Gerothanassis, I. P.; Momenteau, M.; Barrie, P. J.; Kalodimos, C. G.; Hawkes, G. E.
1996-04-24
13C cross-polarization magic-angle-spinning (CP/MAS) NMR spectra of several carbonmonoxide (93-99% (13)C enriched) hemoprotein models with 1,2-dimethylimidazole (1,2-diMeIm) and 1-methylimidazole (1-MeIm) as axial ligands are reported. This enables the (13)CO spinning sideband manifold to be measured and hence the principal components of the (13)CO chemical shift tensor to be obtained. Negative polar interactions in the binding pocket of the cap porphyrin model and inhibition of Fe-->CO back-donation result in a reduction in shielding anisotropy; on the contrary, positive distal polar interactions result in an increase in the shielding anisotropy and asymmetry parameter in some models. It appears that the axial hindered base 1,2-dimethylimidazole has little direct effect on the local geometry at the CO site, despite higher rates of CO desorption being observed for such complexes. This suggests that the mechanism by which steric interactions are released for the 1,2-diMeIm complexes compared to 1-MeIm complexes does not involve a significant increase in bending of the Fe-C-O unit. The asymmetry of the shielding tensor of all the heme model compounds studied is smaller than that found for horse myoglobin and rabbit hemoglobin.
EXPERIMENTAL EVALUATION OF THE THERMAL PERFORMANCE OF A WATER SHIELD FOR A SURFACE POWER REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
REID, ROBERT S.; PEARSON, J. BOSIE; STEWART, ERIC T.
2007-01-16
Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WSTmore » is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 C. The CFD model with 1/6-g predicts a maximum water temperature of 88 C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.« less
Second-Nearest-Neighbor Effects upon N NMR Shieldings in Models for Solid Si 3N 4and C 3N 4
NASA Astrophysics Data System (ADS)
Tossell, J. A.
1997-07-01
NMR shifts are generally determined mainly by the nearest-neighbor environment of an atom, with fairly small changes in the shift arising from differences in the second-nearest-neighbor environment. Previous calculations on the (SiH3)3N molecule used as a model for the local environment of N in crystalline α- and β-Si3N4gave N NMR shieldings much larger than those measured in the solids and gave the wrong order for the shifts of the inequivalent N sites (e.g., N1 and N2 in β-Si3N4). We have now calculated the N NMR shieldings in larger molecular models for the N2 site of β-Si3N4and have found that the N2 shielding is greatly reduced when additional N1 atoms (second-nearest-neighbors to the central N2) are included. The calculated N2 shieldings (using the GIAO method with the 6-31G* basis set and 6-31G* SCF optimized geometries) are 288.1, 244.7, and 206.0 ppm for the molecules (SiH3)3N, Si6N5H15, and Si9N9H21(central N2), respectively, while the experimental shielding of N2 in β-Si3N4is about 155 ppm. Second-nearest-neighbor effects of only slightly smaller magnitude are calculated for the analog C molecules. At the same time, the effects of molecule size upon Si NMR shieldings and N electric field gradients are small. The local geometries at the N2-like Ns in C6N5H15and C9N9H21are calculated to be planar, consistent with the planar local geometry recently calculated for N in crystalline C3N4using density functional theory.
NASA Astrophysics Data System (ADS)
Çeçen, Yiğit; Yazgan, Çağrı
2017-09-01
Purpose. Nearly all Cobalt-60 teletherapy machines were removed around the world during the last two decades. The remaining ones are being used for experimental purposes. However, the rooms of these teletherapy machines are valuable because of lack of space in radiotherapy clinics. In order to place a new technology treatment machine in one of these rooms, one should re-shield the room since it was designed only for 1.25 MeV gamma beams on average. Mostly, the vendor of the new machine constructs the new shielding of the room using their experience. However, every radiotherapy room has different surrounding work areas and it would be wise to shield the room considering these special conditions. Also, the shield design goal of the clinic may be much lower than the International Atomic Energy Agency (IAEA) or the local association accepts. The study shows re-shielding of a Cobalt-60 room, specific to the clinic, using Monte Carlo simulations. Materials & Methods: First, a 6 MV Tomotherapy machine, then a 10 MV conventional linear accelerator (LINAC) was placed inside the Cobalt-60 teletherapy room. The photon flux outside the room was simulated using Monte Carlo N-Particle (MCNP6.1) code before and after re-shielding. For the Tomotherapy simulation, flux distributions around the machine were obtained from the vendor and implemented as the source of the model. The LINAC model was more generic with the 10 MeV electron source, the tungsten target, first and secondary collimators. The aim of the model was to obtain the maximum (40x40 cm2) open field at the isocenter. Two different simulations were carried out for gantry angles 90o and 270o. The LINAC was placed in the room such that the primary walls were A' (Gantry 270o) and C' (Gantry 90o) (figure 1). The second part of the study was to model the re-shielding of the room for Tomotherapy and for the conventional LINAC, separately. The aim was to investigate the recommended shielding by the vendors. Left side of the room was adjacent to a LINAC room with 2 meters thick concrete wall (figure 1). No shielding was necessary for that wall. Behind wall A-A' there was an outdoors forbidden area; behind wall B-B' was the contouring room for the doctors; and the control room was behind wall C-C' (figure 1). After some modifications, the final shielding was designed. Results: The photon flux distributions outside the room before and after the re-shielding were compared. The re-shielding of Tomotherapy reduced the flux down to 1.89 % on average with respect to pre-shielding (table 1). For the conventional LINAC case; after re-shielding, the photon flux in the control room -which corresponds to gantry 90°- decreased down to 0.57% with respect to pre-shielding (table 2). The photon flux behind wall A' -which corresponds to gantry 270°- decreased down to 2.46%. Everybody was all safe behind wall B' even before re-shielding.
Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates
NASA Astrophysics Data System (ADS)
Tossell, J. A.
1995-04-01
13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2 complexation are much smaller. Complexation with CO 2 greatly increases the electric field gradient at the bridging oxygen of H 3AlOAlH 3-2, raising it to a value similar to that found for SiOSi linkages. Comparison of these results with the experimental 13C NMR spectra support the formation of CO 2-like complexes at SiOSi bridges in albite glasses and CO 3-like complexes at SiOAl and AlOAl bridges in albite and nepheline glasses. Changes in the calculated shieldings as Na + ions are added to the complexes suggest that some of the observed complexes may be similar in their CO 2-aluminosilicate interactions, but different with respect to the positions of the charge-compensating Na + ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, G. L.; Olsher, R. H.; Seagraves, D. T.
2002-01-01
MCNP-4C1 was used to perform the shielding design for the new Central Health Physics Calibration Facility (CHPCF) at Los Alamos National Laboratory (LANL). The problem of shielding the facility was subdivided into three separate components: (1) Transmission; (2) Skyshine; and (3) Maze Streaming/ Transmission. When possible, actual measurements were taken to verify calculation results. The comparison of calculation versus measurement results shows excellent agreement for neutron calculations. For photon comparisons, calculations resulted in conservative estimates of the Effective Dose Equivalent (EDE) compared to measured results. This disagreement in the photon measurements versus calculations is most likely due to several conservativemore » assumptions regarding shield density and composition. For example, reinforcing steel bars (Rebar) in the concrete shield walls were not included in the shield model.« less
Multiplate Radiation Shields: Investigating Radiational Heating Errors
NASA Astrophysics Data System (ADS)
Richardson, Scott James
1995-01-01
Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy. In addition, it is possible to modify existing passive shields to incorporate part-time aspiration, thus making them even more cost-effective. Finally, a new shield is described that incorporates a large diameter top plate that is designed to shade the lower portion of the shield. This shield increases flow through it by 60%, compared to the Gill design and it is likely to reduce radiational heating errors, although it has not been tested.
Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics
NASA Astrophysics Data System (ADS)
Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin
2018-02-01
In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.
Experimental Testing of Corpuscular Radiation Detectors. Volume 1. Revision 1
1989-09-07
several layers of Sflexible Permag metglass); (c) 1/4" lead shield, against X-rays; (d) Cadmium/boron/lead shield against 14 MeV neutrons. I * I In...balance. Tn Figure 2.3 (d) the shielding of the torsion balance has been complemented with a PERMAG metglass magnetic shield. This is how the sensor looks...dB. The torsion balance was shielded by several layers of PERMAG U high-mu flexible Metglass material. in these two integrations, no lead shield was
The active muon shield in the SHiP experiment
NASA Astrophysics Data System (ADS)
Akmete, A.; Alexandrov, A.; Anokhina, A.; Aoki, S.; Atkin, E.; Azorskiy, N.; Back, J. J.; Bagulya, A.; Baranov, A.; Barker, G. J.; Bay, A.; Bayliss, V.; Bencivenni, G.; Berdnikov, A. Y.; Berdnikov, Y. A.; Bertani, M.; Betancourt, C.; Bezshyiko, I.; Bezshyyko, O.; Bick, D.; Bieschke, S.; Blanco, A.; Boehm, J.; Bogomilov, M.; Bondarenko, K.; Bonivento, W. M.; Boyarsky, A.; Brenner, R.; Breton, D.; Brundler, R.; Bruschi, M.; Büscher, V.; Buonaura, A.; Buontempo, S.; Cadeddu, S.; Calcaterra, A.; Campanelli, M.; Chauveau, J.; Chepurnov, A.; Chernyavsky, M.; Choi, K.-Y.; Chumakov, A.; Ciambrone, P.; Dallavalle, G. M.; D'Ambrosio, N.; D'Appollonio, G.; De Lellis, G.; De Roeck, A.; De Serio, M.; Dedenko, L.; Di Crescenzo, A.; Di Marco, N.; Dib, C.; Dijkstra, H.; Dmitrenko, V.; Domenici, D.; Donskov, S.; Dubreuil, A.; Ebert, J.; Enik, T.; Etenko, A.; Fabbri, F.; Fabbri, L.; Fedin, O.; Fedorova, G.; Felici, G.; Ferro-Luzzi, M.; Fini, R. A.; Fonte, P.; Franco, C.; Fukuda, T.; Galati, G.; Gavrilov, G.; Gerlach, S.; Golinka-Bezshyyko, L.; Golubkov, D.; Golutvin, A.; Gorbunov, D.; Gorbunov, S.; Gorkavenko, V.; Gornushkin, Y.; Gorshenkov, M.; Grachev, V.; Graverini, E.; Grichine, V.; Guler, A. M.; Guz, Yu.; Hagner, C.; Hakobyan, H.; van Herwijnen, E.; Hollnagel, A.; Hosseini, B.; Hushchyn, M.; Iaselli, G.; Iuliano, A.; Jacobsson, R.; Jonker, M.; Kadenko, I.; Kamiscioglu, C.; Kamiscioglu, M.; Khabibullin, M.; Khaustov, G.; Khotyantsev, A.; Kim, S. H.; Kim, V.; Kim, Y. G.; Kitagawa, N.; Ko, J.-W.; Kodama, K.; Kolesnikov, A.; Kolev, D. I.; Kolosov, V.; Komatsu, M.; Konovalova, N.; Korkmaz, M. A.; Korol, I.; Korol'ko, I.; Korzenev, A.; Kovalenko, S.; Krasilnikova, I.; Krivova, K.; Kudenko, Y.; Kurochka, V.; Kuznetsova, E.; Lacker, H. M.; Lai, A.; Lanfranchi, G.; Lantwin, O.; Lauria, A.; Lebbolo, H.; Lee, K. Y.; Lévy, J.-M.; Lopes, L.; Lyubovitskij, V.; Maalmi, J.; Magnan, A.; Maleev, V.; Malinin, A.; Mefodev, A.; Mermod, P.; Mikado, S.; Mikhaylov, Yu.; Milstead, D. A.; Mineev, O.; Montanari, A.; Montesi, M. C.; Morishima, K.; Movchan, S.; Naganawa, N.; Nakamura, M.; Nakano, T.; Novikov, A.; Obinyakov, B.; Ogawa, S.; Okateva, N.; Owen, P. H.; Paoloni, A.; Park, B. D.; Paparella, L.; Pastore, A.; Patel, M.; Pereyma, D.; Petrenko, D.; Petridis, K.; Podgrudkov, D.; Poliakov, V.; Polukhina, N.; Prokudin, M.; Prota, A.; Rademakers, A.; Ratnikov, F.; Rawlings, T.; Razeti, M.; Redi, F.; Ricciardi, S.; Roganova, T.; Rogozhnikov, A.; Rokujo, H.; Rosa, G.; Rovelli, T.; Ruchayskiy, O.; Ruf, T.; Samoylenko, V.; Saputi, A.; Sato, O.; Savchenko, E. S.; Schmidt-Parzefall, W.; Serra, N.; Shakin, A.; Shaposhnikov, M.; Shatalov, P.; Shchedrina, T.; Shchutska, L.; Shevchenko, V.; Shibuya, H.; Shustov, A.; Silverstein, S. B.; Simone, S.; Skorokhvatov, M.; Smirnov, S.; Sohn, J. Y.; Sokolenko, A.; Starkov, N.; Storaci, B.; Strolin, P.; Takahashi, S.; Timiryasov, I.; Tioukov, V.; Tosi, N.; Treille, D.; Tsenov, R.; Ulin, S.; Ustyuzhanin, A.; Uteshev, Z.; Vankova-Kirilova, G.; Vannucci, F.; Venkova, P.; Vilchinski, S.; Villa, M.; Vlasik, K.; Volkov, A.; Voronkov, R.; Wanke, R.; Woo, J.-K.; Wurm, M.; Xella, S.; Yilmaz, D.; Yilmazer, A. U.; Yoon, C. S.; Zaytsev, Yu.
2017-05-01
The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after 2× 1020 protons on target. In the beam dump, around 1011 muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.
Modeling and characterization of shielded low loss CPWs on 65 nm node silicon
NASA Astrophysics Data System (ADS)
Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu
2011-06-01
Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.
Cost Assessment for Shielding of C3 Type. Facilities
1980-03-01
imperfections and on penetrations . Long-conductor penetrants are assumed to enter the building through a one-quarter-inch thick entry plate and a shielded...Effects 21 3.2.3 Currents from Penetrants 21 3.2.4 Numerical Examples 23 3.3 Design Approach 23 3.3.1 Design Assuming Linear Behavior of Shield 23...General 36 4.1.1 Envelope Shield 36 4.1.2 Penetrations 41 4.2 Condition I, New Construction, External Shield 46 4.3 Condition II, New
Optimized shielding for space radiation protection
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.
2001-01-01
Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.
Optimized Shielding for Space Radiation Protection
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.
2000-01-01
Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.
13C CPMAS NMR studies and DFT calculations of triterpene xylosides isolated from Actaea racemosa
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Paradowska, Katarzyna; Gliński, Jan A.; Wawer, Iwona
2011-05-01
13C CPMAS NMR spectra of four triterpene glycosides: cimigenol xyloside ( 1), 26-deoxyactein ( 2), cimicifugoside H-1 ( 3) and 24-acethylhydroshengmanol xyloside ( 4) were recorded and analyzed to characterize their solid-state structure. Experimental data were supported by theoretical calculations of NMR shielding constants with the GIAO/6-31G**-su1 approach. A number of methods for the conformational search and a number of functionals for the DFT calculations were applied to ( 1). The best method was proven to be MMFF or MMFFAQ for the conformational search and the PBE1PBE functional for the DFT calculations. Extra calculations simulating C16 dbnd O⋯HOH hydrogen bond yield the isotropic shielding closer to the experimental solid-state value. For all the compounds CP kinetics parameters were calculated using either the I-S or the I-I*-S model. The analysis of CP kinetics data for methyl groups revealed differences in the T2 time constant for two methyl groups (C29 and C30) linked at C4.
NMR crystallography of α-poly(L-lactide).
Pawlak, Tomasz; Jaworska, Magdalena; Potrzebowski, Marek J
2013-03-07
A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.
Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Stewart, Eric T.; Reid, Robert S.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a representative lunar surface reactor shield design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to anchor a CFD model. Performance of a water shield on the lunar surface is then predicted by CFD models anchored to test data. The accompanying viewgraph presentation includes the following topics: 1) Testbed Configuration; 2) Core Heater Placement and Instrumentation; 3) Thermocouple Placement; 4) Core Thermocouple Placement; 5) Outer Tank Thermocouple Placement; 6) Integrated Testbed; 7) Methodology; 8) Experimental Results: Core Temperatures; 9) Experimental Results; Outer Tank Temperatures; 10) CFD Modeling; 11) CFD Model: Anchored to Experimental Results (1-g); 12) CFD MOdel: Prediction for 1/6-g; and 13) CFD Model: Comparison of 1-g to 1/6-g.
Parasitic heat loss reduction in AMTEC cells by heat shield optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.
1997-12-31
Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less
Air temperature recordings in infant incubators.
Aynsley-Green, A; Roberton, N R; Rolfe, P
1975-01-01
Air temperatures were continuously recorded inside four incubators with proportional heating control and six incubators with on/off heating cycles, during routine use. The air temperatures in the former were constant throughout, with a gradient between the roof and above-mattress air temperature not exceeding 1 degree C. In contrast, the recordings from the latter models showed a regular cyclical oscillation, the duration of the cycle varying from 14 to 44 minutes. Each incubator had a characteristic profile. The roof air temperature could vary by as much as 7-1 degrees C and the above-mattress air temperature by as much as 2-6 degrees C during the cycle. The oscillation persisted in the air temperatures recorded inside an open-ended hemicylindrical heat shield when used inside these incubators, but was markedly reduced inside a closed-ended heat shield, Carbon dioxide concentration did not increase significantly inside the latter. Images FIG. 1 FIG. 2 PMID:1147654
49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.
Code of Federal Regulations, 2012 CFR
2012-10-01
... shield as prescribed in § 179.16(c)(1). (d) Alternative tank car tanks for materials poisonous by... the alternative tank car jacket and head shield. When the jacket and head shield are made from any...., the thickness to be added to the jacket and head shield must be increased by a factor of 1.157...
NASA Technical Reports Server (NTRS)
Koontz, Steven
2012-01-01
Outline of presentation: (1) Radiation Shielding Concepts and Performance - Galactic Cosmic Rays (GCRs) (1a) Some general considerations (1b) Galactic Cosmic Rays (2)GCR Shielding I: What material should I use and how much do I need? (2a) GCR shielding materials design and verification (2b) Spacecraft materials point dose cosmic ray shielding performance - hydrogen content and atomic number (2c) Accelerator point dose materials testing (2d) Material ranking and selection guidelines (2e) Development directions and return on investment (point dose metric) (2f) Secondary particle showers in the human body (2f-1) limited return of investment for low-Z, high-hydrogen content materials (3) GCR shielding II: How much will it cost? (3a) Spacecraft design and verification for mission radiation dose to the crew (3b) Habitat volume, shielding areal density, total weight, and launch cost for two habitat volumes (3c) It's All about the Money - Historical NASA budgets and budget limits (4) So, what can I do about all this? (4a) Program Design Architecture Trade Space (4b) The Vehicle Design Trade Space (4c) Some Near Term Recommendations
NASA Astrophysics Data System (ADS)
Claycomb, James Ronald
1998-10-01
Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.
A space radiation shielding model of the Martian radiation environment experiment (MARIE)
NASA Technical Reports Server (NTRS)
Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.
2004-01-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Timescales for the evolution of oxygen isotope compositions in the solar nebula
NASA Astrophysics Data System (ADS)
Lyons, J. R.; Bergin, E. A.; Ciesla, F. J.; Davis, A. M.; Desch, S. J.; Hashizume, K.; Lee, J.-E.
2009-09-01
We review two models for the origin of the calcium-, aluminum-rich inclusion (CAI) oxygen isotope mixing line in the solar nebula: (1) CO self-shielding, and (2) chemical mass-independent fractionation (MIF). We consider the timescales associated with formation of an isotopically anomalous water reservoir derived from CO self-shielding, and also the vertical and radial transport timescales of gas and solids in the nebula. The timescales for chemical MIF are very rapid. CO self-shielding models predict that the Sun has Δ 17O SMOW ˜ -20‰ (Clayton, 2002), and chemical mass-independent fractionation models predict Δ 17O SMOW ˜0‰. Preliminary Genesis results have been reported by McKeegan et al. (McKeegan K. D., Coath C. D., Heber, V., Jarzebinski G., Kallio A. P., Kunihiro T., Mao P. H. and Burnett D. S. (2008b) The oxygen isotopic composition of captured solar wind: first results from the Genesis. EOS Trans. AGU 89(53), Fall Meet. Suppl., P42A-07 (abstr)) and yield a Δ 17O SMOW of ˜ -25‰, consistent with a CO self-shielding scenario. Assuming that subsequent Genesis analyses support the preliminary results, it then remains to determine the relative contributions of CO self-shielding from the X-point, the surface of the solar nebula and the parent molecular cloud. The relative formation ages of chondritic components can be related to several timescales in the self-shielding theories. Most importantly the age difference of ˜1-3 My between CAIs and chondrules is consistent with radial transport from the outer solar nebula (>10 AU) to the meteorite-forming region, which supports both the nebular surface and parent cloud self-shielding scenarios. An elevated radiation field intensity is predicted by the surface shielding model, and yields substantial CO photolysis (˜50%) on timescales of 0.1-1 My. An elevated radiation field is also consistent with the parent cloud model. The elevated radiation intensities may indicate solar nebula birth in a medium to large cluster, and may be consistent with the injection of 60Fe from a nearby supernova and with the photoevaporative truncation of the solar nebula at KBO orbital distances (˜47 AU). CO self-shielding is operative at the X-point even when H 2 absorption is included, but it is not yet clear whether the self-shielding signature can be imparted to silicates. A simple analysis of diffusion times shows that oxygen isotope exchange between 16O-depleted nebular H 2O and chondrules during chondrule formation events is rapid (˜minutes), but is also expected to be rapid for most components of CAIs, with the exception of spinel. This is consistent with the observation that spinel grains are often the most 16O-rich component of CAIs, but is only broadly consistent with the greater degree of exchange in other CAI components. Preliminary disk model calculations of self-shielding by N 2 demonstrate that large δ 15N enrichments (˜ +800‰) are possible in HCN formed by reaction of N atoms with organic radicals (e.g., CH 2), which may account for 15N-rich hotspots observed in lithic clasts in some carbonaceous chondrites and which lends support to the CO self-shielding model for oxygen isotopes.
Spectroscopic properties of vitamin E models in solution
NASA Astrophysics Data System (ADS)
Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.
2015-05-01
We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.
On Local Ionization Equilibrium and Disk Winds in QSOs
NASA Astrophysics Data System (ADS)
Pereyra, Nicolas A.
2014-11-01
We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C
Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su
2015-01-01
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically. PMID:26658739
Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.
Seo, Jong Bae; Jung, Seung-Ryoung; Huang, Weigang; Zhang, Qisheng; Koh, Duk-Su
2015-01-01
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.
Benchmark fragment-based 1H, 13C, 15N and 17O chemical shift predictions in molecular crystals†
Hartman, Joshua D.; Kudla, Ryan A.; Day, Graeme M.; Mueller, Leonard J.; Beran, Gregory J. O.
