Gyrokinetic linear stability analysis of NSTX L-mode plasmas
NASA Astrophysics Data System (ADS)
Han, Ke; Ren, Yang
2016-10-01
NSTX offered unique opportunities in studying transport and turbulence with low aspect ratio, strong plasma shaping and strong E ×B shear. NSTX L-mode plasmas have some favorable properties to facilitate the study of the relation between microturbulence and thermal transport: easier to obtain stationary profiles; easier to maintain MHD quiescence; no complications from edge transport barrier. Studies of NSTX RF/NBI-heated L-mode plasmas have provided new insight into the role of ion and electron-scale turbulence in driving anomalous transport. Here we present linear stability analysis of some NSTX L-mode plasmas with GS2 gyrokinetic code. GS2 is an initial value gyrokinetic code which, in its linear mode, finds the fastest growing mode for a given pair of poloidal and radial wavenumbers. The linear simulations used local Miller equilibria and plasma parameters derived from measured experimental profiles with electromagnetic effects, electron and ion collisions and carbon impurity. The work is supported by DOE, China Scholarship Council, the Natural Science Foundation of China (61402138) and the Natural Science Foundation of Heilongjiang Province (E201452).
Perturbed Stability Analysis of External Ideal MHD Modes
NASA Astrophysics Data System (ADS)
Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.
2002-11-01
Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.
Fuzzy Current-Mode Control and Stability Analysis
NASA Technical Reports Server (NTRS)
Kopasakis, George
2000-01-01
In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.
NASA Technical Reports Server (NTRS)
Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.
2008-01-01
The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.
Complete mode-set stability analysis of magnetically insulated ion diode equilibria
Slutz, S.A.; Lemke, R.W.
1993-12-31
We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan
2013-09-01
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis
NASA Astrophysics Data System (ADS)
Gallego, J.; Ghosh, S.; Alavi, S. K.; Alt, W.; Martinez-Dorantes, M.; Meschede, D.; Ratschbacher, L.
2016-03-01
Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background photons. We expect that our results contribute toward the integration of high-finesse fiber Fabry-Perot cavities into compact and robust quantum-enabled devices in the future.
Stabilization of Ballooning Modes by Nonparaxial Cells
Arsenin, V.V.; Zvonkov, A.V.; Skovoroda, A.A.
2005-01-15
An analysis is made of the effect of high-curvature stabilizing nonparaxial elements (cells) on the MHD plasma stability in open confinement systems and in confinement systems with closed magnetic field lines. It is shown that the population of particles trapped in such cells has a stabilizing effect not only on convective (flute) modes but also on ballooning modes, which govern the maximum possible {beta} value. In the kinetic approach, which distinguishes between the effects of trapped and passing particles, the maximum possible {beta} values consistent with stability can be much higher than those predicted by the MHD model.
Ju, Young-Gu
2005-05-16
We applied the Fox-Li resonator theory to analyze the mode stability of concave mirror surface-emitting lasers. The numerical modeling incorporates the oxide aperture in the simple classical cavity by adding a non-uniform phase shifting layer to the flat mirror side. The calculation shows that there is a modal loss difference between the fundamental mode and the competing modes. The amount of loss difference depends upon cavity length and the thickness of the oxide aperture. In addition to loss difference, modal gain difference plays a key role in discriminating between the fundamental mode and the higher order transverse modes. The modal gain difference heavily depends upon the size of the oxide aperture and the field intensity distribution. To summarize, the geometry of the concave cavity affects the mode profile and the unique field profile of each transverse mode makes a difference in both modal loss and gain. Finally, this leads to a side-mode suppression.
NASA Technical Reports Server (NTRS)
Jambunathan, V.; Murthy, V. R.
1993-01-01
A generic mathematical model that is capable of accurately modeling the multiple load path bearingless rotor blade is developed. A comprehensive, finite element based solution for the natural vibration of the rotor blade is developed. An iterative scheme based on harmonic balance is used to evaluate the nonlinear response of the rotor to control inputs and a Newton-Raphson procedure is employed to evaluate the trim of rotorcraft. Linearized perturbation model of the nonlinear system are presented. The model is validated by comparing with existing whirl tower, wind tunnel and flight test results of BMR/BO-105 helicopter. Frequencies of two bearingless rotor blades compare well with results from experiments. Nonlinear response and trim results are presented for the bearingless BMR/BO-105 rotor. Aeroelastic stability in forward flight, evaluated using floquet theory agrees with test data in general.
Analysis of the stability of an active mode-locking pulsed laser for ultra-short pulses generation
NASA Astrophysics Data System (ADS)
Bracamontes Rodríguez, Y. E.; Beltrán Pérez, G.; Kuzin, Eugin; Castillo Mixcóatl, J.; Muñoz Aguirre, S.
2013-11-01
Pulsed lasers have become very important owing to the great amount of applications, from communications to diverse medicine areas. Many works have reported the development of these kinds of sources which uses quite complex cavity configurations and that present instabilities in the output signal. In this work the analysis of a pulsed laser that uses a ring cavity with a length of 16.5 m is presented. A phase modulator (LiNbO3) controlled by an RF generator operated at a frequency of 12.5108 MHz was used to perform the mode lock. The modulator input has a birrefringent fiber then the light polarization affects the mode lock. Therefore it was necessary to perform an analysis and characterization in the input and output signals of the modulator in order to obtain more stable output pulses without requiring a continuous adjustment. The laser implemented with 2 modes of operation, active mode-lock and passive mode-lock. The obtained pulses whit temporal width of 7 ns FWHM for the frequency fundamental 12.5108 MHz and 781 -261-120-116 ps for the harmonic 5-10-16-20 .The results for the passive mode-lock the obtained pulses whit temporal width 2 ps and average power 200 W.
Linear Feedback Stabilization of Nonlinear Systems with an Uncontrollable Critical Mode
1992-11-17
mode that is uncontrollable. The results complement previous work on the synthesis of nonlinear stabilizing control laws. The present work addresses...analysis and stabilizing control design employ results on stability of bifurcations of parametrized systems.
Stabilization of a satellite in degraded mode
NASA Astrophysics Data System (ADS)
Morin, P.
The report considers a rigid satellite, one of whose actuators is in a failure mode, and seeks to find control laws allowing the stabilization of the satellite in a desired orientation. It treats the problem of coupled gas jet actuators located on the satellite's main axes of inertia; it also considers more general actuator configurations to which the results can be applied directly. It synthesizes locally asymptotically stabilizing control laws, but since these lead to a relatively slow rate of trajectory convergence, the author has sought controls that would lead to a more rapid convergence, and obtained exponentially stabilizing control laws by using the properties of homogeneous systems. Lastly, the author studied the reliability characteristics of the various control laws.
Internal tilting mode stability of non-sperical spheromak
Yamazaki, K.
1980-06-01
Fixed boundary tilting mode stability is analyzed for spheromak with arbitrarily shaped cross section. A prolate spheromak can be stabilized against tilting mode by adding a conducting shell of triangular or trapesoidal half-cross section.
On Ideal Stability of Cylindrical Localized Interchange Modes
Umansky, M V
2007-05-15
Stability of cylindrical localized ideal pressure-driven interchange plasma modes is revisited. Converting the underlying eigenvalue problem into the form of the Schroedinger equation gives a new simple way of deriving the Suydam stability criterion and calculating the growth rates of unstable modes. Near the marginal stability limit the growth rate is exponentially small and the mode has a double-peak structure.
Beta-limiting Instabilities and Global Mode Stabilization in NSTX
NASA Astrophysics Data System (ADS)
Sabbagh, Steven
2001-10-01
Low aspect ratio and high edge q theoretically alter the plasma stability and mode structure compared to standard tokamak configurations. Below the no-wall limit, stability calculations with PEST, GATO, and DCON show the perturbed radial field is maximized near the center column and DCON and VALEN calculations show that mode stability is not greatly improved by a nearby conducting wall due to the short poloidal wavelength in this region. In contrast, as beta reaches and exceeds the no-wall limit, the mode becomes strongly ballooning with long poloidal wavelength at large major radius and is highly wall stabilized. In this way, wall stabilization is more effective at higher beta in low aspect ratio geometry. Research on the stability of spherical torus plasmas at and above the no-wall beta limit is being addressed on NSTX, which has produced low aspect ratio plasmas, R/a = 1.27 at plasma current up to 1.4 MA with high energy confinement (TauE/TauE-ITER89P = 2). Toroidal and normalized beta have reached 22%, and 4.3, respectively in q = 7 plasmas. The beta limit is observed to increase with increasing plasma internal inductance, li, and the stability factor betaN/li has reached 5.8, limited by sudden beta collapses at low li that was achieved by use of high-harmonic fast wave heating (HHFW). DCON stability analysis of equilibria reconstructed with EFIT using external magnetics show that the plasmas are below or at the no-wall beta limit for the n = 1 mode, which has characteristics of a current-driven kink. With more peaked current profiles (li greater than 0.7), core MHD instabilities are observed which saturate or slowly degrade beta. Sawteeth with large inversion radii can also cause substantial beta collapses, although current profile modification using HHFW, altered plasma growth, and increased toroidal field have each been successful in mitigating this effect.
Wall mode stabilization at slow plasma rotation
NASA Astrophysics Data System (ADS)
Hu, Bo; Betti, Riccardo; Reimerdes, Holger; Garofalo, Andrea; Manickam, Janardhan
2007-11-01
Unstable pressure-driven external kink modes, which become slowly growing resistive wall modes (RWMs) in the presence of a resistive wall, can lead to tokamak plasma disruptions at high beta. It has been shown that RWMs are stabilized by fast plasma rotation (about 1-2% of the Alfv'en frequency) in experiments. Conventional theories attribute the RWM suppression to the dissipation induced by the resonances between plasma rotation and ion bounce/transit or shear Alfv'en frequencies [1]. In those theories, the kinetic effects associated with the plasma diamagnetic frequencies and trapped-particle precession drift frequencies are neglected. It has been observed in recent experiments [2,3] that the RWM suppression also occurs at very slow plasma rotation (about 0.3% of the Alfv'en frequency), where the conventional dissipation is too small to fully suppress the RWMs. Here it is shown, that the trapped-particle kinetic contribution associated with the precession motion [4] is large enough to stabilize the RWM in DIII-D at low rotation. Work supported by the US-DoE OFES. [1] A. Bondeson and M. S. Chu, Physics of Plasmas, 3,3013 (1996). [2] H. Reimerdes et al., Physical Review Letters, 98,055001 (2007). [3] M. Takechi et al., Physical Review Letters, 98,055002 (2007). [4] B. Hu and R. Betti, Physical Review Letters, 93,105002 (2004).
Tearing Mode Stability with Sheared Toroidal Flows
NASA Astrophysics Data System (ADS)
White, Ryan; Coppi, Bruno
2016-10-01
Toroidal plasma flow induced by neutral beam heating has been found to increase the stability of tearing modes in tokamak plasmas. The need to extrapolate current (experimentally-based) knowledge of tearing mode onset to future machines, requiresa better understanding of the essential physics. We consider the physics of flow near the rational surfaces. For realistic flow profiles, the velocity shear near the rational surface can be treated as a perturbation, and is found to amplify the dominant stabilizing effect of magnetic curvature. This effect can be seen using a cylindrical model if large-aspect-ratio corrections to the magnetic curvature are incorporated. On the other hand, the physical effects of toroidal rotation are completely absent in a cylinder, and require a fully-toroidal calculation to study. The toroidal rotation near the rational surface is found to couple to a geometrical parameter which vanishes for up-down symmetric profiles. Physically, the dominant effects of rotation arise from a Coriolis force, leading to flow directional dependence. This work is supported by the US DOE.
Baumgaertel, J. A.; Redi, M. H.; Budny, R. V.; Rewoldt, G.; Dorland, W.
2005-10-19
Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER.
Resistive wall mode stabilization by plasma rotation in advanced tokamaks
NASA Astrophysics Data System (ADS)
Eriksson, G.
1996-03-01
By combining previous results of Betti and Freidberg [Phys. Rev. Lett. 74, 2949 (1995)] and Eriksson [Phys. Plasmas 2, 3095 (1995)], a fully analytical description is obtained for the stabilizing effect of toroidal plasma rotation in a large aspect ratio tokamak surrounded by a resistive wall. As in advanced tokamak configurations with a large fraction of bootstrap current, it is assumed that the current gradient near the plasma edge is large. This assumption enables an analytical analysis of external kink modes with low poloidal mode numbers. An expression is obtained, showing explicitly how the window of stable wall distances depends on the current profile.
Furukawa, M.; Tokuda, S.
2012-10-15
A matching method using a finite-width inner region is extended for stability analysis of magnetohydrodynamic mode including diamagnetic drift effect. The inclusion of the diamagnetic drift effect is accomplished by a newly developed ordering scheme in the outer region. The ordering scheme enables us to derive a hierarchy of generalized Newcomb equations. Higher-order equations give us correction of outer solution due to the diamagnetic drift effect as well as inertia and resistivity. By this correction, the accuracy of the dispersion relation is improved. Several numerical results are presented to demonstrate good performance of the matching method. Dropping the diamagnetic drift effect in the outer region leads to less accurate results.
Stabilization effect of Weibel modes in relativistic laser fusion plasma
NASA Astrophysics Data System (ADS)
Belghit, Slimen; Sid, Abdelaziz
2016-06-01
In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.
1974-06-01
might be to sum the signals directly using complex algebra . This approach may better be handled in a digital system. Servovalve Magnetic Coupling The...France, 1969. *’ 18. L- Coven and C. F. Durbin , A Cmprehensive Eigensolution Program for Structural Vibration Analysis TEV 142. Boeing Document D6
Vemparala, Satyavani; Mehrotra, Sonali; Balaram, Hemalatha
2011-05-01
Enzymes from thermophiles are poorly active at temperatures at which their mesophilic homologs exhibit high activity and attain corresponding active states at high temperatures. In this study, comparative molecular dynamics (MD) simulations, supplemented by normal mode analysis, have been performed on an enzyme Adenylosuccinate synthetase (AdSS) from E. coli (mesophilic) and P. horikoshii (thermophilic) systems to understand the effects of loop dynamics on thermal stability of AdSS. In mesophilic AdSS, both ligand binding and catalysis are facilitated through the coordinated movement of five loops on the protein. The simulation results suggest that thermophilic P. horikoshii preserves structure and catalytic function at high temperatures by using the movement of only a subset of loops (two out of five) for ligand binding and catalysis unlike its mesophilic counterpart in E. coli. The pre-arrangement of the catalytic residues in P. horikoshii is well-preserved and salt bridges remain stable at high temperature (363K). The simulations suggest a general mechanism (including pre-arrangement of catalytic residues, increased polar residue content, stable salt bridges, increased rigidity, and fewer loop movements) used by thermophilic enzymes to preserve structure and be catalytically active at elevated temperatures.
MAP stability, design, and analysis
NASA Technical Reports Server (NTRS)
Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
Ballooning Modes in the Systems Stabilized by Divertors
Arsenin, V.V.; Skovoroda, A.A.; Zvonkov, A.V.
2005-01-15
MHD stability of a plasma in systems with closed magnetic field lines and open systems containing the nonparaxial stabilizing cells with large field lines curvature, in particular, divertors is analyzed. It is shown that population of particles trapped in such cells has a stabilizing effect not only on flute modes, but also on ballooning modes that determine the {beta} limit. At kinetic description that accounts for different effect of trapped and passing particles on perturbations, {beta} limit permitted by stability may be much greater then it follows from MHD model.
Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control
NASA Astrophysics Data System (ADS)
Naji, Adham; Soliman, Mina H.
2017-03-01
Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications.
Center Frequency Stabilization in Planar Dual-Mode Resonators during Mode-Splitting Control
Naji, Adham; Soliman, Mina H.
2017-01-01
Shape symmetry in dual-mode planar electromagnetic resonators results in their ability to host two degenerate resonant modes. As the designer enforces a controllable break in the symmetry, the degeneracy is removed and the two modes couple, exchanging energy and elevating the resonator into its desirable second-order resonance operation. The amount of coupling is controlled by the degree of asymmetry introduced. However, this mode coupling (or splitting) usually comes at a price. The centre frequency of the perturbed resonator is inadvertently drifted from its original value prior to coupling. Maintaining centre frequency stability during mode splitting is a nontrivial geometric design problem. In this paper, we analyse the problem and propose a novel method to compensate for this frequency drift, based on field analysis and perturbation theory, and we validate the solution through a practical design example and measurements. The analytical method used works accurately within the perturbational limit. It may also be used as a starting point for further numerical optimization algorithms, reducing the required computational time during design, when larger perturbations are made to the resonator. In addition to enabling the novel design example presented, it is hoped that the findings will inspire akin designs for other resonator shapes, in different disciplines and applications. PMID:28272422
Global MHD Mode Stabilization and Control for Tokamak Disruption Avoidance
NASA Astrophysics Data System (ADS)
Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Hanson, J. M.; Park, Y. S.; Bell, R. E.; Gates, D. A.; Gerhardt, S. P.; Goumiri, I.; Grierson, B.; Holcomb, C.
2015-11-01
The near-complete elimination of plasma disruptions in fusion-producing tokamaks is the present ``grand challenge'' for stability research. Meeting this goal requires multiple approaches, important components of which are prediction, stabilization, and control of global MHD instabilities. Research on NSTX and its upgrade is synergizing these elements to make quantified progress on this challenge. Initial results from disruption characterization and prediction analyses describe physical disruption event chains in NSTX. Analysis of NSTX and DIII-D experiments show that stabilization of global modes is dominated by precession drift and bounce orbit resonances respectively. Stability therefore depends on the plasma rotation profile. A model-based rotation profile controller for NSTX-U using both neutral beams and neoclassical toroidal viscosity is shown in simulations to evolve profiles away from unstable states. Active RWM control is addressed using dual field component sensor feedback and a model-based RWM state-space controller. Comparison of measurements and synthetic diagnostics is examined for off-normal event handling. A planned 3D coil system upgrade can allow RWM control close to the ideal n = 1 with-wall limit. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.
MAP Stability, Design and Analysis
NASA Technical Reports Server (NTRS)
Ericsson -Jackson, A.J.; Andrews, S. F.; ODonnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
Ballooning mode stability of elongated high-beta tokamaks
NASA Astrophysics Data System (ADS)
Mauel, Michael E.
1987-12-01
The variational principle derived by Choe and Freidberg [Phys. Fluids 29, 1766 (1986)] and used to estimate the geometry of high-beta tokamak equilibria is extended to include elongation. Ballooning mode stability is then investigated, illustrating the influence of elongation on local and global stability.
Tearing Mode Stability of Evolving Toroidal Equilibria
NASA Astrophysics Data System (ADS)
Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.
2000-10-01
There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.
Stability of short wavelength tearing and twisting modes
Waelbroeck, F.L.
1998-09-22
The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known {Delta}{prime} stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting {Delta}{prime} for a model high-beta equilibrium with circular flux surfaces.
Ideal Stability of the Tokamak H--mode Edge Region
NASA Astrophysics Data System (ADS)
Wilson, H. R.
1998-11-01
Tokamak performance is often controlled by stability of the edge plasma. Consistent with ``stiff'' transport models, the confinement in tokamak discharges is strongly correlated with the magnitude of the edge pressure pedestal which is limited by MHD stability. Furthermore, the high performance ELM-free H--modes are terminated by low toroidal mode number n, MHD modes driven by high edge pressure gradient, and edge current. We have evaluated low n modes using the δ W code GATO, and both high edge pressure gradient and high edge current density are found to destabilize the n=1, 2, and 3 ideal modes. We have included the self-consistent bootstrap current in the equilibria generation, and have completed a thorough survey of the effects of plasma shape and edge pressure profiles on the edge ballooning stability. The bootstrap current density helps to provide access to the second regime of stability, which is easier for: higher elongation, intermediate triangularity, larger aspect ratio, narrower pedestal width, and higher q_95. The intermediate n stability is being evaluated using a high-mode-number peeling/ ballooning mode model,(J.W. Connor, R.J. Hastie, H.R. Wilson, and R.L. Miller, Phys. Plasmas 5), 2687 (1998). where a critical role is played by the edge current density. This edge model describes the interaction of peeling mode (current driven) and ballooning mode (pressure driven) effects at high, but finite, mode number; a modified ballooning mode formalism is shown to be valid at the plasma edge. Based upon this edge model, a 2D eigenvalue code has been written to determine the stability of these modes for arbitrary shape cross sections, and edge pressure and current profiles including bootstrap current effects. This model suggests a power threshold for L--H transitions and provides a plausible explanation for an ELM cycle. Results will be presented for the pressure gradient and edge current density stability boundaries for a range of shapes and pedestal widths
Dynamic mode decomposition analysis of detonation waves
NASA Astrophysics Data System (ADS)
Massa, L.; Kumar, R.; Ravindran, P.
2012-06-01
Dynamic mode decomposition is applied to study the self-excited fluctuations supported by transversely unstable detonations. The focus of this study is on the stability of the limit cycle solutions and their response to forcing. Floquet analysis of the unforced conditions reveals that the least stable perturbations are almost subharmonic with ratio between global mode and fundamental frequency λi/ωf = 0.47. This suggests the emergence of period doubling modes as the route to chaos observed in larger systems. The response to forcing is analyzed in terms of the coherency of the four fundamental energy modes: acoustic, entropic, kinetic, and chemical. Results of the modal decomposition suggest that the self-excited oscillations are quite insensitive to vortical forcing, and maintain their coherency up to a forcing turbulent Mach number of 0.3.
Energetic Ion Effects on Tearing Mode Stability in Tokamak Equilibria
NASA Astrophysics Data System (ADS)
Halfmoon, Michael; Brennan, Dylan
2014-10-01
The 2/1 tearing mode is found to be damped or stabilized by energetic ions in a slowing down distribution, where the interaction between the ions and the mode is similar to their interaction in ideal MHD, which has been extensively studied. This damping effect is mainly due to trapped particle precession resonance and causes the tearing mode to have a finite real frequency. This study focuses on the pressure-driven, slow growing tearing modes; which are the first modes to be driven unstable as pressure increases. The layer physics modifies the mode interaction, and affects the frequency of the mode. In these simulations, a series of equilibria with fixed safety factor and varying pressure are analyzed using a δf hybrid-kinetic MHD code in NIMROD. Our equilibrium consists of a D-shaped poloidal cross section, a peaked pressure profile, and safety factor with finite shear to the magnetic axis. Also, a high aspect ratio toroidal model based on Hu & Betti's work is investigated analytically to gain insight to the physics of mode-particle interactions. We combine our computational and analytic tools in an effort to explain this damping and stabilizing effect.
Global stability of the ballooning mode in a cylindrical model
NASA Astrophysics Data System (ADS)
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2013-07-01
Ballooning disturbances in a finite-pressure plasma in a curvilinear magnetic field are described by the system of coupled equations for the Alfvén and slow magnetosonic modes. In contrast to most previous works that locally analyzed the stability of small-scale disturbances using the dispersion relationship, a global analysis outside a WKB approximation but within a simple cylindrical geometry, when magnetic field lines are circles with constant curvature, is performed in the present work. This model is relatively simple; nevertheless, it has the singularities necessary for the formation of the ballooning mode: field curvature and non-uniform thermal plasma pressure. If the disturbance finite radial extent is taken into account, the instability threshold increases as compared to a WKB approximation. The simplified model used in this work made it possible to consider the pattern of unstable disturbances at arbitrary values of the azimuthal wavenumber ( k y ). Azimuthally large-scale disturbances can also be unstable, although the increment increases with decreasing azimuthal scale and reaches saturation when the scales are of the order of the pressure nonuniformity dimension.
Stability of Ballooning Modes in Tokamaks with Energetic Particles.
NASA Astrophysics Data System (ADS)
Dominguez Vergara, Nicolas
The effects of energetic particles are of interest since fast ions are present in neutral-beam and rf-heated tokamaks and will occur in ignition devices in the form of alpha particles. Moreover, it may be desirable to create such particles by auxiliary heating in order to exploit their stabilizing properties and thus attain a high beta plasma. Here a range of issues related to the stabilization of MHD ballooning modes in tokamaks by using energetic particles is investigated analytically and numerically. The presence of a highly energetic plasma component can stabilize MHD ballooning modes in tokamaks and may allow direct access to the high-beta second stability regime. Here, an improved estimate of such stability has been obtained, in the large-aspect-ratio circular limit, by means of a variational refinement of the lower bound for the energetic particle potential energy. We also investigate the effect of various profiles for the hot particle pressure on stability, and we explore the stability of off-angle modes. Moderately energetic particles, however, can destabilize the plasma through resonant interaction at their curvature drift fre- quency. We study these so-called "balloon-bone" modes, using a delta function model for their resonant response. The complete forms of the Mercier solutions in the MHD region are obtained analytically and numerically. Matched onto the inertia layer, these solutions give a dispersion relation valid for finite shear and poloidal beta values, which then is analyzed by the Nyquist technique. Results are presented for the limit in which Alfvenic effects are negligible, namely, (,)(omega)(,dh) << (omega)(,A), where (,)(omega)(,dh) is the curvature drift frequency and (omega)(,A) is the Alfven frequency, and in which the energetic particles are modeled with a slowing-down distribution in energy. Finally, even if the ideal modes and resonantly -excited modes can be simultaneously stabilized, resistive ballooning instabilities may persist
Stability of internal transport barriers to ideal MHD ballooning modes.
Connor, J W; Hastie, R J
2004-02-20
Internal transport barriers (ITB) in tokamaks can form near a minimum in the q profile, q(min), where magnetic shear is weak. We have analyzed their stability to short wavelength (n>1, where n is the toroidal mode number) ideal MHD ballooning modes, by considering the s-alpha model equilibrium. We show that the ballooning transformation fails in regions of low shear but that one can then adopt a complementary approach based on the recurrence relation describing the toroidal coupling of radially localized modes on adjacent rational surfaces. Inclusion of the stabilizing effects of favorable average curvature or finite-n using this technique leads to stable high-pressure ITB configurations. The theory also shows the advantages of operating with low-order rational values of q(min).
Nonlinear tearing modes stabilization by oscillating the resonant surface
NASA Astrophysics Data System (ADS)
Yang, Xiaoqing; Wang, Shaojie
2016-09-01
The stabilization of the nonlinear tearing mode by rapidly oscillating the resonant surface has been investigated numerically in a large aspect ratio tokamak with a circular cross-section. By means of the radio frequency current drive, the plasma current can be modulated to make the resonant surface (rs) oscillate in time near its mean position. Previous results show that the linear tearing mode can be suppressed by oscillating the resonant surface with a suitable frequency and amplitude. At the nonlinear stage, the tearing mode stabilization shows different properties. The suppression effects not only depend on the modulation frequency and the oscillation width of the resonant surface but also depend on the relative size of χ0 to δ (here, χ0 is the oscillation width of the resonant surface and δ is the width of tearing layer) and the relative width of χ0 to the magnetic island width W.
Ballooning mode second stability region for sequences of tokamak equilibria
Sugiyama, L.; Mark, J. W-K.
1980-01-01
A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln ..gamma.. and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary.
Frequency stabilization via the mixed mode in three mode HeNe lasers
Ellis, J D; Joo, K; Buice, E S; Spronck, J W; Munnig Schmidt, R H
2010-02-05
This paper describes a three mode HeNe laser frequency stabilization technique using the mixed mode frequency to obtain a fractional frequency stability of 2 x 10{sup -11}. The mixed mode frequency occurs due to optical nonlinear interactions with the adjacent modes at each of the three modes. In precision displacement interferometry systems, the laser source frequency must be stabilized to provide an accurate conversion ratio between phase change and displacement. In systems, such as lithography applications, which require high speed, high accuracy and low data age uncertainty, it is also desirable to avoid periodic nonlinearities, which reduces computation time and errors. One method to reduce periodic nonlinearity is to spatially separate the measurement and reference beams to prevent optical mixing, which has been shown for several systems. Using spatially separated beams and the proper optical configuration, the interferometer can be fiber fed, which can increase the interferometer's stability by reducing the number of beam steering optical elements. Additionally, as the number of measurement axes increases, a higher optical power from the laser source is necessary.
Stabilization of ballooning modes with sheared toroidal rotation
Miller, R.L.; Waelbroeck, F.L.; Hassam, A.B.; Waltz, R.E.
1995-10-01
Stabilization of magnetohydrodynamic ballooning modes by sheared toroidal rotation is demonstrated using a shifted circle equilibrium model. A generalized ballooning mode representation is used to eliminate the fast Alfven wave, and an initial value code solves the resulting equations. The {ital s}{minus}{alpha} diagram (magnetic shear versus pressure gradient) of ballooning mode theory is extended to include rotational shear. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency ({ital d}{Omega}/{ital dq}, where {Omega} is the angular toroidal velocity and {ital q} is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and direct stable access to the second stability regime occurs when this frequency is approximately one-quarter to one-half the Alfven frequency, {omega}{sub A}={ital V}{sub A}/{ital qR}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}
Zakharyash, V F; Kashirsky, A V; Klementyev, V M
2015-10-31
We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)
Feedback stabilization system for pulsed single longitudinal mode tunable lasers
Esherick, Peter; Raymond, Thomas D.
1991-10-01
A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.
Stability of Finite-n Global Magnetohydrodynamic Modes Using the GATO Stability Code
NASA Astrophysics Data System (ADS)
Chu, M. S.; Wong, S. K.; Lao, L. L.; Turnbull, A. D.; Chance, M. S.
1999-11-01
This work extends the capability of the GATO stability code(L.C.Bernard et al.), Comput. Phys. Commun. 24, 377 (1981). to analyze realistic numerical tokamak equilibria for their stability to higher n ( ~5--10) MHD modes. This is motivated by the experimental evidence of these modes being relevant for both plasma termination and the behavior of ELMs. The ballooning angle transformation(R. Gruber et al.), Comput. Phys. Commun. 24, 363 (1981). is applied to the displacement variables in the GATO representation. The potential energy matrix is constructed with the inclusion of extra mapping quantities. The vacuum energy computed from the Green's function is also modified to couple to the transformed displacement at the plasma boundary. The resultant eigenvalue problem is solved with the modified boundary condition in the poloidal direction suitable for these transformed variables. The dependence of the plasma stability as a function of toroidal mode number and plasma equilibrium properties will be presented.
Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus
NASA Astrophysics Data System (ADS)
Paul, Tanmoy; SenGupta, Soumitra
2016-04-01
We consider a generalized two brane Randall-Sundrum model where the branes are endowed with nonzero cosmological constant. In this scenario, we re-examine the modulus stabilization mechanism and the nature of Kaluza-Klein (KK) graviton modes. Our result reveals that while the KK mode graviton masses may change significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which assumes a negligible backreaction on the background metric, continues to hold even when the branes have a large cosmological constant. The possibility of having a global minimum for the modulus is also discussed. Our results also include an analysis for the radion mass in this nonflat brane scenario.
Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry
NASA Astrophysics Data System (ADS)
Chance, M. S.; Chu, M. S.; Okabayashi, M.; Turnbull, A. D.
2002-03-01
A theoretical framework for understanding the feedback mechanism for stabilization of external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modelled in θ and phi, albeit with only a single harmonic variation in phi. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model has been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved.
Simulation and Analysis of the Hybrid Operating Mode in ITER
Kessel, C.E.; Budny, R.V.; Indireshkumar, K.
2005-09-22
The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.
SDO Delta H Mode Design and Analysis
NASA Technical Reports Server (NTRS)
Mason, Paul A.; Starin, Scott R.
2007-01-01
While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.
Profile stabilization of tilt mode in a Field Reversed Configuration
Cobb, J.W.; Tajima, T.; Barnes, D.C.
1993-06-01
The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.
Stability of Rotor Hopfield Neural Networks With Synchronous Mode.
Kobayashi, Masaki
2016-12-29
A complex-valued Hopfield neural network (CHNN) is a model of a Hopfield neural network using multistate neurons. The stability conditions of CHNNs have been widely studied. A CHNN with a synchronous mode will converge to a fixed point or a cycle of length 2. A rotor Hopfield neural network (RHNN) is also a model of a multistate Hopfield neural network. RHNNs have much higher storage capacity and noise tolerance than CHNNs. We extend the theories regarding the stability of CHNNs to RHNNs. In addition, we investigate the stability of RHNNs with the projection rule. Although a CHNN with projection rule can be trapped at a cycle, an RHNN with projection rule converges to a fixed point. This is one of the great advantages of RHNNs.
Beta-limiting instabilities and global mode stabilization in the National Spherical Torus Experiment
Sabbagh, S. A.; Peng, Yueng Kay Martin
2003-01-01
Research on the stability of spherical torus plasmas at and above the no-wall beta limit is being addressed on the National Spherical Torus Experiment @M. Ono et al., Nucl. Fusion 40, 557 ~2000!#, that has produced low aspect ratio plasmas, R/a;1.27 at plasma current exceeding 1.4 MA with high energy confinement (TauE/TauE ITER89P.2). Toroidal and normalized beta have exceeded 25% and 4.3, respectively, in q;7 plasmas. The beta limit is observed to increase and then saturate with increasing li . The stability factor bN /li has reached 6, limited by sudden beta collapses. Increased pressure peaking leads to a decrease in bN . Ideal stability analysis of equilibria reconstructed with EFIT @L. L. Lao et al., Nucl. Fusion 25, 1611 ~1985!# shows that the plasmas are at the no-wall beta limit for the n51 kink/ballooning mode. Low aspect ratio and high edge q theoretically alter the plasma stability and mode structure compared to standard tokamak configurations. Below the no-wall limit, stability calculations show the perturbed radial field is maximized near the center column and mode stability is not highly effected by a nearby conducting wall due to the short poloidal wavelength in this region. In contrast, as beta reaches and exceeds the no-wall limit, the mode becomes strongly ballooning with long poloidal wavelength at large major radius and is highly wall stabilized. In this way, wall stabilization is more effective at higher beta in low aspect ratio geometry. The resistive wall mode has been observed in plasmas exceeding the ideal no-wall beta limit and leads to rapid toroidal rotation damping across the plasma core.
Benchmarking kinetic calculations of resistive wall mode stability
NASA Astrophysics Data System (ADS)
Berkery, J. W.; Liu, Y. Q.; Wang, Z. R.; Sabbagh, S. A.; Logan, N. C.; Park, J.-K.; Manickam, J.; Betti, R.
2014-05-01
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].
Benchmarking kinetic calculations of resistive wall mode stability
Berkery, J. W.; Sabbagh, S. A.; Liu, Y. Q.; Betti, R.
2014-05-15
Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].
Kinetic stability of the internal kink mode in ITER
Hu Bo; Betti, R.; Manickam, J.
2006-11-15
The kinetic stability of the n=1, m=1 internal kink mode is analyzed for realistic equilibria typical of the standard operation scenario of ITER (the International Thermonuclear Experimental Reactor) [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)]. The kinetic effects modify the inertia and the perturbed potential energy {delta}W of the mode, the two key elements determining the mode stability. Numerical results are obtained for ITER-like equilibria with different q profiles. For moderate magnetic shear within the q=1 surface, the low frequency magnetohydrodynamic (MHD) branch is fully suppressed by the kinetic effects for the expected profiles and parameters up to twice the expected plasma {beta} while the high frequency fishbone branch is found to be destabilized as the plasma {beta} and the radius of the q=1 surface increase. The MHD branch can be destabilized at higher plasma {beta} or larger radii of the q=1 surface only for q profiles with a low magnetic shear within the q=1 surface.
Automated RSO Stability Analysis
NASA Astrophysics Data System (ADS)
Johnson, T.
2016-09-01
A methodology for assessing the attitude stability of a Resident Space Object (RSO) using visual magnitude data is presented and then scaled to run in an automated fashion across the entire satellite catalog. Results obtained by applying the methodology to the Commercial Space Operations Center (COMSpOC) catalog are presented and summarized, identifying objects that have changed stability. We also examine the timeline for detecting the transition from stable to unstable attitude
The impact of 3D fields on tearing mode stability of H-modes
NASA Astrophysics Data System (ADS)
Buttery, R. J.; Gerhardt, S.; La Haye, R. J.; Liu, Y. Q.; Reimerdes, H.; Sabbagh, S.; Chu, M. S.; Osborne, T. H.; Park, J.-K.; Pinsker, R. I.; Strait, E. J.; Yu, J. H.; DIII-D, the; NSTX Teams
2011-07-01
New processes have been discovered in the interaction of 3D fields with tearing mode stability at low torque and modest β on DIII-D and NSTX. These are thought to arise from the plasma response at the tearing resonant surface, which theoretically is expected to depend strongly on plasma rotation and underlying intrinsic tearing stability. This leads to sensitivities additional to those previously identified at low density where the plasma rotation is more readily stopped, or at high βN where ideal MHD responses amplify the fields (where βN is the plasma β divided by the ratio of plasma current to minor radius multiplied by toroidal field). It is found that the threshold size for 3D fields to induce modes tends to zero as the natural tearing βN limit is approached. 3D field sensitivity is further enhanced at low rotation, with magnetic probing detecting an increased response to applied fields in such regimes. Modelling with the MARS-F code confirms the interpretation with the usual plasma screening response breaking down in low rotation plasmas and a tearing response developing, opening the door to additional sensitivities to β and the current profile. Typical field thresholds to induce modes in torque-free βN ~ 1.5 H-modes are well below those in ohmic plasmas or plasmas near the ideal βN limit. The strong interaction with the tearing mode βN limit is identified through rotation shear, which is decreased by the 3D field, leading to decreased tearing stability. Thus both locked and rotating mode field thresholds can be considered in terms of a torque balance, with sufficient braking leading to destabilization of a mode. On this basis new measurements of the principal parameter scalings for error field threshold have been obtained in torque-free H-modes leading to new predictions for error field sensitivity in ITER. The scalings have similar exponents to ohmic plasmas, but with seven times lower threshold at the ITER baseline βN value of 1.8, and a linear
Local slope stability analysis
NASA Astrophysics Data System (ADS)
Hattendorf, I.; Hergarten, St.; Neugebauer, H. J.
Mass movements under the influence of gravity occur as result of diverse disturbing and destabilizing processes, for example of climatic or anthropological origin. The stability of slopes is mainly determined by the geometry of the land-surface and designated slip-horizon. Further contributions are supplied by the pore water pressure, cohesion and friction. All relevant factors have to be integrated in a slope stability model, either by measurements and estimations (like phenomenological laws) or derived from physical equations. As result of stability calculations, it's suitable to introduce an expectation value, the factor-of-safety, for the slip-risk. Here, we present a model based on coupled physical equations to simulate hardly measurable phenomenons, like lateral forces and fluid flow. For the displacements of the soil-matrix we use a modified poroelasticity-equation with a Biot-coupling (Biot 1941) for the water pressure. Latter is described by a generalized Boussinesq equation for saturated-unsaturated porous media (Blendinger 1998). One aim of the calculations is to improve the knowledge about stability-distributions and their temporal variations. This requires the introduction of a local factor-of-safety which is the main difference to common stability models with global stability estimations. The reduction of immediate danger is still the emergent task of the most slope and landslide investigations, but this model is also useful with respect to understand the governing processes of landform evolution.
Stability and ELM Characterization in I-Mode Pedestals
NASA Astrophysics Data System (ADS)
Walk, J. R.; Hughes, J. W.; Snyder, P. B.; Hubbard, A. E.; Terry, J. L.; White, A. E.; Whyte, D. G.; Baek, S. G.; Cziegler, I.; Edlund, E.
2014-10-01
The I-mode is a novel high-confinement regime explored on Alcator C-Mod, notable for its formation of an H-mode-like temperature pedestal without the accompanying density pedestal, maintaining L-mode particle confinement. I-mode exhibits a number of desirable properties for a reactor regime: among them, it naturally lacks large ELMs, avoiding the need for externally-applied ELM suppression. However, under certain conditions small, intermittent ELM-like events are seen. These events exhibit a range of phenomena in terms of edge and pedestal behavior, particularly for the ELM trigger - the majority of events are synchronized with the sawtooth heat pulse reaching the edge. The stationary pedestal structure is stable against peeling-ballooning MHD as calculated by ELITE in all cases, necessitating treatment of transient pedestal modification to characterize these events. We characterize these ELM events in terms of edge behavior, particularly the modification of the temperature pedestal, edge turbulence and fluctuations, and peeling-ballooning MHD stability. This work is supported by USDoE Award DE-FC02-99ER54512.
