Science.gov

Sample records for mode stability analysis

  1. Perturbed Stability Analysis of External Ideal MHD Modes

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.

    2002-11-01

    Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.

  2. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  3. SAMPEX Spin Stabilized Mode

    NASA Technical Reports Server (NTRS)

    Tsai, Dean C.; Markley, F. Landis; Watson, Todd P.

    2008-01-01

    The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.

  4. Complete mode-set stability analysis of magnetically insulated ion diode equilibria

    SciTech Connect

    Slutz, S.A.; Lemke, R.W.

    1993-12-31

    We present the first analysis of the stability of magnetically insulated ion diodes that is fully relativistic and includes electromagnetic perturbations both parallel and perpendicular to the applied magnetic field. Applying this formalism to a simple diode equilibrium model that neglects velocity shear and density gradients, we find a fast growing mode that has all of the important attributes of the low frequency mode observed in numerical simulations of magnetically insulated ion diodes, which may be a major cause of ion divergence. We identify this mode as a modified two-stream instability. Previous stability analyses indicate a variety of unstable modes, but none of these exhibit the same behavior as the low frequency mode observed in the simulations. In addition, we analyze a realistic diode equilibrium model that includes velocity shear and an electron density profile consistent with that observed in the numerical simulations. We find that the diocotron instability is reduced, but not fully quenched by the extension of the electron sheath to the anode. However, the inclusion of perturbations parallel to the applied magnetic field with a wavelength smaller than the diode height does eliminate growth of this instability. This may explain why the diocotron mode has been observed experimentally with proton sources, but not with LiF, since the turn on of LiF is not uniform.

  5. Global mode analysis of the stabilization of bluff-body wakes by base bleed

    NASA Astrophysics Data System (ADS)

    Sanmiguel-Rojas, E.; Sevilla, A.; Martínez-Bazán, C.

    2008-11-01

    Base bleed is a simple and well-known means of stabilizing the wake behind slender bodies with a blunt trailing edge. In the present research, we investigate the global instability properties of the laminar-incompressible flow using a spectral domain decomposition method to perform the global stability analysis. In particular, we describe the flow instability characteristics as a function of the Reynolds number, Re=ρW∞D/μ, and the bleed coefficient, defined as the bleed-to-freestream velocity ratio, Cb=Wb/W∞, where D is the diameter of the body, ρ and μ the density and viscosity of the free stream, respectively. A first stationary bifurcation for, Re ˜ 364, is found, and a second oscillatory bifurcation for, Re ˜ 598, with a Strouhal number, St= 0.105, both for the most unstable azimuthal mode |m|= 1. We also report the existence of a critical bleed coefficient to stabilize both the first, C^*b1=C^*b1(Re), and the second, C^*b2=,^*b2(Re), bifurcations such as C^*b1>C^*b2 for the range of Reynolds number under study, 0 <=Re <=2000. For Re > ,00 the same kind of bifurcations are found for the azimuthal modes |m|= 2 and |m|= 3, which exhibit similar behaviors as the |m|= 1 mode with respect to the critical bleed coefficient.

  6. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Ghosh, S.; Alavi, S. K.; Alt, W.; Martinez-Dorantes, M.; Meschede, D.; Ratschbacher, L.

    2016-03-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background photons. We expect that our results contribute toward the integration of high-finesse fiber Fabry-Perot cavities into compact and robust quantum-enabled devices in the future.

  7. Stability and astigmatic compensation analysis of five- and six- or seven-mirror cavities for mode-locked dye lasers

    SciTech Connect

    Cojocaru, E.; Julea, T.; Herisanu, N.

    1989-07-01

    An analysis of the stability and astigmatic compensation of five- and six- or seven-mirror cavities for mode-locked dye lasers and simple relations for the folding angle to get a maximum stability region are given in this paper. Analytical relations referring to equivalent resonators are deduced. We draw attention to the lack of opportunity to use long cavity approximation to obtain stability diagrams and made some considerations on beam waist sizes.

  8. Linear stability of tearing modes

    SciTech Connect

    Cowley, S.C.; Kulsrud, R.M.; Hahm, T.S.

    1986-05-01

    This paper examines the stability of tearing modes in a sheared slab when the width of the tearing layer is much smaller than the ion Larmor radius. The ion response is nonlocal, and the quasineutrality retains its full integal form. An expansion procedure is introduced to solve the quasineutrality equation in powers of the width of the tearing layer over the ion Larmor radius. The expansion procedure is applied to the collisionless and semi-collisional tearing modes. The first order terms in the expansion we find to be strongly stabilizing. The physics of the mode and of the stabilization is discussed. Tearing modes are observed in experiments even though the slab theory predicts stability. It is proposed that these modes grow from an equilibrium with islands at the rational surfaces. If the equilibrium islands are wider than the ion Larmor radius, the mode is unstable when ..delta..' is positive.

  9. Global mode analysis of axisymmetric bluff-body wakes: Stabilization by base bleed

    NASA Astrophysics Data System (ADS)

    Sanmiguel-Rojas, E.; Sevilla, A.; Martínez-Bazán, C.; Chomaz, J.-M.

    2009-11-01

    The flow around a slender body with a blunt trailing edge is unstable in most situations of interest. Usually the flow instabilities are generated within the wake behind the bluff body, inducing fluctuating forces and introducing the possibility of resonance mechanisms with modes of the structure. Base bleed is a simple and well-known means of stabilizing the wake. In the present research, we investigate the global instability properties of the laminar-incompressible flow that develops behind a cylinder with sharp edges and axis aligned with the free stream using a spectral domain decomposition method. In particular, we describe the flow instability characteristics as a function of the Reynolds number, Re=ρW∞D/μ, and the bleed coefficient, defined as the bleed-to-free-stream velocity ratio, Cb=Wb/W∞, where D is the diameter of the body and ρ and μ the density and viscosity of the free stream, respectively. For a truncated cylinder of aspect ratio L /D=5, where L is the length of the body, our calculations reveal the presence of a first steady bifurcation in the wake at Re≃391, as well as a second oscillatory one at Re≃715 with an associated Strouhal number St≃0.0905 for the most unstable azimuthal mode |m|=1. In addition, we report the existence of two critical values of the bleed coefficient Cb1∗(Re,|m |) and Cb2∗(Re,|m |)stabilize both the first and second bifurcations in the range of Reynolds numbers under study, 0≤Re≤2200. Finally, the numerical results for the oscillatory mode obtained for a bulletlike body of aspect ratio L /D=2 without base bleed are compared with experiments performed in a wind tunnel using hot-wire anemometry, showing the limitations of using an axisymmetric basic flow at Reynolds numbers higher than the critical one corresponding to the first steady bifurcation in the global stability analysis.

  10. Stabilization of Ballooning Modes by Nonparaxial Cells

    SciTech Connect

    Arsenin, V.V.; Zvonkov, A.V.; Skovoroda, A.A.

    2005-01-15

    An analysis is made of the effect of high-curvature stabilizing nonparaxial elements (cells) on the MHD plasma stability in open confinement systems and in confinement systems with closed magnetic field lines. It is shown that the population of particles trapped in such cells has a stabilizing effect not only on convective (flute) modes but also on ballooning modes, which govern the maximum possible {beta} value. In the kinetic approach, which distinguishes between the effects of trapped and passing particles, the maximum possible {beta} values consistent with stability can be much higher than those predicted by the MHD model.

  11. Modeling and Analysis for Tearing Mode Stability in DIII-D Hybrid Discharges

    NASA Astrophysics Data System (ADS)

    Kim, Kyungjin; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Yong-Su; DIII-D Team

    2014-10-01

    Plasma rotation in DIII-D hybrid scenario plasmas is found to change the stability of tearing modes (TMs) in a profound manner. It is important to understand the onset threshold and the evolution of TMs for developing a high-performance steady-state fusion reactor. The modified Rutherford equation (MRE) estimates the growth rate of an island and is used to analyze the TM stability. The change in TM stability was investigated in hybrid plasmas with various conditions including rotation, normalized beta, q profile, and so on. The measured island width is larger in low q95 cases and increased as plasma rotation was reduced. The island width calculated by MRE with TM stability index Δ' assumed from its poloidal mode number, -m/r, showed a good agreement during high rotation, but could not be matched to the experimental island width at lower rotation. Simulations of TMs using resistive MHD codes such as NIMROD and PEST3 will also be presented and compared with experiments to determine the possibility for predicting TM onset by Δ' calculation. Work supported in part by the US DOE under DE-AC05-00OR22725 and DE-FC02-04ER54698.

  12. Stability analysis of switched cellular neural networks: A mode-dependent average dwell time approach.

    PubMed

    Huang, Chuangxia; Cao, Jie; Cao, Jinde

    2016-10-01

    This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations.

  13. The impact of heating the breakdown bubble on the global mode of a swirling jet: Experiments and linear stability analysis

    NASA Astrophysics Data System (ADS)

    Rukes, Lothar; Sieber, Moritz; Paschereit, C. Oliver; Oberleithner, Kilian

    2016-10-01

    This study investigates the dynamics of non-isothermal swirling jets undergoing vortex breakdown, with an emphasis on helical coherent structures. It is proposed that the dominant helical coherent structure can be suppressed by heating the recirculation bubble. This proposition is assessed with stereo Particle Image Velocimetry (PIV) measurements of the breakdown region of isothermal and heated swirling jets. The coherent kinetic energy of the dominant helical structure was derived from PIV snapshots via proper orthogonal decomposition. For one set of experimental parameters, mild heating is found to increase the energy content of the dominant helical mode. Strong heating leads to a reduction by 30% of the coherent structures energy. For a second set of experimental parameters, no alteration of the dominant coherent structure is detectable. Local linear stability analysis of the time-averaged velocity fields shows that the key difference between the two configurations is the density ratio at the respective wavemaker location. A density ratio of approximately 0.8 is found to correlate to a suppression of the global mode in the experiments. A parametric study with model density and velocity profiles indicates the most important parameters that govern the local absolute growth rate: the density ratio and the relative position of the density profiles and the inner shear layer.

  14. Dynamic neutronic and stability analysis of a burst mode, single cavity gas core reactor Brayton cycle space power system

    NASA Astrophysics Data System (ADS)

    Dugan, Edward T.; Kutikkad, Kiratadas

    The conceptual, burst-mode gaseous-core reactor (GCR) space nuclear power system presently subjected to reactor-dynamics and system stability studies operates on a closed Brayton cycle, via disk MHD generator for energy conversion. While the gaseous fuel density power coefficient of reactivity is found to be capable of rapidly stabilizing the GCR system, the power of this feedback renders standard external reactivity insertions inadequate for significant power-level changes during normal operation.

  15. Ballooning Stability of Separatrix Spanning Modes

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Baver, D. A.; D'Ippolito, D. A.; Umansky, M. V.; Lodestro, L. L.; Goldston, R. J.; Nichols, J. H.

    2013-10-01

    The ideal ballooning stability of the near-separatrix tokamak plasma and its possible relation to the Greenwald density limit, as discussed in, motivates the present work. We consider a sequence of CORSICA-generated equilibrium shapes with varying elongation and examine the marginal stability of infinite-n and finite-n separatrix-spanning modes using the 2DX and ArbiTER eigenvalue codes. The elongation scaling of the result provides a test of the proposed density-limit theory. A new computationally efficient technique for dealing with the phase variation of moderate-n modes across the branch cut in field-line following coordinates will also be discussed. Work supported by US DOE grants DE-FG02-97ER54392 and DE-SC0006562.

  16. Stabilizing windings for tilting and shifting modes

    SciTech Connect

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring. To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.

  17. Transient and stability analysis of large scale rotor-bearing system with strong nonlinear elements by the mode summation-transfer matrix method

    NASA Astrophysics Data System (ADS)

    Gu, Zhiping

    This paper extends Riccati transfer matrix method to the transient and stability analysis of large scale rotor-bearing systems with strong nonlinear elements, and proposes a mode summation-transfer matrix method, in which the field transfer matrix of a distributed mass uniform shaft segment is obtained with the aid of the idea of mode summation and Newmark beta formulation, and the Riccati transfer matrix method is adopted to stablize the boundary value problem of the nonlinear systems. In this investigation, the real nonlinearity of the strong nonlinear elements is considered, not linearized, and the advantages of the Riccati transfer matrix are retained. So, this method is especially applicable to analyze the transient response and stability of large-scale rotor-bear systems with strong nonlinear elements. One example, a single-spool rotating system with strong nonlinear elements, is given. The obtained results show that this method is superior to that of Gu and Chen (1990) in accuracy, stability, and economy.

  18. Stability of zero modes in parafermion chains

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam S.; Mong, Roger S. K.; Alicea, Jason; Fendley, Paul

    2014-10-01

    One-dimensional topological phases can host localized zero-energy modes that enable high-fidelity storage and manipulation of quantum information. Majorana fermion chains support a classic example of such a phase, having zero modes that guarantee twofold degeneracy in all eigenstates up to exponentially small finite-size corrections. Chains of "parafermions"—generalized Majorana fermions—also support localized zero modes, but, curiously, only under much more restricted circumstances. We shed light on the enigmatic zero-mode stability in parafermion chains by analytically and numerically studying the spectrum and developing an intuitive physical picture in terms of domain-wall dynamics. Specifically, we show that even if the system resides in a gapped topological phase with an exponentially accurate ground-state degeneracy, higher-energy states can exhibit a splitting that scales as a power law with system size, categorically ruling out exact localized zero modes. The transition to power-law behavior is described by critical behavior appearing exclusively within excited states.

  19. Internal tilting mode stability of non-sperical spheromak

    SciTech Connect

    Yamazaki, K.

    1980-06-01

    Fixed boundary tilting mode stability is analyzed for spheromak with arbitrarily shaped cross section. A prolate spheromak can be stabilized against tilting mode by adding a conducting shell of triangular or trapesoidal half-cross section.

  20. On Ideal Stability of Cylindrical Localized Interchange Modes

    SciTech Connect

    Umansky, M V

    2007-05-15

    Stability of cylindrical localized ideal pressure-driven interchange plasma modes is revisited. Converting the underlying eigenvalue problem into the form of the Schroedinger equation gives a new simple way of deriving the Suydam stability criterion and calculating the growth rates of unstable modes. Near the marginal stability limit the growth rate is exponentially small and the mode has a double-peak structure.

  1. Beta-limiting Instabilities and Global Mode Stabilization in NSTX

    NASA Astrophysics Data System (ADS)

    Sabbagh, Steven

    2001-10-01

    Low aspect ratio and high edge q theoretically alter the plasma stability and mode structure compared to standard tokamak configurations. Below the no-wall limit, stability calculations with PEST, GATO, and DCON show the perturbed radial field is maximized near the center column and DCON and VALEN calculations show that mode stability is not greatly improved by a nearby conducting wall due to the short poloidal wavelength in this region. In contrast, as beta reaches and exceeds the no-wall limit, the mode becomes strongly ballooning with long poloidal wavelength at large major radius and is highly wall stabilized. In this way, wall stabilization is more effective at higher beta in low aspect ratio geometry. Research on the stability of spherical torus plasmas at and above the no-wall beta limit is being addressed on NSTX, which has produced low aspect ratio plasmas, R/a = 1.27 at plasma current up to 1.4 MA with high energy confinement (TauE/TauE-ITER89P = 2). Toroidal and normalized beta have reached 22%, and 4.3, respectively in q = 7 plasmas. The beta limit is observed to increase with increasing plasma internal inductance, li, and the stability factor betaN/li has reached 5.8, limited by sudden beta collapses at low li that was achieved by use of high-harmonic fast wave heating (HHFW). DCON stability analysis of equilibria reconstructed with EFIT using external magnetics show that the plasmas are below or at the no-wall beta limit for the n = 1 mode, which has characteristics of a current-driven kink. With more peaked current profiles (li greater than 0.7), core MHD instabilities are observed which saturate or slowly degrade beta. Sawteeth with large inversion radii can also cause substantial beta collapses, although current profile modification using HHFW, altered plasma growth, and increased toroidal field have each been successful in mitigating this effect.

  2. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    SciTech Connect

    Baumgaertel, J. A.; Redi, M. H.; Budny, R. V.; Rewoldt, G.; Dorland, W.

    2005-10-19

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER.

  3. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    NASA Astrophysics Data System (ADS)

    Belghit, Slimen; Sid, Abdelaziz

    2016-06-01

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  4. Stability analysis of cylindrical Vlasov equilibria

    SciTech Connect

    Short, R W

    1980-02-01

    A method is presented for the fully kinetic, nonlocal stability analysis of cylindrically symmetric equilibria. Applications to the lower hybrid drift instability and the modes associated with a finite-width relativistic E-layer are discussed.

  5. Stabilization of tearing modes by oscillating the resonant surface

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Wang, Shaojie; Yang, Weihong

    2012-07-01

    The effects of the plasma current modulation on the linear instability of the tearing mode are numerically investigated. It is found that the tearing mode can be stabilized if the frequency of the modulation is suitable and the oscillation amplitude of the resonant surface position is large enough. The power needed for the lower-hybrid-current-drive to stabilize the tearing mode by oscillating the position of the resonant surface is comparable to the power consumption of the conventional method of tearing mode stabilization by using the electron-cyclotron-current-drive.

  6. High-mode-number ballooning modes in a heliotron/torsatron system: 2, Stability

    SciTech Connect

    Nakajima, N.

    1996-05-01

    In heliotron/torsantron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standaxd stability calculations or observed in experiments on the Compact Helical System, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues {omega} {sup 2} to have a strong field line dependence through the strong dependence of the local magnetic curvature, such that the level surfaces of {omega} {sup 2} ({psi}, {theta} {sub k}, {alpha}), (<0) become spheroids in ({theta} {sub k}, {alpha}) space, where {psi} labels flux surfaces and {theta} {sub k} is the radial wavenumber. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfven eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high- mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects.

  7. MAP stability, design, and analysis

    NASA Technical Reports Server (NTRS)

    Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.

    1998-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.

  8. Ballooning Modes in the Systems Stabilized by Divertors

    SciTech Connect

    Arsenin, V.V.; Skovoroda, A.A.; Zvonkov, A.V.

    2005-01-15

    MHD stability of a plasma in systems with closed magnetic field lines and open systems containing the nonparaxial stabilizing cells with large field lines curvature, in particular, divertors is analyzed. It is shown that population of particles trapped in such cells has a stabilizing effect not only on flute modes, but also on ballooning modes that determine the {beta} limit. At kinetic description that accounts for different effect of trapped and passing particles on perturbations, {beta} limit permitted by stability may be much greater then it follows from MHD model.

  9. Competing stability modes in vortex structure formation

    NASA Astrophysics Data System (ADS)

    Garrett, Stephen; Gostelow, J. Paul; Rona, Aldo; McMullan, W. Andrew

    2015-11-01

    Nose cones and turbine blades have rotating components and represent very practical geometries for which the behavior of vortex structures is not completely understood. These two different physical cases demonstrate a common theme of competition between mode and vortex types. The literature concerning boundary-layer transition over rotating cones presents clear evidence of an alternative instability mode leading to counter-rotating vortex pairs, consistent with a centrifugal instability. This is in contrast to co-rotating vortices present over rotating disks that arise from crossflow effects. It is demonstrated analytically that this mode competes with the crossflow mode and is dominant only over slender cones. Predictions are aligned with experimental measurements over slender cones. Concurrent experimental work on the flow over swept cylinders shows that organized fine-scale streamwise vorticity occurs more frequently on convex surfaces than is appreciated. The conventional view of purely two-dimensional laminar boundary layers following blunt leading edges is not realistic and such boundary layers need to be treated three-dimensionally, particularly when sweep is present. The vortical structures are counter-rotating for normal cylinders and co-rotating under high sweep conditions. Crossflow instabilities may have a major role to play in the transition process but the streamline curvature mode is still present, and seemingly unchanged, when the boundary layer becomes turbulent.

  10. Stabilization of the resistive shell mode in tokamaks

    SciTech Connect

    Fitzpatrick, R.; Aydemir, A.

    1995-02-01

    The stability of current-driven external-kink modes is investigated in a tokamak plasma surrounded by an external shell of finite electrical conductivity. According to conventional theory, the ideal mode can be stabilized by placing the shell sufficiently close to the plasma, but the non-rotating ``resistive shell mode,`` which grows on the characteristic L/R time of the shell, always persists. It is demonstrated, using both analytic and numerical techniques, that a combination of strong edge plasma rotation and dissipation somewhere inside the plasma is capable of stabilizing the resistive shell mode. This stabilization mechanism does not necessarily depend on toroidicity or presence of resonant surfaces inside the plasma.

  11. Linear stability of low mode number tearing modes in the banana collisionality regime

    SciTech Connect

    Fitzpatrick, R. , Abingdon, OX14 3DB, England )

    1989-12-01

    The semicollisional layer equations governing the linear stability of small mode number tearing modes in a low beta, large aspect ratio, tokamak equilibrium are derived from an expansion of the gyrokinetic equation. In this analysis only the cases where the ion Larmor radius is either much less than, or much greater than, the layer width are considered. Both the electrons and the ions are assumed to lie in the banana collisionality regime. One interesting feature of the derived layer equations, in the limit of small ion Larmor radius, is a substantial reduction in the effective collisionality of the system due to neoclassical ion dynamics. Next, using a shooting code, a dispersion relation is obtained from the layer equations in the limits of small ion Larmor radius and a vanishingly small fraction of trapped particles. As expected, strong semicollisional stabilization of the mode is found, but, in addition, a somewhat weaker destabilizing effect is obtained in the transition region between the collisional and semicollisional regimes.

  12. Energetic-particle stabilization of ballooning modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engguist, M. G.

    1983-07-01

    Introduction of an anisotropic, highly energetic trapped-particle species into a Tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent fishbone observations on PDX.

  13. Energetic Particle Stabilization of Ballooning Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Rosenbluth, M. N.; Tsai, S. T.; van Dam, J. W.; Engquist, M. G.

    1983-11-01

    Introduction of an anisctropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent "fishbone" observations on PDX.

  14. Energetic particle stabilization of ballooning modes in tokamaks

    SciTech Connect

    Rosenbluth, M.N.; Tsai, S.T.; Van Dam, J.W.; Engquist, M.G.

    1983-11-21

    Introduction of an anisotropic, highly energetic trapped-particle species into a tokamak may allow direct stable access to the high-beta regime of second stability. Under certain conditions, the mode at marginal stability acquires a real frequency close to the precessional drift frequency of the energetic particles, perhaps correlating with recent ''fishbone'' observations on PDX.

  15. Tearing Mode Stability of Evolving Toroidal Equilibria

    NASA Astrophysics Data System (ADS)

    Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.

    2000-10-01

    There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.

  16. Stability of short wavelength tearing and twisting modes

    SciTech Connect

    Waelbroeck, F.L.

    1998-09-22

    The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known {Delta}{prime} stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting {Delta}{prime} for a model high-beta equilibrium with circular flux surfaces.

  17. Stabilization of ballooning modes with sheared toroidal rotation

    SciTech Connect

    Miller, R.L.; Waelbroeck, F.W.; Lao, L.L.; Taylor, T.S.

    1994-11-01

    A new code demonstrates the stabilization of MHD ballooning modes by sheared toroidal rotation. A shifted-circle model is used to elucidate the physics and numerically reconstructed equilibria are used to analyze DIII-D discharges. In the ballooning representation, the modes shift periodically along the field line to the next point of unfavorable curvature. The shift frequency (d{Omega}/dq where {Omega} is the angular toroidal velocity and q is the safety factor) is proportional to the rotation shear and inversely proportional to the magnetic shear. Stability improves with increasing shift frequency and, in the shifted circle model, direct stable access to the second stability regime occurs when this frequency is a fraction of the Alfven frequency {omega}{sub A} = V{sub A}/qR. Shear stabilization is also demonstrated for an equilibrium reconstruction of a DIII-D VH-mode.

  18. Ideal Stability of the Tokamak H--mode Edge Region

    NASA Astrophysics Data System (ADS)

    Wilson, H. R.

    1998-11-01

    Tokamak performance is often controlled by stability of the edge plasma. Consistent with ``stiff'' transport models, the confinement in tokamak discharges is strongly correlated with the magnitude of the edge pressure pedestal which is limited by MHD stability. Furthermore, the high performance ELM-free H--modes are terminated by low toroidal mode number n, MHD modes driven by high edge pressure gradient, and edge current. We have evaluated low n modes using the δ W code GATO, and both high edge pressure gradient and high edge current density are found to destabilize the n=1, 2, and 3 ideal modes. We have included the self-consistent bootstrap current in the equilibria generation, and have completed a thorough survey of the effects of plasma shape and edge pressure profiles on the edge ballooning stability. The bootstrap current density helps to provide access to the second regime of stability, which is easier for: higher elongation, intermediate triangularity, larger aspect ratio, narrower pedestal width, and higher q_95. The intermediate n stability is being evaluated using a high-mode-number peeling/ ballooning mode model,(J.W. Connor, R.J. Hastie, H.R. Wilson, and R.L. Miller, Phys. Plasmas 5), 2687 (1998). where a critical role is played by the edge current density. This edge model describes the interaction of peeling mode (current driven) and ballooning mode (pressure driven) effects at high, but finite, mode number; a modified ballooning mode formalism is shown to be valid at the plasma edge. Based upon this edge model, a 2D eigenvalue code has been written to determine the stability of these modes for arbitrary shape cross sections, and edge pressure and current profiles including bootstrap current effects. This model suggests a power threshold for L--H transitions and provides a plausible explanation for an ELM cycle. Results will be presented for the pressure gradient and edge current density stability boundaries for a range of shapes and pedestal widths

  19. Stability of n = 1 internal modes in tokamaks

    SciTech Connect

    Manickam, J.

    1983-12-01

    An extensive numerical study has been carried out for internal modes with toroidal mode number unity. These are internal kink modes, when the q = 1 surface falls within the plasma, and have a ballooning characteristic when q/sub axis/ > 1. Both modes show a dependence on the pressure and have a second region of stability at high ..beta... A parameter survey has been conducted, varying the geometry, i.e., aspect ratio, ellipticity, triangularity, etc. and the current profiles, through the pressure and safety factor. The principal results show that the modes are dependent on the geometry and are strongly stabilized by high-order, noncircular effects. Broader pressure profiles and reduced shear are favorable for limiting the instability.

  20. Modeling of Neoclassical Tearing Mode Stability for Generalized Toroidal Geometry

    SciTech Connect

    A.L. Rosenberg; D.A. Gates; A. Pletzer; J.E. Menard; S.E. Kruger; C.C. Hegna; F. Paoletti; S. Sabbagh

    2002-08-21

    Neoclassical tearing modes (NTMs) can lead to disruption and loss of confinement. Previous analysis of these modes used large aspect ratio, low beta (plasma pressure/magnetic pressure) approximations to determine the effect of NTMs on tokamak plasmas. A more accurate tool is needed to predict the onset of these instabilities. As a follow-up to recent theoretical work, a code has been written which computes the tearing mode island growth rate for arbitrary tokamak geometry. It calls PEST-3 [A. Pletzer et al., J. Comput. Phys. 115, 530 (1994)] to compute delta prime, the resistive magnetohydrodynamic (MHD) matching parameter. The code also calls the FLUXGRID routines in NIMROD [A.H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)] for Dnc, DI and DR [C.C. Hegna, Phys. Plasmas 6, 3980 (1999); A.H. Glasser et al., Phys. Fluids 18, 875 (1975)], which are the bootstrap current driven term and the ideal and resistive interchange mode criterion, respectively. In addition to these components, the NIMROD routines calculate alphas-H, a new correction to the Pfirsch-Schlter term. Finite parallel transport effects were added and a National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] equilibrium was analyzed. Another program takes the output of PEST-3 and allows the user to specify the rational surface, island width, and amount of detail near the perturbed surface to visualize the total helical flux. The results of this work will determine the stability of NTMs in an spherical torus (ST) [Y.-K.M. Peng et al., Nucl. Fusion 26, 769 (1986)] plasma with greater accuracy than previously achieved.

  1. Effects of a sheared toroidal rotation on the stability boundary of the MHD modes in the tokamak edge pedestal

    NASA Astrophysics Data System (ADS)

    Aiba, N.; Tokuda, S.; Furukawa, M.; Oyama, N.; Ozeki, T.

    2009-06-01

    Effects of a sheared toroidal rotation are investigated numerically on the stability of the MHD modes in the tokamak edge pedestal, which relate to the type-I edge-localized mode. A linear MHD stability code MINERVA is newly developed for solving the Frieman-Rotenberg equation that is the linear ideal MHD equation with flow. Numerical stability analyses with this code reveal that the sheared toroidal rotation destabilizes edge localized MHD modes for rotation frequencies which are experimentally achievable, though the ballooning mode stability changes little by rotation. This rotation effect on the edge MHD stability becomes stronger as the toroidal mode number of the unstable MHD mode increases when the stability analysis was performed for MHD modes with toroidal mode numbers smaller than 40. The toroidal mode number of the unstable MHD mode depends on the stabilization of the current-driven mode and the ballooning mode by increasing the safety factor. This dependence of the toroidal mode number of the unstable mode on the safety factor is considered to be the reason that the destabilization by toroidal rotation is stronger for smaller edge safety factors.

  2. Stability of TAE modes in DIII-D

    SciTech Connect

    Strait, E.J.; Chu, M.S.; Lao, L.L.; Turnbull, A.D.; Heidbrink, W.W.; Duong, H.H.

    1992-09-01

    TAE modes driven by neutral beam injection have been observed in DIII-D. The measured frequency agrees very well with theoretical predictions for DIII-D discharges. At large amplitude these instabilities can lead to loss of over 50% of the beam power, as well as large loss of non-resonant MeV fusion products. The threshold value of fast ion beta for destabilization and the observed range of unstable mode numbers are in reasonable agreement with predictions for the mode growth rate. Continuum damping dominates at low mode numbers, while damping by electron kinetic effects dominates at high mode numbers. Preliminary experiments suggest that TAB modes can be stabilized by current profile control.

  3. The computer in shell stability analysis

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Starnes, J. H., Jr.

    1975-01-01

    Some examples in which the high-speed computer has been used to improve the static stability analysis capability for general shells are examined. The fundamental concepts of static stability are reviewed with emphasis on the differences between linear bifurcation buckling and nonlinear collapse. The analysis is limited to the stability of conservative systems. Three examples are considered. The problem of cylinders subjected to bending loads is used as an example to illustrate that a simple structure can have a sufficiently complicated nonlinear behavior to require a computer analysis for accurate results. An analysis of the problems involved in the modeling of stiffening elements in plate and shell structures illustrates the necessity that the analyst recognizes all important deformation modes. The stability analysis of the Skylab structure indicates the size of problems that can be solved with current state-of-the-art capability.

  4. Nonlinear tearing modes stabilization by oscillating the resonant surface

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Wang, Shaojie

    2016-09-01

    The stabilization of the nonlinear tearing mode by rapidly oscillating the resonant surface has been investigated numerically in a large aspect ratio tokamak with a circular cross-section. By means of the radio frequency current drive, the plasma current can be modulated to make the resonant surface (rs) oscillate in time near its mean position. Previous results show that the linear tearing mode can be suppressed by oscillating the resonant surface with a suitable frequency and amplitude. At the nonlinear stage, the tearing mode stabilization shows different properties. The suppression effects not only depend on the modulation frequency and the oscillation width of the resonant surface but also depend on the relative size of χ0 to δ (here, χ0 is the oscillation width of the resonant surface and δ is the width of tearing layer) and the relative width of χ0 to the magnetic island width W.

  5. Ballooning mode second stability region for sequences of tokamak equilibria

    SciTech Connect

    Sugiyama, L.; Mark, J. W-K.

    1980-01-01

    A numerical study of several sequences of tokamak equilibria derived from two flux conserving sequences confirms the tendency of high n ideal MHD ballooning modes to stabilize for values of the plasma beta greater than a second critical beta, for sufficiently favorable equilibria. The major stabilizing effect of increasing the inverse rotational transform profile q(Psi) for equilibria with the same flux surface geometry is shown. The unstable region shifts toward larger shear d ln q/d ln ..gamma.. and the width of the region measured in terms of the poloidal beta or a pressure gradient parameter, for fixed shear, decreases. The smaller aspect ratio sequences are more sensitive to changes in q and have less stringent limits on the attainable value of the plasma beta in the high beta stable region. Finally, the disconnected mode approximation is shown to provide a reasonable description of the second high beta stability boundary.

  6. Frequency stabilization via the mixed mode in three mode HeNe lasers

    SciTech Connect

    Ellis, J D; Joo, K; Buice, E S; Spronck, J W; Munnig Schmidt, R H

    2010-02-05

    This paper describes a three mode HeNe laser frequency stabilization technique using the mixed mode frequency to obtain a fractional frequency stability of 2 x 10{sup -11}. The mixed mode frequency occurs due to optical nonlinear interactions with the adjacent modes at each of the three modes. In precision displacement interferometry systems, the laser source frequency must be stabilized to provide an accurate conversion ratio between phase change and displacement. In systems, such as lithography applications, which require high speed, high accuracy and low data age uncertainty, it is also desirable to avoid periodic nonlinearities, which reduces computation time and errors. One method to reduce periodic nonlinearity is to spatially separate the measurement and reference beams to prevent optical mixing, which has been shown for several systems. Using spatially separated beams and the proper optical configuration, the interferometer can be fiber fed, which can increase the interferometer's stability by reducing the number of beam steering optical elements. Additionally, as the number of measurement axes increases, a higher optical power from the laser source is necessary.

  7. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    DOEpatents

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  8. Stability of Finite-n Global Magnetohydrodynamic Modes Using the GATO Stability Code

    NASA Astrophysics Data System (ADS)

    Chu, M. S.; Wong, S. K.; Lao, L. L.; Turnbull, A. D.; Chance, M. S.

    1999-11-01

    This work extends the capability of the GATO stability code(L.C.Bernard et al.), Comput. Phys. Commun. 24, 377 (1981). to analyze realistic numerical tokamak equilibria for their stability to higher n ( ~5--10) MHD modes. This is motivated by the experimental evidence of these modes being relevant for both plasma termination and the behavior of ELMs. The ballooning angle transformation(R. Gruber et al.), Comput. Phys. Commun. 24, 363 (1981). is applied to the displacement variables in the GATO representation. The potential energy matrix is constructed with the inclusion of extra mapping quantities. The vacuum energy computed from the Green's function is also modified to couple to the transformed displacement at the plasma boundary. The resultant eigenvalue problem is solved with the modified boundary condition in the poloidal direction suitable for these transformed variables. The dependence of the plasma stability as a function of toroidal mode number and plasma equilibrium properties will be presented.

  9. Theoretical modelling of the feedback stabilization of external MHD modes in toroidal geometry

    NASA Astrophysics Data System (ADS)

    Chance, M. S.; Chu, M. S.; Okabayashi, M.; Turnbull, A. D.

    2002-03-01

    A theoretical framework for understanding the feedback mechanism for stabilization of external MHD modes has been formulated. Efficient computational tools - the GATO stability code coupled with a substantially modified VACUUM code - have been developed to effectively design viable feedback systems against these modes. The analysis assumed a thin resistive shell and a feedback coil structure accurately modelled in θ and phi, albeit with only a single harmonic variation in phi. Time constants and induced currents in the enclosing resistive shell are calculated. An optimized configuration based on an idealized model has been computed for the DIII-D device. Up to 90% of the effectiveness of an ideal wall can be achieved.

  10. Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus

    NASA Astrophysics Data System (ADS)

    Paul, Tanmoy; SenGupta, Soumitra

    2016-04-01

    We consider a generalized two brane Randall-Sundrum model where the branes are endowed with nonzero cosmological constant. In this scenario, we re-examine the modulus stabilization mechanism and the nature of Kaluza-Klein (KK) graviton modes. Our result reveals that while the KK mode graviton masses may change significantly with the brane cosmological constant, the Goldberger-Wise stabilization mechanism, which assumes a negligible backreaction on the background metric, continues to hold even when the branes have a large cosmological constant. The possibility of having a global minimum for the modulus is also discussed. Our results also include an analysis for the radion mass in this nonflat brane scenario.

  11. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  12. High beta and second stability region transport and stability analysis

    SciTech Connect

    Not Available

    1991-09-05

    This document describes ideal and resistive MHD studies of high-beta plasmas and of the second stability region. Significant progress is reported on the resistive stability properties of high beta poloidal supershot'' discharges. For these studies initial profiles were taken from the TRANSP code which is used extensively to analyze experimental data. When an ad hoc method of removing the finite pressure stabilization of tearing modes is implemented it is shown that there is substantial agreement between MHD stability computation and experiment. In particular, the mode structures observed experimentally are consistent with the predictions of the resistive MHD model. We also report on resistive stability near the transition to the second region in TFTR. Tearing modes associated with a nearby infernal mode may explain the increase in MHD activity seen in high beta supershots and which impede the realization of Q{approximately}1. We also report on a collaborative study with PPPL involving sawtooth stabilization with ICRF.

  13. Benchmarking kinetic calculations of resistive wall mode stability

    SciTech Connect

    Berkery, J. W.; Sabbagh, S. A.; Liu, Y. Q.; Betti, R.

    2014-05-15

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  14. Benchmarking kinetic calculations of resistive wall mode stability

    NASA Astrophysics Data System (ADS)

    Berkery, J. W.; Liu, Y. Q.; Wang, Z. R.; Sabbagh, S. A.; Logan, N. C.; Park, J.-K.; Manickam, J.; Betti, R.

    2014-05-01

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  15. Fishbone instability and kink mode stabilization in nonperturbative simulations

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai

    2011-10-01

    Two phenomena relying on the nonperturbative treatment of the fast ion terms are the fishbone instability and ideal kink mode stabilization. We employ the global NOVA-KN hybrid kinetic-MHD code to study the stability properties of these low-n solutions, such as the resonant (fishbone) and non-resonant (ideal) branches. The nonperturbative approach treats fast ions with their realistic drift orbits numerically by computing the moments of their perturbed pressure tensors in order to include them into the eigenmode equation. We introduce this technique together with the new conforming velocity space grid to efficiently evaluate the wave-particle interaction matrix. The used method results in both resonant and modified non-resonant branches, which are further studied to understand their stability properties in the presence of energetic ions [C.Z. Cheng, Phys. Reports, v.211,p.1 (1992)]. We include the destabilizing effects from energetic beam ions and alpha particles, which seem to be important for the studied instabilities. A model used for beam ion distribution is also presented. We study the properties of those branches in details. The applications to the modified burning ITER plasma are discussed to understand how far the stability region is in the operating space from its nominal values. This work is supported by US DOE contract no. DE-AC02-09CH11466.

  16. The stability of tidally deformed neutron stars to three- and four-mode coupling

    SciTech Connect

    Venumadhav, Tejaswi; Zimmerman, Aaron; Hirata, Christopher M.

    2014-01-20

    It has recently been suggested that the tidal deformation of a neutron star excites daughter p- and g-modes to large amplitudes via a quasi-static instability. This would remove energy from the tidal bulge, resulting in dissipation and possibly affecting the phase evolution of inspiralling binary neutron stars and hence the extraction of binary parameters from gravitational wave observations. This instability appears to arise because of a large three-mode interaction among the tidal mode and high-order p- and g-modes of similar radial wavenumber. We show that additional four-mode interactions enter into the analysis at the same order as the three-mode terms previously considered. We compute these four-mode couplings by finding a volume-preserving coordinate transformation that relates the energy of a tidally deformed star to that of a radially perturbed spherical star. Using this method, we relate the four-mode coupling to three-mode couplings and show that there is a near-exact cancellation between the destabilizing effect of the three-mode interactions and the stabilizing effect of the four-mode interaction. We then show that the equilibrium tide is stable against the quasi-static decay into daughter p- and g-modes to leading order. The leading deviation from the quasi-static approximation due to orbital motion of the binary is considered; while it may slightly spoil the near-cancellation, any resulting instability timescale is at least of order the gravitational wave inspiral time. We conclude that the p-/g-mode coupling does not lead to a quasi-static instability, and does not impact the phase evolution of gravitational waves from binary neutron stars.

  17. Linear stability analysis of magnetized jets: the rotating case

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Mamatsashvili, G.; Rossi, P.; Mignone, A.

    2016-11-01

    We perform a linear stability analysis of magnetized rotating cylindrical jet flows in the approximation of zero thermal pressure. We focus our analysis on the effect of rotation on the current driven mode and on the unstable modes introduced by rotation. We find that rotation has a stabilizing effect on the current driven mode only for rotation velocities of the order of the Alfvén velocity. Rotation introduces also a new unstable centrifugal buoyancy mode and the `cold' magnetorotational instability. The first mode is analogous to the Parker instability with the centrifugal force playing the role of effective gravity. The magnetorotational instability can be present, but only in a very limited region of the parameter space and is never dominant. The current driven mode is characterized by large wavelengths and is dominant at small values of the rotational velocity, while the buoyancy mode becomes dominant as rotation is increased and is characterized by small wavelengths.

  18. The role of pressure flattening in calculating tearing mode stability

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Connor, J. W.; Cowley, S. C.; Hastie, R. J.; Hender, T. C.; Liu, Y. Q.

    2013-12-01

    Calculations of tearing mode stability in tokamaks split conveniently into one in an external region, where marginally stable ideal magnetohydrodynamics (MHD) is applicable, and one in a resonant layer around the rational surface where sophisticated kinetic physics is needed. These two regions are coupled by the stability parameter Δ‧. Axisymmetric pressure and current perturbations localized around the rational surface significantly alter Δ‧. Equations governing the changes in the external solution and Δ‧ are derived for arbitrary perturbations in axisymmetric toroidal geometry. These equations can be used in two ways: (i) the Δ‧ can be calculated for a physically occurring perturbation to the pressure or current; (ii) alternatively we can use these equations to calculate Δ‧ for profiles with a pressure gradient at the rational surface in terms of the value when the perturbation removes this gradient. It is the second application we focus on here since resistive magnetohydrodynamics (MHD) codes do not contain the appropriate layer physics and therefore cannot predict stability for realistic hot plasma directly. They can, however, be used to calculate Δ‧. Existing methods (Ham et al 2012 Plasma Phys. Control. Fusion 54 025009) for extracting Δ‧ from resistive codes are unsatisfactory when there is a finite pressure gradient at the rational surface and favourable average curvature because of the Glasser stabilizing effect (Glasser et al 1975 Phys. Fluids 18 875). To overcome this difficulty we introduce a specific artificial pressure flattening function that allows the earlier approach to be used. The technique is first tested numerically in cylindrical geometry with an artificial favourable curvature. Its application to toroidal geometry is then demonstrated using the toroidal tokamak tearing mode stability code T7 (Fitzpatrick et al 1993 Nucl. Fusion 33 1533) which employs an approximate analytic equilibrium. The prospects for applying this

  19. Failure mode analysis to predict product reliability.

    NASA Technical Reports Server (NTRS)

    Zemanick, P. P.

    1972-01-01

    The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.

  20. Globally exponential stability and stabilization of interconnected Markovian jump system with mode-dependent delays

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui; Huang, Qi

    2016-01-01

    This paper focuses on the problems of globally exponential stability and stabilization with H∞ performance for a class of interconnected Markovian jump system with mode-dependent delays in interconnection. By constructing a Lyapunov-Krasovskii functional, delay-range-dependent globally mean-square exponential stability conditions are established in terms of linear matrix inequalities. Based on the obtained conditions, state feedback control utilizing global state information and state feedback control utilizing global state information of decentralised observers are developed to render the closed-loop interconnected Markovian jump time-delay system globally exponential stable with H∞ performance. Numerical simulation of a power system, composed of three coupled machines, is used to illustrate the effectiveness of the obtained results.

  1. Stability Analysis of Flow Past a Wingtip

    NASA Astrophysics Data System (ADS)

    Edstrand, Adam; Schmid, Peter; Taira, Kunihiko; Cattafesta, Louis

    2015-11-01

    Trailing vortices are commonly associated with diminished aircraft performance by increasing induced drag and producing a wake hazard on following aircraft. Previously, stability analyses have been performed on the Batchelor vortex (Heaton et al., 2009), which models a far field axisymmetric vortex, and airfoil wakes (Woodley & Peake, 1997). Both analyses have shown various instabilities present in these far field vortex-wake flows. This complicates the design of control devices by excluding consideration of near field interactions between the wake and vortex shed from the wing. In this study, we perform temporal and spatial bi-global stability analyses on the near field wake of the flow field behind a NACA0012 wing computed from direct numerical simulation at a chord Reynolds number of 1000. The results identify multiple instabilities including a vortex instability, wake instability, and mixed instability that includes interaction between the wake and vortex. As these modes exhibit wave packets, we perform a wave packet analysis (Obrist & Schmid, 2010), which enables the prediction of spatial mode structures at low computational cost. Furthermore, a bi-global parabolized stability analysis is performed, highlighting disparities between the parallel and parabolized analysis. ONR Grant N00014010824 and NSF PIRE Grant OISE-0968313.

  2. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1998-12-01

    A new {Delta}{sup {prime}} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon}{le}0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of the finite pressure term. Numerical results compare favorably with Furth {ital et al.} [H. P. Furth {ital et al.}, Phys. Fluids {bold 16}, 1054 (1973)] results. The effects of finite pressure, which are shown to decrease {Delta}{sup {prime}}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even in a low-{beta} regime before the toroidal magnetic curvature effects come into play. {copyright} {ital 1998 American Institute of Physics.}

  3. Tearing mode analysis in tokamaks, revisited

    SciTech Connect

    Nishimura, Y.; Callen, J.D.; Hegna, C.C.