2016-01-01
The performance of fragment-based ab initio 1H, 13C, 15N and 17O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. 1H, 13C, 15N, and 17O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same 1H, 13C, 15N, and 17O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tertbutyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2. PMID:27431490
Hartman, Joshua D; Kudla, Ryan A; Day, Graeme M; Mueller, Leonard J; Beran, Gregory J O
2016-08-21
The performance of fragment-based ab initio(1)H, (13)C, (15)N and (17)O chemical shift predictions is assessed against experimental NMR chemical shift data in four benchmark sets of molecular crystals. Employing a variety of commonly used density functionals (PBE0, B3LYP, TPSSh, OPBE, PBE, TPSS), we explore the relative performance of cluster, two-body fragment, and combined cluster/fragment models. The hybrid density functionals (PBE0, B3LYP and TPSSh) generally out-perform their generalized gradient approximation (GGA)-based counterparts. (1)H, (13)C, (15)N, and (17)O isotropic chemical shifts can be predicted with root-mean-square errors of 0.3, 1.5, 4.2, and 9.8 ppm, respectively, using a computationally inexpensive electrostatically embedded two-body PBE0 fragment model. Oxygen chemical shieldings prove particularly sensitive to local many-body effects, and using a combined cluster/fragment model instead of the simple two-body fragment model decreases the root-mean-square errors to 7.6 ppm. These fragment-based model errors compare favorably with GIPAW PBE ones of 0.4, 2.2, 5.4, and 7.2 ppm for the same (1)H, (13)C, (15)N, and (17)O test sets. Using these benchmark calculations, a set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided and their robustness assessed using statistical cross-validation. We demonstrate the utility of these approaches and the reported scaling parameters on applications to 9-tert-butyl anthracene, several histidine co-crystals, benzoic acid and the C-nitrosoarene SnCl2(CH3)2(NODMA)2.
Design of cemented tungsten carbide and boride-containing shields for a fusion power plant
NASA Astrophysics Data System (ADS)
Windsor, C. G.; Marshall, J. M.; Morgan, J. G.; Fair, J.; Smith, G. D. W.; Rajczyk-Wryk, A.; Tarragó, J. M.
2018-07-01
Results are reported on cemented tungsten carbide (cWC) and boride-containing composite materials for the task of shielding the centre column of a superconducting tokamak power plant. The shield is based on five concentric annular shells consisting of cWC and water layers of which the innermost cWC shield can be replaced with boride composites. Sample materials have been fabricated changing the parameters of porosity P, binder alloy fraction f binder and boron weight fraction f boron. For the fabricated materials, and other hypothetical samples with chosen parameters, Monte Carlo studies are made of: (i) the power deposition into the superconducting core, (ii) the fast neutron and gamma fluxes and (iii) the attenuation coefficients through the shield for the deposited power and neutron and gamma fluxes. It is shown that conventional Co-based cWC binder alloy can be replaced with a Fe–Cr alloy (92 wt.% Fe, 8 wt.% Cr), which has lower activation than cobalt with minor changes in shield performance. Boride-based composite materials have been prepared and shown to give a significant reduction in power deposition and flux, when placed close to the superconducting core. A typical shield of cemented tungsten carbide with 10 wt.% of Fe–8Cr binder and 0.1% porosity has a power reduction half-length of 0.06 m. It is shown that the power deposition increases by 4.3% for every 1% additional porosity, and 1.7% for every 1 wt.% additional binder. Power deposition decreased by 26% for an initial 1 wt.% boron addition, but further increases in f boron showed only a marginal decrease. The dependences of power deposited in the core, the maximum neutron and gamma fluxes on the core surface, and the half attenuation distances through the shield have been fitted to within a fractional percentage error by analytic functions of the porosity, metallic binder alloy and boron weight fractions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Fedotov, A.; Gassner, D.
The goal of this note is to set basic parameters for the magnetic shielding of LEReC CS with required design attenuation. We considered physical design of magnetic shielding of LEReC cooling section. The schematic of this design along with the list of its basic parameters is shown. We are planning to use 2 layers of 1 mm thick cylindrical mu-metal shields with μ=11000. The radius of the first layer sitting on top of vacuum chamber is 63.5 mm. The second layer radius is 150 mm. Such shielding guarantees adequate transverse angles of electron beam trajectory in the CS.
Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A
2011-07-28
We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. © 2011 American Institute of Physics
Electromagnetic shielding effectiveness of 3D printed polymer composites
NASA Astrophysics Data System (ADS)
Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.
2017-12-01
We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.
13C chemical-shift anisotropy of alkyl-substituted aromatic carbon in anthracene derivatives.
Hoop, Cody L; Iuliucci, Robbie J
2013-06-01
The (13)C chemical-shift anisotropy in anthracene derivatives (9,10-dimethylanthracene, 9,10-dihydroanthracene, dianthracene, and triptycene) has been measured by the 2D FIREMAT timed pulse sequence and the corresponding set of principal values has been determined by the TIGER processing method. These molecules expand the data base of (13)C CSA measurements of fused aromatic rings some bridged by sp(3) carbon resulting in an unusual bonding configuration, which leads to distinctive aromatic (13)C CSA values. Crystal lattice distortions to the CSA were observed to change the isotropic shift by 2.5 to 3.3 ppm and changes as large as 8.3 ppm in principal components. Modeling of the CSA data by GIPAW DFT (GGA-PBE/ultrafine) shielding calculations resulted in an rms chemical-shift distance of 2.8 ppm after lattice including geometry optimization of the diffraction structures by the GIPAW method at GGA-PBE/ultrafine level. Attention is given to the substituted aromatic carbon in the phenyl groups (here forth referred to as the α-carbon) with respect to CSA modeling with electronic methods. The (13)C CSA of this position is accurately determined due to its spectral isolation of the isotropic shift that limits overlap in the FIREMAT spectrum. In cases where the bridging ring is sp(3) carbon, the current density is reduced from extending beyond the peripheral phenyl groups; this plays a significant role in the magnetic shielding of the α-position. Nuclear independent chemical-shift calculations based on GIAO DFT (B3LYP/6-31G(d)) shielding calculations were used to model the intramolecular π-interactions in dianthracene and triptycene. These NICS results estimate the isotropic shift of the α-position in dianthracene to be insignificantly affected by the presence of the neighboring aromatic rings. However, a notable change in isotropic shielding, Δσ(iso)=-2.1 ppm, is predicted for the α- position of triptycene. Experimentally, the δ22 principal component at the α-position for both dianthracene and triptycene increases by at least 12 ppm compared to 9,10-dihydroanthracene. To rationalize this change, shielding calculations in idealized structures are explored. The spatial position of the bicyclic scaffolding of the bridging ring plays a key role in the large increase in δ22 for the α-carbon. Copyright © 2013 Elsevier Inc. All rights reserved.
Breitbeil, Fred; Kaur, Navneet; Delcros, Jean-Guy; Martin, Bénédicte; Abboud, Khalil A; Phanstiel, Otto
2006-04-20
Preferred conformers generated from motuporamine and anthracene-polyamine derivatives provided insight into the shapes associated with polyamine transporter (PAT) recognition and potentially dihydromotuporamine C (4a) bioactivity. Molecular modeling revealed that N(1)-(anthracen-9-ylmethyl)-3,3-triamine (6a), N(1)-(anthracen-9-ylmethyl)-4,4-triamine (6b), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-3,3-triamine (7a), N(1)-(anthracen-9-ylmethyl)-N(1)-ethyl-4,4-triamine (7b), and 4a all preferred a hoe motif. This hoe shape was defined by the all-anti polyamine shaft extending above the relatively flat, appended ring system. The hoe geometry was also inferred by the (1)H NMR spectrum of the free amine of 7a (CDCl(3)), which showed a strong shielding effect of the anthracene ring on the chemical shifts associated with the appended polyamine chain. This shielding effect was found to be independent over a broad concentration range of 7a, which also supported an intramolecular phenomenon. The degree of substitution at the N(1)-position seems to be an important determinant of both the molecular shape preferences and biological activity of anthracenylmethyl-polyamine conjugates.
Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.
2009-01-01
In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448
NASA Technical Reports Server (NTRS)
Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.;
1998-01-01
This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.
Pothupitiya Gamage, Sudesh Jayashantha; Yang, Kihun; Braveenth, Ramanaskanda; Raagulan, Kanthasamy; Kim, Hyun Suk; Lee, Yun Seon; Yang, Cheol-Min; Moon, Jai Jung; Chai, Kyu Yun
2017-01-01
A series of multi-walled carbon nanotube (MWCNT) coated carbon fabrics was fabricated using a facile dip coating process, and their performance in electrical conductivity, thermal stability, tensile strength, electromagnetic interference (EMI) and shielding effectiveness (SE) was investigated. A solution of MWCNT oxide and sodium dodecyl sulfate (SDS) in water was used in the coating process. MWCNTs were observed to coat the surfaces of carbon fibers and to fill the pores in the carbon fabric. Electrical conductivity of the composites was 16.42 S cm−1. An EMI shielding effectiveness of 37 dB at 2 GHz was achieved with a single layer of C/C composites, whereas the double layers resulted in 68 dB EMI SE at 2.7 GHz. Fabricated composites had a specific SE of 486.54 dB cm3 g−1 and an absolute SE of approximately 35,000 dB cm2 g−1. According to the above results, MWCNT coated C/C composites have the potential to be used in advanced shielding applications such as aerospace and auto mobile electronic devices.
Thyroid Dose During Neurointerventional Procedures: Does Lead Shielding Reduce the Dose?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shortt, C. P.; Fanning, N. F.; Malone, L.
2007-09-15
Purpose. To assess radiation dose to the thyroid in patients undergoing neurointerventional procedures and to evaluate dose reduction to the thyroid by lead shielding. Methods and Materials. A randomized patient study was undertaken to evaluate the dose reduction by thyroid lead shields and assess their practicality in a clinical setting. Sixty-five patients attending for endovascular treatment of arteriovenous malformations (AVMs) and aneurysms were randomized into one of 2 groups a) No Thyroid Shield and b) Thyroid Lead Shield. Two thermoluminescent dosimeters (TLDs) were placed over the thyroid gland (1 on each side) at constant positions on each patient in bothmore » groups. A thyroid lead shield (Pb eq. 0.5 mm) was placed around the neck of patients in the thyroid lead shield group after the neurointerventional radiologist had obtained satisfactory working access above the neck. The total dose-area-product (DAP) value, number and type of digital subtraction angiography (DSA) runs and fluoroscopy time were recorded for all patients. Results. Of the 72 patients who initially attended for neurointerventional procedures, 7 were excluded due to failure to consent or because of procedures involving access to the external carotid circulation. Of the remaining 65 who were randomized, a further 9 were excluded due to; procedureabandonment, unfeasible shield placement or shield interference with the procedure. Patient demographics included mean age of 47.9 yrs (15-74), F:M=1.4:1. Mean fluoroscopy time was 25.9 min. Mean DAP value was 13,134.8 cGy.cm{sup 2} and mean number of DSA runs was 13.4. The mean relative thyroid doses were significantly different (p< 0.001) between the unshielded (7.23 mSv/cGy2 x 105) and shielded groups (3.77 mSv/cGy2 x 105). A mean thyroid dose reduction of 48% was seen in the shielded group versus the unshielded group. Conclusion. Considerable doses to the thyroid are incurred during neurointerventional procedures, highlighting the need for increased awareness of patient radiation protection. Thyroid lead shielding yields significant radiation protection, is inexpensive and when not obscuring the field of view, should be used routinely.« less
Trace element abundances of high-MgO glasses from Kilauea, Mauna Loa and Haleakala volcanoes, Hawaii
Wagner, T.P.; Clague, D.A.; Hauri, E.H.; Grove, T.L.
1998-01-01
We performed an ion-microprobe study of eleven high-MgO (6.7-14.8 wt%) tholeiite glasses from the Hawaiian volcanoes Kilauea, Mauna Loa and Haleakala. We determined the rare earth (RE), high field strength, and other selected trace element abundances of these glasses, and used the data to establish their relationship to typical Hawaiian shield tholeiite and to infer characteristics of their source. The glasses have trace element abundance characteristics generally similar to those of typical shield tholeiites, e.g. L(light)REE/H(heavy)REE(C1) > 1. The Kilauea and Mauna Loa glasses, however, display trace and major element characteristics that cross geochemical discriminants observed between Kilauea and Mauna Loa shield lavas. The glasses contain a blend of these discriminating chemical characteristics, and are not exactly like the typical shield lavas from either volcano. The production of these hybrid magmas likely requires a complexly zoned source, rather than two unique sources. When corrected for olivine fractionation, the glass data show correlations between CaO concentration and incompatible trace element abundances, indicating that CaO may behave incompatibly during melting of the tholeiite source. Furthermore, the tholeiite source must contain residual garnet and clinopyroxene to account for the variation in trace element abundances of the Kilauea glasses. Inversion modeling indicates that the Kilauea source is flat relative to C1 chondrites, and has a higher bulk distribution coefficient for the HREE than the LREE.
Hartman, Joshua D; Beran, Gregory J O
2014-11-11
First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.
Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin
2018-05-21
The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond.
Fluoroscopic radiation exposure: are we protecting ourselves adequately?
Hoffler, C Edward; Ilyas, Asif M
2015-05-06
While traditional intraoperative fluoroscopy protection relies on thyroid shields and aprons, recent data suggest that the surgeon's eyes and hands receive more exposure than previously appreciated. Using a distal radial fracture surgery model, we examined (1) radiation exposure to the eyes, thyroid, chest, groin, and hands of a surgeon mannequin; (2) the degree to which shielding equipment can decrease exposure; and (3) how exposure varies with fluoroscopy unit size. An anthropomorphic model was fit with radiation-attenuating glasses, a thyroid shield, an apron, and gloves. "Exposed" thermoluminescent dosimeters overlaid the protective equipment at the eyes, thyroid, chest, groin, and index finger while "shielded" dosimeters were placed beneath the protective equipment. Fluoroscopy position and settings were standardized. The mini-c-arm milliampere-seconds were fixed based on the selection of the kilovolt peak (kVp). Three mini and three standard c-arms scanned a model of the patient's wrist continuously for fifteen minutes each. Ten dosimeter exposures were recorded for each c-arm. Hand exposure averaged 31 μSv/min (range, 22 to 48 μSv/min), which was 13.0 times higher than the other recorded exposures. Eye exposure averaged 4 μSv/min, 2.2 times higher than the mean thyroid, chest, and groin exposure. Gloves reduced hand exposure by 69.4%. Glasses decreased eye exposure by 65.6%. There was no significant difference in exposure between mini and standard fluoroscopy. Surgeons' hands receive the most radiation exposure during distal radial plate fixation under fluoroscopy. There was a small but insignificant difference in mean exposure between standard fluoroscopy and mini-fluoroscopy, but some standard units resulted in lower exposure than some mini-units. On the basis of these findings, we recommend routine protective equipment to mitigate exposure to surgeons' hands and eyes, in addition to the thyroid, chest, and groin, during fluoroscopy procedures. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Predictions of cell damage rates for Lifesat missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Atwell, William; Hardy, Alva C.; Golightly, Michael J.; Wilson, John W.; Townsend, Lawrence W.; Shinn, Judy; Nealy, John E.; Katz, Robert
1990-01-01
The track model of Katz is used to make predictions of cell damage rates for possible Lifesat experiments. Contributions from trapped protons and electrons and galactic cosmic rays are considered for several orbits. Damage rates for survival and transformation of C3HT10-1/2 cells are predicted for various spacecraft shields.
NASA Astrophysics Data System (ADS)
Visser, R.; van Dishoeck, E. F.; Black, J. H.
2009-08-01
Aims: Photodissociation by UV light is an important destruction mechanism for carbon monoxide (CO) in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth dependence and isotope-selective nature of this process. Methods: We present a photodissociation model based on recent spectroscopic data from the literature, which allows us to compute depth-dependent and isotope-selective photodissociation rates at higher accuracy than in previous work. The model includes self-shielding, mutual shielding and shielding by atomic and molecular hydrogen, and it is the first such model to include the rare isotopologues C17O and 13C17O. We couple it to a simple chemical network to analyse CO abundances in diffuse and translucent clouds, photon-dominated regions, and circumstellar disks. Results: The photodissociation rate in the unattenuated interstellar radiation field is 2.6 × 10-10 s-1, 30% higher than currently adopted values. Increasing the excitation temperature or the Doppler width can reduce the photodissociation rates and the isotopic selectivity by as much as a factor of three for temperatures above 100 K. The model reproduces column densities observed towards diffuse clouds and PDRs, and it offers an explanation for both the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The photodissociation of C17O and 13C17O shows almost exactly the same depth dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally fractionated with respect to 16O. This supports the recent hypothesis that CO photodissociation in the solar nebula is responsible for the anomalous 17O and 18O abundances in meteorites. Grain growth in circumstellar disks can enhance the N(12CO)/N(C17O) and N(12CO)/N(C18O) ratios by a factor of ten relative to the initial isotopic abundances. Tables [see full textsee full text]-[see full textsee full text] are only available in electronic form at http://www.aanda.org
46 CFR 194.10-20 - Magazine chest construction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lid shall have a minimum thickness of 1/8 inch. (b) Permanent sun shields shall be provided for sides... distance of 11/2 inches. Sun shields may be omitted when chests are installed “on deck protected,” shielded from direct exposure to the sun. (c) Chests shall be limited to a gross capacity of 100 cubic feet. (d...
46 CFR 194.10-20 - Magazine chest construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... lid shall have a minimum thickness of 1/8 inch. (b) Permanent sun shields shall be provided for sides... distance of 11/2 inches. Sun shields may be omitted when chests are installed “on deck protected,” shielded from direct exposure to the sun. (c) Chests shall be limited to a gross capacity of 100 cubic feet. (d...
46 CFR 194.10-20 - Magazine chest construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lid shall have a minimum thickness of 1/8 inch. (b) Permanent sun shields shall be provided for sides... distance of 11/2 inches. Sun shields may be omitted when chests are installed “on deck protected,” shielded from direct exposure to the sun. (c) Chests shall be limited to a gross capacity of 100 cubic feet. (d...
46 CFR 194.10-20 - Magazine chest construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lid shall have a minimum thickness of 1/8 inch. (b) Permanent sun shields shall be provided for sides... distance of 11/2 inches. Sun shields may be omitted when chests are installed “on deck protected,” shielded from direct exposure to the sun. (c) Chests shall be limited to a gross capacity of 100 cubic feet. (d...
46 CFR 194.10-20 - Magazine chest construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lid shall have a minimum thickness of 1/8 inch. (b) Permanent sun shields shall be provided for sides... distance of 11/2 inches. Sun shields may be omitted when chests are installed “on deck protected,” shielded from direct exposure to the sun. (c) Chests shall be limited to a gross capacity of 100 cubic feet. (d...
The effect of a source-contacted light shield on the electrical characteristics of an LTPS TFT
NASA Astrophysics Data System (ADS)
Kim, Miryeon; Sun, Wookyung; Kang, Jongseuk; Shin, Hyungsoon
2017-08-01
The electrical characteristics of a low-temperature polycrystalline silicon thin-film transistor (TFT) with a source-contacted light shield (SCLS) are observed and analyzed. Compared with that of a conventional TFT without a light shield (LS), the on-current of the TFT with an SCLS is lower because the SCLS blocks the fringing electric field from the drain to the active layer. Furthermore, the gate-to-source capacitance (C gs) of the TFT with an SCLS in the off and saturation regions is higher than that of a conventional TFT, which is due to the gate-to-LS capacitance (C g-LS). The electrical characteristics of the TFT with an SCLS are thoroughly investigated by two-dimensional device simulations, and a semi-empirical C g-LS model for SPICE simulation is proposed and verified.
Zhang, Bao-cheng; Liu, Hai-bo; Cai, Xian-hua; Wang, Zhi-hua; Xu, Feng; Kang, Hui; Ding, Ran; Luo, Xiao-qing
2015-09-22
The transoral atlantoaxial reduction plate (TARP) fixation has been introduced to achieve reduction, decompression, fixation and fusion of C1-C2 through a transoral-only approach. However, it may also be associated with potential disadvantages, including dysphagia and load shielding of the bone graft. To prevent potential disadvantages related to TARP fixation, a novel transoral atlantoaxial fusion cage with integrated plate (Cage + Plate) device for stabilization of the C1-C2 segment is designed. The aims of the present study were to compare the biomechanical differences between Cage + Plate device and Cage + TARP device for the treatment of basilar invagination (BI) with irreducible atlantoaxial dislocation (IAAD). A detailed, nonlinear finite element model (FEM) of the intact upper cervical spine had been developed and validated. Then a FEM of an unstable BI model treated with Cage + Plate fixation, was compared to that with Cage + TARP fixation. All models were subjected to vertical load with pure moments in flexion, extension, lateral bending and axial rotation. Range of motion (ROM) of C1-C2 segment and maximum von Mises Stress of the C2 endplate and bone graft were quantified for the two devices. Both devices significantly reduced ROM compared with the intact state. In comparison with the Cage + Plate model, the Cage + TARP model reduced the ROM by 82.5 %, 46.2 %, 10.0 % and 74.3 % in flexion, extension, lateral bending, and axial rotation. The Cage + Plate model showed a higher increase stresses on C2 endplate and bone graft than the Cage + TARP model in all motions. Our results indicate that the novel Cage + Plate device may provide lower biomechanical stability than the Cage + TARP device in flexion, extension, and axial rotation, however, it may reduce stress shielding of the bone graft for successful fusion and minimize the risk of postoperative dysphagia. Clinical trials are now required to validate the reproducibility and advantages of our findings using this anchored cage for the treatment of BI with IAAD.
Preliminary Analysis of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. Boise
2006-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.
Dettwiler, Ramona; Schmitz, Andrea L; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike
2014-01-01
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.
Dettwiler, Ramona; Schmitz, Andrea L.; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike
2014-01-01
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR. PMID:25415624
Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B
2011-01-01
The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.
Liu, Wanzhan; Collins, Christopher M; Delp, Pamela J; Smith, Michael B
2004-01-01
We modeled four different end-ring/shield configurations of a birdcage coil to examine their effects on field homogeneity and signal-to-noise ratio (SNR) at 64 MHz and 125 MHz. The configurations are defined as: 1) conventional: a conventional cylindrical shield; 2) surrounding shield: a shield with annular extensions to closely shield the end rings; 3) solid connection: a shield with annular extensions connected to the rungs; and 4) thin wire connection: a shield with thin wires connected to the rungs. At both frequencies, the coil with conventional end-ring/shield configuration produces the most homogeneous RF magnetic (B1) field when the coil is empty, but produces the least homogeneous B1 field when the coil is loaded with a human head. The surrounding shield configuration results in the most homogeneous B1 and highest SNR in the coil loaded with the human head at both frequencies, followed closely by the solid connection configuration. Copyright 2003 Wiley-Liss, Inc.
Wan, Yan-Jun; Zhu, Peng-Li; Yu, Shu-Hui; Sun, Rong; Wong, Ching-Ping; Liao, Wei-Hsin
2018-05-30
Metal-based materials with exceptional intrinsic conductivity own excellent electromagnetic interference (EMI) shielding performance. However, high density, corrosion susceptibility, and poor flexibility of the metal severely restrict their further applications in the areas of aircraft/aerospace, portable and wearable smart electronics. Herein, a lightweight, flexible, and anticorrosive silver nanowire wrapped carbon hybrid sponge (Ag@C) is fabricated and employed as ultrahigh efficiency EMI shielding material. The interconnected Ag@C hybrid sponges provide an effective way for electron transport, leading to a remarkable conductivity of 363.1 S m -1 and superb EMI shielding effectiveness of around 70.1 dB in the frequency range of 8.2-18 GHz, while the density is as low as 0.00382 g cm -3 , which are among the best performances for electrically conductive sponges/aerogels/foams by far. More importantly, the Ag@C sponge surprisingly exhibits super-hydrophobicity and strong corrosion resistance. In addition, the hybrid sponges possess excellent mechanical resilience even with a large strain (90% reversible compressibility) and an outstanding cycling stability, which is far better than the bare metallic aerogels, such as silver nanowire aerogels and copper nanowire foams. This strategy provides a facile methodology to fabricate lightweight, flexible, and anticorrosive metal-based sponge for highly efficient EMI shielding applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Guenthner, W.; DeLucia, M. S.; Marshak, S.; Reiners, P. W.; Drake, H.; Thomson, S.; Ault, A. K.; Tillberg, M.
