/electrospray ionization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Van Berkel, Gary J.

    Here, laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis ofmore » single cells and tissue. Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (4-15 m) even when agglomerated together. Turbid Allium Cepa cells (150 m) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. In conclusion, laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.« less

  8. Dominant modal decomposition method

    NASA Astrophysics Data System (ADS)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  9. Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2017-01-01

    Psychophysical recovery from forward masking was measured in adult cochlear implant users of CochlearTM and Advanced BionicsTM devices, in monopolar and in focused (bipolar and tripolar) stimulation modes, at four electrode sites across the arrays, and at two levels (loudness balanced across modes and electrodes). Results indicated a steeper psychophysical recovery from forward masking in monopolar over bipolar and tripolar modes, modified by differential effects of electrode and level. The interactions between factors varied somewhat across devices. It is speculated that psychophysical recovery from forward masking may be driven by different populations of neurons in the different modes, with a broader stimulation pattern resulting in a greater likelihood of response by healthier and/or faster-recovering neurons within the stimulated population. If a more rapid recovery from prior stimulation reflects responses of neurons not necessarily close to the activating site, the spectral pattern of the incoming acoustic signal may be distorted. These results have implications for speech processor implementations using different degrees of focusing of the electric field. The primary differences in the shape of the recovery function were observed in the earlier portion (between 2 and 45 ms) of recovery, which is significant in terms of the speech envelope. PMID:28682084

  10. Analysis of originating ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Pons Aglio, Alicia; Moreno Zarate, Pedro; Mansurova, Svetlana

    2010-06-01

    We present an advanced approach to describing low-power trains of bright picosecond optical dissipative solitary pulses with an internal frequency modulation in practically important case of exploiting semiconductor heterolaser operating in near-infrared range in the active mode-locking regime. In the chosen schematic arrangement, process of the active mode-locking is caused by a hybrid nonlinear cavity consisting of this heterolaser and an external rather long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and small linear optical losses. Our analysis of shaping dissipative solitary pulses includes three principal contributions associated with the modulated gain, total optical losses, as well as with linear and nonlinear phase shifts. In fact, various trains of the non-interacting to one another optical dissipative solitons appear within simultaneous balance between the second-order dispersion and cubic-law Kerr nonlinearity as well as between active medium gain and linear optical losses in a hybrid cavity. Our specific approach makes possible taking the modulating signals providing non-conventional composite regimes of a multi-pulse active mode-locking. Within our model, a contribution of the appearing nonlinear Ginzburg-Landau operator to the parameters of dissipative solitary pulses is described via exploiting an approximate variational procedure involving the technique of trial functions.

  11. The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. Ph.D. Thesis - Johns Hopkins Univ., 1991

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1991-01-01

    Acoustic emission was interpreted as modes of vibration in plates. Classical plate theory was used to predict dispersion curves for the two fundamental modes and to calculate the shapes of flexural waveforms produced by vertical step function loading. There was good agreement between theoretical and experimental results for aluminum. Composite materials required the use of a higher order plate theory (Reissner-Mindlin) to get good agreement with the measured velocities. Four composite plates with different laminate stacking sequences were studied. The dispersion curves were determined from phase spectra of the time dependent waveforms. Plate modes were shown to be useful for determining the direction of source motion. Aluminum plates were loaded by breaking a pencil lead against their surface. By machining slots at angles to the plane of a plate, the direction in which the force acted was varied. Changing the source motion direction produced regular variations in the waveforms. To demonstrate applicability beyond simple plates, waveforms produced by lead breaks on a thin walled composite tube were also shown to be interpretable as plate modes. The tube design was based on the type of struts proposed for Space Station Freedom's trussed structures.

  12. Thermo-optic characteristics of hybrid polymer/silica microstructured optical fiber: An analytical approach

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar; Sharma, Anurag; Tripathi, Saurabh Mani

    2018-04-01

    Microstructured optical fibers (MOFs) allow a variety of advanced materials to be infiltrated in their air-voids for obtaining the increased fiber functionality, and offering a new versatile platform for developing the compact sensors devices. We aim to investigate the thermal characteristics of high-index core triangular hybrid polymer/silica MOFs with circular air-voids infused with polymer by using the analytical field model [1]. We demonstrate that infiltration of air-voids with polymer, e.g., polydimethylsiloxane (PDMS) can facilitate to tune the fundamental modal properties of MOF such as effective index of the mode, near and the far-field profiles, effective mode area and the numerical aperture over the temperature ranging from 0 °C to 100 °C, for different values of relative air-void ratios. The evolution of the mode shape for a given temperature has been investigated in transition from near-field to far-field regime. We have studied the thermal dependence of splice losses between hybrid MOF and the standard step-index single-mode optical fiber in combination with Fresnel losses. For enhancing the evanescent field interactions, we have evaluated fraction of power associated with fundamental mode of hybrid MOF. We have compared the accuracy of our results with those based on full-vector finite-difference (FD) method, as available in the literature.

  13. A reprogrammable multifunctional chalcogenide guided-wave lens.

    PubMed

    Cao, Tun; Wei, Chen-Wei; Cen, Meng-Jia; Guo, Bao; Kim, Yong-June; Zhang, Shuang; Qiu, Cheng-Wei

    2018-06-05

    The transformation optics (TO) technique, which establishes an equivalence between a curved space and a spatial distribution of inhomogeneous constitutive parameters, has enabled an extraordinary paradigm for manipulating wave propagation. However, extreme constitutive parameters, as well as a static nature, inherently limit the simultaneous achievement of broadband performance, ultrafast reconfigurability and versatile reprogrammable functions. Here, we integrate the TO technique with an active phase-change chalcogenide to achieve a reconfigurable multi-mode guided-wave lens. The lens is made of a Rinehart-shaped curved waveguide with an effective refractive index gradient profile through partially crystallizing Ge2Sb2Te5. Upon changing the bias time of the external voltage imparted to the Ge2Sb2Te5 segments, the refractive index gradient profile can be tuned with a transformative platform for various functions for visible light. The electrically reprogrammable multi-mode guided-wave lens is capable of dynamically acquiring various functionalities with an ultrafast response time. Our findings may offer a significant step forward by providing a universal method to obtain ultrafast and highly versatile guided-wave manipulation, such as in Einstein rings, cloaking, Maxwell fish-eye lenses and Luneburg lenses.

  14. Relativistic stellar stability: Preferred-frame effects

    NASA Technical Reports Server (NTRS)

    Ni, W.

    1973-01-01

    Possible preferred-frame effects on stellar stability were examined and no new instabilities were found. In particular, it is shown that: (1) Although terms linear in the preferred-frame velocity w (time-odd terms, analogous to viscosity and energy generation) change the shapes of the normal modes, their symmetry properties prevent them from changing the characteristic frequencies. Thus, no new vibrational or secular instabilities can occur. (2) Terms quadratic in w do not change either the shapes of the normal modes or the characteristic frequencies for radial pulsations. Thus, they have no influence on radial stability. (3) Terms quadratic in w do change both the normal modes and the characteristic frequencies of nonradial pulsations; but in the limit of a neutral mode these changes vanish. Hence, there is no modification of the criterion for convective stability, i.e., the standard Schwarzschild criterion remains valid.

  15. Free-vibration characteristics of a large split-blanket solar array in a 1-g field

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1976-01-01

    Two methods for studying the free vibration characteristics of a large split blanket solar array in both a 0-g and a 1-g cantilevered configuration are presented. The 0-g configuration corresponds to an in-orbit configuration of the array; the 1-g configuration is a typical ground test configuration. The first method applies the equations of continuum mechanics to determine the mode shapes and frequencies of the array; the second method uses the Rayleigh-Ritz approach. In the Rayleigh-Ritz method the array displacements are represented by string modes and cantilevered beam modes. The results of this investigation are summarized by a series of graphs illustrating the effects of various array parameters on the mode shapes and frequencies of the system. The results of the two methods are also compared in tabular form.

  16. Novel types of surface acoustic wave microreflectors - Performance analysis and simulations

    NASA Astrophysics Data System (ADS)

    Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.

    1990-06-01

    Surface acoustic waves for micrograting reflectors have been characterized. Based on the perturbation theory, eight different types of structures on an acoustic waveguide were analyzed. Results of simulations of all eight types of corrugation structures were evaluated in order to find the least leaky waveguide, the most efficient reflector (with minimum necessary perturbations), and the optimal mode shape for improved performances. General design curves are presented in order to illustrate the behavior of the incident and reflected waves under a variety of structural conditions. Analytic expressions for the calculations of the mode amplitude and mode shape, and for general acoustic corrugations are derived and then the simulations results are presented.

  17. Selective Mode Focusing in a Plate of Arbitrary Shape Applying Time Reversal Mirrors

    DOE PAGES

    Payan, Cedric; Remillieux, Marcel C.; Bas, Pierre-Yves Le; ...

    2017-11-01

    In this study, a time reversal mirror is used to remotely focus symmetric or antisymmetric modes in a plate of arbitrary shape without the need of precise knowledge about material properties and geometry. The addition or subtraction of the forward motions recorded by two laser beams located on both sides of the plate allows, respectively, to focus a symmetric or an antisymmetric mode. The concept is validated using experimental and numerical analysis on an aluminum plate of complex machined geometry which exhibits various thicknesses as well as a bi-materials zone. Finally, the limitations and possible ways to overcome them aremore » then presented.« less

  18. Selective Mode Focusing in a Plate of Arbitrary Shape Applying Time Reversal Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payan, Cedric; Remillieux, Marcel C.; Bas, Pierre-Yves Le

    In this study, a time reversal mirror is used to remotely focus symmetric or antisymmetric modes in a plate of arbitrary shape without the need of precise knowledge about material properties and geometry. The addition or subtraction of the forward motions recorded by two laser beams located on both sides of the plate allows, respectively, to focus a symmetric or an antisymmetric mode. The concept is validated using experimental and numerical analysis on an aluminum plate of complex machined geometry which exhibits various thicknesses as well as a bi-materials zone. Finally, the limitations and possible ways to overcome them aremore » then presented.« less

  19. Monolithic diffraction-limited 976-nm laser based on saddle-shaped photo darkening-free Yb-doped fiber

    NASA Astrophysics Data System (ADS)

    Aleshkina, Svetlana S.; Lipatov, Denis S.; Levchenko, Andrei E.; Medvedkov, Oleg I.; Bobkov, Konstantin K.; Bubnov, Mikhail M.; Guryanov, Alexei N.; Likhachev, Mikhail E.

    2018-02-01

    Monolithic 976 nm laser design based on a newly developed saddle-shaped Yb-doped fiber has been proposed. The fiber has central single-mode part with core diameter of about 12 μm and ultra-thin square-shaped clad with side of about 42x42 μm. At the both ends of the saddle-shaped fiber the core and the clad sizes were adiabatically increased up to 20/(70x70) μm and the fiber could be spliced with standard (80..125 μm clad) passive fibers using commercially available equipment. Single-mode laser at 976 nm based on the developed fiber has been fabricated and photodarkening-free operation with output power of 10.6 W, which is the record high for all-fiber laser schemes, has been demonstrated.