    1997-12-01

    A new {Delta}{prime} shooting code has been developed to investigate tokamak plasma tearing mode stability in a cylinder and large aspect ratio ({epsilon} {le} 0.25) toroidal geometries, neglecting toroidal mode coupling. A different computational algorithm is used (shooting out from the singular surface instead of into it) to resolve the strong singularities at the mode rational surface, particularly in the presence of finite pressure term. Numerical results compare favorably with Furth et al. results. The effects of finite pressure, which are shown to decrease {Delta}{prime}, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov shift, which modifies the geometry metric element stabilizes the tearing mode significantly, even in a low {beta} regime before the toroidal magnetic curvature effects come into play. Double tearing modes in toroidal geometries are examined as well. Furthermore, m {ge} 2 tearing mode stability criteria are compared with three dimensional initial value MHD simulation by the FAR code.

  4. Numerical stability of the electromagnetic quasinormal and quasibound modes of Kerr black holes

    NASA Astrophysics Data System (ADS)

    Staicova, Denitsa; Fiziev, Plamen

    2015-07-01

    The proper understanding of the electromagnetic counterpart of gravity-waves emitters is of serious interest to the multimessenger astronomy. In this article, we study the numerical stability of the quasinormal modes (QNM) and quasibound modes (QBM) obtained as solutions of the Teukolsky Angular Equation and the Teukolsky Radial Equation with appropriate boundary conditions. We use the epsilon-method for the system featuring the confluent Heun functions to study the stability of the spectra with respect to changes in the radial variable. We find that the QNM and QBM are stable in certain regions of the complex plane, just as expected, while the third ``spurious'' spectrum was found to be numerically unstable and thus unphysical. This analysis shows the importance of understanding the numerical results in the framework of the theory of the confluent Heun functions, in order to be able to distinguish the physical spectra from the numerical artifacts.

  5. Improved feedback control of wall stabilized kink modes with different plasma-wall couplings and mode rotation

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Levesque, J. P.; Stoafer, C. C.; Bialek, J.; Byrne, P.; Hughes, P. E.; Mauel, M. E.; Navratil, G. A.; Rhodes, D. J.

    2016-04-01

    A new algorithm for feedback control of rotating, wall-stabilized kink modes in the High Beta Tokamak-Extended Pulse (HBT-EP) device maintains an accurate phase shift between the perturbation and the measured rotating mode through current control, with control power emphasizing fast rotation and phase jumps over fast amplitude changes. In HBT-EP, wall-stabilized kink modes become unstable above the ideal wall stability limit, and feedback suppression is aimed at delaying the onset of discharge disruption through reduction of the kink mode amplitude. Performance of the new feedback algorithm is tested under different experimental conditions, including variation of the plasma-wall coupling, insertion of a ferritic wall, changing mode rotation frequency over the range of 4-8 kHz using an internal biased electrode, and adjusting the feedback phase-angle to accelerate, amplify, or suppress the mode. We find the previously reported excitation of the slowly rotating mode at high feedback gain in HBT-EP is mitigated by the current control scheme. We also find good agreement between the observed and predicted changes to the mode rotation frequency and amplitude. When ferritic material is introduced, or the plasma-wall coupling becomes weaker as the walls are retracted from plasma, the feedback gain needs to be increased to achieve the same level of suppression. When mode rotation is slowed by a biased electrode, the feedback system still achieves mode suppression, and demonstrates wide bandwidth effectiveness.

  6. A generalized hydrodynamic model for acoustic mode stability in viscoelastic plasma fluid

    NASA Astrophysics Data System (ADS)

    Borah, B.; Haloi, A.; Karmakar, P. K.

    2016-05-01

    In this paper a generalized hydrodynamic (GH) model to investigate acoustic-mode excitation and stability in simplified strongly coupled bi-component plasma is proposed. The goal is centered in seeing the viscoelasticity-influences on the instability properties. The dispersive and nondispersive features are methodologically explored followed by numerical illustrations. It is seen that, unlike usual plasma acoustic mode, here the mode stability is drastically modified due to the considered viscoelastic effects contributed from both the electronic and ionic fluids. For example, it is found that there exists an excitation threshold value on angular wavenumber, K ≈3 in the K-space on the Debye scale, beyond which only dispersive characteristic features prevail. Further, it is demonstrated that the viscoelastic relaxation time plays a stabilizing influential role on the wave dynamics. In contrast, it is just opposite for the effective viscoelastic relaxation effect. Consistency with the usual viscoelasticity-free situations, with and without plasma approximation taken into account, is also established and explained. It is identified and conjectured that the plasma fluid viscoelasticity acts as unavoidable dispersive agency in attributing several new characteristics to acoustic wave excitation and propagation. The analysis is also exploited to derive a quantitative glimpse on the various basic properties and dimensionless numbers of the viscoelastic plasma. Finally, extended implications of our results tentative to different cosmic, space and astrophysical situations, amid the entailed facts and faults, are highlighted together with indicated future directions.

  7. Resistive stability of 2/1 modes near 1/1 resonance

    SciTech Connect

    Brennan, D. P.; Turnbull, A. D.; Chu, M. S.; La Haye, R. J.; Lao, L. L.; Osborne, T. H.; Galkin, S. A.

    2007-05-15

    The stability of resistive modes is examined using reconstructions of experimental equilibria in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], revealing the important physics in mode onset as discharges evolve to instability. Experimental attempts to access the highest {beta} in tokamak discharges, including 'hybrid' discharges, are typically terminated by the growth of a large 2/1 tearing mode. Model equilibria, based on experimental reconstructions from one of these discharges with steady state axial q{sub 0}{approx_equal}1, are generated varying q{sub 0} and pressure. For each equilibrium, the PEST-III code [A. Pletzer, A. Bondeson, and R. L. Dewar, J. Comput. Phys. 115, 530 (1994)] is used to determine the ideal magnetohydrodynamic solution including both tearing and interchange parities. This outer region solution must be matched to the resistive inner layer solutions at the rational surface to determine resistive mode stability. From this analysis it is found that the approach to q=1 simultaneously causes the 2/1 mode to become unstable and the nonresonant 1/1 displacement to become large, as the ideal {beta} limit rapidly decreases toward the experimental value. However, the 2/2 harmonic on axis, which is also large and is coupled to the saturated steady state 3/2 mode, is thought to contribute to the current drive sustaining q{sub 0} above 1 in these hybrid discharges. Thus, the approach to the q=1 resonance is self-limiting in this context. This work suggests that sustaining q{sub 0} slightly above 1 will avoid the 2/1 instability and will allow access to significantly higher {beta} values in these discharges.

  8. Effect of master oscillator stability over pulse repetition frequency on hybrid semiconductor mode-locked laser

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2015-04-01

    Semiconductor mode-locked lasers are a very attractive laser pulse source for high accuracy length metrology. However, for some applications, this kind of device does not have the required frequency stability. Operating the laser in hybrid mode will increase the laser pulse repetition frequency (PRF) stability. In this study it is showed that the laser PRF is not only locked to the master oscillator but also maintains the same level of stability of the master oscillator. The device used in this work is a 10 mm long mode-locked asymmetrical cladding single section InAs/InP quantum dash diode laser emitting at 1580 nm with a pulse repetition frequency of ≈4.37 GHz. The laser nominal stability in passive mode (no external oscillator) shows direct dependence with the gain current and the stability range goes from 10-4 to 10-7. Several oscillators with different stabilities were used for the hybrid-mode operation (with external oscillator) and the resulting mode-locked laser stability compared. For low cost oscillators with low stability, the laser PRF stability achieves a value of 10-7 and for higher stable oscillation source (such as oven controlled quartz oscillators (OXCO)) the stability can reach values up to 10-12 (τ =1 s).

  9. Stability analysis of ecomorphodynamic equations

    NASA Astrophysics Data System (ADS)

    Bärenbold, F.; Crouzy, B.; Perona, P.

    2016-02-01

    In order to shed light on the influence of riverbed vegetation on river morphodynamics, we perform a linear stability analysis on a minimal model of vegetation dynamics coupled with classical one- and two-dimensional Saint-Venant-Exner equations of morphodynamics. Vegetation is modeled as a density field of rigid, nonsubmerged cylinders and affects flow via a roughness change. Furthermore, vegetation is assumed to develop following a logistic dependence and may be uprooted by flow. First, we perform the stability analysis of the reduced one-dimensional framework. As a result of the competitive interaction between vegetation growth and removal through uprooting, we find a domain in the parameter space where originally straight rivers are unstable toward periodic longitudinal patterns. For realistic values of the sediment transport parameter, the dominant longitudinal wavelength is determined by the parameters of the vegetation model. Bed topography is found to adjust to the spatial pattern fixed by vegetation. Subsequently, the stability analysis is repeated for the two-dimensional framework, where the system may evolve toward alternate or multiple bars. On a fixed bed, we find instability toward alternate bars due to flow-vegetation interaction, but no multiple bars. Both alternate and multiple bars are present on a movable, vegetated bed. Finally, we find that the addition of vegetation to a previously unvegetated riverbed favors instability toward alternate bars and thus the development of a single course rather than braiding.

  10. Stability, causality, and quasinormal modes of cosmic strings and cylinders

    SciTech Connect

    Pavan, Alan B.; Abdalla, E.; Molina, C.

    2010-02-15

    In this work we consider the evolution of a massive scalar field in cylindrically symmetric space-times. Quasinormal modes have been calculated for static and rotating cosmic cylinders. We found unstable modes in some cases. Rotating as well as static cosmic strings, i.e., without regular interior solutions, do not display quasinormal oscillation modes. We conclude that rotating cosmic cylinder space-times that present closed timelike curves are unstable against scalar perturbations.

  11. Stability of coupled tearing and twisting modes in tokamaks

    SciTech Connect

    Fitzpatrick, R.

    1994-03-01

    A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable {open_quote}compound{close_quote} modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, {open_quote}compound{close_quote} modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-{beta} plasma, but twisting parity layers become more probable as the plasma {beta} is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up.

  12. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    SciTech Connect

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-{eta}{sub i}mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub i} mode suggests that the large core {bold E x B} flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {Beta}{sub N} {lt} 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity.

  13. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    NASA Astrophysics Data System (ADS)

    Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua

    2015-10-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).

  14. Gyrokinetic verification of the persistence of kinetic ballooning modes in the magnetohydrodynamic second stability regime

    SciTech Connect

    Joiner, N.; Hirose, A.

    2008-08-15

    The kinetic ballooning mode (KBM) has been shown in previous work to be unstable within the magnetohydrodynamic (MHD) region (in s-{alpha} space) of second stability [Hirose et al., Phys. Rev. Lett. 72, 3993 (2004)]. In this work we verify this result using the gyrokinetic code GS2 [Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] treating both ions and electrons as kinetic species and retaining the magnetosonic perturbation B{sub parallel}. Growth rates calculated using GS2 differ significantly from the previous differential/shooting code analysis. Calculations without B{sub parallel} find the stability region is preserved, while the addition of B{sub parallel} causes the mode to be more unstable than previously calculated within the region of MHD second stability. The inclusion of parallel ion current and B{sub parallel} into the shooting code does not account for the GS2 results. The evidence presented in this paper leads us to the conclusion that the adiabatic electron approximation employed in previous studies is found to be unsuitable for this type of instability. Based on the findings of this work, the KBM becomes an interesting instability in the context of internal transport barriers, where {alpha} is often large and magnetic shear is small (positive or negative)

  15. Long-term frequency stabilization system for external cavity diode laser based on mode boundary detection

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Huang, Kaikai; Jiang, Yunfeng; Lu, Xuanhui

    2011-12-01

    We have realized a long-term frequency stabilization system for external cavity diode laser (ECDL) based on mode boundary detection method. In this system, the saturated absorption spectroscopy was used. The current and the grating of the ECDL were controlled by a computer-based feedback control system. By checking if there are mode boundaries in the spectrum, the control system determined how to adjust current to avoid mode hopping. This procedure was executed periodically to ensure the long-term stabilization of ECDL in the absence of mode hops. This diode laser system with non-antireflection coating had operated in the condition of long-term mode-hop-free stabilization for almost 400 h, which is a significant improvement of ECDL frequency stabilization system.

  16. Resonant field amplification with feedback-stabilized regime in current driven resistive wall mode

    SciTech Connect

    Liu Yueqiang; In, Y.; Okabayashi, M.

    2010-07-15

    The stability and resonant field response of current driven resistive wall modes are numerically studied for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low pressure plasmas. The resonant field response of the feedback-stabilized resistive wall mode is investigated both analytically and numerically, and compared with the response from intrinsically stable or marginally stable modes. The modeling qualitatively reproduces the experimental results. Furthermore, based on some recent results and on the indirect numerical evidence in this work, it is suggested that the mode stability behavior observed in DIII-D experiments is due to the kink-peeling mode stabilization by the separatrix geometry. The phase inversion radius of the computed plasma displacement does not generally coincide with the radial locations of rational surfaces, also supporting experimental observations.

  17. Stabilizing Gyroscopic Modes in Magnetic-Bearing-Supported Flywheels by Using Cross-Axis Proportional Gains

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.

    2006-01-01

    For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.

  18. 3-D simulations of limiter stabilization of high-beta external kink-tearing modes

    SciTech Connect

    Lee, J.K.; Ohyabu, N.

    1984-03-01

    The effects of finite-size poloidal limiters, toroidal limiters, and general mushroom limiters are examined for high-beta finite-resistivity tokamak plamas in free boundary. Even for a linear stability analysis, a 3-D simulation is necessary, in which many poloidal and toroidal modes are coupled because of the limiter constraint and finite-beta. When the plasma pressure and resistivity are small, a poloidal limiter is effective in reducing the growth rate with a small limiter-size, while a toroidal limiter requires a large size for a comparable effect. As the plasma pressure or resistivity increases, a toroidal limiter becomes more effective in reducing the growth rate than a poloidal limiter of the same size. A small optimized mushroom limiter might have a stabilizing effect similar to a conducting shell.

  19. Interactive multi-mode blade impact analysis

    NASA Technical Reports Server (NTRS)

    Alexander, A.; Cornell, R. W.

    1978-01-01

    The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.

  20. Ponderomotive stabilization of flute modes in mirrors Feedback control and numerical results

    NASA Technical Reports Server (NTRS)

    Similon, P. L.

    1987-01-01

    Ponderomotive stabilization of rigid plasma flute modes is numerically investigated by use of a variational principle, for a simple geometry, without eikonal approximation. While the near field of the studied antenna can be stabilizing, the far field has a small contribution only, because of large cancellation by quasi mode-coupling terms. The field energy for stabilization is evaluated and is a nonnegligible fraction of the plasma thermal energy. A new antenna design is proposed, and feedback stabilization is investigated. Their use drastically reduces power requirements.

  1. Analysis of Motorcycle Weave Mode by using Energy Flow Method

    NASA Astrophysics Data System (ADS)

    Marumo, Yoshitaka; Katayama, Tsuyoshi

    The activation mechanism of motorcycle weave mode is clarified within the framework of the energy flow method, which calculates energy flow of mechanical forces in each motion. It is demonstrated that only a few mechanical forces affect the stability of the weave mode from among a total of about 40 mechanical forces. The activation of the lateral, yawing and rolling motions destabilize the weave mode, while activation of the steering motion stabilizes the weave mode. A detailed investigation of the energy flow of the steering motion reveals that the steering motion plays an important role in clarifying the characteristics of the weave mode. As activation of the steering motion progresses the phase of the front tire side force, and the weave mode is consequently stabilized. This paper provides a design guide for stabilizing the weave mode and the wobble mode compatibility.

  2. Kinetic analysis of MHD ballooning modes in tokamaks

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from ..beta.. = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with ..beta.., these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-..beta..-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties.

  3. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    SciTech Connect

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q{sub 95}, and lower collisionality.

  4. Stability and modal analysis of shock/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2016-06-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  5. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  6. Impact of ion diamagnetic drift on ideal ballooning mode stability in rotating tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Aiba, N.

    2016-04-01

    Drift magnetohydrodynamic (MHD) equations have been derived in order to investigate the ion diamagnetic drift effect on the stability to ideal MHD modes in rotating plasmas. These drift MHD equations have been simplified with the Frieman-Rotenberg formalism under the incompressible assumption, and a new code, MINERVA-DI, has been developed to solve the derived extended Frieman-Rotenberg equation. Benchmark results of the MINERVA-DI code show good agreements with the analytic theory discussing the stability to an internal kink mode and that to a ballooning mode in static plasmas. The stability analyses of the ballooning mode with respect to toroidal rotation with the ion diamagnetic drift effect have been performed using MINERVA-DI. The stabilizing effect by the ion diamagnetic drift is found to be negligible when the rotation frequency is large compared to the ion diamagnetic drift frequency. The direction of plasma rotation affects the ballooning mode stability when the ion diamagnetic drift effect is taken into account. It is identified that there are two physics mechanisms responsible for the dependence of MHD stability on the rotation direction. One is the correction of the dynamic pressure effect on MHD stability by the ion diamagnetic drift, and the other is the change of the MHD eigenmode structure by the combined effect of plasma rotation and ion diamagnetic drift.

  7. A streamlined failure mode and effects analysis

    SciTech Connect

    Ford, Eric C. Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-15

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  8. Energetic particle stabilization of m=1 internal kink mode in tokamaks

    NASA Astrophysics Data System (ADS)

    R, J. Hastie; Yanping, Chen; Fujiu, Ke; Shidong, Cai; S, T. Tsai; L, Chen

    1987-12-01

    The stability of m=1 internal kink mode in a tokamak plasma with an anisotropic energetic particle component has been analyzed using the generalized energy principle. It is found that employing barely trapped energetic particles can significantly improve the stability properties.

  9. Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control.

    PubMed

    Wang, Jia-Jun

    2012-11-01

    X-Z inverted pendulum is a new kind of inverted pendulum which can move with the combination of the vertical and horizontal forces. Through a new transformation, the X-Z inverted pendulum is decomposed into three simple models. Based on the simple models, sliding-mode control is applied to stabilization and tracking control of the inverted pendulum. The performance of the sliding mode control is compared with that of the PID control. Simulation results show that the design scheme of sliding-mode control is effective for the stabilization and tracking control of the X-Z inverted pendulum.

  10. Feasibility of large-{beta} tokamak stability to ballooning modes due to nonmonotonic q-profiles

    SciTech Connect

    Medvedev, M.V.; Yurchenko, E.I.

    1994-12-01

    The stability of high-temperature nondissipative plasmas to the flute instability ballooning modes in tokamak-like toroidal configurations is investigated at high plasma pressures. The analytical criterion of ballooning-mode stability at large toroidal numbers, discovered by O.P. Pogutse and E.I. Yurchenko, is used for stability assessment. In contrast to systems with monotonic safety-factor q-profiles, nonmonotonic q-profile systems are found to allow a considerable increase in the critical plasma pressure, provided that the pressure profile is properly chosen. The most preferred pressure profiles prove to be the peaked profiles. 13 refs., 12 figs., 5 tabs.

  11. Linear perturbations of black holes: stability, quasi-normal modes and tails

    NASA Astrophysics Data System (ADS)

    Zhidenko, Alexander

    2009-03-01

    Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.

  12. Is there a mode stability paradox for neutrino perturbations of Kerr black holes?

    NASA Astrophysics Data System (ADS)

    Düztaş, Koray

    2016-08-01

    Adopting the notation of Teukolsky and Press, we derive the connection relation for asymptotic solutions of the massless Dirac equation on a Kerr background. We show that, unlike bosonic fields, the connection relation for massless Dirac fields (neutrino) provides a rigorous proof of mode stability. The same relation also implies that every incoming mode can be absorbed by the black hole or there is no superradiance. Recent works on overspinning black holes have shown that this can lead to the formation of naked singularities. We argue that the fact that both the mode stability of the black hole under neutrino perturbations and the instability of the event horizon (therefore the instability of the black hole) can be derived from the same connection relation leads to a paradox. In other words mode, stability implies event horizon instability as far as neutrino perturbations are concerned.

  13. Stabilization of energetic-ion-driven MHD modes by ECCD in Heliotron J

    NASA Astrophysics Data System (ADS)

    Nagasaki, K.; Yamamoto, S.; Kobayashi, S.; Sakamoto, K.; Nagae, Y.; Sugimoto, Y.; Nakamura, Y. I.; Weir, G.; Marushchenko, N.; Mizuuchi, T.; Okada, H.; Minami, T.; Masuda, K.; Ohshima, S.; Konoshima, S.; Shi, N.; Nakamura, Y.; Lee, H. Y.; Zang, L.; Arai, S.; Watada, H.; Fukushima, H.; Hashimoto, K.; Kenmochi, N.; Motojima, G.; Yoshimura, Y.; Mukai, K.; Volpe, F.; Estrada, T.; Sano, F.

    2013-11-01

    Second harmonic electron cyclotron current drive (ECCD) has been applied in the stellarator/heliotron (S/H) device, Heliotron J, to stabilize magnetohydrodynamic (MHD) modes. The energetic particle mode (EPM) of 60-90 kHz frequency, one of the energetic-ion-driven MHD modes, is excited in a plasma heated by co- and counter-neutral beam injection and electron cyclotron heating (ECH). The EPM has been stabilized by counter-ECCD which decreases the rotational transform. Localized EC current driven by a few kA at the central region modifies the rotational transform profile, ι/2π, leading to the formation of a high magnetic shear at the radius where the mode is excited. An experiment scanning the EC-driven current shows that there is a threshold in magnetic shear and/or rotational transform to stabilize the EPM.

  14. The effect of an anisotropic pressure of thermal particles on resistive wall mode stability

    SciTech Connect

    Berkery, J. W. Sabbagh, S. A.; Betti, R.; Guazzotto, L.; Manickam, J.

    2014-11-15

    The effect of an anisotropic pressure of thermal particles on resistive wall mode stability in tokamak fusion plasmas is derived through kinetic theory and assessed through calculation with the MISK code [B. Hu et al., Phys. Plasmas 12, 0 57301 (2005)]. The fluid anisotropy is treated as a small perturbation on the plasma equilibrium and modeled with a bi-Maxwellian distribution function. A complete stability treatment without an assumption of high frequency mode rotation leads to anisotropic kinetic terms in the dispersion relation in addition to anisotropy corrections to the fluid terms. With the density and the average pressure kept constant, when thermal particles have a higher temperature perpendicular to the magnetic field than parallel, the fluid pressure-driven ballooning destabilization term is reduced. Additionally, the stabilizing kinetic effects of the trapped thermal ions can be enhanced. Together these two effects can lead to a modest increase in resistive wall mode stability.

  15. Feedback stabilization of resistive wall modes in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Cecconello, M.; Drake, J. R.; Manduchi, G.; Marchiori, G.

    2005-09-01

    An array of saddle coils having Nc=16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n ,n' that fulfill the condition ∣n-n'∣=Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.

  16. Nonlinear {omega}*-stabilization of the m = 1 mode in tokamaks

    SciTech Connect

    Rogers, B.; Zakharov, L.

    1995-08-01

    Earlier studies of sawtooth oscillations in Tokamak Fusion Test Reactor supershots (Levinton et al, Phys. Rev. Lett. 72, 2895 (1994); Zakharov, et al, Plasma Phys. and Contr. Nucl. Fus. Res., Proc. 15th Int. Conf., Seville 1994, Vienna) have found an apparent contradiction between conventional linear theory and experiment: even in sawtooth-free discharges, the theory typically predicts instability due to a nearly ideal m = 1 mode. Here, the nonlinear evolution of such mode is analyzed using numerical simulations of a two-fluid magnetohydrodynamic (MHD) model. We find the mode saturates nonlinearly at a small amplitude provided the ion and electron drift-frequencies {omega}*{sub i,e} are somewhat above the linear stability threshold of the collisionless m = 1 reconnecting mode. The comparison of the simulation results to m = 1 mode activity in TFTR suggests additional, stabilizing effects outside the present model are also important.

  17. Stability Analysis of ISS Medications

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.

    2014-01-01

    the United States Pharmacopeia (USP) to measure the amount of intact active ingredient, identify degradation products and measure their amounts. Some analyses were conducted by an independent analytical laboratory, but certain (Schedule) medications could not be shipped to their facility and were analyzed at JSC. RESULTS Nine medications were analyzed with respect to active pharmaceutical ingredient (API) and degradant amounts. Results were compared to the USP requirements for API and degradants/impurities content for every FDA-approved medication. One medication met USP requirements at 5 months after its expiration date. Four of the nine (44% of those tested) medications tested met USP requirements up to 8 months post-expiration. Another 3 medications (33% of those tested) met USP guidelines 2-3 months before expiration. One medication, a compound classed by the FDA as a dietary supplement and sometimes used as a sleep aid, failed to meet USP requirements at 11 months post-expiration. CONCLUSION Analysis of each medication at a single time point provides limited information on the stability of a medication stored in particular conditions; it is not possible to predict how long a medication may be safe and effective from these data. Notwithstanding, five of the nine medications tested (56%) met USP requirements for API and degradants/impurities at least 5 months past expiration dates. The single compound that failed to meet USP requirements is not regulated as strictly as prescription medications are during manufacture; it is unknown if this medication would have met the requirements prior to flight. Notably, it was the furthest beyond its expiration date. Only more comprehensive analysis of flight-aged samples compared to appropriate ground controls will permit determination of spaceflight effects on medication stability.

  18. Color stability of acrylic resin adhesives with different initiation modes.

    PubMed

    Tanoue, Naomi; Koishi, Yoshikazu; Yanagida, Hiroaki; Atsuta, Mitsuru; Shimada, Kazuki; Matsumura, Hideo

    2004-09-01

    The purpose of this study was to evaluate the color stability of two acrylic resin adhesives with different activation systems: a benzoyl peroxide (BPO)-amine redox system and a tri-n-butylborane (TBB) derivative system. The colorimetric values of the two resins in different shades (Clear and Ivory) were determined (n=5) 24 hours after polymerization as a baseline using the L*a*b* system of the Commission Internationale de l'Eclairage (CIE). The specimens were thereafter immersed in distilled water, and the color difference (deltaE*) values were calculated. After 24 weeks, the TBB-initiated material showed a significantly (p<0.05) lower color change than the BPO-amine-initiated material. The deltaE* values for the BPO-amine-initiated materials were 6.9 for Clear and 15.8 for Ivory, whereas those for the TBB-initiated materials were 1.3 and 1.8 respectively. Thus, it was concluded that the TBB-initiated material had superior color stability to that of the BPO-amine-initiated material.

  19. Stabilization of external kink modes in magnetic fusion experiments using a thin conducting shell

    SciTech Connect

    Fitzpatrick, R.

    1995-11-01

    In nearly all magnetic fusion devices the plasma is surrounded by a conducting shell of some description. In most cases this is the vacuum vessel. What effect does a conducting shell have on the stability of external kink modes? Is there any major difference between the effect of a perfectly conducting shell and a shell of finite conductivity? What happens if the shell is incomplete? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistive MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effect of conducting shells on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  20. Bouncing ball problem: stability of the periodic modes.

    PubMed

    Barroso, Joaquim J; Carneiro, Marcus V; Macau, Elbert E N

    2009-02-01

    Exploring all its ramifications, we give an overview of the simple yet fundamental bouncing ball problem, which consists of a ball bouncing vertically on a sinusoidally vibrating table under the action of gravity. The dynamics is modeled on the basis of a discrete map of difference equations, which numerically solved fully reveals a rich variety of nonlinear behaviors, encompassing irregular nonperiodic orbits, subharmonic and chaotic motions, chattering mechanisms, and also unbounded nonperiodic orbits. For periodic motions, the corresponding conditions for stability and bifurcation are determined from analytical considerations of a reduced map. Through numerical examples, it is shown that a slight change in the initial conditions makes the ball motion switch from periodic to chaotic orbits bounded by a velocity strip v=+/-Gamma(1-epsilon) , where Gamma is the nondimensionalized shaking acceleration and epsilon the coefficient of restitution which quantifies the amount of energy lost in the ball-table collision.

  1. Pump power stability range of single-mode solid-state lasers with rod thermal lensing

    SciTech Connect

    De Silvestri, S.; La Porta, P.; Magni, V.

    1987-11-01

    The pump power stability range of solid-state laser resonators operating in the TEM/sub 00/ mode has been thoroughly investigated. It has been shown that, for a very general resonator containing intracavity optical systems, rod thermal lensing engenders a pump power stability range which is a characteristic parameter of laser material and pump cavity, but is independent of resonator configuration. Stability ranges have been calculated and critically discussed for Nd:YAG, Nd:Glasses, Nd:Cr:GSGG, and alexandrite. The independence of the pump power stability range from the resonator configuration has been experimentally demonstrated for a CW Nd:YAG laser.

  2. Optical repetition rate stabilization of a mode-locked all-fiber laser.

    PubMed

    Rieger, Steffen; Hellwig, Tim; Walbaum, Till; Fallnich, Carsten

    2013-02-25

    We designed an all-fiber mode-locked Erbium laser with optically stabilized repetition rate of 31.4 MHz. The stabilization was achieved by changing the refractive index of an Ytterbium-doped fiber in the resonator via optical pumping at a wavelength of 978 nm; and for long-term stability the local temperature of the fiber was additionally controlled with a thermo-electric element. The repetition rate was stabilized over 12 hours, and an Allan deviation of 2.5 × 10⁻¹² for an averaging time of 1 s could be achieved.

  3. Effect of toroidal magnetic field on n = 1 mode stability in rotamak plasmas

    SciTech Connect

    Yang, X.; Goss, J.; Kalaria, D.; Huang, T. S.

    2011-08-15

    To study the effect of toroidal magnetic field on n = 1 mode stability, a series of experiments with linearly ramping the axial current I{sub z}, which makes field-reversed configuration (FRC) to spherical tokamak (ST) transition, have been conducted in rotamak. Results clearly demonstrate that the tilt mode can be completely suppressed by small I{sub z} around 0.4 kA (in comparison with 2.0 kA plasma current). An unknown new mode with larger magnetic perturbations is triggered when I{sub z} reaches 0.5 kA. This instability mode keeps saturation while plasma current is boosted when I{sub z} is in the range of 0.6-1.4 kA. When I{sub z} exceeds 1.6 kA, the new mode suddenly disappears and discharge is free from instability modes.

  4. Linear Stability Analysis of Couette Flow with a Porous Wall

    NASA Astrophysics Data System (ADS)

    Tilton, Nils; Cortelezzi, Luca

    2006-11-01

    It is well known that plane Couette flow in a channel with perfectly smooth, impermeable walls is linearly stable for all Reynolds numbers. Little attention has been given in literature to the stability of plane Couette flow when at least one of the walls is porous. In this study, we consider a channel delimited by an impermeable moving wall, which drives the flow, and a stationary, rigid, homogeneous, isotropic, porous block. We perform a three-dimensional linear stability analysis of the fully developed laminar flow in both the channel and the porous block. We restrict the study to sufficiently small permeabilities in order to neglect inertial effects in the porous flow. We solve the coupled linear stability problem, arising from the adjacent channel and porous flows, using a spectral collocation technique. The linear stability analysis takes account of the coupling between the two disturbance fields through boundary conditions recently derived by Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer, 38, 1995). We find that Couette flow over a permeable wall is no longer absolutely stable. While the critical Reynolds number tends to infinity as the permeability tends to zero, it decreases drastically for higher permeabilities. We also find a new channel mode and new class of modes in the porous region. We compare and discuss these results in terms of the recently published results of a three-dimensional linear stability analysis of a channel flow with porous walls (Tilton and Cortelezzi, Phys. Fluids 18, 051702, 2006).

  5. Particle simulation on radio frequency stabilization of flute modes in a tandem mirror. I. Parallel antenna

    SciTech Connect

    Kadoya, Y.; Abe, H.

    1988-04-01

    A two- and one-half-dimensional electromagnetic particle code (PS2M) (H. Abe and S. Nakajima, J. Phys. Soc. Jpn. 53, xxx (1987)) is used to study how an electric field applied parallel to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The parallel electric field E/sub parallel/ perturbs the electron velocity v/sub parallel/ parallel to the magnetic field and also induces a perpendicular magnetic field perturbation B/sub perpendicular/. The unstable growth of the flute mode in the absence of such a radio frequency electric field is first studied as a basis for comparison. The ponderomotive force originating from the time-averaged product is then shown to stabilize the flute modes. The stabilizing wave power threshold, the frequency dependency, and the dependence on delchemically bondE/sub parallel/chemically bond all agree with the theoretical predictions.

  6. Stability criteria for edge flute modes in the two-fluid regime

    SciTech Connect

    Zheng, L. )

    1993-05-01

    Necessary and sufficient stability criteria for flute modes localized at the edge of toroidal plasmas are obtained from the Braginskii's two-fluid equations without taking into account the collisional effects. It is assumed that the plasma pressure tends to vanish, but its gradient remains finite at the edge of the plasma. The results show that the free-boundary edge flute modes (namely, the peeling modes) are more dangerous than the fixed-boundary modes (namely, the Mercier modes). Numerical investigation of the criterion for peeling modes shows that the finite ion-gyroradius effect can substantially stabilize the modes, especially for the case [Delta][ge]0, where the equilibrium quantity [Delta][equivalent to]1/2+[ital S][sup [minus]1][lt][bold j][center dot][bold B][vert bar][del][ital v][vert bar][sup [minus]2][gt], with [ital S] denoting the global shear, [bold B] the magnetic field, [bold j] the current density, [ital v] the volume inside the reference magnetic surface, and [lt]...[gt] denoting the average over the magnetic surface. Equilibria with [Delta][ge]0 are shown to be more stable to the peeling modes than those with [Delta][le]0.

  7. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.

    PubMed

    Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E

    2015-04-17

    We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement. PMID:25933301

  8. Linear Mode Stability of the Kerr-Newman Black Hole and Its Quasinormal Modes

    NASA Astrophysics Data System (ADS)

    Dias, Óscar J. C.; Godazgar, Mahdi; Santos, Jorge E.

    2015-04-01

    We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m =2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Re ω =m ΩHext and Im ω =0 at extremality; this is a universal property for any field of arbitrary spin |s |≤2 propagating on a KNBH background (ω is the wave frequency and ΩHext the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.

  9. Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.

    PubMed

    Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E

    2015-04-17

    We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.

  10. Stability Analysis for HIFiRE Experiments

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.; Kimmel, Roger; Adamczak, David; Borg, Matthew; Stanfield, Scott; Smith, Mark S.

    2012-01-01

    The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of attack. This paper reports selected findings from the ongoing computational analysis of the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The growth of first mode instabilities is found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear N-factor, based on parabolized stability equations, of approximately 13.5. Due to the large angles of attack during the re-entry phase, crossflow instability may play a significant role in transition. Computations also indicate the presence of pronounced crossflow separation over a significant portion of the trajectory segment that is relevant to transition analysis. The transition behavior during this re-entry segment of HIFiRE-1 flight shares some common features with the predicted transition front along the elliptic cone shaped HIFiRE-5 flight article, which was designed to provide hypersonic transition data for a fully 3D geometric configuration. To compare and contrast the

  11. Long-term stabilization of single longitudinal mode in external cavity semiconductor lasers

    SciTech Connect

    Zhang Hanyi; Zhou Jianying; Wu Yuanxing; Li Jian; Pang Zhengwu; Zhou Bingkun

    1988-05-01

    Long-term frequency stabilization of a single longitudinal mode (SLM) external cavity semiconductor laser has been demonstrated by using multisegment composite-cavity configuration and automatic frequency control loop with feedback to control the external cavity length. The time period of mode-hopping free SLM operation has been observed to be more than 24 hours with a frequency shift of about 28 MHz and a linewidth of less than 200 kHz.

  12. Solar seismology. I - The stability of the solar p-modes

    NASA Technical Reports Server (NTRS)

    Goldreich, P.; Keeley, D. A.

    1977-01-01

    The stability of the radial p-modes of the sun is investigated by computing nonadiabatic eigenvalues and eigenfunctions for a solar envelope model which extends from an inner radius of about 0.3 solar radius out to an optical depth of about 0.0003. The calculations take into account in a crude fashion the response of the convective flux to the oscillation. The dynamical effect of turbulence in the convection zone is parametrized in terms of a turbulent shear viscosity. The results show that if damping by turbulent viscosity is neglected, all modes with periods longer than 6 minutes are unstable. The familiar kappa-mechanism, which operates in the H ionization-H(-) opacity region, is the dominant source of driving of the oscillations. Modes with periods shorter than 6 minutes are stabilized by radiative damping in the solar atmosphere. When turbulent dissipation of pulsational energy is included, all modes are predicted to be stable. However, the margin of stability is very small. In view of the large uncertainty that must be assigned to the estimate of turbulent damping, it is concluded that theoretical calculations cannot unequivocally resolve the question of the stability of the solar p-modes.

  13. Stability and quasinormal modes of the massive scalar field around Kerr black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A. V.

    2006-06-01

    In this paper, we find quasinormal spectrum of the massive scalar field in the background of the Kerr black holes. We show that all found modes are damped under the quasinormal modes boundary conditions when μM≲1, thereby implying stability of the massive scalar field. This complements the region of stability determined by the Beyer inequality for large masses of the field. We show that, similar to the case of a nonrotating black hole, the massive term of the scalar field does not contribute in the regime of high damping. Therefore, the high damping asymptotic should be the same as for the massless scalar field.

  14. Mode estimation and adaptive feedforward control for stabilization of a flexible gun tube

    NASA Astrophysics Data System (ADS)

    Vandegrift, Mark W.; DiRenzo, Michael T.

    1998-07-01

    In this paper we describe an approach for designing a pointing and stabilization system for an unbalanced, flexible gun. Our approach is based upon classical control techniques as well as system identification and adaptive feedforward techniques. Adaptive algorithms identify the flexible modes of the system and estimate the dynamics unbalance. This information is used to update the control law in order to improve the stabilization accuracy of the system.

  15. Influence of vibration modes on control system stabilization for space shuttle type vehicles

    NASA Technical Reports Server (NTRS)

    Greiner, H. G.

    1972-01-01

    An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.

  16. Stability of the conservative mode of nucleosome assembly.

    PubMed Central

    Leffak, I M

    1983-01-01

    The conservative assembly of nucleosome histone octamer cores has been confirmed by electrophoretic analysis of density labeled histones following equilibrium buoyant density centrifugation. After normal replication, crosslinked octamers are shown not to contain a mixture of new and old core histones. Moreover, when DNA synthesis is inhibited by ara-C nucleosome cores are still assembled exclusively from nascent histone. Similarly, after release from cycloheximide inhibition newly synthesized core histone is conservatively deposited. Thus, a conservative mechanism of histone octamer assembly occurs when nascent histone is present in the normal stoichiometry to nascent DNA and when chromatin is assembled in nascent histone or nascent DNA excess. Images PMID:6856473

  17. Rotational stabilization of the resistive wall modes in tokamaks with a ferritic wall

    SciTech Connect

    Pustovitov, V. D.; Yanovskiy, V. V.

    2015-03-15

    The dynamics of the rotating resistive wall modes (RWMs) is analyzed in the presence of a uniform ferromagnetic resistive wall with μ{sup ^}≡μ/μ{sub 0}≤4 (μ is the wall magnetic permeability, and μ{sub 0} is the vacuum one). This mimics a possible arrangement in ITER with ferromagnetic steel in test blanket modules or in future experiments in JT-60SA tokamak [Y. Kamada, P. Barabaschi, S. Ishida, the JT-60SA Team, and JT-60SA Research Plan Contributors, Nucl. Fusion 53, 104010 (2013)]. The earlier studies predict that such a wall must provide a destabilizing influence on the plasma by reducing the beta limit and increasing the growth rates, compared to the reference case with μ{sup ^}=1. This is true for the locked modes, but the presented results show that the mode rotation changes the tendency to the opposite. At μ{sup ^}>1, the rotational stabilization related to the energy sink in the wall becomes even stronger than at μ{sup ^}=1, and this “external” effect develops at lower rotation frequency, estimated as several kHz at realistic conditions. The study is based on the cylindrical dispersion relation valid for arbitrary growth rates and frequencies. This relation is solved numerically, and the solutions are compared with analytical dependences obtained for slow (s/d{sub w}≫1) and fast (s/d{sub w}≪1) “ferromagnetic” rotating RWMs, where s is the skin depth and d{sub w} is the wall thickness. It is found that the standard thin-wall modeling becomes progressively less reliable at larger μ{sup ^}, and the wall should be treated as magnetically thick. The analysis is performed assuming only a linear plasma response to external perturbations without constraints on the plasma current and pressure profiles.

  18. Biacore analysis with stabilized GPCRs

    PubMed Central

    Rich, Rebecca L.; Errey, James; Marshall, Fiona; Myszka, David G.

    2010-01-01

    Using stabilized forms of β1 adrenergic and A2A adenosine G-protein-coupled receptors, we applied Biacore to monitor receptor activity and characterize binding constants of small-molecule antagonists spanning >20,000 fold in affinity. We also illustrate an improved method for tethering His-tagged receptors on NTA chips to yield stable, high-capacity, high-activity surfaces, as well as a novel approach to regenerate receptor-binding sites. Based on our success with this approach, we expect that the combination of stabilized receptors with biosensor technology will become a common method for characterizing members of this receptor family. PMID:20969829

  19. Stability analysis of dynamic thin shells

    NASA Astrophysics Data System (ADS)

    Lobo, Francisco S. N.; Crawford, Paulo

    2005-11-01

    We analyse the stability of generic spherically symmetric thin shells to linearized perturbations around static solutions. We include the momentum flux term in the conservation identity, deduced from the 'ADM' constraint and the Lanczos equations. Following the Ishak Lake analysis, we deduce a master equation which dictates the stable equilibrium configurations. Considering the transparency condition, we study the stability of thin shells around black holes, showing that our analysis is in agreement with previous results. Applying the analysis to traversable wormhole geometries, by considering specific choices for the form function, we deduce stability regions and find that the latter may be significantly increased by considering appropriate choices for the redshift function.

  20. Stability, Instability and Bifurcation Modes of a Delayed Small World Network with Excitatory or Inhibitory Short-Cuts

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Xu, Xu; Yu, Dongyuan; Zheng, Zhuoqun

    This paper presents a detailed analysis on the stability and instability of a coupled oscillator network with small world connections. This network consists of regular connections, excitatory short-cuts or inhibitory short-cuts. By using the perturbation theory of matrix, we give the upper and lower bounds of maximum and minimum eigenvalues of the coupling strength matrix, and then give the generalized sufficient conditions that guarantee the system complete stability or complete instability. In addition, we analyze the effects of the short-cut possibility, excitatory or inhibitory short-cut strength and time delay on the system stability. We also analyze the instability mechanism and bifurcation modes. In addition, the studies on the robustness stability show that the stability of this network is more robust to change of short-cut connections than the regular network. Compared to the mean-field theory, the stability conditions from the proposed method are more conservational. However, the proposed method can guarantee the complete stability even if the randomness is in the system. They are more useful and adaptive than mean-field theory especially when the excitatory and inhibitory connections exist simultaneously.

  1. Magnetohydrodynamic stability at the edge region in H-mode plasmas with long edge-localized-mode-free phases in the large helical device

    NASA Astrophysics Data System (ADS)

    Toi, K.; Ohdachi, S.; Ueda, R.; Watanabe, K. Y.; Nicolas, T.; Suzuki, Y.; Ogawa, K.; Tanaka, K.; Takemura, Y.; LHD Experiment Group

    2016-09-01

    Clear suppression of magnetic fluctuations associated with resistive interchange modes (RICs) is observed during long edge-localized-mode (ELM)-free phases of the H-mode plasma in an outward-shifted configuration of the Large Helical Decice, in which a steep pressure gradient is generated at the plasma edge in the magnetic hill. The ELM-free H-phase is interrupted by large amplitude ELMs which are thought to be induced through nonlinear evolution of the RICs having m  =  1/n  =  1 dominant component (m: poloidal mode number, n: toroidal one). The m  =  1/n  =  1 RIC amplitude is enhanced about 10 times compared with the H-phase level during each ELM. In most of the H-mode shots, the final ELM-free phase returns to L-phase by a large amplitude ELM. In the L-phase, the RIC amplitude is enhanced by a factor of ~3 compared with that in the H-phase, although the edge pressure gradient is reduced considerably. Linear resistive magnetohydrodynamic stability analysis is attempted using experimentally obtained equilibrium profiles. From the numerical analysis, the distance between the location of the steepest pressure gradient and the main mode resonance surface, i.e. the rotational transform ι  =  1, is found to be important for a large growth of the m  =  1/n  =  1 RIC in the H-phase.

  2. Stability of higher-order longitudinal modes in a bunched beam without mode coupling

    SciTech Connect

    Satoh, K.

    1981-05-01

    The theory of longitudinal instabilities of bunched beams was proposed by F. Sacherer. Starting from the Vlasov equation, he derived the integral equation for the perturbed distribution function. While the general method to solve the integral equation was given by Sacherer, a number of other papers discussing longitudinal bunched beam instability have also been published. Here we want to propose another formalism with which we can treat the integral equation without mode coupling for the case of a Gaussian bunch. We then generalize the formalism for the other bunch distributions, and derive a practical method to analyze the instability for the case of a parabolic bunch. While the solution of the Sacherer equation that we find is not new, we present another approach to solve it. Since the integral equation for the transverse instability is similar to that for the longitudinal instability, this formalism is also useful for the transverse case. 12 figs., 4 figs.

  3. Jacobi stability analysis of Rikitake system

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Yadav, C. K.

    2016-06-01

    We study the Rikitake system through the method of differential geometry, i.e. Kosambi-Cartan-Chern (KCC) theory for Jacobi stability analysis. For applying KCC theory we reformulate the Rikitake system as two second-order nonlinear differential equations. The five KCC invariants are obtained which express the intrinsic properties of nonlinear dynamical system. The deviation curvature tensor and its eigenvalues are obtained which determine the stability of the system. Jacobi stability of the equilibrium points is studied and obtain the conditions for stability. We study the dynamics of Rikitake system which shows the chaotic behaviour near the equilibrium points.

  4. Study of the stabilization of a semiconductor mode-lock laser using hybrid mode-lock and optical feedback

    NASA Astrophysics Data System (ADS)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.