Environmental stability of actively mode locked fibre lasers
NASA Astrophysics Data System (ADS)
Hill, Calum H.; Lee, Stephen T.; Reid, Derryck T.; Baili, Ghaya; Davies, John
2016-10-01
Lasers developed for defence related applications typically encounter issues with reliability and meeting desired specification when taken from the lab to the product line. In particular the harsh environmental conditions a laser has to endure can lead to difficulties. This paper examines a specific class of laser, namely actively mode-locked fibre lasers (AMLFLs), and discusses the impact of environmental perturbations. Theoretical and experimental results have assisted in developing techniques to improve the stability of a mode-locked pulse train for continuous operation. Many of the lessons learned in this research are applicable to a much broader category of lasers. The AMLFL consists of a fibre ring cavity containing a semiconductor optical amplifier (SOA), an isolator, an output coupler, a circulator, a bandpass filter and a modulator. The laser produces a train of 6-ps pulses at 800 nm with a repetition rate in the GHz regime and a low-noise profile. This performance is realisable in a laboratory environment. However, even small changes in temperature on the order of 0.1 °C can cause a collapse of mode-locked dynamics such that the required stability cannot be achieved without suitable feedback. Investigations into the root causes of this failure were performed by changing the temperature of components that constitute the laser resonator and observing their properties. Several different feedback mechanisms have been investigated to improve laser stability in an environment with dynamic temperature changes. Active cavity length control will be discussed along with DC bias control of the Mach-Zehnder modulator (MZM).
Active Resistive Wall Mode Stabilization in Low Rotation, High Beta NSTX Plasmas
NASA Astrophysics Data System (ADS)
Sabbagh, S. A.
2006-10-01
An active feedback system to stabilize the resistive wall mode (RWM) in the National Spherical Torus Experiment (NSTX) is used to maintain plasma stability for greater than 90 RWM growth times. These experiments are the first to demonstrate RWM active stabilization in high beta, low aspect ratio tokamak plasmas with toroidal plasma rotation significantly below the critical rotation profile for passive stability and in the range predicted for ITER. Actively stabilized, low rotation plasmas reached normalized beta of 5.6, and the ratio of normalized beta to the toroidal mode number, n = 1 and 2 ideal no-wall stability limits reached 1.2 and 1.15 respectively, determined by DCON stability analysis of the time-evolving reconstructed experimental equilibria. The significant, controlled reduction of the plasma rotation to less than one percent of the Alfven speed was produced by non-resonant magnetic braking by an applied n = 3 field. The observed plasma rotation damping is in quantitative agreement with neoclassical toroidal viscosity theory including trapped particle effects [1]. The active stabilization system employs a mode control algorithm using RWM sensor input analyzed to distinguish the amplitude and phase of the n = 1 mode. During n = 1 stabilization, the n = 2 mode amplitude increases and surpasses the n = 1 amplitude, but the mode remains stable. By varying the system gain, and relative phase between the measured n = 1 RWM phase and the applied control field, both positive and negative feedback were demonstrated. Contrary to past experience in moderate aspect ratio tokamaks with poloidally continuous stabilizing structure, the RWM can become unstable in certain cases by deforming poloidally, an important consideration for feedback system sensor and control coil design in future devices such as ITER and KSTAR. **In collaboration with R.E. Bell, J.E. Menard, D.A. Gates, A.C. Sontag, J.M. Bialek, B.P. LeBlanc, F.M. Levinton, K. Tritz, H. Yuh. [1] W. Zhu, S
The stability of tidally deformed neutron stars to three- and four-mode coupling
Venumadhav, Tejaswi; Zimmerman, Aaron; Hirata, Christopher M.
2014-01-20
It has recently been suggested that the tidal deformation of a neutron star excites daughter p- and g-modes to large amplitudes via a quasi-static instability. This would remove energy from the tidal bulge, resulting in dissipation and possibly affecting the phase evolution of inspiralling binary neutron stars and hence the extraction of binary parameters from gravitational wave observations. This instability appears to arise because of a large three-mode interaction among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We show that additional four-mode interactions enter into the analysis at the same order as the three-mode terms previously considered. We compute these four-mode couplings by finding a volume-preserving coordinate transformation that relates the energy of a tidally deformed star to that of a radially perturbed spherical star. Using this method, we relate the four-mode coupling to three-mode couplings and show that there is a near-exact cancellation between the destabilizing effect of the three-mode interactions and the stabilizing effect of the four-mode interaction. We then show that the equilibrium tide is stable against the quasi-static decay into daughter p- and g-modes to leading order. The leading deviation from the quasi-static approximation due to orbital motion of the binary is considered; while it may slightly spoil the near-cancellation, any resulting instability timescale is at least of order the gravitational wave inspiral time. We conclude that the p-/g-mode coupling does not lead to a quasi-static instability, and does not impact the phase evolution of gravitational waves from binary neutron stars.
NASA Astrophysics Data System (ADS)
Berkery, John W.
2009-11-01
Continuous, disruption-free operation of tokamaks requires stabilization of the resistive wall mode (RWM). Theoretically, the RWM is thought to be stabilized by energy dissipation mechanisms that depend on plasma rotation and other parameters, with kinetic effects being emphasized.footnotetextB. Hu et al., Phys. Plasmas 12 (2005) 057301. Experiments in NSTX show that the RWM can be destabilized in high rotation plasmas while low rotation plasmas can be stable, which calls into question the concept of a simple critical plasma rotation threshold for stability. The present work tests theoretical stabilization mechanisms against experimental discharges with various plasma rotation profiles created by applying non-resonant n=3 braking, and with various fast particle fractions. Kinetic modification of ideal stability is calculated with the MISK code, using experimental equilibrium reconstructions. Analysis of NSTX discharges with unstable RWMs predicts near-marginal mode growth rates. Trapped ions provide the dominant kinetic resonances, while fast particles contribute an important stabilizing effect. Increasing or decreasing rotation in the calculation drives the prediction farther from the marginal point, showing that unlike simpler critical rotation theories, kinetic theory allows a more complex relationship between plasma rotation and RWM stability. Results from JT-60U show that energetic particle modes can trigger RWMsfootnotetextG. Matsunaga et al., IAEA FEC 2008 Paper EX/5-2.. Kinetic theory may explain how fast particle loss can trigger RWMs through the loss of an important stabilization mechanism. These results are applied to ITER advanced scenario equilibria to determine the impact on RWM stability.
Flow stabilization of the ideal MHD resistive wall mode^1
NASA Astrophysics Data System (ADS)
Smith, S. P.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.
2009-05-01
We demonstrate for the first time in a numerical calculation that for a typical circular cylindrical equilibrium, the ideal MHD resistive wall mode (RWM) can be completely stabilized by bulk equilibrium plasma flow, V, for a window of wall locations without introducing additional dissipation into the system. The stabilization is due to a resonance between the RWM and the Doppler shifted ideal MHD sound continuum. Our numerical approach introduces^2 u=φξ+ iV .∇ξ and the perturbed wall current^3 as variables, such that the eigenvalue, φ, only appears linearly in the linearized stability equations, which allows for the use of standard eigenvalue solvers. The wall current is related to the plasma displacement at the boundary by a Green's function. With the introduction of the resistive wall, we find that it is essential that the finite element grid be highly localized around the resonance radius where the parallel displacement, ξ, becomes singular. We present numerical convergence studies demonstrating that this singular behavior can be approached in a limiting sense. We also report on progress toward extending this calculation to an axisymmetric toroidal geometry. ^1Work supported by a DOE FES fellowship through ORISE and ORAU. ^2L.Guazzotto, J.P Freidberg, and R. Betti, Phys.Plasmas 15, 072503 (2008). ^3S.P. Smith and S. C. Jardin, Phys. Plasmas 15, 080701 (2008).
Failure mode analysis to predict product reliability.
NASA Technical Reports Server (NTRS)
Zemanick, P. P.
1972-01-01
The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.
Stability Analysis of Flow Past a Wingtip
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis
2015-11-01
Trailing vortices are commonly associated with diminished aircraft performance by increasing induced drag and producing a wake hazard on following aircraft. Previously, stability analyses have been performed on the Batchelor vortex (Heaton et al., 2009), which models a far field axisymmetric vortex, and airfoil wakes (Woodley & Peake, 1997). Both analyses have shown various instabilities present in these far field vortex-wake flows. This complicates the design of control devices by excluding consideration of near field interactions between the wake and vortex shed from the wing. In this study, we perform temporal and spatial bi-global stability analyses on the near field wake of the flow field behind a NACA0012 wing computed from direct numerical simulation at a chord Reynolds number of 1000. The results identify multiple instabilities including a vortex instability, wake instability, and mixed instability that includes interaction between the wake and vortex. As these modes exhibit wave packets, we perform a wave packet analysis (Obrist & Schmid, 2010), which enables the prediction of spatial mode structures at low computational cost. Furthermore, a bi-global parabolized stability analysis is performed, highlighting disparities between the parallel and parabolized analysis. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.
Liapunov stability analysis of spinning flexible spacecraft.
NASA Technical Reports Server (NTRS)
Barbera, F. J.; Likins, P.
1973-01-01
The attitude stability of a class of spinning flexible spacecraft in a force-free environment is analyzed. The spacecraft is modeled as a rigid core having attached to it a flexible appendage idealized as a collection of elastically interconnected particles. Liapunov stability theorems are employed with the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, used as a testing function. The Hamiltonian is written in terms of modal coordinates as interpreted by the hybrid coordinate formulation, thus allowing truncation to a level amenable to literal stability analysis. Testing functions are constructed for a spacecraft with an arbitrary (discretized) appendage, and closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane which contains the center of mass and is orthogonal to the spin axis. The criteria are (except for idealized cases on the stability boundary line in the parameter space) both necessary and sufficient for stability for any spacecraft characterized by the planar appendage model, such as a spacecraft containing solar panels and/or radial booms.
Tearing mode analysis in tokamaks, revisited
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1998-12-01
A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}
Slope Stability Analysis Using GIS
NASA Astrophysics Data System (ADS)
Bouajaj, Ahmed; Bahi, Lahcen; Ouadif, Latifa; Awa, Mohamed
2016-10-01
An analysis of slope stability using Geographic Information System (GIS) is presented in this paper. The methodology is based on the calculation of the safety factor in 2D and 3D using ArcGis. Hovland's Method in 3D and 2D were used in the stability analysis of the slope located at the 34 kilometer point (K.P.34) on the highway in the North of Morocco connecting Tangier to Ksar Sghir. Results shows that the safety factors obtained in 3D are always higher than those obtained in 2D and the slope becomes unstable when the water table level is less than 1 m.
Tearing mode analysis in tokamaks, revisited
Nishimura, Y.; Callen, J.D.; Hegna, C.C.
1997-12-01
A new {Delta}{prime} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon} {le} 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease {Delta}{prime}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low {beta} regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m {ge} 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code.
NASA Astrophysics Data System (ADS)
Peng, Q.; Levesque, J. P.; Stoafer, C. C.; Bialek, J.; Byrne, P.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Rhodes, D. J.
2016-04-01
A new algorithm for feedback control of rotating, wall-stabilized kink modes in the High Beta Tokamak-Extended Pulse (HBT-EP) device maintains an accurate phase shift between the perturbation and the measured rotating mode through current control, with control power emphasizing fast rotation and phase jumps over fast amplitude changes. In HBT-EP, wall-stabilized kink modes become unstable above the ideal wall stability limit, and feedback suppression is aimed at delaying the onset of discharge disruption through reduction of the kink mode amplitude. Performance of the new feedback algorithm is tested under different experimental conditions, including variation of the plasma-wall coupling, insertion of a ferritic wall, changing mode rotation frequency over the range of 4-8 kHz using an internal biased electrode, and adjusting the feedback phase-angle to accelerate, amplify, or suppress the mode. We find the previously reported excitation of the slowly rotating mode at high feedback gain in HBT-EP is mitigated by the current control scheme. We also find good agreement between the observed and predicted changes to the mode rotation frequency and amplitude. When ferritic material is introduced, or the plasma-wall coupling becomes weaker as the walls are retracted from plasma, the feedback gain needs to be increased to achieve the same level of suppression. When mode rotation is slowed by a biased electrode, the feedback system still achieves mode suppression, and demonstrates wide bandwidth effectiveness.
NASA Astrophysics Data System (ADS)
Huang, Yong; Wang, Kehong; Zhou, Zhilan; Zhou, Xiaoxiao; Fang, Jimi
2017-03-01
The arc of gas metal arc welding (GMAW) contains abundant information about its stability and droplet transition, which can be effectively characterized by extracting the arc electrical signals. In this study, ensemble empirical mode decomposition (EEMD) was used to evaluate the stability of electrical current signals. The welding electrical signals were first decomposed by EEMD, and then transformed to a Hilbert–Huang spectrum and a marginal spectrum. The marginal spectrum is an approximate distribution of amplitude with frequency of signals, and can be described by a marginal index. Analysis of various welding process parameters showed that the marginal index of current signals increased when the welding process was more stable, and vice versa. Thus EEMD combined with the marginal index can effectively uncover the stability and droplet transition of GMAW.
A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid
NASA Astrophysics Data System (ADS)
Borah, B.; Haloi, A.; Karmakar, P. K.
2016-05-01
In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.
Stability of the electron-driven fishbone mode
Merle, Antoine; Decker, Joan; Garbet, Xavier; Sabot, Roland; Nicolas, Timothee; Guimaraes-Filho, Zwinglio
2012-07-15
Electron-driven fishbones provide a good test bed for the linear theory of fast-particle driven instabilities as they exhibit a very high sensitivity to the details of both the equilibrium and the electronic distribution function. Thus, they can help validate the models developed for studying instabilities driven by alpha particles in future fusion reactors such as ITER. The fishbone dispersion relation is extended to properly account for resonance with passing particles by including the contribution of the parallel motion to the resonance condition. Barely passing electrons are found to drive the mode unstable at a lower frequency than barely trapped electrons. Although globally destabilizing, the influence of passing electrons quickly decreases away from the trapped-passing boundary. This is confirmed by an analysis using distributions close to those obtained in electron cyclotron resonance heating experiments. The major effect of this new resonance condition is a reduction of the fast-electron density threshold coupled to a reduction of the frequency of the mode.
NASA Astrophysics Data System (ADS)
Katsuro-Hopkins, O.; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Bak, J. G.; Chung, J.; Hahn, S. H.; Kim, J. Y.; Kwon, M.; Lee, S. G.; Yoon, S. W.; You, K.-I.; Glasser, A. H.; Lao, L. L.
2010-02-01
The Korea Superconducting Tokamak Advanced Research, KSTAR, is designed to operate a steady-state, high beta plasma while retaining global magnetohydrodynamic (MHD) stability to establish the scientific and technological basis of an economically attractive fusion reactor. An equilibrium model is established for stability analysis of KSTAR. Reconstructions were performed for the experimental start-up scenario and experimental first plasma operation using the EFIT code. The VALEN code was used to determine the vacuum vessel current distribution. Theoretical high beta equilibria spanning the expected operational range are computed for various profiles including generic L-mode and DIII-D experimental H-mode pressure profiles. Ideal MHD stability calculations of toroidal mode number of unity using the DCON code shows a factor of 2 improvement in the wall-stabilized plasma beta limit at moderate to low plasma internal inductance. The planned stabilization system in KSTAR comprises passive stabilizing plates and actively cooled in-vessel control coils (IVCCs) designed for non-axisymmetric field error correction and stabilization of slow timescale MHD modes including resistive wall modes (RWMs). VALEN analysis using standard proportional gain shows that active stabilization near the ideal wall limit can be reached with feedback using the midplane segment of the IVCC. The RMS power required for control using both white noise and noise taken from NSTX active stabilization experiments is computed for beta near the ideal wall limit. Advanced state-space control algorithms yield a factor of 2 power reduction assuming white noise while remaining robust with respect to variations in plasma beta.
Stability analysis of ecomorphodynamic equations
NASA Astrophysics Data System (ADS)
Bärenbold, F.; Crouzy, B.; Perona, P.
2016-02-01
In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding.
Stability of coupled tearing and twisting modes in tokamaks
Fitzpatrick, R.
1994-03-01
A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable {open_quote}compound{close_quote} modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, {open_quote}compound{close_quote} modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-{beta} plasma, but twisting parity layers become more probable as the plasma {beta} is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up.
Lao, L.L.; Burrell, K.H.; Casper, T.S.
1996-08-01
The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-{eta}{sub i}mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub i} mode suggests that the large core {bold E x B} flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {Beta}{sub N} {lt} 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity.
Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
NASA Astrophysics Data System (ADS)
Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua
2015-10-01
The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).
Instantaneous normal mode analysis of melting of finite dust clusters.
Melzer, André; Schella, André; Schablinski, Jan; Block, Dietmar; Piel, Alexander
2012-06-01
The experimental melting transition of finite two-dimensional dust clusters in a dusty plasma is analyzed using the method of instantaneous normal modes. In the experiment, dust clusters are heated in a thermodynamic equilibrium from a solid to a liquid state using a four-axis laser manipulation system. The fluid properties of the dust cluster, such as the diffusion constant, are measured from the instantaneous normal mode analysis. Thereby, the phase transition of these finite clusters is approached from the liquid phase. From the diffusion constants, unique melting temperatures have been assigned to dust clusters of various sizes that very well reflect their dynamical stability properties.
Joiner, N.; Hirose, A.
2008-08-15
The kinetic ballooning mode (KBM) has been shown in previous work to be unstable within the magnetohydrodynamic (MHD) region (in s-{alpha} space) of second stability [Hirose et al., Phys. Rev. Lett. 72, 3993 (2004)]. In this work we verify this result using the gyrokinetic code GS2 [Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] treating both ions and electrons as kinetic species and retaining the magnetosonic perturbation B{sub parallel}. Growth rates calculated using GS2 differ significantly from the previous differential/shooting code analysis. Calculations without B{sub parallel} find the stability region is preserved, while the addition of B{sub parallel} causes the mode to be more unstable than previously calculated within the region of MHD second stability. The inclusion of parallel ion current and B{sub parallel} into the shooting code does not account for the GS2 results. The evidence presented in this paper leads us to the conclusion that the adiabatic electron approximation employed in previous studies is found to be unsuitable for this type of instability. Based on the findings of this work, the KBM becomes an interesting instability in the context of internal transport barriers, where {alpha} is often large and magnetic shear is small (positive or negative)
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.
2006-01-01
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.
The AlGaAs single-mode stability
NASA Technical Reports Server (NTRS)
Botez, D.; Ladany, I.
1983-01-01
Single-mode spectral behavior with aging in constricted double heterojunction (CDH) lasers was studied. The CDH lasers demonstrated excellent reliability ( or = 1 million years extrapolated room-temperature MTTF) and single-mode operation after 10,000 hours of 70 C aging. The deleterious effects of laser-fiber coupling on the spectra of the diodes were eliminated through the use of wedge-shaped fibers. A novel high-power large optical cavity (LOC)-type laser was developed: the terraced-heterostructure (TH)-LOC laser, which provides the highest power into a single-mode (i.e., 50 mW CW) ever reported.
Interactive multi-mode blade impact analysis
NASA Technical Reports Server (NTRS)
Alexander, A.; Cornell, R. W.
1978-01-01
The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.
Ponderomotive stabilization of flute modes in mirrors Feedback control and numerical results
NASA Technical Reports Server (NTRS)
Similon, P. L.
1987-01-01
Ponderomotive stabilization of rigid plasma flute modes is numerically investigated by use of a variational principle, for a simple geometry, without eikonal approximation. While the near field of the studied antenna can be stabilizing, the far field has a small contribution only, because of large cancellation by quasi mode-coupling terms. The field energy for stabilization is evaluated and is a nonnegligible fraction of the plasma thermal energy. A new antenna design is proposed, and feedback stabilization is investigated. Their use drastically reduces power requirements.
Contrast agent stability: a continuous B-mode imaging approach.
Sboros, V; Moran, C M; Pye, S D; McDicken, W N
2001-10-01
The stability of contrast agents in suspensions with various dissolved gas levels has not been reported in the literature. An in vitro investigation has been carried out that studied the combined effect of varying the acoustic pressure along with degassing the suspension environment. In this study, the contrast agents were introduced into suspensions with different oxygen concentration levels, and their relative performance was assessed in terms of decay rate of their backscatter echoes. The partial pressures of oxygen in those solutions ranged between 1.5 and 26 kPa. Two IV and one arterial contrast agents were used: Definity, Quantison, and Myomap. It was found that Quantison and Myomap released free bubbles at high acoustic pressure that also dissolved faster in degassed suspensions. The backscatter decay for Definity did not depend on the air content of the suspensions. The destruction of bubbles was dependent on acoustic pressure. Different backscatter performance was observed by different populations of bubbles of the last two agents. The physical quantity of "overall backscatter" (OB) was defined as the integral of the decay rate over time of the backscatter of the contrast suspensions, and improved significantly the understanding of the behaviour of the agents. A quantitative analysis of the backscatter properties of contrast agents using a continuous imaging approach was difficult to achieve. This is due to the fact that the backscatter in the field of view is representative of a bubble population affected by the ultrasound (US) field, but this bubble population is not representative of the contrast suspension in the whole tank. Single frame insonation is suggested to avoid the effects of decay due to the ultrasonic field, and to measure a tank-representative backscatter. The definition of OB was useful, however, in understanding the behaviour of the agents.
Stability and modal analysis of shock/boundary layer interactions
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2017-02-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
NASA Astrophysics Data System (ADS)
Bao, Bo-Cheng; Xu, Jian-Ping; Liu, Zhong
2009-11-01
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagram, Lyapunov exponent spectrum, time-domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.
Resonator stability and higher-order modes in free-electron laser oscillators
NASA Astrophysics Data System (ADS)
Pathak, Abhishek; Krishnagopal, Srinivas
2014-08-01
Three-dimensional simulation codes genesis and opc are used to investigate the dependence of the resonator stability of free-electron laser (FEL) oscillators on the stability parameter, laser wavelength, outcoupling hole size and mirror tilt. We find that to have stable lasing over a wide range of wavelengths, the FEL cavity configuration should be carefully chosen. Broadly, the concentric configuration gives near-Gaussian modes and the best performance. At intermediate configurations the dominant mode often switches to a higher-order mode, which kills lasing. For the same reason, the outcoupled power can also be less. We have constructed a simple analytic model to study resonator stability which gives results that are in excellent agreement with the simulations. This suggests that modes in FEL oscillators are determined more by the cavity configuration and radiation propagation than by the details of the FEL interaction. We find (as in experiments at the CLIO FEL) that tilting the mirror can, for some configurations, lead to more outcoupled power than a perfectly aligned mirror because the mode is now a more compact higher-order mode, which may have implications for the mode quality for user experiments. Finally, we show that the higher-order mode obtained is usually a single Gauss-Laguerre mode, and therefore it should be possible to filter out the mode using suitable intracavity elements, leading to better FEL performance.
Impact of ion diamagnetic drift on ideal ballooning mode stability in rotating tokamak plasmas
NASA Astrophysics Data System (ADS)
Aiba, N.
2016-04-01
Drift magnetohydrodynamic (MHD) equations have been derived in order to investigate the ion diamagnetic drift effect on the stability to ideal MHD modes in rotating plasmas. These drift MHD equations have been simplified with the Frieman-Rotenberg formalism under the incompressible assumption, and a new code, MINERVA-DI, has been developed to solve the derived extended Frieman-Rotenberg equation. Benchmark results of the MINERVA-DI code show good agreements with the analytic theory discussing the stability to an internal kink mode and that to a ballooning mode in static plasmas. The stability analyses of the ballooning mode with respect to toroidal rotation with the ion diamagnetic drift effect have been performed using MINERVA-DI. The stabilizing effect by the ion diamagnetic drift is found to be negligible when the rotation frequency is large compared to the ion diamagnetic drift frequency. The direction of plasma rotation affects the ballooning mode stability when the ion diamagnetic drift effect is taken into account. It is identified that there are two physics mechanisms responsible for the dependence of MHD stability on the rotation direction. One is the correction of the dynamic pressure effect on MHD stability by the ion diamagnetic drift, and the other is the change of the MHD eigenmode structure by the combined effect of plasma rotation and ion diamagnetic drift.
Failure Mode Identification Through Clustering Analysis
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.
Lake Urmia Bridge Stability Assessment: Results from Terrasar-X Spotlight Mode Images
NASA Astrophysics Data System (ADS)
Hosseini, F.; Motagh, M.; Vajedian, S.; Sharifi, M. A.
2015-12-01
In this study we investigate stability of Lake Urmia bridge, locally also known as Shahid Kalantari's highway bridge, in northwest of Iran using high-resolution satellite radar imagery. The radar dataset includes 22 SAR images acquired in SpotLight mode from 2014 to 2015 in an ascending orbit by TerraSAR-X satellite. A high-resolution Digital Elevation Model (DEM) of the area was constructed from a pair of TanDEM-X bi-static data on June 2012 to remove the effect of topography from interferometry observations. The analysis of X-band interferograms shows high number of displacement fringes, which are interpreted as being caused by thermal dilation due to temperature differences in the imaged area between two SAR acquisitions. This effect, which can often be observed in single interferograms, have important impact on time-series products and should be considered for deformation analysis of bridge structures.
Study of a harmonic mode lock stability under external continuous-wave injection
NASA Astrophysics Data System (ADS)
Semaan, Georges; Komarov, Andrey; Salhi, Mohamed; Sanchez, François
2017-03-01
In this paper, we investigate experimentally the effect of an injected continuous external optical laser in a stable passive harmonic mode-locked fiber laser operating in the anomalous dispersion regime. Under specific conditions, the continuous-wave significantly increases the stability of the harmonic mode-locked regime. This occurs for a discrete set of wavelengths and below a critical injected power.
Instability of chiral soliton stabilized by quantization of breathing mode
NASA Astrophysics Data System (ADS)
Kobayashi, A.; Otsu, H.; Sawada, S.
1990-09-01
We find explicit paths of collapse of the Skyrmion, the solitons in the simplest chiral model of pions (without the Skyrme term); even when the quantum effects of breathing and rotational modes are taken into account. The paths are represented by a parameter of a family of trial profile functions of the hedgehog ansatz which has the asymptotic falloff 1/r2 for r-->∞.
Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Hughes, J. W.; Snyder, P. B.; Walk, J. R.; Davis, E. M.; Diallo, A.; LaBombard, B.; Baek, S. G.; Churchill, R. M.; Greenwald, M.; Groebner, R. J.; Hubbard, A. E.; Lipschultz, B.; Marmar, E. S.; Osborne, T.; Reinke, M. L.; Rice, J. E.; Theiler, C.; Terry, J.; White, A. E.; Whyte, D. G.; Wolfe, S.; Xu, X. Q.
2013-04-01
New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling-ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of βpol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices.
A streamlined failure mode and effects analysis
Ford, Eric C. Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg
2014-06-15
Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.
Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.
Wang, Jia-Jun
2012-11-01
X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum.
Feasibility of large-{beta} tokamak stability to ballooning modes due to nonmonotonic q-profiles
Medvedev, M.V.; Yurchenko, E.I.
1994-12-01
The stability of high-temperature nondissipative plasmas to the flute instability ballooning modes in tokamak-like toroidal configurations is investigated at high plasma pressures. The analytical criterion of ballooning-mode stability at large toroidal numbers, discovered by O.P. Pogutse and E.I. Yurchenko, is used for stability assessment. In contrast to systems with monotonic safety-factor q-profiles, nonmonotonic q-profile systems are found to allow a considerable increase in the critical plasma pressure, provided that the pressure profile is properly chosen. The most preferred pressure profiles prove to be the peaked profiles. 13 refs., 12 figs., 5 tabs.
NASA Astrophysics Data System (ADS)
Wehner, W.; Schuster, E.
2012-07-01
Suppression of magnetic islands driven by the neoclassical tearing mode (NTM) is necessary for efficient and sustained operation of tokamak fusion reactors. Compensating for the lack of bootstrap current, due to the pressure profile flattening in the magnetic island, by a localized electron cyclotron current drive (ECCD) has been proved experimentally as an effective method to stabilize NTMs. The effectiveness of this method is limited in practice by the uncertainties in the width of the island, the relative position between the island and the beam, and the ECCD power threshold for NTM stabilization. Heuristic search and suppress algorithms have been proposed and shown effective in improving the alignment of the ECCD beam with the island, using only an estimate of the island width. Making use of this estimate, real-time, non-model-based, extremum-seeking optimization algorithms have also been proposed not only for beam steering but also for power modulation in order to minimize the island-beam misalignment and the time required for NTM stabilization. A control-oriented dynamic model for the effect of ECCD on the magnetic island is proposed in this work to enable both control design and performance analysis of these minimum-seeking type of controllers. The model expands previous work by including the impact of beam modulation parameters such as the island-beam phase mismatch and the beam duty-cycle on the island width dynamics.
The effect of an anisotropic pressure of thermal particles on resistive wall mode stability
Berkery, J. W. Sabbagh, S. A.; Betti, R.; Guazzotto, L.; Manickam, J.
2014-11-15
The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu et al., Phys. Plasmas 12, 0 57301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution function. A complete stability treatment without an assumption of high frequency mode rotation leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to the fluid terms. With the density and the average pressure kept constant, when thermal particles have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive wall mode stability.
Feedback stabilization of resistive wall modes in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Cecconello, M.; Drake, J. R.; Manduchi, G.; Marchiori, G.
2005-09-01
An array of saddle coils having Nc=16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n ,n' that fulfill the condition ∣n-n'∣=Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.
Feedback Stabilization of Resistive Wall Modes in RFX-mod
NASA Astrophysics Data System (ADS)
Bolzonella, Tommaso
2006-10-01
The search of efficient strategies for active control of MHD instabilities is one of the main missions of existing devices and one active field of research where important contributions can come not only from tokamak devices but also from alternative configurations. Resistive Wall Mode (RWM) instabilities are known in particular to limit plasma performances in all toroidal devices with plasma duration exceeding the penetration time of the resistive magnetic boundary surrounding the plasma. RWMs are the main limit for tokamak high-beta advanced scenarios, where a high fraction of non-inductive current is requested to study long (in the limit steady state) operations. Historically RWMs were first observed in Reversed Field Pinch (RFP) devices, where the current gradient plays the role of the drive, typically with multi-mode spectrum whose composition depends on magnetic equilibrium field profiles. RFX-mod device is a large RFP (R=2 m, a=0.46 m) where active control of MHD instabilities is intensively studied by means of a system of 192 active saddle coils placed outside the resistive shell (50 ms for Bv diffusion time) fully covering its external surface and driven by a digital controller. This system provides a very powerful and flexible environment where the study of RWMs physics and their active stabilisation under different experimental conditions is possible. Recent results from RFX-mod show that the complete stabilisation of multi-mode RWM spectrum at high plasma currents (Ip=1 MA) is possible allowing discharges longer than 6 times the diffusion time of the shell. Different control schemes are tested as well, such as open loop operations (intrinsic error field correction and Resonant Field Amplification studies), feedback operations using different measurement systems or incomplete set of coils to simulate systems with partial coverage by active coils.
Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles
NASA Astrophysics Data System (ADS)
Calvisi, Michael
2016-11-01
Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the
Nonlinear {omega}*-stabilization of the m = 1 mode in tokamaks
Rogers, B.; Zakharov, L.
1995-08-01
Earlier studies of sawtooth oscillations in Tokamak Fusion Test Reactor supershots (Levinton et al, Phys. Rev. Lett. 72, 2895 (1994); Zakharov, et al, Plasma Phys. and Contr. Nucl. Fus. Res., Proc. 15th Int. Conf., Seville 1994, Vienna) have found an apparent contradiction between conventional linear theory and experiment: even in sawtooth-free discharges, the theory typically predicts instability due to a nearly ideal m = 1 mode. Here, the nonlinear evolution of such mode is analyzed using numerical simulations of a two-fluid magnetohydrodynamic (MHD) model. We find the mode saturates nonlinearly at a small amplitude provided the ion and electron drift-frequencies {omega}*{sub i,e} are somewhat above the linear stability threshold of the collisionless m = 1 reconnecting mode. The comparison of the simulation results to m = 1 mode activity in TFTR suggests additional, stabilizing effects outside the present model are also important.
Stability Analysis of ISS Medications
NASA Technical Reports Server (NTRS)
Wotring, V. E.
2014-01-01
the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.
Stabilization and synchronization for a mechanical system via adaptive sliding mode control.
Song, Zhankui; Sun, Kaibiao; Ling, Shuai
2017-03-06
In this paper, we investigate the synchronization problem of chaotic centrifugal flywheel governor with parameters uncertainty and lumped disturbances. A slave centrifugal flywheel governor system is considered as an underactuated following-system which a control input is designed to follow a master centrifugal flywheel governor system. To tackle lumped disturbances and uncertainty parameters, a novel synchronization control law is developed by employing sliding mode control strategy and Nussbaum gain technique. Adaptation updating algorithms are derived in the sense of Lyapunov stability analysis such that the lumped disturbances can be suppressed and the adverse effect caused by uncertainty parameters can be compensated. In addition, the synchronization tracking-errors are proven to converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.
Linear stability of the tearing mode with two-fluid and curvature effects in tokamaks
Meshcheriakov, Dmytro; Maget, Patrick; Garbet, Xavier; Luetjens, Hinrich; Beyer, Peter
2012-09-15
Curvature and diamagnetic effects are both recognized to have a stabilizing influence on tearing modes in the linear regime. In this paper, we investigate the impact of these effects on the linear stability of a (2, 1) magnetic island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments where its stability is not well understood from the single fluid MHD model. Simulations show an initial increase of the linear growth rate and then its reduction until full stability as diamagnetic frequency increases. This mechanism is therefore a plausible explanation for experimental observations where the (2, 1) mode was not observed although the single fluid model predicted its growth. Our simulations also show the importance of curvature for an efficient stabilization. A simple analytical model is derived to support the numerical results.
Lao, L.L.; Burrell, K.H.; Casper, T.S.; Chan, V.S.; Chu, M.S.; DeBoo, J.C.; Doyle, E.J.; Durst, R.D.; Forest, C.B.; Greenfield, C.M.; Groebner, R.J.; Hinton, F.L.; Kawano, Y.; Lazarus, E.A.; Lin-Liu, Y.R.; Mauel, M.E.; Meyer, W.H.; Miller, R.L.; Navratil, G.A.; Osborne, T.H.; Peng, Q.; Rettig, C.L.; Rewoldt, G.; Rhodes, T.L.; Rice, B.W.; Schissel, D.P.; Stallard, B.W.; Strait, E.J.; Tang, W.M.; Taylor, T.S.; Turnbull, A.D.; Waltz, R.E.; the DIII-D Team
1996-05-01
The confinement and the stability properties of the DIII-D tokamak [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high-performance discharges are evaluated in terms of rotational and magnetic shear, with an emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped-electron-{eta}{sub {ital i}} mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub {ital i}} mode suggests that the large core {ital E}{times}{ital B} flow shear can stabilize this mode and broaden the region of reduced core transport. Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {beta}{sub {ital N}}{le}2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges, which has a broad region of weak or slightly negative magnetic shear (WNS), is described. The WNS discharges have broader pressure profiles and higher {beta} values than the NCS discharges, together with high confinement and high fusion reactivity. {copyright} {ital 1996 American Institute of Physics.}
Failure modes and effects analysis automation
NASA Technical Reports Server (NTRS)
Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron
1988-01-01
A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.
Bouncing ball problem: stability of the periodic modes.
Barroso, Joaquim J; Carneiro, Marcus V; Macau, Elbert E N
2009-02-01
Exploring all its ramifications, we give an overview of the simple yet fundamental bouncing ball problem, which consists of a ball bouncing vertically on a sinusoidally vibrating table under the action of gravity. The dynamics is modeled on the basis of a discrete map of difference equations, which numerically solved fully reveals a rich variety of nonlinear behaviors, encompassing irregular nonperiodic orbits, subharmonic and chaotic motions, chattering mechanisms, and also unbounded nonperiodic orbits. For periodic motions, the corresponding conditions for stability and bifurcation are determined from analytical considerations of a reduced map. Through numerical examples, it is shown that a slight change in the initial conditions makes the ball motion switch from periodic to chaotic orbits bounded by a velocity strip v=+/-Gamma(1-epsilon) , where Gamma is the nondimensionalized shaking acceleration and epsilon the coefficient of restitution which quantifies the amount of energy lost in the ball-table collision.
Cell-cell interactions stabilize emerging collective migration modes
NASA Astrophysics Data System (ADS)
Parker, Joshua; Guven, Can; Wang, Chenlu; Ott, Ed; Losert, Wolfgang
2014-03-01
We propose a coarse-grained mechanistic model for simulating the dynamics of the biological model organism Dictyostelium discoideum, incorporating gradient sensing, random motility via actin protrusions, persistent random motion and signal relay. We demonstrate that our simple cell model does result in the macroscopic group migration patterns seen in no-flow gradient chambers, namely a transition from individual motion to multi-cell ``streaming'' to aggregation as the external signal is decreased. We also find that cell-cell adhesion further stabilizes the contact network independent of chemical signaling, suggesting no indirect feedback between mechanical forces and gradient sensing. We discuss further modifications to the model and as well as further applications to quantifying dynamics using spatio-temporal contact networks. Co-first author
Pump power stability range of single-mode solid-state lasers with rod thermal lensing
De Silvestri, S.; La Porta, P.; Magni, V.
1987-11-01
The pump power stability range of solid-state laser resonators operating in the TEM/sub 00/ mode has been thoroughly investigated. It has been shown that, for a very general resonator containing intracavity optical systems, rod thermal lensing engenders a pump power stability range which is a characteristic parameter of laser material and pump cavity, but is independent of resonator configuration. Stability ranges have been calculated and critically discussed for Nd:YAG, Nd:Glasses, Nd:Cr:GSGG, and alexandrite. The independence of the pump power stability range from the resonator configuration has been experimentally demonstrated for a CW Nd:YAG laser.
Control sensitivity indices for stability analysis of HVdc systems
Nayak, O.B.; Gole, A.M.; Chapman, D.G.; Davies, J.B.
1995-10-01
This paper presents a new concept called the ``Control Sensitivity Index`` of CSI, for the stability analysis of HVdc converters connected to weak ac systems. The CSI for a particular control mode can be defined as the ratio of incremental changes in the two system variables that are most relevant to that control mode. The index provides valuable information on the stability of the system and, unlike other approaches, aids in the design of the controller. It also plays an important role in defining non-linear gains for the controller. This paper offers a generalized formulation of CSI and demonstrates its application through an analysis of the CSI for three modes of HVdc control. The conclusions drawn from the analysis are confirmed by a detailed electromagnetic transients simulation of the ac/dc system. The paper concludes that the CSI can be used to improve the controller design and, for an inverter in a weak ac system, the conventional voltage control mode is more stable than the conventional {gamma} control mode.
Kadoya, Y.; Abe, H.
1988-04-01
A two- and one-half-dimensional electromagnetic particle code (PS2M) (H. Abe and S. Nakajima, J. Phys. Soc. Jpn. 53, xxx (1987)) is used to study how an electric field applied parallel to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The parallel electric field E/sub parallel/ perturbs the electron velocity v/sub parallel/ parallel to the magnetic field and also induces a perpendicular magnetic field perturbation B/sub perpendicular/. The unstable growth of the flute mode in the absence of such a radio frequency electric field is first studied as a basis for comparison. The ponderomotive force originating from the time-averaged product
Kelvin waves in ECMWF analysis: normal-mode diagnostics
NASA Astrophysics Data System (ADS)
Blaauw, Marten; Zagar, Nedjeljka
2013-04-01
Equatorial Kelvin waves show a large spread in spatial and temporal variability similar to their source of tropical convective forcing. Once decoupled from their source, Kelvin waves are modulated during their ascent by changes in the background wind and stability. In this presentation, we focus on the seasonal and interannual variability of Kelvin waves in relation with variability of (i) tropical convection and (ii) background zonal wind and static stability. Global data is extracted from ECMWF operational analysis from January 2007 till May 2011 on 91 model levels (top level at 0.01 hPa) and ~ 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, we project input mass and wind data simultaneously onto balanced rotational modes and unbalanced inertia-gravity modes including Kelvin modes. Next, an inverse transformation of Kelvin modes to physical space is performed under the linearity assumption, allowing a study on the spatial and temporal variability of Kelvin wave zonal wind and temperature. Results show an annual cycle in KW zonal wind in agreement with other studies. Minima resp. maxima in zonal wind amplitudes are found in the Indian ocean resp. Western Pacific and are most pronounced in the tropical tropopause at 150 hPa in January and 100 hPa in July. The annual cycle is enhanced (reduced) through interaction with a descending westerly QBO phase and enhanced (reduced) convective forcing. We also note a gradual eastward shift of KW zonal wind maxima till January 2010 in correspondence with an eastward shift of tropical convection.