  20. System and method of operating toroidal magnetic confinement devices

    DOEpatents

    Chance, Morrell S.; Jardin, Stephen C.; Stix, Thomas H.; Grimm, deceased, Ray C.; Manickam, Janardhan; Okabayashi, Michio

    1987-01-01

    For toroidal magnetic confinement devices the second region of stability against ballooning modes can be accessed with controlled operation. Under certain modes of operation, the first and second stability regions may be joined together. Accessing the second region of stability is accomplished by forming a bean-shaped plasma and increasing the indentation until a critical value of indentation is reached. A pusher coil, located at the inner-major-radius side of the device, is engaged to form a bean-shaped poloidal cross-section in the plasma.

  1. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  2. Reduced quantum dynamics with arbitrary bath spectral densities: hierarchical equations of motion based on several different bath decomposition schemes.

    PubMed

    Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.

  3. Reduced quantum dynamics with arbitrary bath spectral densities: Hierarchical equations of motion based on several different bath decomposition schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Zhu, Lili; Bai, Shuming

    2014-04-07

    We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less

  4. Development of a pump-turbine runner based on multiobjective optimization

    NASA Astrophysics Data System (ADS)

    Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.

    2014-03-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.

  5. The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Snorrason, D. I.; Hannesdottir, H.

    2018-02-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the evolution of the charged particle density profiles, electron heating mechanism, the electron energy probability function (EEPF), and the ion energy distribution in a single frequency capacitively coupled oxygen discharge, with driving frequency in the range 12-100 MHz. At a low driving frequency and low pressure (5 and 10 mTorr), a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed and the DA-mode dominates the time averaged electron heating. As the driving frequency or pressure are increased, the heating mode transitions into a pure α-mode, where electron heating in the sheath region dominates. At low pressure (5 and 10 mTorr), this transition coincides with a sharp decrease in electronegativity. At low pressure and low driving frequency, the EEPF is concave. As the driving frequency is increased, the number of low energy electrons increases and the relative number of higher energy electrons (>10 eV) increases. At high driving frequency, the EEPF develops a convex shape or becomes bi-Maxwellian.

  6. Qualitative analysis of ultra-short optical dissipative solitary pulses in the actively mode-locked semiconductor heterolasers with an external fiber cavity

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Campos Acosta, Joaquin; Moreno Zarate, Pedro; Pons Aglio, Alicia

    2011-02-01

    An advanced qualitative characterization of simultaneously existing various low-power trains of ultra-short optical pulses with an internal frequency modulation in a distributed laser system based on semiconductor heterostructure is presented. The scheme represents a hybrid cavity consisting of a single-mode heterolaser operating in the active mode-locking regime and an external long single-mode optical fiber exhibiting square-law dispersion, cubic Kerr nonlinearity, and linear optical losses. In fact, we consider the trains of optical dissipative solitons, which appear within double balance between the second-order dispersion and cubic-law nonlinearity as well as between the active-medium gain and linear optical losses in a hybrid cavity. Moreover, we operate on specially designed modulating signals providing non-conventional composite regimes of simultaneous multi-pulse active mode-locking. As a result, the mode-locking process allows shaping regular trains of picosecond optical pulses excited by multi-pulse independent on each other sequences of periodic modulations. In so doing, we consider the arranged hybrid cavity as a combination of a quasi-linear part responsible for the active mode-locking by itself and a nonlinear part determining the regime of dissipative soliton propagation. Initially, these parts are analyzed individually, and then the primarily obtained data are coordinated with each other. Within this approach, a contribution of the appeared cubically nonlinear Ginzburg-Landau operator is analyzed via exploiting an approximate variational procedure involving the technique of trial functions.

  7. A static predictor of seismic demand on frames based on a post-elastic deflected shape

    USGS Publications Warehouse

    Mori, Y.; Yamanaka, T.; Luco, N.; Cornell, C.A.

    2006-01-01

    Predictors of seismic structural demands (such as inter-storey drift angles) that are less time-consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square-root-of-sum-of-squares (SRSS) rule by taking a first-mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post-elastic first-mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single-degree-of-freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third-mode response for long-period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright ?? 2006 John Wiley & Sons, Ltd.

  8. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  9. Modes of elastic plates and shells in water driven by modulated radiation pressure of focused ultrasound

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Daniel, Timothy D.; Abawi, Ahmad T.; Kirsteins, Ivars

    2015-11-01

    The modulated radiation pressure (MRP) of ultrasound has been used for decades to selectively excite low frequency modes associated with surface tension of fluid objects in water. Much less is known about the excitation of low frequency modes of less compliant metallic objects. Here we use MRP of focused ultrasound to excite resonant flexural vibrations of a circular metal plate in water. The source transducer was driven with a double-sideband suppressed carrier voltage as in. The response of the target (detected with a hydrophone) was at twice the modulation frequency and proportional to the square of the drive voltage. Since the radiation pressure of focused beams is spatially localized, mode shapes could be identified by scanning the source along the target while measuring the target's response. Additional measurements were done with an open-ended water-filled copper circular cylindrical shell in which resonant frequencies and mode shapes were also identified. These experiments show how focused ultrasound can be used to identify low-frequency modes of elastic objects without direct contact. Supported by ONR.

  10. Decentralized supply chain network design: monopoly, duopoly and oligopoly competitions under uncertainty

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, Seyed Mohammad; Fahimi, Kaveh; Makui, Ahmad

    2017-12-01

    This paper presents the competitive supply chain network design problem in which n decentralized supply chains simultaneously enter the market with no existing rival chain, shape their networks and set wholesale and retail prices in competitive mode. The customer demand is elastic and price dependent, customer utility function is based on the Hoteling model and the chains produce identical or highly substitutable products. We construct a solution algorithm based on bi-level programming and possibility theory. In the proposed bi-level model, the inner part sets the prices based on simultaneous extra- and Stackleberg intra- chains competitions, and the outer part shapes the networks in cooperative competitions. Finally, we use a real-word study to discuss the effect of the different structures of the competitors on the equilibrium solution. Moreover, sensitivity analyses are conducted and managerial insights are offered.

  11. How Does Mg2+ Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair.

    PubMed

    Halder, Antarip; Roy, Rohit; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2017-07-25

    Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg 2+ , accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg 2+ . This, in conjunction with recently raised doubts regarding some of the Mg 2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg 2+ binding modes for this basepair. Our detailed investigation of Mg 2+ -bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg 2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg 2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg 2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg 2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg 2+ ions in shaping RNA structure, folding and function. Copyright © 2017. Published by Elsevier Inc.

  12. The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.

    2016-02-01

    Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the coastal protection function of vegetation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Michael D.; Dater, Manasi; Whitaker, Ross

    In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in bothmore » groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.« less

  14. High-frequency performance for a spiral-shaped piezoelectric bimorph

    NASA Astrophysics Data System (ADS)

    Huang, Fang Sheng; Feng, Zhi Hua; Ma, Yu Ting; Pan, Qiao Sheng; Zhang, Lian Sheng; Liu, Yong Bin; He, Liang Guo

    2018-04-01

    Piezoelectric cantilever is suitable as an actuator for micro-flapping-wing aircraft. Higher resonant frequency brings about stronger flight energy, and the flight amplitude can be compensated by displacement-amplification mechanism, such as lever. To obtain a higher resonant frequency, straight piezoelectric bimorph was rolled into spiral-shaped piezoelectric bimorph with identical effective length in this study, which is verified in COMSOL simulations. Simulation results show that compared with the straight piezoelectric bimorph, the spiral-shaped piezoelectric bimorph with two turns has higher inherent frequencies (from 204.79 Hz to 504.84 Hz in terms of axial oscillation mode, and from 319.77 Hz to 704.48 Hz in terms of tangential torsional mode). The spiral-shaped piezoelectric bimorph is fabricated by a precise laser cutting process and consists of two turns with effective length of 60 mm, width of 2.5 mm, and thickness of 1.6 mm, respectively. With the excitation voltage of 100 Vpp applying an electric field across the thickness of the bimorph, the tip displacement of the actuator in the axial oscillation and tangential torsional modes are 85 μm and 15 μm, respectively.

  15. A novel L-shaped linear ultrasonic motor operating in a single resonance mode

    NASA Astrophysics Data System (ADS)

    Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu

    2018-01-01

    In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.

  16. Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Xin; Tian, Hao; Zhao, Yang

    2017-10-01

    The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.

  17. Localization noise in deep subwavelength plasmonic devices

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  18. Dynamic characteristics of two new vibration modes of the disk-shell shaped gear

    NASA Astrophysics Data System (ADS)

    Yan, Litang; Qiu, Shijung; Gao, Xiangqung

    1992-10-01

    Two new vibration modes of the disk-shell-shaped big medium gears placed on three separate medium shafts of a turboprop engine have been found. They have the same nodal diameters as the conventional ones, but their frequencies are higher. The tooth ring vibrates both radially and axially and has greater deflection than the gear hub. The resonance of these two new nodal diameter modes is much more dangerous than that of the conventional nodal diameter modes. Moreover, they occur nearly at the upper and the lower bounds of the gear operating speed range. A special detuning method is developed for removing the resonance of these two new modes out of the upper and the lower bounds, respectively, and the effectiveness of the damping rings in this case has been researched. The vibration responses measured on the reductor casing have been then reduced to a quite low level after the damping rings were applied to the three big medium gears.

  19. A novel L-shaped linear ultrasonic motor operating in a single resonance mode.

    PubMed

    Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu

    2018-01-01

    In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.

  20. Resistive instabilities in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, P.H.

    1985-10-01

    Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much moremore » efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.« less

  1. Direct control of transitions between different mode-locking states of a fiber laser

    NASA Astrophysics Data System (ADS)

    Ilday, Fatih; Teamir, Tesfay; Iegorov, Roman; Makey, Ghaith

    Mode-locking corresponds to a far-from-equilibrium steady state of a laser, whereby extremely short pulses can be produced. Capability to directly control mode-locking states can be used to improve laser performance with numerous applications, as well as shed light on their far-from-equilibrium physics using the laser as an experimental platform. Here, we demonstrate direct control of the mode-locking state using spectral pulse shaping by incorporating a spatial light modulator at a Fourier plane inside the cavity of an Yb-doped fiber laser. We show that we can halt and restart mode-locking, suppress instabilities, induce controlled reversible and irreversible transitions between mode-locking states, and perform advanced pulse shaping on pulses as short as 40 fs. This capability can be used to experimentally investigate bifurcations, reversible and irreversible transitions, by selecting, steering, and even competing various mode-locking states. Such studies can explore collective dynamics of dissipative soliton molecules, and ultimately test emerging theories about far-from-equilibrium physics, where there is an acute lack of experimental systems that are sufficiently well controlled. ERC CoG 617521, TUBITAK 113F319.