2017-12-01
Advances in understanding the effects of radiation damage on He diffusion in uranium-bearing accessory minerals have shown the utility of damage-diffusivity models for interpreting datasets from geologic settings with long-term, low-temperature thermal histories. Craton interiors preserve a billion-year record of long-term, long-wavelength vertical motions of the lithosphere. Prior thermochronologic work in these settings has focused on radiation damage models used in conjunction with apatite (U-Th)/He dates to constrain Phanerozoic thermal histories. Owing to the more complex damage-diffusivity relationship in zircon, the zircon (U-Th)/He system yields both higher and, in some cases, lower temperature sensitivities than the apatite system, and this greater range in turn allows researchers to access deeper time (i.e., Proterozoic) segments of craton time-temperature histories. Here, we show two examples of this approach by focusing on zircon (U-Th)/He datasets from 1.8 Ga granitoids of the Fennoscandian Shield in southeastern Sweden, and 1.4 Ga granites and rhyolites of the Ozark Plateau in southeastern Missouri. In the Ozark dataset, the zircon (U-Th)/He data, combined with a damage-diffusivity model, predict negative correlations between date and effective uranium (eU) concentration (a measurement proportional to radiation damage) from thermal histories that include an episode of Proterozoic cooling (interpreted as exhumation) following reheating (interpreted as burial) to temperature of 260°C at 850-680 Ma. In the Fennoscandian Shield, a similar damage model-based approach yields time-temperature constraints with burial to 217°C between 944 Ma and 851 Ma, followed by exhumation from 850 to 500 Ma, and burial to 154°C between 366 Ma and 224 Ma. Our Fennoscandian Shield samples also include titanite (U-Th)/He dates that span a wide range (945-160 Ma) and are negatively correlated with eU concentration, analogous to our zircon He dataset. These results support the initial findings of Baughman et al. (2017, Tectonics), and suggest that further research into the radiation damage effect on He diffusion in titanite could yield a comprehensive damage-diffusivity model for the titanite (U-Th)/He thermochronometer.
NASA Astrophysics Data System (ADS)
Li, Sigong; Tan, Yongqiang; Xue, Jiaxiang; Liu, Tong; Zhou, Xiaosong; Zhang, Haibin
2018-01-01
The X-band electromagnetic interference (EMI) shielding properties of nano-layered Ti3SiC2 ceramics were evaluated from room temperature up to 800°C in order to explore the feasibility of Ti3SiC2 as efficient high temperature EMI shielding material. It was found that Ti3SiC2 exhibits satisfactory EMI shielding effectiveness (SE) close to 30 dB at room temperature and the EMI SE shows good temperature stability. The remarkable EMI shielding properties of Ti3SiC2 can be mainly attributed to high electrical conductivity, high dielectric loss and more importantly the multiple reflections due to the layered structure.
An Investigation of the Validity of Applying MIL-STD-285 to EMP shielding Effectiveness.
1977-04-01
CONTROLLING OFFICE N AME AND ADDRESS Director 1.ý/415 ApM7 Defense Nuclear Agency 13. NUMBFR OF PAGES’.- Nqr-jWashington, D.C. 20305 52 ~J)J-Y. 14...accordingly. Another 80 dB of shielding r’ffectiveness was added I by the use of interno . shield enclosures, thus reducing the interior fields by an addition
NASA Astrophysics Data System (ADS)
Colli, Matteo; Lanza, Luca; Rasmussen, Roy; Thériault, Julie
2016-04-01
Despite its importance, accurate measurements of precipitation remains a challenge. Measurement errors for solid precipitation, which are often ignored for automated systems, frequently range from 20% to 70% due to undercatch in windy conditions. While solid precipitation measurements have been the subject of many studies, there have been only a limited number of numerical modeling efforts to estimate the collection efficiency of solid precipitation gauges when exposed to the wind, in both shielded and unshielded configurations. The available models use CFD simulations of the airflow pattern generated by the aerodynamic response of the gauge/shield geometry to perform the Lagrangian tracking of solid precipitation particles (Thériault et al., 2012; Colli et al. 2016a and 2016b). Validation of the results against field observations yields similarities in the overall behavior, but the model output only approximately reproduces the dependence of the experimental collection efficiency on wind speed. We present recent developments of such a modelling approach including various gauge/shield configurations, the influence of the drag coefficient calculation on the model performance, and the role of the particle size distribution in explaining the scatter of the collection efficiency observed at any particular wind speed (Colli et al. 2015). Comparison with observations at the Marshall (CO) field test site is used to validate results of the various modelling schemes and to support the analysis of the microphysical characteristics of ice crystals. References: Colli, M., Rasmussen, R.M., Thèriault, J.M., Lanza, L.G., Baker, B.C. and J. Kochendorfer (2015). An improved trajectory model to evaluate the collection performance of snow gauges. J.Appl.Meteor.Climatol., 54(8), pages 1826-1836. Colli, M., Lanza, L.G., Rasmussen, R.M. and J.M. Thèriault (2016a). The collection efficiency of shielded and unshielded precipitation gauges. Part I: CFD airflow modelling. J. of Hydrometeorol., 17(1), pages 231-243. Colli, M., Lanza, L.G., Rasmussen, R.M. and J.M. Thèriault (2016b). The collection efficiency of shielded and unshielded precipitation gauges. Part II: modelling particle trajectories. J. of Hydrometeorol., 17(1), 245-255. Thériault, J. M., R. Rasmussen, K. Ikeda, and S. Landolt, (2012). Dependence of snow gauge collection efficiency on snowflake characteristics. J. Appl. Meteor. Climatol., 51, 745-762.
Shields-1, A SmallSat Radiation Shielding Technology Demonstration
NASA Technical Reports Server (NTRS)
Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.
2015-01-01
The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable out of low earth orbit (LEO) missions by using these tested material concepts as shielding for sensitive components and new spaceflight hardware
NASA Astrophysics Data System (ADS)
Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao
2018-05-01
Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Jr., Charles G.; Cooper, Amy; Moore, Alastair S.
In order to prevent electromagnetic interference (EMI) from affecting the DISC diagnostic, an EMI shield was added. Figure 1 is a cross section from a CAD model of DISC and shows the EMI shield in situ. The shield is orange and at the top of the figure. Figure 2 is a drawing of just the EMI shield. The slit in the center of the EMI shield is covered by a metal mesh, which is not shown in this drawing. The small holes toward the base of the conical portion of the EMI shield are the pump-out holes, and the electromagneticmore » leakage through these holes is the subject of this report1. An alternate design for the EMI shield is considered in order to determine how to increase the EMI effectiveness of the pump-out holes in the shield without compromising the flow rate through the shield. Both the original and alternate designs are simulated and compared.« less
Liang, Caiyun; Wang, Zhenfeng; Wu, Lina; Zhang, Xiaochen; Wang, Huan; Wang, Zhijiang
2017-09-06
A novel light but strong SiC foam with hierarchical porous architecture was fabricated by using dough as raw material via carbonization followed by carbothermal reduction with silicon source. A significant synergistic effect is achieved by embedding meso- and nanopores in a microsized porous skeleton, which endows the SiC foam with high-performance electromagnetic interference (EMI) shielding, thermal insulation, and mechanical properties. The microsized skeleton withstands high stress. The meso- and nanosized pores enhance multiple reflection of the incident electromagnetic waves and elongate the path of heat transfer. For the hierarchical porous SiC foam with 72.8% porosity, EMI shielding can be higher than 20 dB, and specific EMI effectiveness exceeds 24.8 dB·cm 3 ·g -1 at a frequency of 11 GHz at 25-600 °C, which is 3 times higher than that of dense SiC ceramic. The thermal conductivity reaches as low as 0.02 W·m -1 ·K -1 , which is comparable to that of aerogel. The compressive strength is as high as 9.8 MPa. Given the chemical and high-temperature stability of SiC, the fabricated SiC foam is a promising candidate for modern aircraft and automobile applications.
USE OF MODELS FOR GAMMA SHIELDING STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifford, C.E.
1962-02-01
The use of models for shielding studies of buildings exposed to gamma radiation was evaluated by comparing the dose distributions produced in a blockhouse with movable inside walls exposed to 0.66 Mev gamma radiation with corresponding distributions in an iron 1 to 10 scale model. The effects of air and ground scaling on the readings in the model were also investigated. Iron appeared to be a suitable model material for simple closed buildings but for more complex structures it appeared that the use of iron models would progressively overestimite the gamms shielding protection as the complexity increased. (auth)
NASA Technical Reports Server (NTRS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.;
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.
2011-01-01
This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the environment model calculations, the Bumper-II code calculates a probability of no penetration for the spacecraft.
Experimental and Analytical Studies of Shielding Concepts for Point Sources and Jet Noises.
NASA Astrophysics Data System (ADS)
Wong, Raymond Lee Man
This analytical and experimental study explores concepts for jet noise shielding. Model experiments centre on solid planar shields, simulating engine-over-wing installations, and 'sugar scoop' shields. Tradeoff on effective shielding length is set by interference 'edge noise' as the shield trailing edge approaches the spreading jet. Edge noise is minimized by (i) hyperbolic cutouts which trim off the portions of most intense interference between the jet flow and the barrier and (ii) hybrid shields--a thermal refractive extension (a flame); for (ii) the tradeoff is combustion noise. In general, shielding attenuation increases steadily with frequency, following low frequency enhancement by edge noise. Although broadband attenuation is typically only several dB, the reduction of the subjectively weighted perceived noise levels is higher. In addition, calculated ground contours of peak PN dB show a substantial contraction due to shielding: this reaches 66% for one of the 'sugar scoop' shields for the 90 PN dB contour. The experiments are complemented by analytical predictions. They are divided into an engineering scheme for jet noise shielding and more rigorous analysis for point source shielding. The former approach combines point source shielding with a suitable jet source distribution. The results are synthesized into a predictive algorithm for jet noise shielding: the jet is modelled as a line distribution of incoherent sources with narrow band frequency (TURN)(axial distance)('-1). The predictive version agrees well with experiment (1 to 1.5 dB) up to moderate frequencies. The insertion loss deduced from the point source measurements for semi-infinite as well as finite rectangular shields agrees rather well with theoretical calculation based on the exact half plane solution and the superposition of asymptotic closed-form solutions. An approximate theory, the Maggi-Rubinowicz line integral, is found to yield reasonable predictions for thin barriers including cutouts if a certain correction is applied. The more exact integral equation approach (solved numerically) is applied to a more demanding geometry: a half round sugar scoop shield. It is found that the solutions of integral equation derived from Helmholtz formula in normal derivative form show satisfactory agreement with measurements.
1987-12-29
when the air or gas stream contains particulate matter. b. Pulverized materials passing through chutes or pneumatic conveyors . c. Nonconductive power...Hanover NH, 1971, AD 722 221. 146.Oakley, R.J., "Surface Transfer Impedance and Cable Shielding Design ," Wire Journal, Vol 4, No. 3, March 1971, pp...including considerations of grounding, bonding, and shielding in all phases of design , construction, operation, and maintenance of electronic equipment
Shielding of substations against direct lightning strokes by shield wires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhuri, P.
1994-01-01
A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.
Mikell, Justin K; Klopp, Ann H; Price, Michael; Mourtada, Firas
2013-01-01
We sought to commission a gynecologic shielded colpostat analytic model provided from a treatment planning system (TPS) library. We have reported retrospectively the dosimetric impact of this applicator model in a cohort of patients. A commercial TPS with a grid-based Boltzmann solver (GBBS) was commissioned for (192)Ir high-dose-rate (HDR) brachytherapy for cervical cancer with stainless steel-shielded colpostats. Verification of the colpostat analytic model was verified using a radiograph and vendor schematics. MCNPX v2.6 Monte Carlo simulations were performed to compare dose distributions around the applicator in water with the TPS GBBS dose predictions. Retrospectively, the dosimetric impact was assessed over 24 cervical cancer patients' HDR plans. Applicator (TPS ID #AL13122005) shield dimensions were within 0.4 mm of the independent shield dimensions verification. GBBS profiles in planes bisecting the cap around the applicator agreed with Monte Carlo simulations within 2% at most locations; differing screw representations resulted in differences of up to 9%. For the retrospective study, the GBBS doses differed from TG-43 as follows (mean value ± standard deviation [min, max]): International Commission on Radiation units [ICRU]rectum (-8.4 ± 2.5% [-14.1, -4.1%]), ICRUbladder (-7.2 ± 3.6% [-15.7, -2.1%]), D2cc-rectum (-6.2 ± 2.6% [-11.9, -0.8%]), D2cc-sigmoid (-5.6 ± 2.6% [-9.3, -2.0%]), and D2cc-bladder (-3.4 ± 1.9% [-7.2, -1.1%]). As brachytherapy TPSs implement advanced model-based dose calculations, the analytic applicator models stored in TPSs should be independently validated before clinical use. For this cohort, clinically meaningful differences (>5%) from TG-43 were observed. Accurate dosimetric modeling of shielded applicators may help to refine organ toxicity studies. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Podugu, Nagaraju; Ray, Labani; Singh, S. P.; Roy, Sukanta
2017-07-01
Heat flow and heat production data sets constrain the crustal thermal structure in the 2.5-3.5 Ga Bundelkhand craton, the oldest cratonic core in northern Indian shield, for the first time and allow comparisons with the southern Indian shield. Temperature measurements carried out in 10 boreholes at five sites in the craton, combined with systematic thermal conductivity measurements on major rock types, yield low heat flow in the range of 32-41 mW m-2, which is distinct from the generally high heat flow reported from other parts of the northern Indian shield. Radioelemental measurements on 243 samples of drill cores and outcrops reveal both large variability and high average heat production for the Neo-Archaean to Palaeo-Proterozoic granites (4.0 ± 2.1 (SD) μW m-3) relative to the Meso-Archaean tonalite-trondhjemite-granodiorite (TTG) gneisses (2.0 ± 1.0 (SD) μW m-3). On the basis of new heat flow and heat production data sets combined with available geological and geophysical information, a set of steady state, heat flow-crustal heat production models representative of varying crustal scenarios in the craton are envisaged. Mantle heat flow and Moho temperatures are found to be in the range of 12-22 mW m-2 and 290-420°C, respectively, not much different from those reported for the similar age Dharwar craton in southern India. This study reveals similar mantle thermal regimes across the northern and southern parts of the Indian shield, in spite of varying surface heat flow regimes, implying that much of the intraprovince and interprovince variations in the Indian shield are explained by variations in upper crustal heat production.
Upper mantle seismic velocity structure beneath the Kenya Rift and the Arabian Shield
NASA Astrophysics Data System (ADS)
Park, Yongcheol
Upper mantle structure beneath the Kenya Rift and Arabian Shield has been investigated to advance our understanding of the origin of the Cenozoic hotspot tectonism found there. A new seismic tomographic model of the upper mantle beneath the Kenya Rift has been obtained by inverting teleseismic P-wave travel time residuals. The model shows a 0.5--1.5% low velocity anomaly below the Kenya Rift extending to about 150 km depth. Below ˜150 km depth, the anomaly broadens to the west toward the Tanzania Craton, suggesting a westward dip to the structure. The P- and S-wave velocity structure beneath the Arabian Shield has been investigated using travel-time tomography. Models for the seismic velocity structure of the upper mantle between 150 and 400 depths reveal a low velocity region (˜1.5% in the P model and ˜3% in the S model) trending NW-SE along the western side of the Arabian Shield and broadening to the northeast beneath the MMN volcanic line. The models have limited resolution above 150 km depth everywhere under the Shield, and in the middle part of the Shield the resolution is limited at all depths. Rayleigh wave phase velocity measurements have been inverted to image regions of the upper mantle under the Arabian Shield not well resolved by the body wave tomography. The shear wave velocity model obtained shows upper mantle structure above 200 km depth. A broad low velocity region in the lithospheric mantle (depths of ≤ ˜100 km) across the Shield is observed, and below ˜150 km depth a region of low shear velocity is imaged along the Red Sea coast and MMN volcanic line. A westward dipping low velocity zone beneath the Kenya Rift is consistent with an interpretation by Nyblade et al. [2000] suggesting that a plume head is located under the eastern margin of the Tanzania Craton, or alternatively a superplume rising from the lower mantle from the west and reaching the surface under Kenya [e.g., Debayle et al., 2001; Grand et al., 1997; Ritsema et al., 1999]. For the Arabian Shield, the models are not consistent with a two plume model [Camp and Roobol, 1992] because there is a continuous low velocity zone at depths ≥ 150 km along the western side of the Shield and not separate anomalies. The NW-SE trending low velocity anomaly beneath the western side of the Shield supports the Ebinger and Sleep [1998] model invoking plume flow channeled by thinner lithosphere along the Red Sea coast. The NW-SE low velocity structure beneath the western side of the Shield could also be the northern-most extent of the African Superplume. A low velocity anomaly beneath Ethiopia [Benoit et al., 2006a,b] dips to the west and may extend through the mantle transition zone. The observed low velocities in the upper mantle beneath the Arabian Shield could be caused by hot mantle rock rising beneath Ethiopia and flowing to the north under the Arabian Shield.
Burger, Tomáš; Lucová, Marcela; Moritz, Regina E.; Oelschläger, Helmut H. A.; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Němec, Pavel
2010-01-01
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal–hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit. PMID:20219838
Burger, Tomás; Lucová, Marcela; Moritz, Regina E; Oelschläger, Helmut H A; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Nemec, Pavel
2010-09-06
The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.
Reflector and Shield Material Properties for Project Prometheus
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Nash
2005-11-02
This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Cooper-Jensen, C. P.; Llamas-Jansa, I.; Kazi, S.; Bentley, P. M.
2018-06-01
A combined measurement and Monte-Carlo simulation study was carried out in order to characterize the particle self-shielding effect of B4C grains in neutron shielding concrete. Several batches of a specialized neutron shielding concrete, with varying B4C grain sizes, were exposed to a 2 Å neutron beam at the R2D2 test beamline at the Institute for Energy Technology located in Kjeller, Norway. The direct and scattered neutrons were detected with a neutron detector placed behind the concrete blocks and the results were compared to Geant4 simulations. The particle self-shielding effect was included in the Geant4 simulations by calculating effective neutron cross-sections during the Monte-Carlo simulation process. It is shown that this method well reproduces the measured results. Our results show that shielding calculations for low-energy neutrons using such materials would lead to an underestimate of the shielding required for a certain design scenario if the particle self-shielding effect is not included in the calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos-Mendez, J; Faddegon, B; Paganetti, H
2015-06-15
Purpose: We used TOPAS (TOPAS wraps and extends Geant4 for medical physicists) to compare Geant4 physics models with published data for neutron shielding calculations. Subsequently, we calculated the source terms and attenuation lengths (shielding data) of the total ambient dose equivalent (TADE) in concrete for neutrons produced by protons in brass. Methods: Stage1: The Bertini and Binary nuclear models available in Geant4 were compared with published attenuation at depth of the TADE in concrete and iron. Stage2: Shielding data of the TADE in concrete was calculated for 50– 200 MeV proton beams on brass. Stage3: Shielding data from Stage2 wasmore » extrapolated for 235 MeV proton beams. This data was used in a point-line-source analytical model to calculate the ambient dose per unit therapeutic dose at two locations inside one treatment room at the Francis H Burr Proton Therapy Center. Finally, we compared these results with experimental data and full TOPAS simulations. Results: At larger angles (∼130o) the TADE in concrete calculated with the Bertini model was about 9 times larger than that calculated with the Binary model. The attenuation length in concrete calculated with the Binary model agreed with published data within 7%±0.4% (statistical uncertainty) for the deepest regions and 5%±0.1% for shallower regions. For iron the agreement was within 3%±0.1%. The ambient dose per therapeutic dose calculated with the Binary model, relative to the experimental data, was a ratio of 0.93±0.16 and 1.23±0.24 for two locations. The analytical model overestimated the dose by four orders of magnitude. These differences are attributed to the complexity of the geometry. Conclusion: The Binary and Bertini models gave comparable results, with the Binary model giving the best agreement with published data at large angle. Shielding data we calculated using the Binary model is useful for fast shielding calculations with other analytical models. This work was supported by National Cancer Institute Grant R01CA140735.« less
NASA Technical Reports Server (NTRS)
Falarski, M. D.; Aoyagi, K.; Koenig, D. G.
1973-01-01
The upper-surface blown (USB) flap as a powered-lift concept has evolved because of the potential acoustic shielding provided when turbofan engines are installed on a wing upper surface. The results from a wind tunnel investigation of a large-scale USB model powered by two JT15D-1 turbofan engines are-presented. The effects of coanda flap extent and deflection, forward speed, and exhaust nozzle configuration were investigated. To determine the wing shielding the acoustics of a single engine nacelle removed from the model were also measured. Effective shielding occurred in the aft underwing quadrant. In the forward quadrant the shielding of the high frequency noise was counteracted by an increase in the lower frequency wing-exhaust interaction noise. The fuselage provided shielding of the opposite engine noise such that the difference between single and double engine operation was 1.5 PNdB under the wing. The effects of coanda flap deflection and extent, angle of attack, and forward speed were small. Forward speed reduced the perceived noise level (PNL) by reducing the wing-exhaust interaction noise.
Radiation fields from neutron generators shielded with different materials
NASA Astrophysics Data System (ADS)
Chichester, D. L.; Blackburn, B. W.
2007-08-01
As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.
EMP Preferred Test Procedures. Revision
1977-02-01
r _ -P ~PREFERRED TEST PROCEDURES,r- -Hnbo -Tkeltted Elec-ront’c Parts) .... . ITR Projs.E6230,E6261, J.E. Bridges W.C. Emberson V.P. Nanda DNA QQ-72...Connectors Surface Transfer Impedance Shielded Enclosures Surface Transfer Admittance Shielded Rooms E- Field Shielding Conduits Effectiveness Resistor Damage H... Field Shielding Capacitor Damage Effectiveness Inductor Damage Conduit Couplers Transformer Damage Capacitor Characterization Resistor
1990-12-14
r . ,,,’ , ,.r ,-z /Ar A i-, ’- -. q <-->- as 7/ 4, ’C ’ 4’ / de /- --, AI c " (/’r)i -l 74 7 C/L CAe 71C, eX X-- r , ’Ie? 74-4 c- 7,’/,, , /’ 74 V1;he...GLASSES SAFETY GOGGLES CHEMICAL SPLASH GOGGLES &rFACE SHIELD RESPIRATOR ORGANIC VAPOR SPRAY PAINT METAL FUME I TOXIC ,._ ____r _ _ _ OTHER (Speci’y...SAFETY GOGGLES CHEMICAL SPLASH GOGGLES - , FACE SHIELD RESPIRATOR ORGANIC VAPOR SPRAY PAINT METAL FUME ’ TOXIC DUST OTHER (Specify) 23. EMERGENCY
Selecting an A1C Point-of-Care Instrument
Yong, Ee Vonn; Rasinen, Casey
2015-01-01
A1C point-of-care (POC) instruments benefit patients with diabetes by facilitating clinician decision making that results in significant glycemic improvements. Three National Glycohemoglobin Standardization Program (NGSP)–certified POC products are available in the United States: the handheld A1CNow (formerly manufactured by Bayer Diabetes Care but now made by Chek Diagnostics) and two bench-top models called the Axis-Shield Afinion Analyzer and the Siemens DCA Vantage. This article compares the three available NGSP-certified POC products in terms of accuracy, precision, ease of use, cost, and additional features. Its goal is to aid health care facilities in conveniently identifying the A1C POC product that best meets their needs. It additionally reviews evidence that supports the continued use of A1C POC instruments in the clinical arena. PMID:26300614
Top shield temperatures, C and K Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, J.D.