    2014-08-01

    In this study we present a scheme for modelocked laser stabilization that narrows the RF linewidth and lowers the timing jitter. The aim of this scheme is to stabilize the pulse repetition frequency (PRF) to be used in an absolute long distance measurement technique. In the most of the stabilization schemes, PRF is kept constant, however in this scheme; the PRF is required to perform a sweep, while achieving a relative error in the order of 10-8 or better within the tuning range. The laser used is a symmetrical cladding single section InAs/InP quantum dash emitting at 1550 nm and with a pulse repetition frequency of 4.37 GHz The techniques proposed for stabilization are hybrid mode-locking and optical feed-back. In hybrid modelocking, the PRF is locked to the local oscillator (LO), lowering the RF linewidth and the jitter. By performing a frequency modulation of LO, the PRF is modulated. The optical feedback technique uses a fraction of the output radiation that is fed back into the laser cavity after a certain delay. If the delay line is correctly adjusted, this will reduce the timing jitter of laser. The progress in this technique is in the synchronization of the LO with the delay line, combining the benefits of both techniques. Performing a sweep in PRF, the synchronization circuit adjusts the delay line to match incoming pulses within the cavity. Preliminary results are showed.

  5. Localized stability criterion for kink modes in systems with small shear

    SciTech Connect

    Hastie, R.J.; Johnson, J.L.

    1986-02-01

    A localized magnetohydrodynamic stability criterion for ideal kink instabilities is determined for systems where the safety factor has a local minimum on a rational surface with no pressure gradient. These modes are stable in the cylindrical limit, but toroidal effects can make them unstable. They could provide a partial explanation for the rapid current penetration observed in tokamaks. 7 refs.

  6. Evidence for the Importance of Trapped Particle Resonances for Resistive Wall Mode Stability in High Beta Tokamak Plasmas

    SciTech Connect

    Reimerdes, H.; Berkery, J. W.; Lanctot, M. J.; Sabbagh, S. A.; Garofalo, A. M.; Strait, E. J.; Hanson, J. M.; In, Y.; Okabayashi, M.

    2011-05-27

    Active measurements of the plasma stability in tokamak plasmas reveal the importance of kinetic resonances for resistive wall mode stability. The rotation dependence of the magnetic plasma response to externally applied quasistatic n=1 magnetic fields clearly shows the signatures of an interaction between the resistive wall mode and the precession and bounce motions of trapped thermal ions, as predicted by a perturbative model of plasma stability including kinetic effects. The identification of the stabilization mechanism is an essential step towards quantitative predictions for the prospects of ''passive'' resistive wall mode stabilization, i.e., without the use of an ''active'' feedback system, in fusion-alpha heated plasmas.

  7. Numerical study on the stabilization of neoclassical tearing modes by electron cyclotron current drive

    SciTech Connect

    Wang, Xiaoguang; Zhang, Xiaodong; Wu, Bin; Zhu, Sizheng; Hu, Yemin

    2015-02-15

    It is well known that electron cyclotron current drive (ECCD) around the o-point of magnetic island along the plasma current direction can stabilize neoclassical tearing modes (NTMs) in tokamak devices. The effects of the radial misalignment between the island and the driven current, the phase misalignment, and the on-duty ratio for modulated current drive on NTM stabilization are studied numerically in this paper. A small radial misalignment is found to significantly decrease the stabilizing effect. When a sufficiently large phase misalignment occurs for the modulated ECCD, the stabilization effect is also reduced a lot. The optimal on-duty ratio of modulated ECCD to stabilize NTMs is found to be in the range of 60%–70%. A larger on-duty ratio than 50% could also mitigate the effect of phase misalignment if it is not too large. There is no benefit from modulation if the phase misalignment is larger than a threshold.

  8. Computational study of ion cyclotron frequency stabilization of the m = 1 interchange mode in mirror geometry

    SciTech Connect

    Myra, J.R.; D'Ippolito, D.A.; Francis, G.L.

    1987-01-01

    A cylindrical plasma model is used to study the stabilizing effect of electromagnetic ion cyclotron frequency range (ICRF) waves on the m = 1 magnetohydrodynamic interchange mode. The fast wave eigenmodes of the column and the near-field antenna pattern are calculated numerically for a diffuse plasma profile when ..omega..>..cap omega../sub i/. The resulting ponderomotive force and sideband contributions to global interchange stability are then determined using a rigid shift trial function. For far-field stabilization it is verified that the direct ponderomotive and sideband contributions cancel exactly as the conducting wall supporting the fast wave eigenmode moves out to infinity. The near-field stabilization effect is related numerically to the driven k/sub parallel/ spectrum of the waves and their radial profiles. The numerical model is employed to calculate threshold ICRF wave amplitudes for the stabilization experiments in the Phaedrus tandem mirror (Phys. Rev. Lett. 51, 1955 (1983)).

  9. Nonlinear ω*-stabilization of the m=1 mode in tokamaks

    NASA Astrophysics Data System (ADS)

    Rogers, B.; Zakharov, L.

    1995-09-01

    Earlier studies of sawtooth oscillations in Tokamak Fusion Test Reactor (TFTR) supershots [Levinton et al., Phys. Rev. Lett. 72, 2895 (1994); Zakharov et al., ``Onset and stabilization of sawtooth oscillations in tokamaks,'' in Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of the 15th International Conference, Seville, 1994 (International Atomic Energy Agency, Vienna, in press)] have found an apparent contradiction between conventional linear theory and experiment: even in sawtooth-free discharges, the theory typically predicts instability due to a nearly ideal m=1 mode. Here, the nonlinear evolution of such mode is analyzed using numerical simulations of a two-fluid magnetohydrodynamic (MHD) model. We find the mode saturates nonlinearly at a small amplitude provided the ion and electron drift-frequencies ω*i,e are somewhat above the linear stability threshold of the collisionless m=1 reconnecting mode. The comparison of the simulation results to m=1 mode activity in TFTR suggests additional, stabilizing effects outside the present model are also important.

  10. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  11. Ideal MHD stability properties of pressure-driven modes in low shear tokamaks

    SciTech Connect

    Manickam, J.; Pomphrey, N.; Todd, A.M.M.

    1987-03-01

    The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs.

  12. On the stability of the internal kink mode in the banana regime

    SciTech Connect

    Fogaccia, G.; Romanelli, F.

    1995-01-01

    The stability of the internal kink mode is investigated taking into account the kinetic response associated to the trapped thermal ions. Ion--ion collisions and diamagnetic effects in the layer are also considered. A significant stabilizing contribution is obtained, even at low-{beta} values, on the mode, which might be stable, on present experiments, even though predicted unstable according to the Bussac criterion [Bussac {ital et} {ital al}., Phys. Rev. Lett. {bold 35}, 1638 (1975)]. In addition, a trapped-ion instability is found, characterized by mode frequency of the order of the trapped-ion bounce-averaged magnetic drift frequency. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  14. Stability study of a gyrotron-traveling-wave amplifier based on a lossy dielectric-loaded mode-selective circuit

    SciTech Connect

    Du Chaohai; Liu Pukun

    2009-07-15

    The millimeter microwave source of gyrotron-traveling-wave amplifier (gyro-TWT) is capable of generating high power coherent radiation in a broad bandwidth, while its performance is severely deteriorated by the stability problems. This paper focuses on modeling and the stability analysis of the Naval Research Laboratory (NRL) Ka-band TE{sub 01} mode gyro-TWT based on an interaction circuit alternately loaded with lossy ceramic shells and metal rings. The propagation characteristics of the interaction circuit is analyzed first, based on which the boundary impedance method is employed to build an equivalent uniform lossy circuit. Then the stability of the interaction system is studied using linear and nonlinear theories. The analysis reveals that, due to the special waveguide structure and the dielectric loss, the propagation characteristics of the complex waveguide are similar to that of a uniform lossy circuit. The analysis of the absolute instabilities characterizes the roles the forward-backward-wave components played. The study indicates that the lowest threshold current of the absolute instabilities is higher than the operating current, which brings the system high stability. The reliability of the analysis is proved by the consistency between the analysis and the NRL experimental results.

  15. Wall thickness effect on the resistive wall mode stability in toroidal plasmas

    SciTech Connect

    Zheng, L.-J.; Kotschenreuther, M.T.

    2005-07-15

    The effect of finite wall thickness on the stability of n=1 resistive wall modes in toroidal plasmas is investigated. A fusion reactor-relevant configuration is examined. The investigation employs a novel ideal-magnetohydrodynamics adaptive shooting code for axisymmetric plasmas, extended to take into account the wall thickness. Although finite wall thickness generally reduces the growth rate of the resistive wall modes, no contribution to stabilization is found to be made by the portion of the wall that is located beyond the critical position for perfectly conducting wall stabilization. Thus, when the inner side of the wall lies near the critical wall position, the scaling of the growth rate versus wall thickness in the realistic thick-wall calculation is significantly different from that of the usual thin-wall theory. The thin-wall estimate is relevant only when the wall is brought very close to the plasma and is not too thick.

  16. Effect of a static external magnetic perturbation on resistive mode stability in tokamaks

    SciTech Connect

    Fitzpatrick, R.; Hender, T.C. |

    1994-03-01

    The influence of a general static external magnetic perturbation on the stability of resistive modes in a tokamak plasma is examined. There are three main parts to this investigation. Firstly, the vacuum perturbation is expanded as a set of well-behaved toroidal ring functions and is, thereafter, specified by the coefficients of this expansion. Secondly, a dispersion relation is derived for resistive plasma instabilities in the presence of a general external perturbation and finally, this dispersion relation is solved for the amplitudes of the tearing and twisting modes driven in the plasma by a specific perturbation. It is found that the amplitudes of driven tearing and twisting modes are negligible until a certain critical perturbation strength is exceeded. Only tearing modes are driven in low-{beta} plasmas with {epsilon}{beta}{sub p} << 1. However, twisting modes may also be driven if {epsilon}{beta}{sub p}{approx}>1. For error-field perturbations made up of a large number of different poloidal and toroidal harmonics the critical strength to drive locked modes has a {open_quote}staircase{close_quote} variation with edge-q, characterized by strong discontinuities as coupled rational surfaces enter or leave the plasma. For single harmonic perturbations the variation with edge-q is far smoother. Both types of behaviour have been observed experimentally. The critical perturbation strength is found to decrease strongly close to an ideal external kink stability boundary. This is also in agreement with experimental observations.

  17. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  18. Empirical Mode Decomposition and Hilbert Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.

    1998-01-01

    The difficult facing data analysis is the lack of method to handle nonlinear and nonstationary time series. Traditional Fourier-based analyses simply could not be applied here. A new method for analyzing nonlinear and nonstationary data has been developed. The key part is the Empirical Mode Decomposition (EMD) method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF) that serve as the basis of the representation of the data. This decomposition method is adaptive, and, therefore, highly efficient. The IMFs admit well-behaved Hilbert transforms, and yield instantaneous energy and frequency as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Among the main conceptual innovations is the introduction of the instantaneous frequencies for complicated data sets, which eliminate the need of spurious harmonics to represent nonlinear and nonstationary signals. Examples from the numerical results of the classical nonlinear equation systems and data representing natural phenomena are given to demonstrate the power of this new method. The classical nonlinear system data are especially interesting, for they serve to illustrate the roles played by the nonlinear and nonstationary effects in the energy-frequency-time distribution.

  19. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities

    PubMed Central

    Rohena, Cristina C.

    2014-01-01

    Nature has yielded numerous classes of chemically distinct microtubule stabilizers. Several of these, including paclitaxel (Taxol) and docetaxel (Taxotere), are important drugs used in the treatment of cancer. New microtubule stabilizers and novel formulations of these agents continue to provide advances in cancer therapy. In this review we cover recent progress from late 2008 to August 2013 in the chemistry and biology of these diverse microtubule stabilizers focusing on the wide range of organisms that produce these compounds, their mechanisms of inhibiting microtubule-dependent processes, mechanisms of drug resistance, and their interactions with tubulin including their distinct binding sites and modes. A new potential role for microtubule stabilizers in neurodegenerative diseases is reviewed. PMID:24481420

  20. Linear stability analysis of three-dimensional compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Orszag, Steven A.

    1987-01-01

    A compressible stability analysis computer code is developed. The code uses a matrix finite-difference method for local eigenvale solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used inital-value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed that may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black-box stability code. Sample stability calculations are presented for the boundary layer profiles of an LFC swept wing.

  1. Broad-area laser diode with stable single-mode output and wavelength stabilization

    NASA Astrophysics Data System (ADS)

    Nappez, Thomas; Ghibaudo, Elise; Rondeau, Philippe; Schlotterbeck, Jean-Pierre; Broquin, Jean-Emmanuel

    2012-01-01

    High power single-mode pump laser diodes operating around 980nm are key components for Erbium-doped devices. Much effort is still currently devoted to improve both their wavelength stability and their achievable output power, while maintaining a stable single-mode operation. Usually, the emission wavelength is stabilized by an external Fiber Bragg Grating (FBG). This configuration requires free-space optics between the laser diode output facet and the fiber or a lensed fiber to ensure an efficient coupling efficiency. This constraint increases fabrication costs, dimensions and mechanical instabilities. Moreover, the maximum achievable output power is limited because a high optical power density can damage the laser facets. To increase the achievable output power, a solution consists in using Broad-Area Laser Diodes (BALD), which are multimode emitters that are composed of large active ribbons with width of some hundreds of micrometers. The objective is then to improve the beam quality by locking the BALD emission on its transverse fundamental mode. We propose in this article to insert an integrated adiabatic transition between the multimode laser and a single-mode FBG. This taper, made by ion-exchange in glass, provides a coupling efficiency of -22.0dB from the multimode laser emission to the single-mode fiber. An optical feedback of -34dB demonstrates the stabilization of the BALD spectrum at the Bragg wavelength. The spectrum of the device is characterized by a maximum side-mode suppression ratio of 35dB, a RMS spectral width of (0.16 +/- 0.04) nm and a frequency shift with current of -12GHz/100mA.

  2. Mode stability in photonic-crystal surface-emitting lasers with large κ{sub 1D}L

    SciTech Connect

    Liang, Yong Okino, Tsuyoshi; Ishizaki, Kenji; Noda, Susumu; Kitamura, Kyoko; Peng, Chao

    2014-01-13

    We study mode stability in photonic-crystal surface-emitting lasers (PCSELs) with large coupling-coefficient-length product κ{sub 1D}L(>6). We observe that mode competition occurs at high current levels above threshold. Our combined experimental and theoretical study provides the first evidence of the mode competition originating from the high-order band-edge modes. The decreased threshold margin between these competing high-order modes and the main lasing mode with increasing cavity length as well as the spatial hole burning effect may deteriorate the single-mode stability. Our finding is essential for designing single-mode high-power PCSELs for which the strategy to suppress the high-order modes must be considered.

  3. Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability

    NASA Astrophysics Data System (ADS)

    Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.

    2014-08-01

    Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman-Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M2 = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects.

  4. Eigenmode analysis of geodesic acoustic modes

    SciTech Connect

    Gao Zhe; Itoh, K.; Sanuki, H.; Dong, J. Q.

    2008-07-15

    Geodesic acoustic modes (GAMs) are studied as plasma eigenmodes when an electrostatic potential nearly constant around a magnetic surface is applied to collisionless toroidal plasmas. Besides the standard GAM, a branch of low frequency mode and an infinite series of ion sound wavelike modes are identified. Eigenfrequencies of these modes are obtained analytically and numerically from a linear gyrokinetic model. The finite gyroradius effect is found to enhance the collisionless damping of the standard GAM, while this enhancement is not monotonic as the safety factor varies. Moreover, additional damping due to higher-harmonic resonances becomes important when the safety factor increases. The mode structure of the GAM is also discussed.

  5. Stability analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  6. Stability analysis of zigzag boron nitride nanoribbons

    SciTech Connect

    Rai, Hari Mohan Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R.; Jaiswal, Neeraj K.; Srivastava, Pankaj

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  7. Trapped Electron Stabilization of Ballooning Modes in Low Aspect Ratio Toroidal Plasmas

    SciTech Connect

    C.Z. Cheng and N.N. Gorelenkov

    2004-03-18

    The kinetic effects of trapped electron dynamics and finite gyroradii and magnetic drift motion of ions are shown to give rise to a large parallel electric field and hence a parallel current that greatly enhances the stabilizing effect of field line tension for ballooning modes in low aspect ratio toroidal plasmas. For large aspect ratio the stabilizing effect increases (reduces) the {beta}(= 2P/B{sup 2}) threshold for the first (second) stability of the kinetic ballooning mode (KBM) from the MHD {beta} threshold value by a factor proportional to the trapped electron density fraction. For small aspect ratio the stabilizing effect can greatly increase the {beta} threshold of the first stability of KBMs from the MHD {beta} threshold by S{sub c} {approx_equal} 1 + (n{sub e}/n{sub eu}){delta}, where n{sub e}/n{sub eu} is the ratio of the total electron density to the untrapped electron density, and {delta} depends on the trapped electron dynamics and finite gyroradii and magnetic drift motion of ions. If n{sub e}/n{sub eu} >> 1 as in the National Spherical Torus Experiment (NSTX) with an aspect ratio approximately equal to 1.4, the KBM should be stable for {beta} {le} 1 for finite magnetic shear. Therefore, unstable KBMs are expected only in the weak shear region near the radial location of the minimum of the safety factor in NSTX reverse shear discharges.

  8. Algorithm Summary and Evaluation: Automatic Implementation of Ringdown Analysis for Electromechanical Mode Identification from Phasor Measurements

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.; Jin, Shuangshuang; Lin, Jenglung; Hauer, Matthew L.

    2010-02-28

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliably and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.

  9. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P. )

    1993-11-08

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  10. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  11. Stability analysis of unsteady ablation fronts

    SciTech Connect

    Betti, R.; McCrory, R.L.; Verdon, C.P.

    1993-08-01

    The linear stability analysis of unsteady ablation fronts, is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code ORCHID.

  12. Stability analysis of unsteady ablation fronts

    NASA Astrophysics Data System (ADS)

    Betti, R.; McCrory, R. L.; Verdon, C. P.

    1993-11-01

    The linear stability analysis of unsteady ablation fronts is carried out for a semi-infinite uniform medium. For a laser accelerated target, it is shown that a properly selected modulation of the laser intensity can lead to the dynamic stabilization or growth-rate reduction of a large portion of the unstable spectrum. The theory is in qualitative agreement with the numerical results obtained by using the two-dimensional hydrodynamic code orchid.

  13. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  14. Exploring the Frequency Stability Limits of Whispering Gallery Mode Resonators for Metrological Applications

    NASA Technical Reports Server (NTRS)

    Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan

    2012-01-01

    Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.

  15. Final Report for "Stabilization of resistive wall modes using moving metal walls"

    SciTech Connect

    Forest, Cary B.

    2014-02-05

    The UW experiment used a linear pinch experiment to study the stabilization of MHD by moving metal walls. The methodology of the experiment had three steps. (1) Identify and understand the no-wall MHD instability limits and character, (2) identify and understand the thin-wall MHD instabilities (re- sistive wall mode), and then (3) add the spinning wall and understand its impact on stability properties. During the duration of the grant we accomplished all 3 of these goals, discovered new physics, and completed the experiment as proposed.

  16. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    SciTech Connect

    S.R. Hudson; C.C. Hegna; R. Torasso; A. Ware

    2003-12-05

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation.

  17. Computational study of ICRF stabilization of the m = 1 interchange mode in mirror geometry

    SciTech Connect

    Myra, J.R.; D'Ippolito, D.A.; Francis, G.L.

    1986-05-01

    A cylindrical plasma model is used to study the stabilizing effect of electromagnetic ICRF waves on the m = 1 magnetohydrodynamic interchange mode. The fast wave eigenmodes of the column and the near field antenna pattern are calculated numerically for a diffuse plasma profile when w > ..cap omega../sub i/. The resulting ponderomotive force and sideband contributions to global interchange stability are then determined using a rigid shift trial function. For far field stabilization it is verified that the direct ponderomotive and sideband contributions to global interchange stability are then determined using a rigid shift trial function. For far field stabilization it is verified that the direct ponderomotive and sideband contributions cancel exactly as the conducting wall supporting the fast wave eigenmode moves out to infinity. The near field stabilization effect is related numerically to the driven k/sub parallel/ spectrum of the waves and their radial profiles. The numerical model is employed to calculate threshold ICRF wave amplitudes for the stabilization experiments in the Phaedrus tandem mirror.

  18. Optimization of Feedback Control Coils for Resistive Wall Mode Stabilization in DIII-D

    NASA Astrophysics Data System (ADS)

    Bialek, J.; Boozer, A. H.; Garofalo, A. M.; Mauel, M. E.; Navratil, G. A.; Turnbull, A. D.

    1999-11-01

    Recent experiments in DIII--D on Resistive Wall Mode (RWM) stabilization with active feedback have been very promising. We investigated extensions to the sensor and control coil set that would further improve RWM stabilization. The VALEN computer code models the RWM as an equivalent current distribution on the unperturbed plasma boundary which duplicates the plasma external magnetic field of the mode, as calculated by GATO. This surface current determines the plasma interaction with all conducting structures. In three dimensions the VALEN code models the unstable plasma, passive structure, proposed sensors, and proposed control coils together with the control logic. The problem may be examined as a transient simulation, or for a linear power supply model, as an eigenvalue calculation. A summary of the configurations examined and their predicted effectiveness will be presented.

  19. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    NASA Astrophysics Data System (ADS)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  20. Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Liu, Y. Q.; Xu, X. Y.; Wang, Z. R.

    2016-07-01

    Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.

  1. Implementation of model predictive control for resistive wall mode stabilization on EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2015-10-01

    A model predictive control (MPC) method for stabilization of the resistive wall mode (RWM) in the EXTRAP T2R reversed-field pinch is presented. The system identification technique is used to obtain a linearized empirical model of EXTRAP T2R. MPC employs the model for prediction and computes optimal control inputs that satisfy performance criterion. The use of a linearized form of the model allows for compact formulation of MPC, implemented on a millisecond timescale, that can be used for real-time control. The design allows the user to arbitrarily suppress any selected Fourier mode. The experimental results from EXTRAP T2R show that the designed and implemented MPC successfully stabilizes the RWM.

  2. Phase stabilization of a large-mode-area ytterbium-doped fiber amplifier.

    PubMed

    Jones, D C; Stacey, C D; Scott, A M

    2007-03-01

    Measurements are reported on the open and closed-loop phase stability of a large-mode-area ytterbium-doped fiber amplifier. Phase fluctuations are characterized by a high-frequency low-amplitude jitter superimposed on a slow power-dependent drift. The amplifier may be phase locked to a precision of lambda/20 by using a low-bandwidth feedback loop. PMID:17392889

  3. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability

    SciTech Connect

    Magni, V.

    1986-01-01

    Resonators containing a focusing rod are thoroughly analyzed. It is shown that, as a function of the dioptric power of the rod, two stability zones of the same width exist and that the mode volume in the rod always presents a stationary point. At this point, the output power is insensitive to the focal length fluctuations, and the mode volume inside the rod is inversely proportional to the range of the input power for which the resonator is stable. The two zones are markedly different with respect to misalignment sensitivity, which is, in general, much greater in one zone than in the other. Two design procedures are presented for monomode solid-state laser resonators with large mode volume and low sensitivity both to focal length fluctuations and to misalignment.

  4. J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoyuki; Suzuki, Hirotaka; Sadamoto, Shota; Sannomaru, Shogo; Yu, Tiantang; Bui, Tinh Quoc

    2016-08-01

    Two-dimensional (2D) in-plane mixed-mode fracture mechanics problems are analyzed employing an efficient meshfree Galerkin method based on stabilized conforming nodal integration (SCNI). In this setting, the reproducing kernel function as meshfree interpolant is taken, while employing the SCNI for numerical integration of stiffness matrix in the Galerkin formulation. The strain components are smoothed and stabilized employing Gauss divergence theorem. The path-independent integral ( J-integral) is solved based on the nodal integration by summing the smoothed physical quantities and the segments of the contour integrals. In addition, mixed-mode stress intensity factors (SIFs) are extracted from the J-integral by decomposing the displacement and stress fields into symmetric and antisymmetric parts. The advantages and features of the present formulation and discretization in evaluation of the J-integral of in-plane 2D fracture problems are demonstrated through several representative numerical examples. The mixed-mode SIFs are evaluated and compared with reference solutions. The obtained results reveal high accuracy and good performance of the proposed meshfree method in the analysis of 2D fracture problems.

  5. Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications.

    PubMed

    Jung, Goo-Eun; Noh, Hanaul; Shin, Yong Kyun; Kahng, Se-Jong; Baik, Ku Youn; Kim, Hong-Bae; Cho, Nam-Joon; Cho, Sang-Joon

    2015-07-01

    Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s(-1). As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.

  6. Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications

    NASA Astrophysics Data System (ADS)

    Jung, Goo-Eun; Noh, Hanaul; Shin, Yong Kyun; Kahng, Se-Jong; Baik, Ku Youn; Kim, Hong-Bae; Cho, Nam-Joon; Cho, Sang-Joon

    2015-06-01

    Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s-1. As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.

  7. Tomographic Observation of FRC Rotational Modes and Stabilization by Various RMF Antenna Geometries in TCS

    NASA Astrophysics Data System (ADS)

    Votroubek, G. R.; Guo, H. Y.

    2004-11-01

    The most common instability observed in FRCs is a fluting instability driven by centrifugal forces related to toroidal ion spin-up. In theta-pinch formed FRCs this spin up is due to preferential ion losses, while in Rotating Magnetic Field (RMF) driven FRCs it is due to the torque applied by the RMF. In order to study this effect, and determine its mode structure, a visible light tomography system was built and employed at the FRC midpoint. The primary unstable mode was the n=2, but both n=1 and higher modes were also observed. The fluting modes were observed to rotate at the same speed as the bulk plasma (determined from Doppler shifts of impurity ions), and could be correlated with internal magnetic probe measurements. Interestingly, the instability could be stabilized by the RMF radial pressure under particular antenna geometries. Simple models were developed to explain this stabilization, which can also have application to other, quasi-linear devices such as symmetric mirrors.

  8. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  9. Stability and natural frequency of nonspherical mode of an encapsulated microbubble in a viscous liquid

    NASA Astrophysics Data System (ADS)

    Liu, Yunqiao; Wang, Qianxi

    2016-06-01

    The dynamics of encapsulated microbubbles (EMBs) subject to an ultrasound wave have wide and important medical applications, including sonography, drug delivery, and sonoporation. The nonspherical shape oscillation of an EMB, termed as shape modes, is one of the core mechanisms of these applications and therefore its natural frequency is a fundamentally important parameter. Based on the linear stability theory, we show that shape modes of an EMB in a viscous Newtonian liquid are stable. We derive an explicit expression for the natural frequency of shape modes, in terms of the equilibrium radius of an EMB, and the parameters of the external liquid, coating, and internal gases. The expression is validated by comparing to the numerical results obtained from the dynamic equations of shape modes of an EMB. The natural frequency of shape modes shifts appreciably due to the viscosity of the liquid, and this trend increases with the mode number. The significant viscous effects are due to the no-slip condition for the liquid flow at the surface of an EMB. Our results show that when subject to an acoustic wave, the shape instability for an EMB is prone to appear if 2ωk/ωd = n, where ωk is the natural frequency of shape modes, ωd is the driving frequency of the acoustic wave, and n is a natural number. The effects of viscosity on the natural frequency is thus critical in setting the driving frequency of ultrasound to avoid or activate shape modes of EMBs, which should be considered in the applications of medical ultrasound.

  10. Anderson Localization of Ballooning Modes, Quantum Chaos and the Stability of Compact Quasiaxially Symmetric Stellarators

    SciTech Connect

    M.H. Redi; J.L. Johnson; S. Klasky; J. Canik; R.L. Dewar; W.A. Cooper

    2001-10-31

    The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and q(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong ''quantum chaos.'' The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit.

  11. Stabilization of Neoclassical Tearing Modes in Tokamaks by Radio Frequency Current Drive

    SciTech Connect

    La Haye, R. J.

    2007-09-28

    Resistive neoclassical tearing modes (NTMs) will be the principal limit on stability and performance in the ITER standard scenario as the resulting islands break up the magnetic surfaces that confine the plasma. Drag from rotating island-induced eddy current in the resistive wall can also slow the plasma rotation, produce locking to the wall, and cause loss of high confinement H-mode and disruption. The NTMs are maintained by helical perturbations to the pressure-gradient driven 'bootstrap' current. Thus, this is a high beta instability even at the modest beta for ITER. A major line of research on NTM stabilization is the use of radio frequency (rf) current drive at the island rational surface. While large, broad current drive from lower hybrid waves has been shown to be stabilizing (COMPASS-D), most research is directed to small, narrow current drive from electron cyclotron waves (ECCD); ECCD stabilization and/or preemptive prevention is successful in ASDEX Upgrade, DIII-D and JT-60U, for example, with as little as a few percent of the total plasma current if the ECCD is kept sufficiently narrow so that the peak off-axis ECCD is comparable to the local bootstrap current.

  12. User's manual for the coupled mode version of the normal modes rotor aeroelastic analysis computer program

    NASA Technical Reports Server (NTRS)

    Bergquist, R. R.; Carlson, R. G.; Landgrebe, A. J.; Egolf, T. A.

    1974-01-01

    This User's Manual was prepared to provide the engineer with the information required to run the coupled mode version of the Normal Modes Rotor Aeroelastic Analysis Computer Program. The manual provides a full set of instructions for running the program, including calculation of blade modes, calculations of variable induced velocity distribution and the calculation of the time history of the response for either a single blade or a complete rotor with an airframe (the latter with constant inflow).

  13. The beam-mode stability of periodic functionally-graded-material shells conveying fluid

    NASA Astrophysics Data System (ADS)

    Shen, Huijie; Païdoussis, Michael P.; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2014-05-01

    The characteristics of beam-mode stability of fluid-conveying shell systems are investigated in this paper for shells with clamped-free (cantilevered) boundary conditions. An FEM algorithm is developed to conduct the investigation. A periodic shell structure of functionally graded material (FGM), termed as PFGM shell here, is designed so as to enhance the stability for the shell system, and to eliminate the stress concentration problems that exist in periodic structures. Results show that by the introduction of periodic design the critical velocities can be raised over several desired ranges of the dimensionless fluid density β, and the stress concentration is effectively reduced in the PFGM shell. Finally, the effects of the geometric shape, material parameters and spring supports on the dynamical stability are probed.

  14. Stock market stability: Diffusion entropy analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Zhuang, Yangyang; He, Jianmin

    2016-05-01

    In this article, we propose a method to analyze the stock market stability based on diffusion entropy, and conduct an empirical analysis of Dow Jones Industrial Average. Empirical results show that this method can reflect the volatility and extreme cases of the stock market.

  15. Stabilization of Majorana modes in magnetic vortices in the superconducting phase of topological insulators using topologically trivial bands.

    PubMed

    Chiu, Ching-Kai; Ghaemi, Pouyan; Hughes, Taylor L

    2012-12-01

    It has been shown that doped topological insulators, up to a certain level of doping, still preserve some topological signatures of the insulating phase such as axionic electromagnetic response and the presence of a Majorana mode in the vortices of a superconducting phase. Multiple topological insulators such as HgTe, ScPtBi, and other ternary Heusler compounds have been identified and generically feature the presence of a topologically trivial band between the two topological bands. In this Letter we show that the presence of such a trivial band can stabilize the topological signature over a much wider range of doping. Specifically, we calculate the structure of vortex modes in the superconducting phase of doped topological insulators, a model that captures the features of HgTe and the ternary Heusler compounds. We show that, due to the hybridization with the trivial band, Majorana modes are preserved over a large, extended doping range for p doping. In addition to presenting a viable system where much less fine-tuning is required to observe the Majorana modes, our analysis opens a route to study other topological features of doped compounds that cannot be modeled using the simple Bi(2)Se(3) Dirac model.

  16. Stability Analysis of the Impoundment of Ash

    NASA Astrophysics Data System (ADS)

    Slávik, Ivan

    2013-03-01

    An impoundment is an engineering construction used for the safe deposition of unexploitable waste from industrial and mining facilities. In terms of the legislative requirements of the Slovak Republic, a "Measurements Project" must be developed for each impoundment. In this document the prerequisites for the safe operation of an impoundment, the limit and critical values of the monitored phenomena and the facts influencing the safety of the impoundment and the area endangered by such a site are also defined. The safety and stability of an impoundment are verified according to a "Measurements Project" by considering stability at regular time intervals. This contribution presents, in the form of a parametric study, a stability analysis of an ash impoundment. The stability analysis provides an example of the utilization of an information database of the results of the regular monitoring of the geotechnical properties of the materials forming the impoundment's body and the surrounding rock mass. The stability of the impoundment is expressed for a recent state - without a continuous water level in its body and, at the same time, for a hypothetical limit and critical water level according to the valid "Handling Regulations".

  17. Black hole lasers, a mode analysis

    SciTech Connect

    Coutant, Antonin; Parentani, Renaud

    2010-04-15

    We show that the black hole laser effect discovered by Corley and Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes, which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.

  18. Mod 1 wind turbine generator failure modes and effects analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.

  19. Hilbert-Huang transformation: application to postural stability analysis.

    PubMed

    Amoud, Hassan; Snoussi, Hichem; Hewson, David J; Duchêne, Jacques

    2007-01-01

    The aim objective of this paper is the analysis of the Centre Of Pressure (COP) time series by the means of the Hilbert Huang Transformation (HHT). The HHT consists of extracting the Intrinsic Mode Functions (IMFs) from an Empirical Mode Decomposition (EMD), and then applying the Hilbert Transformation on the IMFs. The trace of the HHT in the complex plane has a circular form, with each IMF having its own rotation frequency. The area of the circle represents a possible indicator of the postural stability status of the subjects. Experimental results show the effectiveness of the area of this circle in order to identify the post-vibratory effects on standing posture in healthy adult subjects.

  20. Numerical Calculations Demonstrating Complete Stabilization of the Ideal Magnetohydrodynamic Resistive Wall Mode by Longitudinal Flow

    SciTech Connect

    Smith, S.; Jardin, S. C.; Freidberg, J. P.; Guazzotto, L.

    2009-05-20

    The cylindrical ideal magnetohydrodynamic (MHD) stability problem, including ow and a resistive wall, is cast in the standard mathematical form, ωA∙x = B∙x, without discretizing the vacuum regions surrounding the plasma. This is accomplished by means of a finite element expansion for the plasma perturbations, by coupling the plasma surface perturbations to the resistive wall using a Green's function approach, and by expanding the unknown vector, x, to include the perturbed current in the resistive wall as an additional degree of freedom. The ideal MHD resistive wall mode (RWM) can be stabilized when the plasma has a uniform equilibrium ow such that the RWM frequency resonates with the plasma's Doppler-shifted sound continuum modes. The resonance induces a singularity in the parallel component of the plasma perturbations, which must be adequately resolved. Complete stabilization within the ideal MHD model (i.e. without parallel damping being added) is achieved as the grid spacing in the region of the resonance is extrapolated to 0 step size

  1. General stability analysis of composite sandwich plates under thermal load

    NASA Astrophysics Data System (ADS)

    Abdallah, Shaher A.

    In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses

  2. Flight stability analysis under changes in insect morphology

    NASA Astrophysics Data System (ADS)

    Noest, Robert; Wang, Z. Jane

    2015-11-01

    Insect have an amazing ability to control their flight, being able to perform both fast aerial maneuvers and stable hovering. The insect's neural system has developed various mechanism by which it can control these flying feats, but we expect that insect morphology is equally important in facilitating the aerial control. We perform a computational study using a quasi-steady instantaneous flapping flight model which allows us to freely adapt the insect's morphological parameters. We picked a fruit fly as the basis for the body shape and wing motion, and study the effect of changes to the morphology for a range of wing stroke amplitudes. In each case we determine the periodic flight mode, with the period equal to a single wing beat, and do a Floquet stability analysis of the flight. To interpret our results we will compare the changed morphology to related insects. We discuss the implications of the insects location on the stability diagram.

  3. Stability of short, single-mode erbium-doped fiber lasers

    SciTech Connect

    Svalgaard, M.; Gilbert, S.L.

    1997-07-01

    We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-{mu}m helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz{sup 1/2} rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication. {copyright} 1997 Optical Society of America

  4. Stability of resistive wall modes with plasma rotation and thick wall in ITER scenario

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M.; Chu, M.; Chance, M.; Turnbull, A.

    2004-11-01

    The rotation effect on resistive wall modes (RWMs) is examined for realistically shaped, high-beta tokamak equilibria, including reactor relevant cases with low mach number M and realistic thick walls. For low M, Stabilization of RWMs arises from unusually thin inertial layers. The investigation employs the newly developed adaptive eigenvalue code (AEGIS: Adaptive EiGenfunction Independent Solution), which describes both low and high n modes and is in good agreement with GATO in the benchmark studies. AEGIS is unique in using adaptive methods to resolve such inertial layers with low mach number rotation. This feature is even more desirable for transport barrier cases. Additionally, ITER and reactors have thick conducting walls ( ˜.5-1 m) which are not well modeled as a thin shell. Such thick walls are considered here, including semi-analytical approximations to account for the toroidally segmented nature of real walls.

  5. Timing stability enhancement of an Erbium Doped mode locked Fiber Laser using SESAM mirror

    NASA Astrophysics Data System (ADS)

    Afifi, G.; Khedr, M. Atta; Badr, Y.; Danailov, M.; Sigalotti, P.; Cinquegrana, P.; Alsous, M. B.; Galaly, A. R.

    2016-05-01

    We report on an examination of pulse timing stability of a home built Erbium Doped Fiber Laser (EDFL) passively mode locked via nonlinear polarization rotation by inserting semiconductor saturable absorber mirror (SESAM) in laser cavity. A very low root mean square (RMS) timing jitter (less than 27 fsec) and faster self-starting mode locking have been established. In order to get clear, low noise signal for time resolving measurements, synchronization of EDFL laser with an external high precision electronic oscillator have been established. Subsequently, it is synchronized and optically cross-correlated with a Ti:Sapphire laser source (Micra). The measured relative timing jitter was found to be less than 65 fsec. In this way, the two, well synchronized Ti:Sapphire and EDFL laser pulses prove to be a powerful tool for time resolving measurements.

  6. Internal Transport Barrier Broadening through Subdominant Mode Stabilization in Reversed Field Pinch Plasmas

    NASA Astrophysics Data System (ADS)

    Lorenzini, R.; Auriemma, F.; Fassina, A.; Martines, E.; Terranova, D.; Sattin, F.

    2016-05-01

    The reversed field pinch (RFP) device RFX-mod features strong internal transport barriers when the plasma accesses states with a single dominant helicity. Such transport barriers enclose a hot helical region with high confinement whose amplitude may vary from a tiny one to an amplitude encompassing an appreciable fraction of the available volume. The transition from narrow to wide thermal structures has been ascribed so far to the transport reduction that occurs when the dominant mode separatrix, which is a preferred location for the onset of stochastic field lines, disappears. In this Letter we show instead that the contribution from the separatrix disappearance, by itself, is marginal and the main role is instead played by the progressive stabilization of secondary modes. The position and the width of the stochastic boundary encompassing the thermal structures have been estimated by applying the concept of a 3D quasiseparatrix layer, developed in solar physics to treat reconnection phenomena without true separatrices and novel to toroidal laboratory plasmas. Considering the favorable scaling of secondary modes with the Lundquist number, these results open promising scenarios for RFP plasmas at temperatures higher than the presently achieved ones, where lower secondary modes and, consequently, larger thermal structures are expected. Furthermore, this first application of the quasiseparatrix layer to a toroidal plasma indicates that such a concept is ubiquitous in magnetic reconnection, independent of the system geometry under investigation.

  7. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: Stationary modes

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1988-01-01

    Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.

  8. Internal Transport Barrier Broadening through Subdominant Mode Stabilization in Reversed Field Pinch Plasmas.

    PubMed

    Lorenzini, R; Auriemma, F; Fassina, A; Martines, E; Terranova, D; Sattin, F

    2016-05-01

    The reversed field pinch (RFP) device RFX-mod features strong internal transport barriers when the plasma accesses states with a single dominant helicity. Such transport barriers enclose a hot helical region with high confinement whose amplitude may vary from a tiny one to an amplitude encompassing an appreciable fraction of the available volume. The transition from narrow to wide thermal structures has been ascribed so far to the transport reduction that occurs when the dominant mode separatrix, which is a preferred location for the onset of stochastic field lines, disappears. In this Letter we show instead that the contribution from the separatrix disappearance, by itself, is marginal and the main role is instead played by the progressive stabilization of secondary modes. The position and the width of the stochastic boundary encompassing the thermal structures have been estimated by applying the concept of a 3D quasiseparatrix layer, developed in solar physics to treat reconnection phenomena without true separatrices and novel to toroidal laboratory plasmas. Considering the favorable scaling of secondary modes with the Lundquist number, these results open promising scenarios for RFP plasmas at temperatures higher than the presently achieved ones, where lower secondary modes and, consequently, larger thermal structures are expected. Furthermore, this first application of the quasiseparatrix layer to a toroidal plasma indicates that such a concept is ubiquitous in magnetic reconnection, independent of the system geometry under investigation. PMID:27203329

  9. 3D passive stabilization of n = 0 MHD modes in EAST tokamak.

    PubMed

    Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z

    2016-01-01

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182

  10. Stabilization of the External Kink and Control of the Resistive Wall Mode in Tokamaks*

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.

    1998-11-01

    Tokamak based approaches to fusion which depend on significant bootstrap current for steady-state operation will necessarily operate at high normalized beta, well beyond the conventional Troyon beta limit. One promising method of maintaining stability is the use of a conducting wall close to the plasma to stabilize low-n ideal MHD instabilities, combined with an active control system to stabilize the more slowly growing resistive wall modes (RWMs). Experiments in the DIII--D, PBX-M, and HBT-EP tokamaks(E.J. Strait et al.), Phys. Rev. Lett. 74 (1995) 2483; M. Okabayashi et al., Nucl. Fusion 36 (1996) 1167; T.H. Ivers et al., Phys. Plasmas 3 (1996) 1926. have demonstrated that plasmas with a nearby conducting wall can remain stable above the beta limit predicted with the wall at infinity. More recently, detailed, reproducible observations of the n=1 RWM have been possible in DIII--D plasmas above the no wall beta limit. Comparisons with ideal and resistive MHD predictions are helping to distinguish the relative importance for wall stabilization of proposed dissipation mechanisms, such as resonant absorption, viscosity, and resistivity. The DIII--D measurements confirm other characteristics common to several RWM theories. The mode is destabilized as the plasma rotation at the q=3 surface decreases below a critical frequency of 1 to 4 kHz ( ~1% of the toroidal Alfvén frequency). The measured mode growth times of 3 to 5 ms agree with measurements and numerical calculations of the dominant DIII--D vessel eigenmode time constants, τ_ω. From its onset, the RWM has little or no toroidal rotation (ω_mode<=τ_w-1<<ω_plasma), and rapidly reduces the plasma rotation to zero. Both DIII--D and HBT-EP have adopted the ``smart shell''(C.M. Bishop, Plasma Phys. and Contr. Fusion 31) (1989) 1179. concept as an initial approach to control of these slowly growing RWMs: external coils are controlled by a feedback loop designed to make the resistive wall appear perfectly conducting

  11. 3D passive stabilization of n = 0 MHD modes in EAST tokamak

    PubMed Central

    Chen, S. L.; Villone, F.; Xiao, B. J.; Barbato, L.; Luo, Z. P.; Liu, L.; Mastrostefano, S.; Xing, Z.

    2016-01-01

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented. PMID:27597182

  12. Non-Resonant Dynamic Stabilization of the m = 1 Diocotron Mode

    SciTech Connect

    Maero, G.; Paroli, B.; Pozzoli, R.; Rome, M.

    2010-06-16

    The m = 1 diocotron mode of a nonneutral plasma column confined in a Malmberg-Penning trap, i.e. the rotation of the plasma center-of-charge around the longitudinal symmetry axis, is experimentally found to be unstable. We have investigated in the ELTRAP device a control mechanism of the radial drift of the column based on a Radio Frequency drive applied on an azimuthally sectored electrode of the trap. Systematic experiments show the characteristic features of the mechanism, namely the presence of amplitude and frequency thresholds as well as the non-resonant behavior, whose interpretation invokes the concept of dynamic stabilization.

  13. 3D passive stabilization of n = 0 MHD modes in EAST tokamak.

    PubMed

    Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z

    2016-09-06

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented.

  14. Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization

    NASA Astrophysics Data System (ADS)

    Itobe, Hiroki; Nakagawa, Yosuke; Mizumoto, Yuta; Kangawa, Hiroi; Kakinuma, Yasuhiro; Tanabe, Takasumi

    2016-05-01

    We fabricated a calcium fluoride (CaF2) whispering gallery mode (WGM) microcavity with a computer controlled ultra-precision cutting process. We observed a thermo-opto-mechanical (TOM) oscillation in the CaF2 WGM microcavity, which may influence the stability of the optical output when the cavity is employed for Kerr comb generation. We studied experimentally and numerically the mechanism of the TOM oscillation and showed that it is strongly dependent on cavity diameter. In addition, our numerical study suggests that a microcavity structure fabricated with a hybrid material (i.e. CaF2 and silicon), which is compatible with an ultra-high Q and high thermal conductivity, will allow us to reduce the TOM oscillation and stabilize the optical output.

  15. Stability threshold of ion temperature gradient driven mode in reversed field pinch plasmas

    SciTech Connect

    Guo, S. C.