  2. Correlations among void shape distributions, dynamic damage mode, and loading kinetics [Correlations among spall void shape distributions, damage mode and shock loading kinetics

    DOE PAGES

    Brown, A. D.; Pham, Q.; Fortin, E. V.; ...

    2016-11-10

    Here, three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipientmore » transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourabh K.

    Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less

  4. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration

    NASA Astrophysics Data System (ADS)

    Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.

    2018-04-01

    Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.

  5. Temporal shaping of quantum states released from a superconducting cavity memory

    NASA Astrophysics Data System (ADS)

    Burkhart, L.; Axline, C.; Pfaff, W.; Zou, C.; Zhang, M.; Narla, A.; Frunzio, L.; Devoret, M. H.; Jiang, L.; Schoelkopf, R. J.

    State transfer and entanglement distribution are essential primitives in network-based quantum information processing. We have previously demonstrated an interface between a quantum memory and propagating light fields in the microwave domain: by parametric conversion in a single Josephson junction, we have coherently released quantum states from a superconducting cavity resonator into a transmission line. Protocols for state transfer mediated by propagating fields typically rely on temporal mode-matching of couplings at both sender and receiver. However, parametric driving on a single junction results in dynamic frequency shifts, raising the question of whether the pumps alone provide enough control for achieving this mode-matching. We show, in theory and experiment, that phase and amplitude shaping of the parametric drives allows arbitrary control over the propagating field, limited only by the drives bandwidth and amplitude constraints. This temporal mode shaping technique allows for release and capture of quantum states, providing a credible route towards state transfer and entanglement generation in quantum networks in which quantum states are stored and processed in cavities.

  6. Normal response function method for mass and stiffness matrix updating using complex FRFs

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Modak, S. V.

    2012-10-01

    Quite often a structural dynamic finite element model is required to be updated so as to accurately predict the dynamic characteristics like natural frequencies and the mode shapes. Since in many situations undamped natural frequencies and mode shapes need to be predicted, it has generally been the practice in these situations to seek updating of only mass and stiffness matrix so as to obtain a reliable prediction model. Updating using frequency response functions (FRFs) has been one of the widely used approaches for updating, including updating of mass and stiffness matrices. However, the problem with FRF based methods, for updating mass and stiffness matrices, is that these methods are based on use of complex FRFs. Use of complex FRFs to update mass and stiffness matrices is not theoretically correct as complex FRFs are not only affected by these two matrices but also by the damping matrix. Therefore, in situations where updating of only mass and stiffness matrices using FRFs is required, the use of complex FRFs based updating formulation is not fully justified and would lead to inaccurate updated models. This paper addresses this difficulty and proposes an improved FRF based finite element model updating procedure using the concept of normal FRFs. The proposed method is a modified version of the existing response function method that is based on the complex FRFs. The effectiveness of the proposed method is validated through a numerical study of a simple but representative beam structure. The effect of coordinate incompleteness and robustness of method under presence of noise is investigated. The results of updating obtained by the improved method are compared with the existing response function method. The performance of the two approaches is compared for cases of light, medium and heavily damped structures. It is found that the proposed improved method is effective in updating of mass and stiffness matrices in all the cases of complete and incomplete data and with all levels and types of damping.

  7. Interplay between protons and electrons in a firehose-unstable plasma: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Maneva, Yana

    2017-04-01

    Kinetic plasma instabilities originating from unstable, non-Maxwellian shapes of the velocity distribution functions serve as internal degrees of freedom in plasma dynamics, and play an important role near solar current sheets and in solar wind plasmas. In the presence of strong temperature anisotropy (different thermal spreads in the velocity space with respect to the mean magnetic field), plasmas are unstable either to the firehose mode or to the mirror mode in the case of predominant parallel and perpendicular temperatures, respectively. The growth rates of these instabilities and their thresholds depend on plasma properties, such as the temperature anisotropy and the plasma beta. The physics of the temperature anisotropy-driven instabilities becomes even more diverse for various shapes of velocity distribution functions and the particle species of interest. Recent studies based on a linear instability analysis show an interplay in the firehose instability between protons and electrons when the both types of particle species are prone to unstable velocity distribution functions and their instability thresholds. In this work we perform for the first time 3D nonlinear PIC (particle-in-cell) numerical simulations to test for the linear-theory prediction of the simultaneous proton-electron firehose instability. The simulation setup allows us not only to evaluate the growth rate of each firehose instability, but also to track its nonlinear evolution and the related wave-particle interactions such as the pitch-angle scattering or saturation effects. The specialty of our simulation is that the magnetic and electric fields have a low numerical noise level by setting a sufficiently large number of super-particles into the simulation box and enhancing the statistical significance of the velocity distribution functions. We use the iPIC3D code with fully periodic boundaries under various conditions of the electron-to-proton mass ratio, which gives insight into the instability interplay at the intermediate electron-proton and on the scaling of our results towards more realistic particle settings.

  8. Manifestation of two-channel nonlocal spin transport in the shapes of Hanle curves

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Prestgard, M. C.; Tiwari, A.; Mishchenko, E. G.; Raikh, M. E.

    2014-09-01

    The dynamics of charge-density fluctuations in a system of two tunnel-coupled wires contains two diffusion modes with dispersion iω =Dq2 and iω =Dq2+2/τt, where D is the diffusion coefficient and τt is the tunneling time between the wires. The dispersion of corresponding spin-density modes depends on magnetic field as a result of the spin precession with Larmour frequency ωL. The presence of two modes affects the shape of the Hanle curve describing the spin-dependent resistance R between the ferromagnetic strips covering the nonmagnetic wires. We demonstrate that the relative shapes of the R (ωL) curves, one measured within the same wire and the other measured between the wires, depends on the ratio τt/τs, where τs is the spin-diffusion time. If the coupling between the wires is local, i.e., only at the point x =0, then the difference of the shapes of intrawire and interwire Hanle curves reflects the difference in statistics of diffusive trajectories, which "switch" or do not switch near x =0. When one of the coupled wires is bent into a loop with a radius a, the shape of the Hanle curve reflects the statistics of random walks on the loop. This statistics is governed by the dimensionless parameter a /√Dτs .

  9. Explosive magnetic reconnection caused by an X-shaped current-vortex layer in a collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, M.; Hattori, Y.; Morrison, P. J.

    2015-05-15

    A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this model for an unprecedentedly small electron skin depth d{sub e} and ion-sound gyroradius ρ{sub s}, satisfying d{sub e}=ρ{sub s}, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly found that the explosive widening of the X-shaped layer occurs locally aroundmore » the reconnection point with the length of the X shape being shorter than the domain length and the wavelength of the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tearing eigenmode with a shorter wavelength than the domain length. This theoretical model proves that the local reconnection can release the magnetic energy more efficiently than the global one and the estimated scaling of the explosive growth rate agrees well with the simulation results.« less

  10. Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models.

    PubMed

    Shen, Kai-kai; Fripp, Jurgen; Mériaudeau, Fabrice; Chételat, Gaël; Salvado, Olivier; Bourgeat, Pierrick

    2012-02-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually described using statistical shape models (SSMs). Conventional SSMs model the modes of variations among the population via principal component analysis (PCA). Although these modes are representative of variations within the training data, they are not necessarily discriminative on labeled data or relevant to the differences between the subpopulations. We use the shape descriptors from SSM as features to classify AD from normal control (NC) cases. In this study, a Hotelling's T2 test is performed to select a subset of landmarks which are used in PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances with bagged support vector machines (SVMs). Restricting the model to landmarks with better separation between AD and NC increases the discrimination power of SSM. The predictors extracted on the subregions also showed stronger correlation with the memory-related measurements such as Logical Memory, Auditory Verbal Learning Test (AVLT) and the memory subscores of Alzheimer Disease Assessment Scale (ADAS). Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  11. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  12. Equivalent orthotropic elastic moduli identification method for laminated electrical steel sheets

    NASA Astrophysics Data System (ADS)

    Saito, Akira; Nishikawa, Yasunari; Yamasaki, Shintaro; Fujita, Kikuo; Kawamoto, Atsushi; Kuroishi, Masakatsu; Nakai, Hideo

    2016-05-01

    In this paper, a combined numerical-experimental methodology for the identification of elastic moduli of orthotropic media is presented. Special attention is given to the laminated electrical steel sheets, which are modeled as orthotropic media with nine independent engineering elastic moduli. The elastic moduli are determined specifically for use with finite element vibration analyses. We propose a three-step methodology based on a conventional nonlinear least squares fit between measured and computed natural frequencies. The methodology consists of: (1) successive augmentations of the objective function by increasing the number of modes, (2) initial condition updates, and (3) appropriate selection of the natural frequencies based on their sensitivities on the elastic moduli. Using the results of numerical experiments, it is shown that the proposed method achieves more accurate converged solution than a conventional approach. Finally, the proposed method is applied to measured natural frequencies and mode shapes of the laminated electrical steel sheets. It is shown that the method can successfully identify the orthotropic elastic moduli that can reproduce the measured natural frequencies and frequency response functions by using finite element analyses with a reasonable accuracy.

  13. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification

    PubMed Central

    Fang, Pengfei; Guo, Min

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories. PMID:26670257

  14. Dual ant colony operational modal analysis parameter estimation method

    NASA Astrophysics Data System (ADS)

    Sitarz, Piotr; Powałka, Bartosz

    2018-01-01

    Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.

  15. Magnetic susceptibility and spin-lattice interactions in U1-xPuxO2 single crystals

    NASA Astrophysics Data System (ADS)

    Kolberg, D.; Wastin, F.; Rebizant, J.; Boulet, P.; Lander, G. H.; Schoenes, J.

    2002-12-01

    Single crystals of mixed uranium-plutonium dioxides have been grown by means of a chemical vapor transport reaction and characterized by x-ray diffraction on bulk and powdered single crystals. Magnetization and susceptibility data were taken using a commercial superconducting quantum interference device. Characteristic ordering temperatures have been determined as well as paramagnetic Curie temperatures and effective magnetic moments. Departures of the reciprocal susceptibility as a function of temperature from linearity have been treated in detail based on a model of vibronic interactions introduced to explain the gross features of susceptibility measurements on thorium-diluted UO2 [Sasaki and Obata, J. Phys. Soc. Jpn. 28, 1157 (1970)]. The influence of spin-lattice interactions causes a certain shape of the observed 1/χ vs T curves from which we are able to suggest different mechanisms for the interactions as a function of the constituent’s concentrations. From our susceptibility measurements characteristic parameters have been calculated using a model of tetragonal vibrational modes of the oxygen cage surrounding each uranium ion. These include specific coupling parameters G, mode characteristic temperatures Tω, and molecular-field constants λ.