1964-12-28
A modification program is now in progress at the C and K Reactors consisting of an extensive renovation of the graphite channels in the vertical safety rod ststems. The present VSR channels are being enlarged by a graphite coring operation and channel sleeves will be installed in the larger channels. One problem associated with the coring operation is the danger of damaging top thermal shield cooling tubes located close to the VSR channels to such an extent that these tubes will have to be removed from service. If such a condition should exist at one or a number of locationsmore » in the top shield of the reactors after reactor startup, the question remains -- what would the resulting temperatures be of the various components of the top shields? This study was initiated to determine temperature distributions in the top shield complex at the C and K Reactors for various top thermal shield coolant system conditions. Since the top thermal shield cooling system at C Reactor is different than those at the K Reactors, the study was conducted separately for the two different systems.« less
An analytical and experimental evaluation of shadow shields and their support members
NASA Technical Reports Server (NTRS)
Stochl, R. J.; Boyle, R. J.
1972-01-01
Experimental tests were performed on a model shadow shield thermal protection system to examine the effect of certain configuration variables. The experimental results were used to verify the ability of an analytical program to predict the shadow shield performance including the shield-support interaction. In general, the analysis (assuming diffuse surfaces) agreed well with the experimental support temperature profiles. The agreement for the shield profiles was not as good. The results demonstrated: (1) shadow shields can be effective in reducing the heat transfer into cryogenic propellant tanks, and (2) the conductive heat transfer through supports can be reduced by selective surface coatings.
1982-11-01
your organization , please notify RADC OBCT) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list. Do not return copies of...RMING ORGANIZATION NAME r AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Southeastern Center for Electrical AREA6WORKUNITNUMBERS Engineering Education...The program requires that the input data groups be organized as shown in Table 1 where the number of unshielded wires is U and the number of shielded
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S.; Chang, J.; Amin, S.
1981-01-01
Teste were conducted to determine the moisture retention for the 0.5 wt% borated concrete under three curing conditions. The three curing conditions are (1) curing at 100% relative humidity for a 28-day period at 21/degree/C, (2) curing at 100% relative humidity for a 7-day period, then at air-dry 50% relative humidity for the remaining 28-day curing period at 21/degree/C, and (3) curing at 100% relative humidity for a period of 7 days and then curing at air-dry 20% relative humidity for the remaining curing period at 21/degree/C. The concrete shielding curves are presented for several mositure contents. The results shouldmore » be helpful to assist the design of a cost effective concrete shield for fusion facilities.« less
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.
Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R
2014-01-01
Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957
Conditional fast expression and function of multimeric TRPV5 channels using Shield-1.
Schoeber, Joost P H; van de Graaf, Stan F J; Lee, Kyu Pil; Wittgen, Hanneke G M; Hoenderop, Joost G J; Bindels, René J M
2009-01-01
A recently described novel controllable method to regulate protein expression is based on a mutated FK506-binding protein-12 (mtFKBP) that is unstable and rapidly degraded in mammalian cells. This instability can be conferred to other proteins directly fused to mtFKBP. Binding of a synthetic cell-permeant ligand (Shield-1) to mtFKBP reverses the instability, allowing conditional expression of mtFKBP-fused proteins. We adapted this strategy to study multimeric plasma membrane proteins using the ion channel TRPV5 as model protein. mtFKBP-TRPV5 forms functional ion channels and its expression can be controlled in a time- and dose-dependent fashion using Shield-1. Moreover, in the presence of Shield-1, mtFKBP-TRPV5 formed heteromultimeric channels with untagged TRPV5, which were codegraded upon washout of Shield-1, providing a strategy to study multimeric plasma membrane protein complexes without the need to destabilize all individual subunits.
Experimental study of some shielding parameters for composite shields
NASA Astrophysics Data System (ADS)
Mkhaiber, Ahmed F.; Dheyaa, Abdulraheem
2018-05-01
In this study radiation protection shields have been prepared consist of composite materials have epoxy as a basis material and different reinforcing materials C Ni PbO and Bi with various reinforcing ratios 10 20 30 40 50 % and dimensions 1 × 10 × 10 cm. For examination the suitability of using this shields to protect from gamma ray some shielding parameters were calculated like: Linear attenuation coefficient μ, effective atomic number Zeffe, heaviness and half value thickness X1/2 for energy rang 1218 – 1480 KeV. These parameters have been measured by using sodium iodide system NaITI with deferent radiation sources 152Eu 60Co and 137Cs. The results show that these parameters are effected by the reinforcing ratio and gamma ray energy, it is found that the linear attenuation coefficient and atomic effective number increases with reinforcing ratio increases and decreased with energy increasing especially with high concentrations 40 50 % and at low energies Eγ < 0662 MeV with certain energy while the values of X1/2 decrease with reinforcing ratio increases. Heaviness was calculated too for all shields, with respect to lead from its values we found that this shields lighter than lead, which make it preferable to traditional material such as lead and concrete.
36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT ...
36. DETAILS AND SECTIONS OF SHIELDING TANK, FUEL ELEMENT SUPPORT FRAME AND SUPPORT PLATFORM, AND SAFETY MECHANISM ASSEMBLY (SPRING-LOADED HINGE). F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151975. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
An approach to achieve progress in spacecraft shielding
NASA Astrophysics Data System (ADS)
Thoma, K.; Schäfer, F.; Hiermaier, S.; Schneider, E.
2004-01-01
Progress in shield design against space debris can be achieved only when a combined approach based on several tools is used. This approach depends on the combined application of advanced numerical methods, specific material models and experimental determination of input parameters for these models. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber-reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In this paper the benefits from combining numerical methods, material modelling and detailed experimental studies for shield design are demonstrated. The following examples are given: (1) Development of a material model for Nextel and Kevlar-Epoxy to enable numerical simulation of hypervelocity impacts on complex heavy protection shields for the International Space Station. (2) The influence of projectile shape on protection performance of Whipple Shields and how experimental problems in accelerating such shapes can be overcome by systematic numerical simulation. (3) The benefits of using metallic foams in "sandwich bumper shields" for spacecraft and how to approach systematic characterization of such materials.
Lunar Surface Reactor Shielding Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Shawn; McAlpine, William; Lipinski, Ronald
A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate themore » mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.« less
Wu, Chin H; Grant, Christopher V; Cook, Gabriel A; Park, Sang Ho; Opella, Stanley J
2009-09-01
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800MHz (1)H/(15)N and (1)H/(13)C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.
SU-C-16A-04: Dosimetric Validation of a Partially-Shielded Gd-153 Brachytherapy Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Adams, Q; Flynn, R
Purpose: To demonstrate by measurement that using partially shielded Gd-153 sources for rotating-shield brachytherapy (RSBT) is feasible. RSBT is a potentially superior alternative to conventional high-dose-rate brachytherapy and provides the opportunity to dramatically improve tumor dose conformity for the treatment of, for example, prostate cancer. Methods: A custom-built, stainless steel encapsulated 150 mCi Gd-153 capsule with an outer length of 12.8 mm, outer diameter of 2.10 mm, active length of 9.98 mm, and active diameter of 1.53 mm was used. A partially shielded catheter was constructed with a 500 μm platinum shield and a 500 μm aluminum emission window, bothmore » with 180° azimuthal coverage. An acrylic phantom was constructed to measure the dose distributions from the shielded catheter in the transverse plane using Gafchromic EBT3 films. Film calibration curves were generated from 50, 70, and 100 kVp x-ray beams with NIST-traceable air kerma values to account for energy variation. Results: The transmission ratios of platinum to aluminum shielding at 1 cm off-axis are 7.5% and 7.6% for Monte Carlo (MCNP5) predicted and experimental results, respectively. The predicted/measured relative dose rates at 1 cm, 2 cm and 3 cm off-axis through the Al window were 100%/92.9%, 28.6%/27.0% and 13.8%/12.7%, respectively. Through the Pt shield, the predicted/measured relative dose rates were 7.5%/7.1%, 3.8%/3.0% and 2.4%/1.7%, respectively. Conclusion: Using partially-shielded Gd-153 sources for RSBT is a promising approach to improving brachytherapy dose distributions. The next step in making Gd-153 based RSBT a reality is developing a Gd-153 source that is small enough such that the source, shield, and catheter all fit within a 16 gauge needle, which has a 1.65 mm diameter. University of Iowa Research Foundation.« less
Goren, AD; Prins, RD; Dauer, LT; Quinn, B; Al-Najjar, A; Faber, RD; Patchell, G; Branets, I; Colosi, DC
2013-01-01
Objectives: This study aims to demonstrate the effectiveness of leaded glasses in reducing the lens of eye dose and of lead thyroid collars in reducing the dose to the thyroid gland of an adult female from dental cone beam CT (CBCT). The effect of collimation on the radiation dose in head organs is also examined. Methods: Dose measurements were conducted by placing optically stimulated luminescent dosemeters in an anthropomorphic female phantom. Eye lens dose was measured by placing a dosemeter on the anterior surface of the phantom eye location. All exposures were performed on one commercially available dental CBCT machine, using selected collimation and exposure techniques. Each scan technique was performed without any lead shielding and then repeated with lead shielding in place. To calculate the percent reduction from lead shielding, the dose measured with lead shielding was divided by the dose measured without lead shielding. The percent reduction from collimation was calculated by comparing the dose measured with collimation to the dose measured without collimation. Results: The dose to the internal eye for one of the scans without leaded glasses or thyroid shield was 0.450 cGy and with glasses and thyroid shield was 0.116 cGy (a 74% reduction). The reduction to the lens of the eye was from 0.396 cGy to 0.153 cGy (a 61% reduction). Without glasses or thyroid shield, the thyroid dose was 0.158 cGy; and when both glasses and shield were used, the thyroid dose was reduced to 0.091 cGy (a 42% reduction). Conclusions: Collimation alone reduced the dose to the brain by up to 91%, with a similar reduction in other organs. Based on these data, leaded glasses, thyroid collars and collimation minimize the dose to organs outside the field of view. PMID:23412460
2013-11-06
safety regulations to include a review of worker radiation dosimetry and radiation safety training records was completed. c. Survey Personnel...that is based upon T.O. 33B-1-1, 10 CFR 20, and AFMAN 48-125, Personnel Ionizing Radiation Dosimetry . (1) Verify unshielded/shielded NDI safety...rope barriers marked with appropriate signage as required by T.O. 33B-1-1. (4) Verify x-ray shot and personal radiation dosimetry logs were properly
Passive Superconducting Shielding: Experimental Results and Computer Models
NASA Technical Reports Server (NTRS)
Warner, B. A.; Kamiya, K.
2003-01-01
Passive superconducting shielding for magnetic refrigerators has advantages over active shielding and passive ferromagnetic shielding in that it is lightweight and easy to construct. However, it is not as easy to model and does not fail gracefully. Failure of a passive superconducting shield may lead to persistent flux and persistent currents. Unfortunately, modeling software for superconducting materials is not as easily available as is software for simple coils or for ferromagnetic materials. This paper will discuss ways of using available software to model passive superconducting shielding.
Glowska, Eliza
2015-12-01
A new quill mite species Stibarokris mariasi sp. nov. (Acariformes: Syringophilidae) is described from the Wedge-tailed Shearwater Puffinus pacificus (Gmelin) (Procellariiformes: Procellariidae) from Johnston Atoll. Females of S. mariasi sp. nov. differ from most similar species S. phoeniconaias Skoracki and OConnor, 2010 by the longitudinal branch of the peritremes consisting of 11-14 chambers (vs 15-17 chambers in S. phoeniconaias), the movable cheliceral digit 145 long (vs 170), setal bases c1 situated distinctly anterior to the level of setae se (vs setal bases c1 and se situated at the same transverse level), the propodonotal shield punctate on the whole surface (vs propodonotal shield punctate at the lateral margins), the small, balloonlike hysteronotal shield, bearing bases of setae d1 and densely punctate on the whole surface (vs hysteronotal shield bearing setal bases d1 and e2 and punctate at the anterior part), the pseudanal setae ps1 1.8 times longer than setae ps2 (vs setae ps1 and ps2 subequal in length), subequal lengths of setae h1 and f1 (vs setae h1 twice longer than f1) and the lengths of setae ag1, ag2, and ag3 145-170, 105-125, 120-165, respectively (vs ag1, ag2 and ag3 245-285, 245-270, 330-340, respectively). A key to all known species of the genus Stibarokris Kethley, 1970 is proposed.
40 CFR 721.555 - Alkyl amino nitriles (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (c). A full face shield is required if splashing or spraying occurs. (ii) Hazard communication program. Requirements as specified in § 721.72 (c)(1) and (c)(2)(iv). The MSDS required by this paragraph...
40 CFR 721.555 - Alkyl amino nitriles (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (c). A full face shield is required if splashing or spraying occurs. (ii) Hazard communication program. Requirements as specified in § 721.72 (c)(1) and (c)(2)(iv). The MSDS required by this paragraph...
40 CFR 721.555 - Alkyl amino nitriles (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (c). A full face shield is required if splashing or spraying occurs. (ii) Hazard communication program. Requirements as specified in § 721.72 (c)(1) and (c)(2)(iv). The MSDS required by this paragraph...
40 CFR 721.555 - Alkyl amino nitriles (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (c). A full face shield is required if splashing or spraying occurs. (ii) Hazard communication program. Requirements as specified in § 721.72 (c)(1) and (c)(2)(iv). The MSDS required by this paragraph...
Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers
Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling
2017-01-01
Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the “all parallel” shielding coils with a 45° starting position have the best shielding performance, whereas the “separated loop” shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same. PMID:28587137
Modelling and Optimization of Four-Segment Shielding Coils of Current Transformers.
Gao, Yucheng; Zhao, Wei; Wang, Qing; Qu, Kaifeng; Li, He; Shao, Haiming; Huang, Songling
2017-05-26
Applying shielding coils is a practical way to protect current transformers (CTs) for large-capacity generators from the intensive magnetic interference produced by adjacent bus-bars. The aim of this study is to build a simple analytical model for the shielding coils, from which the optimization of the shielding coils can be calculated effectively. Based on an existing stray flux model, a new analytical model for the leakage flux of partial coils is presented, and finite element method-based simulations are carried out to develop empirical equations for the core-pickup factors of the models. Using the flux models, a model of the common four-segment shielding coils is derived. Furthermore, a theoretical analysis is carried out on the optimal performance of the four-segment shielding coils in a typical six-bus-bars scenario. It turns out that the "all parallel" shielding coils with a 45° starting position have the best shielding performance, whereas the "separated loop" shielding coils with a 0° starting position feature the lowest heating value. Physical experiments were performed, which verified all the models and the conclusions proposed in the paper. In addition, for shielding coils with other than the four-segment configuration, the analysis process will generally be the same.
NASA Astrophysics Data System (ADS)
Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar
2016-10-01
In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.
Nuclear shieldings with the SSB-D functional.
Armangué, Lluís; Solà, Miquel; Swart, Marcel
2011-02-24
The recently reported SSB-D functional [J. Chem. Phys. 2009, 131, 094103] is used to check the performance for obtaining nuclear magnetic resonance (NMR) shielding constants. Four different databases were studied, which contain a diversity of molecules and nuclear shielding constants. The SSB-D functional is compared with its "parent" functionals (PBE, OPBE), the KT2 functional that was designed specially for NMR applications and the coupled cluster CCSD(T) method. The best performance for the experimentally most-used elements ((1)H, (13)C) is obtained for the SSB-D and KT2 functionals.
Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M
2010-05-31
Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired.
Optimising the Active Muon Shield for the SHiP Experiment at CERN
NASA Astrophysics Data System (ADS)
Baranov, A.; Burnaev, E.; Derkach, D.; Filatov, A.; Klyuchnikov, N.; Lantwin, O.; Ratnikov, F.; Ustyuzhanin, A.; Zaitsev, A.
2017-12-01
The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. The critical challenge for this experiment is to keep the Standard Model background level negligible. In the beam dump, around 1011 muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muoninduced backgrounds. It is demonstrated that new improved active muon shield may be used to magnetically deflect the muons out of the acceptance of the spectrometer.
Preliminary results of radiation measurements on EURECA
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.
1995-01-01
The eleven-month duration of the EURECA mission allows long-term radiation effects to be studied similarly to those of the Long Duration Exposure Facility (LDEF). Basic data can be generated for projections to crew doses and electronic and computer reliability on spacecraft missions. A radiation experiment has been designed for EURECA which uses passive integrating detectors to measure average radiation levels. The components include a Trackoscope, which employs fourteen plastic nuclear track detector (PNTD) stacks to measure the angular dependence of high LET (greater than or equal to 6 keV/micro m) radiation. Also included are TLD's for total absorbed doses, thermal/resonance neutron detectors (TRND's) for low energy neutron fluences and a thick PNTD stack for depth dependence measurements. LET spectra are derived from the PNTD measurements. Preliminary TLD results from seven levels within the detector array show that integrated does inside the flight canister varied from 18.8 +/- 0.6 cGy to 38.9 +/- 1.2 cGy. The TLD's oriented toward the least shielded direction averaged 53% higher in dose than those oriented away from the least shielded direction (minimum shielding toward the least shielded direction varied from 1.13 to 7.9 g/cm(exp 2), Al equivalent). The maximum dose rate on EURECA (1.16 mGy/day) was 37% of the maximum measured on LDEF and dose rates at all depths were less than measured on LDEF. The shielding external to the flight canister covered a greater solid angle about the canister than the LDEF experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, S; Ji, Y; Kim, K
Purpose: A diagnostics Multileaf Collimator (MLC) was designed for diagnostic radiography dose reduction. Monte Carlo simulation was used to evaluate efficiency of shielding material for producing leaves of Multileaf collimator. Material & Methods: The general radiography unit (Rex-650R, Listem, Korea) was modeling with Monte Carlo simulation (MCNPX, LANL, USA) and we used SRS-78 program to calculate the energy spectrum of tube voltage (80, 100, 120 kVp). The shielding materials was SKD 11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon (Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum (Mo), and vanadium (V). The density of itmore » was 7.89 g/m3. We simulated leafs diagnostic MLC using SKD 11 with general radiography unit. We calculated efficiency of diagnostic MLC using tally6 card of MCNPX depending on energy. Results: The diagnostic MLC consisted of 25 individual metal shielding leaves on both sides, with dimensions of 10 × 0.5 × 0.5 cm3. The leaves of MLC were controlled by motors positioned on both sides of the MLC. According to energy (tube voltage), the shielding efficiency of MLC in Monte Carlo simulation was 99% (80 kVp), 96% (100 kVp) and 93% (120 kVp). Conclusion: We certified efficiency of diagnostic MLC fabricated from SKD11 alloy tool steel. Based on the results, the diagnostic MLC was designed. We will make the diagnostic MLC for dose reduction of diagnostic radiography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing-Xiao, E-mail: drliu-shi@dlpu.edu.cn; Institute of Multidisciplinary Research for Advanced Material, Tohoku University, Sendai, 980-8577,Japan; Shi, Fei
2013-10-15
In order to further improve the near-infrared shielding properties of cesium tungsten bronze (Cs{sub x}WO{sub 3}) for solar filter applications, Cs{sub x}WO{sub 3} particles were prepared by solvothermal reaction method and the effects of nitrogen annealing on the microstructure and near-infrared shielding properties of Cs{sub x}WO{sub 3} were investigated. The obtained Cs{sub x}WO{sub 3} samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and spectrophotometer. The results indicate that nanosheet-like Cs{sub x}WO{sub 3} particles with hexagonal structure began to transform into nanorods after annealed at temperature higher than 600 °C. The near-infrared shielding propertiesmore » of Cs{sub x}WO{sub 3} particles could be further improved by N{sub 2} annealing at 500–700 °C. Particularly, the 500 °C-annealed Cs{sub x}WO{sub 3} samples in the N{sub 2} atmosphere showed best near-infrared shielding properties. It was suggested that the excellent near-infrared shielding ability of the 500 °C-annealed Cs{sub x}WO{sub 3} samples is correlated with its minimum O/W atomic ratio and most oxygen vacancies. Highlights: • N{sub 2} annealing could further improve the near-infrared (NIR) shielding of Cs{sub x}WO{sub 3}. • Effects of N{sub 2} annealing on microstructure and NIR shielding of Cs{sub x}WO{sub 3} were studied. • The 500 °C-N{sub 2}-annealed Cs{sub x}WO{sub 3} exhibited minimum O/W ratio and most oxygen vacancies. • The 500 °C-N{sub 2}-annealed Cs{sub x}WO{sub 3} particles exhibited best NIR shielding properties.« less
Gardner, Qurra-tul-Ann Afza; Younas, Hooria; Akhtar, Muhammad
2013-01-01
Human M-proinsulin was cleaved by trypsin at the R(31)R(32)-E(33) and K(64)R(65)-G(66) bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K(59)R(60)-G(61) bond but at the B/C junction cleavage occurred at the R(31)R(32)-E(33) as well as the R(31)-R(32)E(33) bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the k(cat.)/K(m) values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02±0.08×10(5)s(-1)M(-1)) and the cleavage of the K(29)-T(30) bond of M-insulin-RR (1.3±0.07×10(5)s(-1)M(-1)). However, the K(29)-T(30) bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (k(cat.)/K(m) values around 1000s(-1)M(-1)). Hence, as the biosynthetic path follows the sequence; proinsulin→insulin-RR→insulin, the K(29)-T(30) bond becomes shielded, exposed then shielded again respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Shielding analysis of the Microtron MT-25 bunker using the MCNP-4C code and NCRP Report 51.
Casanova, A O; López, N; Gelen, A; Guevara, M V Manso; Díaz, O; Cimino, L; D'Alessandro, K; Melo, J C
2004-01-01
A cyclic electron accelerator Microtron MT-25 will be installed in Havana, Cuba. Electrons, neutrons and gamma radiation up to 25 MeV can be produced in the MT-25. A detailed shielding analysis for the bunker is carried out using two ways: the NCRP-51 Report and the Monte Carlo Method (MCNP-4C Code). The walls and ceiling thicknesses are estimated with dose constraints of 0.5 and 20 mSv y(-1), respectively, and an area occupancy factor of 1/16. Both results are compared and a preliminary bunker design is shown. Copyright 2004 Oxford University Press
NASA Astrophysics Data System (ADS)
Bergen, A.; van Weers, H. J.; Bruineman, C.; Dhallé, M. M. J.; Krooshoop, H. J. G.; ter Brake, H. J. M.; Ravensberg, K.; Jackson, B. D.; Wafelbakker, C. K.
2016-10-01
The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ˜100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 106, well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.