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Tassi, E.; Morrison, P. J.
2011-03-15
Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving new infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium 'translated' pressure gradient, stable equilibria can either be energy stable, i.e., possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes. The ETG instability is then shown to arise through a Krein-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode, whereas the energy of the slow mode can have either positive or negative sign. A reduced model with stable equilibria shear flow that possess a continuous spectrum is also analyzed and brought to normal form by a special integral transform. In this way it is seen how continuous spectra can have signature as well.
Stability criteria for edge flute modes in the two-fluid regime
Zheng, L. )
1993-05-01
Necessary and sufficient stability criteria for flute modes localized at the edge of toroidal plasmas are obtained from the Braginskii's two-fluid equations without taking into account the collisional effects. It is assumed that the plasma pressure tends to vanish, but its gradient remains finite at the edge of the plasma. The results show that the free-boundary edge flute modes (namely, the peeling modes) are more dangerous than the fixed-boundary modes (namely, the Mercier modes). Numerical investigation of the criterion for peeling modes shows that the finite ion-gyroradius effect can substantially stabilize the modes, especially for the case [Delta][ge]0, where the equilibrium quantity [Delta][equivalent to]1/2+[ital S][sup [minus]1][lt][bold j][center dot][bold B][vert bar][del][ital v][vert bar][sup [minus]2][gt], with [ital S] denoting the global shear, [bold B] the magnetic field, [bold j] the current density, [ital v] the volume inside the reference magnetic surface, and [lt]...[gt] denoting the average over the magnetic surface. Equilibria with [Delta][ge]0 are shown to be more stable to the peeling modes than those with [Delta][le]0.
Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.
Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E
2015-04-17
We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.
Stability Analysis for HIFiRE Experiments
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.; Kimmel, Roger; Adamczak, David; Borg, Matthew; Stanfield, Scott; Smith, Mark S.
2012-01-01
The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Solar seismology. I - The stability of the solar p-modes
NASA Technical Reports Server (NTRS)
Goldreich, P.; Keeley, D. A.
1977-01-01
The stability of the radial p-modes of the sun is investigated by computing nonadiabatic eigenvalues and eigenfunctions for a solar envelope model which extends from an inner radius of about 0.3 solar radius out to an optical depth of about 0.0003. The calculations take into account in a crude fashion the response of the convective flux to the oscillation. The dynamical effect of turbulence in the convection zone is parametrized in terms of a turbulent shear viscosity. The results show that if damping by turbulent viscosity is neglected, all modes with periods longer than 6 minutes are unstable. The familiar kappa-mechanism, which operates in the H ionization-H(-) opacity region, is the dominant source of driving of the oscillations. Modes with periods shorter than 6 minutes are stabilized by radiative damping in the solar atmosphere. When turbulent dissipation of pulsational energy is included, all modes are predicted to be stable. However, the margin of stability is very small. In view of the large uncertainty that must be assigned to the estimate of turbulent damping, it is concluded that theoretical calculations cannot unequivocally resolve the question of the stability of the solar p-modes.
Nonlinear Dynamic Stability of the Viscoelastic Plate Considering Higher Order Modes
NASA Astrophysics Data System (ADS)
Sun, Yuanxiang; Wang, Cheng
2016-11-01
-The dynamic stability of viscoelastic plates is investigated in this paper by using chaotic and fractal theory. The nonlinear integro-differential dynamic equation is changed into an autonomic 4-dimensional dynamical system. The numerical time integrations of equations are obtained by using the fourth order Runge-Kutta method. And the Lyapunov exponent spectrum, the fractal dimension of strange attractors and the time evolution of deflection are obtained. The influence of viscoelastic parameter on dynamic buckling of viscoelastic plates is discussed. The effect of higher order modes on dynamic stability of viscoelastic plate is obtained, the necessity of considering higher order modes is discussed.
Stability and quasinormal modes of the massive scalar field around Kerr black holes
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Zhidenko, A. V.
2006-06-01
In this paper, we find quasinormal spectrum of the massive scalar field in the background of the Kerr black holes. We show that all found modes are damped under the quasinormal modes boundary conditions when μM≲1, thereby implying stability of the massive scalar field. This complements the region of stability determined by the Beyer inequality for large masses of the field. We show that, similar to the case of a nonrotating black hole, the massive term of the scalar field does not contribute in the regime of high damping. Therefore, the high damping asymptotic should be the same as for the massless scalar field.
NASA Astrophysics Data System (ADS)
Krishna Swamy, Aditya; Verma, Deepak; Ganesh, Rajaraman; Brunner, Stephan; Villard, Laurent
2016-10-01
Turbulent transport of energy, particles and momentum is one of the important limiting factors for long time plasma confinement. Modern study using gyrokinetic formalism and simulation has progressed to identify several microinstabilities that cause ion and electron thermal transport. Typically, these have been ballooning parity modes (φ is even and Ã∥ is odd) such as Ion Temperature Gradient mode (ITG), Kinetic Ballooning Mode (KBM) and Electron Temperature Gradient mode (ETG) which cause transport through fluctuations or tearing parity modes (φ is odd and Ã∥ is even) such as Microtearing modes (MTM) which change the local magnetic topology and cause transport through stochastization of the magnetic field. Here, the role of global safety factor profile variation on the MTM instability and global mode structure is studied in large aspect ratio tokamaks. Multiple subdominant branches of MTM are linearly unstable in several shear profiles. At lower shear, linearly unstable Mixed Parity Modes are found to exist. The growth rate spectrum, β-scaling in reverse shear profiles and the role of equilibrium flow on the stability and global mode structures of these modes will be presented.
Global gyrokinetic stability of collisionless microtearing modes in large aspect ratio tokamaks
Swamy, Aditya K.; Ganesh, R.; Chowdhury, J.; Brunner, S.; Vaclavik, J.; Villard, L.
2014-08-15
Linear full radius gyrokinetic calculations show the existence of unstable microtearing modes (MTMs) in purely collisionless, high temperature, large aspect ratio tokamak plasmas. The present study takes into account fully gyrokinetic highly passing ions and electrons. The global 2-D structures of the collisionless mode with full radius coupling of the poloidal modes is obtained and compared with another electromagnetic mode, namely, the Alfvén Ion Temperature Gradient (AITG) mode (or Kinetic Ballooning Mode, KBM) for the same equilibrium profile. Several important characteristics of the modes are brought out and compared, such as a clear signature in the symmetry properties of the two modes, the plasma–β dependence, and radial and poloidal length scales of the electrostatic and magnetic vector potential fluctuations. Extensive parameter scans for this collisionless microtearing mode reveal the scaling of the growth rate with β and the electron temperature gradient η{sub e}. Scans at different β values show an inverse relationship between the η{sub e} threshold and β, leading to a stability diagram, and implying that the mode might exist at moderate to strong temperature gradients for finite β plasmas in large aspect ratio tokamaks. In contrast to small aspect ratio tokamaks where the trapped electron magnetic drift resonance is found to be important, in large aspect ratio tokamaks, a strong destabilization due to the magnetic drift resonance of passing electrons is observed and is identified as a possible collisionless drive mechanism for the collisionless MTM.
Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori
2017-02-01
The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.
Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori
2017-01-01
The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.
Influence of vibration modes on control system stabilization for space shuttle type vehicles
NASA Technical Reports Server (NTRS)
Greiner, H. G.
1972-01-01
An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.
Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall
Pustovitov, V. D.; Yanovskiy, V. V.
2015-03-15
The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasing the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.
Sharp boundary analysis of electrostatic flute modes
Lemons, D. S.
1989-07-01
A linear, electrostatic, stability analysis of a magnetized cross-fielddrifting plasma with a sharp boundary is presented. The analysis corrects anerror in a previously published sharp boundary theory (Phys. Fluids /bold 19/,882 (1976)) and extends another theory (Geophys. Res. Lett. /bold 14/, 60(1987)) to include finite electron mass and non-neutral perturbations. Theinstability's long wavelength structure is associated with the classical fluteinstability, while the peak of the growth rate curve, at much shorterwavelengths, is a Buneman-like instability.
Global stability analysis of electrified jets
NASA Astrophysics Data System (ADS)
Rivero-Rodriguez, Javier; Pérez-Saborid, Miguel
2014-11-01
Electrospinning is a common process used to produce micro and nano polymeric fibers. In this technique, the whipping mode of a very thin electrified jet generated in an electrospray device is nhanced in order to increase its elongation. In this work, we use a theoretical Eulerian model that describes the kinematics and dynamics of the midline of the jet, its radius and convective velocity. The model equations result from balances of mass, linear and angular momentum applied to any differential slice of the jet together with constitutive laws for viscous forces and moments, as well as appropriate expressions for capillary and electrical forces. As a first step towards computing the complete nonlinear, transient dynamics of the electrified jet, we have performed a global stability analysis of the forementioned equations and compared the results with experimental data obtained by Guillaume et al. [2011] and Guerrero-Millán et al. [2014]. The support of the Ministry of Science and Innovation of Spain (Project DPI 2010-20450-C03-02) is acknowledged.
Nonlinear stability analysis of Darcy's flow with viscous heating.
Celli, Michele; Alves, Leonardo S de B; Barletta, Antonio
2016-05-01
The nonlinear stability of a rectangular porous channel saturated by a fluid is here investigated. The aspect ratio of the channel is assumed to be variable. The channel walls are considered impermeable and adiabatic except for the horizontal top which is assumed to be isothermal. The viscous dissipation is acting inside the channel as internal heat generator. A basic throughflow is imposed, and the nonlinear convective stability is investigated by means of the generalized integral transform technique. The neutral stability curve is compared with the one obtained by the linear stability analysis already present in the literature. The growth rate analysis of different unstable modes is performed. The Nusselt number is investigated for several supercritical configurations in order to better understand how the system behaves when conditions far away from neutral stability are considered. The patterns of the neutrally stable convective cells are also reported. Nonlinear simulations support the results obtained by means of the linear stability analysis, confirming that viscous dissipation alone is indeed capable of inducing mixed convection. Low Gebhart or high Péclet numbers lead to a transient overheating of the originally motionless fluid before it settles in its convective steady state.
NASA Astrophysics Data System (ADS)
Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.
2007-11-01
Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.
Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin
2015-02-15
It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%–70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.
Shaping Effects on Resistive-Plasma Resistive-Wall Mode Stability in a Tokamak
NASA Astrophysics Data System (ADS)
Rhodes, Dov; Cole, A. J.; Navratil, G. A.; Levesque, J. P.; Mauel, M. E.; Brennan, D. P.; Finn, J. M.; Fitzpatrick, R.
2016-10-01
A sharp-boundary MHD model is used to explore the effects of toroidal curvature and cross-sectional shaping on resistive-plasma resistive-wall modes in a tokamak. Building on the work of Fitzpatrick, we investigate mode stability with fixed toroidal number n =1 and a broad spectrum of poloidal m-numbers, given varying aspect-ratio, elongation, triangularity and up-down asymmetry. The speed and versatility of the sharp-boundary model facilitate exploration of a large parameter space, revealing qualitative trends to be further investigated by larger codes. In addition, the study addresses the effect of geometric mode-coupling on higher beta stability limits associated with an ideal-plasma or ideal-wall. These beta limits were used by Brennan and Finn to identify plasma response domains for feedback control. Present results show how geometric mode-coupling affects the stability limits and plasma response domains. The results are explained by an analytic reduced-MHD model with two coupled modes having different m-numbers. The next phase of this work will explore feedback control in different tokamak geometries. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Jenkins, Thomas G.; Schnack, Dalton D.; Kruger, Scott E.; Hegna, C. C.; Sovinec, Carl R.
2010-01-15
A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Kruger, Scott E.; Hegna, C. C.; Schnack, Dalton D.; Sovinec, Carl R.
2010-01-01
A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.
Ideal MHD stability properties of pressure-driven modes in low shear tokamaks
Manickam, J.; Pomphrey, N.; Todd, A.M.M.
1987-03-01
The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs.
Stability investigations of airfoil flow by global analysis
NASA Technical Reports Server (NTRS)
Morzynski, Marek; Thiele, Frank
1992-01-01
As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.
Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP
NASA Technical Reports Server (NTRS)
Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.
1994-01-01
Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.
Wall thickness effect on the resistive wall mode stability in toroidal plasmas
Zheng, L.-J.; Kotschenreuther, M.T.
2005-07-15
The effect of finite wall thickness on the stability of n=1 resistive wall modes in toroidal plasmas is investigated. A fusion reactor-relevant configuration is examined. The investigation employs a novel ideal-magnetohydrodynamics adaptive shooting code for axisymmetric plasmas, extended to take into account the wall thickness. Although finite wall thickness generally reduces the growth rate of the resistive wall modes, no contribution to stabilization is found to be made by the portion of the wall that is located beyond the critical position for perfectly conducting wall stabilization. Thus, when the inner side of the wall lies near the critical wall position, the scaling of the growth rate versus wall thickness in the realistic thick-wall calculation is significantly different from that of the usual thin-wall theory. The thin-wall estimate is relevant only when the wall is brought very close to the plasma and is not too thick.
Real-time Stability Analysis for Disruption Avoidance in ITER
NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen; Glasser, Alan
2015-11-01
ITER is intended to operate at plasma parameters approaching the frontier of achievable stability limits. And yet, plasma disruptions at ITER must be kept to a bare minimum to avoid damage to its plasma-facing structures. These competing goals necessitate real-time plasma stability analysis and feedback control at ITER. This work aims to develop a mechanism for real-time analysis of a large and virulent class of disruptions driven by the rapid growth of ideal MHD unstable modes in tokamak equilibria. Such modes will be identified by a parallelized, low-latency implementation of A.H. Glasser's well-tested DCON (Direct Criterion of Newcomb) code, which measures the energetics of modes in the bulk plasma fluid, as well as M.S. Chance's VACUUM code, which measures the same in the vacuum between the plasma and tokamak chamber wall. Parallelization of these codes is intended to achieve a time-savings of 40x, thereby reducing latency to a timescale of order 100ms and making the codes viable for ideal MHD stability control at ITER. The hardware used to achieve this parallelization will be an Intel Xeon Phi server with 77 cores (308 threads). Supported by the US DOE under DE-AC02-09CH11466.
ELM triggering by energetic particle driven mode in wall-stabilized high-β plasmas
NASA Astrophysics Data System (ADS)
Matsunaga, G.; Aiba, N.; Shinohara, K.; Asakura, N.; Isayama, A.; Oyama, N.; the JT-60 Team
2013-07-01
In the JT-60U high-β plasmas above the no-wall β limit, a triggering of an edge localized mode (ELM) by an energetic particle (EP)-driven mode has been observed. This EP-driven mode is thought to be driven by trapped EPs and it has been named EP-driven wall mode (EWM) on JT-60U (Matsunaga et al 2009 Phys. Rev. Lett. 103 045001). When the EWM appears in an ELMy H-mode phase, ELM crashes are reproducibly synchronized with the EWM bursts. The EWM-triggered ELM has a higher repetition frequency and less energy loss than those of the natural ELM. In order to trigger an ELM by the EP-driven mode, some conditions are thought to be needed, thus an EWM with large amplitude and growth rate, and marginal edge stability. In the scrape-off layer region, several measurements indicate an ion loss induced by the EWM. The ion transport is considered as the EP transport through the edge region. From these observations, the EP contributions to edge stability are discussed as one of the ELM triggering mechanisms.
Neoclassical Tearing Mode Analysis in Spherical Tokamak Burning Plasmas
NASA Astrophysics Data System (ADS)
Kurita, Daiki; Yamazaki, Kozo; Arimoto, Hideki; Oishi, Tetsutarou; Shoji, Tatsuo
For stabilization of neoclassical tearing mode (NTM), non-resonant helical field (NRHF) is investigated. The time variation of magnetic island is described by modified Rutherford equation. In this work, plasma parameter change due to NTM is analyzed using 1.5-dimensional transport code TOTAL. In ST plasma, magnetic island at 3/2 mode grows by bootstrap current and the central temperature decreases. If NRHF is added, the effect of bootstrap current decreases and NTM is stabilized.
ASTROP2 users manual: A program for aeroelastic stability analysis of propfans
NASA Technical Reports Server (NTRS)
Narayanan, G. V.; Kaza, K. R. V.
1991-01-01
A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.
The stability of confined radio jets - The role of reflection modes
NASA Technical Reports Server (NTRS)
Payne, D. G.; Cohn, H.
1985-01-01
The linear stability of a confined radio jet is reinvestigated. The roles of both absolute (temporal) and convected (spatial) instability are considered, and it is demonstrated that the two are related through the group velocity. The dispersion relation is analyzed asymptotically for the fundamental and reflection modes. Numerical results are presented for pinching modes. A geometrical interpretation of the modes is presented in terms of the propagation angle and is visualized by contour plots of the pressure perturbation. A confined jet theta M = arc sine (1 + sq rt eta)/M, where eta is the ratio of the internal to the external gas density and M is the Mach number of the jet. The connection between these linear modes and the cross-shaped shock patterns which are seen in laboratory jets, and the implications of these calculations for the development of large-scale features in extragalactic radio jets, are discussed.
NASA Astrophysics Data System (ADS)
Mo, Qingkai; Zhang, Tao; Yan, Yining
2016-10-01
There are contradictions among speediness, anti-disturbance performance, and steady-state accuracy caused by traditional PID controller in the existing light source systems of thermal frequency stabilizing laser with double longitudinal modes. In this paper, a new kind of fuzzy adaptive PID controller was designed by combining fuzzy PID control technology and expert system to make frequency stabilizing system obtain the optimal performance. The experiments show that the frequency stability of the designed PID controller is similar to the existing PID controller (the magnitude of frequency stability is less than 10-9 in constant temperature and 10-7 in open air). But the preheating time is shortened obviously (from 10 minutes to 5 minutes) and the anti-disturbance capability is improved significantly (the recovery time needed after strong interference is reduced from 1 minute to 10 seconds).
Broad-area laser diode with stable single-mode output and wavelength stabilization
NASA Astrophysics Data System (ADS)
Nappez, Thomas; Ghibaudo, Elise; Rondeau, Philippe; Schlotterbeck, Jean-Pierre; Broquin, Jean-Emmanuel
2012-01-01
High power single-mode pump laser diodes operating around 980nm are key components for Erbium-doped devices. Much effort is still currently devoted to improve both their wavelength stability and their achievable output power, while maintaining a stable single-mode operation. Usually, the emission wavelength is stabilized by an external Fiber Bragg Grating (FBG). This configuration requires free-space optics between the laser diode output facet and the fiber or a lensed fiber to ensure an efficient coupling efficiency. This constraint increases fabrication costs, dimensions and mechanical instabilities. Moreover, the maximum achievable output power is limited because a high optical power density can damage the laser facets. To increase the achievable output power, a solution consists in using Broad-Area Laser Diodes (BALD), which are multimode emitters that are composed of large active ribbons with width of some hundreds of micrometers. The objective is then to improve the beam quality by locking the BALD emission on its transverse fundamental mode. We propose in this article to insert an integrated adiabatic transition between the multimode laser and a single-mode FBG. This taper, made by ion-exchange in glass, provides a coupling efficiency of -22.0dB from the multimode laser emission to the single-mode fiber. An optical feedback of -34dB demonstrates the stabilization of the BALD spectrum at the Bragg wavelength. The spectrum of the device is characterized by a maximum side-mode suppression ratio of 35dB, a RMS spectral width of (0.16 +/- 0.04) nm and a frequency shift with current of -12GHz/100mA.
NASA Astrophysics Data System (ADS)
Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.
2014-08-01
Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman-Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M2 = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects.
Stability analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe
2013-03-01
This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.
Stability analysis of zigzag boron nitride nanoribbons
Rai, Hari Mohan Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj
2015-05-15
We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)
Davila-Rodriguez, Josue; Ozdur, Ibrahim; Williams, Charles; Delfyett, Peter J
2010-12-15
We report a frequency-stabilized semiconductor-based mode-locked laser that uses a phase modulator and an intracavity Fabry-Perot etalon for both active mode-locking and optical frequency stabilization. A twofold multiplication of the repetition frequency of the laser is inherently obtained in the process. The residual timing jitter of the mode-locked pulse train is 13 fs (1 Hz to 100 MHz), measured after regenerative frequency division of the photodetected pulse train.
Final Report for "Stabilization of resistive wall modes using moving metal walls"
Forest, Cary B.
2014-02-05
The UW experiment used a linear pinch experiment to study the stabilization of MHD by moving metal walls. The methodology of the experiment had three steps. (1) Identify and understand the no-wall MHD instability limits and character, (2) identify and understand the thin-wall MHD instabilities (re- sistive wall mode), and then (3) add the spinning wall and understand its impact on stability properties. During the duration of the grant we accomplished all 3 of these goals, discovered new physics, and completed the experiment as proposed.
NASA Technical Reports Server (NTRS)
Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan
2012-01-01
Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.
Identification of a Low Plasma-Rotation Threshold for Stabilization of the Resistive-Wall Mode
Takechi, M.; Matsunaga, G.; Aiba, N.; Fujita, T.; Ozeki, T.; Koide, Y.; Sakamoto, Y.; Kurita, G.; Isayama, A.; Kamada, Y.
2007-02-02
The plasma rotation necessary for stabilization of resistive-wall modes (RWMs) is investigated by controlling the toroidal plasma rotation with external momentum input by injection of tangential neutral beams. The observed threshold is 0.3% of the Alfven velocity and much smaller than the previous experimental results obtained with magnetic braking. This low critical rotation has a very weak {beta} dependence as the ideal wall limit is approached. These results indicate that for large plasmas such as in future fusion reactors with low rotation, the requirement of the additional feedback control system for stabilizing RWM is much reduced.
Stability analysis of unsteady ablation fronts
NASA Astrophysics Data System (ADS)
Betti, R.; McCrory, R. L.; Verdon, C. P.
1993-08-01
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Stability analysis of unsteady ablation fronts
Betti, R.; McCrory, R.L.; Verdon, C.P. )
1993-11-08
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Stability analysis of unsteady ablation fronts
NASA Astrophysics Data System (ADS)
Betti, R.; McCrory, R. L.; Verdon, C. P.
1993-11-01
The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.
Stability analysis of unsteady ablation fronts
Betti, R.; McCrory, R.L.; Verdon, C.P.
1993-08-01
The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.
Developments in Cylindrical Shell Stability Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Starnes, James H., Jr.
1998-01-01
Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.
Berkery, J. W.; Sabbagh, S. A.; Reimerdes, H.; Betti, R.; Hu, B.; Bell, R. E.; Gerhardt, S. P.; Manickam, J.; Podesta, M.
2010-08-15
The resistive wall mode (RWM) instability in high-beta tokamaks is stabilized by energy dissipation mechanisms that depend on plasma rotation and kinetic effects. Kinetic modification of ideal stability calculated with the 'MISK' code [B. Hu et al., Phys. Plasmas 12, 057301 (2005)] is outlined. For an advanced scenario ITER [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)] plasma, the present calculation finds that alpha particles are required for RWM stability at presently expected levels of plasma rotation. Kinetic stabilization theory is tested in an experiment in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] that produced marginally stable plasmas with various energetic particle contents. Plasmas with the highest and lowest energetic particle content agree with calculations predicting that increased energetic particle pressure is stabilizing but does not alter the nonmonotonic dependence of stability on plasma rotation due to thermal particle resonances. Presently, the full MISK model, including thermal particles and an isotropic slowing-down distribution function for energetic particles, overpredicts stability in NSTX experiments. Minor alteration of either effect in the theory may yield agreement; several possibilities are discussed.
Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.; Jin, Shuangshuang; Lin, Jenglung; Hauer, Matthew L.
2010-02-28
Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliably and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.
Stabilization of a Quadrotor With Uncertain Suspended Load Using Sliding Mode Control
Zhou, Xu; Liu, Rui; Zhang, Jiucai; Zhang, Xiaoli
2016-08-21
The stability and trajectory control of a quadrotor carrying a suspended load with a fixed known mass has been extensively studied in recent years. However, the load mass is not always known beforehand in practical applications. This mass uncertainty brings uncertain disturbances to the quadrotor system, causing existing controllers to have a worse performance or to be collapsed. To improve the quadrotor's stability in this situation, we investigate the impacts of the uncertain load mass on the quadrotor. By comparing the simulation results of two controllers -- the proportional-derivative (PD) controller and the sliding mode controller (SMC) driven by a sliding mode disturbance of observer (SMDO), the quadrotor's performance is verified to be worse as the uncertainty increases. The simulation results also show a controller with stronger robustness against disturbances is better for practical applications.
Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R
NASA Astrophysics Data System (ADS)
Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.
2015-10-01
A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.
Optimization of Feedback Control Coils for Resistive Wall Mode Stabilization in DIII-D
NASA Astrophysics Data System (ADS)
Bialek, J.; Boozer, A. H.; Garofalo, A. M.; Mauel, M. E.; Navratil, G. A.; Turnbull, A. D.
1999-11-01
Recent experiments in DIII--D on Resistive Wall Mode (RWM) stabilization with active feedback have been very promising. We investigated extensions to the sensor and control coil set that would further improve RWM stabilization. The VALEN computer code models the RWM as an equivalent current distribution on the unperturbed plasma boundary which duplicates the plasma external magnetic field of the mode, as calculated by GATO. This surface current determines the plasma interaction with all conducting structures. In three dimensions the VALEN code models the unstable plasma, passive structure, proposed sensors, and proposed control coils together with the control logic. The problem may be examined as a transient simulation, or for a linear power supply model, as an eigenvalue calculation. A summary of the configurations examined and their predicted effectiveness will be presented.
Stability of the n{=}1 Internal Kink Mode in Plasmas with Centrally Peaked Pressure
NASA Astrophysics Data System (ADS)
Ozeki, Takahisa; Azumi, Masafumi
1990-12-01
The stability of the n{=}1 internal kink mode in a tokamak is numerically analyzed for plasmas with a centrally peaked pressure profile. The effect of pressure profile is studied by the comparison of a strongly peaked pressure inside the q{=}1 surface with a parabolic pressure profile. The effects of shaping, i.e., elongation and triangularity, are also studied for the both pressure profiles. The plasma with the strongly peaked pressure profile has higher limiting value of poloidal beta defined within the q{=}1 surface than that of the parabolic pressure profile. Though the beta limit reduces with the increase of the elongation, the plasma with the peaked pressure profile has larger improvement due to the triangularity than that with the parabolic pressure profile. However, to enter the second stability region of the n{=}1 internal kink mode, the plasma with a flat pressure profile and the large minor radius of the q{=}1 surface is effective.
Empirical mode decomposition analysis for visual stylometry.
Hughes, James M; Mao, Dong; Rockmore, Daniel N; Wang, Yang; Wu, Qiang
2012-11-01
In this paper, we show how the tools of empirical mode decomposition (EMD) analysis can be applied to the problem of “visual stylometry,” generally defined as the development of quantitative tools for the measurement and comparisons of individual style in the visual arts. In particular, we introduce a new form of EMD analysis for images and show that it is possible to use its output as the basis for the construction of effective support vector machine (SVM)-based stylometric classifiers. We present the methodology and then test it on collections of two sets of digital captures of drawings: a set of authentic and well-known imitations of works attributed to the great Flemish artist Pieter Bruegel the Elder (1525-1569) and a set of works attributed to Dutch master Rembrandt van Rijn (1606-1669) and his pupils. Our positive results indicate that EMD-based methods may hold promise generally as a technique for visual stylometry.
Alfv'en mode structure/stability properties of stellarators and broken-symmetry tokamaks
NASA Astrophysics Data System (ADS)
Spong, Don
2009-05-01
Energetic particle driven shear Alfv'en wave (SAW) instabilities are frequently observed in both stellarator and tokamak experiments. Three-dimensional effects are present in all toroidal devices and can significantly influence both stability properties of energetic particle populations and their loss patterns on the first wall. Three-dimensional equilibrium variations in stellarators and broken symmetry tokamaks provide new couplings that increase the complexity and density of the Alfv'en mode spectrum. An eigenmode solver, the AE3D code, has been developed for calculating Alfv'en mode structures in such configurations and identifying the most likely modes for resonant energetic tail destabilization. Applications of this model to a variety of stellarators (LHD, TJ-II, HSX, QPS, NCSX) and broken symmetry tokamaks (ITER with TF ripple and ferritic materials) have been made and results will be presented. Possible extensions to include sound wave couplings and gyro-Landau closures will be discussed.
Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability
Magni, V.
1986-01-01
Resonators containing a focusing rod are thoroughly analyzed. It is shown that, as a function of the dioptric power of the rod, two stability zones of the same width exist and that the mode volume in the rod always presents a stationary point. At this point, the output power is insensitive to the focal length fluctuations, and the mode volume inside the rod is inversely proportional to the range of the input power for which the resonator is stable. The two zones are markedly different with respect to misalignment sensitivity, which is, in general, much greater in one zone than in the other. Two design procedures are presented for monomode solid-state laser resonators with large mode volume and low sensitivity both to focal length fluctuations and to misalignment.
NASA Astrophysics Data System (ADS)
Tanaka, Satoyuki; Suzuki, Hirotaka; Sadamoto, Shota; Sannomaru, Shogo; Yu, Tiantang; Bui, Tinh Quoc
2016-08-01
Two-dimensional (2D) in-plane mixed-mode fracture mechanics problems are analyzed employing an efficient meshfree Galerkin method based on stabilized conforming nodal integration (SCNI). In this setting, the reproducing kernel function as meshfree interpolant is taken, while employing the SCNI for numerical integration of stiffness matrix in the Galerkin formulation. The strain components are smoothed and stabilized employing Gauss divergence theorem. The path-independent integral ( J-integral) is solved based on the nodal integration by summing the smoothed physical quantities and the segments of the contour integrals. In addition, mixed-mode stress intensity factors (SIFs) are extracted from the J-integral by decomposing the displacement and stress fields into symmetric and antisymmetric parts. The advantages and features of the present formulation and discretization in evaluation of the J-integral of in-plane 2D fracture problems are demonstrated through several representative numerical examples. The mixed-mode SIFs are evaluated and compared with reference solutions. The obtained results reveal high accuracy and good performance of the proposed meshfree method in the analysis of 2D fracture problems.
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
NASA Astrophysics Data System (ADS)
Liu, Yunqiao; Wang, Qianxi
2016-06-01
The dynamics of encapsulated microbubbles (EMBs) subject to an ultrasound wave have wide and important medical applications, including sonography, drug delivery, and sonoporation. The nonspherical shape oscillation of an EMB, termed as shape modes, is one of the core mechanisms of these applications and therefore its natural frequency is a fundamentally important parameter. Based on the linear stability theory, we show that shape modes of an EMB in a viscous Newtonian liquid are stable. We derive an explicit expression for the natural frequency of shape modes, in terms of the equilibrium radius of an EMB, and the parameters of the external liquid, coating, and internal gases. The expression is validated by comparing to the numerical results obtained from the dynamic equations of shape modes of an EMB. The natural frequency of shape modes shifts appreciably due to the viscosity of the liquid, and this trend increases with the mode number. The significant viscous effects are due to the no-slip condition for the liquid flow at the surface of an EMB. Our results show that when subject to an acoustic wave, the shape instability for an EMB is prone to appear if 2ωk/ωd = n, where ωk is the natural frequency of shape modes, ωd is the driving frequency of the acoustic wave, and n is a natural number. The effects of viscosity on the natural frequency is thus critical in setting the driving frequency of ultrasound to avoid or activate shape modes of EMBs, which should be considered in the applications of medical ultrasound.
M.H. Redi; J.L. Johnson; S. Klasky; J. Canik; R.L. Dewar; W.A. Cooper
2001-10-31
The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and q(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong ''quantum chaos.'' The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit.
NASA Astrophysics Data System (ADS)
Logginov, Aleksandr S.; Plisov, Konstantin I.
2004-09-01
The problem of coexistence and lateral self-mode locking in the resonator of an injection laser with a parabolically inhomogeneous permittivity is considered. The stability of the self-mode-locking process and factors causing its disturbance are studied. It is shown that the appearance of nonequidistant lateral modes due to the dependence of the refractive-index profile in a medium on the concentration of nonequilibrium carriers is the main cause of disturbing the self-mode-locking regime.
Analysis of temporal stability of autostereoscopic 3D displays
NASA Astrophysics Data System (ADS)
Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco
2013-11-01
An analysis has been made of the stability of the images generated by electronic autostereoscopic 3D displays, studying the time course of the photometric and colorimetric parameters. The measurements were made on the basis of the procedure recommended in the European guideline EN 61747-6 for the characterization of electronic liquid-crystal displays (LCD). The study uses 3 different models of autostereoscopic 3D displays of different sizes and numbers of pixels, taking the measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). For each of the displays, the time course is shown for the tristimulus values and the chromaticity coordinates in the XYZ CIE 1931 system and values from the time periods required to reach stable values of these parameters are presented. For the analysis of how the procedure recommended in the guideline EN 61747-6 for 2D displays influenced the results, and for the adaption of the procedure to the characterization of 3D displays, the experimental conditions of the standard procedure were varied, making the stability analysis in the two ocular channels (RE and LE) of the 3D mode and comparing the results with those corresponding to the 2D. The results of our study show that the stabilization time of a autostereoscopic 3D display with parallax barrier technology depends on the tristimulus value analysed (X, Y, Z) as well as on the presentation mode (2D, 3D); furthermore, it was found that whether the 3D mode is used depends on the ocular channel evaluated (RE, LE).
NASA Technical Reports Server (NTRS)
Bergquist, R. R.; Carlson, R. G.; Landgrebe, A. J.; Egolf, T. A.
1974-01-01
This User's Manual was prepared to provide the engineer with the information required to run the coupled mode version of the Normal Modes Rotor Aeroelastic Analysis Computer Program. The manual provides a full set of instructions for running the program, including calculation of blade modes, calculations of variable induced velocity distribution and the calculation of the time history of the response for either a single blade or a complete rotor with an airframe (the latter with constant inflow).
Analysis of Linear Conversion to Two Modes
NASA Astrophysics Data System (ADS)
Brizard, Alain J.; Jaun, Andre; Kaufman, Allan N.; Tracy, Eugene R.
2003-10-01
Recent experimental observations [1] and computer simulations [2] show that, in a tokamak plasma with multispecies ions, an incident magnetosonic wave converts either to an ion-hybrid Bernstein wave or to an ion-cyclotron wave, depending on the location of the conversion region in the poloidal cross section. We present a cold-plasma model of simultaneous conversion to these two modes, and obtain explicit expressions for transmission and conversion coefficients. Our approach is based on phase-space analysis of multiple conversion [3], in two or four phase-space dimensions (i.e., one or two spatial dimensions).Our ray-tracing algorithm [4], for detection of conversion and for treatment of ray-splitting due to conversion, will be applied to this process. 1.E Nelson-Melby, M Porkolab, P T Bonoli, Y Lin, A Mazurenko, S J Wukitch, Phys Rev Lett 90 (2003) 155004 2.E F Jaeger, L A Berry, J R Myra, D B Batchelor, E D'Azevedo, P T Bonoli, C K Phillips, D N Smithe, D A D'Ippolito, M D Carter, R J Dumont, J C Wright, R W Harvey, Phys Rev Lett 90 (2003) 195001 3. Y-M Liang, J J Morehead, D R Cook, T Fla, A N Kaufman, Physics Letters A193 (1994) 82 4. E R Tracy, A N Kaufman, A Jaun, Physics Letters A290 (2001) 309
Stability analysis of cylinders with circular cutouts
NASA Technical Reports Server (NTRS)
Almroth, B. O.; Brogan, F. A.; Marlowe, M. B.
1973-01-01
The stability of axially compressed cylinders with circular cutouts is analyzed numerically. An extension of the finite-difference method is used which removes the requirement that displacement components be defined in the directions of the grid lines. The results of this nonlinear analysis are found to be in good agreement with earlier experimental results.
Stock market stability: Diffusion entropy analysis
NASA Astrophysics Data System (ADS)
Li, Shouwei; Zhuang, Yangyang; He, Jianmin
2016-05-01
In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.
Reconstruction of Plasma Equilibria and Projected Stabilization of Global MHD Modes in KSTAR
NASA Astrophysics Data System (ADS)
Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Jeon, Y. M.; Hahn, S. H.; Lee, S. G.; You, K.-. I.; Park, H. K.; Evans, T. E.; Eidietis, N.; Walker, M.; Leuer, J.
2010-11-01
Experimental equilibria of the KSTAR tokamak with plasma current up to 0.34 MA were reconstructed using EFIT. Vessel currents were included by fitting estimated values based on loop voltage measurements and effective resistances from 2 and 3-D vacuum model calculations including a double-walled vessel with large port penetrations and passive stabilizers. Active and passive stabilization of global MHD instabilities for operation above the no-wall beta limit is also projected. The stabilization is applied using a set of segmented internal coils called in-vessel control coils (IVCCs). Passive stability of the resistive wall mode and power requirement for its active stabilization are investigated including conductive casing structures covering the IVCC, and noise effects. The potential for ELM mitigation by resonant magnetic perturbations is also examined by using the TRIP3D code. Favorable configurations of the IVCC based on the Chirikov parameter are determined using a combination of all IVCCs (midplane and off-midplane coils) with a dominant n = 2 field configuration.
Stabilization of the Resistive Wall Mode and Error Field Reduction by a Rotating Conducting Wall
NASA Astrophysics Data System (ADS)
Paz-Soldan, Carlos
2011-10-01
The hypothesis that the Resistive Wall Mode (RWM) can be stabilized by high-speed differentially-rotating conducting walls is tested in a linear device. This geometry allows the use of cylindrical solid metal walls, whereas a torus would require a flowing liquid metal. Experiments over the past year have for the first time explored RWM stability with a rotating copper wall capable of achieving speeds (rΩw) of up to 280 km/h, equivalent to a magnetic Reynolds number (Rm) of 5. The main results are: 1) Wall rotation increases the stability window of the RWM, allowing ~ 25% more plasma current (Ip) at Rm = 5 while maintaining MHD stability. 2) Error field reduction below a critical value allows the observation of initial mode rotation, followed by braking, wall-locking, and subsequent faster growth. 3) Locking is found to depend on the direction of wall rotation (Ω̂w) with respect to the intrinsic plasma rotation, with locking to both the static wall (vacuum vessel) and rotating wall observed. Additionally, indirect effects on RWM stability are observed via the effect of wall rotation on device error fields. Wall rotation shields locking error fields, which reduces the braking torque and inhibits mode-locking. The linear superposition of error fields from guide field (Bz) solenoid misalignments and current-carrying leads is also shown to break symmetry in Ω̂w , with one direction causing stronger error fields and earlier locking irrespective of plasma flow. Vacuum field measurements further show that rotation decreases the error field penetration time and advects the field to a different orientation, as predicted by theory. Experiments are conducted on the Rotating Wall Machine, a 1.2 m long and 16 cm diameter screw-pinch with Bz ~ 500 G, where hollow-cathode injectors are biased to source up to 7 kA of Ip, exciting current-driven RWMs. MHD activity is measured through 120 edge Br, Bθ, Bz probes as well as internal Bdot, Langmuir and Mach probes. RWM
Dependency of Tearing Mode Stability on Current and Pressure Profiles in DIII-D Hybrid Discharges
NASA Astrophysics Data System (ADS)
Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Y.-S.; SNU/ORAU; ORNL; Atomics, General; SNU; DIII-D Team
2016-10-01
Understanding the physics of the onset and evolution of tearing modes (TMs) in tokamak plasmas is important for high- β steady-state operation. Based on DIII-D steady-state hybrid experiments with accurate equilibrium reconstruction and well-measured plasma profiles, the 2/1 tearing mode can be more stable with increasing local current and pressure gradient at rational surface and with lower pressure peaking and plasma inductance. The tearing stability index Δ', estimated by the Rutherford equation with experimental mode growth rate was validated against Δ' calculated by linear eigenvalue solver (PEST3); preliminary comprehensive MHD modeling by NIMROD reproduced the TM onset reasonably well. We present a novel integrated modeling for the purpose of predicting TM onset in experiment by combining a model equilibrium reconstruction using IPS/FASTRAN, linear stability Δ' calculation using PEST3, and fitting formula for critical Δ' from NIMROD. Work supported in part by the US DoE under DE-AC05-06OR23100, DE-AC05-00OR22725, and DEFC02-04ER54698.