  16. SU-F-BRB-16: A Spreadsheet Based Automatic Trajectory GEnerator (SAGE): An Open Source Tool for Automatic Creation of TrueBeam Developer Mode Robotic Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etmektzoglou, A; Mishra, P; Svatos, M

    Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomesmore » available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly translate research ideas into machine readable scripts without programming knowledge. As an open source initiative, it also enables researcher collaboration on future developments. I am a full time employee at Varian Medical Systems, Palo Alto, California.« less

  17. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes

    PubMed Central

    Tiwari, Sandhya P.; Reuter, Nathalie

    2016-01-01

    The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design. PMID:27015412

  18. Deterministic control of radiative processes by shaping the mode field

    NASA Astrophysics Data System (ADS)

    Pellegrino, D.; Pagliano, F.; Genco, A.; Petruzzella, M.; van Otten, F. W.; Fiore, A.

    2018-04-01

    Quantum dots (QDs) interacting with confined light fields in photonic crystal cavities represent a scalable light source for the generation of single photons and laser radiation in the solid-state platform. The complete control of light-matter interaction in these sources is needed to fully exploit their potential, but it has been challenging due to the small length scales involved. In this work, we experimentally demonstrate the control of the radiative interaction between InAs QDs and one mode of three coupled nanocavities. By non-locally moulding the mode field experienced by the QDs inside one of the cavities, we are able to deterministically tune, and even inhibit, the spontaneous emission into the mode. The presented method will enable the real-time switching of Rabi oscillations, the shaping of the temporal waveform of single photons, and the implementation of unexplored nanolaser modulation schemes.

  19. Nonlinear finite element formulation for the large displacement analysis in multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rismantab-Sany, J.; Chang, B.; Shabana, A. A.

    1989-01-01

    A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.

  20. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle

    PubMed Central

    Boëda, Batiste; El-Amraoui, Aziz; Bahloul, Amel; Goodyear, Richard; Daviet, Laurent; Blanchard, Stéphane; Perfettini, Isabelle; Fath, Karl R.; Shorte, Spencer; Reiners, Jan; Houdusse, Anne; Legrain, Pierre; Wolfrum, Uwe; Richardson, Guy; Petit, Christine

    2002-01-01

    Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia. PMID:12485990

  1. Interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Da-Shuai; Wu, Ge; Gao, Bo; Tian, Xiao-Jian

    2013-01-01

    We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the inter-cavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.

  2. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    PubMed

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  3. Theoretical analysis of a ceramic plate thickness-shear mode piezoelectric transformer.

    PubMed

    Xu, Limei; Zhang, Ying; Fan, Hui; Hu, Junhui; Yang, Jiashi

    2009-03-01

    We perform a theoretical analysis on a ceramic plate piezoelectric transformer operating with thickness-shear modes. Mindlin's first-order theory of piezoelectric plates is employed, and a forced vibration solution is obtained. Transforming ratio, resonant frequencies, and vibration mode shapes are calculated, and the effects of plate thickness and electrode dimension are examined.

  4. Optical measurement of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1990-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  5. Partitioning of a Falling Droplet's Energy After Surface Impact

    NASA Astrophysics Data System (ADS)

    Kern, Vanessa; Steen, Paul

    2017-11-01

    Understanding energy partitioning post-impact is a first step to understanding immersive flow-forming processes. Here we investigate the partitioning of kinetic energy into surface energies for capillary water droplets falling onto homogeneous prepared hydrophilic, hydrophobic and super-hydrophobic surfaces. We analyze high-speed images of the impact event. Pre-impact Weber numbers range from 0-15. After impact and initial spreading, the droplet's contact line pins. After pinning, there is a slow decay to the rest state. During this underdamped decay, the droplet's remaining kinetic energy partitions into a linear combination of mode shape energies. These mode shapes and their frequencies correspond to those of pinned sessile droplets from theory. The influence of impact energy on modes excited will be discussed.

  6. Optimal placement of tuning masses for vibration reduction in helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.

    1988-01-01

    Described are methods for reducing vibration in helicopter rotor blades by determining optimum sizes and locations of tuning masses through formal mathematical optimization techniques. An optimization procedure is developed which employs the tuning masses and corresponding locations as design variables which are systematically changed to achieve low values of shear without a large mass penalty. The finite-element structural analysis of the blade and the optimization formulation require development of discretized expressions for two performance parameters: modal shaping parameter and modal shear amplitude. Matrix expressions for both quantities and their sensitivity derivatives are developed. Three optimization strategies are developed and tested. The first is based on minimizing the modal shaping parameter which indirectly reduces the modal shear amplitudes corresponding to each harmonic of airload. The second strategy reduces these amplitudes directly, and the third strategy reduces the shear as a function of time during a revolution of the blade. The first strategy works well for reducing the shear for one mode responding to a single harmonic of the airload, but has been found in some cases to be ineffective for more than one mode. The second and third strategies give similar results and show excellent reduction of the shear with a low mass penalty.

  7. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  8. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  9. [Myocardial perfusion imaging by digital subtraction angiography].

    PubMed

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Singular observation of the polarization-conversion effect for a gammadion-shaped metasurface

    PubMed Central

    Lin, Chu-En; Yen, Ta-Jen; Yu, Chih-Jen; Hsieh, Cheng-Min; Lee, Min-Han; Chen, Chii-Chang; Chang, Cheng-Wei

    2016-01-01

    In this article, the polarization-conversion effects of a gammadion-shaped metasurface in transmission and reflection modes are discussed. In our experiment, the polarization-conversion effect of a gammadion-shaped metasurface is investigated because of the contribution of the phase and amplitude anisotropies. According to our experimental and simulated results, the polarization property of the first-order transmitted diffraction is dominated by linear anisotropy and has weak depolarization; the first-order reflected diffraction exhibits both linear and circular anisotropies and has stronger depolarization than the transmission mode. These results are different from previously published research. The Mueller matrix ellipsometer and polar decomposition method will aid in the investigation of the polarization properties of other nanostructures. PMID:26915332

  11. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  12. Differing Roles of Functional Movement Variability as Experience Increases in Gymnastics

    PubMed Central

    Busquets, Albert; Marina, Michel; Davids, Keith; Angulo-Barroso, Rosa

    2016-01-01

    Current theories, like Ecological Dynamics, propose that inter-trial movement variability is functional when acquiring or refining movement coordination. Here, we examined how age-based experience levels of gymnasts constrained differences in emergent movement pattern variability during task performance. Specifically, we investigated different roles of movement pattern variability when gymnasts in different age groups performed longswings on a high bar, capturing the range of experience from beginner to advanced status. We also investigated the functionality of the relationships between levels of inter-trial variability and longswing amplitude during performance. One-hundred and thirteen male gymnasts in five age groups were observed performing longswings (with three different experience levels: beginners, intermediates and advanced performers). Performance was evaluated by analysis of key events in coordination of longswing focused on the arm-trunk and trunk-thigh segmental relations. Results revealed that 10 of 18 inter-trial variability measures changed significantly as a function of increasing task experience. Four of ten variability measures conformed to a U-shaped function with age implying exploratory strategies amongst beginners and functional adaptive variability amongst advanced performers. Inter-trial variability of arm-trunk coordination variables (6 of 10) conformed to a \\-shaped curve, as values were reduced to complete the longswings. Changes in coordination variability from beginner to intermediate status were largely restrictive, with only one variability measure related to exploration. Data revealed how inter-trial movement variability in gymnastics, relative to performance outcomes, needs careful interpretation, implying different roles as task experience changes. Key points Inter-trial variability while performing longswings on a high bar was assessed in a large sample (113 participants) divided into five age groups (form beginners to advanced gymnasts). Longswing assessment allowed us to evaluate inter-trial variability in representative performance context. Coordination variability presented two different configurations across experience levels depending on the variable of interest: either a U-shaped or a L- or \\-shaped graph. Increased inter-trial variability of the functional phase events offered flexibility to adapt the longswing performance in the advanced gymnasts, while decreasing variability in arm-trunk coordination modes was critical to improve longswing and to achieve the most advanced level. In addition, the relationship between variability measures and the global performance outcome (i.e. the swing amplitude) revealed different functional roles of movement variability (exploratory or restrictive) as a function of changes in experience levels. PMID:27274664

  13. Shape information from glucose curves: Functional data analysis compared with traditional summary measures

    PubMed Central

    2013-01-01

    Background Plasma glucose levels are important measures in medical care and research, and are often obtained from oral glucose tolerance tests (OGTT) with repeated measurements over 2–3 hours. It is common practice to use simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures, and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore the clinical usefulness of such information. Methods OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data. The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal component analysis. The resultant functional principal component (FPC) scores were compared with commonly used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by regression analyses of glucose tolerance later in pregnancy. Results Over 99% of the variation between individually fitted curves was expressed in the first three FPCs, interpreted physiologically as “general level” (FPC1), “time to peak” (FPC2) and “oscillations” (FPC3). FPC1 scores correlated strongly with AUC (r=0.999), but less with the other simple summary measures (−0.42≤r≤0.79). FPC2 scores gave shape information not captured by simple summary measures (−0.12≤r≤0.40). FPC2 scores, but not FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational diabetes later in pregnancy. Conclusions FDA of OGTT glucose curves in early pregnancy extracted shape information that was not identified by commonly used simple summary measures. This information discriminated between women with and without gestational diabetes later in pregnancy. PMID:23327294

  14. Shape information from glucose curves: functional data analysis compared with traditional summary measures.

    PubMed

    Frøslie, Kathrine Frey; Røislien, Jo; Qvigstad, Elisabeth; Godang, Kristin; Bollerslev, Jens; Voldner, Nanna; Henriksen, Tore; Veierød, Marit B

    2013-01-17

    Plasma glucose levels are important measures in medical care and research, and are often obtained from oral glucose tolerance tests (OGTT) with repeated measurements over 2-3  hours. It is common practice to use simple summary measures of OGTT curves. However, different OGTT curves can yield similar summary measures, and information of physiological or clinical interest may be lost. Our mean aim was to extract information inherent in the shape of OGTT glucose curves, compare it with the information from simple summary measures, and explore the clinical usefulness of such information. OGTTs with five glucose measurements over two hours were recorded for 974 healthy pregnant women in their first trimester. For each woman, the five measurements were transformed into smooth OGTT glucose curves by functional data analysis (FDA), a collection of statistical methods developed specifically to analyse curve data. The essential modes of temporal variation between OGTT glucose curves were extracted by functional principal component analysis. The resultant functional principal component (FPC) scores were compared with commonly used simple summary measures: fasting and two-hour (2-h) values, area under the curve (AUC) and simple shape index (2-h minus 90-min values, or 90-min minus 60-min values). Clinical usefulness of FDA was explored by regression analyses of glucose tolerance later in pregnancy. Over 99% of the variation between individually fitted curves was expressed in the first three FPCs, interpreted physiologically as "general level" (FPC1), "time to peak" (FPC2) and "oscillations" (FPC3). FPC1 scores correlated strongly with AUC (r=0.999), but less with the other simple summary measures (-0.42≤r≤0.79). FPC2 scores gave shape information not captured by simple summary measures (-0.12≤r≤0.40). FPC2 scores, but not FPC1 nor the simple summary measures, discriminated between women who did and did not develop gestational diabetes later in pregnancy. FDA of OGTT glucose curves in early pregnancy extracted shape information that was not identified by commonly used simple summary measures. This information discriminated between women with and without gestational diabetes later in pregnancy.