Bergen, A; van Weers, H J; Bruineman, C; Dhallé, M M J; Krooshoop, H J G; Ter Brake, H J M; Ravensberg, K; Jackson, B D; Wafelbakker, C K
2016-10-01
The paper describes the development and the experimental validation of a cryogenic magnetic shielding system for transition edge sensor based space detector arrays. The system consists of an outer mu-metal shield and an inner superconducting niobium shield. First, a basic comparison is made between thin-walled mu-metal and superconducting shields, giving an off-axis expression for the field inside a cup-shaped superconductor as a function of the transverse external field. Starting from these preliminary analytical considerations, the design of an adequate and realistic shielding configuration for future space flight applications (either X-IFU [D. Barret et al., e-print arXiv:1308.6784 [astro-ph.IM] (2013)] or SAFARI [B. Jackson et al., IEEE Trans. Terahertz Sci. Technol. 2, 12 (2012)]) is described in more detail. The numerical design and verification tools (static and dynamic finite element method (FEM) models) are discussed together with their required input, i.e., the magnetic-field dependent permeability data. Next, the actual manufacturing of the shields is described, including a method to create a superconducting joint between the two superconducting shield elements that avoid flux penetration through the seam. The final part of the paper presents the experimental verification of the model predictions and the validation of the shield's performance. The shields were cooled through the superconducting transition temperature of niobium in zero applied magnetic field (<10 nT) or in a DC field with magnitude ∼100 μT, applied either along the system's symmetry axis or perpendicular to it. After cool-down, DC trapped flux profiles were measured along the shield axis with a flux-gate magnetometer and the attenuation of externally applied AC fields (100 μT, 0.1 Hz, both axial and transverse) was verified along this axis with superconducting quantum interference device magnetometers. The system's measured on-axis shielding factor is greater than 10 6 , well exceeding the requirement of the envisaged missions. Following field-cooling in an axial field of 85 μT, the residual internal DC field normal to the detector plane is less than 1 μT. The trapped field patterns are compared to the predictions of the dynamic FEM model, which describes them well in the region where the internal field exceeds 6 μT.
Development of a Body Shield for Small Animal PET System to Reduce Random and Scatter Coincidences
NASA Astrophysics Data System (ADS)
Wada, Yasuhiro; Yamamoto, Seiichi; Watanabe, Yasuyoshi
2015-02-01
For small animal positron emission tomography (PET) research using high radioactivity, such as dynamic studies, the resulting high random coincidence rate of the system degrades image quality. The random coincidence rate is increased not only by the gamma photons from inside the axial-field-of-view (axial-FOV) of the PET system but also by those from outside the axial-FOV. For brain imaging in small animal studies, significant interference is observed from gamma photons emitted from the body. Single gamma photons from the body enter the axial-FOV and increase the random and scatter coincidences. Shielding against the gamma photons from outside the axial-FOV would improve the image quality. For this purpose, we developed a body shield for a small animal PET system, the microPET Primate 4-ring system, and evaluated its performance. The body shield is made of 9-mm-thick lead and it surrounds most of a rat's body. We evaluated the effectiveness of the body shield using a head phantom and a body phantom with a radioactivity concentration ratio of 1:2 and a maximum total activity of approximately 250 MBq. The random coincidence rate was dramatically decreased to 1/10, and the noise equivalent count rate (NECR) was increased 6 times with an activity of 7 MBq in the head phantom. The true count rate was increased to 35% due to the decrease in system deadtime. The average scatter fraction was decreased to 1/2.5 with the body shield. Count rate measurements of rat were also conducted with an injection activity of approximately 25 MBq of [C-11]N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([C-11]DASB) and approximately 70 and 310 MBq of 2-deoxy-2-(F-18)fluoro-D-glucose ([F-18]FDG). Using the body shield, [F-18]FDG images of rats were improved by increasing the amount of radioactivity injected. The body shield designed for small animal PET systems is a promising tool for improving image quality and quantitation accuracy in small animal molecular imaging research.
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Effect of vacuum processing on outgassing within an orbiting molecular shield
NASA Technical Reports Server (NTRS)
Outlaw, R. A.
1982-01-01
The limiting hydrogen number density in an orbiting molecular shield is highly dependent on the outgassing rates from the materials of construction for the shield, experimental apparatus, and other hardware contained within the shield. Ordinary degassing temperatures used for ultrahigh vacuum studies (less than 450 C) are not sufficient to process metals so that the contribution to the number density within the shield due to outgassing is less than the theoretically attainable level (approximately 200 per cu. cm). Pure aluminum and type 347 stainless steel were studied as candidate shield materials. Measurements of their hydrogen concentration and diffusion coefficients were made, and the effects of high temperature vacuum processing (greater than 600 C) on their resulting outgassing rates was determined. The densities in a molecular shield due to the outgassing from either metal were substantially less ( 0.003) than the density due to the ambient atomic hydrogen flux at an orbital altitude of 500 km.
The Local Tissue Environment During the September 29, 1989 Solar Particle Event
NASA Technical Reports Server (NTRS)
Kim, M.-H. Y.; Wilson, J. W.; Cucinotta, F. A.; Simonsen, L. C.; Atwell, W.; Badavi, F. F.; Miller, J.
2004-01-01
The solar particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 GeV/amu with an energy power index of 2.5. These high charge and energy (HZE) ions of the iron-rich SPEs challenge conventional methods of SPE shield design and assessment of astronaut risks. Shield and risk assessments are evaluated using the HZETRN code with computerized anatomical man (CAM) model for astronaut s body tissues. Since the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels. Typical space suit and lightly shielded structures allow significant contributions from HZE components to some critical body tissues and have important implications on the models for risk assessment. Only a heavily shielded equipment room of a space vehicle or habitat provides sufficient shielding for the early response at sensitive organs from this event. The February 23, 1956 event of similar spectral characteristics and ten times this event may have important medical consequences without a well-shielded region.
77 FR 36129 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... (AD) for certain Bombardier, Inc. Model CL-600-2C10 (Regional Jet Series 700, 701, & 702) airplanes, Model CL-600-2D15 (Regional Jet Series 705) airplanes, and Model CL-600-2D24 (Regional Jet Series 900... the wing box and fuel tubes, and protective shields on the rudder quadrant support-beam in the aft...
Neutron shielding behavior of thermoplastic natural rubber/boron carbide composites
NASA Astrophysics Data System (ADS)
Mat Zali, Nurazila; Yazid, Hafizal; Megat Ahmad, Megat Harun Al Rashid
2018-01-01
Many shielding materials have been designed against the harm of different types of radiation to the human body. Today, polymer-based lightweight composites have been chosen by the radiation protection industry. In the present study, thermoplastic natural rubber (TPNR) composites with different weight percent of boron carbide (B4C) fillers (0% to 30%) were fabricated as neutron shielding through melt blending method. Neutron attenuation properties of TPNR/B4C composites have been investigated. The macroscopic cross section (Σ), half value layer (HVL) and mean free path length (λ) of the composites have been calculated and the transmission curves have been plotted. The obtained results show that Σ, HVL and λ greatly depend on the B4C content. Addition of B4C fillers into TPNR matrix were found to enhance the macroscopic cross section values thus decrease the mean free path length (λ) and half value layer (HVL) of the composites. The transmission curves exhibited that the neutron transmission of the composites decreased with increasing shielding thickness. These results showed that TPNR/B4C composites have high potential for neutron shielding applications.
Experimental Shielding Evaluation of the Radiation Protection Provided by Residential Structures
NASA Astrophysics Data System (ADS)
Dickson, Elijah D.
The human health and environmental effects following a postulated accidental release of radioactive material to the environment has been a public and regulatory concern since the early development of nuclear technology and researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to research and develop the technical basis for contemporary building shielding factors for the U.S. housing stock. Building shielding factors quantify the protection a certain building-type provides from ionizing radiation. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950's era suburbia and is no longer applicable to the densely populated urban environments seen today. To analyze a building's radiation shielding properties, the ideal approach would be to subject a variety of building-types to various radioactive materials and measure the radiation levels in and around the building. While this is not entirely practicable, this research uniquely analyzes the shielding effectiveness of a variety of likely U.S. residential buildings from a realistic source term in a laboratory setting. Results produced in the investigation provide a comparison between theory and experiment behind building shielding factor methodology by applying laboratory measurements to detailed computational models. These models are used to develop a series of validated building shielding factors for generic residential housing units using the computational code MCNP5. For these building shielding factors to be useful in radiologic consequence assessments and emergency response planning, two types of shielding factors have been developed for; (1) the shielding effectiveness of each structure within a semi-infinite cloud of radioactive material, and (2) the shielding effectiveness of each structure from contaminant deposition on the roof and surrounding surfaces. For example, results from this investigation estimate the building shielding factors from a semi-infinite plume between comparable two-story models with a basement constructed with either brick-and-mortar or vinyl siding composing the exterior wall weather and a typical single-wide manufactured home with vinyl siding to be 0.36, 0.65, and 0.82 respectively.
Cross Section Sensitivity and Propagated Errors in HZE Exposures
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.
2005-01-01
It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.
NASA Astrophysics Data System (ADS)
Yao, Kai; Wu, Xueyan; An, Zhentao
2017-01-01
A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni-Fe-P and Ni-P alloy on copper-coated polyethylene terephthalate (PET) fabric. The effects of coating composition and the deposition rate were discussed by the current density, temperature and pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The EMI shielding effectiveness and corrosion resistance were also tested. The results fabric possesses dense, smooth, and uniform coating, when the processing conditions are 60°C, pH=1.5, and current density =8.7A/dm2. The coating fabric consists of amorphous Ni-Fe-P alloy with 16.62% P (weight percent), which has excellent of corrosion resistance. By contrast the EMI shielding effectiveness of amorphous Ni-Fe-P was better than amorphous Ni-P. The EMI shielding effectiveness of this coated fabric achieves 69.20dB-80.30dB in a broad frequency range between 300 kHz˜1.5 GHz.
Hurmerinta, Kirsti; Rice, David; Suomalainen, Anni
2016-01-01
Objectives: Lateral cephalometric radiography is a common radiographic examination technique in children. The exclusion of the thyroid gland from the primary X-ray beam is important especially with children. However, patient treatment might require displaying the four most cranial cervical vertebrae (C1–C4) for the assessment of cervical vertebral maturation. Our aim was to present a safe way to display C1–C4 and exclude the thyroid gland from the X-ray beam during lateral cephalometric radiography. Methods: The thyroid glands of 25, 7- to 12-year-old patients were localized by ultrasound examination and shielded prior to lateral cephalometric radiography. A roentgen-positive mark was taped on the patient's skin at the level of most cranial level of the thyroid gland in the midsagittal plane. After exposure, each lateral cephalometric radiograph (LCR) was analyzed for the visibility of the cervical vertebrae. The distance between the ear post and the highest edge of the thyroid shield (TS) at the lateral part of the neck was measured and compared with the distance between the centre of the radiological external auditory meatus, and a roentgen-positive mark was made on the LCR. Results: 68% of the LCRs displayed C1–C4, and the rest of them displayed C1–C3. In all of the patients, the highest edge of the TS in the lateral parts of the neck was located in a higher position than the actual most cranial level of the thyroid gland. Conclusions: Despite localizing the thyroid gland prior to lateral cephalometric radiography, simultaneous visualization of C1–C4 and exclusion of the thyroid gland from the primary X-ray beam during lateral cephalometric radiography might not be completely possible in children because of the design and poor fitness of the TS. PMID:26764584
77 FR 16490 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
...-2C10 (Regional Jet Series 700, 701, & 702) airplanes, Model CL-600-2D15 (Regional Jet Series 705) airplanes, and Model CL-600-2D24 (Regional Jet Series 900) airplanes. This proposed AD was prompted by... and fuel tubes, and protective shields on the rudder quadrant support-beam in the aft equipment...
NASA Astrophysics Data System (ADS)
Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen
1999-09-01
Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.
[An individual facial shield for a sportsman with an orofacial injury].
de Baat, C; Peters, R; van Iperen-Keiman, C M; de Vleeschouwer, M
2005-05-01
Facial shields are used when practising contact sports, high speed sports, sports using hard balls, sticks or bats, sports using protective shields or covers, and sports using hard boardings around the sports ground. Examples of facial shields are commercially available, per branch of sport standardised helmets. Fabricating individual protective shields is primarily restricted to mouth guards. In individual cases a more extensive facial shield is demanded, for instance in case of a surgically stabilised facial bone fracture. In order to be able to fabricate an extensive individual facial shield, an accurate to the nearest model of the anterior part of the head is required. An accurate model can be provided by making an impression of the face, which is poured in dental stone. Another method is producing a stereolithographic model using computertomography or magnetic resonance imaging. On the accurate model the facial shield can be designed and fabricated from a strictly safe material, such as polyvinylchloride or polycarbonate.
Investigation of the strength of shielded and unshielded underwater electrical cables
NASA Astrophysics Data System (ADS)
Glowe, D. E.; Arnett, S. L.
1981-09-01
The mechanical properties of shielded and unshielded submarine cables (MIL-C-915/8E) were investigated to determine the effect of shielding on cable life, performance, and reliability. Ten cables (five shielded and five unshielded) were selected for laboratory evaluation. A mission profile was developed to establish the mechanical stress limits that cables must endure in service and a test sequence designed to measure tensile strength, flexural abrasion endurance, crush resistance, creep under static tension, and performance in a hull-stuffing tube. The results of this program showed that: (1) DSS-2 cable does not have adequate tensile strength and should have a strength member added. DSS-3 and larger cables have adequate tensile strength with or without the shield; (2) Unshielded DSS-3 type cable does not perform satisfactorily in hull-stuffing tubes; (3) Shielding is not required to meet mission profile specifications for cable crush or flexural abrasion resistance; (4) Construction parameters other than shielding can significantly affect mechanical performance of cable; (5) Unshielded cable construction can result in increased reliability since it permits a thicker single-jacket construction; and (6) Unshielded cable construction can reduce the cost of cable by 8 to 20 percent.
An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration
Chen, Shudong; Guo, Shuxu; Wang, Haofeng; He, Miao; Liu, Xiaoyan; Qiu, Yu; Zhang, Shuang; Yuan, Zhiwen; Zhang, Haiyang; Fang, Dong; Zhu, Jun
2017-01-01
The investigation depth of transient electromagnetic sensors can be effectively increased by reducing the system noise, which is mainly composed of sensor internal noise, electromagnetic interference (EMI), and environmental noise, etc. A high-sensitivity airborne transient electromagnetic (AEM) sensor with low sensor internal noise and good shielding effectiveness is of great importance for deep penetration. In this article, the design and optimization of such an AEM sensor is described in detail. To reduce sensor internal noise, a noise model with both a damping resistor and a preamplifier is established and analyzed. The results indicate that a sensor with a large diameter, low resonant frequency, and low sampling rate will have lower sensor internal noise. To improve the electromagnetic compatibility of the sensor, an electromagnetic shielding model for a central-tapped coil is established and discussed in detail. Previous studies have shown that unclosed shields with multiple layers and center grounding can effectively suppress EMI and eddy currents. According to these studies, an improved differential AEM sensor is constructed with a diameter, resultant effective area, resonant frequency, and normalized equivalent input noise of 1.1 m, 114 m2, 35.6 kHz, and 13.3 nV/m2, respectively. The accuracy of the noise model and the shielding effectiveness of the sensor have been verified experimentally. The results show a good agreement between calculated and measured results for the sensor internal noise. Additionally, over 20 dB shielding effectiveness is achieved in a complex electromagnetic environment. All of these results show a great improvement in sensor internal noise and shielding effectiveness. PMID:28106718
Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements
Terando, Adam J.; Youngsteadt, Elsa; Meineke, Emily K.; Prado, Sara G.
2017-01-01
In light of global climate change, ecological studies increasingly address effects of temperature on organisms and ecosystems. To measure air temperature at biologically relevant scales in the field, ecologists often use small, portable temperature sensors. Sensors must be shielded from solar radiation to provide accurate temperature measurements, but our review of 18 years of ecological literature indicates that shielding practices vary across studies (when reported at all), and that ecologists often invent and construct ad hoc radiation shields without testing their efficacy. We performed two field experiments to examine the accuracy of temperature observations from three commonly used portable data loggers (HOBO Pro, HOBO Pendant, and iButton hygrochron) housed in manufactured Gill shields or ad hoc, custom‐fabricated shields constructed from everyday materials such as plastic cups. We installed this sensor array (five replicates of 11 sensor‐shield combinations) at weather stations located in open and forested sites. HOBO Pro sensors with Gill shields were the most accurate devices, with a mean absolute error of 0.2°C relative to weather stations at each site. Error in ad hoc shield treatments ranged from 0.8 to 3.0°C, with the largest errors at the open site. We then deployed one replicate of each sensor‐shield combination at five sites that varied in the amount of urban impervious surface cover, which presents a further shielding challenge. Bias in sensors paired with ad hoc shields increased by up to 0.7°C for every 10% increase in impervious surface. Our results indicate that, due to variable shielding practices, the ecological literature likely includes highly biased temperature data that cannot be compared directly across studies. If left unaddressed, these errors will hinder efforts to predict biological responses to climate change. We call for greater standardization in how temperature data are recorded in the field, handled in analyses, and reported in publications.
Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack
1999-01-01
The solar-particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 A GeV with an approximate spectral slope parameter of 2.5. These high charge and energy (HZE) ions challenge conventional methods of shield design and assessment of astronaut risks. In the past, shield design and risk assessment have relied on proton shielding codes and biological response models derived from X-ray and neutron exposure data. Because the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels and distributions of linear energy transfer. Local tissue environments during the SPE of September 29, 1989, with its f= components are examined to analyze the importance of these ions to human SPE exposure. Typical space suit and lightly shielded structures leave significant contributions from HZE components to certain critical body tissues and have important implications on the models for risk assessment. A heavily shielded equipment room of a space vehicle or habitat requires knowledge of the breakup of these ions into lighter components, including neutrons, for shield design specifications.
Effects of High-Density Impacts on Shielding Capability
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Lear, Dana M.
2014-01-01
Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.
Passive magnetic shielding in MRI-Linac systems.
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M; Keall, Paul
2018-03-26
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
Passive magnetic shielding in MRI-Linac systems
NASA Astrophysics Data System (ADS)
Whelan, Brendan; Kolling, Stefan; Oborn, Brad M.; Keall, Paul
2018-04-01
Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration.
HVI Ballistic Performance Characterization of Non-Parallel Walls
NASA Technical Reports Server (NTRS)
Bohl, William; Miller, Joshua; Christiansen, Eric
2012-01-01
The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin
Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less
Campione, Salvatore; Basilio, Lorena I.; Warne, Larry Kevin; ...
2016-06-25
Our paper reports on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. But thismore » is not always the case, and a cable with multiple shields may perform similar to or worse than a cable with a single shield. Furthermore, we want to shed more light on these situations, which represent the main focus of this paper.« less
Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers
NASA Astrophysics Data System (ADS)
Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.
2016-09-01
Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.
Simple shielding reduces dose to the contralateral breast during prone breast cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Uma, E-mail: uma.goyal@gmail.com; Locke, Angela; Smith-Raymond, Lexie
Our goal was to design a prone breast shield for the contralateral breast and study its efficacy in decreasing scatter radiation to the contralateral breast in a prone breast phantom setup receiving radiation therapy designed for breast cancer. We constructed a prone breast phantom setup consisting of (1) A thermoplastic mask with a left-sided depression created by a water balloon for a breast shape; (2) 2 plastic bags to hold water in the thermoplastic mask depression; (3) 2000 mL of water to fill the thermoplastic mask depression to create a water-based false breast; (4) 1-cm thick bolus placed in themore » contralateral breast holder; (5) 2 lead (Pb) sheets, each 0.1-cm thick for blocking scatter radiation in the contralateral bolus-based false breast; (6) a prone breast board to hold the thermoplastic mask, water, bolus, and lead; (7) 9 cm solid water on top of the breast board to simulate body; (8) a diode was used to verify dose for each treatment field of the treated water-based breast; (9) metal–oxide–semiconductor-field effect transistor (MOSFET) dosimeters to measure dose to the contralateral bolus-based breast. The phantom prone breast setup was CT simulated and treatment was designed with 95% isodose line covering the treated breast. The maximum dose was 107.1%. Megavoltage (MV) port images ensured accurate setup. Measurements were done using diodes on the treated water-based breast and MOSFET dosimeters at the medial and lateral sides of the contralateral bolus-based breast without and with the Pb shield. Five treatments were done for each of the 3 data sets and recorded individually for statistical purposes. All treatments were completed with 6 MV photons at 200 cGy per treatment. The dose contributions from each of the 3 data sets including 15 treatments total without and with the prone lead shield to the medial and lateral portions of contralateral bolus-based breast were averaged individually. Unshielded dose means were 37.11 and 2.94 cGy, and shielded dose means were 12.68 and 1.54 cGy, respectively. When comparing medial and lateral portions of the contralateral bolus-based doses without and with Pb, the shield significantly reduced dose to both sides of the contralateral breast (medial p = 2.64 × 10{sup −14}, lateral p = 4.91 × 10{sup −6}). The prone 0.2-cm Pb shield significantly reduced scatter dose to the contralateral breast on the order of 2 to 3 times. Reductions may be clinically relevant for women younger than 45 years by decreasing the risk of contralateral radiation-induced breast cancer in patients receiving radiation therapy for breast cancer. This shield is simple as it would be a part of the prone breast board during treatments, but future studies are warranted for safety and efficacy clinically.« less
NASA Astrophysics Data System (ADS)
Rougier, Sylvain; Missenard, Yves; Gautheron, Cécile; Barbarand, Jocelyn; Zeyen, Hermann; Pinna, Rosella; Liégeois, Jean-Paul; Bonin, Bernard; Ouabadi, Aziouz; El-Messaoud Derder, Mohammed; Frizon de Lamotte, Dominique; Kettouche, Djouher
2013-04-01
In North Africa, Meso-Cenozoic large scale topographic swells, such as Hoggar, Tibesti or Darfur domes, are superimposed to a Paleozoic arch and basin morphology which characterizes this region. Although these topographic highs are associated to Cenozoic intraplate volcanism, their development remains poorly constrained, both from temporal and spatial points of view. This study is focused on the Tuareg Shield bulge, a topographic high where Precambrian rocks, exposed over 500000 km², can reach 2400 m above sea level (Atakor district, Hoggar, South Algeria). While presumed Cretaceous sedimentary remnants, resting unconformably over the basement, suggest a possible stage of weak topography during the Mesozoic, current high topography is emphasized by <35 Ma volcanic formations, mostly basaltic in composition. In this context, we present first apatite (U-Th)/He thermochronological data acquired across the whole swell (Rougier et al., Geology, in press). Mean ages range from 78 ± 22 Ma to 13 ± 3 Ma. These results demonstrate the existence of a widespread Eocene exhumation of the shield before volcanic activity began. In the northeastern part of the swell, Cretaceous sedimentary remnants unconformably lying on the basement close to our samples evidence that they were near the surface at that time. We show that basement rocks have thus suffered a subsequent heating stage at 60-80 °C. We also present new apatite fission track ages on same samples. Central ages range from 71 ± 6 to 285 ± 29 Ma. When track length measurements were possible, preliminary modelings of the time-temperature history were performed. As previously deduced from apatite (U-Th)/He analyzes, these modelings show that samples underwent a heating to at least 80°C before their Late Eocene exhumation. Moreover, they also indicate that samples underwent another cooling stage during Lower Cretaceous, prior to Upper Cretaceous/Paleogene heating. We interpret these results as an evidence of a large-scale subsidence stage after the Cretaceous and until the Eocene, which allowed the deposition of a 1.5 to 3 km thick sedimentary cover and a heating at ~80°C of the currently outcropping basement. During the Eocene, the establishment of a thermal anomaly beneath the Tuareg Shield lithosphere resulted in erosion of the major part of this cover and, since 35 Ma, the development of intraplate volcanism.