    2008-12-15

    For the first time in the reversed field pinch (RFP) configuration, the stability threshold of the ion temperature gradient driven (ITG) mode is studied by linear gyrokinetic theory. In comparison with tokamaks, the RFP configuration has a shorter connection length and stronger magnetic curvature drift. These effects result in a stronger instability driving mechanism and a larger growth rate in the fluid limit. However, the kinetic theory shows that the temperature slopes required for the excitation of ITG instability are much steeper than the tokamak ones. This is because the effect of Landau damping also becomes stronger due to the shorter connection length, which is dominant and ultimately determines the stability threshold. The required temperature slope for the instability may only be found in the very edge of the plasma and/or near the border of the dominant magnetic island during the quasi-single helicity state of discharge.

  16. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  17. Further Development of Rotating Rake Mode Measurement Data Analysis

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Sutliff, Daniel L.

    2013-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode amplitudes and phases were quantified. For low-speed fans within axisymmetric ducts, mode power levels computed from rotating rake measured data would agree with the far-field power levels on a tone by tone basis. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection at the exit and previous studies suggested conditions could exist where significant reflections could occur. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. The fit equations were also modified to allow evanescent mode amplitudes to be computed. This extension of the rotating rake data analysis technique was tested using simulated data, numerical code produced data, and preliminary in-duct measured data.

  18. The Stability of Radiatively Cooling Jets I. Linear Analysis

    NASA Technical Reports Server (NTRS)

    Hardee, Philip E.; Stone, James M.

    1997-01-01

    The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in

  19. Asian summer monsoon rainfall predictability: a predictable mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Lee, June-Yi; Xiang, Baoqiang

    2015-01-01

    To what extent the Asian summer monsoon (ASM) rainfall is predictable has been an important but long-standing issue in climate science. Here we introduce a predictable mode analysis (PMA) method to estimate predictability of the ASM rainfall. The PMA is an integral approach combining empirical analysis, physical interpretation and retrospective prediction. The empirical analysis detects most important modes of variability; the interpretation establishes the physical basis of prediction of the modes; and the retrospective predictions with dynamical models and physics-based empirical (P-E) model are used to identify the "predictable" modes. Potential predictability can then be estimated by the fractional variance accounted for by the "predictable" modes. For the ASM rainfall during June-July-August, we identify four major modes of variability in the domain (20°S-40°N, 40°E-160°E) during 1979-2010: (1) El Niño-La Nina developing mode in central Pacific, (2) Indo-western Pacific monsoon-ocean coupled mode sustained by a positive thermodynamic feedback with the aid of background mean circulation, (3) Indian Ocean dipole mode, and (4) a warming trend mode. We show that these modes can be predicted reasonably well by a set of P-E prediction models as well as coupled models' multi-model ensemble. The P-E and dynamical models have comparable skills and complementary strengths in predicting ASM rainfall. Thus, the four modes may be regarded as "predictable" modes, and about half of the ASM rainfall variability may be predictable. This work not only provides a useful approach for assessing seasonal predictability but also provides P-E prediction tools and a spatial-pattern-bias correction method to improve dynamical predictions. The proposed PMA method can be applied to a broad range of climate predictability and prediction problems.

  20. Stability analysis of a variable-speed wind turbine

    SciTech Connect

    Bir, G.S.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    This paper examines the elastomechanical stability of a four-bladed wind turbine over a specific rotor speed range. Stability modes, frequencies, and dampings are extracted using a specialized modal processor developed at NREL that post-processes the response data generated by the ADAMS simulation code. The processor can analyze a turbine with an arbitrary number of rotor blades and offers a novel capability of isolating stability modes that become locked at a single frequency. Results indicate that over a certain rotor speed range, the tower lateral mode and the rotor regressive in-plane mode coalesce, resulting in a self-excited instability. Additional results show the effect of tower and nacelle parameters on the stability boundaries.

  1. Structure, Stability and ELM Dynamics of the H-Mode Pedestal in DIII-D

    SciTech Connect

    Fenstermacher, M E; Leonard, A W; Osborne, T H; Snyder, P B; Thomas, D M; Boedo, J A; Casper, T A; Colchin, R J; Groebner, R J; Groth, M; Kempenaars, M H; Loarte, A; Saibene, G; VanZeeland, M A; Zeng, L; Xu, X Q

    2004-10-13

    Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n{sub e} pedestal profile and the p{sub e} height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T{sub e} pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n{sub e} pedestal while plasma physics dominates in setting the T{sub e} pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations.

  2. Studies of Feedback Stabilization of Axisymmetric Modes in Deformable Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Ward, David John

    A new linear MHD stability code, NOVA-W, is described and applied to the study of the feedback stabilization of the axisymmetric mode in deformable tokamak plasmas. The NOVA-W code is a modification of the non-variational MHD stability code NOVA^1 that includes the effects of resistive passive conductors and active feedback circuits. The vacuum calculation has been reformulated in terms of the perturbed poloidal flux to allow the inclusion of perturbed toroidal currents outside the plasma. The boundary condition at the plasma-vacuum interface relates the instability displacement to the perturbed poloidal flux. This allows a solution of the linear MHD stability equations with the feedback effects included. The code has been tested for the case of passive stabilization against a simplified analytic model and against a different numerical calculation for a realistic tokamak configuration. The comparisons demonstrate the accuracy of the NOVA-W results. The utility and performance of the NOVA-W code are demonstrated for calculations of varying configurations of passive conductors. Active feedback calculations are performed for the CIT tokamak design demonstrating the effect of varying the position of the flux loops which provide the measurements of vertical displacement. The results compare well to those of earlier calculations using a less efficient nonlinear code. The NOVA-W code is used to examine the effects of plasma deformability on feedback stabilization. It is seen that plasmas with shaped cross sections have unstable motion different from a rigid shift. Plasma equilibria with large triangularity show particularly significant deviations from a uniform rigid shift. Furthermore, the placement of passive conductors is shown to modify the non-rigid components of the motion in a way that reduces the stabilizing effects of these conductors. The eigenfunction is also modified under the effects of active feedback. This deformation is seen to depend strongly on the

  3. A Quasi-Steady Flexible Launch Vehicle Stability Analysis Using Steady CFD with Unsteady Aerodynamic Enhancement

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2011-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

  4. Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser

    NASA Astrophysics Data System (ADS)

    Agnesi, A.; Guandalini, A.; Reali, G.

    2005-04-01

    Self-stabilized passive mode-locking of a diode-pumped Yb:yttrium aluminum garnet laser with a semiconductor saturable absorber was achieved using an off-phase-matching second-harmonic crystal. According to the numerical model, such a condition is accomplished by self-defocusing in the nonlinear crystal in the presence of positive intracavity dispersion. Robust mode locking with Fourier-limited 1.0-ps pulses was obtained, whereas mode locking, unassisted by the nonlinear crystal, yielded 2.2-ps pulses, with the laser operating near the edge of the stability region in order to minimize the saturation energy of the semiconductor device.

  5. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    DOE PAGES

    Farmer, W. A.; Morales, G. J.

    2016-05-24

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×107 s-1.« less

  6. Stability of drift-cyclotron loss-cone waves in H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Morales, G. J.

    2016-06-01

    The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability is exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3  ×  107 s‑1.

  7. Current/Pressure Profile Effects on Tearing Mode Stability in DIII-D Hybrid Discharges

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Yong-Su

    2015-11-01

    It is important to understand the onset threshold and the evolution of tearing modes (TMs) for developing a high-performance steady state fusion reactor. As initial and basic comparisons to determine TM onset, the measured plasma profiles (such as temperature, density, rotation) were compared with the calculated current profiles between a pair of discharges with/without n=1 mode based on the database for DIII-D hybrid plasmas. The profiles were not much different, but the details were analyzed to determine their characteristics, especially near the rational surface. The tearing stability index calculated from PEST3, Δ' tends to increase rapidly just before the n=1 mode onset for these cases. The modeled equilibrium with varying pressure or current profiles parametrically based on the reference discharge is reconstructed for checking the onset dependency on Δ' or neoclassical effects such as bootstrap current. Simulations of TMs with the modeled equilibrium using resistive MHD codes will also be presented and compared with experiments to determine the sensibility for predicting TM onset. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  8. ELMs and constraints on the H-mode pedestal: peeling ballooning stability calculation and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.; Wilson, H. R.; Ferron, J. R.; Lao, L. L.; Leonard, A. W.; Mossessian, D.; Murakami, M.; Osborne, T. H.; Turnbull, A. D.; Xu, X. Q.

    2004-02-01

    We review and test the peeling-ballooning model for edge localized modes (ELMs) and pedestal constraints, a model based upon theoretical analysis of magnetohydrodynamic (MHD) instabilities that can limit the pedestal height and drive ELMs. A highly efficient MHD stability code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including constraints on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependent on the density and temperature separately, rather than simply on the pressure. ELITE stability calculations are directly compared with experimental data for a series of plasmas in which the density is varied and ELM characteristics change. In addition, a technique is developed whereby peeling-ballooning pedestal constraints are calculated as a function of key equilibrium parameters via ELITE calculations using series of model equilibria. This technique is used to successfully compare the expected pedestal height as a function of density, triangularity and plasma current with experimental data. Furthermore, the technique can be applied for parameter ranges beyond the purview of present experiments, and we present a brief projection of peeling-ballooning pedestal constraints for burning plasma tokamak designs.

  9. Stability analysis of a polymer coating process

    NASA Astrophysics Data System (ADS)

    Kallel, A.; Hachem, E.; Demay, Y.; Agassant, J. F.

    2015-05-01

    A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated layer may be observed. The processing conditions markedly influence the onset and the development of these defects and modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy coupled with transient stability analysis.

  10. Particle simulation of radio frequency stabilization of the flute mode in a tandem mirror. II. Perpendicular antenna

    SciTech Connect

    Abe, H.; Kadoya, Y.

    1988-10-01

    A two-and-a-half-dimensional electromagnetic particle code PS2M (J. Phys. Soc. Jpn. 56, 3899 (1987)) is used to study how an electric field applied perpendicularly to the magnetic field affects the radio frequency stabilization of flute modes in a tandem mirror plasma. The electric field perpendicular to the magnetic field stabilizes or destabilizes the flute mode through the mechanism of the ponderomotive force acting on electrons and ions and through the mechanism of sideband coupling. In the simulations two typical examples have been shown: (i) when the sideband coupling effects (in which the electron terms are dominant) stabilize the flute modes and (ii) when the perpendicular ponderomotive force acting on the electrons destabilizes the flute modes.

  11. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  12. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  13. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.

    2012-03-01

    We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.

  14. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team

    2011-10-01

    We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.

  15. MHD stability of a hot-ion-mode plasma in the GAMMA 10 tandem mirror

    SciTech Connect

    Inutake, M.; Hattori, K.; Furukawa, S.

    1995-04-01

    Magnetohydrodynamic (MHD) stability of the GAMMA 10 tandem mirror is extensively studied in ICRF-heated, hot ion plasmas. Stability boundary for a flute interchange mode is predicted to depend on a pressure-weighted curvature integrated along the magnetic field line. It is found that the upper limit of the central-cell beta {beta}{sub C} increases linearly with the anchor-cell beta {beta}{sub A}. The critical beta ratio {beta}{sub C}/{beta}{sub A} above which the plasma cannot be sustained strongly depends on the pressure anisotropy P{sub PRP}/P{sub PLL} of hot ions. Stronger anisotropy greatly expands the stable region up to a higher critical beta ratio, owing to the reduction of the pressure weighting in the bad curvature region of the central cell. On both sides of the quadrupole anchor cells, there are flux-tube-recircularizing transition regions where the normal curvature is highly bad. Then the density and ion temperature of the cold plasma in the transition region are measured. Theoretical prediction on the flute stability boundary calculated by using the measured axial pressure profile of the hot-ion and the cold-plasma pressure can explain well the experimental results. 16 refs., 7 figs.

  16. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  17. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  18. Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart-Pendulum System.

    PubMed

    Adhikary, Nabanita; Mahanta, Chitralekha

    2013-11-01

    In this paper an integral backstepping sliding mode controller is proposed for controlling underactuated systems. A feedback control law is designed based on backstepping algorithm and a sliding surface is introduced in the final stage of the algorithm. The backstepping algorithm makes the controller immune to matched and mismatched uncertainties and the sliding mode control provides robustness. The proposed controller ensures asymptotic stability. The effectiveness of the proposed controller is compared against a coupled sliding mode controller for swing-up and stabilization of the Cart-Pendulum System. Simulation results show that the proposed integral backstepping sliding mode controller is able to reject both matched and mismatched uncertainties with a chattering free control law, while utilizing less control effort than the sliding mode controller.

  19. Progress Toward the Analysis of the Kinetic Stabilizer Concept

    SciTech Connect

    Post, R F; Byers, J A; Cohen, R H; Fowler, T K; Ryutov, D D; Tung, L S

    2005-02-08

    The Kinetic Stabilizer (K-S) concept [1] represents a means for stabilizing axisymmetric mirror and tandem-mirror (T-M) magnetic fusion systems against MHD interchange instability modes. Magnetic fusion research has given us examples of axisymmetric mirror confinement devices in which radial transport rates approach the classical ''Spitzer'' level, i.e. situations in which turbulence if present at all, is at too low a level to adversely affect the radial transport [2,3,4]. If such a low-turbulence condition could be achieved in a T-M system it could lead to a fusion power system that would be simpler, smaller, and easier to develop than one based on closed-field confinement, e.g., the tokamak, where the transport is known to be dominated by turbulence. However, since conventional axisymmetric mirror systems suffer from the MHD interchange instability, the key to exploiting this new opportunity is to find a practical way to stabilize this mode. The K-S represents one avenue to achieving this goal. The starting point for the K-S concept is a theoretical analysis by Ryutov [5]. He showed that a MHD-unstable plasma contained in an axisymmetric mirror cell can be MHD-stabilized by the presence of a low-density plasma on the expanding field lines outside the mirrors. If this plasma communicates well electrically with the plasma in the then this exterior plasma can stabilize the interior, confined, plasma. This stabilization technique was conclusively demonstrated in the Gas Dynamic Trap (GDT) experiment [6] at Novosibirsk, Russia, at mirror-cell plasma beta values of 40 percent. The GDT operates in a high collisionality regime. Thus the effluent plasma leaking through the mirrors, though much lower in density than that of the confined plasma, is still high enough to satisfy the stabilization criterion. This would not, however, be the case in a fusion T-M with axisymmetric plug and central cell fields. In such a case the effluent plasma would be far too low in density to

  20. Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization.

    PubMed

    Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui

    2009-12-15

    The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in beta-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that, like Taxol, discodermolide binds to the taxane binding pocket in beta-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and toward the N-terminal H1-S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the alpha-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent beta-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo.

  1. Distinct Pose of Discodermolide in Taxol Binding Pocket Drives a Complementary Mode of Microtubule Stabilization

    PubMed Central

    Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B.; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui

    2010-01-01

    The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in β-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that like Taxol, discodermolide binds to the taxane binding pocket in β-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and towards the N-terminal H1–S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the α-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent β-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo. PMID:19863156

  2. Molecular Modeling Approaches to Study the Binding Mode on Tubulin of Microtubule Destabilizing and Stabilizing Agents

    NASA Astrophysics Data System (ADS)

    Botta, Maurizio; Forli, Stefano; Magnani, Matteo; Manetti, Fabrizio

    Tubulin targeting agents constitute an important class of anticancer drugs. By acting either as microtubule stabilizers or destabilizers, they disrupt microtubule dynamics, thus inducing mitotic arrest and, ultimately, cell death by apoptosis. Three different binding sites, whose exact location on tubulin has been experimentally detected, have been identified so far for antimitotic compound targeting microtubules, namely the taxoid, the colchicine and the vinka alkaloid binding site. A number of ligand- and structure-based molecular modeling studies in this field has been reported over the years, aimed at elucidating the binding modes of both stabilizing and destabilizing agent, as well as the molecular features responsible for their efficacious interaction with tubulin. Such studies are described in this review, focusing on information provided by different modeling approaches on the structural determinants of antitubulin agents and the interactions with the binding pockets on tubulin emerged as fundamental for antitumor activity.To describe molecular modeling approaches applied to date to molecules known to bind microtubules, this paper has been divided into two main parts: microtubule destabilizing (Part 1) and stabilizing (Part 2) agents. The first part includes structure-based and ligand-based approaches to study molecules targeting colchicine (1.1) and vinca alkaloid (1.2) binding sites, respectively. In the second part, the studies performed on microtubule-stabilizing antimitotic agents (MSAA) are described. Starting from the first representative compound of this class, paclitaxel, molecular modeling studies (quantitative structure-activity relationships - QSAR - and structure-based approaches), performed on natural compounds acting with the same mechanism of action and temptative common pharmacophoric hypotheses for all of these compounds, are reported.

  3. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  4. Mode analysis and signal restoration with Kravchuk functions.

    PubMed

    Wolf, Kurt Bernardo

    2009-03-01

    When a continuous-signal field is sampled at a finite number N of equidistant sensor points, the N resulting data values can yield information on at most N oscillator mode components, whose coefficients should in turn restore the sampled signal. We compare the fidelity of the mode analysis and synthesis in the orthonormal basis of N-point Kravchuk functions with those in the basis of sampled Hermite-Gauss functions. The scale between the two bases is calibrated on the ground state of the field. We conclude that mode analysis is better approximated in the nonorthogonal sampled Hermite-Gauss basis, while signal restoration in the Kravchuk basis is exact.

  5. Stabilization of Neoclassical Tearing Modes in Tokamaks by Electron Cyclotron Current Drive

    NASA Astrophysics Data System (ADS)

    La Haye, R. J.

    2009-04-01

    Resistive neoclassical tearing modes (NTMs) are anticipated to be the principal limit on stability and performance in ITER as the resulting islands break up the magnetic surfaces confining the plasma. Drag from island-induced eddy currents in the resistive wall can slow plasma rotation, produce locking to the wall, and cause loss of the high-confinement H-mode and disruption. NTMs are destabilized by helical perturbations to the pressure-gradient-driven "bootstrap" current. NTMs can be stabilized by applying co-electron-cyclotron current drive (ECCD) at the island rational surface. Such stabilization and/or preemption is successful in ASDEX Upgrade, DIII-D, and JT-60U, if the peak off-axis current density is comparable to the local bootstrap current density and well-aligned. ASDEX Upgrade has used a feed-forward sweep of the toroidal field to get ECCD alignment on the island. JT-60U has used feed-forward sweeps of the launching mirror for the same purpose, followed up by real-time adjustment of the mirror using the electron cyclotron emission (ECE) diagnostic to locate the island rational surface. In DIII-D, ECCD alignment techniques include applying "search and suppress" real-time control to find and lock onto optimum alignment (adjusting the field or shifting the plasma major radius in equivalent small steps). Most experimental work to date uses narrow, cw ECCD; the relatively wide ECCD in ITER may be less effective if it is also cw: the stabilization effect of replacing the "missing" bootstrap current on the island O-point could be nearly cancelled by the destabilization effect on the island X-point if the ECCD is very broad. Modulating the ECCD so that it is absorbed only on the m/n = 3/2 rotating island O-point is proving successful in recovering ECCD effectiveness in ASDEX Upgrade when the ECCD is configured for wider deposition. The ECCD in ITER is relatively broad, with current deposition full width half maximum almost twice the marginal island width. This

  6. Motional-mode analysis of trapped ions

    NASA Astrophysics Data System (ADS)

    Kalis, Henning; Hakelberg, Frederick; Wittemer, Matthias; Mielenz, Manuel; Warring, Ulrich; Schaetz, Tobias

    2016-08-01

    We present two methods for characterization of motional-mode configurations that are generally applicable to the weak- and strong-binding limit of single or multiple trapped atomic ions. Our methods are essential to realize control of the individual as well as the common motional degrees of freedom. In particular, when implementing scalable radio-frequency trap architectures with decreasing ion-electrode distances, local curvatures of electric potentials need to be measured and adjusted precisely, e.g., to tune phonon tunneling and control effective spin-spin interaction. We demonstrate both methods using single 25Mg+ ions that are individually confined 40 μ m above a surface-electrode trap array and prepared close to the ground state of motion in three dimensions.

  7. Perturbation analysis of electromagnetic geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-06-01

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δBθ, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξθ. The parallel perturbation of magnetic field, δB∥, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δBθ to the leading order. The radial displacement ξr is of order O(βɛξθ) but plays a significant role in determining δB∥, where β is the plasma/magnetic pressure ratio and ɛ is the inverse aspect ratio.

  8. Perturbation analysis of electromagnetic geodesic acoustic modes

    SciTech Connect

    Ren, Haijun

    2014-06-15

    Lagrangian displacement and magnetic field perturbation response to the geodesic acoustic mode is analyzed by using the ideal magnetohydrodynamic equations in a large-aspect-ratio tokamak. δB{sub θ}, the poloidal component of magnetic field perturbation, has poloidal wave number m = 2 created by the poloidal displacement ξ{sub θ}. The parallel perturbation of magnetic field, δB{sub ∥}, has a poloidally asymmetric structure with m = 1 and is on the same order of magnitude with δB{sub θ} to the leading order. The radial displacement ξ{sub r} is of order O(βϵξ{sub θ}) but plays a significant role in determining δB{sub ∥}, where β is the plasma/magnetic pressure ratio and ϵ is the inverse aspect ratio.

  9. A Coupled Aeroelastic Model for Launch Vehicle Stability Analysis

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2010-01-01

    A technique for incorporating distributed aerodynamic normal forces and aeroelastic coupling effects into a stability analysis model of a launch vehicle is presented. The formulation augments the linear state-space launch vehicle plant dynamics that are compactly derived as a system of coupled linear differential equations representing small angular and translational perturbations of the rigid body, nozzle, and sloshing propellant coupled with normal vibration of a set of orthogonal modes. The interaction of generalized forces due to aeroelastic coupling and thrust can be expressed as a set of augmenting non-diagonal stiffness and damping matrices in modal coordinates with no penalty on system order. While the eigenvalues of the structural response in the presence of thrust and aeroelastic forcing can be predicted at a given flight condition independent of the remaining degrees of freedom, the coupled model provides confidence in closed-loop stability in the presence of rigid-body, slosh, and actuator dynamics. Simulation results are presented that characterize the coupled dynamic response of the Ares I launch vehicle and the impact of aeroelasticity on control system stability margins.

  10. a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms

    NASA Astrophysics Data System (ADS)

    Beale, D. G.; Lee, S. W.

    1996-05-01

    A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].

  11. Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb.

    PubMed

    Ryu, Han Young; Lee, Sung Hun; Lee, Won Kyu; Moon, Han Seb; Suh, Ho Suhng

    2008-03-01

    We performed an absolute frequency measurement of an acetylene stabilized laser utilizing a femtosecond injection locking technique that can select one component among the fiber laser comb modes. The injection locking scheme has all the fiber configurations. Femtosecond comb lines of 250 MHz spacing based on the fiber femtosecond laser were used for injection locking of a distributed feedback (DFB) laser operating at 1542 nm as a frequency reference. The comb injected DFB laser serves as a selection filter of optical comb modes and an amplifier for amplification of the selected mode. The DFB laser injection locked to the desired comb mode was used to evaluate the frequency stability and absolute frequency measurement of an acetylene stabilized laser. The frequency stability of the acetylene stabilized laser was measured to be 1.1 x 10(-12) for a 1 s averaging time, improving to 6.9 x 10(-14) after 512 s. The absolute frequency of the laser stabilized on the P(16) transition of (13)C(2)H(2) was measured to be 194 369 569 385.7 kHz.

  12. Stability of elongated cross-section tokamaks to axisymmetric even poloidal mode number deformations

    SciTech Connect

    Weiner, R.; Jardin, S.C.; Pomphrey, N.

    1989-06-01

    A recent paper by Nakayama, Sato and Matsuoka suggests that elliptical cross section tokamaks with aspect ratio R/a = 3.2 and with elongation kappa = 2.6 are unstable to a splitting (m = 2, n = 0) instability for plasma ..beta.. > 5%, and that kappa /> =/ 4.0 plasmas are unstable to splitting for ..beta.. /> =/ 1%. We have tried to reproduce these results using the MHD evolution code TSC, but find these configurations to be stable, not even near a stability boundary. Even a kappa = 3.7 plasma with ..beta.. = 23.0% is stable to the splitting mode. However, the addition of pinching coils at the waist will cause the plasma to split if the current in these coils exceeds a critical value I/sub c/ which decreases with increasing ..beta... 8 refs., 11 figs., 1 tab.

  13. The Combined Effect of EPM and TAE Modes on Energetic Ion Confinement and Sawtooth Stabilization

    SciTech Connect

    S. Bernabei; R. Budny; E.D. Fredrickson; N.N. Gorelenkov; J.C. Hosea; C.K. Phillips; R. White; J.R. Wilson; C.C. Petty; R.I. Pinsker; R.W. Harvey; P. Smirnov

    2000-11-15

    It is shown in this paper for the first time, that the chirping Alfven instabilities observed mostly during ion cyclotron range of frequency (ICRF) heating have been positively identified as Energetic Particle Modes (EPM). This has been possible because of the detailed measurement of the q-profile with the MSE (motional Stark effect) diagnostic in DIII-D. The EPMs are shown to be the leading cause of the monster sawtooth crash. It is also shown that TAEs are excited either directly or indirectly by the EPMs and they cause fast ion losses. A scenario for the stabilization and the crash of the monster sawtooth and for the degradation of the ICRF heating efficiency at high power is presented.

  14. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  15. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2013-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Preliminary results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  16. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  17. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  18. Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Chu, M. S.; Chance, M. S.; Okabayashi, M.

    2000-10-01

    The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.

  19. Linear stability and nonlinear dynamics of the fishbone mode in spherical tokamaks

    SciTech Connect

    Wang, Feng; Liu, J. Y.; Fu, G. Y.; Breslau, J. A.

    2013-10-15

    Extensive linear and nonlinear simulations have been carried out to investigate the energetic particle-driven fishbone instability in spherical tokamak plasmas with weakly reversed q profile and the q{sub min} slightly above unity. The global kinetic-MHD hybrid code M3D-K is used. Numerical results show that a fishbone instability is excited by energetic beam ions preferentially at higher q{sub min} values, consistent with the observed appearance of the fishbone before the “long-lived mode” in MAST and NSTX experiments. In contrast, at lower q{sub min} values, the fishbone tends to be stable. In this case, the beam ion effects are strongly stabilizing for the non-resonant kink mode. Nonlinear simulations show that the fishbone saturates with strong downward frequency chirping as well as radial flattening of the beam ion distribution. An (m, n) = (2, 1) magnetic island is found to be driven nonlinearly by the fishbone instability, which could provide a trigger for the (2, 1) neoclassical tearing mode sometimes observed after the fishbone instability in NSTX.

  20. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  1. Accretion onto magnetized neutron stars - Normal mode analysis of the interchange instability at the magnetopause

    NASA Technical Reports Server (NTRS)

    Arons, J.; Lea, S. M.

    1976-01-01

    Results are reported for a linearized hydromagnetic stability analysis of the magnetopause of an accreting neutron star. The magnetosphere is assumed to be slowly rotating, and the plasma just outside the magnetopause is assumed to be weakly magnetized. The plasma layer is assumed to be bounded above by a shock wave and to be thin compared with the radius of the magnetosphere. Under these circumstances, the growing modes are shown to be localized in the direction parallel to the zero-order magnetic field, but the structure of the modes is still similar to the flute mode. An expression for the growth rate at each magnetic latitude is obtained in terms of the magnitude of the gravitational acceleration normal to the surface, the azimuthal mode number, the radius of the magnetosphere, the height of the shock above the magnetopause, and the effective Atwood number which embodies the stabilizing effects of favorable curvature and magnetic tension. The effective Atwood number is calculated, and the stabilizing effects of viscosity and aligned flow parallel to the magnetopause are discussed.

  2. Improved feedback control of wall-stabilized kink modes with different plasma-wall couplings and mode rotation

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Levesque, J. P.; Stoafer, C. C.; Rhodes, D. J.; Hughes, P. E.; Byrne, P. J.; Mauel, M. E.; Navratil, G. A.

    2015-11-01

    The HBT-EP tokamak can excite strong, saturated kink modes whose growth rates and rotation frequencies evolve on a millisecond timescale. To control such modes, HBT-EP uses a GPU-based feedback system in a low latency architecture. When feedback is applied, the mode amplitude and rotation frequency can change quickly. We describe an improved algorithm that captures the rapid phase changes in the mode while also removing transient amplitude jumps. Additionally, the control coil driving signal is implemented using a current-controller instead of a voltage-controller. The feedback performance is improved and has been tested under more unstable regimes, including different wall configurations and plasmas slowed by a bias probe. Feedback suppression is observed in all cases and the feedback parameters' dependency on different experimental conditions is studied. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  3. Ageostrophic linear stability analysis of the Labrador Current

    NASA Astrophysics Data System (ADS)

    Thomsen, S.; Eden, C.

    2012-12-01

    The water mass transformation process in the Labrador Sea during winter plays an important role for the Atlantic meridional overturning circulation and the global climate system. The Labrador Sea Water (LSW) is exported within the deep Labrador Current (LC) after the convection process. LSW takes up large amounts of atmospheric tracer gases as CO2 and oxygen, and is thus one of the major agent for ventilation of the abyssal ocean. It is shown that enhanced eddy kinetic energy (EKE) along the LC shows up in a 1/12° ocean model simulation during the transformation process. Moored in-situ measurements within the LC also show enhanced EKE levels during winter. This instability processes within the LC is important as it might alter the water mass properties of the (LSW) by frontal mixing processes during the water mass transformation and export within the LC. The frontal instability process, which lead to enhanced EKE along the LC during winter is investigated using ageostrophic linear stability analysis. Dense and weakly stratified water masses produced during the wintertime transformation process lead to weaker stratification and a strengthening of the lateral density gradients within the LC. Weak stratification and enhanced vertical shear result in low Richardson numbers and the growth rate of baroclinic waves increases significantly within the shelf break LC during winter. Rapid frontogenesis along the whole LC sets in resulting in enhance EKE. During the rest of the year strong stratification and weak vertical shear leads to larger Richardson numbers and smaller growth rates. Ageostrophic linear stability analysis shows that a geostrophic interior mode has similar wavelengths as the first wavelike disturbances in the model simulations. A shallow mode with lateral scales O (1 km) is also predicted, which can be associated with mixed layer instabilities and submesoscale variability but remains unresolved by the model simulation.

  4. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Technical Reports Server (NTRS)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  5. Time-Frequency Analysis of the Dispersion of Lamb Modes

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  6. Truck Roll Stability Data Collection and Analysis

    SciTech Connect

    Stevens, SS

    2001-07-02

    The principal objective of this project was to collect and analyze vehicle and highway data that are relevant to the problem of truck rollover crashes, and in particular to the subset of rollover crashes that are caused by the driver error of entering a curve at a speed too great to allow safe completion of the turn. The data are of two sorts--vehicle dynamic performance data, and highway geometry data as revealed by vehicle behavior in normal driving. Vehicle dynamic performance data are relevant because the roll stability of a tractor trailer depends both on inherent physical characteristics of the vehicle and on the weight and distribution of the particular cargo that is being carried. Highway geometric data are relevant because the set of crashes of primary interest to this study are caused by lateral acceleration demand in a curve that exceeds the instantaneous roll stability of the vehicle. An analysis of data quality requires an evaluation of the equipment used to collect the data because the reliability and accuracy of both the equipment and the data could profoundly affect the safety of the driver and other highway users. Therefore, a concomitant objective was an evaluation of the performance of the set of data-collection equipment on the truck and trailer. The objective concerning evaluation of the equipment was accomplished, but the results were not entirely positive. Significant engineering apparently remains to be done before a reliable system can be fielded. Problems were identified with the trailer to tractor fiber optic connector used for this test. In an over-the-road environment, the communication between the trailer instrumentation and the tractor must be dependable. In addition, the computer in the truck must be able to withstand the rigors of the road. The major objective--data collection and analysis--was also accomplished. Using data collected by instruments on the truck, a ''bad-curve'' database can be generated. Using this database

  7. BWR stability analysis at Brookhaven National Laboratory

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Mallen, A.N.; Rohatgi, U.S.

    1991-12-31

    Following the unexpected, but safely terminated, power and flow oscillations in the LaSalle-2 Boiling Water Reactor (BWR) on March 9, 1988, the Nuclear Regulatory Commission (NRC) Offices of Nuclear Reactor Regulation (NRR) and of Analysis and Evaluation of Operational Data (AEOD) requested that the Office of Nuclear Regulatory Research (RES) carry out BWR stability analyses, centered around fourteen specific questions. Ten of the fourteen questions address BWR stability issues in general and are dealt with in this paper. The other four questions address local, out-of-phase oscillations and matters of instrumentation; they fall outside the scope of the work reported here. It was the purpose of the work documented in this report to answer ten of the fourteen NRC-stipulated questions. Nine questions are answered by analyzing the LaSalle-2 instability and related BWR transients with the BNL Engineering Plant Analyzer (EPA) and by performing an uncertainty assessment of the EPA predictions. The tenth question is answered on the basis of first principles. The ten answers are summarized

  8. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  9. Dynamics of energetic particle driven modes and MHD modes in wall-stabilized high-β plasmas on JT-60U and DIII-D

    NASA Astrophysics Data System (ADS)

    Matsunaga, G.; Okabayashi, M.; Aiba, N.; Boedo, J. A.; Ferron, J. R.; Hanson, J. M.; Hao, G. Z.; Heidbrink, W. W.; Holcomb, C. T.; In, Y.; Jackson, G. L.; Liu, Y. Q.; Luce, T. C.; McKee, G. R.; Osborne, T. H.; Pace, D. C.; Shinohara, K.; Snyder, P. B.; Solomon, W. M.; Strait, E. J.; Turnbull, A. D.; Van Zeeland, M. A.; Watkins, J. G.; Zeng, L.; the DIII-D Team; the JT-60 Team

    2013-12-01

    In the wall-stabilized high-β plasmas in JT-60U and DIII-D, interactions between energetic particle (EP) driven modes (EPdMs) and edge localized modes (ELMs) have been observed. The interaction between the EPdM and ELM are reproducibly observed. Many EP diagnostics indicate a strong correlation between the distorted waveform of the EPdM and the EP transport to the edge. The waveform distortion is composed of higher harmonics (n ⩾ 2) and looks like a density snake near the plasma edge. According to statistical analyses, ELM triggering by the EPdMs requires a finite level of waveform distortion and pedestal recovery. ELM pacing by the EPdMs occurs when the repetition frequency of the EPdMs is higher than the natural ELM frequency. EPs transported by EPdMs are thought to contribute to change the edge stability.

  10. Power System Transient Stability Analysis through a Homotopy Analysis Method

    SciTech Connect

    Wang, Shaobu; Du, Pengwei; Zhou, Ning

    2014-04-01

    As an important function of energy management systems (EMSs), online contingency analysis plays an important role in providing power system security warnings of instability. At present, N-1 contingency analysis still relies on time-consuming numerical integration. To save computational cost, the paper proposes a quasi-analytical method to evaluate transient stability through time domain periodic solutions’ frequency sensitivities against initial values. First, dynamic systems described in classical models are modified into damping free systems whose solutions are either periodic or expanded (non-convergent). Second, because the sensitivities experience sharp changes when periodic solutions vanish and turn into expanded solutions, transient stability is assessed using the sensitivity. Third, homotopy analysis is introduced to extract frequency information and evaluate the sensitivities only from initial values so that time consuming numerical integration is avoided. Finally, a simple case is presented to demonstrate application of the proposed method, and simulation results show that the proposed method is promising.

  11. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    NASA Astrophysics Data System (ADS)

    La Haye, R. J.

    2015-12-01

    ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of

  12. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  13. Models and Stability Analysis of Boiling Water Reactors

    SciTech Connect

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  14. Aeroelastic Stability of Rotor Blades Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Chopra, I.; Sivaneri, N.

    1982-01-01

    The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.

  15. Linear tearing mode stability equations for a low collisionality toroidal plasma

    NASA Astrophysics Data System (ADS)

    Connor, J. W.; Hastie, R. J.; Helander, P.

    2009-01-01

    Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake

  16. Failure Modes and Effects Analysis (FMEA): A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.

  17. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    SciTech Connect

    La Haye, R. J.

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized

  18. Finite mode analysis of the generalized Kuramoto-Sivashinsky equation

    NASA Astrophysics Data System (ADS)

    Alfaro, C. M.; Benguria, R. D.; Depassier, M. C.

    1992-12-01

    We present numerical results concerning a five mode truncation of the equation ut+ uux+ δuxxx+ uxx+ uxxxx = 0 subject to periodic boundary conditions. We find that for large δ the system evolves from most initial conditions into a final state consisting of one or two traveling pulses, depending on the initial condition and horizontal periodicity. This is due to a region of simultaneous stability of the first two branches that bifurcate from the trivial solution. An additional two pulse traveling wave which does not bifurcate from u = 0 is also present.

  19. A direct proofreader–clamp interaction stabilizes the Pol III replicase in the polymerization mode

    PubMed Central

    Jergic, Slobodan; Horan, Nicholas P; Elshenawy, Mohamed M; Mason, Claire E; Urathamakul, Thitima; Ozawa, Kiyoshi; Robinson, Andrew; Goudsmits, Joris M H; Wang, Yao; Pan, Xuefeng; Beck, Jennifer L; van Oijen, Antoine M; Huber, Thomas; Hamdan, Samir M; Dixon, Nicholas E

    2013-01-01

    Processive DNA synthesis by the αɛθ core of the Escherichia coli Pol III replicase requires it to be bound to the β2 clamp via a site in the α polymerase subunit. How the ɛ proofreading exonuclease subunit influences DNA synthesis by α was not previously understood. In this work, bulk assays of DNA replication were used to uncover a non-proofreading activity of ɛ. Combination of mutagenesis with biophysical studies and single-molecule leading-strand replication assays traced this activity to a novel β-binding site in ɛ that, in conjunction with the site in α, maintains a closed state of the αɛθ–β2 replicase in the polymerization mode of DNA synthesis. The ɛ–β interaction, selected during evolution to be weak and thus suited for transient disruption to enable access of alternate polymerases and other clamp binding proteins, therefore makes an important contribution to the network of protein–protein interactions that finely tune stability of the replicase on the DNA template in its various conformational states. PMID:23435564

  20. Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry

    PubMed Central

    Watanabe, Haruki; Vishwanath, Ashvin

    2014-01-01

    There are few general physical principles that protect the low-energy excitations of a quantum phase. Of these, Goldstone’s theorem and Landau–Fermi liquid theory are the most relevant to solids. We investigate the stability of the resulting gapless excitations—Nambu–Goldstone bosons (NGBs) and Landau quasiparticles—when coupled to one another, which is of direct relevance to metals with a broken continuous symmetry. Typically, the coupling between NGBs and Landau quasiparticles vanishes at low energies, leaving the gapless modes unaffected. If, however, the low-energy coupling is nonvanishing, non-Fermi liquid behavior and overdamped bosons are expected. Here we prove a general criterion that specifies when the coupling is nonvanishing. It is satisfied by the case of a nematic Fermi fluid, consistent with earlier microscopic calculations. In addition, the criterion identifies a new kind of symmetry breaking—of magnetic translations—where nonvanishing couplings should arise, opening a previously unidentified route to realizing non-Fermi liquid phases. PMID:25349386

  1. Redundancy analysis of raw Geiger-mode laser radar data

    NASA Astrophysics Data System (ADS)

    Lopez, Norman A.; Kamerman, Gary W.

    2010-04-01

    In the past decade arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors have increased in size from 4×4 to 128×32, resulting in significant increases in data rates. If not handled appropriately, data collected with larger arrays and higher laser pulse repetition frequencies could potentially stress existing data dissemination and storage infrastructures. Data compression techniques that reduce storage requirements by taking advantage of data redundancies could be used to mitigate this problem. In this paper we present an analysis of the coding redundancy that exists in raw data captured with three dimensional imaging laser radar systems that employ arrays of Geiger-mode Avalanche Photodiode (GmAPD) detectors. The data we analyzed was collected in three different scanning modes, namely: mapping-mode, target-mode and stare-mode. We found that there is a significant amount of coding redundancy in raw GmAPD data which can be used to minimize storage sizes. We demonstrate that a trivial and simple approach reduces data for some scan patterns. This work represents a first step towards developing robust compression algorithms for raw GmAPD data. We present considerations for future work.

  2. An improved method for risk evaluation in failure modes and effects analysis of CNC lathe

    NASA Astrophysics Data System (ADS)

    Rachieru, N.; Belu, N.; Anghel, D. C.

    2015-11-01

    Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.

  3. Modes of embayed beach dynamics: analysis reveals emergent timescales

    NASA Astrophysics Data System (ADS)

    Murray, K. T.; Murray, A.; Limber, P. W.; Ells, K. D.

    2013-12-01

    Embayed beaches, or beaches positioned between rocky headlands, exhibit morphologic changes over many length and time scales. Beach sediment is transported as a result of the day-to-day wave forcing, causing patterns of erosion and accretion. We use the Rocky Coastline Evolution Model (RCEM) to investigate how patterns of shoreline change depend on wave climate (the distribution of wave-approach angles) and beach characteristics. Measuring changes in beach width through time allows us to track the evolution of the shape of the beach and the movement of sand within it. By using Principle Component Analysis (PCA), these changes can be categorized into modes, where the first few modes explain the majority of the variation in the time series. We analyze these modes and how they vary as a function of wave climate and headland/bay aspect ratio. In the purposefully simple RCEM, sediment transport is wave-driven and affected by wave shadowing behind the headlands. The rock elements in our model experiments (including the headlands) are fixed and unerodable so that this analysis can focus purely on sand dynamics between the headlands, without a sand contribution from the headlands or cliffs behind the beach. The wave climate is characterized by dictating the percentage of offshore waves arriving from the left and the percentage of waves arriving from high angles (very oblique to the coastline orientation). A high-angle dominated wave climate tends to amplify coastline perturbations, whereas a lower-angle wave climate is diffusive. By changing the headland/bay aspect ratio and wave climate, we can perform PCA analysis of generalized embayed beaches with differing anatomy and wave climate forcings. Previous work using PCA analysis of embayed beaches focused on specific locations and shorter timescales (<30 years; Short and Trembanis, 2004). By using the RCEM, we can more broadly characterize beach dynamics over longer timescales. The first two PCA modes, which explain a

  4. Metallurgy, thermal stability, and failure mode of the commercial Bi-Te-based thermoelectric modules.

    SciTech Connect

    Yang, Nancy Y. C.; Morales, Alfredo Martin

    2009-02-01

    Bi-Te-based thermoelectric (TE) alloys are excellent candidates for power generation modules. We are interested in reliable TE modules for long-term use at or below 200 C. It is known that the metallurgical characteristics of TE materials and of interconnect components affect the performance of TE modules. Thus, we have conducted an extensive scientific investigation of several commercial TE modules to determine whether they meet our technical requirements. Our main focus is on the metallurgy and thermal stability of (Bi,Sb){sup 2}(Te,Se){sup 3} TE compounds and of other materials used in TE modules in the temperature range between 25 C and 200 C. Our study confirms the material suite used in the construction of TE modules. The module consists of three major components: AlN cover plates; electrical interconnects; and the TE legs, P-doped (Bi{sub 8}Sb{sub 32})(Te{sub 60}) and N-doped (Bi{sub 37}Sb{sub 3})(Te{sub 56}Se{sub 4}). The interconnect assembly contains Sn (Sb {approx} 1wt%) solder, sandwiched between Cu conductor with Ni diffusion barriers on the outside. Potential failure modes of the TE modules in this temperature range were discovered and analyzed. The results show that the metallurgical characteristics of the alloys used in the P and N legs are stable up to 200 C. However, whole TE modules are thermally unstable at temperatures above 160 C, lower than the nominal melting point of the solder suggested by the manufacture. Two failure modes were observed when they were heated above 160 C: solder melting and flowing out of the interconnect assembly; and solder reacting with the TE leg, causing dimensional swelling of the TE legs. The reaction of the solder with the TE leg occurs as the lack of a nickel diffusion barrier on the side of the TE leg where the displaced solder and/or the preexisting solder beads is directly contact the TE material. This study concludes that the present TE modules are not suitable for long-term use at temperatures above 160 C due

  5. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability.

    PubMed

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R; Batstone, Damien J

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  6. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations. PMID:27681895

  7. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    PubMed Central

    Mohd-Zaki, Zuhaida; Bastidas-Oyanedel, Juan R.; Lu, Yang; Hoelzle, Robert; Pratt, Steven; Slater, Fran R.; Batstone, Damien J.

    2016-01-01

    Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.

  8. Satellite time series analysis using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.

  9. Even-odd mode excitation for stability investigation of Cartesian feedback amplifier used in parallel transmit array.

    PubMed

    Shooshtary, S; Solbach, K

    2015-08-01

    A 7 Tesla Magnetic Resonance Imaging (MRI) system with parallel transmission (pTx) for 32 near-magnet Cartesian feedback loop power amplifiers (PA) with output power of 1kW is under construction at Erwin L. Hahn Institute for Magnetic Resonance Imaging. Variation of load impedance due to mutual coupling of neighborhood coils in the array may lead to instability of the Cartesian feedback loop amplifier. MRI safety requires unconditional stability of the PAs at any load. In order to avoid instability in the pTx system, conditions and limits of stability have to be investigated for every possible excitation mode for the coil array. In this work, an efficient method of stability check for an array of two transmit channels (Tx) with Cartesian feedback loop amplifier and a selective excitation mode for the coil array is proposed which allows extension of stability investigations to a large pTx array with any arbitrary excitation mode for the coil array. PMID:26736573

  10. Earth recovery mode analysis for a Martian sample return mission

    NASA Technical Reports Server (NTRS)

    Green, J. P.

    1978-01-01

    The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.