  15. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.

    PubMed

    Zu, Shuai; Han, Tianyang; Jiang, Meiling; Lin, Feng; Zhu, Xing; Fang, Zheyu

    2018-04-24

    The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

  16. Field mappers for laser material processing

    NASA Astrophysics Data System (ADS)

    Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy

    2016-03-01

    The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.

  17. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement

    PubMed Central

    Darby, John; Costen, Nicholas; Loram, Ian D.

    2012-01-01

    To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. PMID:22033532

  18. Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Acree, Cecil W.

    2014-01-01

    Optimization of tilt-rotor systems requires the consideration of performance at multiple design points. In the current study, an adjoint-based optimization of a tilt-rotor blade is considered. The optimization seeks to simultaneously maximize the rotorcraft figure of merit in hover and the propulsive efficiency in airplane-mode for a tilt-rotor system. The design is subject to minimum thrust constraints imposed at each design point. The rotor flowfields at each design point are cast as steady-state problems in a noninertial reference frame. Geometric design variables used in the study to control blade shape include: thickness, camber, twist, and taper represented by as many as 123 separate design variables. Performance weighting of each operational mode is considered in the formulation of the composite objective function, and a build up of increasing geometric degrees of freedom is used to isolate the impact of selected design variables. In all cases considered, the resulting designs successfully increase both the hover figure of merit and the airplane-mode propulsive efficiency for a rotor designed with classical techniques.

  19. Topologically-protected one-way leaky waves in nonreciprocal plasmonic structures

    NASA Astrophysics Data System (ADS)

    Hassani Gangaraj, S. Ali; Monticone, Francesco

    2018-03-01

    We investigate topologically-protected unidirectional leaky waves on magnetized plasmonic structures acting as homogeneous photonic topological insulators. Our theoretical analyses and numerical experiments aim at unveiling the general properties of these exotic surface waves, and their nonreciprocal and topological nature. In particular, we study the behavior of topological leaky modes in stratified structures composed of a magnetized plasma at the interface with isotropic conventional media, and we show how to engineer their propagation and radiation properties, leading to topologically-protected backscattering-immune wave propagation, and highly directive and tunable radiation. Taking advantage of the non-trivial topological properties of these leaky modes, we also theoretically demonstrate advanced functionalities, including arbitrary re-routing of leaky waves on the surface of bodies with complex shapes, as well as the realization of topological leaky-wave (nano)antennas with isolated channels of radiation that are completely independent and separately tunable. Our findings help shedding light on the behavior of topologically-protected modes in open wave-guiding structures, and may open intriguing directions for future antenna generations based on topological structures, at microwaves and optical frequencies.

  20. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  1. Water-separated ion pairs cause the slow dielectric mode of magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Mamatkulov, Shavkat I.; Rinne, Klaus F.; Buchner, Richard; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-06-01

    We compare the dielectric spectra of aqueous MgSO4 and Na2SO4 solutions calculated from classical molecular dynamics simulations with experimental data, using an optimized thermodynamically consistent sulfate force field. Both the concentration-dependent shift of the static dielectric constant and the spectral shape match the experimental results very well for Na2SO4 solutions. For MgSO4 solutions, the simulations qualitatively reproduce the experimental observation of a slow mode, the origin of which we trace back to the ion-pair relaxation contribution via spectral decomposition. The radial distribution functions show that Mg2+ and SO42 - ions form extensive water-separated—and thus strongly dipolar—ion pairs, the orientational relaxation of which provides a simple physical explanation for the prominent slow dielectric mode in MgSO4 solutions. Remarkably, the Mg2+-SO42 - ion-pair relaxation extends all the way into the THz range, which we rationalize by the vibrational relaxation of tightly bound water-separated ion pairs. Thus, the relaxation of divalent ion pairs can give rise to widely separated orientational and vibrational spectroscopic features.

  2. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  3. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    PubMed

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  4. Ground vibration test of F-16 airplane with initial decoupler pylon

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Kehoe, M. W.

    1984-01-01

    A ground vibration test was conducted on an F-16 airplane loaded on each wing with a 370-gal tank mounted on a standard pylon, a GBU-8 store mounted on a decoupler pylon, and an AIM-9J missile mounted on a wing-tip launcher. The decoupler pylon is a passive wing/store flutter-suppression device. The test was conducted prior to initial flight tests to determine the modal frequencies, mode shapes, and structural damping coefficients. The data presented include frequency response plots, force effect plots, and limited mode shape data.

  5. A multi-damages identification method for cantilever beam based on mode shape curvatures and Kriging surrogate model

    NASA Astrophysics Data System (ADS)

    Xie, Fengle; Jiang, Zhansi; Jiang, Hui

    2018-05-01

    This paper presents a multi-damages identification method for Cantilever Beam. First, the damage location is identified by using the mode shape curvatures. Second, samples of varying damage severities at the damage location and their corresponding natural frequencies are used to construct the initial Kriging surrogate model. Then a particle swarm optimization (PSO) algorithm is employed to identify the damage severities based on Kriging surrogate model. The simulation study of a double-damaged cantilever beam demonstrated that the proposed method is effective.

  6. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  7. Helicopter flight-control design using an H(2) method

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  8. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    PubMed

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  9. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-01-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  10. Nonlinear dynamics of drops and bubbles and chaotic phenomena

    NASA Astrophysics Data System (ADS)

    Trinh, Eugene H.; Leal, L. G.; Feng, Z. C.; Holt, R. G.

    1994-08-01

    Nonlinear phenomena associated with the dynamics of free drops and bubbles are investigated analytically, numerically and experimentally. Although newly developed levitation and measurement techniques have been implemented, the full experimental validation of theoretical predictions has been hindered by interfering artifacts associated with levitation in the Earth gravitational field. The low gravity environment of orbital space flight has been shown to provide a more quiescent environment which can be utilized to better match the idealized theoretical conditions. The research effort described in this paper is a closely coupled collaboration between predictive and guiding theoretical activities and a unique experimental program involving the ultrasonic and electrostatic levitation of single droplets and bubbles. The goal is to develop and to validate methods based on nonlinear dynamics for the understanding of the large amplitude oscillatory response of single drops and bubbles to both isotropic and asymmetric pressure stimuli. The first specific area on interest has been the resonant coupling between volume and shape oscillatory modes isolated gas or vapor bubbles in a liquid host. The result of multiple time-scale asymptotic treatment, combined with domain perturbation and bifurcation methods, has been the prediction of resonant and near-resonant coupling between volume and shape modes leading to stable as well as chaotic oscillations. Experimental investigations of the large amplitude shape oscillation modes of centimeter-size single bubbles trapped in water at 1 G and under reduced hydrostatic pressure, have suggested the possibility of a low gravity experiment to study the direct coupling between these low frequency shape modes and the volume pulsation, sound-radiating mode. The second subject of interest has involved numerical modeling, using the boundary integral method, of the large amplitude shape oscillations of charged and uncharged drops in the presence of a static or time-varying electric field. Theoretically predicted non linearity in the resonant frequency of the fundamental quadrupole mode has been verified by the accompanying experimental studies. Additional phenomena such as hysteresis in the frequency response of ultrasoncially levitated droplets in the presence of a time varying electric field, and mode coupling in the oscillations of ultrasonically modulated droplets, have also been uncovered. One of the results of this ground-based research has been the identification and characterization of phenomena strictly associated with the influence of the gravitational field. This has also allowed us to identify the specific requirements for potential microgravity investigations yielding new information not obtainable on Earth.

  11. A procedure for damage detection and localization of framed buildings based on curvature variation

    NASA Astrophysics Data System (ADS)

    Ditommaso, Rocco; Carlo Ponzo, Felice; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Domenico; Nigro, Antonella

    2014-05-01

    Structural Health Monitoring and Damage Detection are topics of current interest in civil, mechanical and aerospace engineering. Damage Detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature of the last years. The basic idea arises from the observation that spectral properties, described in terms of the so-called modal parameters (eigenfrequencies, mode shapes, and modal damping), are functions of the physical properties of the structure (mass, energy dissipation mechanisms and stiffness). Structural damage exhibits its main effects in terms of stiffness and damping variation. As a consequence, a permanent dynamic monitoring system makes it possible to detect and, if suitably concentrated on the structure, to localize structural and non-structural damage occurred on the structure during a strong earthquake. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation (NDE) based on the variation of the dynamic behaviour of structures under seismic loads. Pandey et al. (1991) highlighted on the possibility to use the structural mode shapes to extract useful information for structural damage localization. In this paper a new procedure for damage detection on framed structures based on changes in modal curvature is proposed. The proposed approach is based on the use of Stockwell Transform, a special kind of integral transformation that become a powerful tool for nonlinear signal analysis and then to analyse the nonlinear behaviour of a general structure. Using this kind of approach, it is possible to use a band-variable filter (Ditommaso et al., 2012) to extract from a signal recorded on a structure (excited by an earthquake) the response related to a single mode of vibration for which the related frequency changes over time (if the structure is being damaged). İn general, by acting simultaneously in both frequency and time domain, it is possible to use the band-variable filter to extract the dynamic characteristics of a system that evolves over time. Aim of this paper is to show, through practical examples, how it is possible to identify and to localize damage on a structure comparing mode shapes and the related curvature variations over time. It is possible to demonstrate that mode curvature variation is strongly related with the damage occurred on a structure. This paper resumes the main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by different geometric configurations and designed for gravity loads only. The numerical campaign was conducted using both natural and artificial accelerograms compatible with the Italian code. The main results of experimental shaking table tests carried out on a steel framed model are also showed to confirm the effectiveness of the proposed procedure. REFERENCES Ditommaso R., Mucciarelli M., Ponzo F. C. (2012). Analysis of non-stationary structural systems by using a band-variable filter. Bulletin of Earthquake Engineering. Volume 10, Number 3, pp. 895-911. DOI: 10.1007/s10518-012-9338-y. Pandey AK, Biswas M, Samman MM (1991) "Damage detection from changes in curvature mode shapes", Journal of Sound and Vibration, Vol. 145: Issue 2, pp. 321-332.

  12. How Prediction Errors Shape Perception, Attention, and Motivation

    PubMed Central

    den Ouden, Hanneke E. M.; Kok, Peter; de Lange, Floris P.