Stabilization of the tearing mode by turbulent diffusion and runaway electrons
Esarey, E.H.
1986-06-01
A fully kinetic analysis of the m = 2 tearing mode is performed for a tokamak plasma including the effects of turbulent electron diffusion and runaway electrons. Turbulent diffusion is included in the analysis of applying the normal stochastic approximation (NSA) to the collisionless drift kinetic equation (DKE) for electrons. A kinetic analysis inherently allows for the choice of various equilibrium electron velocity distributions, thus enabling a comparison between a drifted Maxwellian and a runaway-type distribution. This analysis is fully electromagnetic, including the effects a magnetic fluctuation potential A/sub vertical bars/ as well as a finite electrostatic potential phi, and is valid in the low-beta, low-frequency regime. The electron response is obtained by applying the NSA to the DKE, and the ion response is given by the linearized Vlasov equation. Ampere's law and quasineutrality are then used to derive a set of coupled, self-adjoint equations for the fluctuation potentials phi and A/sub vertical bars/. Solutions to this set of equations describe both unstable finite-..beta.. drift waves when analyzed for high m modes and the tearing mode when analyzed for low m modes (where m is the poloidal mode number).
Mod 1 wind turbine generator failure modes and effects analysis
NASA Technical Reports Server (NTRS)
1979-01-01
A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.
General stability analysis of composite sandwich plates under thermal load
NASA Astrophysics Data System (ADS)
Abdallah, Shaher A.
In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses
Flight stability analysis under changes in insect morphology
NASA Astrophysics Data System (ADS)
Noest, Robert; Wang, Z. Jane
2015-11-01
Insect have an amazing ability to control their flight, being able to perform both fast aerial maneuvers and stable hovering. The insect's neural system has developed various mechanism by which it can control these flying feats, but we expect that insect morphology is equally important in facilitating the aerial control. We perform a computational study using a quasi-steady instantaneous flapping flight model which allows us to freely adapt the insect's morphological parameters. We picked a fruit fly as the basis for the body shape and wing motion, and study the effect of changes to the morphology for a range of wing stroke amplitudes. In each case we determine the periodic flight mode, with the period equal to a single wing beat, and do a Floquet stability analysis of the flight. To interpret our results we will compare the changed morphology to related insects. We discuss the implications of the insects location on the stability diagram.
Stability of short, single-mode erbium-doped fiber lasers.
Svalgaard, M; Gilbert, S L
1997-07-20
We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-mum helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz(1/2) rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication.
Stability of resistive wall modes with plasma rotation and thick wall in ITER scenario
NASA Astrophysics Data System (ADS)
Zheng, L. J.; Kotschenreuther, M.; Chu, M.; Chance, M.; Turnbull, A.
2004-11-01
The rotation effect on resistive wall modes (RWMs) is examined for realistically shaped, high-beta tokamak equilibria, including reactor relevant cases with low mach number M and realistic thick walls. For low M, Stabilization of RWMs arises from unusually thin inertial layers. The investigation employs the newly developed adaptive eigenvalue code (AEGIS: Adaptive EiGenfunction Independent Solution), which describes both low and high n modes and is in good agreement with GATO in the benchmark studies. AEGIS is unique in using adaptive methods to resolve such inertial layers with low mach number rotation. This feature is even more desirable for transport barrier cases. Additionally, ITER and reactors have thick conducting walls ( ˜.5-1 m) which are not well modeled as a thin shell. Such thick walls are considered here, including semi-analytical approximations to account for the toroidally segmented nature of real walls.
3D passive stabilization of n = 0 MHD modes in EAST tokamak
Chen, S. L.; Villone, F.; Xiao, B. J.; Barbato, L.; Luo, Z. P.; Liu, L.; Mastrostefano, S.; Xing, Z.
2016-01-01
Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182
Non-Resonant Dynamic Stabilization of the m = 1 Diocotron Mode
Maero, G.; Paroli, B.; Pozzoli, R.; Rome, M.
2010-06-16
The m = 1 diocotron mode of a nonneutral plasma column confined in a Malmberg-Penning trap, i.e. the rotation of the plasma center-of-charge around the longitudinal symmetry axis, is experimentally found to be unstable. We have investigated in the ELTRAP device a control mechanism of the radial drift of the column based on a Radio Frequency drive applied on an azimuthally sectored electrode of the trap. Systematic experiments show the characteristic features of the mechanism, namely the presence of amplitude and frequency thresholds as well as the non-resonant behavior, whose interpretation invokes the concept of dynamic stabilization.
Non-Resonant Dynamic Stabilization of the m = 1 Diocotron Mode
NASA Astrophysics Data System (ADS)
Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.
2010-06-01
The m = 1 diocotron mode of a nonneutral plasma column confined in a Malmberg-Penning trap, i.e. the rotation of the plasma center-of-charge around the longitudinal symmetry axis, is experimentally found to be unstable. We have investigated in the ELTRAP device a control mechanism of the radial drift of the column based on a Radio Frequency drive applied on an azimuthally sectored electrode of the trap. Systematic experiments show the characteristic features of the mechanism, namely the presence of amplitude and frequency thresholds as well as the non-resonant behavior, whose interpretation invokes the concept of dynamic stabilization.
3D passive stabilization of n = 0 MHD modes in EAST tokamak.
Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z
2016-09-06
Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented.
Finite ion Larmor radius stabilization of m = 1 modes of a high-beta screw pinch
NASA Astrophysics Data System (ADS)
Cayton, T. E.; Freidberg, J. P.
1981-07-01
An investigation is conducted of the effects of finite ion gyroradii upon ideal magnetohydrodynamic instabilities of straight, cylindrically symmetric, radially diffuse screw pinch equilibria, using the finite ion Larmor radius model of Pearlstein and Freidberg (1978). The results demonstrate that a combination of finite ion Larmor radius effects and wall effects can eliminate all ideal magnetohydrodynamic instabilities, including m = 1 modes. A stability criterion involving the ion gyroradius and the wall radius is presented. It is pointed out that although m = 1 stabilization is possible, the maximum allowable currents are quite small implying that any experimental verification of this effect would require a very large aspect ratio device because of the small toroidal restoring force.
Global ideal magnetohydrodynamic stability analysis for the configurational space of Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Nührenberg, Carolin
1996-06-01
A survey of the magnetohydrodynamic (MHD) stability properties of three-dimensional (3-D) MHD configurations representing the Wendelstein 7-X (W7-X) stellarator experiment [ G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] was performed with the Code for the Analysis for the Stability of 3-D Equilibria (CAS3D) [C. Schwab, Phys. Fluids B 5, 3195 (1993)] . This study confirms and elaborates previous indications on the structural characteristics of global MHD modes in stellarators. In particular these characteristics pertain to the compressibility of these modes, the equivalence of the decoupled stability problems for the modes with different parities, and the separability of global from fine-scale perturbations within the same mode family. As to the W7-X stellarator experiment, the envisaged configurational class—providing the intended experimental flexibility—appears to offer scenarios of safely stable operation.
Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes
NASA Astrophysics Data System (ADS)
Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.
2006-09-01
Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.
NASA Astrophysics Data System (ADS)
Chicheportiche, Jérèmie; Merle, Xavier; Gloerfelt, Xavier; Robinet, Jean-Christophe
2008-07-01
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor-Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche et al., C. R. Mecanique 336 (2008).
The Stability of Radiatively Cooling Jets I. Linear Analysis
NASA Technical Reports Server (NTRS)
Hardee, Philip E.; Stone, James M.
1997-01-01
The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in
Surface plasmon mode analysis of nanoscale metallic rectangular waveguide.
Kong, Fanmin; Wu, Bae-Ian; Chen, Hongsheng; Kong, Jin Au
2007-09-17
A detailed study of guided modes in a nanoscale metallic rectangular waveguide is presented by using the effective dielectric constant approach. The guided modes, including both traditional waveguide mode and surface plasmon mode, are investigated for the silver rectangular waveguide. The mode evolution in narrow waveguide is also discussed with the emphasis on the dependence of mode dispersion with waveguide height. Finally, the red-shift of the cutoff wavelength of the fundamental mode is observed when the waveguide height decreases, contrary to the behavior of regular metallic waveguide with PEC boundary. The comprehensive analysis can provide some guideline in the design of subwavelength optical devices based on the dispersion characteristics of metallic rectangular bore.
Further Development of Rotating Rake Mode Measurement Data Analysis
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.
2013-01-01
The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.
Computational stability analysis of dynamical systems
NASA Astrophysics Data System (ADS)
Nikishkov, Yuri Gennadievich
2000-10-01
Due to increased available computer power, the analysis of nonlinear flexible multi-body systems, fixed-wing aircraft and rotary-wing vehicles is relying on increasingly complex, large scale models. An important aspect of the dynamic response of flexible multi-body systems is the potential presence of instabilities. Stability analysis is typically performed on simplified models with the smallest number of degrees of freedom required to capture the physical phenomena that cause the instability. The system stability boundaries are then evaluated using the characteristic exponent method or Floquet theory for systems with constant or periodic coefficients, respectively. As the number of degrees of freedom used to represent the system increases, these methods become increasingly cumbersome, and quickly unmanageable. In this work, a novel approach is proposed, the Implicit Floquet Analysis, which evaluates the largest eigenvalues of the transition matrix using the Arnoldi algorithm, without the explicit computation of this matrix. This method is far more computationally efficient than the classical approach and is ideally suited for systems involving a large number of degrees of freedom. The proposed approach is conveniently implemented as a postprocessing step to any existing simulation tool. The application of the method to a geometrically nonlinear multi-body dynamics code is presented. This work also focuses on the implementation of trimming algorithms and the development of tools for the graphical representation of numerical simulations and stability information for multi-body systems.
Stability analysis of a variable-speed wind turbine
Bir, G.S.; Wright, A.D.; Butterfield, C.P.
1996-10-01
This paper examines the elastomechanical stability of a four-bladed wind turbine over a specific rotor speed range. Stability modes, frequencies, and dampings are extracted using a specialized modal processor developed at NREL that post-processes the response data generated by the ADAMS simulation code. The processor can analyze a turbine with an arbitrary number of rotor blades and offers a novel capability of isolating stability modes that become locked at a single frequency. Results indicate that over a certain rotor speed range, the tower lateral mode and the rotor regressive in-plane mode coalesce, resulting in a self-excited instability. Additional results show the effect of tower and nacelle parameters on the stability boundaries.
Stability analysis of White Oak Dam
1995-04-11
White Oak Dam is located in the White Oak Creek watershed which provides the primary surface drainage for Oak Ridge National Laboratory. A stability analysis was made on the dam by Syed Ahmed in January 1994 which included an evaluation of the liquefaction potential of the embankment and foundation. This report evaluates the stability of the dam and includes comments on the report prepared by Ahmed. Slope stability analyses were performed on the dam and included cases for sudden drawdown, steady seepage, partial pool and earthquake. Results of the stability analyses indicate that the dam is stable and failure of the structure would not occur for the cases considered. The report prepared by Ahmed leads to the same conclusions as stated above. Review of the report finds that it is complete, well documented and conservative in its selection of soil parameters. The evaluation of the liquefaction potential is also complete and this report is in agreement with the findings that the dam and foundation are not susceptible to liquefaction.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2011-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.
NASA Astrophysics Data System (ADS)
Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim
2017-03-01
The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.
Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems
Jiang, Nan; Tran, Hoang A.
2015-04-01
In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.
Reimerdes, H.; Sabbagh, S.A.; Bialek, J.M.; Garofalo, A.M.; Navratil, G.A.; Sontag, A.C.; Zhu, W.; Hender, T.C.; Gryaznevich, M.P.; Howell, D F.; Bigi, M.; Vries, P. de; Liu, Y. Q.
2006-05-15
Dedicated experiments in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion, 42, 614 (2002)], the Joint European Torus (JET) [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)], and the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)] reveal the commonalities of resistive wall mode (RWM) stabilization by sufficiently fast toroidal plasma rotation in devices of different size and aspect ratio. In each device the weakly damped n=1 RWM manifests itself by resonant field amplification (RFA) of externally applied n=1 magnetic fields, which increases with the plasma pressure. Probing DIII-D and JET plasmas with similar ideal magnetohydrodynamic (MHD) stability properties with externally applied magnetic n=1 fields, shows that the resulting RFA is independent of the machine size. In each device the drag resulting from RFA slows the toroidal plasma rotation and can lead to the onset of an unstable RWM. The critical plasma rotation required for stable operation in the plasma center decreases with increasing q{sub 95}, which is explained by the inward shift of q surfaces where the critical rotation remains constant. The quantitative agreement of the critical rotation normalized to the inverse Alfven time at the q=2 surface in similar DIII-D and JET plasmas supports the independence of the RWM stabilization mechanism of machine size and indicates the importance of the q=2 surface. At low aspect ratio the required fraction of the Alfven velocity increases significantly. The ratio of the critical rotation in similar NSTX and DIII-D plasmas can be explained by trapped particles not contributing to the RWM stabilization, which is consistent with stabilization mechanisms that are based on ion Landau damping. Alternatively, the ratio of the required rotation to the sound wave velocity remains independent of aspect ratio.
West, W P; Burrell, K H; Casper, T A; . Doyle, E J; Snyder, P B; Gohil, P; Lao, L L; Lasnier, C J; Leonard, A W; Nave, M F; Osborne, T H; Thomas, D M; Wang, G; Zeng, L
2004-12-03
The quiescent H (QH) mode, an edge localized mode (ELM)-free, high-confinement mode, combines well with an internal transport barrier to form quiescent double barrier (QDB) stationary state, high performance plasmas. The QH-mode edge pedestal pressure is similar to that seen in ELMing phases of the same discharge, with similar global energy confinement. The pedestal density in early ELMing phases of strongly pumped counter injection discharges drops and a transition to QH-mode occurs, leading to lower calculated edge bootstrap current. Plasmas current ramp experiment and ELITE code modeling of edge stability suggest that QH-modes lie near an edge current stability boundary. At high triangularity, QH-mode discharges operate at higher pedestal density and pressure, and have achieved ITER level values of {beta}{sub PED} and {nu}*. The QDB achieves performance of {alpha}{sub N}H{sub 89} {approx} 7 in quasi-stationary conditions for a duration of 10 tE, limited by hardware. Recently we demonstrated stationary state QDB discharges with little change in kinetic and q profiles (q{sub 0} > 1) for 2 s, comparable to ELMing ''hybrid scenarios'', yet without the debilitating effects of ELMs. Plasma profile control tools, including electron cyclotron heating and current drive and neutral beam heating, have been demonstrated to control simultaneously the q profile development, the density peaking, impurity accumulation and plasma beta.
Stability of drift-cyclotron loss-cone waves in H-mode plasmas
Farmer, W. A.; Morales, G. J.
2016-05-24
The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×10^{7} s^{-1}.
Stability of drift-cyclotron loss-cone waves in H-mode plasmas
Farmer, W. A.; Morales, G. J.
2016-05-24
The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less
Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks
NASA Astrophysics Data System (ADS)
Wang, Feng; Fu, G. Y.; Breslau, J. A.; Liu, J. Y.
2013-10-01
Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the qmin slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher qmin values, consistent with the observed appearance of the fishbone before the "long-lived mode" in MAST and NSTX experiments. In contrast, at lower qmin values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX.
Abe, H.; Kadoya, Y.
1988-10-01
A two-and-a-half-dimensional electromagnetic particle code PS2M (J. Phys. Soc. Jpn. 56, 3899 (1987)) is used to study how an electric field applied perpendicularly to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The electric field perpendicular to the magnetic field stabilizes or destabilizes the flute mode through the mechanism of the ponderomotive force acting on electrons and ions and through the mechanism of sideband coupling. In the simulations two typical examples have been shown: (i) when the sideband coupling effects (in which the electron terms are dominant) stabilize the flute modes and (ii) when the perpendicular ponderomotive force acting on the electrons destabilizes the flute modes.
Stability of two-dimensional gap solitons in periodic potentials: Beyond the fundamental modes
NASA Astrophysics Data System (ADS)
Dror, Nir; Malomed, Boris A.
2013-06-01
Gross-Pitaevskii or nonlinear-Schrödinger equations with a sinusoidal potential is commonly used to describe nonlinear periodic media, such as photonic lattices in optics and Bose-Einstein condensates (BECs) loaded into optical lattices (OLs). Previous studies have shown that the 2D version of this equation, with the self-focusing (SF) nonlinearity, supports stable solitons in the semi-infinite gap. It is known, too, that under both the self-defocusing (SDF) and SF nonlinearities, several families of gap solitons (GSs) exist in finite bandgaps. Here, we investigate the stability of 2D dipole-mode GS families, via the computation of their linear-stability eigenvalues and direct simulations of the perturbed evolution. We demonstrate that, under the SF nonlinearity, one species of dipole GSs is stable in a part of the first finite bandgap, provided that the OL depth exceeds a threshold value, while other dipole and multipole modes are unstable in that case. Bidipole bound states (vertical, horizontal, and diagonal), as well as square- and rhombic-shaped vortices and quadrupoles, built of stable fundamental dipoles, are stable too. Under the SDF nonlinearity, the family of dipole solitons is shown to be stable in a part of the second finite bandgap. Transformations of unstable dipole GSs are studied by means of direct simulations. Direct simulations are also performed to investigate the stability of other GS families, in the first and second bandgaps, under both types of the nonlinearity. In particular, “tripole” solitons, sustained in the second bandgap under the action of the SF nonlinearity, demonstrate stable behavior in the course of long propagation, in a certain region within the bandgap.
Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons
NASA Technical Reports Server (NTRS)
Redd, L. T.; Bland, S. R.; Bennett, R. M.
1973-01-01
A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.
2012-03-01
We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team
2011-10-01
We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.
MHD stability of a hot-ion-mode plasma in the GAMMA 10 tandem mirror
Inutake, M.; Hattori, K.; Furukawa, S.
1995-04-01
Magnetohydrodynamic (MHD) stability of the GAMMA 10 tandem mirror is extensively studied in ICRF-heated, hot ion plasmas. Stability boundary for a flute interchange mode is predicted to depend on a pressure-weighted curvature integrated along the magnetic field line. It is found that the upper limit of the central-cell beta {beta}{sub C} increases linearly with the anchor-cell beta {beta}{sub A}. The critical beta ratio {beta}{sub C}/{beta}{sub A} above which the plasma cannot be sustained strongly depends on the pressure anisotropy P{sub PRP}/P{sub PLL} of hot ions. Stronger anisotropy greatly expands the stable region up to a higher critical beta ratio, owing to the reduction of the pressure weighting in the bad curvature region of the central cell. On both sides of the quadrupole anchor cells, there are flux-tube-recircularizing transition regions where the normal curvature is highly bad. Then the density and ion temperature of the cold plasma in the transition region are measured. Theoretical prediction on the flute stability boundary calculated by using the measured axial pressure profile of the hot-ion and the cold-plasma pressure can explain well the experimental results. 16 refs., 7 figs.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
Stability Analysis of Flow Induced by the Traveling Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2003-01-01
Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.
Mitsutake, Ayori; Takano, Hiroshi
2015-09-28
It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.
Adhikary, Nabanita; Mahanta, Chitralekha
2013-11-01
In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart-Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller.
Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui
2009-12-15
The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in beta-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that, like Taxol, discodermolide binds to the taxane binding pocket in beta-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and toward the N-terminal H1-S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the alpha-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent beta-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo.
NASA Astrophysics Data System (ADS)
Botta, Maurizio; Forli, Stefano; Magnani, Matteo; Manetti, Fabrizio
Tubulin targeting agents constitute an important class of anticancer drugs. By acting either as microtubule stabilizers or destabilizers, they disrupt microtubule dynamics, thus inducing mitotic arrest and, ultimately, cell death by apoptosis. Three different binding sites, whose exact location on tubulin has been experimentally detected, have been identified so far for antimitotic compound targeting microtubules, namely the taxoid, the colchicine and the vinka alkaloid binding site. A number of ligand- and structure-based molecular modeling studies in this field has been reported over the years, aimed at elucidating the binding modes of both stabilizing and destabilizing agent, as well as the molecular features responsible for their efficacious interaction with tubulin. Such studies are described in this review, focusing on information provided by different modeling approaches on the structural determinants of antitubulin agents and the interactions with the binding pockets on tubulin emerged as fundamental for antitumor activity.To describe molecular modeling approaches applied to date to molecules known to bind microtubules, this paper has been divided into two main parts: microtubule destabilizing (Part 1) and stabilizing (Part 2) agents. The first part includes structure-based and ligand-based approaches to study molecules targeting colchicine (1.1) and vinca alkaloid (1.2) binding sites, respectively. In the second part, the studies performed on microtubule-stabilizing antimitotic agents (MSAA) are described. Starting from the first representative compound of this class, paclitaxel, molecular modeling studies (quantitative structure-activity relationships - QSAR - and structure-based approaches), performed on natural compounds acting with the same mechanism of action and temptative common pharmacophoric hypotheses for all of these compounds, are reported.
Resistive Wall Mode Stability Forecasting in NSTX and NSTX-U
NASA Astrophysics Data System (ADS)
Berkery, Jack
2016-10-01
Disruption prevention in tokamak fusion plasmas requires accurate identification and prediction of global MHD instabilities. We examine, in the NSTX device and its upgrade NSTX-U, characterization and forecasting of resistive wall modes (RWMs), which are crucial components of disruption event chains. The kinetic RWM growth rate is solved by the MISK code through a dispersion relation combining ideal and kinetic mode energy functionals, δW and δWK . A model for the ideal n = 1 no-wall δW term, depending on parameters measurable in real-time, has been recently developed by using the DCON code on more than 5,000 NSTX equilibria. When applied to NSTX-U discharges at higher aspect ratio, the model accurately predicts the n = 1 no-wall limit calculated by DCON through the aspect ratio dependence of the model. Full MISK calculations of δWK cannot be performed in real time, but a simplified model based on physics insight from MISK takes a form that depends on ExB frequency, collisionality, and energetic particle fraction. The model will examine when the plasma toroidal rotation profile falls into weaker RWM stability regions based upon this kinetic modification to ideal theory, which contains broad stabilizing resonances via mode-particle interaction. This approach enables, for the first time, the ability to anticipate a growing RWM rather than reacting to one. The reduced model results are tested on a database of NSTX discharges with unstable RWMs. For each discharge, a newly-written disruption event characterization code (DECAF) finds the chain of events leading to a disruption by applying criteria that define each of the physical events. With a simple threshold test of mode amplitude an RWM event was found in each case, and 59% were within 20 wall times of the disruption. The earlier RWM warnings are not false positives; they caused significant, transient decreases in βN. Supported by U.S. D.O.E. contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.
Stability analysis of micropipette aspiration of neutrophils.
Derganc, J; Bozic, B; Svetina, S; Zeks, B
2000-01-01
During micropipette aspiration, neutrophil leukocytes exhibit a liquid-drop behavior, i.e., if a neutrophil is aspirated by a pressure larger than a certain threshold pressure, it flows continuously into the pipette. The point of the largest aspiration pressure at which the neutrophil can still be held in a stable equilibrium is called the critical point of aspiration. Here, we present a theoretical analysis of the equilibrium behavior and stability of a neutrophil during micropipette aspiration with the aim to rigorously characterize the critical point. We take the energy minimization approach, in which the critical point is well defined as the point of the stability breakdown. We use the basic liquid-drop model of neutrophil rheology extended by considering also the neutrophil elastic area expansivity. Our analysis predicts that the behavior at large pipette radii or small elastic area expansivity is close to the one predicted by the basic liquid-drop model, where the critical point is attained slightly before the projection length reaches the pipette radius. The effect of elastic area expansivity is qualitatively different at smaller pipette radii, where our analysis predicts that the critical point is attained at the projection lengths that may significantly exceed the pipette radius. PMID:10866944
A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis
NASA Technical Reports Server (NTRS)
Orr, Jeb S.
2010-01-01
A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.
Stability of elongated cross-section tokamaks to axisymmetric even poloidal mode number deformations
Weiner, R.; Jardin, S.C.; Pomphrey, N.
1989-06-01
A recent paper by Nakayama, Sato and Matsuoka suggests that elliptical cross section tokamaks with aspect ratio R/a = 3.2 and with elongation kappa = 2.6 are unstable to a splitting (m = 2, n = 0) instability for plasma ..beta.. > 5%, and that kappa /> =/ 4.0 plasmas are unstable to splitting for ..beta.. /> =/ 1%. We have tried to reproduce these results using the MHD evolution code TSC, but find these configurations to be stable, not even near a stability boundary. Even a kappa = 3.7 plasma with ..beta.. = 23.0% is stable to the splitting mode. However, the addition of pinching coils at the waist will cause the plasma to split if the current in these coils exceeds a critical value I/sub c/ which decreases with increasing ..beta... 8 refs., 11 figs., 1 tab.
The Combined Effect of EPM and TAE Modes on Energetic Ion Confinement and Sawtooth Stabilization
S. Bernabei; R. Budny; E.D. Fredrickson; N.N. Gorelenkov; J.C. Hosea; C.K. Phillips; R. White; J.R. Wilson; C.C. Petty; R.I. Pinsker; R.W. Harvey; P. Smirnov
2000-11-15
It is shown in this paper for the first time, that the chirping Alfven instabilities observed mostly during ion cyclotron range of frequency (ICRF) heating have been positively identified as Energetic Particle Modes (EPM). This has been possible because of the detailed measurement of the q-profile with the MSE (motional Stark effect) diagnostic in DIII-D. The EPMs are shown to be the leading cause of the monster sawtooth crash. It is also shown that TAEs are excited either directly or indirectly by the EPMs and they cause fast ion losses. A scenario for the stabilization and the crash of the monster sawtooth and for the degradation of the ICRF heating efficiency at high power is presented.
NASA Astrophysics Data System (ADS)
Dax, Tany; Richardson, Martin; Sims, Andrew
2009-10-01
Stable, eye-safe lasers are important for use in medical environments and atmospheric propagation. A Guided Mode Resonance Filter (GMRF) consists of a waveguide between a layer of substrate and a diffractive layer. The GMRFs are produced at UNC Charlotte. The Thulium (Tm) doped fiber used consists of an octagonal undoped fiber with a doped core, and is the gain medium of the fiber laser. The Laser Plasma Laboratory at the UCF College of Optics and Photonics performed the necessary characterization of the output spectra and damage thresholds of the GMRF when used as the feedback element of the Thulium fiber lasers. This summer's Research Experience for Undergraduates project aided in this characterization. The laser reached 10W of stabilized output. Further, the GMRFs withstood thermal changes and focused power with no damage or change in output spectra.
Perturbation analysis of electromagnetic geodesic acoustic modes
Ren, Haijun
2014-06-15
Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.
Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Chu, M. S.; Chance, M. S.; Okabayashi, M.
2000-10-01
The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.
Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks
Wang, Feng; Liu, J. Y.; Fu, G. Y.; Breslau, J. A.
2013-10-15
Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the q{sub min} slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher q{sub min} values, consistent with the observed appearance of the fishbone before the “long-lived mode” in MAST and NSTX experiments. In contrast, at lower q{sub min} values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX.
Equilibrium and ballooning mode stability of an axisymmetric tensor pressure tokamak
Cooper, W.A.; Bateman, G.; Nelson, D.B.; Kammash, T.
1980-08-01
A force balance relation, a representation for the poloidal beta (..beta../sub p/), and expressions for the current densities are derived from the MHD equilibrium relations for an axisymmetric tensor pressure tokamak. Perpendicular and parallel beam pressure components are evaluated from a distribution function that models high energy neutral particle injection. A double adiabatic energy principle is derived from that of Kruskal and Oberman, with correction terms added. The energy principle is then applied to an arbitrary cross-section axisymmetric tokamak to examine ballooning instabilities of large toroidal mode number. The resulting Euler equation is remarkably similar to that of ideal MHD. Although the field-bending term is virtually unaltered, the driving term is modified because the pressures are no longer constant on a flux surface. Either a necessary or a sufficient marginal stability criterion for a guiding center plasma can be derived from this equation whenever an additional stabilizing element unique to the double adiabatic theory is either kept or neglected, respectively.
Effects of concentrated leachate injection modes on stabilization of landfilled waste.
He, Ruo; Wei, Xiao-Meng; Chen, Min; Su, Yao; Tian, Bao-Hu
2016-02-01
Injection of concentrated leachate to landfills is a simple and cost-effective technology for concentrated leachate treatment. In this study, the effects of injection mode of concentrated leachate and its hydraulic loading rate on the stabilization of landfilled waste were investigated. Compared with the injection of concentrated leachate, the joint injection of leachate and concentrated leachate (1:1, v/v) was more beneficial to the degradation of landfilled waste and mitigated the discharge amount of pollutants at the hydraulic loading rate of 5.9 L m(-2) day(-1). As the hydraulic loading rate of the joint injection of leachate and concentrated leachate was increased from 5.9 to 17.6 L m(-2) day(-1), the organic matter, biologically degradable matter, and total nitrogen of landfilled waste were degraded more rapidly, with the degradation constant of the first-order kinetics of 0.005, 0.004, and 0.003, respectively. Additionally, NO2(-)-N and NO3(-)-N in the concentrated leachate could be well removed in the landfill bioreactors. These results showed that a joint injection of concentrated leachate and raw leachate might be a good way to relieve the inhibitory effect of high concentrations of toxic pollutants in the concentrated leachate and accelerate the stabilization of landfilled waste.
Deep Borehole Emplacement Mode Hazard Analysis Revision 0
Sevougian, S. David
2015-08-07
This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.
Stability analysis for laminar flow control, part 1
NASA Technical Reports Server (NTRS)
Benney, D. J.; Orszag, S. A.
1977-01-01
The basic equations for the stability analysis of flow over three dimensional swept wings are developed and numerical methods for their solution are surveyed. The equations for nonlinear stability analysis of three dimensional disturbances in compressible, three dimensional, nonparallel flows are given. Efficient and accurate numerical methods for the solution of the equations of stability theory were surveyed and analyzed.
Liner stability analysis of the two-dimensional Taylor-Green vortices in a stratified flow
NASA Astrophysics Data System (ADS)
Suzuki, Shota; Hirota, Makoto; Hattori, Yuji
2015-11-01
The linear stability of the two-dimensional Taylor-Green vortices in a stratified fluid is studied by modal stability analysis and short-wavelength stability analysis. By modal stability analysis it is found that the growth rate of the most unstable mode depends on the horizontal Froude number Fh and the stratification effects on the growth rate change as Fh becomes small or stratification becomes strong. There are three regions of Fh where the stratification effects are different: the stabilizing region where the elliptic instability is dominant at large Fh, the region where the growth rate has maximum, the slightly destabilizing region where the zigzag instability is dominant at small Fh. In order to reveal the mechanism of the behavior of the growth rate in the second region, we investigate the local stability of the flow near the vortex center and the flow near the boundaries between vortices by short-wavelength analysis. As a result, it is found that the competition between stabilizing elliptic instability near the vortex center and destabilizing hyperbolic instability near the boundaries occurs in the weakly stratified region. The relation between modal stability and the competition of short-wavelength stabilities will be discussed.
NASA Astrophysics Data System (ADS)
Peng, Q.; Levesque, J. P.; Stoafer, C. C.; Rhodes, D. J.; Hughes, P. E.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.
2015-11-01
The HBT-EP tokamak can excite strong, saturated kink modes whose growth rates and rotation frequencies evolve on a millisecond timescale. To control such modes, HBT-EP uses a GPU-based feedback system in a low latency architecture. When feedback is applied, the mode amplitude and rotation frequency can change quickly. We describe an improved algorithm that captures the rapid phase changes in the mode while also removing transient amplitude jumps. Additionally, the control coil driving signal is implemented using a current-controller instead of a voltage-controller. The feedback performance is improved and has been tested under more unstable regimes, including different wall configurations and plasmas slowed by a bias probe. Feedback suppression is observed in all cases and the feedback parameters' dependency on different experimental conditions is studied. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Analysis of Resistive Wall Modes in RFP Plasmas with Rotation and Dissipative Effects
NASA Astrophysics Data System (ADS)
Guo, S. C.; Freidberg, J. P.; Nachtrieb, R.
1998-11-01
The stability of the non-resonant external kink modes under the resistive wall boundary condition in an RFP is analyzed. This topic is especially relevant to the future long pulse discharges. With respect to previous work(R.Nachtrieb, J.P.Freidberg and R.Betti, Reversed Field Pinch Workshop, Madison, WI October 14-16, 1996), the parallel viscosity (Braginskii's stress tensor) effects have been added into the eigenmode equation. Therefore, both the ion sound wave damping and the viscosity effects together with the plasma rotation are taken into account in the analysis. The influence of the equilibrium parameters on the mode instability is carefully studied by employing the conventional α-Θo equilibrium models. It is found that the behaviours of the RWM is rather sensitive to the reversal parameter F of RFPs. In the low β (or zero β) plasma region, there is a stability window in the wall-plasma distance b/a due to the plasma rotation and viscous dissipative effects. For the typical RFP operating parameters, the required rotation velocity to stabilize the modes is in the range of the ion sound speed or even higher. The effects of the viscosity on the instability of the modes are investigated.
NASA Technical Reports Server (NTRS)
Arons, J.; Lea, S. M.
1976-01-01
Results are reported for a linearized hydromagnetic stability analysis of the magnetopause of an accreting neutron star. The magnetosphere is assumed to be slowly rotating, and the plasma just outside the magnetopause is assumed to be weakly magnetized. The plasma layer is assumed to be bounded above by a shock wave and to be thin compared with the radius of the magnetosphere. Under these circumstances, the growing modes are shown to be localized in the direction parallel to the zero-order magnetic field, but the structure of the modes is still similar to the flute mode. An expression for the growth rate at each magnetic latitude is obtained in terms of the magnitude of the gravitational acceleration normal to the surface, the azimuthal mode number, the radius of the magnetosphere, the height of the shock above the magnetopause, and the effective Atwood number which embodies the stabilizing effects of favorable curvature and magnetic tension. The effective Atwood number is calculated, and the stabilizing effects of viscosity and aligned flow parallel to the magnetopause are discussed.
Truck Roll Stability Data Collection and Analysis
Stevens, SS
2001-07-02
The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database
Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study
NASA Technical Reports Server (NTRS)
Flores, Melissa; Malin, Jane T.
2013-01-01
An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.
Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study
NASA Astrophysics Data System (ADS)
Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.
2013-09-01
An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.
Analysis of the Intrinsic Mode Functions
2004-01-01
differential equations and vibration analysis was a major motivation in the development of the Sturm - Liouville theory. In the next section, we list some...relevant properties of the solutions of a self-adjoint ODE’s which will be useful for our analysis. 2.2 Self-adjoint ODE and Sturm - Liouville systems...0 and Q is continuous. More generally we can consider a Sturm - Liouville equation (λ real): d dt ( p(t) df dt ) + (λρ(t)− q(t))f = 0. (2.2) These
Time-Frequency Analysis of the Dispersion of Lamb Modes
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo-Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the AO, A I , So, and S2 Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
Time-Frequency Analysis of the Dispersion of Lamb Modes
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Seale, Michael D.; Smith, Barry T.
1999-01-01
Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.
Mode Analysis with Autocorrelation Method (Single Time Series) in Tokamak
NASA Astrophysics Data System (ADS)
Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman
2010-08-01
In this paper plasma mode analyzed with statistical method that designated Autocorrelation function. Auto correlation function used from one time series, so for this purpose we need one Minov coil. After autocorrelation analysis on mirnov coil data, spectral density diagram is plotted. Spectral density diagram from symmetries and trends can analyzed plasma mode. RHF fields effects with this method ate investigated in IR-T1 tokamak and results corresponded with multichannel methods such as SVD and FFT.
Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Boskovic, Jovan D.
2008-01-01
This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.
NASA Astrophysics Data System (ADS)
La Haye, R. J.
2015-12-01
ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of
Power System Transient Stability Analysis through a Homotopy Analysis Method
Wang, Shaobu; Du, Pengwei; Zhou, Ning
2014-04-01
As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.
Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2012-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
NASA Astrophysics Data System (ADS)
Hill, P.; Saarelma, S.; McMillan, B.; Peeters, A.; Verwichte, E.
2012-06-01
Sheared E × B flows are known to stabilize turbulence. This paper investigates how the linear stability of the ion-temperature-gradient (ITG) mode depends on k⊥ in both circular and MHD geometry. We study the effects of both rotation profiles of constant shear and of purely toroidal flow taken from experiment, using the global gyrokinetic particle-in-cell code NEMORB. We find that in order to effectively stabilize the linear mode, the fastest growing mode requires a shearing rate (γE) around 1-2 times its linear growth rate without flow (γ0), while both longer and shorter wavelength modes need much larger flow shear compared with their static linear growth rates. Modes with kθρi < 0.2 need γE as much as 10 times their γ0. This variation exists in both large-aspect ratio circular cross-section and small-aspect ratio MHD geometries, with both analytic constant shear and experimental flow profiles. There is an asymmetry in the suppression with respect to the sign of γE, due to competition between equilibrium profile variation and flow shear. The maximum growth rate for cases using the experimental profile in MAST equilibria occurs at shearing rates of 10% the experimental level.
Failure mode analysis of a spacecraft power system
Lee, J.R.
1995-12-31
For the spacecraft power system`s dynamic analyses, dc/dc converters are usually modeled with a linearized model using the state space averaging technique. The linearized model can be used for small-signal ac and transient analyses. However, since the linearized model has limitations in its accuracies, certain types of transient analyses including a failure mode must be performed by using a more accurate cycle-by-cycle model. In this paper, a failure mode analysis is presented with a small-signal analysis and corresponding transient simulations.
Failure Modes and Effects Analysis (FMEA): A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.
Oscillation mode analysis considering the interaction between a DFIG-based wind turbine and the grid
NASA Astrophysics Data System (ADS)
Wu, Wangping; Xie, Da; Lu, Yupu; Zhao, Zuyi; Yu, Songtao
2017-01-01
Sub-synchronous interactions between wind farms and transmission networks with series compensation have drawn great attention. As most large wind farms in Europe and Asia employ doubly fed induction generator turbines, there has recently been a growing interest in studying this phenomenon. To study the stability of wind turbine with doubly fed induction generator after a small disturbance, a complete small signal system is built in this paper. By using eigenvalue and participation factor analysis, the relation between the modes and state variables can be discovered. Thereafter, the oscillation modes are classified into electrical resonance, sub-synchronous resonance, sub-synchronous oscillation, sub-synchronous control interaction, and low frequency oscillation. To verify the oscillation frequency of each oscillation mode, time-domain simulation based on MATLAB/Simulink is presented. The simulation results justify the effectiveness of the small-signal models.
La Haye, R. J.
2015-12-10
ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Chow, Chi-Wai; Chen, Jing-Heng
2017-02-01
In this demonstration, to achieve stabilized and wavelength-selectable single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, a short length of ytterbium-doped fiber (YDF) is utilized to serve as a spatial multi-mode interference (MMI) inside a fiber cavity for suppressing multi-longitudinal-mode (MLM) significantly. In the measurement, the output powers and optical signal to noise ratios (OSNRs) of proposed EDF ring laser are measured between -9.85 and -5.71 dBm; and 38.03 and 47.95 dB, respectively, in the tuning range of 1530.0-1560.0 nm. In addition, the output SLM and stability performance are also analyzed and discussed experimentally.
Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry
Watanabe, Haruki; Vishwanath, Ashvin
2014-01-01
There are few general physical principles that protect the low-energy excitations of a quantum phase. Of these, Goldstone’s theorem and Landau–Fermi liquid theory are the most relevant to solids. We investigate the stability of the resulting gapless excitations—Nambu–Goldstone bosons (NGBs) and Landau quasiparticles—when coupled to one another, which is of direct relevance to metals with a broken continuous symmetry. Typically, the coupling between NGBs and Landau quasiparticles vanishes at low energies, leaving the gapless modes unaffected. If, however, the low-energy coupling is nonvanishing, non-Fermi liquid behavior and overdamped bosons are expected. Here we prove a general criterion that specifies when the coupling is nonvanishing. It is satisfied by the case of a nematic Fermi fluid, consistent with earlier microscopic calculations. In addition, the criterion identifies a new kind of symmetry breaking—of magnetic translations—where nonvanishing couplings should arise, opening a previously unidentified route to realizing non-Fermi liquid phases. PMID:25349386
Stability analysis of the pulmonary liquid bilayer.