  11. Milling Stability Analysis Based on Chebyshev Segmentation

    NASA Astrophysics Data System (ADS)

    HUANG, Jianwei; LI, He; HAN, Ping; Wen, Bangchun

    2016-09-01

    Chebyshev segmentation method was used to discretize the time period contained in delay differential equation, then the Newton second-order difference quotient method was used to calculate the cutter motion vector at each time endpoint, and the Floquet theory was used to determine the stability of the milling system after getting the transfer matrix of milling system. Using the above methods, a two degree of freedom milling system stability issues were investigated, and system stability lobe diagrams were got. The results showed that the proposed methods have the following advantages. Firstly, with the same calculation accuracy, the points needed to represent the time period are less by the Chebyshev Segmentation than those of the average segmentation, and the computational efficiency of the Chebyshev Segmentation is higher. Secondly, if the time period is divided into the same parts, the stability lobe diagrams got by Chebyshev segmentation method are more accurate than those of the average segmentation.

  12. A first attempt at few coils and low-coverage resistive wall mode stabilization of EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Olofsson, K. Erik J.; Brunsell, Per R.; Drake, James R.; Frassinetti, Lorenzo

    2012-09-01

    The reversed-field pinch features resistive-shell-type instabilities at any (vanishing and finite) plasma pressure. An attempt to stabilize the full spectrum of these modes using both (i) incomplete coverage and (ii) few coils is presented. Two empirically derived model-based control algorithms are compared with a baseline guaranteed suboptimal intelligent-shell-type (IS) feedback. Experimental stabilization could not be achieved for the coil array subset sizes considered by this first study. But the model-based controllers appear to significantly outperform the decentralized IS method.

  13. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  14. Fourier mode analysis of source iteration in spatially periodic media

    SciTech Connect

    Zika, M.R.; Larsen, E.W.

    1998-12-31

    The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.

  15. Stabilization of lower hybrid drift modes by finite parallel wavenumber and electron temperature gradients in field-reversed configurations

    NASA Astrophysics Data System (ADS)

    Farengo, R.; Guzdar, P. N.; Lee, Y. C.

    1989-08-01

    The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.

  16. Double-diffusive two-fluid flow in a slippery channel: A linear stability analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Sukhendu; Usha, R.; Sahu, Kirti Chandra

    2014-12-01

    The effect of velocity slip at the walls on the linear stability characteristics of two-fluid three-layer channel flow (the equivalent core-annular configuration in case of pipe) is investigated in the presence of double diffusive (DD) phenomenon. The fluids are miscible and consist of two solute species having different rates of diffusion. The fluids are assumed to be of the same density, but varying viscosity, which depends on the concentration of the solute species. It is found that the flow stabilizes when the less viscous fluid is present in the region adjacent to the slippery channel walls in the single-component (SC) system but becomes unstable at low Reynolds numbers in the presence of DD effect. As the mixed region of the fluids moves towards the channel walls, a new unstable mode (DD mode), distinct from the Tollman Schlichting (TS) mode, arises at Reynolds numbers smaller than the critical Reynolds number for the TS mode. We also found that this mode becomes more prominent when the mixed layer overlaps with the critical layer. It is shown that the slip parameter has nonmonotonic effect on the stability characteristics in this system. Through energy budget analysis, the dual role of slip is explained. The effect of slip is influenced by the location of mixed layer, the log-mobility ratio of the faster diffusing scalar, diffusivity, and the ratio of diffusion coefficients of the two species. Increasing the value of the slip parameter delays the first occurrence of the DD-mode. It is possible to achieve stabilization or destabilization by controlling the various physical parameters in the flow system. In the present study, we suggest an effective and realistic way to control three-layer miscible channel flow with viscosity stratification.

  17. Palladium complexes of a phosphorus ylide with two stabilizing groups: synthesis, structure, and DFT study of the bonding modes.

    PubMed

    Falvello, Larry R; Ginés, Juan Carlos; Carbó, Jorge J; Lledós, Agustí; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P

    2006-08-21

    The phosphorus ylide ligand [Ph3P=C(CO2Me)C(=NPh)CO2Me] (L1) has been prepared and fully characterized by spectroscopic, crystallographic, and density functional theory (DFT) methods (B3LYP level). The reactivity of L1 toward several cationic Pd(II) and Pt(II) precursors, with two vacant coordination sites, has been studied. The reaction of [M(C/\\X)(THF)2]ClO4 with L1 (1:1 molar ratio) gives [M(C/\\X)(L1)]ClO4 [M = Pd, C/\\X = C6H4CH2NMe2 (1), S-C6H4C(H)MeNMe2 (2), CH2-8-C9H6N (3), C6H4-2-NC5H4 (4), o-CH2C6H4P(o-tol)2 (6), eta3-C3H5 (7); M = Pt, C/\\X = o-CH2C6H4P(o-tol)2 (5); M(C/\\X) = Pd(C6F5)(SC4H8) (8), PdCl2 (9)]. In complexes 1-9, the ligand L1 bonds systematically to the metal center through the iminic N and the carbonyl O of the stabilizing CO2Me group, as is evident from the NMR data and from the X-ray structure of 3. Ligand L1 can also be orthopalladated by reaction with Pd(OAc)2 and LiCl, giving the dinuclear derivative [Pd(mu-Cl)(C6H4-2-PPh2=C(CO2Me)C(CO2Me)=NPh)]2 (10). The X-ray crystal structure of 10 is also reported. In none of the prepared complexes 1-10 was the C(alpha) atom found to be bonded to the metal center. DFT calculations and Bader analysis were performed on ylide L1 and complex 9 and its congeners in order to assess the preference of the six-membered N,O metallacycle over the four-membered C,N and five-membered C,O rings. The presence of two stabilizing groups at the ylidic C causes a reduction of its bonding capabilities. The increasing strength of the Pd-C, Pd-O, and Pd-N bonds along with other subtle effects are responsible for the relative stabilities of the different bonding modes. PMID:16903737

  18. Stability analysis of offshore wind farm and marine current farm

    NASA Astrophysics Data System (ADS)

    Shawon, Mohammad Hasanuzzaman

    -trend for large electric energy production using offshore wind generators and marine current generators, respectively. Thus DFIG based offshore wind farm can be an economic solution to stabilize squirrel cage induction generator based marine current farm without installing any addition FACTS devices. This thesis first focuses on the stabilization of fixed speed IG based marine current farm using SDBR. Also stabilization of DFIG based variable speed wind farm utilizing SDBR is studied in this work. Finally a co-operative control strategy is proposed where DFIG is controlled in such a way that it can even provide necessary reactive power demand of induction generator, so that additional cost of FACTS devices can be avoided. In that way, the DFIGs of the offshore wind farm (OWF) will actively compensate the reactive power demand of adjacent IGs of the marine current farm (MCF) during grid fault. Detailed modeling and control scheme for the proposed system are demonstrated considering some realistic scenarios. The power system small signal stability analysis is also carried out by eigenvalue analysis for marine current generator topology, wind turbine generator topology and integrated topology. The relation between the modes and state variables are discussed in light of modal and sensitivity analyses. The results of theoretical analyses are verified by MATLAB/SIMULINK and laboratory standard power system simulator PSCAD/EMTDC.

  19. Stability analysis of spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Halpin, S. M.; Grigsby, L. L.; Sheble, G. B.; Nelms, R. M.

    1990-01-01

    The problems in applying standard electric utility models, analyses, and algorithms to the study of the stability of spacecraft power conditioning and distribution systems are discussed. Both single-phase and three-phase systems are considered. Of particular concern are the load and generator models that are used in terrestrial power system studies, as well as the standard assumptions of load and topological balance that lead to the use of the positive sequence network. The standard assumptions regarding relative speeds of subsystem dynamic responses that are made in the classical transient stability algorithm, which forms the backbone of utility-based studies, are examined. The applicability of these assumptions to a spacecraft power system stability study is discussed in detail. In addition to the classical indirect method, the applicability of Liapunov's direct methods to the stability determination of spacecraft power systems is discussed. It is pointed out that while the proposed method uses a solution process similar to the classical algorithm, the models used for the sources, loads, and networks are, in general, more accurate. Some preliminary results are given for a linear-graph, state-variable-based modeling approach to the study of the stability of space-based power distribution networks.

  20. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  1. Stability analysis of automobile driver steering control

    NASA Technical Reports Server (NTRS)

    Allen, R. W.

    1981-01-01

    In steering an automobile, the driver must basically control the direction of the car's trajectory (heading angle) and the lateral deviation of the car relative to a delineated pathway. A previously published linear control model of driver steering behavior which is analyzed from a stability point of view is considered. A simple approximate expression for a stability parameter, phase margin, is derived in terms of various driver and vehicle control parameters, and boundaries for stability are discussed. A field test study is reviewed that includes the measurement of driver steering control parameters. Phase margins derived for a range of vehicle characteristics are found to be generally consistent with known adaptive properties of the human operator. The implications of these results are discussed in terms of driver adaptive behavior.

  2. On Automating Failure Mode Analysis and Enforcing its Integrity

    NASA Technical Reports Server (NTRS)

    Tai, Ann T.; Tso, Kam S.; Chau, Savio N.

    2005-01-01

    This paper reports our experience on the development of a design-for-safety (DFS) workbench called Risk Assessment and Management Environment (RAME) for microelectronic avionics systems. Our objective is to transform DFS practice from an ad-hoc, inefficient, error-prone approach to a stringent engineering process such that DFS can keep up with the rapidly growing complexity of avionics systems. In particular, RAME is built upon an information infrastructure that comprises a fault model, a knowledge base, and a failure reporting/tracking system. This infrastructure permits systematic learning from prior projects and enables the automation of failure modes, effects and criticality analysis (FMECA). Among other unique features, the most important advantage of RAME is its capability of directly accepting design source code in hardware description languages (HDLs) for automated failure mode analysis, which enables RAME to be compatible and to evolve with most electronic-computer-aided-design systems. Through an initial experimental evaluation of the RAME prototype, we show that our approach to FMECA automation improves failure mode analysis turn-around-time, completeness, and accuracy.

  3. Characterization of regenerative stabilized actively mode-locked fiber laser incorporating a saturated amplifier in feed-back chain

    NASA Astrophysics Data System (ADS)

    Bekal, Anish; Vijayan, Kovendhan; Srinivasan, Balaji

    2015-04-01

    An actively mode-locked fiber laser with regenerative stabilization established through a feed-back electronic amplifier operated in the saturation regime is reported in this paper. Compared to the regenerative stabilization schemes that employ phase-locked loops (PLL), a saturated amplifier has been used for inhibiting the transmission of amplitude noise through the feed-back chain. Such a laser system has been constructed, studied and characterized as a function of its design variables. Specifically, the electronic phase shift in the feed-back circuit and the RF power applied to the modulator have been varied to study their effect on the mode-locked pulse train. The influence of these parameters on super-mode noise is studied and the optimum values of phase shift and RF power of the recovered carrier at which the noise is found to be a minimum (-48 dB) has been determined. A comparison of systems with and without regenerative mode-locking under controlled conditions reveals that a regenerative system has at-least an order of magnitude better noise performance compared to a system without regeneration.

  4. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis.

    PubMed

    Saini, Than Singh; Kumar, Ajeet; Sinha, Ravindra Kumar

    2016-03-20

    The asymmetrical structure of photonic crystal fiber has been reported for a large mode area with the single-mode operation. The design works on the principle of bend-induced mode filtering. The proposed structure can be designed (i) by introducing down-doped material rods in place of nine air holes of the inner ring near the core of the structure and (ii) by increasing the diameter of the rest of the three air holes of the same ring in the direction of bending. These three air holes together with nine down-doped material rods control the mode field inside the core region and hence the bending losses of the modes. The single-mode operation is ensured by introducing high bend loss for the first higher order mode and very low bend loss for the fundamental mode. The finite-element-method-based anisotropic perfectly matched layer boundary condition has been applied for accurate analysis of bend loss of the structure. Numerical results show that effective single-mode operation can be ensured with a mode area as large as 1530  μm2 at bend state with a bend radius of 30 cm. The proposed photonic crystal optical fiber with such a large mode area can have potential applications in compact high-power delivery devices such as high-power fiber lasers and amplifiers. PMID:27140567

  5. Analysis of Stabilization Mechanisms in Lifted Flames

    NASA Astrophysics Data System (ADS)

    Navarro-Martinez, S.; Kronenburg, A.

    2009-12-01

    Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.

  6. Mathematical modelling and linear stability analysis of laser fusion cutting

    NASA Astrophysics Data System (ADS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-06-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process' amount of dynamic behavior.

  7. Mode analysis of beam splitter for slanted grating

    NASA Astrophysics Data System (ADS)

    Li, Shubin; Zhou, Changhe; Li, Yanyang; Lu, Yancong; Wang, Jin; Liu, Kun; Wu, Jun

    2014-11-01

    Beam splitters are widely used in various optical modern systems for separating optical wave into different directions. We have proposed a novel slanted grating for beam splitter at the central wavelength of 1550nm, which can be used in the optical communication. With the simulated annealing algorithm, beam splitter slanted grating can be optimized by using the rigorous coupled wave analysis (RCWA). The diffraction process can be analyzed by the simplified modal method. The simplified modal method, without complicated calculation, reduces the difficult diffraction process into a vividly and physical modal. We have derived an analytical expression which can provide an insightful physical description of the simplified modal method for the slanted grating. Compared with the rectangular grating, the slanted grating has the asymmetric physical structure. Therefore, the odd grating mode can also be excited in the slanted grating under normal incidence. The odd grating mode, which only exists in the asymmetric structure, plays the role of breaking the symmetric field distribution in the output plane. The physical analytical expression of mode conversion and coupling for the slanted grating can be obtained to interpretation the asymmetric field distribution. Numerical results obtained by the rigorous coupled wave analysis verified the validity of the simplified modal method. We expect the modal method for the slanted grating set forth in this work should be helpful for the tremendous potential application of the slanted grating.

  8. Linear MHD Stability Analysis of the SSPX Spheromak

    NASA Astrophysics Data System (ADS)

    Jayakumar, R.; Cohen, B. I.; Hooper, E. B.; Lodestro, L. L.; McLean, H. S.; Pearlstein, L. D.; Wood, R.; Turnbull, A. D.; Sovinec, C.

    2007-11-01

    Good correlation between the toroidal mode numbers of measured magnetic fluctuations in high temperature SSPX plasmas and presence of low-order rational surfaces in the reconstructed q profiles, suggests that the quality of magnetic surfaces in SSPX is sufficiently good for applying standard linear MHD stability analyses. Previously we have reported on benchmarking the code NIMROD against GATO, with good agreement in growth rates for ideal-MHD internal kinks and an external kinks with no current on open field lines (for equilibria imported from the code Corsica). Recent stability analyses also show that presence of low order rational surfaces causes internal modes to become unstable. We will report on the progress in applying these tools for assessing beta limits in SSPX, using NIMROD analyses including current on open field lines and for comparison with experiments.

  9. On the stability of Suydam modes in a nonuniformly rotating plasma

    SciTech Connect

    Timofeev, A. V.

    2010-08-15

    A simplified wave equation is derived that describes both Suydam modes in a nonuniformly rotating plasma column in a helical magnetic field and related flute modes. A study is made of a low-pressure plasma under the assumption that the azimuthal component of the magnetic field is much weaker than the axial component. It is shown that, when the monotonic radial variation of the plasma rotation velocity is sufficiently sharp, the plasma core becomes stable against short-wavelength Suydam modes. The instabilities that can develop in a nonuniformly rotating plasma are classified.

  10. Full-set mode analysis of three-mode fibers calculated from polarization components of near-field pattern

    NASA Astrophysics Data System (ADS)

    Kokubun, Yasuo; Watanabe, Tatsuhiko; Kawata, Ryo; Morita, Kohei

    2016-08-01

    We propose and demonstrate a novel mode analysis method that can provide a full set of amplitudes, phases, and polarization states of guided modes including degenerate modes in few-mode fibers. The method is based on the calculation of amplitude components and phase differences from the intensity profiles that passed through a polarizer with angles of 0, 45, and 90°. The accuracies of calculation formulas are shown by simulation to be less than 10-10 for amplitudes and 10-3 rad for phase differences. The method was applied to a graded-index three-mode fiber, and the off-axis mode excitation ratio characteristics were compared with theoretical ones.

  11. Analysis of the Numerical and Geometrical Parameters Influencing the Simulation of Mode I and Mode II Delamination Growth in Unidirectional and Textile Composites

    NASA Astrophysics Data System (ADS)

    Jacques, S.; De Baere, I.; Van Paepegem, W.

    2015-12-01

    The reliability of composite structures depends, among other damage mechanisms, on their ability to withstand delaminations. In order to have a better understanding of the cohesive zone method technique for delamination simulations, a complete analysis of the multiple parameters influencing the results is necessary. In this paper the work is concentrated on the cohesive zone method using cohesive elements. First a summary of the theory of the cohesive zone method is given. A numerical investigation on the multiple parameters influencing the numerical simulation of the mode I and mode II delamination tests has been performed. The parameters such as the stabilization method, the output frequency, the friction and the computational efficiency have been taken into account. The results will be compared to an analytical solution obtained by linear elastic fracture mechanics. Additionally the numerical simulation results will be compared to the experimental results of a glass-fibre reinforced composite material for the mode I Double Cantilever Beam (DCB) and to a carbon fibre 5-harness satin weave reinforced polyphenylene sulphide composite for the mode I DCB and mode II End Notched Flexure (ENF).

  12. Stability analysis of the Gravito-Electrostatic Sheath-based solar plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.; Lal, M.; Dwivedi, C. B.

    2016-08-01

    We present approximate solutions of non-local linear perturbational analysis for discussing the stability properties of the Gravito-Electrostatic Sheath (GES)-based solar plasma equilibrium, which is indeed non-uniform on both the bounded and unbounded scales. The relevant physical variables undergoing perturbations are the self-solar gravity, electrostatic potential and plasma flow along with plasma population density. We methodologically derive linear dispersion relation for the GES fluctuations, and solve it numerically to identify and characterize the existent possible natural normal modes. Three distinct natural normal modes are identified and named as the GES-oscillator mode, GES-wave mode and usual (classical) p-mode. In the solar wind plasma, only the p-mode survives. These modes are found to be linearly unstable in wide-range of the Jeans-normalized wavenumber, k. The local plane-wave approximation marginally limits the validity or reliability of the obtained results in certain radial- and k-domains only. The phase and group velocities, time periods of these fluctuation modes are investigated. It is interesting to note that, the oscillation time periods of these modes are 3-10 min, which match exactly with those of the observed helio-seismic waves and solar surface oscillations. The proposed GES model provides a novel physical view of the waves and oscillations of the Sun from a new perspective of plasma-wall interaction physics. Due to simplified nature of the considered GES equilibrium, it is a neonatal stage to highlight its applicability in the real Sun. The proposed GES model and subsequent fluctuation analysis need further improvements to make it more realistic.

  13. Frequency stabilization and transverse mode discrimination in injection-seeded unstable resonator TEA CO2 lasers

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.; Brothers, A. M.

    1987-01-01

    Longitudinal mode selection by injection has been demonstrated as a viable technique for TEA-CO2 lasers with pulse energies of a Joule or greater. Once reliable generation of single-longitudinal-mode (SLM) pulses is obtained, the characteristics and the causes of intrapulse frequency variation can be studied. These include the effect of the decaying plasma, the thermal gradient due to the energy dissipation associated with the laser mechanism itself, and the pressure shift of the center frequency of the laser transition. The use of the positive-branch unstable resonator as an efficient means of coupling a discharge with large spatial dimensions to an optical cavity mode introduces another concern: namely, what can be done to emphasize transverse mode discrimination in an unstable resonator cavity while maintaining high coupling efficiency. These issues are discussed in this paper, and relevant experimental results are included.

  14. Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.

    2016-08-01

    The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.

  15. Pulse Switching and Stability in FM Mode-Locked Fiber Lasers

    SciTech Connect

    Usechak, N.G.; Agrawal, G.P.

    2005-09-30

    We investigate the dynamics of the pulse switching mechanism in FM mode-locked fiber lasers for what we believe to be the first time. Two completely different pulse switching mechanisms are identified.

  16. Stability analysis of self-similar behaviors in perfect fluid gravitational collapse

    SciTech Connect

    Mitsuda, Eiji; Tomimatsu, Akira

    2006-06-15

    Stability of self-similar solutions for gravitational collapse is an important problem to be investigated from the perspectives of their nature as an attractor, critical phenomena, and instability of a naked singularity. In this paper we study spherically symmetric non-self-similar perturbations of matter and metrics in spherically symmetric self-similar backgrounds. The collapsing matter is assumed to be a perfect fluid with the equation of state P={alpha}{rho}. We construct a single wave equation governing the perturbations, which makes their time evolution in arbitrary self-similar backgrounds analytically tractable. Further we propose an analytical application of this master wave equation to the stability problem by means of the normal mode analysis for the perturbations having the time dependence given by exp(i{omega}log vertical t vertical bar), and present some sufficient conditions for the absence of nonoscillatory unstable normal modes with purely imaginary {omega}.

  17. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  18. Stability, reliability and cross-mode correlations of tests in a recommended 8-minute performance assessment battery

    NASA Technical Reports Server (NTRS)

    Wilkes, R. L.; Kennedy, R. S.; Dunlap, W. P.; Lane, N. E.

    1986-01-01

    A need exists for an automated performance test system to study drugs, agents, treatments, and stresses of interest to the aviation, space, and environmental medical community. The purpose of this present study is to evaluate tests for inclusion in the NASA-sponsored Automated Performance Test System (APTS). Twenty-one subjects were tested over 10 replications with tests previously identified as good candidates for repeated-measure research. The tests were concurrently administered in paper-and-pencil and microcomputer modes. Performance scores for the two modes were compared. Data from trials 1 to 10 were examined for indications of test stability and reliability. Nine of the ten APT system tests achieved stability. Reliabilities were generally high. Cross-correlation of microbased tests with traditional paper-and-pencil versions revealed similarity of content within tests in the different modes, and implied at least three cognition and two motor factors. This protable, inexpensive, rugged, computerized battery of tests is recommended for use in repeated-measures studies of environmental and drug effects on performance. Identification of other tests compatible with microcomputer testing and potentially capable of tapping previously unidentified factors is recommended. Documentation of APTS sensitivity to environmental agents is available for more than a dozen facilities and is reported briefly. Continuation of such validation remains critical in establishing the efficacy of APTS tests.

  19. Linear stability analysis and direct numerical simulation of a miscible two-fluid channel flow

    NASA Astrophysics Data System (ADS)

    Haapanen, Siina Ilona

    The temporal evolution of an initially laminar two-fluid channel flow is investigated using linear stability analysis and direct numerical simulation. The stability of a two-fluid shear flow is encountered in numerous situations, including water wave generation by wind, atomization of fuels, aircraft deicing and nuclear reactor cooling. The application of particular interest in this study is liquefying hybrid combustion, for which the two-fluid channel flow is used as a model problem to characterize the relevant mixing and entrainment mechanisms. The two fluids are miscible with dissimilar densities and viscosities. The thickness of one of the fluid layers is much smaller than that of the other, with the denser and more viscous fluid comprising the thin layer. Linear stability analysis is used to identify possibly unstable modes in the two-fluid configuration. The analysis is considered for two different situations. In one case, the fluid density and viscosity change discontinuously across a sharp interface, while in the other, the fluids are separated by a finite thickness transition layer, over which the fluid properties vary continuously. In the sharp interface limit, the linear stability is governed by an Orr-Sommerfeld equation in each fluid layer, coupled by boundary conditions at the interface. A numerical solution of the system of equations is performed using a Chebyshev spectral collocation method. In the case where the fluids are separated by a finite thickness transition zone, an Orr-Sommerfeld-type equation is solved with the compound matrix method. The non-linear stages of the flow evolution are investigated by direct numerical simulation. In a temporal simulation, two of the three spatial dimensions are periodic. Fourier spectral discretization is used in these dimensions, while a compact finite difference scheme is utilized in the non-periodic direction. The time advancement is performed by a projection method with a third order Adams

  20. New type of wavelet-based spectral analysis by which modes with different toroidal mode number are separated

    NASA Astrophysics Data System (ADS)

    Ohdachi, S.

    2016-11-01

    A new type of wavelet-based analysis for the magnetic fluctuations by which toroidal mode number can be resolved is proposed. By using a wavelet, having a different phase toroidally, a spectrogram with a specific toroidal mode number can be obtained. When this analysis is applied to the measurement of the fluctuations observed in the large helical device, MHD activities having similar frequency in the laboratory frame can be separated from the difference of the toroidal mode number. It is useful for the non-stationary MHD activity. This method is usable when the toroidal magnetic probes are not symmetrically distributed.

  1. Receive Mode Analysis and Design of Microstrip Reflectarrays

    NASA Technical Reports Server (NTRS)

    Rengarajan, Sembiam

    2011-01-01

    Traditionally microstrip or printed reflectarrays are designed using the transmit mode technique. In this method, the size of each printed element is chosen so as to provide the required value of the reflection phase such that a collimated beam results along a given direction. The reflection phase of each printed element is approximated using an infinite array model. The infinite array model is an excellent engineering approximation for a large microstrip array since the size or orientation of elements exhibits a slow spatial variation. In this model, the reflection phase from a given printed element is approximated by that of an infinite array of elements of the same size and orientation when illuminated by a local plane wave. Thus the reflection phase is a function of the size (or orientation) of the element, the elevation and azimuth angles of incidence of a local plane wave, and polarization. Typically, one computes the reflection phase of the infinite array as a function of several parameters such as size/orientation, elevation and azimuth angles of incidence, and in some cases for vertical and horizontal polarization. The design requires the selection of the size/orientation of the printed element to realize the required phase by interpolating or curve fitting all the computed data. This is a substantially complicated problem, especially in applications requiring a computationally intensive commercial code to determine the reflection phase. In dual polarization applications requiring rectangular patches, one needs to determine the reflection phase as a function of five parameters (dimensions of the rectangular patch, elevation and azimuth angles of incidence, and polarization). This is an extremely complex problem. The new method employs the reciprocity principle and reaction concept, two well-known concepts in electromagnetics to derive the receive mode analysis and design techniques. In the "receive mode design" technique, the reflection phase is computed

  2. Water confined in MCM-41: a mode coupling theory analysis

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Rovere, M.; Chen, S.-H.

    2012-02-01

    In this paper we analyze molecular dynamics simulation results on supercooled water in a MCM-41 pore in order to test the mode coupling theory. A layer analysis must be performed for water in the pore in order to exclude the contribution of water bound to the strongly hydrophilic surface. Upon supercooling a range of temperatures is reached where the liquid follows the mode coupling theory. From the power law behavior of the relaxation times extracted from the Kohlrausch-William-Watts fit to the self-intermediate scattering function, we obtain the crossover temperature TC and the γ exponent of the theory. The time-temperature superposition principle is also satisfied. A fit to the von Schweidler law yields a coefficient b from which all the other parameters of the theory have been calculated. In particular, we obtained the same value of γ as extracted from the power law fit to the relaxation times, in agreement with the requirements of the theory. For very low temperatures, the mode coupling theory no longer holds as hopping processes intervene and water turns its behavior to that of a strong liquid.

  3. Detecting Mode Confusion Through Formal Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Potts, James N.

    1999-01-01

    Aircraft safety has improved steadily over the last few decades. While much of this improvement can be attributed to the introduction of advanced automation in the cockpit, the growing complexity of these systems also increases the potential for the pilots to become confused about what the automation is doing. This phenomenon, often referred to as mode confusion, has been involved in several accidents involving modern aircraft. This report describes an effort by Rockwell Collins and NASA Langley to identify potential sources of mode confusion through two complementary strategies. The first is to create a clear, executable model of the automation, connect it to a simulation of the flight deck, and use this combination to review of the behavior of the automation and the man-machine interface with the designers, pilots, and experts in human factors. The second strategy is to conduct mathematical analyses of the model by translating it into a formal specification suitable for analysis with automated tools. The approach is illustrated by applying it to a hypothetical, but still realistic, example of the mode logic of a Flight Guidance System.

  4. Stability and phase transition of localized modes in Bose–Einstein condensates with both two- and three-body interactions

    SciTech Connect

    Bai, Xiao-Dong; Ai, Qing; Zhang, Mei; Xiong, Jun Yang, Guo-Jian; Deng, Fu-Guo

    2015-09-15

    We investigate the stability and phase transition of localized modes in Bose–Einstein Condensates (BECs) in an optical lattice with the discrete nonlinear Schrödinger model by considering both two- and three-body interactions. We find that there are three types of localized modes, bright discrete breather (DB), discrete kink (DK), and multi-breather (MUB). Moreover, both two- and three-body on-site repulsive interactions can stabilize DB, while on-site attractive three-body interactions destabilize it. There is a critical value for the three-body interaction with which both DK and MUB become the most stable ones. We give analytically the energy thresholds for the destabilization of localized states and find that they are unstable (stable) when the total energy of the system is higher (lower) than the thresholds. The stability and dynamics characters of DB and MUB are general for extended lattice systems. Our result is useful for the blocking, filtering, and transfer of the norm in nonlinear lattices for BECs with both two- and three-body interactions.

  5. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  6. Precessing rotating flows with additional shear: Stability analysis

    NASA Astrophysics Data System (ADS)

    Salhi, A.; Cambon, C.

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Ω0 ) and the additional “precessing” Coriolis force (with angular velocity -ɛΩ0 ), normal to it. A “weak” shear flow, with rate 2ɛ of the same order of the Poincaré “small” ratio ɛ , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler’s equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov’s [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré’s [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small ɛ . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet’s theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small ɛ , but significant differences are obtained regarding growth rates and widths of instability bands, if larger ɛ values, up to 0.2, are considered. Finally, both flow cases

  7. Hybrid Electron Microscopy Normal Mode Analysis graphical interface and protocol.

    PubMed

    Sorzano, Carlos Oscar S; de la Rosa-Trevín, José Miguel; Tama, Florence; Jonić, Slavica

    2014-11-01

    This article presents an integral graphical interface to the Hybrid Electron Microscopy Normal Mode Analysis (HEMNMA) approach that was developed for capturing continuous motions of large macromolecular complexes from single-particle EM images. HEMNMA was shown to be a good approach to analyze multiple conformations of a macromolecular complex but it could not be widely used in the EM field due to a lack of an integral interface. In particular, its use required switching among different software sources as well as selecting modes for image analysis was difficult without the graphical interface. The graphical interface was thus developed to simplify the practical use of HEMNMA. It is implemented in the open-source software package Xmipp 3.1 (http://xmipp.cnb.csic.es) and only a small part of it relies on MATLAB that is accessible through the main interface. Such integration provides the user with an easy way to perform the analysis of macromolecular dynamics and forms a direct connection to the single-particle reconstruction process. A step-by-step HEMNMA protocol with the graphical interface is given in full details in Supplementary material. The graphical interface will be useful to experimentalists who are interested in studies of continuous conformational changes of macromolecular complexes beyond the modeling of continuous heterogeneity in single particle reconstruction.

  8. Stability of Microturbulent Drift Modes during Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; C.L. Fiore; W. Dorland; D.R. Mikkelsen; G. Rewoldt; P.T. Bonoli; D.R. Ernst; J.E. Rice; S.J. Wukitch

    2003-11-20

    Recent H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasmas 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with flux tube geometry gyrokinetic simulations, using the massively parallel code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88 (1995) 128]. The simulations support the picture of ion/electron temperature gradient (ITG/ETG) microturbulence driving high xi/ xe and that suppressed ITG causes reduced particle transport and improved ci on C-Mod. Nonlinear calculations for C-Mod confirm initial linear simulations, which predicted ITG stability in the barrier region just before ITB formation, without invoking E x B shear suppression of turbulence. Nonlinear fluxes are compared to experiment, which both show low heat transport in the ITB and higher transport within and outside of the barrier region.

  9. The different modes of hydro-economic analysis (Invited)

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Binions, O.; Erfani, T.

    2013-12-01

    In the face of growing water demands, climate change and spatial and temporal water access variability, accurately assessing the economic impacts of proposed water resource management changes is useful. The objective of this project funded by UK Water Industry Research was to present and demonstrate a framework for identifying and using the ';value of water' to enable water utilities and their regulators to make better decisions. A hydro-economic model can help evaluate water management options in terms of their hydrological and economic impact at different locations throughout a catchment over time. In this talk we discuss three modes in which hydro-economic models can be implemented: evaluative, behavioral and prescriptive. In evaluation mode economic water demand and benefit functions are used to post-process water resource management model results to assess the economic impacts (over space and time) of a policy under consideration. In behavioral hydro-economic models users are represented as agents and the economics is used to help predict their actions. In prescriptive mode optimization is used to find the most economically efficient management actions such as allocation patterns or source selection. These three types of hydro-economic analysis are demonstrated on a UK watershed (Great River Ouse) that includes 97 different water abstractors from amongst the public water supply, agriculture, industry and energy plant cooling sectors. The following issues under dry and normal historical conditions were investigated: Supply/demand investment planning, societal cost of environmental flows, water market prices, and scarcity-sensitive charges for water rights. The talk discusses which hydro-economic modeling mode is used to study each of these issues and why; example results are shown and discussed. The topic of how hydro-economic models can be built and deployed effectively is covered along with how existing water utility operational and planning tools can be

  10. Failure mode analysis of a post-tension anchored dam using linear finite element analysis

    NASA Astrophysics Data System (ADS)

    Corn, Aimee

    There are currently over 84,000 dams in the United States, and the average age of those dams is 52 years. Concrete gravity dams are the second most common dam type, with more than 3,000 in the United States. Current engineering technology and technical understanding of hydrologic and seismic events has resulted in significant increases to the required design loads for most dams; therefore, many older dams do not have adequate safety for extreme loading events. Concrete gravity dams designed and constructed in the early 20th century did not consider uplift pressures beneath the dam, which reduces the effective weight of the structure. One method that has been used to enhance the stability of older concrete gravity dams includes the post-tension anchor (PTA) system. Post-tensioning infers modifying cured concrete and using self-equilibrating elements to increase the weight of the section, which provides added stability. There is a lack of historical evidence regarding the potential failure mechanisms for PTA concrete gravity dams. Of particular interest, is how these systems behave during large seismic events. The objective of this thesis is to develop a method by which the potential failure modes during a seismic event for a PTA dam can be evaluated using the linear elastic finite element method of analysis. The most likely potential failure modes (PFM) for PTA designs are due to tensile failure and shear failure. A numerical model of a hypothetical project was developed to simulate PTAs in the dam. The model was subjected to acceleration time-history motions that simulated the seismic loads. The results were used to evaluate the likelihood of tendon failure due to both tension and shear. The results from the analysis indicated that the PTA load increased during the seismic event; however, the peak load in the tendons was less than the gross ultimate tensile strength (GUTS) and would not be expected to result in tensile failure at the assumed project. The analysis

  11. Temperature stability of transit time delay for a single-mode fibre in a loose tube cable

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Eng, S. T.; Johnston, A. R.

    1983-01-01

    The effect of temperature on the transit-time delay of a loose-tube-type single-mode optical-fiber cable is investigated experimentally. A 1058-m length of cable was placed loosely coiled in an oven and used to connect a 820-nm single-mode laser diode to a high-speed avalanche-photodiode detector feeding a vector voltmeter; the signal was provided by a high-stability frequency-synthesized generator. Measurements were made every 2 C from -50 to 60 C and compared to those obtained with a 200-m lacquered bare fiber. The phase change of both fibers varied with temperature at a positive slope of 6-7 ppm/C. This value is significantly better than those reported for other cable types, suggesting the application of loose-fiber cables to long-haul gigabit digital transmissions or precision time-base distribution for VLBI.

  12. Effects of Three-Dimensional Electromagnetic Structures on Resistive-Wall-Mode Stability of Reversed Field Pinches

    SciTech Connect

    Villone, F.

    2008-06-27

    In this Letter, the linear stability of the resistive wall modes (RWMs) in toroidal geometry for a reversed field pinch (RFP) plasma is studied. Three computational models are used: the cylindrical code ETAW, the toroidal MHD code MARS-F, and the CarMa code, able to take fully into account the effects of a three-dimensional conducting structure which mimics the real shell geometry of a reversed field pinch experimental device. The computed mode growth rates generally agree with experimental data. The toroidal effects and the three-dimensional features of the shell, like gaps, allow a novel interpretation of the RWM spectrum in RFP's and remove its degeneracy. This shows the importance of making accurate modeling of conductors for the RWM predictions also in future devices such as ITER.

  13. Failure modes and effects analysis of fusion magnet systems

    SciTech Connect

    Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

  14. Voltage stability analysis in the new deregulated environment

    NASA Astrophysics Data System (ADS)

    Zhu, Tong

    Nowadays, a significant portion of the power industry is under deregulation. Under this new circumstance, network security analysis is more critical and more difficult. One of the most important issues in network security analysis is voltage stability analysis. Due to the expected higher utilization of equipment induced by competition in a power market that covers bigger power systems, this issue is increasingly acute after deregulation. In this dissertation, some selected topics of voltage stability analysis are covered. In the first part, after a brief review of general concepts of continuation power flow (CPF), investigations on various matrix analysis techniques to improve the speed of CPF calculation for large systems are reported. Based on these improvements, a new CPF algorithm is proposed. This new method is then tested by an inter-area transaction in a large inter-connected power system. In the second part, the Arnoldi algorithm, the best method to find a few minimum singular values for a large sparse matrix, is introduced into the modal analysis for the first time. This new modal analysis is applied to the estimation of the point of voltage collapse and contingency evaluation in voltage security assessment. Simulations show that the new method is very efficient. In the third part, after transient voltage stability component models are investigated systematically, a novel system model for transient voltage stability analysis, which is a logical-algebraic-differential-difference equation (LADDE), is offered. As an example, TCSC (Thyristor controlled series capacitors) is addressed as a transient voltage stabilizing controller. After a TCSC transient voltage stability model is outlined, a new TCSC controller is proposed to enhance both fault related and load increasing related transient voltage stability. Its ability is proven by the simulation.

  15. Hurwitz stability analysis of an ADPCM system

    NASA Astrophysics Data System (ADS)

    Dimolitsas, S.; Bhaskar, U.

    The behavior of adaptive recursive filters in adaptive differential pusle-code modulation (ADPCM) applications is affected by the possibility of filter instability when the filter coefficients are adapted. Thus, in-parallel condition monitoring may be necessary to ensure that the system function poles remain bounded by the unit circle in the z-plane. These poles can be either directly monitored by reference to their z-plane geometry, or indirectly checked by satisfaction of some other condition. A method is described in which the modeled all-pole part of the decoder transfer function is approximated by a Chebyshev polynomial, which in turn is decomposed into two suitably chosen functions that satisfy the Hurwitz polynomial stability constraints. The system poles can be indirectly but simply monitored and controlled so that the resulting system function remains stable.

  16. Characteristic analysis of two-mode fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Yan, Li; Hu, Guijun; Xiao, Jian; Chang, Yuxin; Bai, Song; Wang, Haiyan

    2014-12-01

    In this paper, the two-mode FBG is intensively studied in simulation and experiment. From the perspective of mode coupling, the coupling wavelength of the two-mode FBG is analyzed theoretically and the Bragg wavelength is calculated in simulation. Meanwhile, the variation of the two-mode FBG's reflection spectrum is simulated in different power ratios of the LP11 and LP01 modes. Then, a two-mode FBG is written on SMF-28e fiber by using the phase-mask technique and the two-mode FBG's reflection spectrum has been experimentally measured by adjusting the core-offset distance between the broadband light source's pigtail and the two-mode fiber which changes the power ratio of LP11 and LP01 modes. Eventually and most importantly, the mode characteristic of the two-mode FBG is studied, and the LP11 mode is successfully obtained by using an experimental system of a two-mode FBG combined with an optical circulator. The results show that the two-mode FBG has a good prospect for obtaining high-order mode and for application in mode division multiplexing/demultiplexing.

  17. Trace Elements in Coal - Modes of Ocurrence Analysis.

    SciTech Connect

    Palmer, C.A.; Kolker, A.; Finkelman, R.B.; Kolb, K.C.; Mroozkowski, S.J.; Crowley, S.S.; Belkin, H.E.; Bullock, J.H., Jr.; Motooka, J.M.

    1997-07-24

    The objective is to provide modes of occurrence information for the CQ Inc. (CQ) effort being performed under DOE Contract entitled HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors. This work attempts to provide semi-quantative date on modes of occurrence of 15 elements. Coals investigated include as-mined coals and cleaned fines from the Northern Appalachian and Southern Application, and Eastern Interior regions, and as-mined and natural fines from the Powder River Basin. Study techniques include scanning electron microscopy, electron micropole analysis, and leaching procedures. Microprobe data analysis indicate that pyrite grains in Northern Appalachian and Eastern Interior, and Powder River Basin coals and most of the pyrite grains of the Southern Appalachian coal contain low As concentrations, generally in the 100-500 ppm range. However, the Southern Appalachian coal contains some pyrite grains with much higher As contents, in excess of 4.0 wt. percent As. Micropole analyses and data from leaching experiments indicate that arsenic is primarily associated with pyrite in the bituminous coals. These techniques also indicate that Cr is primarily associated with illite. Other HAP`s elements have multiple associations.

  18. Large-mode-area single-polarization single-mode photonic crystal fiber: design and analysis.

    PubMed

    Kumar, Ajeet; Saini, Than Singh; Naik, Kishor Dinkar; Sinha, Ravindra Kumar

    2016-07-01

    A rectangular core photonic crystal fiber structure has been presented and analyzed for single-polarization single-mode operation. Single-polarization is obtained with asymmetric design and by introducing different loss for x-polarization and y-polarization of fundamental modes. Single-polarization single-mode operation of the proposed photonic crystal fiber is investigated in detail by using a full vector finite element method with an anisotropic perfectly matched layer. The variations of the confinement loss and effective mode area of x-polarization and y-polarization of fundamental modes have been simulated by varying the structural parameters of the proposed photonic crystal fiber. At the optimized parameters, confinement loss and effective mode area is obtained as 0.94 dB/m and 60.67  μm2 for y-polarization as well as 26.67 dB/m and 67.23  μm2 for x-polarization of fundamental modes, respectively, at 1.55 μm. Therefore simulation results confirmed that, 0.75 m length of fiber will be sufficient to get a y-polarized fundamental mode with an effective mode area as large as 60.67  μm2.

  19. Stability analysis of unstructured finite volume methods for linear shallow water flows using pseudospectra and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Beljadid, Abdelaziz; Mohammadian, Abdolmajid; Qiblawey, Hazim

    2016-10-01

    The discretization of the shallow water system on unstructured grids can lead to spurious modes which usually can affect accuracy and/or cause stability problems. This paper introduces a new approach for stability analysis of unstructured linear finite volume schemes for linear shallow water equations with the Coriolis Effect using spectra, pseudospectra, and singular value decomposition. The discrete operator of the scheme is the principal parameter used in the analysis. It is shown that unstructured grids have a large influence on operator normality. In some cases the eigenvectors of the operator can be far from orthogonal, which leads to amplification of solutions and/or stability problems. Large amplifications of the solution can be observed, even for discrete operators which respect the condition of asymptotic stability, and in some cases even for Lax-Richtmyer stable methods. The pseudospectra are shown to be efficient for the verification of stability of finite volume methods for linear shallow water equations. In some cases, the singular value decomposition is employed for further analysis in order to provide more information about the existence of unstable modes. The results of the analysis can be helpful in choosing the type of mesh, the appropriate placements of the variables of the system on the grid, and the suitable discretization method which is stable for a wide range of modes.

  20. Scaling laws for the intrapulse frequency stability of an injection mode selected TEA CO2 laser

    NASA Astrophysics Data System (ADS)

    Willetts, D. V.; Harris, M. R.

    1983-05-01

    Heterodyne measurements of the intrapulse frequency behavior of an injection mode selected TEA CO2 laser are presented. The frequency rose as the square of time at a rate varying linearly with energy and strongly dependent on spot size. These results are in accordance with a laser induced medium perturbative (LIMP) model, which allows the chirp in any TEA laser system to be predicted.

  1. Study on the stability of waterpower-speed control system for hydropower station with upstream and downstream surge chambers based on regulation modes

    NASA Astrophysics Data System (ADS)

    Chen, J. P.; Yang, J. D.; Guo, W. C.; Teng, Y.

    2014-03-01

    In allusion to the hydropower station with upstream and downstream surge chambers, a complete mathematical model of waterpower-speed control system that includes pipeline system and turbine regulation system is established under the premise of the breakthrough of Thoma assumption in this paper. The comprehensive transfer functions and free movement equations that characterize the dynamic characteristics of system are derived when the mode of governor is respectively frequency regulation and power regulation. Then according to Routh- Hurwitz theorem, the stability domain that describes the good or bad of stability is drawn in the coordinate system with the relative areas of upstream and downstream surge chambers as abscissa and ordinate respectively. Finally, the effects of Thoma assumption, flow inertia, regulation modes, and governor parameters on the stability of waterpower-speed control system are analyzed by means of stability domain. The following conclusions have been come to: Thoma assumption made the stability worse. The flow inertia Tw has unfavorable effect on the stability of the two regulation modes. The stability of power regulation mode is obviously superior to frequency regulation mode under the same condition, but the parametric variation sensibility of the former is inferior to the latter. For the governor parameters, the stability continually gets better with the increase of temporary droop bt and damping device time constant Td, while the stability of frequency regulation would get worse with the increase of temporary droop bt when the damping device time constant Td takes small value. As the increase of permanent droop bp, the stability of power regulation mode gets worse.

  2. Limiter stabilization of high-beta external kink-tearing modes

    SciTech Connect

    Lee, J.K.; Ohyabu, N.