    2012-01-01

    Prediction errors (PE) are a central notion in theoretical models of reinforcement learning, perceptual inference, decision-making and cognition, and prediction error signals have been reported across a wide range of brain regions and experimental paradigms. Here, we will make an attempt to see the forest for the trees and consider the commonalities and differences of reported PE signals in light of recent suggestions that the computation of PE forms a fundamental mode of brain function. We discuss where different types of PE are encoded, how they are generated, and the different functional roles they fulfill. We suggest that while encoding of PE is a common computation across brain regions, the content and function of these error signals can be very different and are determined by the afferent and efferent connections within the neural circuitry in which they arise. PMID:23248610

  13. Sensitivity of the mode locking phenomenon to geometric imperfections during wrinkling of supported thin films

    DOE PAGES

    Saha, Sourabh K.

    2017-01-11

    Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less

  14. Frequency Response Function Expansion for Unmeasured Translation and Rotation Dofs for Impedance Modelling Applications

    NASA Astrophysics Data System (ADS)

    Avitabile, P.; O'Callahan, J.

    2003-07-01

    Inclusion of rotational effects is critical for the accuracy of the predicted system characteristics, in almost all system modelling studies. However, experimentally derived information for the description of one or more of the components for the system will generally not have any rotational effects included in the description of the component. The lack of rotational effects has long affected the results from any system model development whether using a modal-based approach or an impedance-based approach. Several new expansion processes are described herein for the development of FRFs needed for impedance-based system models. These techniques expand experimentally derived mode shapes, residual modes from the modal parameter estimation process and FRFs directly to allow for the inclusion of the necessary rotational dof. The FRFs involving translational to rotational dofs are developed as well as the rotational to rotational dof. Examples are provided to show the use of these techniques.

  15. Dynamic Analysis of Large In-Space Deployable Membrane Antennas

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Yang, Bingen; Ding, Hongli; Hah, John; Quijano, Ubaldo; Huang, John

    2006-01-01

    This paper presents a vibration analysis of an eight-meter diameter membrane reflectarray antenna, which is composed of a thin membrane and a deployable frame. This analysis process has two main steps. In the first step, a two-variable-parameter (2-VP) membrane model is developed to determine the in-plane stress distribution of the membrane due to pre-tensioning, which eventually yields the differential stiffness of the membrane. In the second step, the obtained differential stiffness is incorporated in a dynamic equation governing the transverse vibration of the membrane-frame assembly. This dynamic equation is then solved by a semi-analytical method, called the Distributed Transfer Function Method (DTFM), which produces the natural frequencies and mode shapes of the antenna. The combination of the 2-VP model and the DTFM provides an accurate prediction of the in-plane stress distribution and modes of vibration for the antenna.

  16. Galileo spacecraft modal test and evaluation of testing techniques

    NASA Technical Reports Server (NTRS)

    Chen, J.-C.

    1984-01-01

    The structural configuration, modal test requirements and pre-test activities involved in modeling the expected dynamic environment and responses of the Galileo spacecraft are discussed. The probe will be Shuttle-launched in 1986 and will gather data on the Jupiter system. Loads analysis for the 5300 lb spacecraft were performed with the NASTRAN code, and covered 10,000 static degrees of freedom and 1600 mass degrees of freedom. A modal analysis will be used to verify the predictions for natural frequencies, mode shapes, orthogonality checks, residual mass, modal damping and forces, and generalized forces. Verification of the validity of considering only 70 natural modes in the numerical simulation is being performed by examining the forcing functions of the analysis. The analysis led to requirements that 162 channels of accelerometer data and 118 channels of strain gage data be recorded during shaker tests to reveal areas where design changes will be needed to eliminate vibration peaks.

  17. Analysis of ballistic transport in nanoscale devices by using an accelerated finite element contact block reduction approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Li, G., E-mail: gli@clemson.edu

    2014-08-28

    An accelerated Finite Element Contact Block Reduction (FECBR) approach is presented for computational analysis of ballistic transport in nanoscale electronic devices with arbitrary geometry and unstructured mesh. Finite element formulation is developed for the theoretical CBR/Poisson model. The FECBR approach is accelerated through eigen-pair reduction, lead mode space projection, and component mode synthesis techniques. The accelerated FECBR is applied to perform quantum mechanical ballistic transport analysis of a DG-MOSFET with taper-shaped extensions and a DG-MOSFET with Si/SiO{sub 2} interface roughness. The computed electrical transport properties of the devices obtained from the accelerated FECBR approach and associated computational cost as amore » function of system degrees of freedom are compared with those obtained from the original CBR and direct inversion methods. The performance of the accelerated FECBR in both its accuracy and efficiency is demonstrated.« less

  18. A Sensitive, Multifunctional Spinner Magnetometer Using Magneto-impedance Sensor: a Rapid and Convenient Tool for the Quantification of Inhomogeneity of Magnetization

    NASA Astrophysics Data System (ADS)

    Kodama, K.

    2016-12-01

    A new type of spinner magnetometer with wide dynamic range from 10-7 mAm2 to 10-1 mAm2 and the resolution of 10-8 mAm2 was developed. The high sensitivity was achieved by using magneto-impedance (MI) sensor, a compact, high-performance magnetic sensor used in industrial fields. The slow spinning speed (5 Hz) and the unique mechanism enabling the adjustment of the sample-sensor distance allow measurements of fragile samples in any shape and size. A differential arrangement connecting a pair of the MI sensors in opposite serial reduces external noise and temperature drift. The differential sensor output is transferred to an amplification circuit associated with a programmable low-pass filter. The signal with reference to the spinning frequency is detected with a digital lock-in amplifier. The spinner magnetometer has two selectable measurement modes, the fundamental-mode (F-mode) and the harmonic-mode (H-mode). Measurements in the F-mode detect signals oscillating at the fundamental frequency (5 Hz) as conventional spinner magnetometers do. In the H-mode, additionally, the second (10 Hz) and the third (15 Hz) harmonic components can be measured. Tests in the H-mode were performed using a small coil and changing its position to simulate an offset-dipole. The results demonstrate that the dipole moment of the fundamental component is systematically biased by both quadrupole and octupole components arising in practice from inhomogeneity of magnetization or irregularity of sample shape. This study proposes, combined with theoretical and numerical analyses, quantification of such non-dipole effects and associated errors in the determination of dipole moment of a sample, as well as their correction that may be necessary, for example, when measuring irregular-shaped samples in the proximity of the sensor.

  19. Structural health monitoring on medium rise reinforced concrete building using ambient vibration method

    NASA Astrophysics Data System (ADS)

    Kamarudin, A. F.; Mokhatar, S. N.; Zainal Abidin, M. H.; Daud, M. E.; Rosli, M. S.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Monitoring of structural health from initial stage of building construction to its serviceability is an ideal practise to assess for any structural defects or damages. Structural integrity could be intruded by natural destruction or structural deterioration, and worse if without remedy action on monitoring, building re-assessment or maintenance is taken. In this study the application of ambient vibration (AV) testing is utilized to evaluate the health of eighth stories medium rise reinforced concrete building in Universiti Tun Hussein Onn Malaysia (UTHM), based comparison made between the predominant frequency, fo, determined in year 2012 and 2017. For determination of fo, popular method of Fourier Amplitude Spectra (FAS) was used to transform the ambient vibration time series by using 1 Hz tri-axial seismometer sensors and City SharkII data recorder. From the results, it shows the first mode frequencies from FAS curves indicate at 2.04 Hz in 2012 and 1.97 Hz in 2017 with only 3.14% of frequency reduction. However, steady state frequencies shown at the second and third modes frequencies of 2.42 Hz and 3.31 Hz by both years. Two translation mode shapes were found at the first and second mode frequencies in the North-South (NS-parallel to building transverse axis) and East-West (EsW-parallel to building longitudinal axis) components, and the torsional mode shape shows as the third mode frequency in both years. No excessive deformation amplitude was found at any selective floors based on comparison made between three mode shapes produced, that could bring to potential feature of structural deterioration. Low percentages of natural frequency disparity within five years of duration interval shown by the first mode frequencies under ambient vibration technique was considered in good health state, according to previous researchers recommendation at acceptable percentages below 5 to 10% over the years.

  20. Reconstruction of primordial tensor power spectra from B -mode polarization of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Komatsu, Eiichiro; Hazumi, Masashi; Sasaki, Misao

    2018-06-01

    Given observations of the B -mode polarization power spectrum of the cosmic microwave background (CMB), we can reconstruct power spectra of primordial tensor modes from the early Universe without assuming their functional form such as a power-law spectrum. The shape of the reconstructed spectra can then be used to probe the origin of tensor modes in a model-independent manner. We use the Fisher matrix to calculate the covariance matrix of tensor power spectra reconstructed in bins. We find that the power spectra are best reconstructed at wave numbers in the vicinity of k ≈6 ×10-4 and 5 ×10-3 Mpc-1 , which correspond to the "reionization bump" at ℓ≲6 and "recombination bump" at ℓ≈80 of the CMB B -mode power spectrum, respectively. The error bar between these two wave numbers is larger because of the lack of the signal between the reionization and recombination bumps. The error bars increase sharply toward smaller (larger) wave numbers because of the cosmic variance (CMB lensing and instrumental noise). To demonstrate the utility of the reconstructed power spectra, we investigate whether we can distinguish between various sources of tensor modes including those from the vacuum metric fluctuation and SU(2) gauge fields during single-field slow-roll inflation, open inflation, and massive gravity inflation. The results depend on the model parameters, but we find that future CMB experiments are sensitive to differences in these models. We make our calculation tool available online.

  1. WFIRST Coronagraph Technology Development Testbeds: Status and Recent Testbed Results

    NASA Astrophysics Data System (ADS)

    Shi, Fang; An, Xin; Balasubramanian, Kunjithapatham; cady, eric; Gordon, Brian; Greer, Frank; Kasdin, N. Jeremy; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; mejia prada, camilo; Gersh-Range, Jessica; Eldorado Riggs, A. J.; Seo, Byoung-Joon; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John Terry; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying; JPL WFIRST Testbed Team, Princeton University

    2018-01-01

    As a part of technology development for the WFIRST coronagraph instrument (CGI), dedicated testbeds are built and commissioned at JPL. The coronagraph technology development testbeds include the Occulting Mask Coronagraph (OMC) testbed, the Shaped Pupil Coronagraph/Integral Field Spectrograph (SPC/IFS) testbed, and the Vacuum Surface Gauge (VSG) testbed. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope’s vibration and thermal changes. The SPC/IFS testbed is a dedicated testbed to test the IFS working with a Shaped Pupil Coronagraph while the VSG testbed is for measuring and calibrating the deformable mirrors, a key component used for WFIRST CGI's wavefront control. In this poster, we will describe the testbed functions and status as well as the highlight of the latest testbed results from OMC, SPC/IFS and VSG testbeds.