NASA Astrophysics Data System (ADS)
Halpern, David; Grotberg, James
2010-11-01
The lung consists of liquid-lined compliant airways that convey air to and from the alveoli where gas exchange takes place. Because the airways are coated with a bilayer consisting of a mucus layer on top of a periciliary fluid layer, a surface tension instability can generate flows within the bilayer and induce the formation of liquid plugs that block the passage of air. This is a problem for example with premature neonates whose lungs do not produce sufficient quantities of surfactant and suffer from respiratory distress syndrome. To study this instability a system of coupled nonlinear evolution equations are derived using lubrication theory for the thicknesses of the two liquid layers which are assumed to be Newtonian. A normal mode analysis is used to investigate the initial growth of the disturbances, and reveals how the grow rate is affected by the ratio of viscosities λ, film thicknesses η and surface tensions δ of the two layers which can change by disease. Numerical solutions of the evolution equations show that there is a critical bilayer thickness ɛc above which closure occurs, and that a more viscous and thicker layer compared to the periciliary layer closes more slowly. However, ɛcis weakly dependent on λ, η and δ. We also examine the potential impact of wall shear stress and normal stress on cell damage. This work is funded by NIH HL85156.
1988-12-01
problems: (i) exact boundary controllability for waves and plates: (ii) uniform stabilization ( linear case) and strong stabilization (nonlinear case) by a...investigators in [L- T.10). (ii) Boundary feedback stabilization Linear case: uniform stabilization The principal investigators results on uniform
An improved method for risk evaluation in failure modes and effects analysis of CNC lathe
NASA Astrophysics Data System (ADS)
Rachieru, N.; Belu, N.; Anghel, D. C.
2015-11-01
Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.
Stability of fundamental couplings: A global analysis
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.; Pinho, A. M. M.
2017-01-01
Astrophysical tests of the stability of fundamental couplings are becoming an increasingly important probe of new physics. Motivated by the recent availability of new and stronger constraints we update previous works testing the consistency of measurements of the fine-structure constant α and the proton-to-electron mass ratio μ =mp/me (mostly obtained in the optical/ultraviolet) with combined measurements of α , μ and the proton gyromagnetic ratio gp (mostly in the radio band). We carry out a global analysis of all available data, including the 293 archival measurements of Webb et al. and 66 more recent dedicated measurements, and constraining both time and spatial variations. While nominally the full data sets show a slight statistical preference for variations of α and μ (at up to two standard deviations), we also find several inconsistencies between different subsets, likely due to hidden systematics and implying that these statistical preferences need to be taken with caution. The statistical evidence for a spatial dipole in the values of α is found at the 2.3 sigma level. Forthcoming studies with facilities such as ALMA and ESPRESSO should clarify these issues.
Mode Deactivation Therapy (MDT) Family Therapy: A Theoretical Case Analysis
ERIC Educational Resources Information Center
Apsche, J. A.; Ward Bailey, S. R.
2004-01-01
This case study presents a theoretical analysis of implementing mode deactivation therapy (MDT) (Apsche & Ward Bailey, 2003) family therapy with a 13 year old Caucasian male. MDT is a form of cognitive behavioral therapy (CBT) that combines the balance of dialectical behavior therapy (DBT) (Linehan, 1993), the importance of perception from…
Linear modal stability analysis of bowed-strings.
Debut, V; Antunes, J; Inácio, O
2017-03-01
Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach
Yang, Nancy Y. C.; Morales, Alfredo Martin
2009-02-01
Bi-Te-based thermoelectric (TE) alloys are excellent candidates for power generation modules. We are interested in reliable TE modules for long-term use at or below 200 C. It is known that the metallurgical characteristics of TE materials and of interconnect components affect the performance of TE modules. Thus, we have conducted an extensive scientific investigation of several commercial TE modules to determine whether they meet our technical requirements. Our main focus is on the metallurgy and thermal stability of (Bi,Sb){sup 2}(Te,Se){sup 3} TE compounds and of other materials used in TE modules in the temperature range between 25 C and 200 C. Our study confirms the material suite used in the construction of TE modules. The module consists of three major components: AlN cover plates; electrical interconnects; and the TE legs, P-doped (Bi{sub 8}Sb{sub 32})(Te{sub 60}) and N-doped (Bi{sub 37}Sb{sub 3})(Te{sub 56}Se{sub 4}). The interconnect assembly contains Sn (Sb {approx} 1wt%) solder, sandwiched between Cu conductor with Ni diffusion barriers on the outside. Potential failure modes of the TE modules in this temperature range were discovered and analyzed. The results show that the metallurgical characteristics of the alloys used in the P and N legs are stable up to 200 C. However, whole TE modules are thermally unstable at temperatures above 160 C, lower than the nominal melting point of the solder suggested by the manufacture. Two failure modes were observed when they were heated above 160 C: solder melting and flowing out of the interconnect assembly; and solder reacting with the TE leg, causing dimensional swelling of the TE legs. The reaction of the solder with the TE leg occurs as the lack of a nickel diffusion barrier on the side of the TE leg where the displaced solder and/or the preexisting solder beads is directly contact the TE material. This study concludes that the present TE modules are not suitable for long-term use at temperatures above 160 C due
Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2016-10-01
The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.
Design and analysis of a mode B and mode JD satellite Earth station
NASA Astrophysics Data System (ADS)
Hance, Dennis J.
1994-06-01
This thesis focuses on the design, integration, and analysis of an amateur radio service mode B and mode JD satellite earth station. Preliminary designs were investigated to determine the optimum configuration for the earth station. Modern digital modems, cabling structures, an 80386-based computer system, satellite tracking software, transmission and reception antennas, preamplifiers, and sophisticated performance measurement technologies were integrated into a functioning earth station. Initially, component availability and station design dictated the selection and acquisition of the requisite station equipment, integration of the transmitter, receiver preamplifiers, antennas, and computer equipment followed. Preliminary testing of the various components in the integration station occupied a significant amount of time. Empirical test tracking of different amateur and commercial satellites verified proper operation of the earth station. Results are discussed throughout this thesis.
NASA Astrophysics Data System (ADS)
Sund, Richard; Scharer, John
2002-11-01
We examine a new method for generating sheared flows in advanced tokamak D-T reactors with the goal of creating and controlling internal transport barriers. Ion-Bernstein waves (IBWs) have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. Under reactor conditions, the IBW can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side (HFS) on the second harmonic resonance of a minority hydrogen component, with near 100200 MHz) minimizes parasitic absorption and permits the converted IBW to approach the fifth tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. Placement of the 5T absorption layer on the HFS is advantageous for shear production. The scheme is applicable to reactors with aspect ratio < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Various factors (adequate separation of the mode conversion layer from the magnetic axis, concentration of the fast wave near the midplane, large machine size, and plasma elongation) minimize poloidal field effects in the conversion zone and permit a slab analysis. We use a 1-D full-wave code to analyze the conversion and absorption. A 2-D ray-tracing code incorporating poloidal magnetic fields is used to follow the IBW for various equilibria. Within this analysis a weak bean shape appears most favorable. This is an attractive scheme for future advanced tokamak reactors. *Research supported by the Univ. of Wisconsin, Madison
Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability
Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.
2016-01-01
Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895
Yoshida, Masato; Yoshida, Kazuki; Kasai, Keisuke; Nakazawa, Masataka
2016-10-17
We describe a 1.55 μm hydrogen cyanide (HCN) optical frequency and repetition rate stabilized mode-locked fiber laser, where the optical frequency was locked to the P(10) HCN absorption line and the repetition rate was locked to 9.95328 GHz by using a microwave phase-locked loop. The optical frequency stability of the laser reached 5 x 10^{-11} with an integration time τ of 1 s. With a bidirectional pumping scheme, the laser output power reached 64.6 mW. To obtain a short pulse train, the average dispersion in the cavity was managed so that it was zero around 1.55 μm, resulting in a 0.95 ps pulse train. In addition, the stabilization of the optical frequency and the repetition rate, meant that the entire spectral profile remained the same for 24 hours.
Smith, Ryan P.; Roos, Peter A.; Wahlstrand, Jared K.; Pipis, Jessica A.; Rivas, Maria Belmonte; Cundiff, Steven T.
2007-01-01
We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [127I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements. PMID:27110472
Spatio-temporal Linear Stability Analysis of Multiple Reacting Wakes
NASA Astrophysics Data System (ADS)
Kunnumpuram Sebastian, Jacob; Emerson, Benjamin; Lieuwen, Tim
2016-11-01
Hydrodynamic stability of reacting shear flows plays a key role in controlling a variety of combustor behaviors, such as combustion instability, mixing and entrainment, and blowoff. A significant literature exists on the hydrodynamics of single bluff body flows, but not the multi-bluff body flows that are found in applications. The objective of this work was to compare the spatio-temporal stability of multiple reacting wakes and single reacting wakes, within the framework of linear stability theory. Spatio-temporal stability analyses are conducted on model velocity and density profiles, with key parameters being the density ratio across the flame, bluff body spacing, dimensionless shear, and asymmetry parameters (if the two wakes are dissimilar). The introduction of the additional bluff body can exert both a stabilizing and destabilizing effect on the combined two-wake system, depending on the spatial separation between the bluff bodies. Furthermore, while the most rapidly amplified mode of the single wake mode is the sinuous (asymmetric) one, in the two wake system, the most rapidly amplified mode can be either sinuous or varicose (symmetric), also depending on spatial separation.
NASA Astrophysics Data System (ADS)
Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan
2016-11-01
Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.
Satellite time series analysis using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.
2016-04-01
Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.
C-Mod MHD stability analysis with LHCD
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.
2016-10-01
In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.
A parabolized stability analysis of a trailing vortex wake
NASA Astrophysics Data System (ADS)
Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis
2016-11-01
To aid in understanding how best to control a trailing vortex, we perform a parabolized stability analysis on a flow past a wing at a chord-based Reynolds number of 1000. At the upstream position, the wake instability branch dominates, with only a single vortex instability present in the spectrum. With downstream progression, the growth rate of the wake instability decays, but remains unstable 10 chords downstream. With the wake mode being unstable so far downstream, these results imply that the excitation of the wake instability, despite the varying base flow, will continue to see growth and potentially disrupt the trailing vortex. Conversely, the vortex instability in its formative region rapidly decays to the stable half-plane, then at 11 chords downstream becomes unstable again. We hypothesized the renewed instability growth far downstream is developing as a result of vortex instabilities, however the excitation of these instabilities proves to be challenging in the vortex far field. From these results, control near the two-dimensional wake behind the airfoil may better interfere with the trailing vortex formation; however, to determine the optimal disturbances, an adjoint analysis is required and is included in the future work of the project. ONR Grants N00014-10-1-0832 and N00014-15-1-2403.
Efficient randomized methods for stability analysis of fluids systems
NASA Astrophysics Data System (ADS)
Dawson, Scott; Rowley, Clarence
2016-11-01
We show that probabilistic algorithms that have recently been developed for the approximation of large matrices can be utilized to numerically evaluate the properties of linear operators in fluids systems. In particular, we present an algorithm that is well suited for optimal transient growth (i.e., nonmodal stability) analysis. For non-normal systems, such analysis can be important for analyzing local regions of convective instability, and in identifying high-amplitude transients that can trigger nonlinear instabilities. Our proposed algorithms are easy to wrap around pre-existing timesteppers for linearized forward and adjoint equations, are highly parallelizable, and come with known error bounds. Furthermore, they allow for efficient computation of optimal growth modes for numerous time horizons simultaneously. We compare the proposed algorithm to both direct matrix-forming and Krylov subspace approaches on a number of test problems. We will additionally discuss the potential for randomized methods to assist more broadly in the speed-up of algorithms for analyzing both fluids data and operators. Supported by AFOSR Grant FA9550-14-1-0289.
Earth recovery mode analysis for a Martian sample return mission
NASA Technical Reports Server (NTRS)
Green, J. P.
1978-01-01
The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.
Calculation of the Longitudinal Stability Derivatives and Modes of Motion for Helicopter Aircraft
1982-10-01
progress. Before the details of controlling the aircraft can be fully worked out, some understanding of the aircraft’s inherent stability must be...influences (wind gusts, for instance). Pilot work - loaa is also a function of stability. Since adequate maneuverability is a necessity, the aircraft must...B. STATIC STABILITY The static stability of a system is defined by the initial tendency of the system to return to equilibrium conditions following
Milling Stability Analysis Based on Chebyshev Segmentation
NASA Astrophysics Data System (ADS)
HUANG, Jianwei; LI, He; HAN, Ping; Wen, Bangchun
2016-09-01
Chebyshev segmentation method was used to discretize the time period contained in delay differential equation, then the Newton second-order difference quotient method was used to calculate the cutter motion vector at each time endpoint, and the Floquet theory was used to determine the stability of the milling system after getting the transfer matrix of milling system. Using the above methods, a two degree of freedom milling system stability issues were investigated, and system stability lobe diagrams were got. The results showed that the proposed methods have the following advantages. Firstly, with the same calculation accuracy, the points needed to represent the time period are less by the Chebyshev Segmentation than those of the average segmentation, and the computational efficiency of the Chebyshev Segmentation is higher. Secondly, if the time period is divided into the same parts, the stability lobe diagrams got by Chebyshev segmentation method are more accurate than those of the average segmentation.
Comparison Study of Fourier and SVD Method for Plasma Mode Analysis in Tokamaks
NASA Astrophysics Data System (ADS)
Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman
2011-02-01
Fourier analysis and Singular Value Decomposition (SVD) are two familiar methods for mode detection in tokamaks. In this article this two methods, fourier and SVD, have compared. The results show fourier analysis in m ≥ 3 and when the energy is balanced between modes could not recognize the correct mode number. The SVD analysis is cited method for all modes.
A first attempt at few coils and low-coverage resistive wall mode stabilization of EXTRAP T2R
NASA Astrophysics Data System (ADS)
Olofsson, K. Erik J.; Brunsell, Per R.; Drake, James R.; Frassinetti, Lorenzo
2012-09-01
The reversed-field pinch features resistive-shell-type instabilities at any (vanishing and finite) plasma pressure. An attempt to stabilize the full spectrum of these modes using both (i) incomplete coverage and (ii) few coils is presented. Two empirically derived model-based control algorithms are compared with a baseline guaranteed suboptimal intelligent-shell-type (IS) feedback. Experimental stabilization could not be achieved for the coil array subset sizes considered by this first study. But the model-based controllers appear to significantly outperform the decentralized IS method.
Sub-kHz lasing of a CaF₂ whispering gallery mode resonator stabilized fiber ring laser.
Collodo, M C; Sedlmeir, F; Sprenger, B; Svitlov, S; Wang, L J; Schwefel, H G L
2014-08-11
We utilize a high quality calcium fluoride whispering-gallery-mode resonator to passively stabilize a simple erbium doped fiber ring laser with an emission frequency of 196THz (wavelength 1530nm) to an instantaneous linewidth below 650Hz. This corresponds to a relative stability of 3.3 × 10(-12) over 16μs. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered-hat method. We further show that the lasers are finely tunable throughout the erbium gain region.
NASA Technical Reports Server (NTRS)
Smith, Todd E.
1990-01-01
The dynamic analysis for the SSME HPOTP first stage turbine blade is presented wherein the rotor aeroelastic stability is assessed. The method employs normal modes analysis to simulate the coupled blade/fluid system. A three-dimensional finite element model of the blade is used in conjunction with a two-dimensional linearized unsteady aerodynamic theory which accounts for steady aerodynamic loading effects. This unsteady aerodynamic model is applied in stacked axisymmetric strips along the airfoil span. The blade dynamic and aerodynamic behaviors are coupled within modal space by expressing the unsteady aerodynamic forces in the frequency domain. A complex eigenvalue problem is solved to determine the stability of the rotor assuming tuned blades. The present analysis indicates that the HPOTP rotor experiences very low aerodynamic damping in the first four vibrational modes. The edgewise mode was found to be dynamically unstable. This mode of the blade became stable when the effect of mechanical damping was considered.
Stability analysis of large electric power systems
Elwood, D.M.
1993-01-01
Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.
Fourier mode analysis of source iteration in spatially periodic media
Zika, M.R.; Larsen, E.W.
1998-12-31
The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.
Ushakov, Vadim; Sharaev, Maksim G; Kartashov, Sergey I; Zavyalova, Viktoria V; Verkhlyutov, Vitaliy M; Velichkovsky, Boris M
2016-01-01
The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects' effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective
Ushakov, Vadim; Sharaev, Maksim G.; Kartashov, Sergey I.; Zavyalova, Viktoria V.; Verkhlyutov, Vitaliy M.; Velichkovsky, Boris M.
2016-01-01
The purpose of this paper was to study causal relationships between left and right hippocampal regions (LHIP and RHIP, respectively) within the default mode network (DMN) as represented by its key structures: the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and the inferior parietal cortex of left (LIPC) and right (RIPC) hemispheres. Furthermore, we were interested in testing the stability of the connectivity patterns when adding or deleting regions of interest. The functional magnetic resonance imaging (fMRI) data from a group of 30 healthy right-handed subjects in the resting state were collected and a connectivity analysis was performed. To model the effective connectivity, we used the spectral Dynamic Causal Modeling (DCM). Three DCM analyses were completed. Two of them modeled interaction between five nodes that included four DMN key structures in addition to either LHIP or RHIP. The last DCM analysis modeled interactions between four nodes whereby one of the main DMN structures, PCC, was excluded from the analysis. The results of all DCM analyses indicated a high level of stability in the computational method: those parts of the winning models that included the key DMN structures demonstrated causal relations known from recent research. However, we discovered new results as well. First of all, we found a pronounced asymmetry in LHIP and RHIP connections. LHIP demonstrated a high involvement of DMN activity with preponderant information outflow to all other DMN regions. Causal interactions of LHIP were bidirectional only in the case of LIPC. On the contrary, RHIP was primarily affected by inputs from LIPC, RIPC, and LHIP without influencing these or other DMN key structures. For the first time, an inhibitory link was found from MPFC to LIPC, which may indicate the subjects’ effort to maintain a resting state. Functional connectivity data echoed these results, though they also showed links not reflected in the patterns of effective
Stability analysis of offshore wind farm and marine current farm
NASA Astrophysics Data System (ADS)
Shawon, Mohammad Hasanuzzaman
-trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.
NASA Astrophysics Data System (ADS)
Shields, Matt
The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the
Lubrication mode analysis of articular cartilage using Stribeck surfaces.
Gleghorn, Jason P; Bonassar, Lawrence J
2008-01-01
Lubrication of articular cartilage occurs in distinct modes with various structural and biomolecular mechanisms contributing to the low-friction properties of natural joints. In order to elucidate relative contributions of these factors in normal and diseased tissues, determination and control of lubrication mode must occur. The objectives of these studies were (1) to develop an in vitro cartilage on glass test system to measure friction coefficient, mu; (2) to implement and extend a framework for the determination of cartilage lubrication modes; and (3) to determine the effects of synovial fluid on mu and lubrication mode transitions. Patellofemoral groove cartilage was linearly oscillated against glass under varying magnitudes of compressive strain utilizing phosphate buffered saline (PBS) and equine and bovine synovial fluid as lubricants. The time-dependent frictional properties were measured to determine the lubricant type and strain magnitude dependence for the initial friction coefficient (mu(0)=mu(t-->0)) and equilibrium friction coefficient (mu(eq)=mu(t-->infinity)). Parameters including tissue-glass co-planarity, normal strain, and surface speed were altered to determine the effect of the parameters on lubrication mode via a 'Stribeck surface'. Using this testing apparatus, cartilage exhibited biphasic lubrication with significant influence of strain magnitude on mu(0) and minimal influence on mu(eq), consistent with hydrostatic pressurization as reported by others. Lubrication analysis using 'Stribeck surfaces' demonstrated clear regions of boundary and mixed modes, but hydrodynamic or full film lubrication was not observed even at the highest speed (50mm/s) and lowest strain (5%).
Stability analysis of automobile driver steering control
NASA Technical Reports Server (NTRS)
Allen, R. W.
1981-01-01
In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.
Failure Mode Effects Analysis for an Accelerator Control System
Hartman, Steven M
2009-01-01
Failure mode effects analysis (FMEA) has been used in industry for design, manufacturing and assembly process quality control. It describes a formal approach for categorizing how a process may fail and for prioritizing failures based on their severity, frequency and likelihood of detection. Experience conducting a partial FMEA of an accelerator subsystem and its related control system will be reviewed. The applicability of the FMEA process to an operational accelerator control system will be discussed.
NASA Astrophysics Data System (ADS)
Hwang, Eunju; Lee, Yong Hyun; Kim, Kyung Jae; Son, Jung Je; Choi, Bong Dae
The IEEE 802.16e standard specifies the sleep mode and the idle mode of a mobile station (MS) for power saving. In this paper, to reduce the energy consumption of the MS, we employ the sleep mode while the MS is on-session, and the idle mode while it is off-session. Under the assumption that the time duration from the end of a session to the arrival of a new downlink session request follows an exponential distribution of the mean 1/ν and that arrivals of messages during an on-session follow a Poisson process with rate λ, we analyze the awake mode period and the sleep mode period by using the busy period analysis of the M/G/1 queue, and then we derive the total mean length of an on-session which consists of a geometric number of awake mode periods and sleep mode periods. Since the sum of an on-session and an off-session constitutes a cycle, we can express the average power consumption in terms of the mean lengths of an awake mode period, a sleep mode period and an idle mode period. The average power consumption indicates how much the MS can save energy by employing the sleep mode and the idle mode. We also derive the Laplace Stieltjes transform (and the mean) of the queueing delay of messages to examine a tradeoff between the power consumption and the delay of messages. Analytical results, which are shown to be well-matched by simulations, address that our employment of the sleep mode and the idle mode provides a considerable reduction in the energy consumption of the MS.
Assessment of Stability of Craniofacial Implants by Resonant Frequency Analysis.
Ivanjac, Filip; Konstantinović, Vitomir S; Lazić, Vojkan; Dordević, Igor; Ihde, Stefan
2016-03-01
Implant stability is a principal precondition for the success of implant therapy. Extraoral implants (EO) are mainly used for anchoring of maxillofacial epithesis. However, assessment of implant stability is mostly based on principles derived from oral implants. The aim of this study was to investigate clinical stability of EO craniofacial disk implants (single, double, and triple) by resonance frequency analysis at different stages of the bone's healing. Twenty patients with orbital (11), nasal (5), and auricular (4) defects with 50 EO implants placed for epithesis anchorage were included. Implant stability was measured 3 times; after implant placement, at 3 months and at least after 6 months. A significant increase in implant stability values was noted between all of the measurements, except for triple-disk implants between third and sixth months, and screw implants between 0 and third months. Disk implants showed lower implant stability quotient (ISQ) values compared with screw implants. Triple-disk implants showed better stability compared with single and double-disk implants. Based on resonance frequency analysis values, disk implants could be safely loaded when their ISQ values are 38 (single disks), 47 (double disks), and 48 (triple disks). According to resonance frequency analysis, disk implant stability increased over time, which showed good osseointegration and increasing mineralization. Although EO screw implants showed higher ISQ values than disk implants, disk-type implants can be safely loaded even if lower values of stability are measured.
White Oak Dam stability analysis. Volume I
Ahmed, S.B.
1994-01-01
A parametric study was conducted to evaluate the stability of the White Oak Dam (WOD) embankment and foundation. Slope stability analyses were performed for the upper and lower bound soil properties at three sections of the dam using the PCSTABL4 computer program. Minimum safety factors were calculated for the applicable seismic and static loading conditions. Liquefaction potential of the dam embankment and foundation solid during the seismic event was assessed by using simplified procedures. The WOD is classified as a low hazard facility and the Evaluation Basis Earthquake (EBE) is defined as an earthquake with a magnitude of m{sub b} = 5.6 and a Peak Ground Accelerator (PGA) of 0.13 g. This event is approximately equivalent to a Modified Mercalli Intensity of VI-VIII. The EBE is used to perform the seismic evaluation for slope stability and liquefaction potential. Results of the stability analyses and the liquefaction assessment lead to the conclusion that the White Oak Dam is safe and stable for the static and the seismic events defined in this study. Ogden Environmental, at the request of MMES, has checked and verified the calculations for the critical loading conditions and performed a peer review of this report. Ogden has determined that the WOD is stable under the defined static and seismic loading conditions and the embankment materials are in general not susceptible to liquefaction.
Analysis of the stabilized supralinear network‡
Ahmadian, Yashar; Rubin, Daniel B.; Miller, Kenneth D.
2014-01-01
We study a rate-model neural network composed of excitatory and inhibitory neurons in which neuronal input-output functions are power laws with a power greater than 1, as observed in primary visual cortex. This supralinear input-output function leads to supralinear summation of network responses to multiple inputs for weak inputs. We show that for stronger inputs, which would drive the excitatory subnetwork to instability, the network will dynamically stabilize provided feedback inhibition is sufficiently strong. For a wide range of network and stimulus parameters, this dynamic stabilization yields a transition from supralinear to sublinear summation of network responses to multiple inputs. We compare this to the dynamic stabilization in the “balanced network”, which yields only linear behavior. We more exhaustively analyze the 2-dimensional case of 1 excitatory and 1 inhibitory population. We show that in this case dynamic stabilization will occur whenever the determinant of the weight matrix is positive and the inhibitory time constant is sufficiently small, and analyze the conditions for “supersaturation”, or decrease of firing rates with increasing stimulus contrast (which represents increasing input firing rates). In work to be presented elsewhere, we have found that this transition from supralinear to sublinear summation can explain a wide variety of nonlinearities in cerebral cortical processing. PMID:23663149
NASA Astrophysics Data System (ADS)
Cao, Zhengcai; Yin, Longjie; Fu, Yili
2013-01-01
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot.
Structural mode significance using INCA. [Interactive Controls Analysis computer program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1990-01-01
Structural finite element models are often too large to be used in the design and analysis of control systems. Model reduction techniques must be applied to reduce the structural model to manageable size. In the past, engineers either performed the model order reduction by hand or used distinct computer programs to retrieve the data, to perform the significance analysis and to reduce the order of the model. To expedite this process, the latest version of INCA has been expanded to include an interactive graphical structural mode significance and model order reduction capability.
Linear MHD Stability Analysis of the SSPX Spheromak
NASA Astrophysics Data System (ADS)
Jayakumar, R.; Cohen, B. I.; Hooper, E. B.; Lodestro, L. L.; McLean, H. S.; Pearlstein, L. D.; Wood, R.; Turnbull, A. D.; Sovinec, C.
2007-11-01
Good correlation between the toroidal mode numbers of measured magnetic fluctuations in high temperature SSPX plasmas and presence of low-order rational surfaces in the reconstructed q profiles, suggests that the quality of magnetic surfaces in SSPX is sufficiently good for applying standard linear MHD stability analyses. Previously we have reported on benchmarking the code NIMROD against GATO, with good agreement in growth rates for ideal-MHD internal kinks and an external kinks with no current on open field lines (for equilibria imported from the code Corsica). Recent stability analyses also show that presence of low order rational surfaces causes internal modes to become unstable. We will report on the progress in applying these tools for assessing beta limits in SSPX, using NIMROD analyses including current on open field lines and for comparison with experiments.
Analysis and comparison of range — range positioning mode and hyperbolic positioning mode
NASA Astrophysics Data System (ADS)
Chen, Shi-Ru; Xu, Ding-Jie; Sun, Yao
2002-06-01
Three key factors are discussed, which affect positioning accuracy of range — range positioning mode and hyperbolic positioning mode. Based on the error elliptical theory, the expressions of positioning error and of positioning geometric factor of range — range positioning mode and hyperbolic positioning mode are derived, and the positioning error and the blind positioning area of two different positioning modes are analyzed. According to the requirement of navigation area, an optimum positional configuration among navigation stations of hyperbolic positioning mode is provided. Some considerable conclusions are obtained, and some graphs of distribution are presented, which are important to study and design a reasonable, precise radio navigation system.
On the stability of Suydam modes in a nonuniformly rotating plasma
Timofeev, A. V.
2010-08-15
A simplified wave equation is derived that describes both Suydam modes in a nonuniformly rotating plasma column in a helical magnetic field and related flute modes. A study is made of a low-pressure plasma under the assumption that the azimuthal component of the magnetic field is much weaker than the axial component. It is shown that, when the monotonic radial variation of the plasma rotation velocity is sufficiently sharp, the plasma core becomes stable against short-wavelength Suydam modes. The instabilities that can develop in a nonuniformly rotating plasma are classified.
Stability analysis in tachyonic potential chameleon cosmology
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A. E-mail: a.salehi@guilan.ac.ir E-mail: aravanpak@guilan.ac.ir
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Stability analysis of the Gravito-Electrostatic Sheath-based solar plasma equilibrium
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.; Lal, M.; Dwivedi, C. B.
2016-08-01
We present approximate solutions of non-local linear perturbational analysis for discussing the stability properties of the Gravito-Electrostatic Sheath (GES)-based solar plasma equilibrium, which is indeed non-uniform on both the bounded and unbounded scales. The relevant physical variables undergoing perturbations are the self-solar gravity, electrostatic potential and plasma flow along with plasma population density. We methodologically derive linear dispersion relation for the GES fluctuations, and solve it numerically to identify and characterize the existent possible natural normal modes. Three distinct natural normal modes are identified and named as the GES-oscillator mode, GES-wave mode and usual (classical) p-mode. In the solar wind plasma, only the p-mode survives. These modes are found to be linearly unstable in wide-range of the Jeans-normalized wavenumber, k. The local plane-wave approximation marginally limits the validity or reliability of the obtained results in certain radial- and k-domains only. The phase and group velocities, time periods of these fluctuation modes are investigated. It is interesting to note that, the oscillation time periods of these modes are 3-10 min, which match exactly with those of the observed helio-seismic waves and solar surface oscillations. The proposed GES model provides a novel physical view of the waves and oscillations of the Sun from a new perspective of plasma-wall interaction physics. Due to simplified nature of the considered GES equilibrium, it is a neonatal stage to highlight its applicability in the real Sun. The proposed GES model and subsequent fluctuation analysis need further improvements to make it more realistic.
Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes
NASA Astrophysics Data System (ADS)
Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.
2016-08-01
The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.
NASA Technical Reports Server (NTRS)
Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.
1987-01-01
Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.
NASA Astrophysics Data System (ADS)
Jacques, S.; De Baere, I.; Van Paepegem, W.
2015-12-01
The reliability of composite structures depends, among other damage mechanisms, on their ability to withstand delaminations. In order to have a better understanding of the cohesive zone method technique for delamination simulations, a complete analysis of the multiple parameters influencing the results is necessary. In this paper the work is concentrated on the cohesive zone method using cohesive elements. First a summary of the theory of the cohesive zone method is given. A numerical investigation on the multiple parameters influencing the numerical simulation of the mode I and mode II delamination tests has been performed. The parameters such as the stabilization method, the output frequency, the friction and the computational efficiency have been taken into account. The results will be compared to an analytical solution obtained by linear elastic fracture mechanics. Additionally the numerical simulation results will be compared to the experimental results of a glass-fibre reinforced composite material for the mode I Double Cantilever Beam (DCB) and to a carbon fibre 5-harness satin weave reinforced polyphenylene sulphide composite for the mode I DCB and mode II End Notched Flexure (ENF).
NOLB : Non-linear rigid block normal mode analysis method.
Hoffmann, Alexandre; Grudinin, Sergei
2017-04-05
We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.
Stability analysis of self-similar behaviors in perfect fluid gravitational collapse
Mitsuda, Eiji; Tomimatsu, Akira
2006-06-15
Stability of self-similar solutions for gravitational collapse is an important problem to be investigated from the perspectives of their nature as an attractor, critical phenomena, and instability of a naked singularity. In this paper we study spherically symmetric non-self-similar perturbations of matter and metrics in spherically symmetric self-similar backgrounds. The collapsing matter is assumed to be a perfect fluid with the equation of state P={alpha}{rho}. We construct a single wave equation governing the perturbations, which makes their time evolution in arbitrary self-similar backgrounds analytically tractable. Further we propose an analytical application of this master wave equation to the stability problem by means of the normal mode analysis for the perturbations having the time dependence given by exp(i{omega}log vertical t vertical bar), and present some sufficient conditions for the absence of nonoscillatory unstable normal modes with purely imaginary {omega}.
Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan
2016-12-01
We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02 K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.
NASA Technical Reports Server (NTRS)
Wilkes, R. L.; Kennedy, R. S.; Dunlap, W. P.; Lane, N. E.
1986-01-01
A need exists for an automated performance test system to study drugs, agents, treatments, and stresses of interest to the aviation, space, and environmental medical community. The purpose of this present study is to evaluate tests for inclusion in the NASA-sponsored Automated Performance Test System (APTS). Twenty-one subjects were tested over 10 replications with tests previously identified as good candidates for repeated-measure research. The tests were concurrently administered in paper-and-pencil and microcomputer modes. Performance scores for the two modes were compared. Data from trials 1 to 10 were examined for indications of test stability and reliability. Nine of the ten APT system tests achieved stability. Reliabilities were generally high. Cross-correlation of microbased tests with traditional paper-and-pencil versions revealed similarity of content within tests in the different modes, and implied at least three cognition and two motor factors. This protable, inexpensive, rugged, computerized battery of tests is recommended for use in repeated-measures studies of environmental and drug effects on performance. Identification of other tests compatible with microcomputer testing and potentially capable of tapping previously unidentified factors is recommended. Documentation of APTS sensitivity to environmental agents is available for more than a dozen facilities and is reported briefly. Continuation of such validation remains critical in establishing the efficacy of APTS tests.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.
Bai, Xiao-Dong; Ai, Qing; Zhang, Mei; Xiong, Jun Yang, Guo-Jian; Deng, Fu-Guo
2015-09-15
We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.
Frequency-stabilization of mode-locked laser-based photonic microwave oscillator
NASA Technical Reports Server (NTRS)
Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute
2005-01-01
In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.
Sensitivity analysis of hydrodynamic stability operators
NASA Technical Reports Server (NTRS)
Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.
1992-01-01
The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.
Attitude stabilization of a rigid spacecraft using gas jet actuators operating in a failure mode
NASA Technical Reports Server (NTRS)
Krishnan, Hariharan; Reyhanoglu, Mahmut; Mcclamroch, Harris
1993-01-01
The attitude stabilization of a rigid spacecraft using control torques supplied by gas jet actuators about only two of its principal axes is considered. First, the case where the uncontrolled principal axis of the spacecraft is not an axis of symmetry is considered. In this case, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft cannot be asymptotically stabilized to an equilibrium attitude using time-invariant continuous feedback. A discontinuous stabilizing feedback control strategy is constructed which stabilizes the spacecraft to an equilibrium attitude. Next, the case where the uncontrolled principal axis of the spacecraft is an axis of symmetry is considered. In this case, the complete spacecraft dynamics are not even accessible. However, the spacecraft dynamics are strongly accessible and small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to an equilibrium attitude using time-invariant continuous feedback, but again a discontinuous stabilizing feedback control strategy is constructed. In both cases, the discontinuous feedback controllers are constructed by switching between one of several feedback functions.
M.H. Redi; C.L. Fiore; W. Dorland; D.R. Mikkelsen; G. Rewoldt; P.T. Bonoli; D.R. Ernst; J.E. Rice; S.J. Wukitch
2003-11-20
Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region.
NASA Astrophysics Data System (ADS)
Ohdachi, S.
2016-11-01
A new type of wavelet-based analysis for the magnetic fluctuations by which toroidal mode number can be resolved is proposed. By using a wavelet, having a different phase toroidally, a spectrogram with a specific toroidal mode number can be obtained. When this analysis is applied to the measurement of the fluctuations observed in the large helical device, MHD activities having similar frequency in the laboratory frame can be separated from the difference of the toroidal mode number. It is useful for the non-stationary MHD activity. This method is usable when the toroidal magnetic probes are not symmetrically distributed.
Receive Mode Analysis and Design of Microstrip Reflectarrays
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed
Stability analysis of a bilayer contained within a cylindrical tube
NASA Astrophysics Data System (ADS)
Song, Yuanyuan
Airways in the lung are coated with a liquid bilayer consisting of a serous layer adjacent to a more viscous mucus layer which is contiguous with the air core. An instability due to surface tension at the interfaces may lead to the formation of a liquid plug that blocks the passage of air. This is known as airway closure. A stability analysis is carried out for the case when a Newtonian and immiscible liquid bilayer coats a compliant tube in the presence of an insoluble surfactant monolayer at the mucus-gas interface. A surface active material such as surfactant lowers the surface tension and also generates a surface stress at the interface, both of which are stabilizing, while the wall compliance may accelerate the formation of the liquid bridge. A system of nonlinear coupled equations for the deflections of the interfaces and the surfactant concentration is derived by using an extended lubrication theory analysis. A linear stability study using normal modes is conducted by linearizing the nonlinear evolution equations. A linear eigenvalue problem for the perturbation amplitudes is obtained. Non-trivial solutions are obtained provided the determinant of a linear system is singular. A fourth order polynomial for the growth rate of the disturbances is derived, whose coefficients depend on the wavenumber of the perturbation, the wall characteristics, the Marangoni number, the thickness of the bilayer, the aspect thickness ratio, the viscosity ratio of two liquid layers, and the surface tension ratio. Both stabilizing and destabilizing effects of various system parameters are investigated. A classical lubrication theory model is also derived for cases where a bilayer coats a rigid tube with insoluble surfactant along the liquid-gas interface, and a bilayer coating in a compliant tube with a clean liquid-gas interface. Results serve as a validation of the extended lubrication theory model. The accuracy of the extended lubrication theory model as the bilayer thickness
Detecting Mode Confusion Through Formal Modeling and Analysis
NASA Technical Reports Server (NTRS)
Miller, Steven P.; Potts, James N.
1999-01-01
Aircraft safety has improved steadily over the last few decades. While much of this improvement can be attributed to the introduction of advanced automation in the cockpit, the growing complexity of these systems also increases the potential for the pilots to become confused about what the automation is doing. This phenomenon, often referred to as mode confusion, has been involved in several accidents involving modern aircraft. This report describes an effort by Rockwell Collins and NASA Langley to identify potential sources of mode confusion through two complementary strategies. The first is to create a clear, executable model of the automation, connect it to a simulation of the flight deck, and use this combination to review of the behavior of the automation and the man-machine interface with the designers, pilots, and experts in human factors. The second strategy is to conduct mathematical analyses of the model by translating it into a formal specification suitable for analysis with automated tools. The approach is illustrated by applying it to a hypothetical, but still realistic, example of the mode logic of a Flight Guidance System.
Failure modes and effects analysis (RADL Item 2-23)
1980-04-01
The Pilot Plant is a central receiver design concept. It is comprised of five major subsystems as shown schematically, plus a set of equipment (Plant Support Subsystem) used to support total plant operation. The failure modes and effects analysis (FMEA) is a bottom-up analysis used to identify the failure characteristics of the system (total equipment used to produce electrical power), that is, the failure of a single component is assumed and the effect of that failure upon the system is determined. The FMEA is concerned with the plant from an operational standpoint (i.e., the production of electrical power). This analysis was performed to the component level. This was interpreted as a valve, computer, measurement sensor and its associated signal conditioning, an electronic black box, etc.
NASA Technical Reports Server (NTRS)
Reding, J. P.; Ericsson, L. E.
1976-01-01
A quasi-steady analysis of the aeroelastic stability of the lateral (antisymmetric) modes of the 747/orbiter vehicle was accomplished. The interference effect of the orbiter wake on the 747 tail furnishes an aerodynamic undamping contribution to the elastic modes. Likewise, the upstream influence of the 747 tail and aft fuselage on the orbiter beaver-tail rail fairing also is undamping. Fortunately these undamping effects cannot overpower the large damping contribution of the 747 tail and the modes are damped for the configurations analyzed. However, significant interference effects of the orbiter on the 747 tail have been observed in the pitch plane. The high response of the 747 vertical tail in the orbiter wave was also considered. Wind tunnel data points to flapping of the OMS pod wakes as the source of the wake resonance phenomenon.