Radiation shielding for future space exploration missions
NASA Astrophysics Data System (ADS)
DeWitt, Joel Michael
Scope and Method of Study. The risk to space crew health and safety posed by exposure to space radiation is regarded as a significant obstacle to future human space exploration. To countermand this risk, engineers and designers in today's aerospace community will require detailed knowledge of a broad range of possible materials suitable for the construction of future spacecraft or planetary surface habitats that provide adequate protection from a harmful space radiation environment. This knowledge base can be supplied by developing an experimental method that provides quantitative information about a candidate material's space radiation shielding efficacy with the understanding that (1) shielding is currently the only practical countermeasure to mitigate the effects of space radiation on human interplanetary missions, (2) any mass of a spacecraft or planetary surface habitat necessarily alters the incident flux of ionizing radiation on it, and (3) the delivery of mass into LEO and beyond is expensive and therefore may benefit from the possible use of novel multifunctional materials that could in principle reduce cost as well as ionizing radiation exposure. The developed method has an experimental component using CR-39 PNTD and Al2O3:C OSLD that exposes candidate space radiation shielding materials of varying composition and depth to a representative sample of the GCR spectrum that includes 1 GeV 1H and 1 GeV/n 16O, 28Si, and 56Fe heavy ion beams at the BNL NSRL. The computer modeling component of the method used the Monte Carlo radiation transport code FLUKA to account for secondary neutrons that were not easily measured in the laboratory. Findings and Conclusions. This study developed a method that quantifies the efficacy of a candidate space radiation shielding material relative to the standard of polyethylene using a combination of experimental and computer modeling techniques. The study used established radiation dosimetry techniques to present an empirical weighted figure of merit (WFoM) approach that quantifies the effectiveness of a candidate material to shield space crews from the whole of the space radiation environment. The results of the WFoM approach should prove useful to designers and engineers in seeking alternative materials suitable for the construction of spacecraft or planetary surface habitats needed for long-term space exploration missions. The dosimetric measurements in this study have confirmed the principle of good space radiation shielding design by showing that low-Z¯ materials are most effective at reducing absorbed dose and dose equivalent while high-Z¯ materials are to be avoided. The relatively high WFoMs of carbon composite and lunar- and Martian-regolith composite could have important implications for the design and construction of future spacecraft or planetary surface habitats. The ground-based measurements conducted in this study have validated the heavy ion extension of FLUKA by producing normalized differential LET fluence spectra that are in good agreement with experiment.
Cytogenetic effects of high-energy iron ions: dependence on shielding thickness and material.
Durante, M; George, K; Gialanella, G; Grossi, G; La Tessa, C; Manti, L; Miller, J; Pugliese, M; Scampoli, P; Cucinotta, F A
2005-10-01
We report results for chromosomal aberrations in human peripheral blood lymphocytes after they were exposed to high-energy iron ions with or without shielding at the HIMAC, AGS and NSRL accelerators. Isolated lymphocytes were exposed to iron ions with energies between 200 and 5000 MeV/nucleon in the 0.1-1-Gy dose range. Shielding materials consisted of polyethylene, lucite (PMMA), carbon, aluminum and lead, with mass thickness ranging from 2 to 30 g/cm2. After exposure, lymphocytes were stimulated to grow in vitro, and chromosomes were prematurely condensed using a phosphatase inhibitor (calyculin A). Aberrations were scored using FISH painting. The yield of total interchromosomal exchanges (including dicentrics, translocations and complex rearrangements) increased linearly with dose or fluence in the range studied. Shielding decreased the effectiveness per unit dose of iron ions. The highest RBE value was measured with the 1 GeV/nucleon iron-ion beam at NSRL. However, the RBE for the induction of aberrations apparently is not well correlated with the mean LET. When shielding thickness was increased, the frequency of aberrations per particle incident on the shield increased for the 500 MeV/nucleon ions and decreased for the 1 GeV/nucleon ions. Maximum variation at equal mass thickness was obtained with light materials (polyethylene, carbon or PMMA). Variations in the yield of chromosomal aberrations per iron particle incident on the shield follow variations in the dose per incident particle behind the shield but can be modified by the different RBE of the mixed radiation field produced by nuclear fragmentation. The results suggest that shielding design models should be benchmarked using both physics and biological data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen
2015-09-14
We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less
Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation
NASA Astrophysics Data System (ADS)
Martukanitz, R. P.; Babu, S. S.
2004-06-01
A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... manufacturer. We are issuing this AD to increase the level of protection from lightning strikes and prevent the... of protection from lightning strikes and prevent the potential of ignition sources inside fuel tanks... existing unshielded fuel quantity indication system (FQIS) wire bundles with double shielded FQIS wire...
Bottini, Gualberto; Moyna, Guillermo
2018-02-01
The relative strengths of aromatic and aliphatic C-H⋅⋅⋅X hydrogen bonds in imidazolium ionic liquids were investigated through measurement of H/D isotope effects on the 19 F nuclear shielding of deuterated isotopologues of 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate ([C 4 mim]PF 6 and [C 4 mim]BF 4 ). Δ 19 F(H,D) values ranging from 9.7 to 49.7 ppb were observed for [C 4 mim]PF 6 isotopologues, while for the [C 4 mim]BF 4 series these went from 26.2 to 83.8 ppb. Our findings indicate that the interactions between the fluorinated anions and protons on the C-1' and C-1″ position of the N-alkyl sidechains are comparable to, and in some cases stronger than, those involving protons on the aromatic ring, underscoring the role that these weak interionic forces have on the local ordering of imidazolium salts in the liquid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Prediction and measurement of radiation damage to CMOS devices on board spacecraft
NASA Technical Reports Server (NTRS)
Cliff, R. A.; Danchenko, V.; Stassinopoulos, E. G.; Sing, M.; Brucker, G. J.; Ohanian, R. S.
1976-01-01
The initial results obtained from the Complementary Metal Oxide Semiconductors Radiation Effects Measurement experiment are presented. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on the ground simulation experiment with Co 60, indicated that the measured space damage is greater than predicted by a factor of two for shields thicker than 100 mils (2.54 mm), but agrees well with predictions for the thinner shields.
Carbon recovery dynamics following disturbance by selective logging in Amazonian forests
Piponiot, Camille; Sist, Plinio; Mazzei, Lucas; Peña-Claros, Marielos; Putz, Francis E; Rutishauser, Ervan; Shenkin, Alexander; Ascarrunz, Nataly; de Azevedo, Celso P; Baraloto, Christopher; França, Mabiane; Guedes, Marcelino; Honorio Coronado, Eurídice N; d'Oliveira, Marcus VN; Ruschel, Ademir R; da Silva, Kátia E; Doff Sotta, Eleneide; de Souza, Cintia R; Vidal, Edson; West, Thales AP; Hérault, Bruno
2016-01-01
When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors’ and recruits’ C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21 ±3 Mg C ha-1) than in the south (12 ±3 Mg C ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia. DOI: http://dx.doi.org/10.7554/eLife.21394.001 PMID:27993185
An evaluation of radiation damage to solid state components flown in low earth orbit satellites.
Shin, Myung-Won; Kim, Myung-Hyun
2004-01-01
The effects of total ionising radiation dose upon commercial off-the-shelf semiconductors fitted to satellites operating in low Earth orbit (LEO) conditions was evaluated. The evaluation was performed for the Korea Institute of Technology SATellite-1, (KITSAT-1) which was equipped with commercial solid state components. Two approximate calculation models for space radiation shielding were developed. Verification was performed by comparing the results with detailed three-dimensional calculations using the Monte-Carlo method and measured data from KITSAT-1. It was confirmed that the developed approximate models were reliable for satellite shielding calculations. It was also found that commercial semiconductor devices, which were not radiation hardened, could be damaged within their lifetime due to the total ionising dose they are subject to in the LEO environment. To conclude, an intensive shielding analysis should be considered when commercial devices are used.
Description of Transport Codes for Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.
2011-01-01
This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.
Temperature Compensated Piezoelectric Materials
1976-06-01
and indicated no major phase changes between room temperature and the melting point of LijSiO-,. Various shielding — 1 .2- arrangements and...experiments. The DTA experiments showed a small endothermic peak at about 1030° and then the melting point at 1200oC. High temperature x-ray diffraction... melting point was lowered about 150° es* so that a boule could be grown without extraneous heat shields, but the boulep were still cracked. A thin
Analyses of risks associated with radiation exposure from past major solar particle events
NASA Technical Reports Server (NTRS)
Weyland, Mark D.; Atwell, William; Cucinotta, Francis A.; Wilson, John W.; Hardy, Alva C.
1991-01-01
Radiation exposures and cancer induction/mortality risks were investigated for several major solar particle events (SPE's). The SPE's included are: February 1956, November 1960, August 1972, October 1989, and the September, August, and October 1989 events combined. The three 1989 events were treated as one since all three could affect a single lunar or Mars mission. A baryon transport code was used to propagate particles through aluminum and tissue shield materials. A free space environment was utilized for all calculations. Results show the 30-day blood forming organs (BFO) limit of 25 rem was surpassed by all five events using 10 g/sq cm of shielding. The BFO limit is based on a depth dose of 5 cm of tissue, while a more detailed shield distribution of the BFO's was utilized. A comparison between the 5 cm depth dose and the dose found using the BFO shield distribution shows that the 5 cm depth value slightly higher than the BFO dose. The annual limit of 50 rem was exceeded by the August 1972, October 1989, and the three combined 1989 events with 5 g/sq cm of shielding. Cancer mortality risks ranged from 1.5 to 17 percent at 1 g/sq cm and 0.5 to 1.1 percent behind 10 g/sq cm of shielding for five events. These ranges correspond to those for a 45 year old male. It is shown that secondary particles comprise about 1/3 of the total risk at 10 g/sq cm of shielding. Utilizing a computerized Space Shuttle shielding model to represent a typical spacecraft configuration in free space at the August 1972 SPE, average crew doses exceeded the BFO dose limit.
Liu, George Y; Doran, Kelly S; Lawrence, Toby; Turkson, Nicole; Puliti, Manuela; Tissi, Luciana; Nizet, Victor
2004-10-05
Group B Streptococcus (GBS) is a major cause of pneumonia, bacteremia, and meningitis in neonates and has been found to persist inside host phagocytic cells. The pore-forming GBS beta-hemolysin/cytolysin (betaH/C) encoded by cylE is an important virulence factor as demonstrated in several in vivo models. Interestingly, cylE deletion results not only in the loss of betaH/C activity, but also in the loss of a carotenoid pigment of unknown function. In this study, we sought to define the mechanism(s) by which cylE may contribute to GBS phagocyte resistance and increased virulence potential. We found that cylE-deficient GBS was more readily cleared from a mouse's bloodstream, human whole blood, and isolated macrophage and neutrophil cultures. Survival was linked to the ability of betaH/C to induce cytolysis and apoptosis of the phagocytes. At a lower bacterial inoculum, cylE also contributed to enhanced survival within phagocytes that was attributed to the ability of carotenoid to shield GBS from oxidative damage. In oxidant killing assays, cylE mutants were shown to be more susceptible to hydrogen peroxide, hypochlorite, superoxide, and singlet oxygen. Together, these data suggest a mechanism by which the linked cylE-encoded phenotypes, betaH/C (sword) and carotenoid (shield), act in partnership to thwart the immune phagocytic defenses.
Space mapping method for the design of passive shields
NASA Astrophysics Data System (ADS)
Sergeant, Peter; Dupré, Luc; Melkebeek, Jan
2006-04-01
The aim of the paper is to find the optimal geometry of a passive shield for the reduction of the magnetic stray field of an axisymmetric induction heater. For the optimization, a space mapping algorithm is used that requires two models. The first is an accurate model with a high computational effort as it contains finite element models. The second is less accurate, but it has a low computational effort as it uses an analytical model: the shield is replaced by a number of mutually coupled coils. The currents in the shield are found by solving an electrical circuit. Space mapping combines both models to obtain the optimal passive shield fast and accurately. The presented optimization technique is compared with gradient, simplex, and genetic algorithms.
Numerical and Analytical Model of an Electrodynamic Dust Shield for Solar Panels on Mars
NASA Technical Reports Server (NTRS)
Calle, C. I.; Linell, B.; Chen, A.; Meyer, J.; Clements, S.; Mazumder, M. K.
2006-01-01
Masuda and collaborators at the University of Tokyo developed a method to confine and transport particles called the electric curtain in which a series of parallel electrodes connected to an AC source generates a traveling wave that acts as a contactless conveyor. The curtain electrodes can be excited by a single-phase or a multi-phase AC voltage. A multi-phase curtain produces a non-uniform traveling wave that provides controlled transport of those particles [1-6]. Multi-phase electric curtains from two to six phases have been developed and studied by several research groups [7-9]. We have developed an Electrodynamic Dust Shield prototype using threephase AC voltage electrodes to remove dust from surfaces. The purpose of the modeling work presented here is to research and to better understand the physics governing the electrodynamic shield, as well as to advance and to support the experimental dust shield research.
International Space Station (ISS) Meteoroid/Orbital Debris Shielding
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.
1999-01-01
Design practices to provide protection for International Space Station (ISS) crew and critical equipment from meteoroid and orbital debris (M/OD) Impacts have been developed. Damage modes and failure criteria are defined for each spacecraft system. Hypervolocity Impact -1 - and analyses are used to develop ballistic limit equations (BLEs) for each exposed spacecraft system. BLEs define Impact particle sizes that result in threshold failure of a particular spacecraft system as a function of Impact velocity, angles and particle density. The BUMPER computer code Is used to determine the probability of no penetration (PNP) that falls the spacecraft shielding based on NASA standard meteoroid/debris models, a spacecraft geometry model, and the BLEs. BUMPER results are used to verify spacecraft shielding requirements Low-weight, high-performance shielding alternatives have been developed at the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) to meet spacecraft protection requirements.
Methodology for worker neutron exposure evaluation in the PDCF facility design.
Scherpelz, R I; Traub, R J; Pryor, K H
2004-01-01
A project headed by Washington Group International is meant to design the Pit Disassembly and Conversion Facility (PDCF) to convert the plutonium pits from excessed nuclear weapons into plutonium oxide for ultimate disposition. Battelle staff are performing the shielding calculations that will determine appropriate shielding so that the facility workers will not exceed target exposure levels. The target exposure levels for workers in the facility are 5 mSv y(-1) for the whole body and 100 mSv y(-1) for the extremity, which presents a significant challenge to the designers of a facility that will process tons of radioactive material. The design effort depended on shielding calculations to determine appropriate thickness and composition for glove box walls, and concrete wall thicknesses for storage vaults. Pacific Northwest National Laboratory (PNNL) staff used ORIGEN-S and SOURCES to generate gamma and neutron source terms, and Monte Carlo (computer code for) neutron photon (transport) (MCNP-4C) to calculate the radiation transport in the facility. The shielding calculations were performed by a team of four scientists, so it was necessary to develop a consistent methodology. There was also a requirement for the study to be cost-effective, so efficient methods of evaluation were required. The calculations were subject to rigorous scrutiny by internal and external reviewers, so acceptability was a major feature of the methodology. Some of the issues addressed in the development of the methodology included selecting appropriate dose factors, developing a method for handling extremity doses, adopting an efficient method for evaluating effective dose equivalent in a non-uniform radiation field, modelling the reinforcing steel in concrete, and modularising the geometry descriptions for efficiency. The relative importance of the neutron dose equivalent compared with the gamma dose equivalent varied substantially depending on the specific shielding conditions and lessons were learned from this effect. This paper addresses these issues and the resulting methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasso, A.; Ferrari, A.; Ferrari, A.
In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less
Communication: The absolute shielding scales of oxygen and sulfur revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena
2015-03-07
We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolutemore » shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.« less
Imanaka, T
2001-09-01
A transport calculation of the neutrons leaked to the environment by the JCO criticality accident was carried out based on three-dimensional geometrical models of the buildings within the JCO territory. Our work started from an initial step to simulate the leakage process of neutrons from the precipitation tank, and proceeded to a step to calculate the neutron propagation throughout the JCO facilities. The total fission number during the accident in the precipitation tank was evaluated to be 2.5 x 10(18) by comparing the calculated neutron-induced activities per 235U fission with the measured values in a stainless-steel net sample taken 2 m from the precipitation tank. Shield effects by various structures within the JCO facilities were evaluated by comparing the present results with a previous calculation using two-dimensional models which suppose a point source of the fission spectrum in the air above the ground without any shield structures. The shield effect by the precipitation tank, itself, was obtained to be a factor of 3. The shield factor by the conversion building varied between 1.1 and 2, depending on the direction from the building. The shield effect by the surrounding buildings within the JCO territory was between I and 5, also depending on the direction.
Haba, Y; Twyman, N; Thomas, S J; Overton, C; Dendy, P; Burnet, N G
2004-05-01
Cancer in pregnancy is relatively uncommon, but constitutes a major problem. We report the measurement of scatter dose to the fetus and the estimated fetal risk from that exposure in an illustrative case of a patient, 20 weeks pregnant, with a grade 3 anaplastic astrocytoma. A clinical decision was made to withhold radiotherapy, if possible, until after delivery. Sequential magnetic resonance imaging (MRI) showed no progression during the pregnancy. In the event, she was managed conservatively until the successful completion of her pregnancy. In case radiotherapy was required, an estimation of the fetal risk was made. Phantom measurements were undertaken to assess the likely fetal dose. Film badges were used to estimate the scattered radiation energy. Measurements were made on a Varian 600C at 6 MV and Asea Brown Boveri (ABB) accelerator at 8 and 16 MV. Doses were measured at 30, 45 and 60 cm from the isocentre; the fetus was assumed to lie at about 60 cm and not closer than 45 cm from the isocentre. Estimated doses to the position of the fetus were lowest with the 6 MV Varian accelerator. Using this machine without additional abdominal shielding, the estimated dose on the surface at 45 cm from the tumour volume was 2.2 cGy for a tumour dose of 54 Gy; using the ABB accelerator, the dose varied between 49-59 cGy. The energy of scattered radiation was in the range 208-688 keV, so that additional shielding would be practical to further reduce the fetal dose. The risk of cancer up to the age of 15 years attributable to radiation is 1 in 1700 per cGy, of which half will be fatal (i.e. 1 in 3300 per cGy). A dose of 2.2 cGy adds a risk of fatal cancer by the age 15 years of only 1 in 1500. Because the addition of shielding might halve the fetal dose, this risk should be reduced to 1 in 3000. For comparison, the overall UK risk of cancer up to the age 15 years is 1 in 650. In conclusion, careful choice of linear accelerator for the treatment of a pregnant woman and the use of additional shielding is valuable, as this can dramatically affect fetal dose.
NASA Astrophysics Data System (ADS)
Rai, Arun Kumar; Vijayashanthi, N.; Tripathy, H.; Hajra, R. N.; Raju, S.; Murugesan, S.; Saroja, S.
2017-11-01
In the present study, the feasibility of employing the indigenously developed ferroboron alloy (Fe-15 wt.%B) as an alternate neutron shield material in combination with 9Cr-based ferritic steel (P91) clad in future Indian fast breeder reactors (FBR), has been investigated from a metallurgical perspective. Towards this goal, a series of diffusion couple experiments have been conducted at three different temperatures namely, 600, 700 and 800 °C for time durations up to 5000 h. The thickness of interaction layer has been monitored using standard metallographic procedures. The experiments revealed that ferroboron/P91 combination exhibited a tendency to form complex intermetallic borides at the interface. The structural and microstructural characterization of the interface confirmed that the reaction layer consists predominantly of borides of Fe and Cr of type FeB, Fe2B, (Fe,Cr)2B and (Fe,Cr)B. The measured variation of interaction layer thickness as a function of time and temperature have been modelled in terms of diffusion mediated interaction. The growth kinetics of borided layer has followed the parabolic law at each temperature, and the apparent activation energy for boride layer formation is found to be of the order of 115 kJ mol-1. This indicates that the kinetics of boriding could be governed by diffusion of B into the P91 matrix. Based on the findings of present study, an extrapolative estimate of the clad attack thickness at 550 °C for 60 years of operating time has been made and it turns out to be 210 ± 15 μm, which is less than the clad thickness of FBR shielding subassembly (4 mm) [1]. Thus, this study confirms that at testing temperatures from 550 to 600 °C, the ferroboron/P91 steel combination can be safely employed for shielding subassembly applications in fast reactors.
Early Results from the Advanced Radiation Protection Thick GCR Shielding Project
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Clowdsley, Martha; Slaba, Tony; Heilbronn, Lawrence; Zeitlin, Cary; Kenny, Sean; Crespo, Luis; Giesy, Daniel; Warner, James; McGirl, Natalie;
2017-01-01
The Advanced Radiation Protection Thick Galactic Cosmic Ray (GCR) Shielding Project leverages experimental and modeling approaches to validate a predicted minimum in the radiation exposure versus shielding depth curve. Preliminary results of space radiation models indicate that a minimum in the dose equivalent versus aluminum shielding thickness may exist in the 20-30 g/cm2 region. For greater shield thickness, dose equivalent increases due to secondary neutron and light particle production. This result goes against the long held belief in the space radiation shielding community that increasing shielding thickness will decrease risk to crew health. A comprehensive modeling effort was undertaken to verify the preliminary modeling results using multiple Monte Carlo and deterministic space radiation transport codes. These results verified the preliminary findings of a minimum and helped drive the design of the experimental component of the project. In first-of-their-kind experiments performed at the NASA Space Radiation Laboratory, neutrons and light ions were measured between large thicknesses of aluminum shielding. Both an upstream and a downstream shield were incorporated into the experiment to represent the radiation environment inside a spacecraft. These measurements are used to validate the Monte Carlo codes and derive uncertainty distributions for exposure estimates behind thick shielding similar to that provided by spacecraft on a Mars mission. Preliminary results for all aspects of the project will be presented.
Development of fiber shields for engine containment. [mathematical models
NASA Technical Reports Server (NTRS)
Bristow, R. J.; Davidson, C. D.
1977-01-01
Tests were conducted in translational launchers and spin pits to generate empirical data used in the design of a Kevlar shield for containing engine burst debris. Methods are given for modeling the relationship of fragment characteristics to shielding requirements. The change in relative importance of shield mounting provisions as fragment energy is increased is discussed.
ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M
2013-01-01
en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuelmore » packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose to as low as 29 mrem/hour with head loss on the order of 1.9 J/kg.« less
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this report; and the ARRBOD GUI product is explained step by step in order to serve as a tutorial.
Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding
NASA Technical Reports Server (NTRS)
Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.
2014-01-01
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.
X-Ray Computed Tomography Inspection of the Stardust Heat Shield
NASA Technical Reports Server (NTRS)
McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio;
2010-01-01
The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields.
Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya
2011-03-01
A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids. We developed an MF seal that has a "shield" mechanism, and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Three types of MF seals were used. Seal A was a conventional seal without a shield. Seal B had the same structure as that of Seal A, but the seal was installed at 1 mm below liquid level. Seal C was a seal with a shield and the MF was set at 1 mm below liquid level. Seal A failed after 6 and 11 days. Seal B showed better results (20 and 73 days). Seal C showed long-term durability (217 and 275 days). The reason for different results in different seal structures was considered to be different flow conditions near the magnetic fluid. Fluid dynamics near the MF in the pump were analyzed using computational fluid dynamics (CFD) software. We have developed an MF seal with a shield that works in liquid for >275 days. The MF seal is promising as a shaft seal for rotary blood pumps.
NUCLEAR-MAGNETIC-RESONANCE STUDIES OF HYDROGEN BONDING (thesis)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J.C. Jr.