  2. Self-assembled growth of Au islands on a Mo(110) surface.

    PubMed

    Wawro, A; Sobańska, M; Petroutchik, A; Baczewski, L T; Pankowski, P

    2010-08-20

    The self-assembled growth of epitaxial Au(111) islands on a Mo(110) buffer layer has been investigated as a function of growth temperature and amount of deposited material by reflection high energy electron diffraction and atomic force microscopy. At the growth temperature of 385 degrees C the dendrite-shaped islands coexist with the compact ones. The uniform islands formed at 500 degrees C adopt mostly a shape of truncated pyramids with a well developed (111) top plane and {111} and {100} side facets. As the growth temperature reaches 800 degrees C the Au islands take less regular shapes due to occurrence of coalescence. The averaged area and height of the islands increase with the deposition temperature and the amount of deposited material. The surface density of the islands decreases with increasing temperature. The epitaxial relations at the interface between the Au islands and the Mo buffer determined from the angular dependence of the electron diffraction pattern favour the Nishiyama-Wassermann growth mode. Factors responsible for the island-like growth and possible mechanisms of diffusion are discussed in details.

  3. News on the Scissors Mode

    NASA Astrophysics Data System (ADS)

    Pietralla, N.; Beller, J.; Beck, T.; Derya, V.; Löher, B.; Romig, C.; Savran, D.; Scheck, M.; Tornow, W.; Zweidinger, M.

    2014-09-01

    We report on our recent nuclear resonance fluorescence experiments on l52,l54,l56Gd. Decay branches of the scissors mode to intrinsic excitations are observed. They are interpreted as a new signature for a spherical-to-deformed nuclear shape phase transition.

  4. Computation of structural flexibility for bridge health monitoring using ambient modal data

    DOT National Transportation Integrated Search

    1996-01-01

    The issues surrounding the use of ambient vibration modes for the location of structural damage via dynamically : measured flexibility are examined. Several methods for obtaining the required mass-normalized : dynamic mode shapes from ambient modal d...

  5. Experiment-theory comparison for low frequency BAE modes in the strongly shaped H-1NF stellarator

    DOE PAGES

    Haskey, S. R.; Blackwell, B. D.; Nuhrenberg, C.; ...

    2015-08-12

    Here, recent advances in the modeling, analysis, and measurement of fluctuations have significantly improved the diagnosis and understanding of Alfvén eigenmodes in the strongly shaped H-1NF helical axis stellarator. Experimental measurements, including 3D tomographic inversions of high resolution visible light images, are in close agreement with beta-induced Alfvén eigenmodes (BAEs) calculated using the compressible ideal MHD code, CAS3D. This is despite the low β in H-1NF, providing experimental evidence that these modes can exist due to compression that is induced by the strong shaping in stellarators, in addition to high β, as is the case in tokamaks. This is confirmedmore » using the CONTI and CAS3D codes, which show significant gap structures at lower frequencies which contain BAE and beta-acoustic Alfvén eigenmodes (BAAEs). The BAEs are excited in the absence of a well confined energetic particle source, further confirming previous studies that thermal particles, electrons, or even radiation fluctuations can drive these modes. Datamining of magnetic probe data shows the experimentally measured frequency of these modes has a clear dependence on the rotational transform profile, which is consistent with a frequency dependency due to postulated confinement related temperature variations.« less

  6. International Space Station Model Correlation Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  7. Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications

    PubMed Central

    Ward, Jonathan M.; Yang, Yong; Nic Chormaic, Síle

    2016-01-01

    We describe a novel method for making microbottle-shaped lasers by using a CO2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO2 laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated. PMID:27121151

  8. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes.

    PubMed

    Lisney, Thomas J; Stecyk, Karyn; Kolominsky, Jeffrey; Schmidt, Brian K; Corfield, Jeremy R; Iwaniuk, Andrew N; Wylie, Douglas R

    2013-05-01

    Despite the large body of literature on ecomorphological adaptations to foraging in waterfowl, little attention has been paid to their sensory systems, especially vision. Here, we compare eye shape and retinal topography across 12 species representing 4 different foraging modes. Eye shape was significantly different among foraging modes, with diving and pursuit-diving species having relatively smaller corneal diameters compared to non-diving species. This may be associated with differences in ambient light intensity while foraging or an ability to tightly constrict the pupil in divers in order to facilitate underwater vision. Retinal topography was similar across all species, consisting of an oblique visual streak, a central area of peak cell density, and no discernible fovea. Because the bill faces downwards when the head is held in the normal posture in waterfowl, the visual streak will be held horizontally, allowing the horizon to be sampled with higher visual acuity. Estimates of spatial resolving power were similar among species with only the Canada goose having a higher spatial resolution. Overall, we found no evidence of ecomorphological adaptations to different foraging modes in the retinal ganglion cell layer in waterfowl. Rather, retinal topography in these birds seems to reflect the 'openness' of their habitats.

  9. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  10. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  11. Transient behavior of an actively mode-locked semiconductor laser diode

    NASA Technical Reports Server (NTRS)

    Auyeung, J. C.; Bergman, L. A.; Johnston, A. R.

    1982-01-01

    Experimental investigation was carried out to study the transient regimes during the buildup and decay of the active mode-locked state in a laser diode. The mode locking was achieved through a sinusoidal modulation of the diode current with the laser in an external cavity. The pulse shape evolution and the time constants for the buildup and decay were determined.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Agarwal, Avinash; Saxena, Nupur

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra usingmore » two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.« less

  13. Uniaxial three-dimensional shape measurement with multioperation modes for different modulation algorithms

    NASA Astrophysics Data System (ADS)

    Jing, Hailong; Su, Xianyu; You, Zhisheng

    2017-03-01

    A uniaxial three-dimensional shape measurement system with multioperation modes for different modulation algorithms is proposed. To provide a general measurement platform that satisfies the specific measurement requirements in different application scenarios, a measuring system with multioperation modes based on modulation measuring profilometry (MMP) is presented. Unlike the previous solutions, vertical scanning by focusing control of an electronic focus (EF) lens is implemented. The projection of a grating pattern is based on a digital micromirror device, which means fast phase-shifting with high precision. A field programmable gate array-based master control center board acts as the coordinator of the MMP system; it harmonizes the workflows, such as grating projection, focusing control of the EF lens, and fringe pattern capture. Fourier transform, phase-shifting technique, and temporary Fourier transform are used for modulation analysis in different operation modes. The proposed system features focusing control, speed, programmability, compactness, and availability. This paper details the principle of MMP for multioperation modes and the design of the proposed system. The performances of different operation modes are analyzed and compared, and a work piece with steep holes is measured to verify this multimode MMP system.

  14. Observation and Kinematic Description of Long Actin Tracks Induced by Spherical Beads

    PubMed Central

    Kang, Hyeran; Perlmutter, David S.; Shenoy, Vivek B.; Tang, Jay X.

    2010-01-01

    We report an in vitro study comparing the growth of long actin tails induced by spherical beads coated with the verprolin central acidic domain of the polymerization enzyme N-WASP to that induced by Listeria monocytogenes in similar cellular extracts. The tracks behind the beads show characteristic differences in shape and curvature from those left by the bacteria, which have an elongated shape and a similar polymerization-inducing enzyme distributed only on the rear surface of the cell. The experimental tracks are simulated using a generalized kinematic model, which incorporates three modes of bead rotation with respect to the tail. The results show that the trajectories of spherical beads are mechanically deterministic rather than random, as suggested by stochastic models. Assessment of the bead rotation and its mechanistic basis offers insights into the biological function of actin-based motility. PMID:21044576

  15. Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces

    PubMed Central

    Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun

    2015-01-01

    We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently. PMID:25873323

  16. Combustion Gas Heating Tests of C/C Composites Coated with SiC Layer

    NASA Astrophysics Data System (ADS)

    Sato, Masaki; Moriya, Shin-ichi; Sato, Masahiro; Tadano, Makoto; Kusaka, Kazuo; Hasegawa, Keiichi; Kumakawa, Akinaga; Yoshida, Makoto

    2008-02-01

    In order to examine the applicability of carbon fiber/carbon matrix composites coated with a silicon carbide layer (C/C-SiCs) to an advanced nozzle for the future reusable rocket engines, two series of combustion gas heating tests were conducted using a small rocket combustor. In the first series of heating tests, five different kinds of C/C-SiCs were tested with specimens in the shape of a square plate for material screening. In the second series of heating tests, two selected C/C-SiCs were tested with specimens in the shape of a small nozzle. The effectiveness of an interlayer between a C/C composite and a SiC layer, which was introduced to improve the durability based on the concept of functionally graded materials (FGMs), can be observed. The typical damage mode was also pointed out in the results of heating test using the small nozzle specimens.

  17. Research on damping properties optimization of variable-stiffness plate

    NASA Astrophysics Data System (ADS)

    Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN

    2016-09-01

    This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.

  18. KTX circuit model and discharge waveform prediction

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Lan, T.; Mao, W. Z.; You, W.; Li, H.; Liu, A. D.; Xie, J. L.; Wan, S. D.; Liu, W. D.; Yang, L.; Fu, P.; Xiao, C. J.; Ding, W. X.

    2013-10-01

    The Keda Torus eXperiment (KTX) is a constructing reversed field pinch (RFP) device in University of Science and Technology of China. The KTX power supply system includes the Ohmic heating, field shaping and toroidal power supply systems, which produce the Ohmic field, equilibrium field and toroidal field, respectively. The detailed circuit model will be introduced in this poster. Another purpose is to predict its discharge waveforms using the modified Bessel function mode (MBFM), which describes the evolution of plasma current and magnetic flux in RFP base on Taylor theory. Furthermore, the power supply requirements of external field shaping winding are also predicted in the model, which will be very helpful for the design of plasma equilibrium controlling system. Supported by ITER-China program (No. 2011GB106000), NNSFC (Nos. 10990210, 10990211, 10335060 and 10905057), CPSF (No. 20080440104), YIF (No. WK2030040019) and KIPCAS (No. kjcx-yw-n28).

  19. Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control

    NASA Astrophysics Data System (ADS)

    Naji, Adham; Soliman, Mina H.

    2017-03-01

    Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications.

  20. Micron-scale pattern formation in prestressed polygonal films

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Onck, P. R.

    2011-02-01

    In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the internal eigenstrain by buckling-up, after which the films bond-back to the substrate. After an initial symmetric evolution of the buckling profile, the symmetry of the deflection pattern breaks when the wavelength of wriggles near the film edges decreases. During bond back the deflection morphology converges to a fourfold, fivefold, and sixfold ridging pattern for the square, pentagonal and hexagonal films, respectively, showing a close resemblance with experimental film systems of similar size and shape. Rectangular films of large length to width ratio go through a transition in buckling shapes from the initial Euler mode, through the varicose mode into the antisymmetric telephone-cord mode. For all the film shapes, the ratio of the film height to the effective film width scales with the square root of eigenstrain and is independent of thickness. The bond-back mechanism determines the final wrinkle morphology and is governed by the eigenstrain value at the end of the buckling-up stage and the dimensionless parameter (Γ /EWeq)(Weq/t)3, relating the interface energy to the strain energy in the film.