The different modes of hydro-economic analysis (Invited)
NASA Astrophysics Data System (ADS)
Harou, J. J.; Binions, O.; Erfani, T.
2013-12-01
In the face of growing water demands, climate change and spatial and temporal water access variability, accurately assessing the economic impacts of proposed water resource management changes is useful. The objective of this project funded by UK Water Industry Research was to present and demonstrate a framework for identifying and using the ';value of water' to enable water utilities and their regulators to make better decisions. A hydro-economic model can help evaluate water management options in terms of their hydrological and economic impact at different locations throughout a catchment over time. In this talk we discuss three modes in which hydro-economic models can be implemented: evaluative, behavioral and prescriptive. In evaluation mode economic water demand and benefit functions are used to post-process water resource management model results to assess the economic impacts (over space and time) of a policy under consideration. In behavioral hydro-economic models users are represented as agents and the economics is used to help predict their actions. In prescriptive mode optimization is used to find the most economically efficient management actions such as allocation patterns or source selection. These three types of hydro-economic analysis are demonstrated on a UK watershed (Great River Ouse) that includes 97 different water abstractors from amongst the public water supply, agriculture, industry and energy plant cooling sectors. The following issues under dry and normal historical conditions were investigated: Supply/demand investment planning, societal cost of environmental flows, water market prices, and scarcity-sensitive charges for water rights. The talk discusses which hydro-economic modeling mode is used to study each of these issues and why; example results are shown and discussed. The topic of how hydro-economic models can be built and deployed effectively is covered along with how existing water utility operational and planning tools can be
Temperature stability of transit time delay for a single-mode fibre in a loose tube cable
NASA Technical Reports Server (NTRS)
Bergman, L. A.; Eng, S. T.; Johnston, A. R.
1983-01-01
The effect of temperature on the transit-time delay of a loose-tube-type single-mode optical-fiber cable is investigated experimentally. A 1058-m length of cable was placed loosely coiled in an oven and used to connect a 820-nm single-mode laser diode to a high-speed avalanche-photodiode detector feeding a vector voltmeter; the signal was provided by a high-stability frequency-synthesized generator. Measurements were made every 2 C from -50 to 60 C and compared to those obtained with a 200-m lacquered bare fiber. The phase change of both fibers varied with temperature at a positive slope of 6-7 ppm/C. This value is significantly better than those reported for other cable types, suggesting the application of loose-fiber cables to long-haul gigabit digital transmissions or precision time-base distribution for VLBI.
Villone, F.
2008-06-27
In this Letter, the linear stability of the resistive wall modes (RWMs) in toroidal geometry for a reversed field pinch (RFP) plasma is studied. Three computational models are used: the cylindrical code ETAW, the toroidal MHD code MARS-F, and the CarMa code, able to take fully into account the effects of a three-dimensional conducting structure which mimics the real shell geometry of a reversed field pinch experimental device. The computed mode growth rates generally agree with experimental data. The toroidal effects and the three-dimensional features of the shell, like gaps, allow a novel interpretation of the RWM spectrum in RFP's and remove its degeneracy. This shows the importance of making accurate modeling of conductors for the RWM predictions also in future devices such as ITER.
NASA Astrophysics Data System (ADS)
Balluch, M.
1991-03-01
Recent developments concerning spherically symmetric (1D-) numerical models of protostellar evolution show that steady protostellar accretion flows (resp. their shockfronts) may be unstable at least in the very early (Tscharnuter 1987a) and late stages (Balluch 1988) of accretion. A global, linear stability analysis of the structure of steady protostellar accretion flows with a shock discontinuity (Balluch 1990) is therefore presented to investigate such flows by different methods. Thereby three characteristic wave types, the radiation-, radiation diffusion- and acoustic modes were found. In the `ideal case' of a perfect gas law and constant opacity, the shockfront appears to be oscillatory unstable due to critical cooling as long as the mass flux rate is larger than a critical one of Mṡcrit = 10-6 Msun yr-1. In the `real case' with more realistic constitutive relations, an additional vibrational instability occurs due to the κ-mechanism in the outer layers of the core. This is shown to be the case in the whole range of core masses between 0.01 and 1 Msun, mass flow rates between 10-3 and 10-7 Msun yr-1 and different outer boundary conditions (corresponding to different states of the surrounding interstellar cloud). Analysing the first, outer protostellar cores before they get dynamically unstable due to H2-dissociation in their interiors, similar instabilities as mentioned above were found. Now the unstable κ-behaviour is due to dust instead of the deep ionisation zone as in the case of second, inner cores. According to the linear analysis, the instabilities should first appear in the velocity and the radiation flux in the settling zone. In the case of first, outer cores, these variations should be accompanied by an oscillation of the radiation flux in the region upstream from the shock up to r = 1014 cm. Sooner or later, the shockfront should oscillate in both cases too. These results are finally compared with the characteristics of the accretion shock
Failure mode analysis of a post-tension anchored dam using linear finite element analysis
NASA Astrophysics Data System (ADS)
Corn, Aimee
There are currently over 84,000 dams in the United States, and the average age of those dams is 52 years. Concrete gravity dams are the second most common dam type, with more than 3,000 in the United States. Current engineering technology and technical understanding of hydrologic and seismic events has resulted in significant increases to the required design loads for most dams; therefore, many older dams do not have adequate safety for extreme loading events. Concrete gravity dams designed and constructed in the early 20th century did not consider uplift pressures beneath the dam, which reduces the effective weight of the structure. One method that has been used to enhance the stability of older concrete gravity dams includes the post-tension anchor (PTA) system. Post-tensioning infers modifying cured concrete and using self-equilibrating elements to increase the weight of the section, which provides added stability. There is a lack of historical evidence regarding the potential failure mechanisms for PTA concrete gravity dams. Of particular interest, is how these systems behave during large seismic events. The objective of this thesis is to develop a method by which the potential failure modes during a seismic event for a PTA dam can be evaluated using the linear elastic finite element method of analysis. The most likely potential failure modes (PFM) for PTA designs are due to tensile failure and shear failure. A numerical model of a hypothetical project was developed to simulate PTAs in the dam. The model was subjected to acceleration time-history motions that simulated the seismic loads. The results were used to evaluate the likelihood of tendon failure due to both tension and shear. The results from the analysis indicated that the PTA load increased during the seismic event; however, the peak load in the tendons was less than the gross ultimate tensile strength (GUTS) and would not be expected to result in tensile failure at the assumed project. The analysis
Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb.
Kuse, Naoya; Schibli, Thomas R; Fermann, Martin E
2016-07-25
A fully stabilized EO comb is demonstrated by phase locking the two degrees of freedom of an EO comb to a low noise mode-locked fiber comb. Division/magnification of residual phase noise of locked beats is observed by measuring an out-of-loop beat. By phase locking the 200 th harmonics of the EO comb and a driving cw frequency to a fiber comb, a record low phase noise EO comb across +/- 200 harmonics (from 1544.8 nm to 1577.3 nm) is demonstrated.
2007-07-01
an actively mode-locked fiber laser stabilized by an intracavity Fabry–Perot etalon: linear regime Yurij Parkhomenko,1 Moshe Horowitz,1,* Curtis R... Menyuk ,2 and Thomas F. Carruthers3,4 1Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel 2Department of...Naval Research aboratory. C. R. Menyuk can be reached via e-mail at enyuk@umbc.edu, and T. F. Carruthers can be reached ia e-mail at tcarruth@nsf.gov
TU-AB-BRD-02: Failure Modes and Effects Analysis
Huq, M.
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before a failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to
Failure modes and effects analysis of fusion magnet systems
Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J
1988-12-01
A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.
On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate
NASA Technical Reports Server (NTRS)
Webb, J. C.; Otto, S. R.; Lilley, G. M.
1994-01-01
The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.
NASA Astrophysics Data System (ADS)
Do, H. Q.; Massa, F.; Tison, T.; Lallemand, B.
2017-02-01
This paper presents a numerical strategy to reanalyze the modified frequency stability analysis of friction induced vibration problem. The stability analysis of a mechanical system relies on several coupling steps, namely a non-linear static analysis followed by linear and complex eigenvalue problems. We thus propose a numerical strategy to perform more rapidly multiple complex eigenvalue analyses. This strategy couples three methods namely, Fuzzy Logic Controllers to manage frictional contact problem, homotopy developments and projection techniques to reanalyze the projection matrices and component mode synthesis to calculate the modified eigensolutions. A numerical application is performed to highlight the efficiency of the strategy and a discussion is proposed in terms of precision and computational time.
NASA Astrophysics Data System (ADS)
Beljadid, Abdelaziz; Mohammadian, Abdolmajid; Qiblawey, Hazim
2016-10-01
The discretization of the shallow water system on unstructured grids can lead to spurious modes which usually can affect accuracy and/or cause stability problems. This paper introduces a new approach for stability analysis of unstructured linear finite volume schemes for linear shallow water equations with the Coriolis Effect using spectra, pseudospectra, and singular value decomposition. The discrete operator of the scheme is the principal parameter used in the analysis. It is shown that unstructured grids have a large influence on operator normality. In some cases the eigenvectors of the operator can be far from orthogonal, which leads to amplification of solutions and/or stability problems. Large amplifications of the solution can be observed, even for discrete operators which respect the condition of asymptotic stability, and in some cases even for Lax-Richtmyer stable methods. The pseudospectra are shown to be efficient for the verification of stability of finite volume methods for linear shallow water equations. In some cases, the singular value decomposition is employed for further analysis in order to provide more information about the existence of unstable modes. The results of the analysis can be helpful in choosing the type of mesh, the appropriate placements of the variables of the system on the grid, and the suitable discretization method which is stable for a wide range of modes.
Limiter stabilization of high-beta external kink-tearing modes
Lee, J.K.; Ohyabu, N.
1984-12-01
The stabilizing effects of finite-width poloidal limiters, toroidal limiters, and general mushroom limiters are examined for high-beta finite resistivity tokamak plamas in free boundary. When the plasma pressure and resistivity are small, a poloidal limiter is effective in reducing the growth rate even with a small limiter size, while a toroidal limiter requires a large size for a comparable effect. As the plasma pressure or resistivity increases, a toroidal limiter becomes more effective in reducing the growth rate than a poloidal limiter of the same size. A small optimized mushroom limiter might have a stabilizing effect similar to a conducting shell.
Solar Dynamic Power System Stability Analysis and Control
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun
1996-01-01
The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.
Large-mode-area single-polarization single-mode photonic crystal fiber: design and analysis.
Kumar, Ajeet; Saini, Than Singh; Naik, Kishor Dinkar; Sinha, Ravindra Kumar
2016-07-01
A rectangular core photonic crystal fiber structure has been presented and analyzed for single-polarization single-mode operation. Single-polarization is obtained with asymmetric design and by introducing different loss for x-polarization and y-polarization of fundamental modes. Single-polarization single-mode operation of the proposed photonic crystal fiber is investigated in detail by using a full vector finite element method with an anisotropic perfectly matched layer. The variations of the confinement loss and effective mode area of x-polarization and y-polarization of fundamental modes have been simulated by varying the structural parameters of the proposed photonic crystal fiber. At the optimized parameters, confinement loss and effective mode area is obtained as 0.94 dB/m and 60.67 μm^{2} for y-polarization as well as 26.67 dB/m and 67.23 μm^{2} for x-polarization of fundamental modes, respectively, at 1.55 μm. Therefore simulation results confirmed that, 0.75 m length of fiber will be sufficient to get a y-polarized fundamental mode with an effective mode area as large as 60.67 μm^{2}.
iMODS: internal coordinates normal mode analysis server
López-Blanco, José Ramón; Aliaga, José I.; Quintana-Ortí, Enrique S.; Chacón, Pablo
2014-01-01
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. PMID:24771341
Trace Elements in Coal - Modes of Ocurrence Analysis.
Palmer, C.A.; Kolker, A.; Finkelman, R.B.; Kolb, K.C.; Mroozkowski, S.J.; Crowley, S.S.; Belkin, H.E.; Bullock, J.H., Jr.; Motooka, J.M.
1997-07-24
The objective is to provide modes of occurrence information for the CQ Inc. (CQ) effort being performed under DOE Contract entitled HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors. This work attempts to provide semi-quantative date on modes of occurrence of 15 elements. Coals investigated include as-mined coals and cleaned fines from the Northern Appalachian and Southern Application, and Eastern Interior regions, and as-mined and natural fines from the Powder River Basin. Study techniques include scanning electron microscopy, electron micropole analysis, and leaching procedures. Microprobe data analysis indicate that pyrite grains in Northern Appalachian and Eastern Interior, and Powder River Basin coals and most of the pyrite grains of the Southern Appalachian coal contain low As concentrations, generally in the 100-500 ppm range. However, the Southern Appalachian coal contains some pyrite grains with much higher As contents, in excess of 4.0 wt. percent As. Micropole analyses and data from leaching experiments indicate that arsenic is primarily associated with pyrite in the bituminous coals. These techniques also indicate that Cr is primarily associated with illite. Other HAP`s elements have multiple associations.
Stability analysis of ultrasound thick-shell contrast agents
Lu, Xiaozhen; Chahine, Georges L.; Hsiao, Chao-Tsung
2012-01-01
The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. PMID:22280568
Analysis of emulsion stability in acrylic dispersions
NASA Astrophysics Data System (ADS)
Ahuja, Suresh
2012-02-01
Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.
Kinematic analysis of rope skipper's stability
NASA Astrophysics Data System (ADS)
Ab Ghani, Nor Atikah; Rambely, Azmin Sham
2014-06-01
There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.
Generalized chiral symmetry and stability of zero modes for tilted Dirac cones
NASA Astrophysics Data System (ADS)
Kawarabayashi, Tohru; Hatsugai, Yasuhiro; Morimoto, Takahiro; Aoki, Hideo
2011-04-01
While it is well known that chirality is an important symmetry for Dirac-fermion systems that gives rise to the zero-mode Landau level in graphene, here we explore whether this notion can be extended to tilted Dirac cones as encountered in organic metals. We find that there exists a “generalized chiral symmetry” that encompasses tilted Dirac cones, where a generalized chiral operator γ, satisfying γ†H+Hγ=0 for Hamiltonian H, protects the zero mode. We use this to show that the n=0 Landau level is δ-function-like (with no broadening) by extending the Aharonov-Casher argument. We confirm numerically that a lattice model that possesses generalized chirality has an anomalously sharp Landau level for spatially correlated randomness.
Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach.
Khan, Qudrat; Akmeliawati, Rini; Bhatti, Aamer Iqbal; Khan, Mahmood Ashraf
2017-01-01
This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical underactuated systems which can be transformed into the so-called regular form. The novelty of the proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the considered class. Having established sliding mode along the designed manifold, the close loop dynamics become finite time stable which, consequently, result in high precision. In addition, the adverse effects of the chattering phenomenon are reduced via strong reachability condition and the robustness of the system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an inverted pendulum is presented to demonstrate the applicability of the proposed technique.
Stability Analysis and Stabilization of Nonlinear Systems via Locally Defined Density Functions
NASA Astrophysics Data System (ADS)
Masubuchi, Izumi
This paper considers local stability analysis of nonlinear systems with deriving a positively invariant set based on the Rantzer's stability theory by using density functions. We define a notion of locally defined density functions around an equilibrium that give monotonously increasing positive measures near the equilibrium of a nonlinear system. Under certain assumptions, it is shown that some level set of a locally defined density function is a positively invariant set where almost all of the system trajectories converge to the equilibrium. We also mention an SOS (sum-of-squares) formulation for synthesis of a nonlinear gain via locally defined density functions.
Comparison Autocorrelation Method and SVD Method for Plasma Mode Analysis in Tokamaks
NASA Astrophysics Data System (ADS)
Saadat, Shervin; Salem, Mohammad K.
2011-08-01
Autocorrelation method (Single time series) is new method for analysis of plasma mode in Tokamaks. In this article autocorrelation method has been compared with SVD method. Energy of the modes which obtained by SVD analysis showed that the autocorrelation method is a cited method for mode detection.
Spectral Analysis of Non-ideal MRI Modes: The Effect of Hall Diffusion
NASA Astrophysics Data System (ADS)
Mohandas, Gopakumar; Pessah, Martin E.
2017-03-01
The effect of magnetic field diffusion on the stability of accretion disks is a problem that has attracted considerable interest of late. In particular, the Hall effect has the potential to bring about remarkable changes in the dynamical behavior of disks that are without parallel. In this paper, we conduct a systematic examination of the linear eigenmodes in a weakly magnetized differentially rotating gas with a special focus on Hall diffusion. We first develop a geometrical representation of the eigenmodes and provide a detailed quantitative description of the polarization properties of the oscillatory modes under the combined influence of the Coriolis and Hall effects. We also analyze the effects of magnetic diffusion on the structure of the unstable modes and derive analytical expressions for the kinetic and magnetic stresses and energy densities associated with the non-ideal magnetorotational instability (MRI). Our analysis explicitly demonstrates that, if the dissipative effects are relatively weak, the kinetic stresses and energies make up the dominant contribution to the total stress and energy density when the equilibrium angular momentum and magnetic field vectors are anti-parallel. This is in sharp contrast to what is observed in the case of the ideal or dissipative MRI. We conduct shearing box simulations and find very good agreement with the results derived from linear theory. Because the modes under consideration are also exact solutions of the nonlinear equations, the unconventional nature of the kinetic and magnetic stresses may have significant implications for the nonlinear evolution in some regions of protoplanetary disks.
Transport and micro-instability analysis of JET H-mode plasma during pellet fueling
NASA Astrophysics Data System (ADS)
Klaywittaphat, P.; Onjun, T.
2017-02-01
Transport and micro-instability analysis in a JET H-mode plasma discharge 53212 during the pellet fueling operation is carried out using the BALDUR integrated predictive modeling code with a combination of the NCLASS neoclassical transport model and an anomalous core transport model (either Mixed B/gB or MMM95 model). In this work, the evolution of plasma current, plasma density and temperature profiles is carried out and, consequently, the plasma’s behaviors during the pellet operation can be observed. The NGS pellet model with the Grad-B drift effect included is used to describe pellet ablation and its behaviors when a pellet is launched into hot plasma. The simulation shows that after each pellet enters the plasma, there is a strong perturbation on the plasma causing a sudden change of both thermal and particle profiles, as well as the thermal and particle transports. For the simulation using MMM95 transport model, the change of both thermal and particle transports during pellet injection are found to be dominated by the transport due to the resistive ballooning modes due to the increase of collisionality and resistivity near the plasma edge. For the simulation based on mixed B/gB transport model, it is found that the change of transport during the pellet injection is dominated by the Bohm term. Micro-instability analysis of the plasma during the time of pellet operation is also carried out for the simulations based on MMM95 transport model. It is found that the ion temperature gradient mode is destabilized due to an increase of temperature gradient in the pellet effective region, while the trapped electron mode is stabilized due to an increase of collisionality in that region.
Li, An; Hu, Qian; Shieh, William
2013-12-30
We show characterization of stimulated Brillouin scattering (SBS) in a circular-core two-mode fiber (c-TMF) using Brillouin optical time-domain analysis (BOTDA) with a pulsed pump and a counterpropagating continuous wave probe. By using two free-space mode combiners (FSMCs), we can launch any combination of spatial modes into both ends of the c-TMF. Combined with coherent detection, measurement of distributed Brillouin gain spectra (BGS) is achieved for all possible counter-propagating spatial mode pairs with high spectral resolution and stability. Both intra- and inter-modal SBS are investigated for the c-TMF. The inter-modal SBS between two degenerate LP11 modes (LP11a/LP11b) is demonstrated for the first time. From the Brillouin frequency shift (BFS) measured in each intra-modal SBS, the distributed modal birefringence between non-degenerate modes (LP01/LP11) and degenerate LP11 modes is obtained. The proposed setup can potentially be used as a c-TMF based distributed Brillouin sensor.
Stability Analysis for a Multi-Camera Photogrammetric System
Habib, Ayman; Detchev, Ivan; Kwak, Eunju
2014-01-01
Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012
A Formal Methods Approach to the Analysis of Mode Confusion
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Miller, Steven P.; Potts, James N.; Carreno, Victor A.
2004-01-01
The goal of the new NASA Aviation Safety Program (AvSP) is to reduce the civil aviation fatal accident rate by 80% in ten years and 90% in twenty years. This program is being driven by the accident data with a focus on the most recent history. Pilot error is the most commonly cited cause for fatal accidents (up to 70%) and obviously must be given major consideration in this program. While the greatest source of pilot error is the loss of situation awareness , mode confusion is increasingly becoming a major contributor as well. The January 30, 1995 issue of Aviation Week lists 184 incidents and accidents involving mode awareness including the Bangalore A320 crash 2/14/90, the Strasbourg A320 crash 1/20/92, the Mulhouse-Habsheim A320 crash 6/26/88, and the Toulouse A330 crash 6/30/94. These incidents and accidents reveal that pilots sometimes become confused about what the cockpit automation is doing. Consequently, human factors research is an obvious investment area. However, even a cursory look at the accident data reveals that the mode confusion problem is much deeper than just training deficiencies and a lack of human-oriented design. This is readily acknowledged by human factors experts. It seems that further progress in human factors must come through a deeper scrutiny of the internals of the automation. It is in this arena that formal methods can contribute. Formal methods refers to the use of techniques from logic and discrete mathematics in the specification, design, and verification of computer systems, both hardware and software. The fundamental goal of formal methods is to capture requirements, designs and implementations in a mathematically based model that can be analyzed in a rigorous manner. Research in formal methods is aimed at automating this analysis as much as possible. By capturing the internal behavior of a flight deck in a rigorous and detailed formal model, the dark corners of a design can be analyzed. This paper will explore how formal
Linear stability analysis of axisymmetric flow over a sudden expansion in an annular pipe
NASA Astrophysics Data System (ADS)
Beladi, Behnaz; Kuhlmann, Hendrik Christoph
2016-11-01
A global temporal linear stability analysis is performed of the fully-developed axisymmetric incompressible Newtonian flow in an annular pipe with a sudden radially-inward expansion. The geometry is characterized by the radial expansion ratio (radial step height to the outlet gap width) and the outlet radius ratio (inner-to-outer radius). Stability boundaries have been calculated with finite volumes for an outlet radius ratio of 0 . 1 and expansion ratios from 0 . 25 to 0 . 75 . For expansion ratios less than 0 . 55 the most dangerous mode has an azimuthal wave number m = 3 , whereas m = 2 for larger expansion ratios. An a posteriori analysis of the kinetic energy transferred between the basic state and the critical mode allows to check the energy conservation and to identify the physical instability mechanism. For all expansion ratios considered the basic flow arises as an annular jet between two separation zones which are located immediately after the step. The jet gradually widens downstream before reattaching to the cylinders. The deceleration of the flow associated with the widening of the jet is found to be the primary source of energy for the critical modes.
Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils
NASA Astrophysics Data System (ADS)
Park, J. E.; Lee, B. T.; Son, A.
2015-12-01
Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.
Stability analysis of an encapsulated microbubble against gas diffusion.
Katiyar, Amit; Sarkar, Kausik
2010-03-01
Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although bubbles, containing gases other than air, are considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support a net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided.
Riedel, K.S.; Sidorenko, A. ); Bretz, N. ); Thomson, D.J. )
1994-03-01
Several analysis methods for nonstationary fluctuations are described and applied to the edge localized mode (ELM) instabilities of limiter H-mode plasmas. The microwave scattering diagnostic observes poloidal [ital k][sub [theta
Clarifications of the BCU method for transient stability analysis
Llamas, A.; De La Ree Lopez, J.; Mili, L.; Phadke, A.G.; Thorp, J.S.
1995-02-01
Energy function methods have been studied for many years, and have been applied to practical power system stability analysis problems of multi-machine power systems. Recent developments in real-time power system monitoring suggest that dynamic events can be monitored at the power system control centers, and naturally the energy function methods were tried as real-time stability prediction tools. However, a number of instances were uncovered, where the energy function methods which use the Potential Energy Boundary Surface as an approximation of the stability boundary produced unreliable results. In particular, during several transient stability studies, the Boundary Controlling Unstable (BCU) Equilibrium Point method seemed to predict stable swings, whereas in reality the swings turned out to be unstable. This paper presents these counter-examples, and suggests an explanation as to why these methods produce a wrong result. It is hoped that this paper will lead to further researches and improvements in the theory of energy function based methods of stability analysis. In the mean time, alternative methods for the real-time stability prediction problems are under investigation.
NASA Astrophysics Data System (ADS)
Ayten, B.; Westerhof, E.; the ASDEX Upgrade Team
2014-07-01
Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al (1989 Phys. Rev. Lett. 62 426). We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in the case of locked islands or when the magnetic island rotation period is longer than the collisional time scale. The non-linear effects result in an overall reduction of the current drive efficiency for this case with absorption of the EC power on the low-field side of the electron cyclotron resonance layer. As a consequence of the non-linear effects, also the stabilizing effect of the ECCD on the island is reduced from linear expectations.
Effects of a sheared ion velocity on the linear stability of ITG modes
Lontano, M.; Lazzaro, E.; Varischetti, M. C.
2006-11-30
The linear dispersion of the ion temperature gradient (ITG) modes, in the presence of a non uniform background ion velocity U(parallel sign) U(parallel sign)(x) ez, in the direction of the sheared equilibrium magnetic field B0 = B0(x) ez, has been studied in the frame of the two-fluid guiding center approximation, in slab geometry. Generally speaking, the presence of an ion flow destabilizes the oscillations. The role of the excited K-H instability is discussed.
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Juang, J.-N.
1976-01-01
This paper is concerned with the vibrational characteristics of rotating flexible structures in the neighborhood of steady rotation. It is assumed that the structure undergoes deformations during the steady rotation, so that the equilibrium is nontrivial. The object of the paper is to formulate the eigenvalue problem associated with small oscillations of the structure about the nontrivial equilibrium and to develop efficient methods to compute the system natural frequencies and modal vectors. A numerical example showing the procedure for the calculation of spacecraft modes is presented.
Villone, F.; Mastrostefano, S.; Calabrò, G.; Vlad, G.; Crisanti, F.; Fusco, V.; Marchiori, G.; Bolzonella, T.; Marrelli, L.; Martin, P.; Liu, Y. Q.
2014-08-15
One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FAST could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.
[Raman, FTIR spectra and normal mode analysis of acetanilide].
Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun
2012-10-01
The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.
[Failure mode and effect analysis: application in chemotherapy].
Chuang, Ching-Hui; Chuang, Sheu-Wen
2009-08-01
Medical institutions are increasingly concerned about ensuring the safety of patients under their care. Failure mode and effect analysis (FMEA) is a qualitative approach based on a proactive process. Strongly promoted by the Joint Commission Accredited of Health Organization (JCAHO) since 2002, FMEA has since been adopted and widely practiced in healthcare organizations to assess and analyze clinical error events. FMEA has proven to be an effective method of minimizing errors in both manufacturing and healthcare industries. It predicts failure points in systems and allows an organization to address proactively the causes of problems and prioritize improvement strategies. The application of FMEA in chemotherapy at our department identified three main failure points: (1) inappropriate chemotherapy standard operating procedures (SOPs), (2) communication barriers, and (3) insufficient training of nurses. The application of FMEA in chemotherapy is expected to enhance the sensitivity and proactive abilities of healthcare practitioners during potentially risky situations as well as to improve levels of patient care safety.
Higher Order Mode Damping Simulation and Multipacting Analysis
NASA Astrophysics Data System (ADS)
Xiao, Liling
2015-10-01
When the beam is passing through an accelerator, it will generate higher order modes (HOM), which will affect to the beam quality especially in high energy accelerators such as International Linear accelerator Collider (ILC). In order to preserve the beam quality, HOM couplers are required to be installed to extract HOM power. Most of HOM couplers are 3D complex structures including small features. In addition, many physics process are involved in HOM coupler design such as RF heating and multipacting. Numerical modeling and simulation are essential for HOM coupler design and optimization for successful operation of high energy accelerators. SLAC developed 3D finite element parallel electromagnetics code suite ACE3P can be used to accelerator modeling with higher accuracy in fast turnaround time. In this paper, ACE3P application for HOM damping simulation and multipating analysis is presented for ILC 3.9 GHz crab cavity.
Advances in Computational Stability Analysis of Composite Aerospace Structures
Degenhardt, R.; Araujo, F. C. de
2010-09-30
European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.
Analysis of Human Body Bipedal Stability for Neuromotor Disabilities
NASA Astrophysics Data System (ADS)
Baritz, Mihaela; Cristea, Luciana; Rogozea, Liliana; Cotoros, Diana; Repanovici, Angela
2009-04-01
The analysis of different biomechanical aspects of balance and equilibrium is presented in the first part of the paper. We analyzed the posture, balance and stability of human body for a normal person and for a person with loco-motor or neuro-motor disabilities (in the second part). In the third part of the paper we presented the methodology and the experimental setup used to record the human body behavior in postural stability for persons with neuro-motors disabilities. The results and the conclusions are presented in the final part of the paper and also in the future work meant to establish the computer analysis for rehabilitation neuromotor disabilities.
Rigid Body Modes Influence On Microvibration Analysis-Application To Swarm
NASA Astrophysics Data System (ADS)
Laduree, G.; Fransen, S.; Baldesi, G.; Pflieger, I.
2012-07-01
Microvibrations are defined as low level mechanical disturbances affecting payload performance, generated by mobile parts or mechanism operating on-board the spacecraft, like momentum or reaction wheels, pointing mechanism, cryo-coolers or thrusters. The disturbances caused by these sources are transmitted through the spacecraft structure and excite modes of that structure or elements of the payload impacting its performance (e.g. Line of sight rotations inducing some image quality degradation). The dynamic interaction between these three elements (noise source, spacecraft structure and sensitive receiver) makes the microvibration prediction a delicate problem. Microvibration sources are generally of concern in the frequency range from a few Hz to 1000 Hz. However, in some specific cases, high stability at lower frequencies might be requested. This is the case of the SWARM mission, whose objectives are to provide the best ever survey of the geomagnetic field and its temporal evolution as well as supplementary information for studying the interaction of the magnetic field with other physical quantities describing the Earth system (e.g. ocean circulation). Among its instruments, SWARM is embarking a very sensitive 6-axis accelerometer in the low frequency range (10-8 m/s2 or rad/s2 between 10-4 and 0.1 Hz) located at its Centre of Gravity and an Absolute Scalar Magnetometer located at the tip of a boom far from the spacecraft body. The ASM performs its measurements by rotating an alternative magnetic field around its main axis thanks to a piezo-electric motor. This repeated disturbance might generate some pollution of the accelerometer science data. The objective of this work is to focus on the interaction of the rigid body mode calculation method with the elastic contribution of the normal modes excited by the noise source frequency content. It has indeed been reported in the past that NASTRAN Lanczos rigid body modes may lead to inaccurate rigid-body accelerations
Stabilization of the fast modes of a flexible-joint robot
Readman, M.C.; Belanger, P.R. )
1992-04-01
In this work the robot is assumed to be an open kinematic chain with only revolute joints. Each joint is modeled as a linear torsional spring. The model equations consist of two coupled dynamic systems, one representing the usual rigid body or slow dynamics and the other the fast dynamics introduced by the joint flexibility. The model presented in this article is in a form that brings out the influence on the fast subsystem dynamics of the rigid body parameters and the robot geometry. The model clearly shows the effect that link and drive parameters have on the dynamics of the fast subsystem. It is shown that under certain assumptions there exists a decentralized velocity control law that asymptotically stabilizes the fast subsystem dynamics. In general this control law is gain scheduled. For sufficiently small drive inertias there always exists a fixed decentralized control law that will asymptotically stabilize the fast dynamics. This is true even for large drive ratios. For sufficiently large drive inertias it may not be possible to use a fixed decentralized control law. Under certain conditions a gain-scheduled velocity feedback law can be designed to give attractive pole damping factors. Some examples are given to illustrate these ideas.
Stability Analysis of a Uniformly Heated Channel with Supercritical Water
Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.
2006-07-01
The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)
Non-parallel linear stability analysis of unconfined vortices
NASA Astrophysics Data System (ADS)
Herrada, Miguel A.; Pérez-Saborid, Miguel; Barrero, Antonio
2002-11-01
A non-parallel, linear, stability analysis of a family of unconfined swirling jets is carried out by using parabolized stability equations (PSE). The basic solution of this vortex-jet core, which is obtained using the quasi-cylindrical approximation of the Navier-Stokes equations (Pérez-saborid et al. JFM 2002), shows the conditions under which the vortex evolution proceeds smoothly, reaching eventually an asymptotic self-similar behaviour as described in the literature (Fernández-Feria et al. JFM 1995), or breaks in a non-slender solution (vortex breakdown). Results of the stability analysis show that, for non-symmetric perturbations, all basic solutions are convectively unstable. On the other hand, we have found that vortices which break downstream become also convectively unstable for axi-symmetric perturbation just before the breakdown. The absence of absolute instabilities suggests the catastrophic nature of the vortex breakdown process.
Qualitative and quantitative stability analysis of penta-rhythmic circuits
NASA Astrophysics Data System (ADS)
Schwabedal, Justus T. C.; Knapper, Drake E.; Shilnikov, Andrey L.
2016-12-01
Inhibitory circuits of relaxation oscillators are often-used models for dynamics of biological networks. We present a qualitative and quantitative stability analysis of such a circuit constituted by three generic oscillators (of a Fitzhugh-Nagumo type) as its nodes coupled reciprocally. Depending on inhibitory strengths, and parameters of individual oscillators, the circuit exhibits polyrhythmicity of up to five simultaneously stable rhythms. With methods of bifurcation analysis and phase reduction, we investigate qualitative changes in stability of these circuit rhythms for a wide range of parameters. Furthermore, we quantify robustness of the rhythms maintained under random perturbations by monitoring phase diffusion in the circuit. Our findings allow us to describe how circuit dynamics relate to dynamics of individual nodes. We also find that quantitative and qualitative stability properties of polyrhythmicity do not always align.
NASA Astrophysics Data System (ADS)
Saarelma, S.; Günter, S.; Kurki-Suonio, T.; Zehrfeld, H.-P.
2000-05-01
An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments.
High beta and second stability region transport and stability analysis. Final report
Hughes, M.H.; Phillips, M.W.
1996-01-01
This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.
Bank stability analysis for fluvial erosion and mass failure
Technology Transfer Automated Retrieval System (TEKTRAN)
The central objective of this study was to highlight the differences in magnitude between mechanical and fluvial streambank erosional strength with the purpose of developing a more comprehensive bank stability analysis. Mechanical erosion and ultimately failure signifies the general movement or coll...
Double Dalitz plot analysis of flavor and CP modes
NASA Astrophysics Data System (ADS)
Anderson, Melissa Beth
We use the CLEO-c 281.1 pb-1 of psi(3770) data to study the structure of the D0 → K0S pi+pi- Dalitz plot. Given the luminosity and sigma(DD) we have 1011960 correlated DD pairs. We analyze the case where both D's decay to three body decay modes. We analyze the two correlated Dalitz plots and show how this method increases sensitivity to effects of quantum correlations. We present two different studies. One is the Flavor tag analysis, where we reconstruct D 0 → K-pi+pi 0 and D0 → K0S pi+pi-. This was used to test our sensitivity to Doubly Cabibbo Suppressed (DCS) terms. We find that, if we ignore the DCS terms, the results differ from the CLEO II.V model by as much as 4sigma. Thus, in Flavor tags, we see evidence for enhancement of DCS terms through quantum correlations. The other study is the Combo tag analysis where both D's are reconstructed to K0S pi+pi-. This mode entangles both Flavor and CP. We construct a correlated Probability Distribution Function (PDF), and it is built on the CLEO II.V model for the D0 → K0S pi+pi- Dalitz plot. We find that with low statistics, 180 compared to 5305 events, we are able to reproduce the CLEO II.V analysis within errors. However, we do find one significant difference in the amplitude of the f2(1270). Also, the significance level, our goodness of fit, indicates that the CLEO II.V model has 0.4% significance. Between the f2(1270) discrepancy and the low significance level, we conclude that the CLEO II.V model is insufficient for our correlated data. We conclude that the quantum correlations in our data have a significant effect on our data. Our Flavor tag data indicates we are more sensitive to DCS terms than uncorrelated data. Our Combo tag data indicates that we see differences between our correlated data and CLEO II.V's uncorrelated data.
Metabolomics integrated elementary flux mode analysis in large metabolic networks.
Gerstl, Matthias P; Ruckerbauer, David E; Mattanovich, Diethard; Jungreuthmayer, Christian; Zanghellini, Jürgen
2015-03-10
Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are biologically irrelevant. We present thermodynamic EFMA (tEFMA), which calculates only the small(er) subset of thermodynamically feasible EFMs. We integrate network embedded thermodynamics into EFMA and show that we can use the metabolome to identify and remove thermodynamically infeasible EFMs during an EFMA without losing biologically relevant EFMs. Calculating only the thermodynamically feasible EFMs strongly reduces memory consumption and program runtime, allowing the analysis of larger networks. We apply tEFMA to study the central carbon metabolism of E. coli and find that up to 80% of its EFMs are thermodynamically infeasible. Moreover, we identify glutamate dehydrogenase as a bottleneck, when E. coli is grown on glucose and explain its inactivity as a consequence of network embedded thermodynamics. We implemented tEFMA as a Java package which is available for download at https://github.com/mpgerstl/tEFMA.
FMEA, the alternative process hazard method. [Failure Mode Effects Analysis
Goyal, R.K. )
1993-05-01
Failure mode effects analysis (FMEA) is an old reliability/assurance tool finding its way into the HPI. Not popular yet, this hazard technique has some viable applications that can improve hazard assessment data. Notably, FMEA studies can identify possible areas for improvement that may have not been discovered using other methods. Also, FMEA is not as labor intensive and costly as other process hazard analysis (PHA) methods. PSHA 1910.119 set in place an informational structure whose main purpose is the reduction of potential accidents and minimizing risks in the event of an accident. Consequently, HPI operators must evaluate their process systems and identify potential major hazards, such as fires, explosions and accidental release of toxic/hazardous chemicals, and protect their facilities, employees, the public and the environment. But, which PHA method(s) apply to a particular plant or process still remains a difficult question. This paper describes what FMEA is; types of FMEA; how to conduct a FMEA study; comparison with HAZOP (hazard and operability study); computer software; applicability of FMEA; and examples of its use.
Local Mode Analysis: Decoding IR Spectra by Visualizing Molecular Details.
Massarczyk, M; Rudack, T; Schlitter, J; Kuhne, J; Kötting, C; Gerwert, K
2017-02-08
Integration of experimental and computational approaches to investigate chemical reactions in proteins has proven to be very successful. Experimentally, time-resolved FTIR difference-spectroscopy monitors chemical reactions at atomic detail. To decode detailed structural information encoded in IR spectra, QM/MM calculations are performed. Here, we present a novel method which we call local mode analysis (LMA) for calculating IR spectra and assigning spectral IR-bands on the basis of movements of nuclei and partial charges from just a single QM/MM trajectory. Through LMA the decoding of IR spectra no longer requires several simulations or optimizations. The novel approach correlates the motions of atoms of a single simulation with the corresponding IR bands and provides direct access to the structural information encoded in IR spectra. Either the contributions of a particular atom or atom group to the complete IR spectrum of the molecule are visualized, or an IR-band is selected to visualize the corresponding structural motions. Thus, LMA decodes the detailed information contained in IR spectra and provides an intuitive approach for structural biologists and biochemists. The unique feature of LMA is the bidirectional analysis connecting structural details to spectral features and vice versa spectral features to molecular motions.