    1984-12-01

    The stabilizing effects of finite-width poloidal limiters, toroidal limiters, and general mushroom limiters are examined for high-beta finite resistivity tokamak plamas in free boundary. When the plasma pressure and resistivity are small, a poloidal limiter is effective in reducing the growth rate even with a small limiter size, while a toroidal limiter requires a large size for a comparable effect. As the plasma pressure or resistivity increases, a toroidal limiter becomes more effective in reducing the growth rate than a poloidal limiter of the same size. A small optimized mushroom limiter might have a stabilizing effect similar to a conducting shell.

  3. Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level.

    PubMed

    Danylov, Andriy A; Goyette, Thomas M; Waldman, Jerry; Coulombe, Michael J; Gatesman, Andrew J; Giles, Robert H; Goodhue, William D; Qian, Xifeng; Nixon, William E

    2009-04-27

    A simple analog locking circuit was shown to stabilize the beat signal between a 2.408 THz quantum cascade laser and a CH(2)DOH THz CO(2) optically pumped molecular laser to 3-4 kHz (FWHM). This is approximately a tenth of the observed long-term (t approximately sec) linewidth of the optically pumped laser showing that the feedback loop corrects for much of the mechanical and acoustic-induced frequency jitter of the gas laser. The achieved stability should be sufficient to enable the use of THz quantum cascade lasers as transmitters in short-range coherent transceivers.

  4. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  5. Kinematic analysis of rope skipper's stability

    NASA Astrophysics Data System (ADS)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  6. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  7. Stability over time: Is behavior analysis a trait psychology?

    PubMed Central

    Vyse, Stuart

    2004-01-01

    Historically, behavior analysis and trait psychology have had little in common; however, recent developments in behavior analysis bring it closer to one of the core assumptions of the trait approach: the stability of behavior over time and, to a lesser extent, environments. The introduction of the concept of behavioral momentum and, in particular, the development of molar theories have produced some common features and concerns. Behavior-analytic theories of stability provide improved explanations of many everyday phenomena and make possible the expansion of behavior analysis into areas that have been inadequately addressed. ImagesFigure 1 PMID:22478416

  8. TSC simulation of feedback stabilization of axisymmetric modes in tokamaks using driven halo currents

    SciTech Connect

    Jardin, S.C.; Schmidt, J.A.

    1997-03-01

    The Tokamak Simulation Code (TSC) has been used to model a new method of feedback stabilization of the axisymmetric instability in tokamaks using driven halo (or scrapeoff layer) currents. The method appears to be feasible for a wide range of plasma edge parameters. It may offer significant advantages over the more conventional method of controlling this instability when applied in a reactor environment.

  9. Nonlinear evolution of two fast-particle-driven modes near the linear stability threshold

    SciTech Connect

    Zalesny, Jaroslaw; Marczynski, Slawomir; Berczynski, Pawel; Berczynski, Stefan; Galant, Grzegorz; Lisak, Mietek; Galkowski, Andrzej

    2011-06-15

    A system of two coupled integro-differential equations is derived and solved for the non-linear evolution of two waves excited by the resonant interaction with fast ions just above the linear instability threshold. The effects of a resonant particle source and classical relaxation processes represented by the Krook, diffusion, and dynamical friction collision operators are included in the model, which exhibits different nonlinear evolution regimes, mainly depending on the type of relaxation process that restores the unstable distribution function of fast ions. When the Krook collisions or diffusion dominate, the wave amplitude evolution is characterized by modulation and saturation. However, when the dynamical friction dominates, the wave amplitude is in the explosive regime. In addition, it is found that the finite separation in the phase velocities of the two modes weakens the interaction strength between the modes.

  10. Effects of a sheared ion velocity on the linear stability of ITG modes

    NASA Astrophysics Data System (ADS)

    Lontano, M.; Varischetti, M. C.; Lazzaro, E.

    2006-11-01

    The linear dispersion of the ion temperature gradient (ITG) modes, in the presence of a non uniform background ion velocity U∥ = U∥(x) ez, in the direction of the sheared equilibrium magnetic field B0 = B0(x) ez, has been studied in the frame of the two-fluid guiding center approximation, in slab geometry. Generally speaking, the presence of an ion flow destabilizes the oscillations. The role of the excited K-H instability is discussed.

  11. Stability of the Tilt Modes of an Actively Controlled Flywheel Analyzed

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.

    1999-01-01

    Applications of strongly gyroscopic rotors are becoming important, including flywheels for terrestrial and space energy storage and various attitude control devices for spacecraft. Some of these applications, especially the higher speed ones for energy storage, will have actively controlled magnetic bearings. These bearings will be required where speeds are too high for conventional bearings, where adequate lubrication is undesirable or impossible, or where bearing losses must be minimized for efficient energy storage. Flywheel rotors are highly gyroscopic, and above some speed that depends on the bandwidth of the feedback system, they always become unstable in an actively controlled magnetic bearing system. To assess ways to prevent instability until speeds well above the desired operating range, researchers at the NASA Lewis Research Center used a commercial controls code to calculate the eigenvalues of the tilt modes of a rigid gyroscopic rotor supported by active magnetic bearings. The real part of the eigenvalue is the negative of the damping of the mode, and the imaginary part is approximately equal to the mode s frequency.

  12. An Analysis of Fundamental Mode Surface Wave Amplitude Measurements

    NASA Astrophysics Data System (ADS)

    Schardong, L.; Ferreira, A. M.; van Heijst, H. J.; Ritsema, J.

    2014-12-01

    Seismic tomography is a powerful tool to decipher the Earth's interior structure at various scales. Traveltimes of seismic waves are widely used to build velocity models, whereas amplitudes are still only seldomly accounted for. This mainly results from our limited ability to separate the various physical effects responsible for observed amplitude variations, such as focussing/defocussing, scattering and source effects. We present new measurements from 50 global earthquakes of fundamental-mode Rayleigh and Love wave amplitude anomalies measured in the period range 35-275 seconds using two different schemes: (i) a standard time-domain amplitude power ratio technique; and (ii) a mode-branch stripping scheme. For minor-arc data, we observe amplitude anomalies with respect to PREM in the range of 0-4, for which the two measurement techniques show a very good overall agreement. We present here a statistical analysis and comparison of these datasets, as well as comparisons with theoretical calculations for a variety of 3-D Earth models. We assess the geographical coherency of the measurements, and investigate the impact of source, path and receiver effects on surface wave amplitudes, as well as their variations with frequency in a wider range than previously studied.

  13. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography.

    PubMed

    Pavon, Jorge Alexander; Li, Xiaojuan; Chico, Steven; Kishnani, Umesh; Soundararajan, Soundara; Cheung, Jason; Li, Huijuan; Richardson, Daisy; Shameem, Mohammed; Yang, Xiaoyu

    2016-01-29

    Analysis of oxidation of monoclonal antibodies (mAbs) in most cases relies on peptide mapping and LC-MS, which is time consuming and labor-intensive. A robust chromatography based method that is able to resolve and quantitate mAb oxidation variants due to oxidized methionine or tryptophan is highly desired. Here we developed a novel mixed mode chromatography method using the unique property of Sepax Zenix SEC-300MK column to analyze mAb oxidation levels. The separation of oxidized species relied upon the mixed mode of size exclusion and hydrophobic interaction between the resin and antibodies. The chromatography was performed in a regular SEC mobile phase, PBS, containing NaCl at a concentration (0-2.4M) specific for individual antibodies. This method was able to resolve and quantitate the oxidized antibodies as prepeaks, of either methionine-oxidized species induced by the common oxidants TBHP, tryptophan-oxidized species triggered by AAPH, or oxidized species by UV photo-irradiation. The prepeaks were further characterized by SEC-MALLS as monomers and confirmed by LC-MS as oxidized antibody variants with a mass increase of 16 or 32Da. This method has been successfully applied to monitor multiple monoclonal antibodies of IgG1, IgG2, and IgG4 subclasses. PMID:26774436

  14. Linear stability analysis of swirling turbulent flows with turbulence models

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Juniper, Matthew

    2013-11-01

    In this paper, we consider the growth of large scale coherent structures in turbulent flows by performing linear stability analysis around a mean flow. Turbulent flows are characterized by fine-scale stochastic perturbations. The momentum transfer caused by these perturbations affects the development of larger structures. Therefore, in a linear stability analysis, it is important to include the perturbations' influence. One way to do this is to include a turbulence model in the stability analysis. This is done in the literature by using eddy viscosity models (EVMs), which are first order turbulence models. We extend this approach by using second order turbulence models, in this case explicit algebraic Reynolds stress models (EARSMs). EARSMs are more versatile than EVMs, in that they can be applied to a wider range of flows, and could also be more accurate. We verify our EARSM-based analysis by applying it to a channel flow and then comparing the results with those from an EVM-based analysis. We then apply the EARSM-based stability analysis to swirling pipe flows and Taylor-Couette flows, which demonstrates the main benefit of EARSM-based analysis. This project is supported by EPSRC and Rolls-Royce through a Dorothy Hodgkin Research Fellowship.

  15. A Formal Methods Approach to the Analysis of Mode Confusion

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Miller, Steven P.; Potts, James N.; Carreno, Victor A.

    2004-01-01

    The goal of the new NASA Aviation Safety Program (AvSP) is to reduce the civil aviation fatal accident rate by 80% in ten years and 90% in twenty years. This program is being driven by the accident data with a focus on the most recent history. Pilot error is the most commonly cited cause for fatal accidents (up to 70%) and obviously must be given major consideration in this program. While the greatest source of pilot error is the loss of situation awareness , mode confusion is increasingly becoming a major contributor as well. The January 30, 1995 issue of Aviation Week lists 184 incidents and accidents involving mode awareness including the Bangalore A320 crash 2/14/90, the Strasbourg A320 crash 1/20/92, the Mulhouse-Habsheim A320 crash 6/26/88, and the Toulouse A330 crash 6/30/94. These incidents and accidents reveal that pilots sometimes become confused about what the cockpit automation is doing. Consequently, human factors research is an obvious investment area. However, even a cursory look at the accident data reveals that the mode confusion problem is much deeper than just training deficiencies and a lack of human-oriented design. This is readily acknowledged by human factors experts. It seems that further progress in human factors must come through a deeper scrutiny of the internals of the automation. It is in this arena that formal methods can contribute. Formal methods refers to the use of techniques from logic and discrete mathematics in the specification, design, and verification of computer systems, both hardware and software. The fundamental goal of formal methods is to capture requirements, designs and implementations in a mathematically based model that can be analyzed in a rigorous manner. Research in formal methods is aimed at automating this analysis as much as possible. By capturing the internal behavior of a flight deck in a rigorous and detailed formal model, the dark corners of a design can be analyzed. This paper will explore how formal

  16. Stability Analysis for a Multi-Camera Photogrammetric System

    PubMed Central

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-01-01

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012

  17. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    PubMed

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained. PMID:23285870

  18. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    SciTech Connect

    Villone, F.; Mastrostefano, S.; Calabrò, G.; Vlad, G.; Crisanti, F.; Fusco, V.; Marchiori, G.; Bolzonella, T.; Marrelli, L.; Martin, P.; Liu, Y. Q.

    2014-08-15

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FAST could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.

  19. Short-wavelength stability analysis of Hill's vortex with/without swirl

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Hijiya, K.

    2010-07-01

    The stability of Hill's vortex with/without swirl is studied by the short-wavelength stability analysis or WKB analysis. It is shown that the classical Hill's spherical vortex is subjected not only to the Widnall instability but also to the curvature instability found for thin vortex rings and helical vortex tubes. A new "combined" mode of instability caused by the two instabilities is discovered. The magnitude of the exponential growth rate of the combined mode is similar with the curvature instability around the stagnation point; it exceeds the Widnall instability near the boundary. The effects of swirl on the instabilities are investigated using a family of solutions obtained by Moffatt ["The degree of knottedness of tangled vortex lines," J. Fluid Mech. 35, 117 (1969)]. As the swirl parameter α increases, a stable region appears around the stagnation point; the maxima of the growth rates decrease; the combined mode region disappears for α ≥3. As α increases further, however, the region of the generalized centrifugal instability emerges from the stagnation point.

  20. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    NASA Astrophysics Data System (ADS)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  1. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Ayten, B.; Westerhof, E.; the ASDEX Upgrade Team

    2014-07-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al (1989 Phys. Rev. Lett. 62 426). We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in the case of locked islands or when the magnetic island rotation period is longer than the collisional time scale. The non-linear effects result in an overall reduction of the current drive efficiency for this case with absorption of the EC power on the low-field side of the electron cyclotron resonance layer. As a consequence of the non-linear effects, also the stabilizing effect of the ECCD on the island is reduced from linear expectations.

  2. Analysis of Human Body Bipedal Stability for Neuromotor Disabilities

    NASA Astrophysics Data System (ADS)

    Baritz, Mihaela; Cristea, Luciana; Rogozea, Liliana; Cotoros, Diana; Repanovici, Angela

    2009-04-01

    The analysis of different biomechanical aspects of balance and equilibrium is presented in the first part of the paper. We analyzed the posture, balance and stability of human body for a normal person and for a person with loco-motor or neuro-motor disabilities (in the second part). In the third part of the paper we presented the methodology and the experimental setup used to record the human body behavior in postural stability for persons with neuro-motors disabilities. The results and the conclusions are presented in the final part of the paper and also in the future work meant to establish the computer analysis for rehabilitation neuromotor disabilities.

  3. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  4. Rigid Body Modes Influence On Microvibration Analysis-Application To Swarm

    NASA Astrophysics Data System (ADS)

    Laduree, G.; Fransen, S.; Baldesi, G.; Pflieger, I.

    2012-07-01

    Microvibrations are defined as low level mechanical disturbances affecting payload performance, generated by mobile parts or mechanism operating on-board the spacecraft, like momentum or reaction wheels, pointing mechanism, cryo-coolers or thrusters. The disturbances caused by these sources are transmitted through the spacecraft structure and excite modes of that structure or elements of the payload impacting its performance (e.g. Line of sight rotations inducing some image quality degradation). The dynamic interaction between these three elements (noise source, spacecraft structure and sensitive receiver) makes the microvibration prediction a delicate problem. Microvibration sources are generally of concern in the frequency range from a few Hz to 1000 Hz. However, in some specific cases, high stability at lower frequencies might be requested. This is the case of the SWARM mission, whose objectives are to provide the best ever survey of the geomagnetic field and its temporal evolution as well as supplementary information for studying the interaction of the magnetic field with other physical quantities describing the Earth system (e.g. ocean circulation). Among its instruments, SWARM is embarking a very sensitive 6-axis accelerometer in the low frequency range (10-8 m/s2 or rad/s2 between 10-4 and 0.1 Hz) located at its Centre of Gravity and an Absolute Scalar Magnetometer located at the tip of a boom far from the spacecraft body. The ASM performs its measurements by rotating an alternative magnetic field around its main axis thanks to a piezo-electric motor. This repeated disturbance might generate some pollution of the accelerometer science data. The objective of this work is to focus on the interaction of the rigid body mode calculation method with the elastic contribution of the normal modes excited by the noise source frequency content. It has indeed been reported in the past that NASTRAN Lanczos rigid body modes may lead to inaccurate rigid-body accelerations

  5. Theoretical Analysis of Pseudodegenerate Zero-Energy Modes in Vacancy-Centered Hexagonal Armchair Nanographene

    NASA Astrophysics Data System (ADS)

    Morishita, Naoki; Ketut Sunnardianto, Gagus; Miyao, Satoaki; Kusakabe, Koichi

    2016-08-01

    Deriving mathematical expressions for two zero modes for a π-band tight-binding model, we identify a class of bipartite graphs having the same number of subgraph sites, where each graph represents one of the vacancy-centered hexagonal armchair nanographene (VANG) molecules. Indeed, in the VANG molecule C60H24, which shows stability in a density functional theory simulation, two pseudodegenerate zero modes, a vacancy-centered quasilocalized zero mode and an extended zero mode with a √{3} × √{3} structure, appear at the highest occupied level. Since there is a finite energy gap between these two zero-energy modes and the other modes, low-lying states composed of pseudodegenerate zero modes appear as magnetic multiplets. Thus, the unique magnetic characteristics derived using our theory are expected to hold for synthesized VANG molecules in reality.

  6. Black tea: chemical analysis and stability.

    PubMed

    Li, Shiming; Lo, Chih-Yu; Pan, Min-Hsiung; Lai, Ching-Shu; Ho, Chi-Tang

    2013-01-01

    Tea is the most popular flavored and functional drink worldwide. The nutritional value of tea is mostly from the tea polyphenols that are reported to possess a broad spectrum of biological activities, including anti-oxidant properties, reduction of various cancers, inhibition of inflammation, and protective effects against diabetes, hyperlipidemia and obesity. Tea polyphenols include catechins and gallic acid in green and white teas, and theaflavins and thearubigins as well as other catechin polymers in black and oolong teas. Accurate analysis of black tea polyphenols plays a significant role in the identification of black tea contents, quality control of commercial tea beverages and extracts, differentiation of various contents of theaflavins and catechins and correlations of black tea identity and quality with biological activity, and most importantly, the establishment of the relationship between quantitative tea polyphenol content and its efficacy in animal or human studies. Global research in tea polyphenols has generated much in vitro and in vivo data rationally correlating tea polyphenols with their preventive and therapeutic properties in human diseases such as cancer, and metabolic and cardiovascular diseases etc. Based on these scientific findings, numerous tea products have been developed including flavored tea drinks, tea-based functional drinks, tea extracts and concentrates, and dietary supplements and food ingredients, demonstrating the broad applications of tea and its extracts, particularly in the field of functional food.

  7. An evaluation of intraoperative and postoperative outcomes of torsional mode versus longitudinal ultrasound mode phacoemulsification: a Meta-analysis

    PubMed Central

    Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele

    2016-01-01

    AIM To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. RESULTS The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). CONCLUSION The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes. PMID:27366694

  8. Nonlinear chaotic component extraction for postural stability analysis.

    PubMed

    Snoussi, Hichem; Hewson, David; Duchêne, Jacques

    2009-01-01

    This paper proposes a nonlinear analysis of the human postural steadiness system. The analyzed signal is the displacement of the centre of pressure (COP) collected from a force plate used for measuring postural sway. Instead of analyzing the classical nonlinear parameters on the whole signal, the proposed method consists of analyzing the nonlinear dynamics of the intrinsic mode functions (IMF) of the COP signal. Based on the computation of the IMFs Lyapunov exponents, it is shown that pre-processing the COP signal with the Empirical Mode Decomposition allows an efficient extraction of its chaotic component.

  9. Stability analysis of free piston Stirling engine power generation system

    NASA Astrophysics Data System (ADS)

    Fu, Z. X.; Nasar, S. A.; Rosswurm, Mark

    This paper presents a stability analysis of the free-piston Stirling engine and linear alternator power generation system. Such a system operates under sustained mechanical oscillators, stability of the system is important for proper operation, and as a criterion in selecting the tuning capacitor. The stability criterion of the system is that the rate of change in power dissipation and electric power output is always faster than the rate of the power generated by the engine. The dynamic equations and model of the system are developed in this paper. Frequency domain analysis and Bode plot techniques are utilized in the study. The stable operating frequency region corresponding to different levels of power output are then determined.

  10. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  11. An Efficient and Configurable Preprocessing Algorithm to Improve Stability Analysis.

    PubMed

    Sesia, Ilaria; Cantoni, Elena; Cernigliaro, Alice; Signorile, Giovanna; Fantino, Gianluca; Tavella, Patrizia

    2016-04-01

    The Allan variance (AVAR) is widely used to measure the stability of experimental time series. Specifically, AVAR is commonly used in space applications such as monitoring the clocks of the global navigation satellite systems (GNSSs). In these applications, the experimental data present some peculiar aspects which are not generally encountered when the measurements are carried out in a laboratory. Space clocks' data can in fact present outliers, jumps, and missing values, which corrupt the clock characterization. Therefore, an efficient preprocessing is fundamental to ensure a proper data analysis and improve the stability estimation performed with the AVAR or other similar variances. In this work, we propose a preprocessing algorithm and its implementation in a robust software code (in MATLAB language) able to deal with time series of experimental data affected by nonstationarities and missing data; our method is properly detecting and removing anomalous behaviors, hence making the subsequent stability analysis more reliable. PMID:26540679

  12. An Efficient and Configurable Preprocessing Algorithm to Improve Stability Analysis.

    PubMed

    Sesia, Ilaria; Cantoni, Elena; Cernigliaro, Alice; Signorile, Giovanna; Fantino, Gianluca; Tavella, Patrizia

    2016-04-01

    The Allan variance (AVAR) is widely used to measure the stability of experimental time series. Specifically, AVAR is commonly used in space applications such as monitoring the clocks of the global navigation satellite systems (GNSSs). In these applications, the experimental data present some peculiar aspects which are not generally encountered when the measurements are carried out in a laboratory. Space clocks' data can in fact present outliers, jumps, and missing values, which corrupt the clock characterization. Therefore, an efficient preprocessing is fundamental to ensure a proper data analysis and improve the stability estimation performed with the AVAR or other similar variances. In this work, we propose a preprocessing algorithm and its implementation in a robust software code (in MATLAB language) able to deal with time series of experimental data affected by nonstationarities and missing data; our method is properly detecting and removing anomalous behaviors, hence making the subsequent stability analysis more reliable.

  13. Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber

    NASA Astrophysics Data System (ADS)

    Yang, Xie; Hai-Nian, Han; Long, Zhang; Zi-Jiao, Yu; Zheng, Zhu; Lei, Hou; Li-Hui, Pang; Zhi-Yi, Wei

    2016-04-01

    We demonstrate a stable Yb:fiber frequency comb with supercontinuum generation by using a specially designed tapered single-mode fiber, in which a spectrum spanning from 500 nm to 1500 nm is produced. The carrier-envelope offset signal of the Yb:fiber comb is measured with a signal-to-noise ratio of more than 40 dB and a linewidth narrower than 120 kHz. The repetition rate and carrier-envelope offset signals are simultaneously phase locked to a microwave reference frequency. Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant No. 61378040).

  14. FMEA, the alternative process hazard method. [Failure Mode Effects Analysis

    SciTech Connect

    Goyal, R.K. )

    1993-05-01

    Failure mode effects analysis (FMEA) is an old reliability/assurance tool finding its way into the HPI. Not popular yet, this hazard technique has some viable applications that can improve hazard assessment data. Notably, FMEA studies can identify possible areas for improvement that may have not been discovered using other methods. Also, FMEA is not as labor intensive and costly as other process hazard analysis (PHA) methods. PSHA 1910.119 set in place an informational structure whose main purpose is the reduction of potential accidents and minimizing risks in the event of an accident. Consequently, HPI operators must evaluate their process systems and identify potential major hazards, such as fires, explosions and accidental release of toxic/hazardous chemicals, and protect their facilities, employees, the public and the environment. But, which PHA method(s) apply to a particular plant or process still remains a difficult question. This paper describes what FMEA is; types of FMEA; how to conduct a FMEA study; comparison with HAZOP (hazard and operability study); computer software; applicability of FMEA; and examples of its use.

  15. Metabolomics integrated elementary flux mode analysis in large metabolic networks.

    PubMed

    Gerstl, Matthias P; Ruckerbauer, David E; Mattanovich, Diethard; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2015-03-10

    Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are biologically irrelevant. We present thermodynamic EFMA (tEFMA), which calculates only the small(er) subset of thermodynamically feasible EFMs. We integrate network embedded thermodynamics into EFMA and show that we can use the metabolome to identify and remove thermodynamically infeasible EFMs during an EFMA without losing biologically relevant EFMs. Calculating only the thermodynamically feasible EFMs strongly reduces memory consumption and program runtime, allowing the analysis of larger networks. We apply tEFMA to study the central carbon metabolism of E. coli and find that up to 80% of its EFMs are thermodynamically infeasible. Moreover, we identify glutamate dehydrogenase as a bottleneck, when E. coli is grown on glucose and explain its inactivity as a consequence of network embedded thermodynamics. We implemented tEFMA as a Java package which is available for download at https://github.com/mpgerstl/tEFMA.

  16. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    NASA Astrophysics Data System (ADS)

    Saarelma, S.; Günter, S.; Kurki-Suonio, T.; Zehrfeld, H.-P.

    2000-05-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments.

  17. High beta and second stability region transport and stability analysis. Final report

    SciTech Connect

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  18. The Tubulin Binding Mode of Microtubule Stabilizing Agents Studied by Electron Crystallography

    NASA Astrophysics Data System (ADS)

    Nettles, James H.; Downing, Kenneth H.

    Since tubulin was discovered in 1967, drug probes have been used to manipulate mechanisms of microtubule polymerization and disassembly. In parallel, advances in optical imagery, electron microscopy, along with both electron and X-ray diffraction have provided ability to "see" the molecular underpinning of these machines. Nanoscale mapping of different tubulin polymers formed in the presence of different drugs and cofactors provide a context for examining the dynamic features relevant to their biological activity. Models built from EM maps have been used to understand the binding of stabilizing drugs such as taxanes and epothilones, to predict more effective molecules, and to explain mutation based resistance. Here, we discuss drug binding in the context of different polymeric forms and propose a trigger mechanism associated with microtubules' dynamic instability.

  19. Analysis of energy stabilization inside the hydrophobic core of rubredoxin.

    PubMed

    Berka, Karel; Hobza, Pavel; Vondrásek, Jirí

    2009-02-23

    The hydrophobic core of globular proteins is responsible for major stabilization of the protein tertiary structure. The prevailing amino-acid residues in the core are of aliphatic or aromatic character, and therefore, the core in a folded protein structure is mostly stabilized by noncovalent interactions of van der Waals origin between the amino-acid side chains. Herein, we present a theoretical analysis of the interaction energy between the amino acids of the hydrophobic core of the small globular protein rubredoxin (Rd) based on the symmetry-adapted perturbation theory (SAPT) method. The results show uniform proportions between the second-order dispersion and first-order electrostatic energy terms in favor of dispersion interaction, which plays a major role in the stabilization of this important structural element. To demonstrate the contrast between systems stabilized by different mechanisms, we perform a SAPT analysis of the typical hydrogen bonds involved in the formation of protein secondary structure elements in Rd, where dispersion still plays a non-negligible role but electrostatic energy is the major stabilizing factor.

  20. Observation of a critical pressure gradient for the stabilization of interchange modes in simple magnetized toroidal plasmas

    SciTech Connect

    Federspiel, L.; Labit, B.; Ricci, P.; Fasoli, A.; Furno, I.; Theiler, C.

    2009-09-15

    The existence of a critical pressure gradient needed to drive the interchange instability is experimentally demonstrated in the simple magnetized torus TORoidal Plasma EXperiment [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. This gradient is reached during a scan in the neutral gas pressure p{sub n}. Around a critical value for p{sub n}, depending on the magnetic configuration and on the injected rf power, a small increase in the neutral gas pressure triggers a transition in the plasma behavior. The pressure profile is locally flattened, stabilizing the interchange mode observed at lower neutral gas densities. The measured value for the critical gradient is close to the linear theory estimate.

  1. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  2. Analysis of Dynamic Stability of Space Launch Vehicles under Aerodynamic Forces Using CFD Derived Data

    NASA Astrophysics Data System (ADS)

    Trikha, M.; Gopalakrishnan, S.; Mahapatra, D. Roy

    2011-09-01

    A computational framework is developed to investigate the dynamic stability of space launch vehicles subjected to aerodynamic forces. A detailed mechanics based mathematical model of a moving flexible vehicle is used. The aerodynamic forces on the vehicle are obtained from simulation using Computational Fluid Dynamics (CFD) package. The objective behind this investigation is to analyze the problem of aeroelastic instability in blunt/conical nose slender space launch vehicles. Coupling among the rigid-body modes, the longitudinal vibration modes, and the transverse vibrational modes are considered. The effect of propulsive thrust as a follower force is also considered. A one-dimensional finite element model is developed to investigate the occurrence of aeroelastic instabilities of various types. Eigenvalues of the vehicle are determined in order to analyze the stable regimes. As a special case, we show numerical simulations by considering a typical vehicle configuration, for a vehicle Mach number of 0.8. Phenomenon of flutter is observed at this Mach number. The proposed analysis is suitable for different launch events such as vehicle take-off, maximum dynamic pressure regime, thrust transients, stage separation etc. The approach developed in this paper can be utilized for preliminary design of launch vehicles and establishing the stability boundaries for different trajectory parameters.

  3. Influence of kinetic hole filling on the stability of mode-locked semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Moloney, Jerome V.; Kilen, Isak; Hader, Jorg; Koch, Stephan W.

    2016-03-01

    Microscopic many-body theory is employed to analyze the mode-locking dynamics of a vertical external-cavity surface-emitting laser with a saturable absorber mirror. The quantum-wells are treated microscopically through the semiconductor Bloch equations and the light field using Maxwell's equations. Higher order correlation effects such as polarization dephasing and carrier relaxation at the second Born level are included and also approximated using effective rates fitted to second-Born-Markov evaluations. The theory is evaluated numerically for vertical external cavity surface emitting lasers with resonant periodic gain media. For given gain, the influence of the loss conditions on the very-short pulse generation in the range above 100 fs is analyzed. Optimized operational parameters are identified. Additionally, the fully microscopic theory at the second Born level is used to carrier out a pump-probe study of the carrier recovery in individual critical components of the VECSEL cavity such as the VECSEL chip itself and semiconductor or graphene saturable absorber mirrors.

  4. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  5. Stability analysis for delta operator systems subject to state saturation

    NASA Astrophysics Data System (ADS)

    Yang, Hongjiu; Geng, Qing; Xia, Yuanqing; Li, Li

    2016-11-01

    In this paper, we investigate the problem of stability analysis for linear delta operator systems subject to state saturation. Both full state saturation and partial state saturation are investigated for the delta operator systems. Two equivalent necessary and sufficient conditions are identified such that the system with full state saturation is globally asymptotically stable. Based on the sufficient conditions, an iterative algorithm is proposed for testing global asymptotic stability of the system with full state saturation. A new globally asymptotically stable condition is also proposed for the partial state saturation system. Two numerical examples on a ball and beam model are given to show the effectiveness of the proposed method.

  6. On the effect of a non-uniform longitudinal ion flow on the linear ITG mode stability.

    NASA Astrophysics Data System (ADS)

    Lontano, Maurizio; Lazzaro, Enzo; Varischetti, Maria Cecilia

    2006-10-01

    A one-dimensional model for slab ion temperature gradient (ITG) modes, in the presence of an inhomogeneous equilibrium plasma velocity along the main magnetic field direction, has been formulated in the frame of a two-fluid guiding-center approximation. The physical effects of a magnetic field gradient and of the line curvature are included by means of a gravitational drift velocity. The magnetic shear across the plasma slab is also taken into account. The linear stability of slow plasma dynamics, under the assumptions of quasi-neutrality and adiabatic electrons, is described by means of a third-degree dispersion relation. Generally speaking, the presence of a sheared longitudinal ion velocity leads to the linear destabilization of the ITG modes, especially for flat equilibrium density profiles. Transverse quasi-linear fluxes of ion thermal energy and longitudinal momentum are calculated for different equilibrium profiles of the density, temperature, momentum, and magnetic shear. Plasma configurations leading to zero transverse (or even negative) momentum fluxes are exploited and discussed in the light of their experimental implementation.

  7. Impact of MSWI bottom ash codisposed with MSW on landfill stabilization with different operational modes.

    PubMed

    Li, Wen-Bing; Yao, Jun; Malik, Zaffar; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  8. Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes

    PubMed Central

    Li, Wen-Bing; Yao, Jun; Zhou, Gen-Di; Dong, Ming; Shen, Dong-Sheng

    2014-01-01

    The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation. PMID:24779006

  9. Astrometry with Hubble Space Telescope Fine Guidance Sensor number 3: Position-mode stability and precision

    NASA Technical Reports Server (NTRS)

    Benedict, G. F.; Mcarthur, B.; Nelan, E.; Story, D.; Whipple, A. L.; Jefferys, W. H.; Wang, Q.; Shelus, P. J.; Hemenway, P. D.; Mccartney, J.

    1994-01-01

    We report results from a test exploring the long- and short-term astrometric stability of Hubble Space Telescope Fine Guidance Sensor (FGS) #3. A test field was observed 40 times over 522 days to determine the precision and accuracy of FGS astrometry and to measure the character and magnitude of possible secular scale changes. We examine the astrometric data and the associated guide-star data to determine random errors. These data are also explored to find sources of systematic error. After correcting for some systematic effects we obtain a precision of 0.002 arcsec (2 mas) per observation (RSS of x and y). This is relative astrometry within a central 2.5 arcmin FGS field of view for any orientation. We find that the scale varies over time and confirm the sense of the trend with independent data. From the 40 observation sets we produce a catalog of an astrometry test field containing eight stars whose relative positions are known to an average 0.7 and 0.9 mas in x and y. One reference star has a relative parallax of 3.1 plus or minus 0.5 mas. Finally, we report that eleven observation sets acquired over 387 days produce parallaxes and relative positions with 1-mas precision.

  10. Stability evaluation of parameter estimation of multi-Rayleigh model for ultrasound B-mode image of liver fibrosis

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Ohashi, Minori; Hirata, Shinnosuke; Hachiya, Hiroyuki

    2016-07-01

    A diagnosis of liver fibrosis using an ultrasound B-mode image has the advantages of real-time observation and noninvasive properties. In our previous study, a multi-Rayleigh model was proposed to express a probability density function (PDF) of echo amplitudes from a fibrotic liver. From the multi-Rayleigh model, fibrosis parameters, such as the amount of fibrotic tissue and its progressive ratio, can be extracted. To quantitatively evaluate liver fibrosis using the multi-Rayleigh model, it is important to evaluate the stability of the estimation method of multi-Rayleigh model parameters. In this study, a numerical simulation using random variables following the multi-Rayleigh model was performed and the estimation stability of the parameters of the multi-Rayleigh model with two components was examined. From the simulation results, it was found that estimation becomes unstable under a certain condition owing to statistical variations of moments, which are inputs in the estimation algorithm. The instability of estimated parameters could be evaluated by focusing on changes in moments upon changes in multi-Rayleigh model parameters. It was indicated that we can evaluate the reliability of the estimated parameters of the multi-Rayleigh model only from the estimated values.

  11. [Real-Time Stability Monitoring of Photonic Crystal Sensing System Based on Guided-Mode Resonance Effect].

    PubMed

    Tao, Chun-xian; Wang, Qi; Li, Ye; Wang, Zhen-yun; Lu, Zhong-rong; Zhang, Da-wei

    2015-05-01

    The detection limit of antibody content has reached level of nanograms per milliliter due to high sensitivity and extremely narrow band of photonic crystal (PC) filter. The PC filter based on guided-mode resonance (GIR) effect can also be applied to detecting the molecular interactions. As the transducing element, one-dimensional PC filters transform biological information to photoelectric signal on optical spectrum analyzer (OSA). The main sensing performance is the change of peak-wavelength of PC filter. The sensing system using PC filter is restricted to the system stability which determines the effectiveness of detecting data. So in this paper, a detecting system we designed is briefly addressed. The morphology and the spectrum of PC filter we fabricated are tested. Considering the coupling light loss and integration of the system, noise signal in spectrum is going to affect the detecting results. To monitor the influence, realization of real-time monitoring the changes of the peak wavelength of PC filter is mainly illustrated. The monitoring is realized by transferring detecting data to computer in time and the results can represent the stability of the system. The program is compiled by Lab VIEW. In our experiment, the shift of 0. 25 nm of the peak wavelength caused by vibration of platform or unsteadiness of light source is within the sensitivity of the PC filter obtained by simulation, so we proposed this system we mentioned can be used in sensing most kind of bulk reagents.

  12. Emulation of lossless exciton-polariton condensates by dual-core optical waveguides: stability, collective modes, and dark solitons.

    PubMed

    Salasnich, Luca; Malomed, Boris A; Toigo, Flavio

    2014-10-01

    We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion point, and the other core being linear and dispersive. Both two-dimensional (2D) and one-dimensional (1D) EP systems may be emulated by means of this optical setting. In the framework of this system, we find that, while the uniform state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations, the upper branch is always subject to the modulational instability. The stability and instability are verified by direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound velocity and energy gap. The effect of a uniform phase gradient (superflow) on the stability is considered too, with a conclusion that the lower-branch state becomes unstable above a critical wave number of the flux. Finally, we demonstrate that the stable 1D state may carry robust dark solitons. PMID:25375613

  13. Emulation of lossless exciton-polariton condensates by dual-core optical waveguides: stability, collective modes, and dark solitons.

    PubMed

    Salasnich, Luca; Malomed, Boris A; Toigo, Flavio

    2014-10-01

    We propose a possibility to simulate the exciton-polariton (EP) system in the lossless limit, which is not currently available in semiconductor microcavities, by means of a simple optical dual-core waveguide, with one core carrying the nonlinearity and operating close to the zero-group-velocity-dispersion point, and the other core being linear and dispersive. Both two-dimensional (2D) and one-dimensional (1D) EP systems may be emulated by means of this optical setting. In the framework of this system, we find that, while the uniform state corresponding to the lower branch of the nonlinear dispersion relation is stable against small perturbations, the upper branch is always subject to the modulational instability. The stability and instability are verified by direct simulations too. We analyze collective excitations on top of the stable lower-branch state, which include a Bogoliubov-like gapless mode and a gapped one. Analytical results are obtained for the corresponding sound velocity and energy gap. The effect of a uniform phase gradient (superflow) on the stability is considered too, with a conclusion that the lower-branch state becomes unstable above a critical wave number of the flux. Finally, we demonstrate that the stable 1D state may carry robust dark solitons.

  14. [Real-Time Stability Monitoring of Photonic Crystal Sensing System Based on Guided-Mode Resonance Effect].

    PubMed

    Tao, Chun-xian; Wang, Qi; Li, Ye; Wang, Zhen-yun; Lu, Zhong-rong; Zhang, Da-wei

    2015-05-01

    The detection limit of antibody content has reached level of nanograms per milliliter due to high sensitivity and extremely narrow band of photonic crystal (PC) filter. The PC filter based on guided-mode resonance (GIR) effect can also be applied to detecting the molecular interactions. As the transducing element, one-dimensional PC filters transform biological information to photoelectric signal on optical spectrum analyzer (OSA). The main sensing performance is the change of peak-wavelength of PC filter. The sensing system using PC filter is restricted to the system stability which determines the effectiveness of detecting data. So in this paper, a detecting system we designed is briefly addressed. The morphology and the spectrum of PC filter we fabricated are tested. Considering the coupling light loss and integration of the system, noise signal in spectrum is going to affect the detecting results. To monitor the influence, realization of real-time monitoring the changes of the peak wavelength of PC filter is mainly illustrated. The monitoring is realized by transferring detecting data to computer in time and the results can represent the stability of the system. The program is compiled by Lab VIEW. In our experiment, the shift of 0. 25 nm of the peak wavelength caused by vibration of platform or unsteadiness of light source is within the sensitivity of the PC filter obtained by simulation, so we proposed this system we mentioned can be used in sensing most kind of bulk reagents. PMID:26415422

  15. Investigation of Resistive Wall Mode Stabilization Physics in High-beta Plasmas Using Applied Non-axisymmetric Fields in NSTX

    SciTech Connect

    Sontag, A. C.; Sabbagh, S. A.; Zhu, W.; Menard, J. E.; Bell, R. E.; Bialek, J. M.; Bell, M. G.; Gates, D. A.; Glasser, A. H.; LeBlanc, B. P.; Shaing, K. C.; Stutman, D.; Tritz, K. L.

    2009-06-16

    The National Spherical Torus Experiment (NSTX) offers an operational space characterized by high-beta (βt = 39%, βN > 7, βN/βno-wall N > 1.5) and low aspect ratio (A > 1.27) to leverage the plasma parameter dependences of RWM stabilization and plasma rotation damping physics giving greater confidence for extrapolation to ITER. Significant new capability for RWM research has been added to the device with the commissioning of a set of six nonaxisymmetric magnetic field coils, allowing generation of fields with dominant toroidal mode number, n, of 1–3. These coils have been used to study the dependence of resonant field amplification on applied field frequency and RWMstabilization physics by reducing the toroidal rotation profile belowits steady-state value through non-resonant magnetic braking. Modification of plasma rotation profiles shows that rotation outside q = 2.5 is not required for passive RWM stability and there is large variation in the RWM critical rotation at the q = 2 surface, both of which are consistent with distributed dissipation models.

  16. Letter report seismic shutdown system failure mode and effect analysis

    SciTech Connect

    KECK, R.D.

    1999-09-01

    The Supply Ventilation System Seismic Shutdown ensures that the 234-52 building supply fans, the dry air process fans and vertical development calciner are shutdown following a seismic event. This evaluates the failure modes and determines the effects of the failure modes.

  17. Analysis of unstable modes distinguishes mathematical models of flagellar motion

    PubMed Central

    Bayly, P. V.; Wilson, K. S.

    2015-01-01

    The mechanisms underlying the coordinated beating of cilia and flagella remain incompletely understood despite the fundamental importance of these organelles. The axoneme (the cytoskeletal structure of cilia and flagella) consists of microtubule doublets connected by passive and active elements. The motor protein dynein is known to drive active bending, but dynein activity must be regulated to generate oscillatory, propulsive waveforms. Mathematical models of flagellar motion generate quantitative predictions that can be analysed to test hypotheses concerning dynein regulation. One approach has been to seek periodic solutions to the linearized equations of motion. However, models may simultaneously exhibit both periodic and unstable modes. Here, we investigate the emergence and coexistence of unstable and periodic modes in three mathematical models of flagellar motion, each based on a different dynein regulation hypothesis: (i) sliding control; (ii) curvature control and (iii) control by interdoublet separation (the ‘geometric clutch’ (GC)). The unstable modes predicted by each model are used to critically evaluate the underlying hypothesis. In particular, models of flagella with ‘sliding-controlled’ dynein activity admit unstable modes with non-propulsive, retrograde (tip-to-base) propagation, sometimes at the same parameter values that lead to periodic, propulsive modes. In the presence of these retrograde unstable modes, stable or periodic modes have little influence. In contrast, unstable modes of the GC model exhibit switching at the base and propulsive base-to-tip propagation. PMID:25833248

  18. Operational mode analysis of the maps NTP system

    SciTech Connect

    Linet, F.L.; Bernard, S.; Carruge, D.; Poitevin, Y.; Raepsaet, X.

    1996-03-01

    Within the framework of the french NTP program MAPS, the analysis of the (start-up/shut-down) transient sequences whose negative impact on the specific impulsion Isp is important, requires the evaluation of the hydrogen system performance and consequently the development of a simulation computer program. This work induces a preliminary evaluation of the hydrogen system performance under nominal operating conditions. A first approach of the transient operating mode has been simultaneously performed; more specifically the evolution of the core during a shut-down sequence has been studied in order to improve the residual power evacuation and optimize necessary hydrogen amounts for cooling. Furthermore the {open_quote}{open_quote}SIMAPS{close_quote}{close_quote} computer program based on the 3D thermohydraulic code {open_quote}{open_quote}FLICA 4{close_quote}{close_quote} is being developed to analyze transient process and its benchmarking under nominal conditions is under way. Its summary presentation is given in conclusion. {copyright} {ital 1996 American Institute of Physics.}

  19. Analysis of high-quality modes in open chaotic microcavities

    SciTech Connect

    Fang, W.; Yamilov, A.; Cao, H.

    2005-08-15

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity.

  20. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Floros, Matthew W.

    2004-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  1. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Floros, Matthew W.; Johnson, Wayne

    2007-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  2. Fast particle destabilization of TAE modes

    SciTech Connect

    Cheng, C.Z.; Gorelenkov, N.N.; Hsu, C.T.

    1995-09-01

    High-n TAE modes are studied based on a kinetic model that includes full thermal ion finite Larmor radius effects, trapped electron collisions and fast particle instability drive. Lower KTAE modes are shown to be non-existent. Like TAE modes, upper KTAE modes are shown to exist due to thermal ion FLR effects in the dissipationless limit. Dissipation effects on the stability of both TAE and upper KTAE modes can be treated perturbatively. However, due to their extended mode structure in the ballooning space, upper KTAE modes usually remain stable or weakly unstable even with large fast particle free energy. On the other hand, TAE modes can be strongly destabilized. A new resonant TAE mode (RTAE) can be excited when the fast particle drive is significantly large. The RTAE mode is a beam-like mode with its frequency determined mainly by the wave-particle resonance condition. The frequency of the RTAE mode can be much less than the TAE gap frequency and may be interpreted as the BAE observed in DIII-D experiments. As plasma {beta} increases, the TAE, RTAE and kinetic ballooning modes strongly couple; the TAE mode changes into the RTAE mode and eventually connects to the kinetic ballooning mode. Numerical results and analytical analysis on the stability of the RTAE and KTAE modes will be presented and compared with the TAE mode stability.

  3. Modeling of the Feedback Stabilization of the Resistive Wall Mode in Tokamak Geometry

    NASA Astrophysics Data System (ADS)

    Chance, M. S.; Okabayashi, M.; Chu, M. S.