  1. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  2. Application of Elliptic Fourier Analysis to Describe the Lamina Cribrosa Shape with Age and Intraocular Pressure

    PubMed Central

    Sanfilippo, P.G.; Grimm, J.L.; Flanagan, J.G.; Lathrop, K.L.; Sigal, I.A.

    2014-01-01

    The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47 to 91 years, mean 76 years) fixed at either 5 or 50 mm Hg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric centre of the LC extracted. The outline shape was described using elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC1), or inversely (PC2) related, and superior-inferior asymmetry (PC3). Only PC3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. PMID:25193035

  3. Application of Elliptic Fourier analysis to describe the lamina cribrosa shape with age and intraocular pressure.

    PubMed

    Sanfilippo, P G; Grimm, J L; Flanagan, J G; Lathrop, K L; Sigal, I A

    2014-11-01

    The lamina cribrosa (LC) plays an important biomechanical role in the optic nerve head (ONH). We developed a statistical shape model of the LC and tested if the shape varies with age or IOP. The ONHs of 18 donor eyes (47-91 years, mean 76 years) fixed at either 5 or 50 mmHg of IOP were sectioned, stained, and imaged under a microscope. A 3D model of each ONH was reconstructed and the outline of the vertical sagittal section closest to the geometric center of the LC extracted. The outline shape was described using Elliptic Fourier analysis, and principal components analysis (PCA) employed to identify the primary modes of LC shape variation. Linear mixed effect models were used to determine if the shape measurements were associated with age or IOP. The analysis revealed several modes of shape variation: thickness and depth directly (PC 1), or inversely (PC 2) related, and superior-inferior asymmetry (PC 3). Only PC 3 was associated with IOP, with higher IOP correlating with greater curvature of the LC superiorly compared to inferiorly. Our analysis enabled a concise and complete characterization of LC shape, revealing variations without defining them a priori. No association between LC shape and age was found for the relatively old population studied. Superior-inferior asymmetry of LC shape was associated with IOP, with more asymmetry at higher IOP. Increased IOP was not associated with LC thickness or depth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    NASA Astrophysics Data System (ADS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  5. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  6. An experimental-theoretical study of free vibrations of plates on elastic point supports

    NASA Technical Reports Server (NTRS)

    Leuner, T. R.

    1972-01-01

    A theoretical and experimental study is made to investigate the effect on plate vibrations of varying the stiffness of corner elastic point supports. A theoretical model is developed using a Rayleigh-Ritz analysis which approximates the plate mode shapes as products of free-free beam modes. The elastic point supports are modelled both as massless translational springs, and springs with tip masses. The tip masses are included to better represent the experimental supports. An experiment is constructed using the bending stiffness of horizontal beams to support a square plate at its four corners. The stiffness of these supports can be varied over such a range that the plate fundamental frequency is lowered to 40% of the rigid support frequency. The variation with support stiffness of the frequencies of the first eight plate modes is measured, and compared with the theoretical results. The plate mode shapes for rigid supports are analyzed using holographic interferometry. There is excellent agreement between the theoretical and experimental results, except for high plate modes where the theoretical model is demonstrated to be inadequate.

  7. Dynamical Structure of Madden-Julian Oscillation over Malay Peninsula

    NASA Astrophysics Data System (ADS)

    Djamil, Y. S.; Koh, T. Y.; Chandimala, J.; Teo, C. K.

    2014-12-01

    Madden-Julian Oscillation (MJO) is the dominant weather event in the intraseasonal time scale over Malay Peninsula region. The MJO signals are represented by the first two modes of radiosonde records extracted using Extended Empirical Orthogonal Function (EEOF) analyses which we label as Local Multivariate MJO (LMM). LMM is able to capture the spatio-temporal profile of MJO along the global tropics in all seasons. With the help of LMM, we clarify the dynamical and thermodynamical structure of the MJO over Malay Peninsula, including the unique "boomerang-shaped" feature in the time-height temperature profile identified in previous literature.

  8. Rapid updating of optical arbitrary waveforms via time-domain multiplexing.

    PubMed

    Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B

    2008-05-15

    We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.

  9. Experimental modal analysis of the fuselage panels of an Aero Commander aircraft

    NASA Technical Reports Server (NTRS)

    Geisler, D.

    1981-01-01

    The reduction of interior noise in light aircraft was investigated with emphasis the thin fuselage sidewall. The approach used is theoretical and involves modeling of the sidewall panels and stiffeners. Experimental data obtained from tests investigating the effects of mass and stiffness treatments to the sidewalls are presented. The dynamic characteristics of treated panels are contrasted with the untreated sidewall panels using experimental modal analysis techniques. The results include the natural frequencies, modal dampling, and mode shapes of selected panels. Frequency response functions, data relating to the global fuselage response, and acoustic response are also presented.

  10. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  11. Shape reconstruction of irregular bodies with multiple complementary data sources

    NASA Astrophysics Data System (ADS)

    Kaasalainen, M.; Viikinkoski, M.

    2012-07-01

    We discuss inversion methods for shape reconstruction with complementary data sources. The current main sources are photometry, adaptive optics or other images, occultation timings, and interferometry, and the procedure can readily be extended to include range-Doppler radar and thermal infrared data as well. We introduce the octantoid, a generally applicable shape support that can be automatically used for surface types encountered in planetary research, including strongly nonconvex or non-starlike shapes. We present models of Kleopatra and Hermione from multimodal data as examples of this approach. An important concept in this approach is the optimal weighting of the various data modes. We define the maximum compatibility estimate, a multimodal generalization of the maximum likelihood estimate, for this purpose. We also present a specific version of the procedure for asteroid flyby missions, with which one can reconstruct the complete shape of the target by using the flyby-based map of a part of the surface together with other available data. Finally, we show that the relative volume error of a shape solution is usually approximately equal to the relative shape error rather than its multiple. Our algorithms are trivially parallelizable, so running the code on a CUDA-enabled graphics processing unit is some two orders of magnitude faster than the usual single-processor mode.

  12. Photonic crystals for improving light absorption in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duché, D., E-mail: david.duche@im2np.fr; Le Rouzo, J.; Masclaux, C.

    2015-02-07

    We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystalmore » able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.« less

  13. Architecture of Allosteric Materials and Edge Modes

    NASA Astrophysics Data System (ADS)

    Yan, Le; Ravasio, Riccardo; Brito, Carolina; Wyart, Matthieu

    Allostery, a long-range elasticity-mediated interaction, remains the biggest mystery decades after its discovery in proteins. We introduce a numerical scheme to evolve functional materials that can accomplish a specified mechanical task. In this scheme, the number of solutions, their spatial architectures and the correlations among them can be computed. As an example, we consider an ``allosteric'' task, which requires the material to respond specifically to a stimulus at a distant active site. We find that functioning materials evolve a less-constrained trumpet-shaped region connecting the stimulus and active sites and that the amplitude of the elastic response varies non-monotonically along the trumpet. As previously shown for some proteins, we find that correlations appearing during evolution alone are sufficient to identify key aspects of this design. Finally, we show that the success of this architecture stems from the emergence of soft edge modes recently found to appear near the surface of marginally connected materials. Overall, our in silico evolution experiment offers a new window to study the relationship between structure, function, and correlations emerging during evolution. L.Y. was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915. M.W. thanks the Swiss National Science Foundation for support under Grant No. 200021-165509 and the Simons Foundation Grant (#454953 Matthieu Wyart).

  14. Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.

    PubMed

    Kelich, Payam; Asadinezhad, Ahmad

    2016-09-01

    Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Spectrum-shape method and the next-to-leading-order terms of the β -decay shape factor

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Kotila, J.; Suhonen, J.

    2017-02-01

    Effective values of the axial-vector coupling constant gA have lately attracted much attention due to the prominent role of gA in determining the half-lives of double β decays, in particular their neutrinoless mode. The half-life method, i.e., comparing the calculated half-lives to the corresponding experimental ones, is the most widely used method to access the effective values of gA. The present paper investigates the possibilities offered by a complementary method: the spectrum-shape method (SSM). In the SSM, comparison of the shapes of the calculated and measured β electron spectra of forbidden nonunique β decays yields information on the magnitude of gA. In parallel, we investigate the impact of the next-to-leading-order terms of the β -decay shape function and the radiative corrections on the half-life method and the SSM by analyzing the fourfold forbidden decays of 113Cd and 115In by using three nuclear-structure theory frameworks; namely, the nuclear shell model, the microscopic interacting boson-fermion model, and the microscopic quasiparticle-phonon model. The three models yield a consistent result, gA≈0.92 , when the SSM is applied to the decay of 113Cd for which β -spectrum data are available. At the same time the half-life method yields results which are in tension with each other and the SSM result.

  16. Mode Transition of RNA Trap by Electric and Hydraulic Force Field in Microfluidic Taper Shape Channel

    NASA Astrophysics Data System (ADS)

    Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi

    2007-03-01

    We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.

  17. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  18. Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Balasubramanian, Kunjithapatham; Gersh-Range, Jessica; Kasdin, Jeremy; Kern, Brian; Lam, Raymond; Mejia Prada, Camilo; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; Riggs, A. J. Eldorado; Seo, Byoung-Joon; Shi, Fang; Tang, Hong; Trauger, John; Zhou, Hanying; Zimmerman, Neil

    2017-09-01

    The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the WFIRST coronagraph instrument. The SPC provides starlight suppression in a pair of wedge-shaped regions over an 18% bandpass, and is well suited for spectroscopy of known exoplanets. To demonstrate this starlight suppression in the presence of expected onorbit input wavefront disturbances, we have recently built a dynamic testbed at JPL analogous to the WFIRST flight instrument architecture, with both Hybrid Lyot Coronagraph (HLC) and SPC architectures and a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to apply, sense, and correct dynamic wavefront disturbances. We present our best up-to-date results of the SPC mode demonstration from the testbed, in both static and dynamic conditions, along with model comparisons. HLC results will be reported separately.

  19. Star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.

    2017-03-01

    We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.

  20. Method for deploying and recovering a wave energy converter

    DOEpatents

    Mundon, Timothy R

    2017-05-23

    A system for transporting a buoy and a heave plate. The system includes a buoy and a heave plate. An outer surface of the buoy has a first geometrical shape. A surface of the heave plate has a geometrical shape complementary to the first geometrical shape of the buoy. The complementary shapes of the buoy and the heave plate facilitate coupling of the heave plate to the outer surface of the buoy in a transport mode.

Top