Stability analysis of dissolution-driven convection in porous media
NASA Astrophysics Data System (ADS)
Emami-Meybodi, Hamid
2017-01-01
We study the stability of dissolution-driven convection in the presence of a capillary transition zone and hydrodynamic dispersion in a saturated anisotropic porous medium, where the solute concentration is assumed to decay via a first-order chemical reaction. While the reaction enhances stability by consuming the solute, porous media anisotropy, hydrodynamic dispersion, and capillary transition zone destabilize the diffusive boundary layer that is unstably formed in a gravitational field. We perform linear stability analysis, based on the quasi-steady-state approximation, to assess critical times, critical wavenumbers, and neutral stability curves as a function of anisotropy ratio, dispersivity ratio, dispersion strength, material parameter, Bond number, Damköhler number, and Rayleigh number. The results show that the diffusive boundary layer becomes unstable in anisotropic porous media where both the capillary transition zone and dispersion are considered, even if the geochemical reaction is significantly large. Using direct numerical simulations, based on the finite difference method, we study the nonlinear dynamics of the system by examining dissolution flux, interaction of convective fingers, and flow topology. The results of nonlinear simulations confirm the predictions from the linear stability analysis and reveal that the fingering pattern is significantly influenced by combined effects of reaction, anisotropy, dispersion, and capillarity. Finally, we draw conclusions on implications of our results on carbon dioxide sequestration in deep saline aquifers.
Federspiel, L.; Labit, B.; Ricci, P.; Fasoli, A.; Furno, I.; Theiler, C.
2009-09-15
The existence of a critical pressure gradient needed to drive the interchange instability is experimentally demonstrated in the simple magnetized torus TORoidal Plasma EXperiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. This gradient is reached during a scan in the neutral gas pressure p{sub n}. Around a critical value for p{sub n}, depending on the magnetic configuration and on the injected rf power, a small increase in the neutral gas pressure triggers a transition in the plasma behavior. The pressure profile is locally flattened, stabilizing the interchange mode observed at lower neutral gas densities. The measured value for the critical gradient is close to the linear theory estimate.
Elementary Applications of a Rotorcraft Dynamic Stability Analysis
NASA Technical Reports Server (NTRS)
Johnson, W.
1976-01-01
A number of applications of a rotorcraft aeroelastic analysis are presented to verify that the analysis encompasses the classical solutions of rotor dynamics, and to examine the influence of certain features of the model. Results are given for the following topics: flapping frequency response to pitch control; forward flight flapping stability; pitch/flap flutter and divergence; ground resonance instability; and the flight dynamics of several representative helicopters.
Aeroelastic stability analysis of a Darrieus wind turbine
Popelka, D.
1982-02-01
An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.
Influence of kinetic hole filling on the stability of mode-locked semiconductor disk lasers
NASA Astrophysics Data System (ADS)
Moloney, Jerome V.; Kilen, Isak; Hader, Jorg; Koch, Stephan W.
2016-03-01
Microscopic many-body theory is employed to analyze the mode-locking dynamics of a vertical external-cavity surface-emitting laser with a saturable absorber mirror. The quantum-wells are treated microscopically through the semiconductor Bloch equations and the light field using Maxwell's equations. Higher order correlation effects such as polarization dephasing and carrier relaxation at the second Born level are included and also approximated using effective rates fitted to second-Born-Markov evaluations. The theory is evaluated numerically for vertical external cavity surface emitting lasers with resonant periodic gain media. For given gain, the influence of the loss conditions on the very-short pulse generation in the range above 100 fs is analyzed. Optimized operational parameters are identified. Additionally, the fully microscopic theory at the second Born level is used to carrier out a pump-probe study of the carrier recovery in individual critical components of the VECSEL cavity such as the VECSEL chip itself and semiconductor or graphene saturable absorber mirrors.
Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet
NASA Technical Reports Server (NTRS)
McMaster, Matthew S.
1992-01-01
Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.
On the effect of a non-uniform longitudinal ion flow on the linear ITG mode stability.
NASA Astrophysics Data System (ADS)
Lontano, Maurizio; Lazzaro, Enzo; Varischetti, Maria Cecilia
2006-10-01
A one-dimensional model for slab ion temperature gradient (ITG) modes, in the presence of an inhomogeneous equilibrium plasma velocity along the main magnetic field direction, has been formulated in the frame of a two-fluid guiding-center approximation. The physical effects of a magnetic field gradient and of the line curvature are included by means of a gravitational drift velocity. The magnetic shear across the plasma slab is also taken into account. The linear stability of slow plasma dynamics, under the assumptions of quasi-neutrality and adiabatic electrons, is described by means of a third-degree dispersion relation. Generally speaking, the presence of a sheared longitudinal ion velocity leads to the linear destabilization of the ITG modes, especially for flat equilibrium density profiles. Transverse quasi-linear fluxes of ion thermal energy and longitudinal momentum are calculated for different equilibrium profiles of the density, temperature, momentum, and magnetic shear. Plasma configurations leading to zero transverse (or even negative) momentum fluxes are exploited and discussed in the light of their experimental implementation.
Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit
Bautista-Ballesteros, Juan Antonio; Bonaque, Jorge; Celada, Francisco; Lliso, Françoise; Carmona, Vicente; Gimeno-Olmos, Jose; Ouhib, Zoubir; Rosello, Joan; Perez-Calatayud, Jose
2016-01-01
Purpose Esteya® (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM). Material and methods A multidisciplinary team familiar with the treatment process was formed. This team developed a process map (PM) outlining the stages, through which a patient passed when subjected to the Esteya treatment. They identified potential failure modes (FM) and each individual FM was assessed for the severity (S), frequency of occurrence (O), and lack of detection (D). A list of existing quality management tools was developed and the FMs were consensually reevaluated. Finally, the FMs were ranked according to their risk priority number (RPN) and their S. Results 146 FMs were identified, 106 of which had RPN ≥ 50 and 30 had S ≥ 7. After introducing the quality management tools, only 21 FMs had RPN ≥ 50. The importance of ensuring contact between the applicator and the surface of the patient’s skin was emphasized, so the setup was reviewed by a second individual before each treatment session with periodic quality control to ensure stability of the applicator pressure. Some of the essential quality management tools are already being implemented in the installation are the simple templates for reproducible positioning of skin applicators, that help marking the treatment area and positioning of X-ray tube. Conclusions New quality management tools have been established as a result of the application of the failure modes and effects analysis (FMEA) treatment. However, periodic update of the FMEA process is necessary, since clinical experience has suggested occurring of further new possible potential failure modes. PMID:28115958
Salasnich, Luca; Malomed, Boris A; Toigo, Flavio
2014-10-01
We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion point, and the other core being linear and dispersive. Both two-dimensional (2D) and one-dimensional (1D) EP systems may be emulated by means of this optical setting. In the framework of this system, we find that, while the uniform state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations, the upper branch is always subject to the modulational instability. The stability and instability are verified by direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound velocity and energy gap. The effect of a uniform phase gradient (superflow) on the stability is considered too, with a conclusion that the lower-branch state becomes unstable above a critical wave number of the flux. Finally, we demonstrate that the stable 1D state may carry robust dark solitons.
Sontag, A. C.; Sabbagh, S. A.; Zhu, W.; Menard, J. E.; Bell, R. E.; Bialek, J. M.; Bell, M. G.; Gates, D. A.; Glasser, A. H.; LeBlanc, B. P.; Shaing, K. C.; Stutman, D.; Tritz, K. L.
2009-06-16
The National Spherical Torus Experiment (NSTX) offers an operational space characterized by high-beta (βt = 39%, βN > 7, βN/βno-wall N > 1.5) and low aspect ratio (A > 1.27) to leverage the plasma parameter dependences of RWM stabilization and plasma rotation damping physics giving greater confidence for extrapolation to ITER. Significant new capability for RWM research has been added to the device with the commissioning of a set of six nonaxisymmetric magnetic field coils, allowing generation of fields with dominant toroidal mode number, n, of 1–3. These coils have been used to study the dependence of resonant field amplification on applied field frequency and RWMstabilization physics by reducing the toroidal rotation profile belowits steady-state value through non-resonant magnetic braking. Modification of plasma rotation profiles shows that rotation outside q = 2.5 is not required for passive RWM stability and there is large variation in the RWM critical rotation at the q = 2 surface, both of which are consistent with distributed dissipation models.
Tao, Chun-xian; Wang, Qi; Li, Ye; Wang, Zhen-yun; Lu, Zhong-rong; Zhang, Da-wei
2015-05-01
The detection limit of antibody content has reached level of nanograms per milliliter due to high sensitivity and extremely narrow band of photonic crystal (PC) filter. The PC filter based on guided-mode resonance (GIR) effect can also be applied to detecting the molecular interactions. As the transducing element, one-dimensional PC filters transform biological information to photoelectric signal on optical spectrum analyzer (OSA). The main sensing performance is the change of peak-wavelength of PC filter. The sensing system using PC filter is restricted to the system stability which determines the effectiveness of detecting data. So in this paper, a detecting system we designed is briefly addressed. The morphology and the spectrum of PC filter we fabricated are tested. Considering the coupling light loss and integration of the system, noise signal in spectrum is going to affect the detecting results. To monitor the influence, realization of real-time monitoring the changes of the peak wavelength of PC filter is mainly illustrated. The monitoring is realized by transferring detecting data to computer in time and the results can represent the stability of the system. The program is compiled by Lab VIEW. In our experiment, the shift of 0. 25 nm of the peak wavelength caused by vibration of platform or unsteadiness of light source is within the sensitivity of the PC filter obtained by simulation, so we proposed this system we mentioned can be used in sensing most kind of bulk reagents.
Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis
NASA Astrophysics Data System (ADS)
Zaki, Afifa Adel
Dynamic stall deeply affects the response of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented in a comprehensive code, validated, and contrasted to provide improved analysis accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of potential instabilities and the determination of damping ratios for all modes of interest. If the governing equations of motion of a system can be formulated as linear, ordinary differential equations with constant coefficients, classical stability evaluation methodologies based on the characteristic exponents of the system can rapidly and accurately provide the system's stability characteristics. For systems described by linear, ordinary differential equations with periodic coefficients, Floquet's theory is the preferred approach. While these methods provide excellent results for simplified linear models with a moderate number of degrees of freedom, they become quickly unwieldy as the number of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic periodic systems, a fully nonlinear, coupled simulation tool is used to determine the response of the system to perturbations about an equilibrium configuration and determine the presence of instabilities and damping ratios. The stability analysis is undertaken using an algorithm based on a Partial Floquet approach that has been successfully applied with computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally inexpensive and consists
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.
1984-01-01
Hybrid Heavy Lift Airship (HHLA) is a proposed candidate vehicle aimed at providing heavy lift capability at low cost. This vehicle consists of a buoyant envelope attached to a supporting structure to which four rotor systems, taken from existing helicopters are attached. Nonlinear equations of motion capable of modelling the dynamics of this coupled multi-rotor/support frame/vehicle system have been developed. Using these equations of motion the aeroelastic and aeromechanical stability analysis is performed aimed at identifying potential instabilities which could occur for this type of vehicle. The coupling between various blade, supporting structure and rigid body modes is identified. Furthermore, the effects of changes in buoyancy ratio (Buoyant lift/total weight) on the dynamic characteristics of the vehicle are studied. The dynamic effects found are of considerable importance for the design of such vehicles. The analytical model developed is also useful for studying the aeromechanical stability of single rotor and tandem rotor coupled rotor/fuselage systems.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Floros, Matthew W.; Johnson, Wayne
2007-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Floros, Matthew W.
2004-01-01
The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.
NASA Technical Reports Server (NTRS)
Tanaka, Hiroshi; Kung, Ernest C.; Baker, Wayman E.
1986-01-01
The energetics characteristics of the observed and simulated general circulation are analyzed using three-dimensional normal mode expansions. The data sets involved are the Goddard Laboratory for Atmospheres (GLA) analysis and simulation data and the Geophysical Fluid Dynamics Laboratory (GFDL) analysis data. The spectral energy properties of the Rossby and gravity modes and energy transformations are presented. Significant influences of model characteristics and the assimilation techniques are observed in the barotropic energy spectrum, particularly for the gravity mode. Energy transformations of the zonal mean field in the GLA analysis and simulation are similar, but distinctly different from that in the GFDL analysis. However, overall, the energy generation in the baroclinic mode is largely balanced by the sink in the barotropic mode. The present study may demonstrate utilities of the three-dimensional normal mode energetics in the analysis of the general circulation.
NASA Astrophysics Data System (ADS)
Sharma, Prerana; Jain, Shweta; Patidar, Archana
2017-01-01
The effect of non-thermal ion population on self-gravitational instability of magnetized dusty plasma considering electrons are in Maxwell-Boltzmann distribution has been investigated. The dust dynamics is described including polarization force, thermal velocity, and charge fluctuation dust. The modified general dispersion relation has been derived including non-thermal ion population, polarization force, and dust charge fluctuation for self-gravitating dusty plasma system, using the normal mode analysis method. The obtained general dispersion relation is discussed in parallel and perpendicular modes of propagation. The population of non-thermal ion, polarization force and dust charge fluctuation affect the self-gravitational instability criteria in both the modes of propagation while the magnetic field affects the instability criterion only in perpendicular mode of propagation. The domains of instability has been discussed analytically to signify the importance of considered parameters. The stability of the self-gravitating dusty plasma system has been analyzed using Routh-Hurwitz stability criterion. Numerical calculations have been performed to analyze the effects of non-thermal ion population, polarization force, and dust charge fluctuation on the growth rate of self-gravitational instability. The results of the present work can be useful in self-gravitating dusty plasma found in space and the interstellar medium such as the interstellar molecular clouds where non-thermally distributed ions are the species of the plasma matter.
Modeling of the Feedback Stabilization of the Resistive Wall Mode in Tokamak Geometry
NASA Astrophysics Data System (ADS)
Chance, M. S.; Okabayashi, M.; Chu, M. S.
1999-11-01
The VACUUM^1 code is currently being modified to simulate the feedback stabilization of the RWM in the DIII-D device^2. We formulate the problem in terms of the eigenfunctions of the surface Laplacian obtained from the matching of the fields across a thin resistive toroidally symmetric shell. The window pane feedback (C-)coils are modeled accurately in the poloidal angle θ, and approximately by a single harmonic variation in φ. VACUUM relates the perturbations on the various surfaces, i.e., the plasma, both sides of the resistive shell and the C-coil. This results in an operator made up of a set of coupled time dependent equations relating the shell response to the plasma and feedback coil. Various attributes of the system can be calculated, such as the eddy current patterns and the time responses of the eigenmodes of the surface Laplacian operator. As a first appproximation, a PEST or GATO surface eigenmode of an ideal kink is assumed, whose structure remains unchanged during the feedback process, allowing only the magnitude to change. By energizing the C-coils according to the various proposed feedback schemes we propose to correlate with the present experimental results, and also to provide helpful guidance for future runs. rule[1.ex]1.9in.005in This work supported by DoE contract No. DE-AC02-76-CHO-3073 ^1 M.S. Chance, Phys. Plasmas, 4(1997)2161 ^2 A. A. Garofalo et al., Phys. Plasmas 6(1999) 1893
Letter report seismic shutdown system failure mode and effect analysis
KECK, R.D.
1999-09-01
The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes.
Operational mode analysis of the maps NTP system
Linet, F.L.; Bernard, S.; Carruge, D.; Poitevin, Y.; Raepsaet, X.
1996-03-01
Within the framework of the french NTP program MAPS, the analysis of the (start-up/shut-down) transient sequences whose negative impact on the specific impulsion Isp is important, requires the evaluation of the hydrogen system performance and consequently the development of a simulation computer program. This work induces a preliminary evaluation of the hydrogen system performance under nominal operating conditions. A first approach of the transient operating mode has been simultaneously performed; more specifically the evolution of the core during a shut-down sequence has been studied in order to improve the residual power evacuation and optimize necessary hydrogen amounts for cooling. Furthermore the {open_quote}{open_quote}SIMAPS{close_quote}{close_quote} computer program based on the 3D thermohydraulic code {open_quote}{open_quote}FLICA 4{close_quote}{close_quote} is being developed to analyze transient process and its benchmarking under nominal conditions is under way. Its summary presentation is given in conclusion. {copyright} {ital 1996 American Institute of Physics.}
The Worker Exposure Failure Modes and Effects Analysis
Cadwallader, L.C.
2005-05-15
The Worker Exposure Failure Modes and Effects Analysis (WE-FMEA) is a new approach to quantitatively evaluate worker risks from possible failures of co-located equipment in the complex environment of a magnetic or inertial fusion experiment. For next-step experiments such as the International Thermonuclear Experimental Reactor (ITER) or the National Ignition Facility (NIF), the systems and equipment will be larger, handle more throughput or power, and will, in general, be more robust than past experiments. These systems and equipment are necessary to operate the machine, but the rooms are congested with equipment, piping, and cables, which poses a new level of hazard for workers who will perform hands-on maintenance. The WE-FMEA systematically analyzes the nearby equipment and the work environment for equipment failure or inherent hazards, and then develops exposure scenarios. Once identified, the exposure scenarios are evaluated for the worker hazards and quantitative worker risk is calculated. Then risk scenarios are quantitatively compared to existing statistical data on worker injuries; high-risk scenarios can be identified and addressed in more detail to determine the proper means to reduce, mitigate, or protect against the hazard. The WE-FMEA approach is described and a cooling system maintenance example is given.
Failure mode and effects analysis: too little for too much?
Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick
2012-07-01
Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.
Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2016-11-01
Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.
Slope Stability Analysis of Mountain Pine Beetle Impacted Areas
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2015-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Farag, Marwa H; Zúñiga, José; Requena, Alberto; Bastida, Adolfo
2013-05-28
Nonequilibrium Molecular Dynamics (MD) simulations coupled to instantaneous normal modes (INMs) analysis are used to study the vibrational relaxation of the acetyl and amino-end amide I modes of the alanine dipeptide (AlaD) molecule dissolved in water (D2O). The INMs are assigned in terms of the equilibrium normal modes using the Effective Atomic Min-Cost algorithm as adapted to make use of the outputs of standard MD packages, a method which is well suited for the description of flexible molecules. The relaxation energy curves of both amide I modes show multiexponential decays, in good agreement with the experimental findings. It is found that ~85%-90% of the energy relaxes through intramolecular vibrational redistribution. The main relaxation pathways are also identified. The rate at which energy is transferred into the solvent is similar for the acetyl-end and amino-end amide I modes. The conformational changes occurring during relaxation are investigated, showing that the populations of the alpha and beta region conformers are altered by energy transfer in such a way that it takes 15 ps for the equilibrium conformational populations to be recovered after the initial excitation of the AlaD molecule.
Modal Voltage Stability Analysis of Multi-infeed HVDC System Considering its Control Systems
NASA Astrophysics Data System (ADS)
Wu, Guohong; Minakawa, Tamotsu; Hayashi, Toshiyuki
This work presents a method for investigating the voltage stability of multi-infeed HVDC systems, which is based on the eigenvalue decomposition technique known as modal analysis. In this method, the eigenvalue of linearized steady-state system power-voltage equations are computed to evaluate the long-term voltage stability. The contributions of this work to modal analysis method are control systems of HVDC system, such as an Automatic Power Regulator (APR) and an Automatic (DC) Current Regulator (ACR) on its rectifier side and a changeover between an Automatic (DC) Voltage Regulator (AVR) and an Automatic extinction advance angle Regulator (AγR) modes on its inverter side, were taken into account, and the formularization for modal analysis considering not only these control systems of HVDC system but also generator and load characteristics was fulfilled and presented in this paper. The application results from an AC/DC model power system with dual HVDC systems verified the efficiency of the proposed method and quantitatively illustrated the influence of control systems of HVDC system on AC/DC system long-term voltage stability.
Corrugated Waveguide Mode Content Analysis Using Irradiance Moments
Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.
2015-01-01
We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260
Preliminary hazards analysis of thermal scrap stabilization system. Revision 1
Lewis, W.S.
1994-08-23
This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.
MARFE Stability and Movement in an ELMy H-mode NSTX Discharge
Kelly, F.; Maingi, R.; Maqueda, J.; Menard, J.; Paul, S.
2009-02-23
The results of a comparison of Multifaceted Asymmetric Radiation From the Edge (MARFE) theory with experiment in the National Spherical Torus Experiment (NSTX) are presented. A variety of MARFE behavior was observed using a fast-framing camera. A basic MARFE theory was applied to NSTX Multi-Pulse Thomson scattering (MPTS) and charge-exchange recombination spectroscopy (CHERS) data. MARFE theory showed some limited agreement with experiment, but uncertainty in the separatrix location constrained the analysis. A method based on shifting iso-Te flux surfaces was used to estimate the separatrix location. The movements of MARFEs in NSTX are interpreted to result from diamagnetic heat flux driven drifts relative to the background plasma velocity and imply slowing edge poloidal rotation and/or changing edge profiles before a large ELM.
Linear stability analysis of flows in a grooved channel
NASA Astrophysics Data System (ADS)
Mohammadi, Alireza; Floryan, Jerzy Maciej
2015-11-01
It is known that longitudinal grooves which are parallel to the flow direction may either stabilize or destabilize the travelling wave instability in a pressure-gradient-driven channel flow depending on the groove wave number. These waves reduce to the classical Tollmien-Schlichting (TS) waves in the smooth channel limit. It is shown that another class of travelling wave instability exists if grooves with sufficiently high amplitude and proper wavelengths are used. It is demonstrated that the new instability is driven by inviscid mechanisms, with the disturbance motion having the form of a wave propagating in the streamwise direction with the phase speed approximately four times larger than the TS wave speed and with its streamwise wavelength being approximately twice the spanwise groove wavelength. The instability motion is concentrated mostly in the middle of the channel and has a primarily planar character, i.e. the dominant velocity components are parallel to the walls. A significant reduction of the corresponding critical Reynolds number can be achieved by increasing the groove amplitude. This mode reduces to the highly attenuated Squire mode in the smooth channel limit. This work has been carried out with support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Escobar, D.; Ahedo, E.
2015-10-15
The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.
Stability analysis of fixed points via chaos control.
Locher, M.; Johnson, G. A.; Hunt, E. R.
1997-12-01
This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics.
Math model for analysis of domain patterns stability
NASA Astrophysics Data System (ADS)
Áč, Vladimír; Miller, M.
2006-02-01
The paper deals with modelling of hysteresis properties of ferromagnetic materials. The simple mathematic model for analysis of domain patterns stability is presented. The domain system is described by using electrical equivalence of magnetic circuits. The results of model properties indicate the opportunity for studying the exchange coupling forces and the coercivity field distribution of elementary hysteresis structure fragments on the ferromagnetic behavior. The opportunity for studying the dynamic processes is shown.
Theoretical Innovations in Combustion Stability Research: Integrated Analysis and Computation
2011-04-14
presentation [2] has been made at a national conference of this subject. b.2-Thermomechanics of reactive gases Transient, spatially...Integrated Analysis and Computation 5a. CONTRACT NUMBER FA9550-10-C-0088 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David Kassoy...KISS and JPL personnel. 15. SUBJECT TERMS Combustion, Thermomechanics, Turbulent Reacting Flow, Supercritical Gases , Rocket Engine Stability 16
NASA Astrophysics Data System (ADS)
Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young
2015-02-01
This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.
Analysis of whispering-gallery superconducting dielectric resonator modes
Zhou Shiping; Jabbar, A. )
1991-06-01
The whispering-gallery (WG) modes of a superconducting dielectric resonator (SDR) based on a sapphire cylindrical dielectric resonator and a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} shielding cylinder were studied. A method for the determination of the resonant frequencies and the maximum quality factor of such modes is presented. Calculations have shown that most of the mode energy could be confined between the caustic surface of the WG modes provided the dimensions of the SDR are properly selected, and a magnitude of 10{sup 9} for Q of the SDR could be estimated. A phenomenal explanation is given to account for such outstanding microwave behavior.
Stability Analysis of a Spinning and Precessing Viscoelastic Rotor Model
NASA Astrophysics Data System (ADS)
Bose, S.; Nandi, A.; Neogy, S.
2013-10-01
The present work deals with stability analysis of a spinning and precessing gyroscopic systems, where the spin axis and precession axis intersect at right angle. The nutation speed is zero, the spin and precession speeds are considered to be uniform and the precession axis is located at one end of the shaft. The properties of the shaft material correspond to a four element type linear viscoelastic model. The shaft disk system is assumed to be axially and torsionally stiff. For analysis, a simple rotor has been considered with the rigid disk placed on a massless viscoelastic shaft at specified locations from one end of the shaft. The governing parametric equations for such a rotor are derived in the simultaneously spinning and precessing frame. A stability analysis is performed considering both two- and four-degree of freedom models. The stability borderlines are computed considering spin and precession speeds as parameters. It is shown that though viscoelastic material may appear attractive for its large material damping, for gyroscopic systems it may lead to unstable vibrations.
Robustness analysis of elementary flux modes generated by column generation.
Oddsdóttir, Hildur Æsa; Hagrot, Erika; Chotteau, Véronique; Forsgren, Anders
2016-03-01
Elementary flux modes (EFMs) are vectors defined from a metabolic reaction network, giving the connections between substrates and products. EFMs-based metabolic flux analysis (MFA) estimates the flux over each EFM from external flux measurements through least-squares data fitting. The measurements used in the data fitting are subject to errors. A robust optimization problem includes information on errors and gives a way to examine the sensitivity of the solution of the EFMs-based MFA to these errors. In general, formulating a robust optimization problem may make the problem significantly harder. We show that in the case of the EFMs-based MFA, when the errors are only in measurements and bounded by an interval, the robust problem can be stated as a convex quadratic programming (QP) problem. We have previously shown how the data fitting problem may be solved in a column-generation framework. In this paper, we show how column generation may be applied also to the robust problem, thereby avoiding explicit enumeration of EFMs. Furthermore, the option to indicate intervals on metabolites that are not measured is introduced in this column generation framework. The robustness of the data is evaluated in a case-study, which indicates that the solutions of our non-robust problems are in fact near-optimal also when robustness is considered, implying that the errors in measurement do not have a large impact on the optimal solution. Furthermore, we showed that the addition of intervals on unmeasured metabolites resulted in a change in the optimal solution.
Rouse Mode Analysis of Chain Relaxation in Homopolymer Melts
2015-01-01
We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inversely with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. These facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion. PMID:25328247
Rouse mode analysis of chain relaxation in homopolymer melts
Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...
2014-09-15
We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less
Rouse mode analysis of chain relaxation in homopolymer melts
Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.
2014-09-15
We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inversely with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.
Dual mode use requirements analysis for the institutional cluster.
Leland, Robert W.
2003-09-01
This paper analyzes what additional costs would be incurred in supporting dual-mode, i.e. both classified and unclassified use of the Institutional Computing (IC) hardware. The following five options are considered: periods processing in which a fraction of the system alternates in time between classified and unclassified modes, static split in which the system is constructed as a set of smaller clusters which remain in one mode or the other, re-configurable split in which the system is constructed in a split fashion but a mechanism is provided to reconfigure it very infrequently, red/black switching in which a mechanism is provided to switch sections of the system between modes frequently, and complementary operation in which parts of the system are operated entirely in one mode at one geographical site and entirely in the other mode at the other geographical site and other systems are repartitioned to balance work load. These options are evaluated against eleven criteria such as disk storage costs, distance computing costs, reductions in capability and capacity as a result of various factors etc. The evaluation is both qualitative and quantitative, and is captured in various summary tables.
Higher Order Mode Heating Analysis for the ILC Superconducting Linacs
Bane, K.L.F.; Nantista, C.; Adolphsen, C.; /SLAC
2010-10-27
The superconducting cavities and interconnects in the 11 km long linacs of the International Linear Collider (ILC) are designed to operate at 2K, where cooling costs are very expensive. It is thus important to minimize cryogenic heat loads. In addition to an unavoidable static load and the dynamic load of the fundamental 1.3 GHz accelerating rf, a further heat source is presented by the higher order mode (HOM) power deposited by the beam. Such modes will be damped by specially designed HOM couplers attached to the cavities (for trapped modes), and by ceramic dampers at 70K that are located between the eight or nine cavity cryomodules (for propagating modes). Brute force calculation of the higher frequency modes excited in a string of cryomodules is limited by computing capacity (see, e.g. [1]). M. Liepe has calculated {approx} 400 longitudinal TM modes in 3 superconducting cavities plus absorbers, up to 8 GHz [2]. Joestingmeier, et al., have used a ray tracing calculation to find the effect at higher frequencies, specifically in the range of tens of GHz and above [3]. In this report we present a scattering matrix approach, which we apply to an rf unit comprising 26 cavities and 3 absorbers. We perform calculations at sample frequencies (up to 20 GHz) to predict the effectiveness of the ceramic dampers in limiting HOM heat deposition at 2K.
Yoshida, Masato; Hirayama, Toru; Nakazawa, Masataka; Hagimoto, Ken; Ikegami, Takeshi
2007-07-01
We demonstrate an ultrastable regeneratively mode-locked fiber laser that employs a phase-locked loop (PLL) circuit with a hydrogen maser. The stability for an integration time of 1s was 6.2x10(-13), which is 16 times better than that of a conventional PLL laser. For an integration time of 1000s, the stability reached as high as 4.9x10(-15). The repetition-rate stability was limited by the synthesizer used for the PLL operation, and there was no additional fluctuation induced by the laser operation.
NASA Astrophysics Data System (ADS)
Emerson, Benjamin; Jagtap, Swapnil; Quinlan, J. Mathew; Renfro, Michael W.; Cetegen, Baki M.; Lieuwen, Tim
2016-04-01
This paper explores the hydrodynamic stability of bluff body wakes with non-uniform mean density, asymmetric mean density, and velocity profiles. This work is motivated by experiments [S. Tuttle et al., "Lean blow off behavior of asymmetrically-fueled bluff body-stabilized flames," Combust. Flame 160, 1677 (2013)], which investigated reacting wakes with equivalence ratio stratification and, hence, asymmetry in the base flow density profiles. They showed that highly stratified cases exhibited strong, narrowband oscillations, suggestive of global hydrodynamic instability. In this paper, we present a local hydrodynamic stability analysis for non-uniform density wakes that includes base flow asymmetry. The results show that increasing the degree of base density asymmetry generally has a destabilizing effect and that increasing base velocity asymmetry tends to be stabilizing. Furthermore, we show that increasing base density asymmetry slightly decreases the absolute frequency and that increasing the base velocity asymmetry slightly increases the absolute frequency. In addition, we show that increasing the degree of base density asymmetry distorts the most absolutely unstable hydrodynamic mode from its nominally sinuous structure. This distorted mode exhibits higher amplitude pressure and velocity oscillations near the interface with the smaller density jump than near the one with the bigger density jump. This would then be anticipated to lead to strongly non-symmetric amplitudes of flame flapping, with much stronger flame flapping on the side with lower density ratio. These predictions are shown to be consistent with experimental data. These comparisons support the analytical predictions that increased base density asymmetry are destabilizing and that hydrodynamic velocity fluctuation amplitudes should be greatest at the flame with the lowest density jump.
On a separating method for mixed-modes crack growth in wood material using image analysis
NASA Astrophysics Data System (ADS)
Moutou Pitti, R.; Dubois, F.; Pop, O.
2010-06-01
Due to the complex wood anatomy and the loading orientation, the timber elements are subjected to a mixed-mode fracture. In these conditions, the crack tip advance is characterized by mixed-mode kinematics. In order to characterize the fracture process function versus the loading orientation, a new mixed-mode crack growth timber specimen is proposed. In the present paper, the design process and the experimental validation of this specimen are proposed. Using experimental results, the energy release rate is calculated for several modes. The calculi consist on the separation of each fracture mode. The design of the specimen is based on the analytical approach and numerical simulation by finite element method. The specimen particularity is the stability of the crack propagation under a force control.
Pressure potential and stability analysis in an acoustical noncontact transportation
NASA Astrophysics Data System (ADS)
Li, J.; Liu, C. J.; Zhang, W. J.
2017-01-01
Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.
Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang
2017-01-01
Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.
Zhen, Guoshuai; Zhou, Peiheng; Luo, Xiaojia; Xie, Jianliang; Deng, Longjiang
2017-04-11
Surface plasmon polaritons (SPPs) and standing wave modes provide interesting and exotic properties for infrared metamaterial absorbers. Coupling of these modes promises further development in this field but restricted by the complexity of modes analysis. In this work, we investigate the general phenomenon of modes coupling supported by a metal (with grating)-dielectric-metal sandwich structure based on rigorous coupled-wave analysis (RCWA) method and experiment results. Through the analysis of fundamental modes, a new approach based on the boundary conditions is introduced to reveal the coupling mechanism and the corresponding resonance shifting phenomenon with simple but rigorous derivations. The strong coupling between SPPs excited on the dielectric-metal interfaces and rigorous modes of standing waves in the dielectric layer can be manipulated to improve the detection sensitivity of sensors and emissivity efficiency of infrared emitters.
Nakazawa, Masataka; Kasai, Keisuke; Yoshida, Masato
2008-11-15
We have succeeded in the simultaneous stabilization of the optical frequency and repetition rate of a regeneratively mode-locked picosecond erbium-doped fiber ring laser. The optical frequency was locked to the molecular absorption of C2H2 in the 1.5 microm band, and the repetition rate was stabilized to a 40 GHz synthesizer by using a microwave phase-locked loop. The optical frequency stability of the pulse train reached 2x10(-11) for tau=10-100 s. The key to success is the independent control of the repetition rate without disturbing the optical cavity condition.
NASA Technical Reports Server (NTRS)
Sevart, F. D.
1971-01-01
An analytical and mechanization study was conducted for two flutter stability augmentation systems. One concept uses only the wing trailing edge control surface. Another concept uses leading and trailing edge control surfaces operating simultaneously. The combined use of leading and trailing edge control surfaces should improve the surface coupling (controllability) with vertical bending and torsional structural modes and decrease the coupling between bending and torsional modes. The study was directed toward stability augmentation systems characteristics for the supersonic transport aircraft.
A linear stability analysis for nonlinear, grey, thermal radiative transfer problems
Wollaber, Allan B.; Larsen, Edward W.
2011-02-20
We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used 'Implicit Monte Carlo' (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or 'Semi-Analog Monte Carlo' (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if {alpha}, the IMC time-discretization parameter, satisfies 0.5 < {alpha} {<=} 1. This is consistent with conventional wisdom. However, we also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhong, S.
2011-12-01
Critical Rayleigh number, Ra_c, is the Rayleigh number at the onset of thermal convection. Classic linear analysis provides a way to solve for Ra_c, but this method is mostly used for incompressible fluid with uniform properties. Here we report a new technique for linear stability analysis using propagator matrix method. This new technique can solve for Ra_c for both incompressible and compressible fluids, with depth dependent viscosity, thermal expansion and thermal diffusivity. This technique determines Ra_c for fundamental mode as well as higher modes. We found that results from this new technique agree well with those from the classic analysis for incompressible fluid with uniform properties. We have compared results of Ra_c from the new method with that of finite element code Citcom( Leng and Zhong, 2008 ). For incompressible fluid, they agree with each other very well, including fundamental and higher modes. For compressible fluid, the agreement is not as good, but relative difference remains less than a couple of percent, especially for fundamental mode at small dissipation number Di (e.g., less than 1). Our results show that Ra_c for compressible fluid are similar to that of incompressible fluid, but are significantly different from that of Jarvis & Mckenzie (1981). Given that much higher Rayleigh number is needed in compressible fluid to generate a given heat flux, our results from the new method have implications for the Nusselt-Rayleigh number relation for compressible thermal convection.
Pinguet, Guillaume; Escudie, Dany
2007-04-15
The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)
Gottardi, W
1999-05-01
Although they have been in use for nearly 170 years, the mode of action of iodine-based disinfectants is not yet clearly understood, as is manifested, for example, in diverging judgements about the relevance of the individual iodine species. Although studies based on calculated equilibrium concentrations in pure iodine solutions have already been done, there is a lack of knowledge about iodine solutions in the presence of additional iodide which would be of intrinsic importance for disinfection practice. Therefore, a re-calculation was undertaken considering variations of this parameter in the pH range 0-14. The presented calculations concern fresh iodine solutions not affected by disproportionation (iodate formation) and provide information about the equilibrium concentrations of the species I, I2, I3, I5-, I6(2-), HOI, O1-, HI2O-, IO2- and H2OI+. Additional iodide and the pH value have a very pronounced influence on the individual equilibrium concentrations (several powers of ten); hence, conditions can be indicated where the number of species of virtual importance is drastically reduced. In the most common case with iodine in the presence of additional iodide at pH < 6, only I-, I2 and I3- play a role. In the absence of additional iodide, at pH 8-9 and at high dilution (c(I2) < 10(-5) M), on the other hand, HOI accounts for over 90% of the oxidation capacity. At high iodide concentration (e.g., Lugol's solution) the species I5- and I6(2-) make up 8.2% of the oxidation capacity. The iodine cation H2OI+, frequently quoted as an active agent in disinfection, is without any relevance under the conditions occurring in practice, as are IO- and HI2O- which become important only at pH > 10. The stability problem (i.e. rate of iodate formation) arising at pH > 6 can be reduced to hypoiodous acid, as manifested in the simple rate law d[IO3]/dt = 0.25 [HOI]3/[H+] which allows an estimation of stability under weakly alkaline conditions. The results of this study allow us to
Linear stability analysis for hydrothermal alteration of kimberlitic rocks
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey; Belyaeva, Ekaterina
2016-06-01
The influx of groundwater into hot kimberlite deposits results in the reaction of water with olivine-rich rocks. The products of the reaction are serpentine and release of latent heat. The rise of temperature due to the heat release increases the rate of the reaction. Under certain conditions, this self-speeding up of the reaction can result in instabilities associated with a significantly higher final serpentinization in slightly warmer regions of the kimberlite deposit. We conduct linear stability analysis of serpentinization in an isolated volume of porous kimberlitic rocks saturated with water and an inert gas. There is a counteracting interplay between the heat release tending to destabilize the uniform distribution of parameters and the heat conduction tending to stabilize it by smoothing out temperature perturbations. We determine the critical spatial scale separating the parameters where one phenomenon dominates over another. The perturbations of longer-than-critical length grow, whereas the perturbations of shorter-than-critical length fade. The analytical results of the linear stability analysis are supported by direct numerical simulations using a full nonlinear model.
A Consistent Orbital Stability Analysis for the GJ 581 System
NASA Astrophysics Data System (ADS)
Joiner, David A.; Sul, Cesar; Dragomir, Diana; Kane, Stephen R.; Kress, Monika E.
2014-06-01
We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced χ2 values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.
Linear stability analysis of the Noh expanding-shock solution
NASA Astrophysics Data System (ADS)
Murakami, M.; Velikovich, A. L.; Giuliani, J. L.; Taylor, B. D.; Zalesak, S. T.; Iwamoto, Y.
2015-11-01
The self-similar one-dimensional (1D) solution of the Noh problem has been used for verification of every code designed to model implosions, explosions and shock waves. The long experience of successful verification of two- and three-dimensional (2D and 3D) hydrocodes against the 1D Noh solution is an implicit confirmation of its hydrodynamic stability. Still, as far as we know, stability analysis of the Noh solution has never been done. Here, such analysis is reported for spherical and cylindrical geometry assuming small-amplitude perturbations. In either case stability of the Noh solution has been demonstrated, all initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time. The dispersion equation determining the complex eigenvalues of the problem, i. e. the power indices characteristic of this decay, has been derived. Its numerical solution is presented, and the particular and limiting cases when the eigenvalues can be calculated analytically are outlined. Explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented. The opportunities of using these new exact solutions for verification of hydrocodes in 2D and 3D are discussed. Work supported by the Japan Society for the Promotion of Science and by the US DOE/NNSA.
Che, Xinyuan; Gong, Shiming; Zhang, Heng; Liu, Bin; Wang, Yinghan
2016-02-07
Polyimides (PI-N9 and PI-N12) were synthesized from two kinds of functional diamines, whose junction modes between backbones and side chains were different. Side chains of PI-N9 were linked to the backbones with an ether bond spacer; and side chains of PI-N12 were directly linked to the backbones without any spacer. The PI alignment layer surfaces were investigated by atomic force microscopy, surface free energy measurements, X-ray photo-electron spectroscopy and polarized attenuated total reflection Fourier transformed infrared spectroscopy. It was found that PI-N9 lost the vertical alignment capability after high-strength rubbing, while PI-N12 could still induce liquid crystals (LCs) to align vertically under the same condition. The mechanism of the macroscopic molecular orientation of the PI surface is proposed. During the high-strength rubbing process, the side chain could rotate around the flexible ether bond which existed between the side chain and the main chain of PI-N9 and then fell over. Therefore, PI-N9 could not induce the vertical alignment of LCs anymore. But PI-N12 could keep LCs aligning vertically all the time, which proved that the stability of LC alignment induced by PI-N12 was better.