    1999-11-01

    The VACUUM^1 code is currently being modified to simulate the feedback stabilization of the RWM in the DIII-D device^2. We formulate the problem in terms of the eigenfunctions of the surface Laplacian obtained from the matching of the fields across a thin resistive toroidally symmetric shell. The window pane feedback (C-)coils are modeled accurately in the poloidal angle θ, and approximately by a single harmonic variation in φ. VACUUM relates the perturbations on the various surfaces, i.e., the plasma, both sides of the resistive shell and the C-coil. This results in an operator made up of a set of coupled time dependent equations relating the shell response to the plasma and feedback coil. Various attributes of the system can be calculated, such as the eddy current patterns and the time responses of the eigenmodes of the surface Laplacian operator. As a first appproximation, a PEST or GATO surface eigenmode of an ideal kink is assumed, whose structure remains unchanged during the feedback process, allowing only the magnitude to change. By energizing the C-coils according to the various proposed feedback schemes we propose to correlate with the present experimental results, and also to provide helpful guidance for future runs. rule[1.ex]1.9in.005in This work supported by DoE contract No. DE-AC02-76-CHO-3073 ^1 M.S. Chance, Phys. Plasmas, 4(1997)2161 ^2 A. A. Garofalo et al., Phys. Plasmas 6(1999) 1893

  4. Instantaneous normal mode analysis of the vibrational relaxation of the amide I mode of alanine dipeptide in water

    NASA Astrophysics Data System (ADS)

    Farag, Marwa H.; Zúñiga, José; Requena, Alberto; Bastida, Adolfo

    2013-05-01

    Nonequilibrium Molecular Dynamics (MD) simulations coupled to instantaneous normal modes (INMs) analysis are used to study the vibrational relaxation of the acetyl and amino-end amide I modes of the alanine dipeptide (AlaD) molecule dissolved in water (D2O). The INMs are assigned in terms of the equilibrium normal modes using the Effective Atomic Min-Cost algorithm as adapted to make use of the outputs of standard MD packages, a method which is well suited for the description of flexible molecules. The relaxation energy curves of both amide I modes show multiexponential decays, in good agreement with the experimental findings. It is found that ˜85%-90% of the energy relaxes through intramolecular vibrational redistribution. The main relaxation pathways are also identified. The rate at which energy is transferred into the solvent is similar for the acetyl-end and amino-end amide I modes. The conformational changes occurring during relaxation are investigated, showing that the populations of the alpha and beta region conformers are altered by energy transfer in such a way that it takes 15 ps for the equilibrium conformational populations to be recovered after the initial excitation of the AlaD molecule.

  5. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments

    PubMed Central

    Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.

    2015-01-01

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260

  6. Desert Pavement Process and Form: Modes and Scales of Landscape Stability and Instability in Arid Regions

    NASA Astrophysics Data System (ADS)

    Wells, Stephen G.; McFadden, Leslie D.; McDonald, Eric V.; Eppes, Martha C.; Young, Michael H.; Wood, Yvonne A.

    2014-05-01

    Desert pavements are recognized in arid landscapes around the world, developing via diminution of constructional/depositional landform relief and creating a 1-2 stone thick armor over a "stone free" layer. Surface exposure dating demonstrates that clasts forming the desert pavements are maintained at the land surface over hundreds of thousands of years, as aeolian fines are deposited on the land surface, transported into the underlying parent material and incorporated into accretionary soil horizons (e.g., the stone free or vesicular [Av] horizon). This surface armor provides long-term stability over extensive regions of the landscape. Over shorter time periods and at the landform-element scale, dynamic surficial processes (i.e., weathering, runoff) continue to modify the pavement form. Clast size reduction in comparison to underlying parent material, along with armoring and packing of clasts in pavements contribute to their persistence, and studies of crack orientations in pavement clasts indicate physical weathering and diminution of particle size are driven by diurnal solar insolation. Over geologic time, cracks form and propagate from tensile stresses related to temporal and spatial gradients in temperature that evolve and rotate in alignment with the sun's rays. Observed multimodal nature of crack orientations appear related to seasonally varying, latitude-dependent temperature fields resulting from solar angle and weather conditions. Surface properties and their underlying soil profiles vary across pavement surfaces, forming a landscape mosaic and controlling surface hydrology, ecosystem function and the ultimate life-cycle of arid landscapes. In areas of well-developed pavements, surface infiltration and soluble salt concentrations indicate that saturated hydraulic conductivity of Av horizons decline on progressively older alluvial fan surfaces. Field observations and measurements from well-developed desert pavement surfaces landforms also yield

  7. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  8. Snoring: Linear Stability Analysis and In-Vitroexperiments

    NASA Astrophysics Data System (ADS)

    Aurégan, Y.; Depollier, C.

    1995-11-01

    A theoretical and experimental study is presented of the aeroelastic instability of the human soft palate, which can explain the occurrence of snoring. The soft palate is modelled by a beam clamped at its leading edge and free at its trailing edge. The continuous and discrete cases are investigated. Only the two first modes of vibration of the soft palate are taken into account. The flow is incompressible, inviscid and one dimensional. Structural damping and flow nonstationarities can be considered. Theory shows that the soft palate loses its stability by flutter and that this instability is mainly controlled by a single dimensionless parameter which can be easily interpreted from a medical point of view. An experimental apparatus which produces sounds very close to human snoring is described. Agreement between theory and experiments is good.

  9. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    SciTech Connect

    Lewis, W.S.

    1994-08-23

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment.

  10. Analysis of whispering-gallery superconducting dielectric resonator modes

    SciTech Connect

    Zhou Shiping; Jabbar, A. )

    1991-06-01

    The whispering-gallery (WG) modes of a superconducting dielectric resonator (SDR) based on a sapphire cylindrical dielectric resonator and a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} shielding cylinder were studied. A method for the determination of the resonant frequencies and the maximum quality factor of such modes is presented. Calculations have shown that most of the mode energy could be confined between the caustic surface of the WG modes provided the dimensions of the SDR are properly selected, and a magnitude of 10{sup 9} for Q of the SDR could be estimated. A phenomenal explanation is given to account for such outstanding microwave behavior.

  11. Linear stability analysis and the speed of gravitational waves in dynamical Chern-Simons modified gravity

    SciTech Connect

    Garfinkle, David; Pretorius, Frans; Yunes, Nicolas

    2010-08-15

    We perform a linear stability analysis of dynamical Chern-Simons modified gravity in the geometric optics approximation and find that it is linearly stable on the backgrounds considered. Our analysis also reveals that gravitational waves in the modified theory travel at the speed of light in Minkowski spacetime. However, on a Schwarzschild background the characteristic speed of propagation along a given direction splits into two modes, one subluminal and one superluminal. The width of the splitting depends on the azimuthal components of the propagation vector, is linearly proportional to the mass of the black hole, and decreases with the third inverse power of the distance from the black hole. Radial propagation is unaffected, implying that as probed by gravitational waves the location of the event horizon of the spacetime is unaltered. The analysis further reveals that when a high frequency, pure gravitational wave is scattered from a black hole, a scalar wave of comparable amplitude is excited, and vice versa.

  12. Dynamic response and stability analysis of flexible, multibody systems. [spacecraft

    NASA Technical Reports Server (NTRS)

    Bodley, C. S.; Park, A. C.; Devers, A. D.; Frisch, H. P.

    1977-01-01

    A general version of Lagrange's equations, including auxiliary nonholonomic, rheonomic conditions of constraint, is used in the dynamic simulation and stability analysis of interconnected flexible bodies. Modeling of the nonlinear flexible/rigid dynamic coupling effects, the interaction forces/torques, and the elastic deformation effects is discussed. A digital computer program is developed to obtain time-domain solution for the nonlinear response of systems represented as a collection of individual bodies, numerical linearization of system-governing equations, time-domain solution for the perturbation response about a nominal state, and a frequency-domain stability analysis corresponding to the linearization. The digital simulation code is employed to study the dynamic behavior of a typical satellite and a spacecraft with deployable experiment booms.

  13. Degradation analysis of anode-supported intermediate temperature-solid oxide fuel cells under various failure modes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young

    2015-02-01

    This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.

  14. Rouse mode analysis of chain relaxation in homopolymer melts

    SciTech Connect

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inversely with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.

  15. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  16. Rouse Mode Analysis of Chain Relaxation in Homopolymer Melts

    PubMed Central

    2015-01-01

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inversely with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. These facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion. PMID:25328247

  17. Stability analysis of fixed points via chaos control.

    PubMed

    Locher, M.; Johnson, G. A.; Hunt, E. R.

    1997-12-01

    This paper reviews recent advances in the application of chaos control techniques to the stability analysis of two-dimensional dynamical systems. We demonstrate how the system's response to one or multiple feedback controllers can be utilized to calculate the characteristic multipliers associated with an unstable periodic orbit. The experimental results, obtained for a single and two coupled diode resonators, agree well with the presented theory. (c) 1997 American Institute of Physics. PMID:12779684

  18. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    SciTech Connect

    Escobar, D.; Ahedo, E.

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.

  19. JT-60 Upgrade vertical stability experiments and analysis

    NASA Astrophysics Data System (ADS)

    Humphreys, D. A.; Yoshino, Ryuji

    1992-05-01

    The JT-60 Upgrade tokamak (JT-60U), can produce plasmas with vertical elongation (kappa approximately = 1.6), and thus allows investigation of vertical instability phenomena. The present work describes investigation of the vertical stability characteristics of JT-60U plasmas through experimental results and simulation. Experiments described include feedback turnoff cases and high beta(sub p) unstable plasma cases. For purposes of simulation, the plasma is modeled as a rigid assembly of current-carrying axisymmetric loops. A nominal conductor model based on design geometry was modified to reproduce the results of a series of coil excitation experiments using a reduced order system identification approach. A two-coil model was used to fit the experimental coil excitation behavior, and the full order conductor model was modified to allow the dominant modes to reflect the low order dynamic response. The resulting plasma-conductor model is shown to reproduce the vertical stability behavior of JT-60U fairly well. Theoretical predictions of limits on the value of Shafranov (Lambda) achievable in JT-60U are made.

  20. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    NASA Astrophysics Data System (ADS)

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2016-06-01

    We present a large-core single-mode "windmill" single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The "windmill" SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  1. TMFA: A FORTRAN Program for Three-Mode Factor Analysis and Individual Differences Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Redfield, Joel

    1978-01-01

    TMFA, a FORTRAN program for three-mode factor analysis and individual-differences multidimensional scaling, is described. Program features include a variety of input options, extensive preprocessing of input data, and several alternative methods of analysis. (Author)

  2. Spatio-temporal linear stability analysis of stratified planar wakes: Velocity and density asymmetry effects

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Jagtap, Swapnil; Quinlan, J. Mathew; Renfro, Michael W.; Cetegen, Baki M.; Lieuwen, Tim

    2016-04-01

    This paper explores the hydrodynamic stability of bluff body wakes with non-uniform mean density, asymmetric mean density, and velocity profiles. This work is motivated by experiments [S. Tuttle et al., "Lean blow off behavior of asymmetrically-fueled bluff body-stabilized flames," Combust. Flame 160, 1677 (2013)], which investigated reacting wakes with equivalence ratio stratification and, hence, asymmetry in the base flow density profiles. They showed that highly stratified cases exhibited strong, narrowband oscillations, suggestive of global hydrodynamic instability. In this paper, we present a local hydrodynamic stability analysis for non-uniform density wakes that includes base flow asymmetry. The results show that increasing the degree of base density asymmetry generally has a destabilizing effect and that increasing base velocity asymmetry tends to be stabilizing. Furthermore, we show that increasing base density asymmetry slightly decreases the absolute frequency and that increasing the base velocity asymmetry slightly increases the absolute frequency. In addition, we show that increasing the degree of base density asymmetry distorts the most absolutely unstable hydrodynamic mode from its nominally sinuous structure. This distorted mode exhibits higher amplitude pressure and velocity oscillations near the interface with the smaller density jump than near the one with the bigger density jump. This would then be anticipated to lead to strongly non-symmetric amplitudes of flame flapping, with much stronger flame flapping on the side with lower density ratio. These predictions are shown to be consistent with experimental data. These comparisons support the analytical predictions that increased base density asymmetry are destabilizing and that hydrodynamic velocity fluctuation amplitudes should be greatest at the flame with the lowest density jump.

  3. Finite element analysis of surface modes in phononic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Guo, Yuning; Schubert, Martin; Dekorsy, Thomas

    2016-03-01

    The study of surface modes in phononic crystal waveguides in the hypersonic regime is a burgeoning field with a large number of possible applications. By using the finite element method, the band structure and the corresponding transmission spectrum of surface acoustic waves in phononic crystal waveguides generated by line defects in a silicon pillar-substrate system were calculated and investigated. The bandgaps are caused by the hybridization effect of band branches induced by local resonances and propagating modes in the substrate. By changing the sizes of selected pillars in the phononic crystal waveguides, the corresponding bands shift and localized modes emerge due to the local resonance effect induced by the pillars. This effect offers further possibilities for tailoring the propagation and filtering of elastic waves. The presented results have implications for the engineering of phonon dynamics in phononic nanostructures.

  4. Mode-coupling analysis of residual stresses in colloidal glasses.

    PubMed

    Fritschi, S; Fuchs, M; Voigtmann, Th

    2014-07-21

    We present results from computer simulation and mode-coupling theory of the glass transition for the nonequilibrium relaxation of stresses in a colloidal glass former after the cessation of shear flow. In the ideal glass, persistent residual stresses are found that depend on the flow history. The partial decay of stresses from the steady state to this residual stress is governed by the previous shear rate. We rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-dynamics simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the predictions of the theory. PMID:24841537

  5. Experimental study of the stabilization process of a non-premixed flame via the destabilization analysis of the blue ring flame

    SciTech Connect

    Pinguet, Guillaume; Escudie, Dany

    2007-04-15

    The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)

  6. Accident Analysis for the Plutonium Finishing Plant Polycube Stabilization Process

    SciTech Connect

    NELSON-MAKI, B.B.

    2001-05-14

    The Polycube Stabilization Project involves low temperature oxidation, without combustion, of polystyrene cubes using the production muffle furnaces in Glovebox HC-21C located in the Remote Mechanical ''C'' (RMC) Line in Room 230A in the 234-52 Facility. Polycubes are polystyrene cubes containing various concentrations of plutonium and uranium oxides. Hundreds of these cubes were manufactured for criticality experiments, and currently exist as unstabilized storage forms at the Plutonium Finishing Plant (PFP). This project is designed to stabilize and prepare the polycube material for stable storage using a process very similar to the earlier processing of sludges in these furnaces. The significant difference is the quantity of hydrogenous material present, and the need to place additional controls on the heating rate of the material. This calculation note documents the analyses of the Representative Accidents identified in Section 2.4.4 of Hazards Analysis for the Plutonium Finishing Plant Polycube Stabilization Process, HNF-7278 (HNF 2000). These two accidents, ''Deflagration in Glovebox HC-21C due to Loss of Power'' and ''Seismic Failure of Glovebox HC-21C'', will be further assessed in this accident analysis.

  7. Calibration and Stability Analysis of the VLP-16 Laser Scanner

    NASA Astrophysics Data System (ADS)

    Glennie, C. L.; Kusari, A.; Facchin, A.

    2016-03-01

    We report on a calibration and stability analysis of the Velodyne VLP-16 LiDAR scanner. The sensor is evaluated for long-term stability, geometric calibration and the effect of temperature variations. To generalize the results, three separate VLP-16 sensors were examined. The results and conclusions from the analysis of each of the individual sensors was similar. We found that the VLP-16 showed a consistent level of performance, in terms of range bias and noise level over the tested temperature range from 0-40 °C. A geometric calibration was able to marginally improve the accuracy of the VLP-16 point cloud (by approximately 20%) for a single collection, however the temporal stability of the geometric calibration negated this accuracy improvement. Overall, it was found that there is some long-term walk in the ranging observations from individual lasers within the VLP-16, which likely causes the instability in the determination of geometric calibration parameters. However, despite this range walk, the point cloud delivered from the VLP-16 sensors tested showed an accuracy level within the manufacturer specifications of 3 cm RMSE, with an overall estimated RMSE of range residuals between 22 mm and 27 mm.

  8. Linear stability analysis for hydrothermal alteration of kimberlitic rocks

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey; Belyaeva, Ekaterina

    2016-06-01

    The influx of groundwater into hot kimberlite deposits results in the reaction of water with olivine-rich rocks. The products of the reaction are serpentine and release of latent heat. The rise of temperature due to the heat release increases the rate of the reaction. Under certain conditions, this self-speeding up of the reaction can result in instabilities associated with a significantly higher final serpentinization in slightly warmer regions of the kimberlite deposit. We conduct linear stability analysis of serpentinization in an isolated volume of porous kimberlitic rocks saturated with water and an inert gas. There is a counteracting interplay between the heat release tending to destabilize the uniform distribution of parameters and the heat conduction tending to stabilize it by smoothing out temperature perturbations. We determine the critical spatial scale separating the parameters where one phenomenon dominates over another. The perturbations of longer-than-critical length grow, whereas the perturbations of shorter-than-critical length fade. The analytical results of the linear stability analysis are supported by direct numerical simulations using a full nonlinear model.

  9. A consistent orbital stability analysis for the GJ 581 system

    SciTech Connect

    Joiner, David A.; Sul, Cesar; Kress, Monika E.; Dragomir, Diana; Kane, Stephen R.

    2014-06-20

    We apply a combination of N-body modeling techniques and automated data fitting with Monte Carlo Markov Chain uncertainty analysis of Keplerian orbital models to RV data to determine long-term stability of the planetary system GJ 581. We find that while there are stability concerns with the four-planet model as published by Forveille et al., when uncertainties in the system are accounted for, particularly stellar jitter, the hypothesis that the four-planet model is gravitationally unstable is not statistically significant. Additionally, the system including proposed planet g by Vogt et al. also shows some stability concerns when eccentricities are allowed to float in the orbital fit, yet when uncertainties are included in the analysis, the system including planet g also cannot be proven to be unstable. We present revised reduced χ{sup 2} values for Keplerian astrocentric orbital fits assuming four-planet and five-planet models for GJ 581 under the condition that best fits must be stable, and we find no distinguishable difference by including planet g in the model. Additionally, we present revised orbital element estimates for each, assuming uncertainties due to stellar jitter under the constraint of the system being gravitationally stable.

  10. Failure mode and effects analysis outputs: are they valid?

    PubMed Central

    2012-01-01

    Background Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that has been widely used within the aerospace and automotive industries and has been utilised within healthcare since the early 1990s. The aim of this study was to explore the validity of FMEA outputs within a hospital setting in the United Kingdom. Methods Two multidisciplinary teams each conducted an FMEA for the use of vancomycin and gentamicin. Four different validity tests were conducted: · Face validity: by comparing the FMEA participants’ mapped processes with observational work. · Content validity: by presenting the FMEA findings to other healthcare professionals. · Criterion validity: by comparing the FMEA findings with data reported on the trust’s incident report database. · Construct validity: by exploring the relevant mathematical theories involved in calculating the FMEA risk priority number. Results Face validity was positive as the researcher documented the same processes of care as mapped by the FMEA participants. However, other healthcare professionals identified potential failures missed by the FMEA teams. Furthermore, the FMEA groups failed to include failures related to omitted doses; yet these were the failures most commonly reported in the trust’s incident database. Calculating the RPN by multiplying severity, probability and detectability scores was deemed invalid because it is based on calculations that breach the mathematical properties of the scales used. Conclusion There are significant methodological challenges in validating FMEA. It is a useful tool to aid multidisciplinary groups in mapping and understanding a process of care; however, the results of our study cast doubt on its validity. FMEA teams are likely to need different sources of information, besides their personal experience and knowledge, to identify potential failures. As for FMEA’s methodology for scoring failures, there were discrepancies between the teams’ estimates

  11. Temporal stability of network centrality in control and default mode networks: Specific associations with externalizing psychopathology in children and adolescents.

    PubMed

    Sato, João Ricardo; Biazoli, Claudinei Eduardo; Salum, Giovanni Abrahão; Gadelha, Ary; Crossley, Nicolas; Satterthwaite, Theodore D; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Anés, Mauricio; Moura, Luciana Monteiro; Del'aquilla, Marco Antonio Gomes; Amaro, Edson; McGuire, Philip; Lacerda, Acioly L T; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca

    2015-12-01

    Abnormal connectivity patterns have frequently been reported as involved in pathological mental states. However, most studies focus on "static," stationary patterns of connectivity, which may miss crucial biological information. Recent methodological advances have allowed the investigation of dynamic functional connectivity patterns that describe non-stationary properties of brain networks. Here, we introduce a novel graphical measure of dynamic connectivity, called time-varying eigenvector centrality (tv-EVC). In a sample 655 children and adolescents (7-15 years old) from the Brazilian "High Risk Cohort Study for Psychiatric Disorders" who were imaged using resting-state fMRI, we used this measure to investigate age effects in the temporal in control and default-mode networks (CN/DMN). Using support vector regression, we propose a network maturation index based on the temporal stability of tv-EVC. Moreover, we investigated whether the network maturation is associated with the overall presence of behavioral and emotional problems with the Child Behavior Checklist. As hypothesized, we found that the tv-EVC at each node of CN/DMN become more stable with increasing age (P < 0.001 for all nodes). In addition, the maturity index for this particular network is indeed associated with general psychopathology in children assessed by the total score of Child Behavior Checklist (P = 0.027). Moreover, immaturity of the network was mainly correlated with externalizing behavior dimensions. Taken together, these results suggest that changes in functional network dynamics during neurodevelopment may provide unique insights regarding pathophysiology.

  12. Aeroelastic stability analysis of flexible overexpanded rocket nozzle

    NASA Astrophysics Data System (ADS)

    Bekka, N.; Sellam, M.; Chpoun, A.

    2016-07-01

    The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.

  13. High beta and second region stability analysis and ICRF edge modeling

    SciTech Connect

    Not Available

    1989-01-01

    This report describes the tasks accomplished under Department of Energy contract [number sign]DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.

  14. ASTROP2 Users Manual: A Program for Aeroelastic Stability Analysis of Propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Lucero, John M.

    1996-01-01

    This manual describes the input data required for using the second version of the ASTROP2 (Aeroelastic STability and Response Of Propulsion systems - 2 dimensional analysis) computer code. In ASTROP2, version 2.0, the program is divided into two modules: 2DSTRIP, which calculates the structural dynamic information; and 2DASTROP, which calculates the unsteady aerodynamic force coefficients from which the aeroelastic stability can be determined. In the original version of ASTROP2, these two aspects were performed in a single program. The improvements to version 2.0 include an option to account for counter rotation, improved numerical integration, accommodation for non-uniform inflow distribution, and an iterative scheme to flutter frequency convergence. ASTROP2 can be used for flutter analysis of multi-bladed structures such as those found in compressors, turbines, counter rotating propellers or propfans. The analysis combines a two-dimensional, unsteady cascade aerodynamics model and a three dimensional, normal mode structural model using strip theory. The flutter analysis is formulated in the frequency domain resulting in an eigenvalue determinant. The flutter frequency and damping can be inferred from the eigenvalues.

  15. Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)

    ERIC Educational Resources Information Center

    Bass, Christopher K.; Apsche, Jack A.

    2013-01-01

    A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…

  16. Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data

    NASA Astrophysics Data System (ADS)

    Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe

    2014-05-01

    Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional

  17. Analysis of the characteristics of solar oscillation modes in active regions

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Basu, Sarbani

    2008-10-01

    We analyze the characteristics of high-degree solar acoustic modes in the vicinity of magnetic active regions and compare with those of magnetically quiet regions at the same latitude and at nearly the same time. We applied ring-diagram analysis to GONG+ and MDI data, using the 13-parameter mode-fitting model of Basu & Antia [1]. We explore the correlations of variations in mode frequencies, amplitudes, widths, and asymmetries with the total magnetic flux of the analyzed regions.

  18. Phase velocity spectrum analysis for a time delay comb transducer for guided wave mode excitation

    SciTech Connect

    Quarry, M J; Rose, J L

    2000-09-26

    A theoretical model for the analysis of ultrasonic guided wave mode excitation of a comb transducer with time delay features was developed. Time delay characteristics are included via a Fourier transform into the frequency domain. The phase velocity spectrum can be used to determine the mode excitation on the phase velocity dispersion curves for a given structure. Experimental and theoretical results demonstrate the tuning of guided wave modes using a time delay comb transducer.

  19. Streak instability and generation of hairpin-vortices by a slotted jet in channel crossflow: Experiments and linear stability analysis

    NASA Astrophysics Data System (ADS)

    Philip, Jimmy; Karp, Michael; Cohen, Jacob

    2016-01-01

    Streaks and hairpin-vortices are experimentally generated in a laminar plane Poiseuille crossflow by injecting a continuous jet through a streamwise slot normal to the crossflow, with air as the working media. Small disturbances form stable streaks, however, higher disturbances cause the formation of streaks which undergo instability leading to the generation of hairpin vortices. Particular emphasis is placed on the flow conditions close to the generation of hairpin-vortices. Measurements are carried out in the cases of natural and phase-locked disturbance employing smoke visualisation, particle image velocimetry, and hot-wire anemometry, which include, the dominant frequency, wavelength, and the disturbance shape (or eigenfunctions) associated with the coherent part of the velocity field. A linear stability analysis for both one- and two-dimensional base-flows is carried out to understand the mechanism of instability and good agreement of wavelength and eigenfunctions are obtained when compared to the experimental data, and a slight under-prediction of the growth-rates by the linear stability analysis consistent with the final nonlinear stages in transitional flows. Furthermore, an energy analysis for both the temporal and spatial stability analysis revels the dominance of the symmetric varicose mode, again, in agreement with the experiments, which is found to be governed by the balance of the wallnormal shear and dissipative effects rather than the spanwise shear. In all cases the anti-symmetric sinuous modes governed by the spanwise shear are found to be damped both in analysis and in our experiments.

  20. Analysis of Brace Stiffness Influence on Stability of the Truss

    NASA Astrophysics Data System (ADS)

    Krajewski, M.; Iwicki, P.

    2015-02-01

    The paper is devoted to the numerical and experimental research of stability of a truss with side elastic supports at the top chord. The structure is a model of a real roof truss scaled by factor 1/4. The linear buckling analysis and non-linear static analysis were carried out. The buckling length factor for the compressed top chord was calculated and the limit load for the imperfect truss shell model with respect to brace stiffness was obtained. The relation between brace normal force and loading of the truss is presented. The threshold stiffness of braces necessary to obtain the maximum buckling load was found. The truss load bearing capacity obtained from numerical analysis was compared with Eurocode 3 requirements.

  1. CG-DAMS: Concrete gravity dam stability analysis software

    SciTech Connect

    Not Available

    1993-01-01

    CG-DAMS is a finite element based program written specifically for the stability analysis of concrete gravity dams. The code automates the prediction and evaluation of cracking in the dam, along the dam-rock interface, and in the foundation using incremental nonlinear analysis techniques based on the smeared crack'' approach. Its primary application is in the computation of dam-rock interface sliding stability factors of safety. The automated procedure for crack propagation analysis replaces the trial-and-error cracked-base analysis method commonly used in gravity dam safety analyses. This Application manual of CG-DAMS illustrates, through sample problems, the many features of the software. Example problems illustrate the capabilities of both CG-DAMS-PC and CG-DAMS-ABAQUS. CG-DAMS-PC is a menu driven program that runs on 386/486 PCs under the DOS operating system (4 Megabytes RAM, 25 Megabytes of hard disk space). CG-DAMS-ABAQUS is a pre- and post-processor along with a concrete constitutive model and distributed load module that interfaces with the ABAQUS general purpose finite element program. The PC program contains thermal analysis capabilities, a rough crack constitutive model, and an interface to the CRFLOOD software not available with the ABAQUS version. The CG-DAMS-ABAQUS program contains time marching dynamic analysis capabilities not available with the PC program. Example analyses presented include static, pseudo dynamic, and time marching dynamic analyses. The manual also presents sensitivity evaluations on mesh size and foundation material strength. Comparisons are presented between CG-DAMS and gravity method calculations. Comparisons with other finite element software are included for the dynamic time history analyses.

  2. Visual optimality and stability analysis of 3DCT scan positions.

    PubMed

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Gröller, Eduard

    2010-01-01

    Industrial cone-beam X-Ray computed tomography (CT) systems often face problems due to artifacts caused by a bad placement of the specimen on the rotary plate. This paper presents a visual-analysis tool for CT systems, which provides a simulation-based preview and estimates artifacts and deviations of a specimen's placement using the corresponding 3D geometrical surface model as input. The presented tool identifies potentially good or bad placements of a specimen and regions of a specimen, which cause the major portion of artefacts. The tool can be used for a preliminary analysis of the specimen before CT scanning, in order to determine the optimal way of placing the object. The analysis includes: penetration lengths, placement stability and an investigation in Radon space. Novel visualization techniques are applied to the simulation data. A stability widget is presented for determining the placement parameters' robustness. The performance and the comparison of results provided by the tool compared with real world data is demonstrated using two specimens.

  3. Global stability analysis of turbulent 3D wakes

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Sipp, Denis; Juniper, Matthew

    2015-11-01

    At low Reynolds numbers, corresponding to laminar and transitional regimes, hydrodynamic stability theory has aided the understanding of the dynamics of bluff body wake-flows and the application of effective control strategies. However, flows of fundamental importance to many industries, in particular the transport industry, involve high Reynolds numbers and turbulent wakes. Despite their turbulence, such wake flows exhibit organisation which is manifested as coherent structures. Recent work has shown that the turbulent coherent structures retain the shape of the symmetry-breaking laminar instabilities and only those manifest as large-scale structures in the near wake (Rigas et al., JFM vol. 750:R5 2014, JFM vol. 778:R2 2015). Based on the findings of the persistence of the laminar instabilities at high Reynolds numbers, we investigate the global stability characteristics of a turbulent wake generated behind a bluff three-dimensional axisymmetric body. We perform a linear global stability analysis on the experimentally obtained mean flow and we recover the dynamic characteristics and spatial structure of the coherent structures, which are linked to the transitional instabilities. A detailed comparison of the predictions with the experimental measurements will be provided.

  4. Linear Stability Analysis of a Channel Flow with Porous Walls

    NASA Astrophysics Data System (ADS)

    Tilton, Nils

    2005-11-01

    This study is motivated by the extensive use of wall-transpiration in numerical studies related to inhibition and control of wall-turbulence. In general, wall-transpiration has been implemented by providing the wall-normal velocity and imposing a no-slip condition on the wall-tangential velocity. Physically, however, the pores cannot be infinitesimally small and, consequently, it is important to address how the presence of the pores affects the slip velocity at the wall and the stability of the boundary layer. Moreover, our work is motivated by the existence of only few studies on the linear stability of channels with porous walls. Our study considers a parallel-plate channel with porous walls such that a longitudinal pressure gradient induces a laminar flow in both the open channel region and the porous walls. Simplified counterparts to the Orr-Sommerfeld and Squire equations are derived for the porous regions that are valid for small permeablities. The linear stability analysis takes account of the coupling between the three disturbance fields through boundary conditions recently derived by Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer, Vol. 38, 1995, pp 2635-2646). The resulting Orr-Sommerfeld spectrum and eigenfunctions reduce to those for Poiseuille flow as the permeability of the walls tends to zero, but are altered for greater values. We discuss symmetrical flows where parameters at both porous walls are identical as well as skewed flows where parameters at the two walls differ.

  5. Thermal Stability Analysis for Superconducting Coupling Coil in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Pan, Heng; Guo, XingLong; Green, M.A.

    2010-06-28

    The superconducting coupling coil to be used in the Muon Ionization Cooling Experiment (MICE) with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm will be cooled by a pair of 1.5 W at 4.2 K cryo-coolers. When the coupling coil is powered to 210 A, it will produce about 7.3 T peak magnetic field at the conductor and it will have a stored energy of 13 MJ. A key issue for safe operation of the coupling coil is the thermal stability of the coil during a charge and discharge. The magnet and its cooling system are designed for a rapid discharge where the magnet is to be discharged in 5400 seconds. The numerical simulation for the thermal stability of the MICE coupling coil has been done using ANSYS. The analysis results show that the superconducting coupling coil has a good stability and can be charged and discharged safely.

  6. Stability analysis of implicit multi-fluid schemes

    SciTech Connect

    Kunz, R.F.; Cope, W.K.; Venkateswaran, S.

    1997-06-01

    A new implicit method has been developed for solving the viscous full multi-fluid equations, which incorporate transport and generation of mass and momentum for each component present in a system. This work presents stability analysis and application of the important full multi-fluid system in a fully implicit algorithm. The stability analyses presented demonstrate the performance of several iterative schemes applied to the solution of the linearized systems which arise in the formulation. These include block Jacobi and symmetric block Gauss-Siedel schemes with various preconditioners applied. A hierarchy of increasing physical complexity is pursued, starting with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling and no mass transfer. These analyses are extended to systems employing physically important inter-field forces (drag, turbulence dispersion, virtual mass). The effects of mass transfer, multiple fields (i.e., n{phi} > 2) and multiple dimensions are also considered. A two-fluid Navier-Stokes code has been developed based on this new scheme. Results are presented which verify the validity of the stability analyses presented for the coupled scheme. Multi-phase flows which require full multi-fluid modeling arise in a wide class of engineering problems, where non-equilibrium dynamics and thermodynamics of the interfaces between constituents play important roles in the evolution of the ensemble averaged mean flow. Examples include cyclone separators, two-phase flow in jets and curved ducts and boiling flow in heat exchangers.

  7. Analysis of the fundamental vibrational modes of trumpet bells

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Kaplon, Joseph; McDowall, Gregory; Martin, Kristy

    2000-11-01

    Musicians and craftsmen maintain that vibrations of the bells of brass musical instruments such as trumpets and trombones significantly affect the instrument's acoustic signature. Most musical acousticians maintain that these effects are unimportant and imperceptible. In an effort to begin to understand the interaction between the bell vibrations and the acoustic signature of brass wind instruments, we have investigated the fundamental modes of vibration of the bells of several modern trumpets. We will present interferograms showing the fundamental vibrational modes of the modern trumpet bell, discuss the subtle differences between similar instruments, describe observed asymmetries, present data on the correlation between the air column resonance structure and the fundamental vibrational frequencies, and review the progress of ongoing modeling efforts.

  8. Stability analysis of restricted non-static axial symmetry

    SciTech Connect

    Sharif, M.; Bhatti, M. Zaeem Ul Haq E-mail: mzaeem.math@gmail.com

    2013-11-01

    This paper aims to investigate the instability of very restricted class of non-static axially symmetric spacetime with anisotropic matter configuration. The perturbation scheme is established for the Einstein field equations and conservation laws. The instability range in the Newtonian and post-Newtonian regions are explored by constructing the collapse equation in this scenario. It is found that the adiabatic index plays an important role in the stability analysis which depends upon the physical parameters i.e., energy density and anisotropic pressure of the fluid distribution.

  9. Analytical Hopf Bifurcation and Stability Analysis of T System

    NASA Astrophysics Data System (ADS)

    Robert, A. Van Gorder; Roy Choudhury, S.

    2011-04-01

    Complex dynamics are studied in the T system, a three-dimensional autonomous nonlinear system. In particular, we perform an extended Hopf bifurcation analysis of the system. The periodic orbit immediately following the Hopf bifurcation is constructed analytically for the T system using the method of multiple scales, and the stability of such orbits is analyzed. Such analytical results complement the numerical results present in the literature. The analytical results in the post-bifurcation regime are verified and extended via numerical simulations, as well as by the use of standard power spectra, autocorrelation functions, and fractal dimensions diagnostics. We find that the T system exhibits interesting behaviors in many parameter regimes.

  10. Comparative Study of Various Normal Mode Analysis Techniques Based on Partial Hessians

    PubMed Central

    GHYSELS, AN; VAN SPEYBROECK, VERONIQUE; PAUWELS, EWALD; CATAK, SARON; BROOKS, BERNARD R.; VAN NECK, DIMITRI; WAROQUIER, MICHEL

    2014-01-01

    Standard normal mode analysis becomes problematic for complex molecular systems, as a result of both the high computational cost and the excessive amount of information when the full Hessian matrix is used. Several partial Hessian methods have been proposed in the literature, yielding approximate normal modes. These methods aim at reducing the computational load and/or calculating only the relevant normal modes of interest in a specific application. Each method has its own (dis)advantages and application field but guidelines for the most suitable choice are lacking. We have investigated several partial Hessian methods, including the Partial Hessian Vibrational Analysis (PHVA), the Mobile Block Hessian (MBH), and the Vibrational Subsystem Analysis (VSA). In this article, we focus on the benefits and drawbacks of these methods, in terms of the reproduction of localized modes, collective modes, and the performance in partially optimized structures. We find that the PHVA is suitable for describing localized modes, that the MBH not only reproduces localized and global modes but also serves as an analysis tool of the spectrum, and that the VSA is mostly useful for the reproduction of the low frequency spectrum. These guidelines are illustrated with the reproduction of the localized amine-stretch, the spectrum of quinine and a bis-cinchona derivative, and the low frequency modes of the LAO binding protein. PMID:19813181

  11. Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun

    2016-07-01

    The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ . The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q , three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q =6.4 . An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.

  12. Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.

    PubMed

    Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun

    2016-07-01

    The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.

  13. Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.

    PubMed

    Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun

    2016-07-01

    The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied. PMID:27575218

  14. Multibody model reduction by component mode synthesis and component cost analysis

    NASA Technical Reports Server (NTRS)

    Spanos, J. T.; Mingori, D. L.

    1990-01-01

    The classical assumed-modes method is widely used in modeling the dynamics of flexible multibody systems. According to the method, the elastic deformation of each component in the system is expanded in a series of spatial and temporal functions known as modes and modal coordinates, respectively. This paper focuses on the selection of component modes used in the assumed-modes expansion. A two-stage component modal reduction method is proposed combining Component Mode Synthesis (CMS) with Component Cost Analysis (CCA). First, each component model is truncated such that the contribution of the high frequency subsystem to the static response is preserved. Second, a new CMS procedure is employed to assemble the system model and CCA is used to further truncate component modes in accordance with their contribution to a quadratic cost function of the system output. The proposed method is demonstrated with a simple example of a flexible two-body system.

  15. Vibration mode analysis of the proton exchange membrane fuel cell stack

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.

    2016-11-01

    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  16. On the Anti-Symmetric Modes of Crow Instability by a General Instability Analysis Method

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongquan Charlie; Hardin, Jay

    2012-11-01

    The sinusoidal instability of a counter-rotation vortex pair has been investigated in Crow's seminal work (Crow, 1970). The anti-symmetric modes of instability were considered weak interaction modes by Crow, although they are the most amplified modes, according to Fig. 11 in his paper. The weak interaction instability modes are those disturbances that are near the zero-self-induction and in the high wave-number range. However, later Saffman (1992) stated that all the anti-symmetric modes were stable. In this paper, the disturbance matrix is investigated. By looking at the eigenvalues and eigenvectors of the growth matrix, the symmetric and anti-symmetric modes of Crow's instability are recovered. Furthermore, by using a general instability analysis method of Farrell and Ioannou (1996), the upper bounds of the instability can be obtained, which again proves that the anti-symmetric modes are more amplified. These anti-symmetric modes can occur in both the long-wave modes and short-wave modes.

  17. Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers

    SciTech Connect

    Soda, H.; Kotaki, Y.; Sudo, H.; Ishikawa, H.; Yamakoshi, S.; Imai, H.

    1987-06-01

    A single longitudinal mode (SLM) operating condition for phase-adjusted (PA) DFB lasers has been made clear both experimentally and theoretically. As expected, the authors got a high SLM operation yield of 80 percent in a moderate coupled case up to a light output power of 10 mW. However, in the strongly coupled cases, the two-mode operation with the TEO mode and the TE + 1 mode occurred frequently. To explain the two-mode operation and to optimize the PA-DFB laser structure, they have developed a theory.

  18. Computer System for Analysis of Molecular Evolution Modes (SAMEM): analysis of molecular evolution modes at deep inner branches of the phylogenetic tree.

    PubMed

    Gunbin, Konstantin V; Suslov, Valentin V; Genaev, Mikhail A; Afonnikov, Dmitry A

    SAMEM (System for Analysis of Molecular Evolution Modes), a web-based pipeline system for inferring modes of molecular evolution in genes and proteins (http://pixie.bionet.nsc.ru/samem/), is presented. Pipeline 1 performs analyses of protein-coding gene evolution; pipeline 2 performs analyses of protein evolution; pipeline 3 prepares datasets of genes and/or proteins, performs their primary analysis, and builds BLOSUM matrices; pipeline 4 checks if these genes really are protein-coding. Pipeline 1 has an all-new feature, which allows the user to obtain K(R)/K(C) estimates using several different methods. An important feature of pipeline 2 is an original method for analyzing the rates of amino acid substitutions at the branches of a phylogenetic tree. The method is based on Markov modeling and a non-parametric permutation test, which compares expected and observed frequencies of amino acid substitutions, and infers the modes of molecular evolution at deep inner branches.

  19. Peeling-Ballooning Mode Analysis in Shifted-Circle Tokamak Equilibria

    NASA Astrophysics Data System (ADS)

    Burke, B.; Kruger, S. E.; Hegna, C. C.; Snyder, P. B.; Sovinec, C. R.; Zhu, P.

    2009-11-01

    Progress in understanding edge localized modes (ELMs) has been made by investigating the stability properties of edge localized peeling-ballooning modes. We focus on the evolution of ideal MHD modes over a large spectrum in two shifted-circle tokamak equilibria, using the extended-MHD code NIMROD. The TOQ-generated equilibria model a H-mode plasma with a pedestal pressure profile and parallel edge currents. A vacuum region is prescribed by a resistivity profile that transitions from a small to very large value at a specified location. The vacuum model is benchmarked against the linear ideal MHD codes ELITE & GATO. We demonstrate vacuum effects on the stability by adjusting the vacuum location relative to the pedestal pressure region. Ballooning-like instabilities dominate distant vacuum cases, whereas peeling mode physics is expected to dominate as the vacuum approaches the pedestal. Numerical simulations of the early nonlinear stages of edge localized MHD instabilities are presented. Comparisons between equilibria that have ``ballooning'' dominated instabilities relative to equilibria that are ``peeling'' dominated are made.

  20. Failure Mode Analysis of V-Shaped Pyrotechnically Actuated Valves

    NASA Technical Reports Server (NTRS)

    Sachdev, Jai S.; Hosangadi, A.; Chenoweth, James D.; Saulsberry, Regor L.; McDougle, Stephen H.

    2012-01-01

    Current V-shaped stainless steel pyrovalve initiators have rectified many of the deficiencies of the heritage Y-shaped aluminum design. However, a credible failure mode still exists for dual simultaneous initiator (NSI) firings in which low temperatures were detected at the booster cap and less consistent ignition was observed than when a single initiator was fired. In order to asses this issue, a numerical framework has been developed for predicting the flow through pyrotechnically actuated valves. This framework includes a fully coupled solution of the gas-phase equation with a non-equilibrium dispersed phase for solid particles as well as the capability to model conjugate gradient heat transfer to the booster cap. Through a hierarchy of increasingly complex simulations, a hypothesis for the failure mode of the nearly simultaneous dual NSI firings has been proven. The simulations indicate that the failure mode for simultaneous dual NSI firings may be caused by flow interactions between the flame channels. The shock waves from each initiator interact in the booster cavity resulting in a high pressure that prevents the gas and particulate velocity from rising in the booster cap region. This impedes the bulk of the particulate phase from impacting the booster cap and reduces the heat transfer to the booster cap since the particles do not impact it. Heat transfer calculations to the solid metal indicate that gas-phase convective heat transfer may not be adequate by itself and that energy transfer from the particulate phase may be crucial for the booster cap burn through.

  1. Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers.

    PubMed

    Liu, H H; Chow, K K

    2014-01-01

    We experimentally investigate the stability of dispersion-managed mode-locked fiber lasers using carbon-nanotube-based saturable absorbers (SAs) with different modulation depths. An unstable operation region of the mode-locked fiber laser with near-zero net cavity dispersion is observed, where the laser produces random pulse burst rather than stable pulse train. Through the implementation of high-contrast SAs in the laser, the unstable region is found to be shrunk by ~31.3% when the modulation depth of the SAs increases from 6.4% to 12.5%. The numerical simulation is consistent with the experimental observation.

  2. Stabilized dual-wavelength erbium-doped fiber laser with a single-longitudinal mode by utilizing fiber Bragg grating and a compound-ring filter

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Chen, Hone-Zhang; Chen, Jhih-Yu; Chow, Chi-Wai

    2016-02-01

    In this investigation, a stable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber (EDF) multiring laser by utilizing fiber Bragg grating is proposed and investigated. Here, to accomplish a SLM output, the multiring cavity of the proposed EDF laser is employed for suppressing the densely multilongitudinal mode. Hence, the output powers and wavelengths of the proposed dual-wavelength EDF laser are 7.0 and 6.7 dBm and 1531.72 and 1537.32 nm, respectively. In addition, the maximum output stabilities of the power and wavelength in the proposed laser are also executed and discussed.

  3. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  4. Physics-based stability analysis of MOS transistors

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Steeneken, P. G.; Boksteen, B. K.; Heringa, A.; Scholten, A. J.; Schmitz, J.; Hueting, R. J. E.

    2015-11-01

    In this work, a physics-based model is derived based on a linearization procedure for investigating the electrical, thermal and electro-thermal instability of power metal-oxide-semiconductor (MOS) transistors. The proposed model can be easily interfaced with a circuit or device simulator to perform a failure analysis, making it particularly useful for power transistors. Furthermore, it allows mapping the failure points on a three-dimensional (3D) space defined by the gate-width normalized drain current, drain voltage and junction temperature. This leads to the definition of the Safe Operating Volume (SOV), a powerful frame work for making failure predictions and determining the main root of instability (electrical, thermal or electro-thermal) in different bias and operating conditions. A comparison between the modeled and the measured SOV of silicon-on-insulator (SOI) LDMOS transistors is reported to support the validity of the proposed stability analysis.

  5. BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Samtaney, Ravi

    2016-04-01

    We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10-4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1-8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.

  6. Analysis of the Effects of Three Modes of Head Start Delivery. Head Start Delivery Modes Project: Final Report.

    ERIC Educational Resources Information Center

    Peters, Donald L.; And Others

    This study analyzed the critical features of three delivery modes for Head Start services in order to: (1) compare the effects of different delivery modes on the immediate outcomes for children and parents; and (2) explore the pattern of effects both within and across modes to ascertain how the process works. The first mode represented the most…

  7. Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.

    2013-05-01

    The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.