1959-10-26
The nuclear-magnetic-resonance spectra of hydrogen bonding systems in noninteracting solvents were studied at several concentrations at 20 to 100 deg C. Chemical shifts mic, acetic, and benzoic acids in benzene. The shifts characteristic of the monomer and dimer species were calculated. Shieldings of the monomer species were calculated to be of the same order as those of alcohol monomers. The dimer shieldings were found to be in the range of 300 to 400 cps below the benzene reference. The dimer shieldings increase with the strength of the hydrogen bond. Chemical shifts were also measured for methanol, etanol, isopropanol, and tertiarymore » butanol in carbon tetrschloride and for ethanol in benzene. The enthalpies of dimerization were estimated from the change in the limiting slopes of shift vs. concentration curves with temperature and found to be --9.3 plus or minus 2.5, --7.4 plus or minus 2.0, --6.5 plus or minus 1.5, --5.4 plus or minus 1.8, and--5.6 plu11.6 kcal per mole of dimer, respectively. At 22 deg C, the dimerization constant for ethanol in carbon tetrachloride is 11.0 for a cyclic dimer and twice this for a linear dimer. Probable higher polymers were estimated for the ethanol system, and the experimental data were fitted by adjusting polymer shieldings and equilibrium constants. (auth)« less
Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Shouju; Kang Chengang; Sun, Wei
2010-05-21
Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.
2007-06-01
4.2 Creating the Skybox and Terrain Model .........................................................................7 4.3 Creating New Textures... Skybox and Terrain Model The next step was to build a sky box. Since it already resided in Raven Shield, the creation of the sky box was limited to
Optimizing moderation of He-3 neutron detectors for shielded fission sources
Rees, Lawrence B.; Czirr, J. Bart
2012-07-10
Abstract: The response of 3-He neutron detectors is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the 3-He. If there is too much moderation, neutrons will not reach the 3-He. In applications for portal or border monitors where 3He detectors are used to interdict illicit Importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around 3-He tubesmore » is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of 3-He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a 252-Cf source placed in the center of spheres of water of varying radius. Detector efficiency as a function of box geometry and shielding are explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that benefits are limited if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the 3He tubes, however, is very important. For bare sources, about 5-6 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0-1 cm. A two-tube box with a moderator thickness of 5 cm in front of the first tube and a thickness of 1 cm in front of the second tube is proposed to improve the detector's sensitivity to lower-energy neutrons.« less
NASA Astrophysics Data System (ADS)
Crabtree, Stephen M.; Huber, Abigail; Beck, Karl
2017-05-01
Blue Rock is a basaltic shield volcano in the southern Oregon Cascades, north of Mt. McLoughlin, showing bulk phenocryst abundances ranging from 5 to 28 vol%, and a variety of groundmass textures. Compositional analyses of olivine and plagioclase phenocrysts and glomerocrysts allowed for the sequential application of a new {D}_{Ni}^{olivine-melt} thermometer, a plagioclase-melt hygrometer, and a viscosity model to define olivine-in conditions for a suite of lavas erupted from this edifice. Calculated olivine-in temperatures were compared to results from the anhydrous MELTS model, and the D (Mg) model of Beattie (1993). Model results were consistent with experimental data for hydrous arc basalts with respect to temperature (1053-1146 °C), dissolved-H2O contents (0.9-2.4 wt% H2O), and viscosity (1.9-2.2 log10 Pa s), confirming the utility of these models in assessing the thermodynamic properties of mafic, hydrous arc lavas over a broad range in crystallinity, requiring only the completion of bulk geochemical and microprobe analyses. These studies also reinforced the significant and predictable role of water, affecting the compositions of crystals grown during magmatic ascent, and allowed the definition of a reasonable multi-stage eruptive sequence consistent with the degassing of magmas on ascent in the formation of this small-scale basaltic edifice.
NASA Astrophysics Data System (ADS)
Mansour, Walid Ben; England, Richard W.; Fishwick, Stewart; Moorkamp, Max
2018-04-01
The presence of high mountains along passive margins is not unusual, as shown by their presence in several regions (Scandinavia, Greenland, East US, SW Africa, Brazil, West India and SE Australia). However, the origin of this topography is not well understood. The mountain range between the Scandinavian passive margin and the Fennoscandian shield is a good example. A simple Airy isostatic model would predict a compensating root beneath the mountains but existing seismic measurements of variations in crustal thickness do not provide evidence of a root of sufficient size to produce the necessary compensation. In order to better constrain the physical properties of the crust in northern Scandinavia two broadband seismic networks were deployed between 2007 and 2009 and between 2013 and 2014. A new map of crustal thickness has been produced from P-receiver function analysis of teleseismic data recorded at 31 seismic stations. The map shows an increase in crustal thickness from the Atlantic coast (38.7 +/- 1.8 km) to the Gulf of Bothnia (43.5 +/- 2.4 km). This gradient in thickness demonstrates that the Moho topography does not mirror the variation in surface topography in this region. Thus, classical Airy isostatic models cannot explain how the surface topography is supported. New maps showing variation in Poisson's ratio and Moho sharpness together with forward and inverse modelling provide new information about the contrasting properties of the Fennoscandian shield and crust reworked by the Caledonian orogeny. A sharp Moho transition (R > 1) and low value of Vs (3.5 +/- 0.2 km.s-1) are observed beneath the orogen. The shield is characterised by a gradual transition across the Moho (R < 1) and Vs of (3.8 +/- 0.1 km.s-1) which is more typical of average continental crust. These observations are explained by a Fennoscandian shield underplated with a thick layer of high velocity, high density material. It is proposed that this layer has been removed or reworked beneath the orogen.
Ab Initio Modeling of Molecular Radiation
NASA Technical Reports Server (NTRS)
Jaffe, Richard; Schwenke, David
2014-01-01
Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.; Marenny, A. M.; Nymmik, R. A.; Suslov, A. A.
1995-01-01
Fluxes of cosmic ray particles with different LET values were measured on board the COSMOS-2044 biosatellite under various thicknesses of shielding by stacks of CR-39 and nitrocellulose plastic nuclear track detectors (mounted outside the satellite). The component composition of the particles detected under shieldings of 0.1-2.5 g cm(exp -2) is verified by comparing experimental data with the results of model simulations of the fluxes of galactic cosmic ray particles and of radiation belt protons.
NASA Technical Reports Server (NTRS)
Marenny, A. M.; Nymmik, R. A.; Suslov, A. A.; Benton, E. V.; Frank, A. L.; Benton, E. R.
1992-01-01
Fluxes of cosmic ray particles with different LET values were measured on board the Cosmos-2044 biosatellite under various thicknesses of shielding by stacks of CR-39 and nitrocellulose plastic nuclear track detectors (mounted outside the satellite). The component composition of the particles detected under shieldings of 0.1-2.5 g cm-2 is verified by comparing experimental data with the results of model simulations of the fluxes of galactic cosmic ray particles and of radiation belt protons.
Role of a single shield in thermocouple measurements in hot air flow
NASA Astrophysics Data System (ADS)
Ma, Hongwei; Shi, Lei; Tian, Yangtao
2017-12-01
To investigate the role of a single shield on steady temperature measurement using thermocouples in hot air flow, a methodology for solving convection, conduction, and radiation in one single model is provided. In order to compare with the experimental results, a cylindrical computational domain is established, which is the same size with the hot calibration wind-tunnel. In the computational domain, two kinds of thermocouples, the bare-bead and the single-shielded thermocouples, are simulated respectively. Surface temperature distribution and the temperature measurement bias of the two typical thermocouples are compared. The simulation results indicate that: 1) The existence of the shield reduces bead surface heat flux and changes the direction of wires inner heat conduction in a colder surrounding; 2) The existence of the shield reduces the temperature measurement bias both by improving bead surface temperature and by reducing surface temperature gradient; 3) The shield effectively reduces the effect of the ambient temperature on the temperature measurement bias; 4) The shield effectively reduces the influence of airflow velocity on the temperature measurement bias.
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstrong, T. W.
1992-01-01
A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.
Santos, Sara; Graça, José
2014-01-01
Suberin is a biopolyester responsible for the protection of secondary plant tissues, and yet its molecular structure remains unknown. The C18:1 ω-hydroxyacid and the C18:1 α,ω-diacid are major monomers in the suberin structure, but the configuration of the double bond remains to be elucidated. To unequivocally define the configuration of the C18:1 suberin acids. Pure C18:1 ω-hydroxyacid and C18:1 α,ω-diacid, isolated from cork suberin, and two structurally very close C18:1 model compounds of known stereochemistry, methyl oleate and methyl elaidate, were analysed by NMR spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, and GC-MS. The GC-MS analysis showed that both acids were present in cork suberin as only one geometric isomer. The analysis of dimethyloxazoline (DMOX) and picolinyl derivatives proved the double bond position to be at C-9. The FTIR spectra were concordant with a cis-configuration for both suberin acids, but their unambiguous stereochemical assignment came from the NMR analysis: (i) the chemical shifts of the allylic (13) C carbons were shielded comparatively to the trans model compound, and (ii) the complex multiplets of the olefinic protons could be simulated only with (3) JHH and long-range (4) JHH coupling constants typical of a cis geometry. The two C18:1 suberin acids in cork are (Z)-18-hydroxyoctadec-9-enoic acid and (Z)-octadec-9-enedoic acid. Copyright © 2013 John Wiley & Sons, Ltd.
Shield fields: Concentrations of small volcanic edifices on Venus
NASA Technical Reports Server (NTRS)
Aubele, J. C.; Crumpler, L. S.
1992-01-01
Pre-Magellan analysis of the Venera 15/16 data indicated the existence of abundant small volcanic edifices, each less than or equal to 20 km diameter, interpreted to be predominantly shield volcanoes and occurring throughout the plains terrain, most common in equidimensional clusters. With the analysis of Magellan data, these clusters of greater than average concentration of small volcanic edifices have been called 'shield fields'. Although individual small shields can and do occur almost everywhere on the plains terrain of Venus, they most commonly occur in fields that are well-defined, predominantly equant, clusters of edifices. Major questions include why the edifices are concentrated in this way, how they relate to the source of the eruptive material, and what the possible relationship of shield fields to plains terrain is. There are three possible models for the origin of fields and small shields: (1) a field represents an 'island' of higher topography subsequently surrounded by later plains material; and (2) a field represents the area of magma reservoir.
NASA Technical Reports Server (NTRS)
Roth, Don J.
1991-01-01
The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.
The SRB heat shield: Aeroelastic stability during reentry
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Dowell, E. H.
1977-01-01
Wind tunnel tests of a 3% scale model of the aft portion of the SRB equipped with partially scaled heat shields were conducted for the purpose of measuring fluctuating pressure levels in the aft skirt region. During these tests, the heat shields were observed to oscillate violently, the oscillations in some instances causing the heat shields to fail. High speed films taken during the tests reveal a regular pattern of waves in the fabric starting near the flow stagnation point and progressing around both sides of the annulus. The amplitude of the waves was too great, and their pattern too regular, for them to be attributed to the fluctuating pressure levels measured during the tests. The cause of the oscillations observed in the model heat shields, and whether or not similar oscillations will occur in the full scale SRB heat shield during reentry were investigated. Suggestions for modifying the heat shield so as to avoid the oscillations are provided, and recommendations are made for a program of vibration and wind tunnel tests of reduced-scale aeroelastic models of the heat shield.
Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.
2013-01-01
NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.
Tallavaara, Pekka; Jokisaari, Jukka
2008-03-28
An alternative NMR method for determining nuclear shielding anisotropies in molecules is proposed. The method is quite simple, linear and particularly applicable for heteronuclear spin systems. In the technique, molecules of interest are dissolved in a thermotropic liquid crystal (LC) which is confined in a mesoporous material, such as controlled pore glass (CPG) used in this study. CPG materials consist of roughly spherical particles with a randomly oriented and connected pore network inside. LC Merck Phase 4 was confined in the pores of average diameter from 81 to 375 A and LC Merck ZLI 1115 in the pores of average diameter 81 A. In order to demonstrate the functionality of the method, the (13)C shielding anisotropy of (13)C-enriched methyl iodide, (13)CH(3)I, was determined as a function of temperature using one dimensional (13)C NMR spectroscopy. Methane gas, (13)CH(4), was used as an internal chemical shift reference. It appeared that methyl iodide molecules experience on average an isotropic environment in LCs inside the smallest pores within the whole temperature range studied, ranging from bulk solid to isotropic phase. In contrast, in the spaces in between the particles, whose diameter is approximately 150 microm, LCs behave as in the bulk. Consequently, isotropic values of the shielding tensor can be determined from spectra arising from molecules inside the pores at exactly the same temperature as the anisotropic ones from molecules outside the pores. Thus, for the first time in the solution state, shielding anisotropies can easily be determined as a function of temperature. The effects of pore size as well as of different LC media on the shielding anisotropy are examined and discussed.
Code of Federal Regulations, 2014 CFR
2014-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2012 CFR
2012-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2013 CFR
2013-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2010 CFR
2010-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Code of Federal Regulations, 2011 CFR
2011-10-01
....): (A) Without insulation or sun shield: 60 °C (140 °F); (B) With sun shield: 55 °C (131 °F); and (C) With insulation: 50 °C (122 °F). (3) Filling density means the average mass of liquefied compressed gas... stamped in accordance with the ASME Code, Section VIII. (2) Portable tanks must be postweld heat-treated...
Monzen, Hajime; Tamura, Mikoto; Shimomura, Kohei; Onishi, Yuichi; Nakayama, Shinichi; Fujimoto, Takahiro; Matsumoto, Kenji; Hanaoka, Kohei; Kamomae, Takeshi
2017-05-01
Tungsten functional paper (TFP), which contains 80% tungsten by weight, has radiation-shielding properties. We investigated the use of TFP for the protection of operators during interventional or therapeutic angiography. The air kerma rate of scattered radiation from a simulated patient was measured, with and without TFP, using a water-equivalent phantom and fixed C-arm fluoroscopy. Measurements were taken at the level of the operator's eye, chest, waist, and knee, with a variable number of TFP sheets used for shielding. A Monte Carlo simulation was also utilized to analyze the dose rate delivered with and without the TFP shielding. In cine mode, when the number of TFP sheets was varied through 1, 2, 3, 5, and 10, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.9%, 29.9%, 41.6%, 50.4%, and 56.2%; at chest level, 25.3%, 33.1%, 34.9%, 46.1%, and 44.3%; at waist level, 45.1%, 57.0%, 64.4%, 70.7%, and 75.2%; and at knee level, 2.1%, 2.2%, 2.1%, 2.1%, and 2.1%. In fluoroscopy mode, the respective reduction in the air kerma rate relative to no TFP shielding was as follows: at eye level, 24.8%, 30.3%, 34.8%, 51.1%, and 58.5%; at chest level, 25.8%, 33.4%, 35.5%, 45.2%, and 44.4%; at waist level, 44.6%, 56.8%, 64.7%, 71.7%, and 77.2%; and at knee level, 2.2%, 0.0%, 2.2%, 2.8%, and 2.5%. The TFP paper exhibited good radiation-shielding properties against the scattered radiation encountered in clinical settings, and was shown to have potential application in decreasing the radiation exposure to the operator during interventional radiology. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding
NASA Astrophysics Data System (ADS)
Abulfaraj, Waleed H.; Kamal, Salah M.
1994-07-01
The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.
NASA Technical Reports Server (NTRS)
Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)
1999-01-01
Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of cell killing from GCR, including patterns of cell killing from single particle tracks. can provide useful information on expected differences between proton and HZE tracks and clinical experiences with photon irradiation. To model effects on cells in the brain, it is important that transport models accurately describe changes in the GCR due to interactions in the cranium and proximate tissues. We describe calculations of the attenuated GCR particle fluxes at three dose-points in the brain and associated patterns of cell killing using biophysical models. The effects of the brain self-shielding and bone-tissue interface of the skull in modulating the GCR environment are considered. For each brain dose-point, the mass distribution in the surrounding 4(pi) solid angle is characterized using the CAM model to trace 512 rays. The CAM model describes the self-shielding by converting the tissue distribution to mass-equivalent aluminum, and nominal values of spacecraft shielding is considered. Particle transport is performed with the proton, neutron, and heavy-ion transport code HZETRN with the nuclear fragmentation model QMSFRG. The distribution of cells killed along the path of individual GCR ions is modeled using in vitro cell inactivation data for cells with varying sensitivity. Monte Carlo simulations of arrays of inactivated cells are considered for protons and heavy ions and used to describe the absolute number of cell killing events of various magnitude in the brain from the GCR. Included are simulations of positions of inactivated cells from stopping heavy ions and nuclear stars produced by high-energy ions most importantly, protons and neutrons.
Galileo Probe forebody thermal protection
NASA Technical Reports Server (NTRS)
Green, M. J.; Davy, W. C.
1981-01-01
Material response solutions for the forebody heat shield on the candidate 310-kg Galileo Probe are presented. A charring material ablation analysis predicts thermochemical surface recession, insulation thickness, and total required heat shield mass. Benchmark shock layer solutions provide the imposed entry heating environments on the ablating surface. Heat shield sizing results are given for a nominal entry into modeled nominal and cool-heavy Jovian atmospheres, and for two heat-shield property models. The nominally designed heat shield requires a mass of at least 126 kg and would require an additional 13 kg to survive entry into the less probable cool-heavy atmosphere. The material-property model with a 30% surface reflectance reduces these mass requirements by as much as 16%.
Holmes, Sean T; Iuliucci, Robbie J; Mueller, Karl T; Dybowski, Cecil
2015-11-10
Calculations of the principal components of magnetic-shielding tensors in crystalline solids require the inclusion of the effects of lattice structure on the local electronic environment to obtain significant agreement with experimental NMR measurements. We assess periodic (GIPAW) and GIAO/symmetry-adapted cluster (SAC) models for computing magnetic-shielding tensors by calculations on a test set containing 72 insulating molecular solids, with a total of 393 principal components of chemical-shift tensors from 13C, 15N, 19F, and 31P sites. When clusters are carefully designed to represent the local solid-state environment and when periodic calculations include sufficient variability, both methods predict magnetic-shielding tensors that agree well with experimental chemical-shift values, demonstrating the correspondence of the two computational techniques. At the basis-set limit, we find that the small differences in the computed values have no statistical significance for three of the four nuclides considered. Subsequently, we explore the effects of additional DFT methods available only with the GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in calculations on symmetry-adapted clusters. We demonstrate that meta-GGA functionals improve computed NMR parameters over those obtained by GGA functionals in all cases, and that hybrid functionals improve computed results over the respective pure DFT functional for all nuclides except 15N.
Effect of a semi-annular thermal acoustic shield on jet exhaust noise
NASA Technical Reports Server (NTRS)
Goodykoontz, J.
1980-01-01
The effect of a semi-annular acoustic shield on jet exhaust noise is investigated with the rationale that such a configuration would reduce or eliminate the multiple reflection mechanism. A limited range of flow conditions for one nozzle/shield configuration were studied at model scale. Noise measurements for a 10 cm conical nozzle with a semi-annular acoustical shield are presented in terms of lossless free field data at various angular locations with respect to the nozzle. Measurements were made on both the shielded and unshielded sides of the nozzle. Model scale overall sound pressure level directivity patterns and comparisons of model scale spectral data are provided. The results show that a semi-annular thermal acoustic shield consisting of a low velocity, high temperature gas stream partially surrounding a central jet exhibits lower noise levels than when the central jet is operated alone. The results are presented parametrically, showing the effects of various shield and central system velocities and temperatures.
Dickson, E D; Hamby, D M
2014-03-01
The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building's radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology.
Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil
2017-06-14
ARL-MR-0954 ● Jun 2017 US Army Research Laboratory Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a...to Extend and Shield the Magnetic Field of a Coil by W Casey Uhlig Weapons and Materials Research Directorate, ARL...Using Ferromagnetic Material to Extend and Shield the Magnetic Field of a Coil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER
NASA Technical Reports Server (NTRS)
1983-01-01
Grumman OV-1C in flight. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, P.F.; Kennedy, E.L.; McCormack, R.G.
1992-09-01
The sensitivity of modern electronic equipment has increased the need for costly electromagnetic shielding. To reduce this cost, the U.S. Army Construction Engineering Research Laboratories (USACERL) has developed a new concept for shielding design that uses 28-gauge galvanized steel and standard galvanized nails. In this study, an electromagnetically shielded structure using the concept was designed, built, and evaluated for shielding effectiveness. The galvanized material was mounted to the standard USACERL test aperture and nailed to the wooden module frame, and the shielding effectiveness of the new construction design was measured using radio frequency antennas and receivers. Evaluations showed that themore » nail-together structure proved adequate for many shielding applications. However, while the galvanized steel met most shielding application requirements, this process added multiple seams to the structure, which decreased shielding in many instances by as much as 40 dB. Electromagnetic shielding, Electromagnetic pulse C3I Facilities.« less
Heat Transfer in Metal Foam Heat Exchangers at High Temperature
NASA Astrophysics Data System (ADS)
Hafeez, Pakeeza
Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.
Internet Attack Traceback: Cross-Validation and Pebble-Trace
2013-02-28
stolen-cyber-attack. [3] Hacked: Data breach costly for Ohio State, victims of compromised info http://www.thelantern.com/campus/hacked- data ... breach -costly-for-ohio-state-victims-of-compromised-info-1.1831311. [4] S. C. Lee and C. Shields, “Tracing the Source of Network Attack: A Technical
NASA Astrophysics Data System (ADS)
Spirou, S. V.; Tsialios, P.; Loudos, G.
2015-09-01
In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.
NASA Technical Reports Server (NTRS)
Fitzgerald, B.
1973-01-01
The R-512E (Si-20Cr-20Fe) fused slurry silicide coating process was optimized to coat full size (20in x 20in) single face rib and corrugation stiffened panels fabricated from FS-85 columbium alloy for 100 mission space shuttle heat shield applications. Structural life under simulated space shuttle lift-off stresses and reentry conditions demonstrated reuse capability well beyond 100 flights for R-512E coated FS-85 columbium heat shield panels. Demonstrated coating damage tolerance showed no immediate structural failure on exposure. The FS-85 columbium alloy was selected from five candidate alloys (Cb-752, C-129Y, WC-3015, B-66 and FS-85) based on the evaluation tests which have designed to determine: (1) change in material properties due to coating and reuse; (2) alloy tolerance to coating damage; (3) coating emittance characteristics under reuse conditions; and (4) new coating chemistries for improved coating life.
Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C
2001-01-01
Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.
Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary
2016-01-01
Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Supplemental heating of deposition tooling shields
Ohlhausen, James A.; Peebles, Diane E.; Hunter, John A.; Eckelmeyer, Kenneth H.
2000-01-01
A method of reducing particle generation from the thin coating deposited on the internal surfaces of a deposition chamber which undergoes temperature variation greater than 100.degree. C. comprising maintaining the temperature variation of the internal surfaces low enough during the process cycle to keep thermal expansion stresses between the coating and the surfaces under 500 MPa. For titanium nitride deposited on stainless steel, this means keeping temperature variations under approximately 70.degree. C. in a chamber that may be heated to over 350.degree. C. during a typical processing operation. Preferably, a supplemental heater is mounted behind the upper shield and controlled by a temperature sensitive element which provides feedback control based on the temperature of the upper shield.