Sato, João Ricardo; Biazoli, Claudinei Eduardo; Salum, Giovanni Abrahão; Gadelha, Ary; Crossley, Nicolas; Satterthwaite, Theodore D; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Anés, Mauricio; Moura, Luciana Monteiro; Del'aquilla, Marco Antonio Gomes; Amaro, Edson; McGuire, Philip; Lacerda, Acioly L T; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca
2015-12-01
Abnormal connectivity patterns have frequently been reported as involved in pathological mental states. However, most studies focus on "static," stationary patterns of connectivity, which may miss crucial biological information. Recent methodological advances have allowed the investigation of dynamic functional connectivity patterns that describe non-stationary properties of brain networks. Here, we introduce a novel graphical measure of dynamic connectivity, called time-varying eigenvector centrality (tv-EVC). In a sample 655 children and adolescents (7-15 years old) from the Brazilian "High Risk Cohort Study for Psychiatric Disorders" who were imaged using resting-state fMRI, we used this measure to investigate age effects in the temporal in control and default-mode networks (CN/DMN). Using support vector regression, we propose a network maturation index based on the temporal stability of tv-EVC. Moreover, we investigated whether the network maturation is associated with the overall presence of behavioral and emotional problems with the Child Behavior Checklist. As hypothesized, we found that the tv-EVC at each node of CN/DMN become more stable with increasing age (P < 0.001 for all nodes). In addition, the maturity index for this particular network is indeed associated with general psychopathology in children assessed by the total score of Child Behavior Checklist (P = 0.027). Moreover, immaturity of the network was mainly correlated with externalizing behavior dimensions. Taken together, these results suggest that changes in functional network dynamics during neurodevelopment may provide unique insights regarding pathophysiology.
Aeroelastic stability analysis of flexible overexpanded rocket nozzle
NASA Astrophysics Data System (ADS)
Bekka, N.; Sellam, M.; Chpoun, A.
2016-07-01
The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.
Huygens' inspired multi-pendulum setups: Experiments and stability analysis
NASA Astrophysics Data System (ADS)
Hoogeboom, F. N.; Pogromsky, A. Y.; Nijmeijer, H.
2016-11-01
This paper examines synchronization of a set of metronomes placed on a lightweight foam platform. Two configurations of the set of metronomes are considered: a row setup containing one-dimensional coupling and a cross setup containing two-dimensional coupling. Depending on the configuration and coupling between the metronomes, i.e., the platform parameters, in- and/or anti-phase synchronized behavior is observed in the experiments. To explain this behavior, mathematical models of a metronome and experimental setups have been derived and used in a local stability analysis. It is numerically and experimentally demonstrated that varying the coupling parameters for both configurations has a significant influence on the stability of the synchronized solutions.
Failure mode and effects analysis outputs: are they valid?
2012-01-01
Background Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies between the teams’ estimates
ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Lucero, John M.
1996-01-01
This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.
Modeling and analysis of fiber-optic mode transducers - Single fiber with periodic perturbations
NASA Astrophysics Data System (ADS)
Huang, Weiping; Xu, Chenglin; Chaudhuri, Sujeet K.
1991-11-01
The fiber-optic LP01-LP11 mode transducers are analyzed by a scalar coupled-mode theory with vector correction. The authors deal with fiber-optic mode transducers made of a single fiber with periodic perturbations due to microbends, acoustic waves, or a photoinduced index grating. Both the couplings caused by the index perturbations and by the vector property of the fields (polarization effect) are taken into account in the analysis. Approximate analytical solutions to the coupled-mode equations are obtained. The power exchange among the modes along the fiber and spectral properties of the mode transducers are examined. The functions of the mode transducers used as wavelength filters and polarizers are studied.
A Hierarchical Bayesian Procedure for Two-Mode Cluster Analysis
ERIC Educational Resources Information Center
DeSarbo, Wayne S.; Fong, Duncan K. H.; Liechty, John; Saxton, M. Kim
2004-01-01
This manuscript introduces a new Bayesian finite mixture methodology for the joint clustering of row and column stimuli/objects associated with two-mode asymmetric proximity, dominance, or profile data. That is, common clusters are derived which partition both the row and column stimuli/objects simultaneously into the same derived set of clusters.…
NASA Astrophysics Data System (ADS)
Philip, Jimmy; Karp, Michael; Cohen, Jacob
2016-01-01
Streaks and hairpin-vortices are experimentally generated in a laminar plane Poiseuille crossflow by injecting a continuous jet through a streamwise slot normal to the crossflow, with air as the working media. Small disturbances form stable streaks, however, higher disturbances cause the formation of streaks which undergo instability leading to the generation of hairpin vortices. Particular emphasis is placed on the flow conditions close to the generation of hairpin-vortices. Measurements are carried out in the cases of natural and phase-locked disturbance employing smoke visualisation, particle image velocimetry, and hot-wire anemometry, which include, the dominant frequency, wavelength, and the disturbance shape (or eigenfunctions) associated with the coherent part of the velocity field. A linear stability analysis for both one- and two-dimensional base-flows is carried out to understand the mechanism of instability and good agreement of wavelength and eigenfunctions are obtained when compared to the experimental data, and a slight under-prediction of the growth-rates by the linear stability analysis consistent with the final nonlinear stages in transitional flows. Furthermore, an energy analysis for both the temporal and spatial stability analysis revels the dominance of the symmetric varicose mode, again, in agreement with the experiments, which is found to be governed by the balance of the wallnormal shear and dissipative effects rather than the spanwise shear. In all cases the anti-symmetric sinuous modes governed by the spanwise shear are found to be damped both in analysis and in our experiments.
Global mode and frequency response analysis of low-density jets
NASA Astrophysics Data System (ADS)
Coenen, W.; Lesshafft, L.; Garnaud, X.; Sevilla, A.
2014-11-01
We present a global stability analysis of a low-density jet, where the wavepacket structures are temporal eigenmodes of the linearized equations of motion in a 2D domain. As a base state we employ a numerical solution of the low-Mach number Navier-Stokes equations. The jet is characterized through the jet-to-ambient density ratio, the Reynolds number, and the momentum thickness of the velocity profile at the jet exit plane. The linear global mode analysis shows that for certain combinations of the control parameters, an isolated eigenmode dominates the eigenvalue spectrum. Its associated growth rate can be used to construct a neutral curve in the parameter space that agrees well with the experimentally observed onset of self-sustained oscillations (Hallberg & Strykowski, JFM, 2006). However, for high values of the Reynolds number, the construction of a neutral curve based on the spectrum loses validity, since for these cases the spectrum is dominated by a continuous branch of eigenvalues, sensitive to changes in domain length and grid refinement. Finally, the flow response to external forcing in a globally stable setting is investigated through the computation of the pseudospectrum, and is found to be dominated by a resonance of the stable eigenmode. Supported by Spanish MINECO under Project DPI 2011-28356-C03-02.
Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation
Quarry, M J; Rose, J L
2000-09-26
A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.
NASA Astrophysics Data System (ADS)
Chen, Wen-Yau; Lai, Jeng-You; Young, D. L.
2010-11-01
Asymptotic and transient stability analyses of unbounded uniform granular shear flow at high solids volume fractions were carried out in the paper, based on a model composed of the viscoplastic constitutive law [P. Jop, Y. Forterre, and O. Pouliquen, Nature (London) 441, 727 (2006)] and the dilatancy law [O. Pouliquen et al., J. Stat. Mech.: Theory Exp. (2006) P07020]. We refer to this model as the VPDL (meaning of the "viscoplastic and dilatancy laws") thereinafter. In this model, dense granular flows were treated as a viscoplastic fluid with a Drucker-Prager-like yielding criterion. We compared our results to those obtained using the frictional-kinetic model (FKM) [M. Alam and P. R. Nott, J. Fluid Mech. 343, 267 (1997)]. Our main result is that unbounded uniform dense granular shear flows are always asymptotically stable at large time based on the VPDL model, at least for two-dimensional perturbations. This is valid for disturbances of layering modes (i.e., the perturbations whose wavenumber vectors are aligned along the transverse coordinate) as well as for nonlayering modes (the streamwise component of the wavenumber vector is nonzero). By contrast, layering modes can be unstable based on the FKM constitutive laws. Interestingly, in the framework of the VPDL, the analysis shows that significant transient growth may occur owing to the non-normality of the linear system, although disturbances eventually decay at large time.
Crack detection in beams in noisy conditions using scale fractal dimension analysis of mode shapes
NASA Astrophysics Data System (ADS)
Bai, R. B.; Ostachowicz, W.; Cao, M. S.; Su, Z.
2014-06-01
Fractal dimension analysis of mode shapes has been actively studied in the area of structural damage detection. The most prominent features of fractal dimension analysis are high sensitivity to damage and instant determination of damage location. However, an intrinsic deficiency is its susceptibility to measurement noise, likely obscuring the features of damage. To address this deficiency, this study develops a novel damage detection method, scale fractal dimension (SFD) analysis of mode shapes, based on combining the complementary merits of a stationary wavelet transform (SWT) and Katz’s fractal dimension in damage characterization. With this method, the SWT is used to decompose a mode shape into a set of scale mode shapes at scale levels, with damage information and noise separated into distinct scale mode shapes because of their dissimilar scale characteristics; the Katz’s fractal dimension individually runs on every scale mode shape in the noise-adaptive condition provided by the SWT to canvass damage. Proof of concept for the SFD analysis is performed on cracked beams simulated by the spectral finite element method; the reliability of the method is assessed using Monte Carlo simulation to mimic the operational variability in realistic damage diagnosis. The proposed method is further experimentally validated on a cracked aluminum beam with mode shapes acquired by a scanning laser vibrometer. The results show that the SFD analysis of mode shapes provides a new strategy for damage identification in noisy conditions.
Thermal Stability Analysis for Superconducting Coupling Coil in MICE
Wu, Hong; Wang, Li; Pan, Heng; Guo, XingLong; Green, M.A.
2010-06-28
The superconducting coupling coil to be used in the Muon Ionization Cooling Experiment (MICE) with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm will be cooled by a pair of 1.5 W at 4.2 K cryo-coolers. When the coupling coil is powered to 210 A, it will produce about 7.3 T peak magnetic field at the conductor and it will have a stored energy of 13 MJ. A key issue for safe operation of the coupling coil is the thermal stability of the coil during a charge and discharge. The magnet and its cooling system are designed for a rapid discharge where the magnet is to be discharged in 5400 seconds. The numerical simulation for the thermal stability of the MICE coupling coil has been done using ANSYS. The analysis results show that the superconducting coupling coil has a good stability and can be charged and discharged safely.
Stability analysis of direct-detection cooperative optical beam tracking
NASA Astrophysics Data System (ADS)
Marola, Giovanni; Santerini, Daniele; Prati, Giancarlo
1989-05-01
The system under consideration is a cooperative spatial tracking system between two stations for laser beam communications, using a quadrant photodetector at each station. After determining the equilibrium points of the cooperative system for the case of periodical relative motion, the authors concentrate on the stability of the transient behavior around the equilibrium points for the case of uniform angular relative motion. This case corresponds to an assumption that the steady-state motion is slow with respect to transient phenomena, and is applicable to currently foreseen intersatellite and deep-space optical communications. The analysis is aimed at determining the combined effect of the basic system parameters, such as propagation delay time, tracking loop gains, DC servomotors time constant, and point-ahead velocity error, on the stability and the transient behavior of the overall tracking system. The stability conditions and the transient response around the steady-state trajectory provide a tool for evaluating the consistency of the design parameters for a given propagation delay.
Stability analysis for extended models of gap solitary waves
Schollmann; Mayer
2000-05-01
A numerical linear stability analysis has been carried out for stationary spatially localized solutions of several systems of coupled nonlinear partial differential equations (PDE's) with two and more complex variables. These coupled PDE's have recently been discussed in the literature, mostly in the context of physical systems with a frequency gap in the dispersion relation of their linear excitations, and they are extensions of the Mills-Trullinger gap soliton model. Translational and oscillatory instabilities are identified, and their associated growth rates are computed as functions of certain parameters characterizing the solitary waves.
Stability analysis of restricted non-static axial symmetry
Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com
2013-11-01
This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.
Arms Transfers: A System Dynamics Analysis Focusing on Regional Stability.
1983-12-01
73 IS OSOLET E . .. JILASSIIE]L.. SECURITY C14 A :PIrATInN (.S TWIM 04rc.- .- l° AFIT/GOR/OS/83D-8 ARMS TRANSFERS: A SYSTEM DYNA’ICS ALYSIS FOCUSING...regional stability. 5. Provide guidance and instructions on how to use and alter the model for specific policy analysis. Scot e This research is...a system, and that not all societal groups are the same. Durkheim insisted that his theory of anowia must be interpreted frorr a contingency point of
An Analysis of the Modes and States for Generic Avionics
NASA Technical Reports Server (NTRS)
Wray, Richard B.
1993-01-01
The objective of this study was to develop a topology for describing the behavior of mission, vehicle and system/substem entities in new flight vehicle designs based on the use of open standards. It also had to define and describe the modes and states which may be used in generic avionics behavioral descriptions, describe their interrelationships, and establish a method for applying generic avionics to actual flight vehicle designs.
Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao
2016-01-01
Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver’s input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice. PMID:28036037
Ma, Xinbo; Wong, Pak Kin; Zhao, Jing; Xie, Zhengchao
2016-12-28
Active front steering (AFS) is an emerging technology to improve the vehicle cornering stability by introducing an additional small steering angle to the driver's input. This paper proposes an AFS system with a variable gear ratio steering (VGRS) actuator which is controlled by using the sliding mode control (SMC) strategy to improve the cornering stability of vehicles. In the design of an AFS system, different sensors are considered to measure the vehicle state, and the mechanism of the AFS system is also modelled in detail. Moreover, in order to improve the cornering stability of vehicles, two dependent objectives, namely sideslip angle and yaw rate, are considered together in the design of SMC strategy. By evaluating the cornering performance, Sine with Dwell and accident avoidance tests are conducted, and the simulation results indicate that the proposed SMC strategy is capable of improving the cornering stability of vehicles in practice.
A Meta-Analysis of Testing Mode Effects in Grade K-12 Mathematics Tests
ERIC Educational Resources Information Center
Wang, Shudong; Jiao, Hong; Young, Michael J.; Brooks, Thomas; Olson, John
2007-01-01
This study conducted a meta-analysis of computer-based and paper-and-pencil administration mode effects on K-12 student mathematics tests. Both initial and final results based on fixed- and random-effects models are presented. The results based on the final selected studies with homogeneous effect sizes show that the administration mode had no…
Analysis of the delocalized Raman modes of conformationally disordered polypeptides.
Chen, L X; Strauss, H L; Snyder, R G
1993-01-01
Bands associated with delocalized vibrational modes were identified in the isotropic Raman spectra of a series of polyglycine oligomers in aqueous solution as zwitterions and as cations. The dependence of these bands on conformational disorder and chain length was determined. The observed dependence is closely mimicked in spectra calculated for a series of corresponding model polypeptides. The simulated spectra were calculated in a skeletal approximation for ensembles of conformationally disordered chains. As the chain length of the conformationally disordered polypeptides increases, the observed isotropic spectra rapidly approach the spectrum of the infinitely long disordered chain. Convergence is nearly complete at the tripeptide for both the zwitterion and the cation. The stimulated spectra behave in essentially the same way. Convergence to the spectrum of the infinitely long chain is much more rapid for the conformationally disordered polyglycines than for the ordered polyglycines because of the mode localization that results from disorder. In the low-frequency region the bands in the calculated spectra have frequencies that are systematically dependent on chain length. These bands are related to the longitudinal acoustic modes of the ordered chain. PMID:8324189
Aghadavoudi, Omid; Alikiaii, Babak; Sadeghi, Fariba
2016-01-01
Background: This study aimed to compare pressure regulated volume control (PRVC) and synchronized intermittent mechanical ventilation (SIMV) modes of ventilation according to respiratory and hemodynamic stability in patients with traumatic brain injury (TBI) admitted to Intensive Care Unit (ICU). Materials and Methods: In a randomized, single-blinded, clinical trial study, 100 patients who hospitalized in ICU due to TBI were selected and randomly divided into two groups. The first and second groups were ventilated by PRVC and SIMV modes, respectively. During mechanical ventilation, arterial blood gas and respiratory and hemodynamic parameters were also recorded and compared between the two groups. Results: According to the t-test, the mean rapid shallow breathing index (RSBI) after the first 8 h of mechanical ventilation was significantly higher in SIMV group compared with PRVC group (107.6 ± 2.75 vs. 102.2 ± 5.2, respectively, P < 0.0001). Further, according to ANOVA with repeated measures, the trend of RSBI changes had a significant difference between the two groups (P < 0.001). The trend of ratio of partial pressure arterial oxygen and fraction of inspired oxygen was different between the two groups according to Mann–Whitney–Wilcoxon test (P < 0.001). Conclusions: Using PRVC mode might be more desirable than using SIMV mode in patients with TBI due to better stability of ventilation and oxygenating. To ensure for more advantages of PRVC mode, further studies with longer follow-up and more detailed measurements are recommended. PMID:28028515
Landslide stability analysis on basis of LIDAR data extraction
NASA Astrophysics Data System (ADS)
Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig
2010-05-01
Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an
Local stability analysis of an endoreversible Carnot refrigerator
NASA Astrophysics Data System (ADS)
He, Jizhou; Miao, Guiling; Nie, Wenjie
2010-08-01
A local stability analysis of an endoreversible Carnot refrigerator, working at the maximum objective function of the product of the cooling rate R and the coefficient of performance ɛ, is presented. The endoreversible Carnot refrigerator consists of a reversible Carnot refrigerator that exchanges heat with the heat reservoirs TH through the thermal conductance α and with the cold reservoirs TL through the thermal conductance β. In addition, the working fluid has the same heat capacity C in the two isothermal branches of the cycle. By linearization and stability analysis, we find that the relaxation times are a function of α, β, the heat capacity C and τ=TL /TH; that the endoreversible Carnot refrigerator is stable for every value of α, β, C and τ that after a perturbation, the system state exponentially decays to the steady state with either of two different relaxation times; that both relaxation times are proportional to α/2C and that one of them is a monotonically increasing function τ and the other is almost independent of τ. Finally, the phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented.
NASA Astrophysics Data System (ADS)
Liu, Suzhen; Zhang, Yanwei; Zhang, Chuang; Yang, Qingxin
2017-02-01
Lamb waves are widely used in nondestructive testing (NDT) and structural health monitoring (SHM) for its obvious advantages, such as good directionality, longer-range propagation and lower loss etc. However, it is difficult to analysis and to interpret the echo signals because of its multi-modes and dispersion. In this paper, the properties of single-mode Lamb waves which were excited by double EMAT were studied based on the principles of multi-modes and the characteristics of wave structure. Simulation results show that the double transducer excitation structure can stimulate single-mode Lamb waves and eliminate the extra modes, which are produced by modal conversion at ends of the specimen. The single-mode excitation of Lamb waves is beneficial to reduce the difficulty of signal processing and provide reliable information to locate the defect. The researches in this paper can be used as a theoretical basis to design double transducer excitation system.
Vibration mode analysis of the proton exchange membrane fuel cell stack
NASA Astrophysics Data System (ADS)
Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.
2016-11-01
Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.
Mode-distribution analysis of quasielastic neutron scattering and application to liquid water
NASA Astrophysics Data System (ADS)
Kikuchi, Tatsuya; Nakajima, Kenji; Ohira-Kawamura, Seiko; Inamura, Yasuhiro; Yamamuro, Osamu; Kofu, Maiko; Kawakita, Yukinobu; Suzuya, Kentaro; Nakamura, Mitsutaka; Arai, Masatoshi
2013-06-01
A quasielastic neutron scattering (QENS) experiment is a particular technique that endeavors to define a relationship between time and space for the diffusion dynamics of atoms and molecules. However, in most cases, analyses of QENS data are model dependent, which may distort attempts to elucidate the actual diffusion dynamics. We have developed a method for processing QENS data without a specific model, wherein all modes can be described as combinations of the relaxations based on the exponential law. By this method, we can obtain a distribution function B(Q,Γ), which we call the mode-distribution function (MDF), to represent the number of relaxation modes and distributions of the relaxation times in the modes. The deduction of MDF is based on the maximum entropy method and is very versatile in QENS data analysis. To verify this method, reproducibility was checked against several analytical models, such as that with a mode of distributed relaxation time, that with two modes closely located, and that represented by the Kohlrausch-Williams-Watts function. We report the first application to experimental data of liquid water. In addition to the two known modes, the existence of a relaxation mode of water molecules with an intermediate time scale has been discovered. We propose that the fast mode might be assigned to an intermolecular motion and the intermediate motion might be assigned to a rotational motion of the water molecules instead of to the fast mode.
Peeling-Ballooning Mode Analysis in Shifted-Circle Tokamak Equilibria
NASA Astrophysics Data System (ADS)
Burke, B.; Kruger, S. E.; Hegna, C. C.; Snyder, P. B.; Sovinec, C. R.; Zhu, P.
2009-11-01
Progress in understanding edge localized modes (ELMs) has been made by investigating the stability properties of edge localized peeling-ballooning modes. We focus on the evolution of ideal MHD modes over a large spectrum in two shifted-circle tokamak equilibria, using the extended-MHD code NIMROD. The TOQ-generated equilibria model a H-mode plasma with a pedestal pressure profile and parallel edge currents. A vacuum region is prescribed by a resistivity profile that transitions from a small to very large value at a specified location. The vacuum model is benchmarked against the linear ideal MHD codes ELITE & GATO. We demonstrate vacuum effects on the stability by adjusting the vacuum location relative to the pedestal pressure region. Ballooning-like instabilities dominate distant vacuum cases, whereas peeling mode physics is expected to dominate as the vacuum approaches the pedestal. Numerical simulations of the early nonlinear stages of edge localized MHD instabilities are presented. Comparisons between equilibria that have ``ballooning'' dominated instabilities relative to equilibria that are ``peeling'' dominated are made.
Failure Mode Analysis of V-Shaped Pyrotechnically Actuated Valves
NASA Technical Reports Server (NTRS)
Sachdev, Jai S.; Hosangadi, A.; Chenoweth, James D.; Saulsberry, Regor L.; McDougle, Stephen H.
2012-01-01
Current V-shaped stainless steel pyrovalve initiators have rectified many of the deficiencies of the heritage Y-shaped aluminum design. However, a credible failure mode still exists for dual simultaneous initiator (NSI) firings in which low temperatures were detected at the booster cap and less consistent ignition was observed than when a single initiator was fired. In order to asses this issue, a numerical framework has been developed for predicting the flow through pyrotechnically actuated valves. This framework includes a fully coupled solution of the gas-phase equation with a non-equilibrium dispersed phase for solid particles as well as the capability to model conjugate gradient heat transfer to the booster cap. Through a hierarchy of increasingly complex simulations, a hypothesis for the failure mode of the nearly simultaneous dual NSI firings has been proven. The simulations indicate that the failure mode for simultaneous dual NSI firings may be caused by flow interactions between the flame channels. The shock waves from each initiator interact in the booster cavity resulting in a high pressure that prevents the gas and particulate velocity from rising in the booster cap region. This impedes the bulk of the particulate phase from impacting the booster cap and reduces the heat transfer to the booster cap since the particles do not impact it. Heat transfer calculations to the solid metal indicate that gas-phase convective heat transfer may not be adequate by itself and that energy transfer from the particulate phase may be crucial for the booster cap burn through.
Computational Analysis of High Enthalpy Effects on 2nd Mode Disturbances
2013-03-01
transition, College Station, TX, 6-7 March 2013. 14. ABSTRACT This effort is focused on using linear stability analysis ( PSE ) and Navier-Stokes solvers...Analysis – PSE -Chem • Solves the axi-symmetric linear PSE • Includes finite-rate chemistry and T-V energy exchange UNIVERSITY OF MINNESOTA...transition delay in T5 – Ensure effective application of damping • “Freezing” vibration in PSE stability analysis Predicted transition of T5
Stability and sensitivity analysis of experimental data for passive control of a turbulent wake
NASA Astrophysics Data System (ADS)
Siconolfi, Lorenzo; Camarri, Simone; Trip, Renzo; Fransson, Jens H. M.
2016-11-01
When the linear stability analysis is applied to the mean flow field past a bluff body, a quasi-marginally stable mode is identified, with a frequency very close to the real vortex shedding one. A formally consistent approach to justify this kind of analysis is based on a triple decomposition of the flow variables. With this formalism, the adjoint-based sensitivity analysis can be extended to investigate passive controls of high-Reynolds-number wakes (e.g.). The objective of the present work is to predict the effect of a small control cylinder on the vortex shedding frequency in a turbulent wake with an analysis which solely relies on PIV measurements available for the considered flow. The key ingredient of the numerical analysis is an ad-hoc tuned model for the mean flow field, built using an original procedure which includes all the experimental information available on the flow. This analysis is here applied to the wake flow past a thick porous plate at Reynolds numbers in the range between Re = 6 . 7 ×103 and Re= 5 . 3 ×104 . It is shown that the derived control map agrees reasonably well with the equivalent map obtained experimentally.
Stability analysis of large space structure control systems with delayed input
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, P. M.
1988-01-01
Large space structural systems, due to their inherent flexibility and low mass to area ratio, are represented by large dimensional mathematical models. For implementation of the control laws for such systems a finite amount of time is required to evaluate the control signals; and this time delay may cause instability in the closed loop control system that was previously designed without taking the input delay into consideration. The stability analysis of a simple harmonic oscillator representing the equation of a single mode as a function of delay time is analyzed analytically and verified numerically. The effect of inherent damping on the delay is also analyzed. The control problem with delayed input is also formulated in the discrete time domain.
Stability analysis of large space structure control systems with delayed input
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, Peter M.
1988-01-01
Large space structural systems, due to their inherent flexibility and low mass to area ratio, are represented by large dimensional mathematical models. For implementation of the control laws for such systems a finite amount of time is required to evaluate the control signals; and this time delay may cause instability in the closed loop control system that was previously designed without taking the input delay into consideration. The stability analysis of a simple harmonic oscillator representing the equation of a single mode as a function of delay time is treated analytically and verified numerically. The effect of inherent damping on the delay is also analyzed. The control problem with delayed input is also formulated in the discrete time domain.
Design of a dual-mode electrochemical measurement and analysis system.
Yang, Jr-Fu; Wei, Chia-Ling; Wu, Jian-Fu; Liu, Bin-Da
2013-01-01
A dual-mode electrochemical measurement and analysis system is proposed. This system includes a dual-mode chip, which was designed and fabricated by using TSMC 0.35 µm 3.3 V/5 V 2P4M mixed-signal CMOS process. Two electrochemical measurement and analysis methods, chronopotentiometry and voltammetry, can be performed by using the proposed chip and system. The proposed chip and system are verified successfully by performing voltammetry and chronopotentiometry on solutions.
Stability analysis of a natural circulation lead-cooled fast reactor
NASA Astrophysics Data System (ADS)
Lu, Qiyue
This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with
ERIC Educational Resources Information Center
Peters, Donald L.; And Others
This study analyzed the critical features of three delivery modes for Head Start services in order to: (1) compare the effects of different delivery modes on the immediate outcomes for children and parents; and (2) explore the pattern of effects both within and across modes to ascertain how the process works. The first mode represented the most…
Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok
2016-06-01
Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.
NASA Astrophysics Data System (ADS)
Tan, Cheng; Liang, Zhi-Shan
2016-03-01
In this paper, based on the fact that the inductors and capacitors are of fractional order in nature, the four-order mathematical model of the fractional order quadratic Boost converter in type I and type II discontinuous conduction mode (DCM) — DCM is established by using fractional calculus theory. Direct current (DC) analysis is conducted by using the DC equivalent model and the transfer functions are derived from the corresponding alternating current (AC) equivalent model. The DCM-DCM regions of type I and type II are obtained and the relations between the regions and the orders are found. The influence of the orders on the performance of the quadratic Boost converter in DCM-DCM is verified by numerical and circuit simulations. Simulation results demonstrate the correctness of the fractional order model and the efficiency of the proposed theoretical analysis.
Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour
NASA Astrophysics Data System (ADS)
Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick
2010-05-01
Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel
Analysis of Faint Glints from Stabilized GEO Satellites
NASA Astrophysics Data System (ADS)
Hall, D.; Kervin, P.
2013-09-01
Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.
Core Stability in Athletes: A Critical Analysis of Current Guidelines.
Wirth, Klaus; Hartmann, Hagen; Mickel, Christoph; Szilvas, Elena; Keiner, Michael; Sander, Andre
2017-03-01
Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete's health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as 'selective activation' and training on unstable surfaces.
Soap Bubble Elasticity: Analysis and Correlation with Foam Stability
NASA Astrophysics Data System (ADS)
Karakashev, S. I.; Tsekov, R.; Manev, E. D.; Nguyen, A. V.
2010-05-01
A correlation between the elastic modulus of soap bubble and the foam stability was found. A model system was chosen: a soap bubble stabilized by simple nonionic surfactant tetraethylene glycol octyl ether (C8E4) and 10^-5 M NaCl. The Elastic moduli were determined by periodical expansion and shrinking of foam bubbles with frequency of 0.1 Hz and volumetric amplitude of 2 mm 3. The film tension was monitored via commercial profile analysis tensiometer (Sinterface Technologies, GmbH). The elastic moduli of foam bubbles versus surfactant concentration in the range of 2x10^-3 - 10^-2 M were obtained. In addition, the theory of Lucassen and van den Tempel for the elastic modulus of single liquid/air interface at given frequency was exploited as well. The bulk diffusion coefficient of the surfactant molecules is unknown parameter through the adsorption frequency in this theory. Hence, a fitting procedure (with one free parameter) was conducted matching experimental and theoretical data. The value of the bulk diffusion coefficient of C8E4 obtained was 5.1x10^-11 m^2/s, which is an order of magnitude lower value than what is expected for. The foam was generated by shaking method and left to decay. A correlation between the elastic modulus and foam life time upon surfactant concentration was found.
Bifurcation analysis of aircraft pitching motions near the stability boundary
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1984-01-01
Bifuraction theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single degree of freedom pitching-motion perturbations about a large mean angle of attack. The requisite aerodynamic information in the equations of motion is represented in a form equivalent to the response to finite-amplitude pitching oscillations about the mean angle of attack. This information is deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the mean angle of attack is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite-amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable (supercritical) or unstable (subcritical). For flat-plate airfoils flying at supersonic/hypersonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.
Kinetic analysis of the ion temperature gradient modes in toroidally rotating plasmas
Zheng, L.; Tessarotto, M.
1996-12-01
With the two time scale feature revealed, an analytical method is developed to solve the combined eigenvalue and initial value problem describing the ion temperature gradient (ITG) modes in the toroidally rotating plasmas. With full gyrokinetics and toroidal geometry effects being taken into account in an ordering consistent manner, dispersion relations are obtained for ITG modes both of toroidal and slab-like branches. The results show that the sonic rotation can be harmful for the stability, while subsonic rotation with flow shear can be expected to be stabilizing. The existence of the flow shear leads the time evolution of the fluctuation signals to display two different time scales{emdash}a fast oscillating (either fast or slow growing) signal with its amplitude modulated by a slowly varying envelope, resembling fishbone-like fluctuations. {copyright} {ital 1996 American Institute of Physics.}
Patel, Teresa; Fisher, Stanley P.
2016-01-01
Objective This study aimed to utilize failure modes and effects analysis (FMEA) to transform clinical insights into a risk mitigation plan for intrathecal (IT) drug delivery in pain management. Methods The FMEA methodology, which has been used for quality improvement, was adapted to assess risks (i.e., failure modes) associated with IT therapy. Ten experienced pain physicians scored 37 failure modes in the following categories: patient selection for therapy initiation (efficacy and safety concerns), patient safety during IT therapy, and product selection for IT therapy. Participants assigned severity, probability, and detection scores for each failure mode, from which a risk priority number (RPN) was calculated. Failure modes with the highest RPNs (i.e., most problematic) were discussed, and strategies were proposed to mitigate risks. Results Strategic discussions focused on 17 failure modes with the most severe outcomes, the highest probabilities of occurrence, and the most challenging detection. The topic of the highest‐ranked failure mode (RPN = 144) was manufactured monotherapy versus compounded combination products. Addressing failure modes associated with appropriate patient and product selection was predicted to be clinically important for the success of IT therapy. Conclusions The methodology of FMEA offers a systematic approach to prioritizing risks in a complex environment such as IT therapy. Unmet needs and information gaps are highlighted through the process. Risk mitigation and strategic planning to prevent and manage critical failure modes can contribute to therapeutic success. PMID:27477689
NASA Astrophysics Data System (ADS)
Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter
2001-12-01
This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.
Absolute Stability Analysis of a Phase Plane Controlled Spacecraft
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol
2010-01-01
Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.
Mode analysis and design of 0.3-THz Clinotron
NASA Astrophysics Data System (ADS)
Li, Shuang; Wang, Jian-Guo; Wang, Guang-Qiang; Zeng, Peng; Wang, Dong-Yang
2016-10-01
To develop a high-power continuous-wave terahertz source, a Clinotron operating at 0.3 THz is investigated. Based on the analyses of field distribution and coupling impedance, the dispersion characteristic of a rectangular resonator is preliminarily studied. The effective way to select fundamental mode to interact with the electron beam is especially studied. Finally, the structure is optimized by particle-in-cell simulation, and the problems of manufacture tolerance, current density threshold, and heat dissipation during Clinotron’s operation are also discussed. The optimum device can work with a good performance under the conditions of 8 kV and 60 mA. With the generation of signal frequency at 315.89 GHz and output power at 12 W on average, this device shows great prospects in the application of terahertz waves. Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
Oprisan, Sorinel Adrian
2010-01-21
We developed a systematic and consistent mathematical approach to predicting 1:1 phase-locked modes in ring neural networks of spiking neurons based on the open loop spike time resetting curve (STRC) and its almost equivalent counterpart-the phase resetting curve (PRC). The open loop STRCs/PRCs were obtained by injecting into an isolated model neuron a triangular shaped time-dependent stimulus current closely resembling an actual synaptic input. Among other advantages, the STRC eliminates the confusion regarding the undefined phase for stimuli driving the neuron outside of the unperturbed limit cycle. We derived both open loop PRC and STRC-based existence and stability criteria for 1:1 phase-locked modes developed in ring networks of spiking neurons. Our predictions were in good agreement with the closed loop numerical simulations. Intuitive graphical methods for predicting phase-locked modes were also developed both for half-centers and for larger ring networks.
On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis
Nie, J.; Wei, X.
2011-07-17
The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis. This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.
An analytical and experimental stress analysis of a practical mode II fracture-test specimen
NASA Technical Reports Server (NTRS)
Chisholm, D. B.; Jones, D. L.
1975-01-01
A boundary collocation method has been employed to determine the Mode II stress intensity factors for a pair of through-the-thickness edge cracks in a finite isotropic plate. An elastostatic analysis has been carried out in terms of the complete Williams stress function employing both even and odd components. The results of the numerical analysis were verified by a two-step procedure whereby the symmetric and antisymmetric portions of the solution were independently compared with existing solutions. The complete solution was verified by comparison with a photoelastic analysis. A compact shear specimen (CSS) of Hysol epoxy resin was loaded in a photoelastic experiment designed to study the isochromatic fringe patterns resulting from the Mode II crack tip stress distribution. The experiment verified that a pure Mode II stress distribution existed in the neighborhood of the crack tips and confirmed the accuracy of the boundary collocation solution for the Mode II stress intensity factors.
Exploring stability of entropy analysis for signal with different trends
NASA Astrophysics Data System (ADS)
Zhang, Yin; Li, Jin; Wang, Jun
2017-03-01
Considering the effects of environment disturbances and instrument systems, the actual detecting signals always are carrying different trends, which result in that it is difficult to accurately catch signals complexity. So choosing steady and effective analysis methods is very important. In this paper, we applied entropy measures-the base-scale entropy and approximate entropy to analyze signal complexity, and studied the effect of trends on the ideal signal and the heart rate variability (HRV) signals, that is, linear, periodic, and power-law trends which are likely to occur in actual signals. The results show that approximate entropy is unsteady when we embed different trends into the signals, so it is not suitable to analyze signal with trends. However, the base-scale entropy has preferable stability and accuracy for signal with different trends. So the base-scale entropy is an effective method to analyze the actual signals.
CFD Based Computations of Flexible Helicopter Blades for Stability Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2011-01-01
As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.
Stability analysis of three species food chain with competition
NASA Astrophysics Data System (ADS)
Abadi, Savitri, D.
2015-03-01
We study a food chain system that consists of 1 prey and 2 predators populations. The prey population grows logistically while the predators apply different Holling functional responses. The first predator preys on the prey following Holling type II functional response and the second predator preys on both the prey and the first predator following Holling type II and III functional responses, respectively. The study starts with the stability analysis of critical points of the systems. Then, by using normal form and centre manifold method the information about other nontrivial solutions due to bifurcation including possible limit cycles appearance is obtained. The results are confirmed by numerical simulation using MatCont and biological interpretation of the results are also presented.
Symplectic maps for the n-body problem - Stability analysis
NASA Technical Reports Server (NTRS)
Wisdom, Jack; Holman, Matthew
1992-01-01
The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.
Stability Analysis of the Planetary System Orbiting Upsilon Andromedae
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)
2000-01-01
We present results of long-term numerical orbital integrations designed to test the stability of the three-planet system orbiting Upsilon Andromedae and short-term integrations to test whether mutual perturbations among the planets can be used to determine planetary masses. Our initial conditions are based on the latest fits to the radial velocity data obtained by the planet-search group at Lick Observatory. The new fits result in significantly more stable systems than did the initially announced planetary parameters. An analytic analysis of the star and the two outer planets shows that this subsystem is Hill stable up to five. Our integrations involving all three planets show that the system is stable for at least 100 Myr for up to four. In our simulations, we still see a secular resonance between the outer two planets and in some cases large oscillations in the eccentricity of the inner planet.
Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.
Zhang, Jinhui; Lin, Yujuan; Feng, Gang
2015-12-01
This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.
Space Shuttle Main Engine real time stability analysis
NASA Technical Reports Server (NTRS)
Kuo, F. Y.
1993-01-01
The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.
Linear stability analysis of Clarke-Riley diffusion flames
NASA Astrophysics Data System (ADS)
Gomez-Lendinez, Daniel; Coenen, Wilfried; Sanchez, Antonio L.
2016-11-01
The buoyancy-driven laminar flow associated with the Burke-Schumann diffusion flame developing from the edge of a semi-infinite horizontal fuel surface burning in a quiescent oxidizing atmosphere displays a self-similar structure, first described by Clarke and Riley (Journal of Fluid Mechanics, 74:415-431). Their analysis was performed for unity reactant Lewis numbers, with the viscosity and thermal conductivity taken to be linearly proportional to the temperature. Our work extends this seminal work by considering fuels with non-unity Lewis numbers and gas mixtures with a realistic power-law dependence of the different transport properties. The problem is formulated in terms of chemistry-free, Shvab-Zel'dovich, linear combinations of the temperature and reactant mass fractions, not changed directly by the reactions, as conserved scalars. The resulting self-similar base-flow solution is used in a linear stability analysis to determine the critical value of the boundary-layer thickness-measured by the local Grashof number-at which the flow becomes unstable, leading to the development of Görtler-like streamwise vortices. The analysis provides the dependence of the critical Grashof number on the relevant flame parameters.
Jayakumar, R.J.; Austin, M.E.; Brennan, D.P.; Chu, M.S.; Luce, T.C.; Strait, E.J.; Turnbull, A.D.
2002-07-01
In DIII-D plasmas with L-mode edge and negative central shear (q{sub axis}-q{sub min} {approx}0.3 to 0.5), an interchange-like instability has been observed [1]. The instability and a subsequent tearing mode cause reduction of the core electron temperature and plasma rotation, and therefore the instability affects discharge evolution and the desired high performance is not achieved. Stability analyses indicate robust ideal stability, while the Resistive Interchange Mode criterion is marginal and the instability appears to be localized initially. Based on this, we believe that the mode is, most likely, a Resistive Interchange Mode. The amplitude of the instability is correlated with the location of the q{sub min} surface and inversely with the fast-ion pressure. There is indication that the interchange-like instability may be ''seeding'' the tearing mode that sometimes follows the interchange-like instability.