  8. Mode resolved bend-loss analysis in few-mode fibers using spatially and spectrally resolved imaging.

    PubMed

    Leandro, Lorenzo; Grüner-Nielsen, Lars; Rottwitt, Karsten

    2015-10-15

    The increasing use of few-mode fibers for high-speed optical communication systems in space division multiplexing has created a need for mode resolved characterization of few-mode fibers. In this Letter, we present a new method to characterize the bend loss of the individual modes in a few-mode fiber. This procedure uses a simple setup for spatially and spectrally resolved imaging and allows the measurement of the bend loss of each and every guided mode at once. It does not require the use of mode converters in contrast to other methods. Results for graded-index two- and four-mode fibers are presented, together with comparisons against direct bend-loss measurements for the four-mode and standard single-mode fibers.

  9. Modeling and performance analysis of the fractional order quadratic Boost converter in discontinuous conduction mode-discontinuous conduction mode

    NASA Astrophysics Data System (ADS)

    Tan, Cheng; Liang, Zhi-Shan

    2016-03-01

    In this paper, based on the fact that the inductors and capacitors are of fractional order in nature, the four-order mathematical model of the fractional order quadratic Boost converter in type I and type II discontinuous conduction mode (DCM) — DCM is established by using fractional calculus theory. Direct current (DC) analysis is conducted by using the DC equivalent model and the transfer functions are derived from the corresponding alternating current (AC) equivalent model. The DCM-DCM regions of type I and type II are obtained and the relations between the regions and the orders are found. The influence of the orders on the performance of the quadratic Boost converter in DCM-DCM is verified by numerical and circuit simulations. Simulation results demonstrate the correctness of the fractional order model and the efficiency of the proposed theoretical analysis.

  10. Stability analysis of a natural circulation lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Lu, Qiyue

    This dissertation is aimed at nuclear-coupled thermal hydraulics stability analysis of a natural circulation lead cooled fast reactor design. The stability concerns arise from the fact that natural circulation operation makes the system susceptible to flow instabilities similar to those observed in boiling water reactors. In order to capture the regional effects, modal expansion method which incorporates higher azimuthal modes is used to model the neutronics part of the system. A reduced order model is used in this work for the thermal-hydraulics. Consistent with the number of heat exchangers (HXs), the reactor core is divided into four equal quadrants. Each quadrant has its corresponding external segments such as riser, plenum, pipes and HX forming an equivalent 1-D closed loop. The local pressure loss along the loop is represented by a lumped friction factor. The heat transfer process in the HX is represented by a model for the coolant temperature at the core inlet that depends on the coolant temperature at the core outlet and the coolant velocity. Additionally, time lag effects are incorporated into this HX model due to the finite coolant speed. A conventional model is used for the fuel pin heat conduction to couple the neutronics and thermal-hydraulics. The feedback mechanisms include Doppler, axial/radial thermal expansion and coolant density effects. These effects are represented by a linear variation of the macroscopic cross sections with the fuel temperature. The weighted residual method is used to convert the governing PDEs to ODEs. Retaining the first and second modes, leads to six ODEs for neutronics, and five ODEs for the thermal-hydraulics in each quadrant. Three models are developed. These are: 1) natural circulation model with a closed coolant flow path but without coupled neutronics, 2) forced circulation model with constant external pressure drop across the heated channels but without coupled neutronics, 3) coupled system including neutronics with

  11. Stabilized tetrahedral elements for crystal plasticity finite element analysis overcoming volumetric locking

    NASA Astrophysics Data System (ADS)

    Cheng, Jiahao; Shahba, Ahmad; Ghosh, Somnath

    2016-05-01

    Image-based CPFE modeling involves computer generation of virtual polycrystalline microstructures from experimental data, followed by discretization into finite element meshes. Discretization is commonly accomplished using three-dimensional four-node tetrahedral or TET4 elements, which conform to the complex geometries. It has been commonly observed that TET4 elements suffer from severe volumetric locking when simulating deformation of incompressible or nearly incompressible materials. This paper develops and examines three locking-free stabilized finite element formulations in the context of crystal plasticity finite element analysis. They include a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB) based element and a F-bar patch (FP) based element. All three formulations are based on the partitioning of TET4 element meshes and integrating over patches to obtain favorable incompressibility constraint ratios without adding large degrees of freedom. The results show that NUS formulation introduces unstable spurious energy modes, while the LIB and FP elements stabilize the solutions and are preferred for reliable CPFE analysis. The FP element is found to be computationally efficient over the LIB element.

  12. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    PubMed

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.

  13. Mode analysis and design of 0.3-THz Clinotron

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Wang, Jian-Guo; Wang, Guang-Qiang; Zeng, Peng; Wang, Dong-Yang

    2016-10-01

    To develop a high-power continuous-wave terahertz source, a Clinotron operating at 0.3 THz is investigated. Based on the analyses of field distribution and coupling impedance, the dispersion characteristic of a rectangular resonator is preliminarily studied. The effective way to select fundamental mode to interact with the electron beam is especially studied. Finally, the structure is optimized by particle-in-cell simulation, and the problems of manufacture tolerance, current density threshold, and heat dissipation during Clinotron’s operation are also discussed. The optimum device can work with a good performance under the conditions of 8 kV and 60 mA. With the generation of signal frequency at 315.89 GHz and output power at 12 W on average, this device shows great prospects in the application of terahertz waves. Project supported by the National Natural Science Foundation of China (Grant No. 61231003).

  14. Analysis of the ITER H-mode confinement database

    SciTech Connect

    Schissel, D.P.; Kardaun, O.J.W.F.; Ryter, F.; Stroth, U.

    1993-05-01

    In order to predict the global energy confinement time in the next generation of large tokamaks it is essential to have data from machines of different sizes and operating parameter regimes. This data can also be used to construct dimensionless scalings and thereby attempt to differentiate between Bohm and gyro-Bohm based transport models. Previously, at the request of the ITER project, H-mode global confinement data was assembled from six machines ASDEX, DIII-D, JET, JFT-2M, PBX-M, and PDX into a single database. This collaboration has continued with the initial database being expanded by extending the plasma parameter space as well as by improving the precision of some of the relevant calculated plasma parameters. This paper summarizes work that has been performed on the newest version (ITERH.DB2) of the confinement database.

  15. Analysis of the ITER H-mode confinement database

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.; Kardaun, O.; Ryter, F.; Stroth, U.

    1993-05-01

    In order to predict the global energy confinement time in the next generation of large tokamaks it is essential to have data from machines of different sizes and operating parameter regimes. This data can also be used to construct dimensionless scalings and thereby attempt to differentiate between Bohm and gyro-Bohm based transport models. Previously, at the request of the ITER project, H-mode global confinement data was assembled from six machines, ASDEX, DIII-D, JET, JFT-2M, PBX-M, and PDX, into a single database. This collaboration has continued with the initial database being expanded by extending the plasma parameter space as well as by improving the precision of some of the relevant calculated plasma parameters. This paper summarizes work that has been performed on the newest version (ITERH.DB2) of the confinement database.

  16. Techniques to extract physical modes in model-independent analysis of rings.

    SciTech Connect

    Wang, C.-X.; Accelerator Systems Division

    2004-01-01

    A basic goal of Model-Independent Analysis is to extract the physical modes underlying the beam histories collected at a large number of beam position monitors so that beam dynamics and machine properties can be deduced independent of specific machine models. Here we discuss techniques to achieve this goal, especially the Principal Component Analysis and the Independent Component Analysis.

  17. Stability of hybrid modes of a single-component electron plasma containing an admixture of background gas ions

    NASA Astrophysics Data System (ADS)

    Yeliseyev, Yu. N.

    2014-05-01

    The spectrum of eigenmodes of a waveguide completely filled with a cold electron plasma containing a small admixture of ions produced due to electron-impact ionization of background gas atoms is calculated numerically. The calculations were performed within the entire range of allowable values of the radial electric and longitudinal magnetic fields for both magnetized and unmagnetized ions by using the earlier derived nonlocal dispersion relation [Plasma Phys. Rep. 36, 563 (2010)]. The spectrum consists of three families of electron modes with frequencies equal to the Doppler-shifted upper and lower hybrid frequencies and modified ion cyclotron (MIC) modes. When the Doppler shift caused by electron rotation in the crossed electric and magnetic fields compensates for the hybrid frequency, the electron modes become low-frequency modes and interact with the ion modes. For m = 1, only the lower hybrid modes can be low-frequency ones, whereas at m ≥ 2, both lower and upper hybrid modes can be low-frequency ones. The spectrum of modes having the azimuthal number m = 2 is thoroughly analyzed. It is shown that, in this case, the lower hybrid modes behave similar to the m = 1 modes. The dispersion curves of the upper hybrid modes intersect with all harmonics of the MIC frequency (positive, negative, and zero) and are unstable in the vicinities of the intersections. The maximum value of the instability growth rate is several times higher than the ion plasma frequency. The MIC modes are unstable within a wide range of the field strengths, and their growth rates are two orders of magnitude slower. Instabilities are caused by the relative motion of electrons and ions (the transverse current) and the anisotropy of the ion distribution function.

  18. Plasmon-soliton waves in planar slot waveguides. II. Results for stationary waves and stability analysis

    NASA Astrophysics Data System (ADS)

    Walasik, Wiktor; Renversez, Gilles; Ye, Fangwei

    2016-01-01

    We describe the results of the two methods we developed to calculate the stationary nonlinear solutions in one-dimensional plasmonic slot waveguides made of a finite-thickness nonlinear dielectric core surrounded by metal regions. These two methods are described in detail in the preceding article [Walasik and Renversez, preceding paper, Phys. Rev. A 93, 013825 (2016)], 10.1103/PhysRevA.93.013825. For symmetric waveguides, we provide the nonlinear dispersion curves obtained using the two methods and compare them. We describe the well-known low-order modes and higher modes that were not described before. All the modes are classiffied into two families: modes with or without nodes. We also compare nonlinear modes with nodes with the linear modes in similar linear slot waveguides with a homogeneous core. We recover the symmetry breaking Hopf bifurcation of the first symmetric nonlinear mode toward an asymmetric mode and we show that some of the higher modes also exhibit a bifurcation. We study the behavior of the bifurcation of the fundamental mode as a function of the permittivities of the metal cladding and of the nonlinear core. We demonstrate that the bifurcation can be obtained at low power levels in structures with optimized parameters. Moreover, we provide the dispersion curves for asymmetric nonlinear slot waveguides. Finally, we give results concerning the stability of the fundamental symmetric mode and the asymmetric mode that bifurcates from it using both theoretical argument and numerical propagation simulations from two different full-vector methods. We also investigate the stability properties of the first antisymmetric mode using our two numerical propagation methods.

  19. Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; Lazaros, A.; Farshi, E.; de Baar, M. R.; de Bock, M. F. M.; Classen, I. G. J.; Jaspers, R. J. E.; Hogeweij, G. M. D.; Koslowski, H. R.; Krämer-Flecken, A.; Liang, Y.; Lopes Cardozo, N. J.; Zimmermann, O.

    2007-02-01

    Controlled experiments on the suppression of the m/n = 2/1 tearing mode with electron cyclotron heating and current drive in TEXTOR are reported. The mode was produced reproducibly by an externally applied rotating perturbation field, allowing a systematic study of its suppression. Heating inside the island of the mode is shown to be the dominant suppression mechanism in these experiments. An extrapolation of these findings to ITER indicates that the projected system for suppression of the tearing mode could be significantly more effective than present estimates indicate, which only consider the effect of the current drive but not of the heating inside the island.

  20. Analysis of the visual artifact in range-gated active imaging, especially in burst mode.

    PubMed

    Matwyschuk, Alexis

    2014-09-20

    After the demonstration of the occurrence of visual artifacts with an active imaging system in burst mode in a previous paper, the analysis of this phenomenon was realized. A visual artifact resulting from a remote zone in the scene can appear in the image of the real visualized zone when the duty cycle of laser pulses is close to 50%, as in the burst mode. Therefore, the elements of this remote zone will create confusion in the image, with erroneous estimated distances. These misinterpretations can be very embarrassing to those attempting to determine the distance of a target in the scene. From the modeling realized and validated in the previous paper, the behavior of the visual artifact was analyzed with two types of burst mode used in active imaging, the duration of the laser pulse being identical to the duration of the temporal aperture of the imager. In the first mode, the width of the visualized zone is set, depending on the distance. The second mode increases the width of the visualized zone so that the foreground of the zone is constantly visible. The results showed that the distance of the visual artifacts in variable mode increased much more quickly than the distance in fixed mode. In both modes, the most intense visual artifacts appear when the range of the visualized zone remains within the first kilometer. When this range is very short, the illuminance of the visual artifact in fixed mode is much more intense than the illuminance in variable mode. On the other hand, for long distances, the illuminance of the visual artifact in variable mode is greater than the illuminance in fixed mode, but decreases quickly beyond a certain distance, making it insignificant.

  1. Soap Bubble Elasticity: Analysis and Correlation with Foam Stability

    NASA Astrophysics Data System (ADS)

    Karakashev, S. I.; Tsekov, R.; Manev, E. D.; Nguyen, A. V.

    2010-05-01

    A correlation between the elastic modulus of soap bubble and the foam stability was found. A model system was chosen: a soap bubble stabilized by simple nonionic surfactant tetraethylene glycol octyl ether (C8E4) and 10^-5 M NaCl. The Elastic moduli were determined by periodical expansion and shrinking of foam bubbles with frequency of 0.1 Hz and volumetric amplitude of 2 mm 3. The film tension was monitored via commercial profile analysis tensiometer (Sinterface Technologies, GmbH). The elastic moduli of foam bubbles versus surfactant concentration in the range of 2x10^-3 - 10^-2 M were obtained. In addition, the theory of Lucassen and van den Tempel for the elastic modulus of single liquid/air interface at given frequency was exploited as well. The bulk diffusion coefficient of the surfactant molecules is unknown parameter through the adsorption frequency in this theory. Hence, a fitting procedure (with one free parameter) was conducted matching experimental and theoretical data. The value of the bulk diffusion coefficient of C8E4 obtained was 5.1x10^-11 m^2/s, which is an order of magnitude lower value than what is expected for. The foam was generated by shaking method and left to decay. A correlation between the elastic modulus and foam life time upon surfactant concentration was found.

  2. Bifurcation analysis of aircraft pitching motions near the stability boundary

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1984-01-01

    Bifuraction theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single degree of freedom pitching-motion perturbations about a large mean angle of attack. The requisite aerodynamic information in the equations of motion is represented in a form equivalent to the response to finite-amplitude pitching oscillations about the mean angle of attack. This information is deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the mean angle of attack is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite-amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable (supercritical) or unstable (subcritical). For flat-plate airfoils flying at supersonic/hypersonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.

  3. Earthquake Stability Analysis of Rock Slopes: a Case Study

    NASA Astrophysics Data System (ADS)

    Pal, Shilpa; Kaynia, Amir M.; Bhasin, Rajinder K.; Paul, D. K.

    2012-03-01

    Stability analysis of Surabhi landslide in the Dehradun and Tehri districts of Uttaranchal located in Mussoorie, India, has been simulated numerically using the distinct element method focusing on the weak zones (fracture). This is an active landslide on the main road toward the town centre, which was triggered after rainfall in July-August 1998. Understanding the behaviour of this landslide will be helpful for planning and implementing mitigation measures. The first stage of the study includes the total area of the landslide. The area identified as the zone of detachment is considered the most vulnerable part of the landslide. Ingress of water and increased pore pressures result in reduced mobilized effective frictional resistance, causing the top layer of the zone of detachment to start moving. The corresponding total volume of rock mass that is potentially unstable is estimated to 11.58 million m3. The second stage of this study includes a 2D model focussing only on the zone of detachment. The result of the analyses including both static and dynamic loading indicates that most of the total displacement observed in the slide model is due to the zone of detachment. The discontinuum modelling in the present study gives reasonable agreement with actual observations and has improved understanding of the stability of the slide slope.

  4. Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Yuan, Jun-Liang; Deng, Jin-Gen; Tan, Qiang; Yu, Bao-Hua; Jin, Xiao-Chun

    2013-09-01

    Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in situ stresses is not suitable for wellbore stability analysis in laminated shale gas formations because of the inhomogeneous mechanical properties of shale. In this study, a new prediction method is developed to calculate the in situ stresses in shale formations. The pore pressure near the borehole is heterogeneous along both the radial and tangential directions due to the inhomogeneity in the mechanical properties and permeability. Therefore, the stress state around the wellbore will vary with time after the formation is drained. Besides, based on the experimental results, a failure criterion is verified and applied to determine the strength of Silurian shale in the Sichuan Basin, including the long-term strength of gas shale. Based on this work, horizontal well borehole stability is analyzed by the new in situ stress prediction model. Finally, the results show that the collapse pressure will be underestimated if the conventional model is used in shale gas reservoirs improperly. The collapse pressure of a horizontal well is maximum at dip angle of 45°. The critical mud weight should be increased constantly to prevent borehole collapse if the borehole is exposed for some time.

  5. Analysis of Faint Glints from Stabilized GEO Satellites

    NASA Astrophysics Data System (ADS)

    Hall, D.; Kervin, P.

    2013-09-01

    Ground-based telescopes routinely acquire temporal brightness measurements of satellites in geo-stationary and geo-synchronous orbit that provide valuable characterization information. For instance, GEO satellites that are not stabilized tend to rotate, and produce brightnesses that vary in time with frequencies corresponding to rotation rates. Temporal brightness patterns can also be exploited to characterize stabilized GEO satellites. For example, many operational GEO satellites have solar panels that glint when they reflect sunlight towards an observer in a mirror-like fashion. These well-known solar panel glints can be remarkably bright, often exceeding several stellar magnitudes in amplitude. Measured brightnesses and times of these glints can be exploited to estimate the size, segmentation, and alignment of the solar array, valuable information about the satellite's power generation and consumption capabilities. However, satellites can produce other glints in addition to those originating from solar panels. These glints can be much fainter, with amplitudes as small as 0.2 magnitudes. Several observations of GEO satellites show several such glints occurring during the span of a single night. Furthermore, many of these recur from night to night when observed from a single ground-based site, but with subtle, incremental changes in both peak times and brightnesses. These fainter glints must originate from reflective elements mounted on the satellite's main bus, solar panel structure, or other peripheral structures that might be stationary or moving with respect to the main bus. Our analysis indicates that such glints can be exploited for GEO satellite characterization.

  6. On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis

    SciTech Connect

    Nie, J.; Wei, X.

    2011-07-17

    The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis. This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.

  7. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  8. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  9. Global stability analysis of the steady and periodic cylinder wake

    SciTech Connect

    Noack, B.R.; Eckelmann, H.

    1994-07-01

    A global, three-dimensional stability analysis of the steady and the periodic cylinder wake is carried out employing a low-dimensional Galerkin method. The steady flow is found to be asymptotically stable with respect to all perturbations for Re less than 54. The onset of periodicity is confirmed to be a supercritical Hopf bifurcation which can be modeled by the Landau equations. The periodic solution is observed to be only neutrally stable for 54 less than Re less than 170. While two-dimensional perturbations of the vortex street rapidly decay, three-dimensional perturbations with long spanwise wavelengths neither grow nor decay. The periodic solution becomes unstable at Re = 170 by a perturbation with the spanwise wavelength of 1.8 diameters. This instability is shown to be a supercritical Hopf bifurcation in the spanwise coordinate and leads to a three-dimensional periodic flow. Finally the transition scenario for higher Reynolds numbers is discussed.

  10. Stability analysis and numerical simulation of simplified solid rocket motors

    NASA Astrophysics Data System (ADS)

    Boyer, G.; Casalis, G.; Estivalèzes, J.-L.

    2013-08-01

    This paper investigates the Parietal Vortex Shedding (PVS) instability that significantly influences the Pressure Oscillations of the long and segmented solid rocket motors. The eigenmodes resulting from the stability analysis of a simplified configuration, namely, a cylindrical duct with sidewall injection, are presented. They are computed taking into account the presence of a wall injection defect, which is shown to induce hydrodynamic instabilities at discrete frequencies. These instabilities exhibit eigenfunctions in good agreement with the measured PVS vortical structures. They are successfully compared in terms of temporal evolution and frequencies to the unsteady hydrodynamic fluctuations computed by numerical simulations. In addition, this study has shown that the hydrodynamic instabilities associated with the PVS are the driving force of the flow dynamics, since they are responsible for the emergence of pressure waves propagating at the same frequency.

  11. Symplectic maps for the n-body problem - Stability analysis

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack; Holman, Matthew

    1992-01-01

    The stability of new symplectic n-body maps is examined from the point of view of nonlinear dynamics. The resonances responsible for the principal artifacts are identified. These are resonances between the stepsize and the difference of mean motions between pairs of planets. For larger stepsizes resonant perturbations are evident in the variation of the energy of the system corresponding to these stepsize resonances. It is shown that the principal instability of the method can be predicted and corresponds to the overlap of the stepsize resonances. It is noted that the analysis suggests that other artifacts will occur. For example, the overlap of a stepsize resonance with a resonance of the actual system may also give a region of chaotic behavior that is an artifact. It is pointed out that the fact that the principal artifacts corresponds to a particular set of stepsize resonances suggests that it may be possible to perturbatively remove the effect when the stepsize resonances are nonoverlapping.

  12. Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.

    PubMed

    Zhang, Jinhui; Lin, Yujuan; Feng, Gang

    2015-12-01

    This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.

  13. Observation and Analysis of Resistive Instabilities in Negative Central Shear in DIII-D Discharges with L-Mode Edge

    SciTech Connect

    Jayakumar, R.J.; Austin, M.E.; Brennan, D.P.; Chu, M.S.; Luce, T.C.; Strait, E.J.; Turnbull, A.D.

    2002-07-01

    In DIII-D plasmas with L-mode edge and negative central shear (q{sub axis}-q{sub min} {approx}0.3 to 0.5), an interchange-like instability has been observed [1]. The instability and a subsequent tearing mode cause reduction of the core electron temperature and plasma rotation, and therefore the instability affects discharge evolution and the desired high performance is not achieved. Stability analyses indicate robust ideal stability, while the Resistive Interchange Mode criterion is marginal and the instability appears to be localized initially. Based on this, we believe that the mode is, most likely, a Resistive Interchange Mode. The amplitude of the instability is correlated with the location of the q{sub min} surface and inversely with the fast-ion pressure. There is indication that the interchange-like instability may be ''seeding'' the tearing mode that sometimes follows the interchange-like instability.

  14. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber

    DOE PAGES

    Cheng, Yujie; Hill, Cary; Liu, Bo; Yu, Zhihao; Xuan, Haifeng; Homa, Daniel; Wang, Anbo; Pickrell, Gary

    2016-06-01

    We present a large-core single-mode “windmill” single crystal sapphire optical fiber (SCSF) design, which exhibits single-mode operation by stripping off the higher-order modes (HOMs) while maintaining the fundamental mode. The “windmill” SCSF design was analyzed using the finite element analysis method, in which all the HOMs are leaky. The numerical simulation results show single-mode operation in the spectral range from 0.4 to 2 μm in the windmill SCSF, with an effective core diameter as large as 14 μm. Such fiber is expected to improve the performance of many of the current sapphire fiber optic sensor structures.

  15. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes

    PubMed Central

    Affaticati, Pierre E.; Dai, Shao-Bo; Payongsri, Panwajee; Hailes, Helen C.; Tittmann, Kai; Dalby, Paul A.

    2016-01-01

    The S385Y/D469T/R520Q variant of E. coli transketolase was evolved previously with three successive smart libraries, each guided by different structural, bioinformatical or computational methods. Substrate-walking progressively shifted the target acceptor substrate from phosphorylated aldehydes, towards a non-phosphorylated polar aldehyde, a non-polar aliphatic aldehyde, and finally a non-polar aromatic aldehyde. Kinetic evaluations on three benzaldehyde derivatives, suggested that their active-site binding was differentially sensitive to the S385Y mutation. Docking into mutants generated in silico from the wild-type crystal structure was not wholly satisfactory, as errors accumulated with successive mutations, and hampered further smart-library designs. Here we report the crystal structure of the S385Y/D469T/R520Q variant, and molecular docking of three substrates. This now supports our original hypothesis that directed-evolution had generated an evolutionary intermediate with divergent binding modes for the three aromatic aldehydes tested. The new active site contained two binding pockets supporting π-π stacking interactions, sterically separated by the D469T mutation. While 3-formylbenzoic acid (3-FBA) preferred one pocket, and 4-FBA the other, the less well-accepted substrate 3-hydroxybenzaldehyde (3-HBA) was caught in limbo with equal preference for the two pockets. This work highlights the value of obtaining crystal structures of evolved enzyme variants, for continued and reliable use of smart library strategies. PMID:27767080

  16. Rouse Mode Analysis of Chain Relaxation in Polymer Nanocomposites

    PubMed Central

    Kalathi, Jagannathan T.; Rubinstein, Michael; Grest, Gary S.

    2016-01-01

    Large-scale Molecular Dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer-solvent system. However, for NPs larger than half the entanglement mesh size, effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Thus, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect. PMID:25939276

  17. Rouse mode analysis of chain relaxation in polymer nanocomposites

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2015-04-20

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, asmore » in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.« less

  18. Rouse mode analysis of chain relaxation in polymer nanocomposites

    SciTech Connect

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; Grest, Gary S.

    2015-04-20

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, as in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.

  19. Analysis of SETI data collected in the parasitic mode

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Zeitlin, G. M.; Tarter, J.; Lampton, M.; Welch, W.

    1980-01-01

    A system for performing SETI observations continuously as part of non-SETI observations at a radio observatory is presented, and the analysis of results obtained by the parasitic system is discussed. The system, designated SERENDIP, is a real-time microprocessor-controlled spectrum analyzer with algorithms for performing statistical operations and recording those spectra with characteristics presumed to be typical of intelligent rather than astrophysical origin. Programs also exist for the post-acquisition analysis of signal autocorrelation, power spectra, time behavior and positional coordinates, and for a generalized cluster analysis to detect clusters of signal detections. In a recent run of 35 days, the SERENDIP system detected 4000 narrowband spectra exceeding a preset threshold, of which 98% were determined to be of instrumental origin. The remaining class of detections is also believed to be instrumental, although not as well organized as the first signals, and means are currently being sought for eliminating them.

  20. Principal Dynamic Mode Analysis of the Hodgkin–Huxley Equations

    PubMed Central

    Eikenberry, Steffen E.; Marmarelis, Vasilis Z.

    2015-01-01

    We develop an autoregressive model framework based on the concept of Principal Dynamic Modes (PDMs) for the process of action potential (AP) generation in the excitable neuronal membrane described by the Hodgkin–Huxley (H–H) equations. The model's exogenous input is injected current, and whenever the membrane potential output exceeds a specified threshold, it is fed back as a second input. The PDMs are estimated from the previously developed Nonlinear Autoregressive Volterra (NARV) model, and represent an efficient functional basis for Volterra kernel expansion. The PDM-based model admits a modular representation, consisting of the forward and feedback PDM bases as linear filterbanks for the exogenous and autoregressive inputs, respectively, whose outputs are then fed to a static nonlinearity composed of polynomials operating on the PDM outputs and cross-terms of pair-products of PDM outputs. A two-step procedure for model reduction is performed: first, influential subsets of the forward and feedback PDM bases are identified and selected as the reduced PDM bases. Second, the terms of the static nonlinearity are pruned. The first step reduces model complexity from a total of 65 coefficients to 27, while the second further reduces the model coefficients to only eight. It is demonstrated that the performance cost of model reduction in terms of out-of-sample prediction accuracy is minimal. Unlike the full model, the eight coefficient pruned model can be easily visualized to reveal the essential system components, and thus the data-derived PDM model can yield insight into the underlying system structure and function. PMID:25630480

  1. Stability analysis and non-field-periodic islands with the SIESTA code

    NASA Astrophysics Data System (ADS)

    Cook, C. R.; Hirshman, S. P.; Sanchez, R.; Anderson, D. T.

    2012-03-01

    SIESTA is a three-dimensional magnetohydrodynamic equilibrium code capable of resolving magnetic islands in toroidal plasma confinement devices. The simulation begins with a VMEC equilibrium containing closed, nested magnetic flux surfaces. In general, this equilibrium can be unstable to tearing modes as VMEC is purely an ideal MHD code. SIESTA then calculates a new equilibrium by perturbing the initial configuration and following a nonlinear energy minimization process with finite resistivity. The converged SIESTA equilibrium with islands will then be stable. The Solov'ev tokamak equilibrium is a configuration that is tractable analytically. A stability analysis will be performed on an unstable VMEC Solov'ev equilibrium as well as a stable, converged SIESTA Solov'ev equilibrium. These numerical results for the MHD eigenspectrum will be compared to what is expected from theory. Presently SIESTA assumes that plasma perturbations, and thus also magnetic islands, are field-periodic. This limitation is being removed from the code by allowing the displacement toroidal mode number to not be restricted to multiples of the number of field periods. An example of a non-field-periodic perturbation in CTH will be discussed.

  2. Global stability analysis of a transonic flow over OAT15A airfoil

    NASA Astrophysics Data System (ADS)

    Sartor, Fulvio; Mettot, Clement; Sipp, Denis; dafe Team

    2013-11-01

    A transonic interaction between a shock wave and a turbulent boundary layer on a supercritical profile is numerically and theoretically investigated. If the angle of attack is small, RANS simulations converge towards a steady solution; beyond a critical value, the shock exhibits self-sustained oscillations, and the flow can be related to the so-called transonic buffet. Linear stability analysis indicates that for low angle of attack the flow is stable in a global framework. In this case, the noise amplifier behavior of the flow is investigated through a singular value decomposition of the global Resolvent, which highlights the frequency selection process typical of shock-wave/boundary-layer interactions. It will be shown that the shock behaves as a low-pass filter, and Kelvin-Helmholtz type instability are related to high-frequency unsteadiness. When increasing the angle of attack, an unstable eigenvalue appears and the unsteady behavior can be correctly represented by the unstable global mode, as shown by Crouch et al. JFM 2009. The mechanism that is responsible for buffet onset will be discussed, and comparisons between adjoint/direct global modes and optimal forcing/response will be performed.

  3. Stability Analysis of Non-Steady MHD-Equilibria

    NASA Astrophysics Data System (ADS)

    Schmitt, D.

    1995-03-01

    Following the work of Bernsteinet al. (1958), Frieman and Rotenberg (1960) and Unno (1968) a formalism is developed which allows to examine the adiabatic stability of a perfectly conducting, rotating and self-gravitating plasma in non-steady equilibrium. Using this method the stability of a plasma in a dynamical phase of its evolution can be predicted. Global stability investigations are carried out which are based on a variation of the total energy of the system and, in general, lead to sufficient conditions for stability. The formalism is applied to the stability of a horizontal magnetic field in a medium stratified by a gravitational field.

  4. Mode analysis of photonic crystal L3 cavities in self-suspended lithium niobate membranes

    SciTech Connect

    Diziain, Séverine Geiss, Reinhard; Zilk, Matthias; Schrempel, Frank; Kley, Ernst-Bernhard; Pertsch, Thomas; Tünnermann, Andreas

    2013-12-16

    We report on a multimodal analysis of photonic crystal L3 cavities milled in lithium niobate free-standing membranes. The classical L3 cavity geometry is compared to an L3 cavity containing a second lattice superimposed on the primary one. Those two different geometries are investigated in terms of vertical radiation and quality (Q) factor for each mode of the cavities. Depending on the cavity geometry, some modes undergo an enhancement of their vertical radiation into small angles while other modes experience a higher Q factor. Experimental characterizations are corroborated by three-dimensional finite difference time domain simulations.

  5. Failure mode analysis using state variables derived from fault trees with application

    SciTech Connect

    Bartholomew, R.J.

    1981-01-01

    Fault Tree Analysis (FTA) is used extensively to assess both the qualitative and quantitative reliability of engineered nuclear power systems employing many subsystems and components. FTA is very useful, but the method is limited by its inability to account for failure mode rate-of-change interdependencies (coupling) of statistically independent failure modes. The state variable approach (using FTA-derived failure modes as states) overcomes these difficulties and is applied to the determination of the lifetime distribution function for a heat pipe-thermoelectric nuclear power subsystem. Analyses are made using both Monte Carlo and deterministic methods and compared with a Markov model of the same subsystem.

  6. The model of local mode analysis for structural acoustics of box structures

    NASA Astrophysics Data System (ADS)

    Ngai, King-Wah

    Structure-borne noise is a new noise pollution problem emerging from railway concrete box structures in Hong Kong. Its low frequency noise with intermittent effect can cause considerable nuisance to neighborhoods. The tonal noise peaks in this low frequency range should be one of the important factors in structure-borne noise analysis. In the acoustic field, the deterministic analysis of all the resonant modes of vibration is generally considered as not practical. Many acoustic experts use the statistical energy analysis as the main tool for the noise investigation whereas the application of the experimental modal analysis in the structural acoustic problem is comparatively rare. In the past, most studies mainly focused on the structure-borne noise measurement and analysis. The detail study of the cause of structure-borne noise is lack, especially for the rectangular concrete box structure. In this dissertation, an experimental and analytical approach is adopted to study a typical concrete box model. This thesis aims at confirming the importance of modal analysis in the structure-borne noise study and then at identifying the local vibration modes along the cross-section of box structure. These local modes are responsible for the structure-borne noise radiation. The findings of this study suggest that the web of viaduct cross-section is not as rigid as assumed in the conventional viaduct design and the web face is likely to be more flexible in the vertical displacement of the concrete viaduct. Two types of local vibration modes along the cross-section are identified: the centre mode and the web mode. At the top panel of the viaduct, the centre mode has movement in the middle but not at the edges. The web mode has movement at the edges with the middle fixed. The combined centre and web mode has been found to be important in the structural acoustics of the concrete box structure. In the actual concrete viaduct, the coincidence frequency is especially low (often around

  7. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.

    PubMed

    Kim, Joong-Kwan; Han, Jae-Hung

    2014-03-01

    This paper investigates the six degrees of freedom (6-DOF) flight dynamics and stability of the hawkmoth Manduca sexta using a multibody dynamics approach that encompasses the effects of the time varying inertia tensor of all the body segments including two wings. The quasi-steady translational and unsteady rotational aerodynamics of the flapping wings are modeled with the blade element theory with aerodynamic coefficients derived from relevant experimental studies. The aerodynamics is given instantaneously at each integration time step without wingbeat-cycle-averaging. With the multibody dynamic model and the aerodynamic model for the hawkmoth, a direct time integration of the fully coupled 6-DOF nonlinear multibody dynamics equations of motion is performed. First, the passive damping magnitude of each single DOF is quantitatively examined with the measure of the time taken to half the initial velocity (thalf). The results show that the sideslip translation is less damped approximately three times than the other two translational DOFs, and the pitch rotation is less damped approximately five times than the other two rotational DOFs; each DOF has the value of (unit in wingbeat strokes): thalf,forward/backward = 7.10, thalf,sideslip = 17.95, thalf,ascending = 7.13, thalf,descending = 5.77, thalf,roll = 0.68, thalf,pitch = 2.39, and thalf,yaw = 0.25. Second, the natural modes of motion, with the hovering flight as a reference equilibrium condition, are examined by analyzing fully coupled 6-DOF dynamic responses induced by multiple sets of force and moment disturbance combinations. The given disturbance combinations are set to excite the dynamic modes identified in relevant eigenmode analysis studies. The 6-DOF dynamic responses obtained from this study are compared with eigenmode analysis results in the relevant studies. The longitudinal modes of motion showed dynamic modal characteristics similar to the eigenmode analysis results from the relevant literature

  8. Extended cabfac and Qmodel computer programs for Q-mode factor analysis of compositional data

    USGS Publications Warehouse

    Klovan, J.E.; Miesch, A.T.

    1976-01-01

    The computer program CABFAC for Q-mode factor analysis of geologic data has been extended for use with data having constant row-sums. Another program, QMODEL, reads an output file from CABFAC and can be used to develop a variety of Q-mode models. The models serve to reproduce estimates of the original data rather than of the data in normalized form. ?? 1976.

  9. Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion

    NASA Astrophysics Data System (ADS)

    Sanmiguel-Rojas, E.; del Pino, C.; Gutiérrez-Montes, C.

    2010-07-01

    We report the results of the global mode analysis to characterize the onset of unsteadiness in a circular pipe flow through an axisymmetric sudden expansion of inlet-to-outlet diameter ratio of d /D=0.5. We find that the axisymmetric state becomes linearly unstable at a significantly higher critical Reynolds number than the one reported in previous experimental works. This unstable global mode corresponds to an oscillatory bifurcation with wavenumber |m|=1 located at the end of the recirculation region.

  10. Stability and failure analysis of steering tie-rod

    NASA Astrophysics Data System (ADS)

    Jiang, GongFeng; Zhang, YiLiang; Xu, XueDong; Ding, DaWei

    2008-11-01

    A new car in operation of only 8,000 km, because of malfunction, resulting in lost control and rammed into the edge of the road, and then the basic vehicle scrapped. According to the investigation of the site, it was found that the tie-rod of the car had been broken. For the subjective analysis of the accident and identifying the true causes of rupture of the tierod, a series of studies, from the angle of theory to experiment on the bended broken tie-rod, were conducted. The mechanical model was established; the stability of the defective tie-rod was simulated based on ANSYS software. Meanwhile, the process of the accident was simulated considering the effect of destabilization of different vehicle speed and direction of the impact. Simultaneously, macro graphic test, chemical composition analysis, microstructure analysis and SEM analysis of the fracture were implemented. The results showed that: 1) the toughness of the tie-rod is at a normal level, but there is some previous flaws. One quarter of the fracture surface has been cracked before the accident. However, there is no relationship between the flaw and this incident. The direct cause is the dynamic instability leading to the large deformation of impact loading. 2) The declining safety factor of the tie-rod greatly due to the previous flaws; the result of numerical simulation shows that previous flaw is the vital factor of structure instability, on the basis of the comparison of critical loads of the accident tie-rod and normal. The critical load can decrease by 51.3% when the initial defect increases 19.54% on the cross-sectional area, which meets the Theory of Koiter.

  11. Dynamic Analysis With Stress Mode Animation by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1997-01-01

    Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis and design of structural components. At the present time only displacement-mode animation is available through the popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting the existing art with stress mode animation. The reformulated method of forces, which in the literature is known as the integrated force method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the primary unknowns of its dynamic analysis. Animation of stresses and displacements, which have been developed successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/ANALYZERS) is provided in the appendix.

  12. Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.

  13. Linear Stability Analysis of an Acoustically Vaporized Droplet

    NASA Astrophysics Data System (ADS)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  14. Dissipative double-well potential: Nonlinear stationary and pulsating modes

    SciTech Connect

    Zezyulin, Dmitry A.; Konotop, Vladimir V.; Alfimov, Georgy L.

    2010-11-15

    The analysis of nonlinear modes in a complex absorbing double-well potential supported by linear gain is presented. Families of the nonlinear modes and their bifurcations are found numerically by means of the properly modified 'shooting' method. Linear stability and dynamics of the modes are studied. It is shown that no stable modes exist in the case of attractive nonlinearity, while stable modes, including nonsymmetric ones, are found when the nonlinearity is repulsive. Varying a control parameter (e.g., the height of barrier between the wells) results in switching from one mode to another. Apart from stationary modes we have found pulsating solutions emergent from unstable modes.

  15. An Analysis of Mode Effects in the 2010 Course Experience Questionnaire

    ERIC Educational Resources Information Center

    Carroll, David

    2011-01-01

    Historically, responses to the Course Experience Questionnaire (CEQ) were required to be collected by self-administered paper or online questionnaire to be eligible for official analysis. CEQ responses collected by telephone were excluded from the final analysis file to minimise the potential for bias due to mode effects: systematic variation in…

  16. Photoelectron spectra of dihalomethyl anions: Testing the limits of normal mode analysis

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2011-05-01

    We report the 364-nm negative ion photoelectron spectra of CHX2- and CDX2-, where X = Cl, Br, and I. The pyramidal dihalomethyl anions undergo a large geometry change upon electron photodetachment to become nearly planar, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce qualitatively the experimental data using physically reasonable parameters. Specifically, the harmonic normal mode analysis using Cartesian displacement coordinates results in much more C-H stretch excitation than is observed, leading to a simulated photoelectron spectrum that is much broader than that which is seen experimentally. A (2 + 1)-dimensional anharmonic coupled-mode analysis much better reproduces the observed vibrational structure. We obtain an estimate of the adiabatic electron affinity of each dihalomethyl radical studied. The electron affinity of CHCl2 and CDCl2 is 1.3(2) eV, of CHBr2 and CDBr2 is 1.9(2) eV, and of CHI2 and CDI2 is 1.9(2) eV. Analysis of the experimental spectra illustrates the limits of the conventional normal mode approach and shows the type of analysis required for substantial geometry changes when multiple modes are active upon photodetachment.

  17. An Analysis Technique/Automated Tool for Comparing and Tracking Analysis Modes of Different Finite Element Models

    NASA Technical Reports Server (NTRS)

    Towner, Robert L.; Band, Jonathan L.

    2012-01-01

    An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.

  18. Frequency analysis and pulsational mode identification of two γ Doradus stars: HD 40745 and HD 189631

    NASA Astrophysics Data System (ADS)

    Maisonneuve, F.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.; Mantegazza, L.; Kilmartin, P. M.; Suárez, J. C.; Rainer, M.; Poretti, E.

    2011-08-01

    Gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. Mode identification will improve the knowledge of these stars considerably and allow an understanding of the issues with current pulsational models. A frequency analysis followed by a mode identification were done based on the high-resolution spectroscopic data of two γ Doradus stars: HD 189631 and HD 40745. Extensive spectroscopic data sets are obtained by three instruments: HARPS, FEROS and HERCULES. We obtained 422 spectra for HD 189631 and 248 spectra for HD 40745. The pulsational frequencies were determined by four methods: analysis of the variation in equivalent width, variation in radial velocity, asymmetry of the line profile and the pixel-by-pixel frequency analysis. The mode identification was done using the recently developed Fourier Parameter Fit method. Without achieving the same degree of confidence for all results, we report the identification of four pulsational modes in HD 189631: (ℓ= 1; m =+1) at f1= 1.67 d-1; (3; -2) at f2= 1.42 d-1; (2; -2) at f3= 0.07 d-1; and (4; +1) at f4= 1.82 d-1; and two modes in HD 40745: (2; -1) at f1= 0.75 d-1 and (3; -3) at f2= 1.09 d-1. This study provides the first pulsational analysis based on spectroscopy of HD 189631 and HD 40745. We discuss the performance of current methods of analysis and outline the difficulties presented by γ Doradus stars. Based on observations made with the 1-m telescope at the Mount John University Observatory (HERCULES), and with ESO telescopes at the La Silla Observatories under the Normal Programme 081.D-0610 (HARPS) and the Large Programmes 178.D-0361 (FEROS) and 182.D-0356 (HARPS). Mode identification results were obtained with the software package FAMIAS developed in the framework of the FP6 European Coordination Action HELAS ().

  19. Design and Analysis of the ITER Vertical Stability Coils

    SciTech Connect

    Peter H. Titus, et. al.

    2012-09-06

    The ITER vertical stability (VS) coils have been developed through the preliminary design phase by Princeton Plasma Physics Laboratory (PPPL). Final design, prototyping and construction will be carried out by the Chinese Participant Team contributing lab, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The VS coils are a part of the in-vessel coil systems which include edge localized mode (ELM) coils as well as the VS coils. An overview of the ELM coils is provided in another paper at this conference. 15 The VS design employs four turns of stainless steel jacketed mineral insulated copper (SSMIC) conductors The mineral insulation is Magnesium Oxide (MgO). Joule and nuclear heat is removed by water flowing at 3 m/s through the hollow copper conductor. A key element in the design is that slightly elevated temperatures in the conductor and its support spine during operation impose compressive stresses that mitigate fatigue damage. Away from joints, and break-outs, conductor thermal stresses are low because of the axisymmetry of the winding (there are no corner bends as in the ELM coils).The 120 degree segment joint, and break-out or terminal regions are designed with similar but imperfect constraint compared with the ring coil portion of the VS. The support for the break-out region is made from a high strength copper alloy, CuCrZr. This is needed to conduct nuclear heat to the actively cooled conductor and to the vessel wall. The support "spine" for the ring coil portion of the VS is 316 stainless steel, held to the vessel with preloaded 718 bolts. Lorentz loads resulting from normal operating loads, disruption loads and loads from disruption currents in the support spine shared with vessel, are applied to the VS coil. The transmission of the Lorentz and thermal expansion loads from the "spine" to the vessel rails is via friction augmented with a restraining "lip" to ensure the coil frictional slip is minimal and acceptable. Stresses in the coil

  20. Microturbulent Drift Mode Stability before Internal Transport Barrier Formation in the Alcator C-Mod Radio Frequency Heated H-mode

    SciTech Connect

    M.H. Redi; W. Dorland; C.L. Fiore; P.T. Bonoli; M.J. Greenwald; J.E. Rice; J.A. Baumgaertel; T.S. Hahm; G.W. Hammett; K. Hill; D.C. McCune; D.R. Mikkelsen; G. Rewoldt

    2004-09-01

    H-mode experiments on Alcator C-Mod [I.H. Hutchinson, et al., Phys. Plasma 1 (1994) 1511] which exhibit an internal transport barrier (ITB), have been examined with gyrokinetic simulations, near the ITB onset time. Linear simulations support the picture of ion and electron temperature gradient (ITG, ETG) microturbulence driving high {chi}{sub i} and {chi}{sub e}, respectively, and that stable ITG correlates with reduced particle transport and improved ion thermal confinement on C-Mod. In the barrier region ITG is weakly unstable, with a critical temperature gradient higher than expected from standard models. Nonlinear calculations and the role of E x B shear suppression of turbulence outside the plasma core are discussed in light of recent profile measurements for the toroidal velocity. The gyrokinetic model benchmarks successfully against experiment in the plasma core.