Liu, Xiangwen; Liu, Jingxiao; Dong, Xiaoli; Yin, Shu; Sato, Tsugio
2009-08-01
In order to obtain UV-shielding materials with good comfort, higher safety and effective UV-shielding ability, lepidocrocite type plate-like titanate (K(0.8)Li(0.27)Ti(1.73)O(4), donated as: PLT)/calcia-doped ceria (donated as: CDC) composites were synthesized by a sol-gel method. After dissolving Ce(NO(3))(3).6H(2)O and Ca(NO(3))(2).4H(2)O into absolute ethanol at 40 degrees C, glacial acetic acid (HAc) and PLT particles dispersed into absolute ethanol were added. Then, the solution was heated at 60 degrees C to get gel-like substance. This gel was dried in a vacuum oven at 333 K for 5 h, and then, the product was collected and ground in an agate mortar followed by calcination at 1073 K for 2 h to form PLT/CDC composites. By optimization, 20 mass% of CDC was coated by one operation. PLT/CDC composites with higher CDC content were obtained by repeating the coating process. The morphology, catalytic activity for the oxidation of organic material, UV-shielding ability and dynamic friction coefficient of as-obtained PLT/CDC composites were characterized. As a result, broad-spectrum UV-shielding composite materials with good comfort and low oxidation catalytic activity were successfully synthesized.
Fragmentation studies of relativistic iron ions using plastic nuclear track detectors.
Scampoli, P; Durante, M; Grossi, G; Manti, L; Pugliese, M; Gialanella, G
2005-01-01
We measured fluence and fragmentation of high-energy (1 or 5 A GeV) 56Fe ions accelerated at the Alternating Gradient Synchrotron or at the NASA Space Radiation Laboratory (Brookhaven National Laboratory, NY, USA) using solid-state CR-39 nuclear track detectors. Different targets (polyethylene, PMMA, C, Al, Pb) were used to produce a large spectrum of charged fragments. CR-39 plastics were exposed both in front and behind the shielding block (thickness ranging from 5 to 30 g/cm2) at a normal incidence and low fluence. The radiation dose deposited by surviving Fe ions and charged fragments was measured behind the shield using an ionization chamber. The distribution of the measured track size was exploited to distinguish the primary 56Fe ions tracks from the lighter fragments. Measurements of projectile's fluence in front of the shield were used to determine the dose per incident particle behind the block. Simultaneous measurements of primary 56Fe ion tracks in front and behind the shield were used to evaluate the fraction of surviving iron projectiles and the total charge-changing fragmentation cross-section. These physical measurements will be used to characterize the beam used in parallel biological experiments. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Weber, N; Monnin, P; Elandoy, C; Ding, S
2015-12-01
Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Gettings, M.E.
1982-01-01
The heat-flow profile across the Arabian Shield from Ar Riyad to Ad Darb and across the Red Sea is examined for compatibility with the lithospheric structure of the area as deduced from geologic and other geophysical data. Broad continental uplift associated with Red Sea rifting is symmetric about the Red Sea axis, and geologic and geochronologic evidence indicate that uplift has occurred mainly in the interval 25-13 Ma (mega-annum) ago. Thermal-profile changes in the upper mantle resulting from an influx of hot material associated with rifting yield the correct order of magnitude of uplift, and this mechanism is suggested as the explanation for the regional doming. A lithospheric section, constructed from seismic refraction, gravity, and regional geologic data, provides the framework for construction of thermal models. Thermal gradient measurements were made in drill holes at five shot points. Geotherms for the Shield, which assume a radiogenic heat-source distribution that decreases exponentially with depth, yield temperatures of about 450?C at a depth of 40 km (base of the crust) for shot points 2 (Sabhah) and 3. The geotherm for shot point 4 (near Bishah) yields a distinctly higher temperature (about 580?C) for the same depth. Static models used to model the heat flow in the oceanic crust of the Red Sea shelf and coastal plain either yield too small a heat flow to match the observed heat flow or give lithosphere thicknesses that are so thin as to be improbable. Dynamic (solid-state accretion) models, which account for mantle flow at the base of the lithosphere, adequately match the observed heat-flow values. In the deep-water trough of the Red Sea, which is presently undergoing active sea-floor spreading, classical models of heat flow for a moving slab with accretion at the spreading center are adequate to explain the average heat-flow level. At shot point 5 (Ad Darb), the anomalous heat flow of 2 HFU (heat-flow units) can be explained in terms of a Shield component (0.8-1.0 HFU) and a component related to heating by the abutting oceanic crust a few kilometers away for periods exceeding 10 Ma. Analytical results are included for: 1) the cooling of a static sheet with an initial temperature distribution characteristic of a moving slab in a sea-floor spreading environment, and 2) the heating of a homogeneous quarter-space at its vertical boundary.
Stueber, Dirk; Grant, David M
2002-09-04
The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.
Experimental Evaluation of a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson, J. B.; Reid, R.; Sadasivan, P.; Stewart, E.
2007-01-01
A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A representative lunar surface reactor design is evaluated at various power levels in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The evaluation compares the experimental data from the WST to CFD models. Performance of a water shield on the lunar surface is predicted by CFD models anchored to test data, and by matching relevant dimensionless parameters.
Efficacy of corneal eye shields in protecting patients' eyes from laser irradiation.
Russell, S W; Dinehart, S M; Davis, I; Flock, S T
1996-07-01
The continuing development of new types and applications of lasers has appeared to surpass the development of specific eye protection for these lasers. There are a variety of eye shields on the market, but few are specifically designed for laser protection. Our purpose was to test a variety of eye shields by two parameters, light transmission and temperature rise, and to determine from these measurements the most protective shield for patients. We tested four plastic shields, one metal shield, and two sets of tanning goggles for temperature rise and light transmission when irradiated with a beam from a flashlamp-pumped, pulsed-dye laser. The temperature rise at the surface of the shield opposite the laser impacts was no more than 0.2 degree C in any case. White light was transmitted at significant levels through several of the shields, but yellow light transmittance was noted only through the green eye shield. Our measurements indicate that all except the green shield appeared safe from transmission of the 585-nm radiant energy. However, the optimal laser eye shield, in our opinion, would be a composite of several different shields' characteristics.
SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments
NASA Astrophysics Data System (ADS)
Fu, Congsheng; James, April L.; Yao, Huaxia
2014-04-01
Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With significant changes to the infiltration module (introducing macropore flow and reduced bedrock percolation), more than 90% of interflow was generated close to the soil-bedrock interface and the contribution of groundwater flow to total runoff was reduced to small amounts, consistent with hydrological process understanding in this terrain. These two changes also allowed for a positive linear relationship between NSE of SWE and Q, whereas prior to these changes there was a negative relationship. With these key revisions to the infiltration and bedrock percolations modules, it is concluded that SWAT-CS can reasonably capture key hydrological processes within Canadian Shield catchments. Further testing will examine water quality modeling and larger-scale applications.
Equivalent electron fluence for solar proton damage in GaAs shallow junction cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stock, L. V.
1984-01-01
The short-circuit current reduction in GaAs shallow junction heteroface solar cells was calculated according to a simplified solar cell damage model in which the nonuniformity of the damage as a function of penetration depth is treated explicitly. Although the equivalent electron fluence was not uniquely defined for low-energy monoenergetic proton exposure, an equivalent electron fluence is found for proton spectra characteristic of the space environment. The equivalent electron fluence ratio was calculated for a typical large solar flare event for which the proton spectrum is PHI(sub p)(E) = A/E(p/sq. cm) where E is in MeV. The equivalent fluence ratio is a function of the cover glass shield thickness or the corresponding cutoff energy E(sub c). In terms of the cutoff energy, the equivalent 1 MeV electron fluence ratio is r(sub p)(E sub c) = 10(9)/E(sub c)(1.8) where E(sub c) is in units of KeV.
The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response
Helle, François; Duverlie, Gilles; Dubuisson, Jean
2011-01-01
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review. PMID:22069522
NASA Technical Reports Server (NTRS)
Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.
2004-01-01
Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnside, W
Purpose: Xoft provides a set of 316L Stainless Steel Rigid Shields to be used with their 50 kV X-ray source for Breast IORT treatments. Modeling the different shield sizes in MCNP provides information to help make clinical decisions for selecting the appropriate shield size. Methods: The Xoft Axxent 50 kV Electronic Brachytherapy System has several applications in radiation therapy, one of which is treating cancer of the breast intraoperatively by placing the miniaturized X-ray tube inside an applicator balloon that is expanded to fill the lumpectomy bed immediately following tumor removal. The ribs, lung, and muscular chest wall are allmore » regions at risk to receive undesired dose during the treatment. A Xoft 316L Stainless Steel Rigid Shield can be placed between the intracostal muscles of the chest wall and the remaining breast tissue near the balloon to attenuate the beam and protect these organs. These shields are provided in 5 different sizes, and the effects on dose to the surrounding tissues vary with shield size. MCNP was used to model this environment and tally dose rate to certain regions of interest. Results: The average rib dose rate calculated using 0cm (i.e., no shield), 3cm, and 5cm diameter shields were 26.89, 15.43, and 8.91 Gy/hr respectively. The maximum dose rates within the rib reached 94.74 Gy/hr, 53.56 Gy/hr, and 31.44 Gy/hr for the 0cm, 3cm, and 5cm cases respectively. The shadowing effect caused by the steel shields was seen in the 3-D meshes and line profiles. Conclusion: This model predicts a higher dose rate to the underlying rib region with the 3cm shield compared to the 5cm shield; it may be useful to select the largest possible diameter when choosing a shield size for a particular IORT patient. The ability to attenuate the beam to reduce rib dose was also confirmed. Research sponsored by Xoft Inc, a subsidiary of iCAD.« less
Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles
NASA Technical Reports Server (NTRS)
Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas;
2009-01-01
A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.
Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.
Hypervelocity Impact Initiation of Explosive Transfer Lines
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Christiansen, Eric L.
2012-01-01
The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an aluminum ball onto a Whipple shield covering SMDC is problematic due to the hydrocode fracture models. Regardless, two simulations were performed resulting in a 5 mm ball initiating the SMDC and a 4 mm ball failing to initiate the SMDC.
NASA Astrophysics Data System (ADS)
Sung, Jiwon; Baek, Tae Seong; Yoon, Myonggeun; Kim, Dong Wook; Kim, Dong Hyun
2014-09-01
This study evaluated the effect of a simple shielding method using a thin lead sheet on the imaging dose caused by cone-beam computed tomography (CBCT) in image-guided radiation therapy (IGRT). Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom. The entire body, except for the region scanned by using CBCT, was shielded by wrapping it with a 2-mm lead sheet. Changes in secondary cancer risk due to shielding were calculated using BEIR VII models. Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15 ~ 100%, 23 ~ 90%, and 23 ~ 98%, respectively, and the average reductions in lifetime secondary cancer risk due to the 2-mm lead shielding were 1.6, 11.5, and 12.7 persons per 100,000, respectively. These findings suggest that a simple, thin-lead-sheet-based shielding method can effectively decrease secondary doses to out-of-field regions for CBCT, which reduces the lifetime cancer risk on average by 9 per 100,000 patients.
Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Thibeault, Sheila A.; Simonsen, Lisa C.; Wilson, John W.
1998-01-01
Theoretical calculations of radiation attenuation due to energetic galactic cosmic rays behind Martian rock and Martian regolith material have been made to compare their utilization as shields for advanced manned missions to Mars because the detailed chemical signature of Mars is distinctly different from Earth. The modified radiation fields behind the Martian rocks and the soil model were generated by solving the Boltzmann equation using a HZETRN system with the 1977 Solar Minimum environmental model. For the comparison of the attenuation characteristics, dose and dose equivalent are calculated for the five different subgroups of Martian rocks and the Martian regolith. The results indicate that changes in composition of subgroups of Martian rocks have negligible effects on the overall shielding properties because of the similarity of their constituents. The differences for dose and dose equivalent of these materials relative to those of Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analysis of Martian habitat construction options using in situ materials according to the Martian regolith model composition is reasonably accurate. Adding an epoxy to Martian regolith, which changes the major constituents of the material, enhances shielding properties because of the added hydrogenous constituents.
Sato, T; Sihver, L; Iwase, H; Nakashima, H; Niita, K
2005-01-01
In order to estimate the biological effects of HZE particles, an accurate knowledge of the physics of interaction of HZE particles is necessary. Since the heavy ion transport problem is a complex one, there is a need for both experimental and theoretical studies to develop accurate transport models. RIST and JAERI (Japan), GSI (Germany) and Chalmers (Sweden) are therefore currently developing and bench marking the General-Purpose Particle and Heavy-Ion Transport code System (PHITS), which is based on the NMTC and MCNP for nucleon/meson and neutron transport respectively, and the JAM hadron cascade model. PHITS uses JAERI Quantum Molecular Dynamics (JQMD) and the Generalized Evaporation Model (GEM) for calculations of fission and evaporation processes, a model developed at NASA Langley for calculation of total reaction cross sections, and the SPAR model for stopping power calculations. The future development of PHITS includes better parameterization in the JQMD model used for the nucleus-nucleus reactions, and improvement of the models used for calculating total reaction cross sections, and addition of routines for calculating elastic scattering of heavy ions, and inclusion of radioactivity and burn up processes. As a part of an extensive bench marking of PHITS, we have compared energy spectra of secondary neutrons created by reactions of HZE particles with different targets, with thicknesses ranging from <1 to 200 cm. We have also compared simulated and measured spatial, fluence and depth-dose distributions from different high energy heavy ion reactions. In this paper, we report simulations of an accelerator-based shielding experiment, in which a beam of 1 GeV/n Fe-ions has passed through thin slabs of polyethylene, Al, and Pb at an acceptance angle up to 4 degrees. c2005 Published by Elsevier Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Quinn, Philip R.; Schwadron, Nathan A.; Townsend, Larry W.; Wimmer-Schweingruber, Robert F.; Case, Anthony W.; Spence, Harlan E.; Wilson, Jody K.; Joyce, Colin J.
2017-08-01
Radiation in the form of solar energetic particles (SEPs) presents a severe risk to the short-term health of astronauts and the success of human exploration missions beyond Earth's protective shielding. Modeling how shielding mitigates the dose accumulated by astronauts is an essential step toward reducing these risks. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other SEP measurements) is an online tool for the near real-time prediction of radiation exposure at Earth, the Moon, and Mars behind various levels of shielding. We compare shielded dose rates from PREDICCS with dose rates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon and from the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) during its cruise phase to Mars for five solar events in 2012 when Earth, MSL, and Mars were magnetically well connected. Calculations of the accumulated dose demonstrate a reasonable agreement between PREDICCS and RAD ranging from as little as 2% difference to 54%. We determine mathematical relationships between shielding levels and accumulated dose. Lastly, the gradient of accumulated dose between Earth and Mars shows that for the largest of the five solar events, lunar missions require aluminum shielding between 1.0 g cm-2 and 5.0 g cm-2 to prevent radiation exposure from exceeding the 30-day limits for lens and skin. The limits were not exceeded near Mars.
NASA Astrophysics Data System (ADS)
Prabakaran, T.; Prabhakar, M.; Sathiya, P.
This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.
NASA Astrophysics Data System (ADS)
Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter
2017-04-01
A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).
Réalisation d'écrans magnétiques supraconducteurs
NASA Astrophysics Data System (ADS)
Lainée, F.; Kormann, R.
1992-02-01
Low fields and low frequency shielding properties of YBCO magnetic shields are measured at 77 K. They compare favourably with shielding properties of mumetal shields. Therefore high-T_c superconducting magnetic shields can already be used to shield small volumes. The case of magnetic shields for large volumes is also discussed. Nous mesurons à 77K les caractéristiques d'écrantage basse fréquence et bas champ d'écrans supraconducteurs en YBaCuO. Celles-ci se comparent favorablement à celles d'écrans en mumétal. La réalisation pratique d'écrans supraconducteurs est dès lors possible pour l'écrantage de petits volumes. Les géométries de réalisation d'écrans pour les grands volumes sont également discutées.
Modeling and Analysis of Geoelectric Fields: Extended Solar Shield
NASA Astrophysics Data System (ADS)
Ngwira, C. M.; Pulkkinen, A. A.
2016-12-01
In the NASA Applied Sciences Program Solar Shield project, an unprecedented first-principles-based system to forecast geomagnetically induced current (GIC) in high-voltage power transmission systems was developed. Rapid progress in the field of numerical physics-based space environment modeling has led to major developments over the past few years. In this study modeling and analysis of induced geoelectric fields is discussed. Specifically, we focus on the successful incorporation of 3-D EM transfer functions in the modeling of E-fields, and on the analysis of near real-time simulation outputs used in the Solar Shield forecast system. The extended Solar Shield is a collaborative project between DHS, NASA, NOAA, CUA and EPRI.
Open Rotor Noise Shielding by Blended-Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Guo, Yueping; Czech, Michael J.; Thomas, Russell H.
2015-01-01
This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorge, J.C.F.; Santos, V.R. dos; Santos, J.F. dos
1995-12-31
The microstructural evolution of hyperbaric C-Mn weld metals was studied by means of bead-on-plate welds deposit with GMAW process using a commercial metal cored wire. The welding was carried out in the flat position in the range of 51 bar to 111 bar with He+ CO{sub 2} as shielding gas, which CO{sub 2} content varied from 0.1% to 0.8 %. The microstructures were quantitatively analyzed by optical microscopy to evaluate the amount of constituents according to the IIW/IIS terminology. The results showed that all weld metals presented great amounts of acicular ferrite and a stronger influence of pressure on microstructuremore » compared to the influence of the shielding gas.« less
Interplanetary Cosmic Ray Intensity: 1972-1984 and Out to 32 AU.
1984-08-01
Blo/BII, C10/C11 , and Dlo/DII. The correspondingly designated detectors on the two spacecraft have virtually identical shielding and physical...B. Decker, and S. M. Krimigis, Radial gradient of cosmic ray intensity from a comparativ study of data from Voyager 1 and 2 and IMP F, J. Geophys
View of the Shuttle Columbia's payload bay and payloads in orbit
1986-01-12
61C-39-002 (12-17 Jan 1986) --- This view of the cargo bay of the Earth-orbiting Space Shuttle Columbia reveals some of the STS 61-C mission payloads. The materials science laboratory (MSL-2), sponsored by the Marshall Space Flight Center (MSFC), is in the foreground. A small portion of the first Hitchhiker payload, sponsored by the Goddard Space Flight Center (GSFC), is in the immediate foreground, mounted to the spacecraft's starboard side. The closed sun shield for the now-vacated RCA SATCOM K-1 communications satellite is behind the MSL. Completely out of view, behind the shield, are 13 getaway specials in canisters. Clouds over ocean and the blackness of space share the backdrop for the 70mm camera's frame.
NASA Astrophysics Data System (ADS)
Dombrovsky, Leonid A.; Reviznikov, Dmitry L.; Kryukov, Alexei P.; Levashov, Vladimir Yu
2017-10-01
An effect of shielding of an intense solar radiation towards a solar probe with the use of micron-sized SiC particles generated during ablation of a composite thermal protection material is estimated on a basis of numerical solution to a combined radiative and heat transfer problem. The radiative properties of particles are calculated using the Mie theory, and the spectral two-flux model is employed in radiative transfer calculations for non-uniform particle clouds. A computational model for generation and evolution of the cloud is based on a conjugated heat transfer problem taking into account heating and thermal destruction of the matrix of thermal protection material and sublimation of SiC particles in the generated cloud. The effect of light pressure, which is especially important for small particles, is also taken into account. The computational data for mass loss due to the particle cloud sublimation showed the low value about 1 kg/m2 per hour at the distance between the vehicle and the Sun surface of about four radii of the Sun. This indicates that embedding of silicon carbide or other particles into a thermal protection layer and the resulting generation of a particle cloud can be considered as a promising way to improve the possibilities of space missions due to a significant decrease in the vehicle working distance from the solar photosphere.
The 3D Radiation Dose Analysis For Satellite
NASA Astrophysics Data System (ADS)
Cai, Zhenbo; Lin, Guocheng; Chen, Guozhen; Liu, Xia
2002-01-01
the earth. These particles come from the Van Allen Belt, Solar Cosmic Ray and Galaxy Cosmic Ray. They have different energy and flux, varying with time and space, and correlating with solar activity tightly. These particles interact with electrical components and materials used on satellites, producing various space radiation effects, which will damage satellite to some extent, or even affect its safety. orbit. Space energy particles inject into components and materials used on satellites, and generate radiation dose by depositing partial or entire energy in them through ionization, which causes their characteristic degradation or even failure. As a consequence, the analysis and protection for radiation dose has been paid more attention during satellite design and manufacture. Designers of satellites need to analyze accurately the space radiation dose while satellites are on orbit, and use the results as the basis for radiation protection designs and ground experiments for satellites. can be calculated, using the model of the trapped proton and the trapped electron in the Van Allen Belt (AE8 and AP8). This is the 1D radiation dose analysis for satellites. Obviously, the mass shielding from the outside space to the computed point in all directions is regarded as a simple sphere shell. The actual structure of satellites, however, is very complex. When energy particles are injecting into a given equipment inside satellite from outside space, they will travel across satellite structure, other equipment, the shell of the given equipment, and so on, which depends greatly on actual layout of satellite. This complex radiation shielding has two characteristics. One is that the shielding masses for the computed point are different in different injecting directions. The other is that for different computed points, the shielding conditions vary in all space directions. Therefore, it is very difficult to tell the differences described above using the 1D radiation analysis, and hence, it is too simple to guide satellite radiation protection and ground experiments only based on the 1D radiation analysis results. To comprehend the radiation dose status of satellite adequately, it's essential to perform 3D radiation analysis for satellites. using computer software. From this 3D layout, the satellite model can be simplified appropriately. First select the point to be analyzed in the simplified satellite model, and extend many lines to the outside space, which divides the 4 space into many corresponding small areas with a certain solid angle. Then the shielding masses through the satellite equipment and structures along each direction are calculated, resulting in the shielding mass distribution in all space directions based on the satellite layout. Finally, using the relationship between radiation dose and shielding thickness from the 1D analysis, calculate the radiation dose in each area represented by each line. After we obtain the radiation dose and its space distribution for the point of interest, the 3D satellite radiation analysis is completed. radiation analysis based on satellite 3D CAD layout has larger benefit for engineering applications than the 1D analysis based on the solid sphere shielding model. With the 3D model, the analysis of space environment and its effect is combined closely with actual satellite engineering. The 3D radiation analysis not only provides valuable engineering data for satellite radiation design and protection, but also provides possibility to apply new radiation protection approaches, which expands technology horizon and broadens ways for technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Ma, B; Kuang, Y
2014-06-15
Purpose: The influence of fringe magnetic fields delivered by magnetic resonance imaging (MRI) on the beam generation and transportation in Linac is still a major challenge for the integration of linear accelerator and MRI (Linac-MRI). In this study, we investigated an optimal magnetic shielding design for Linac-MRI and further characterized the beam trajectory in electron gun. Methods: Both inline and perpendicular configurations were analyzed in this study. The configurations, comprising a Linac-MRI with a 100cm SAD and an open 1.0 T superconductive magnet, were simulated by the 3D finite element method (FEM). The steel shielding around the Linac was includedmore » in the 3D model, the thickness of which was varied from 1mm to 20mm, and magnetic field maps were acquired with and without additional shielding. The treatment beam trajectory in electron gun was evaluated using OPERA 3d SCALA with and without shielding cases. Results: When Linac was not shielded, the uniformity of diameter sphere volume (DSV) (30cm) was about 5 parts per million (ppm) and the fringe magnetic fields in electron gun were more than 0.3 T. With shielding, the magnetic fields in electron gun were reduced to less than 0.01 T. For the inline configuration, the radial magnetic fields in the Linac were about 0.02T. A cylinder steel shield used (5mm thick) altered the uniformity of DSV to 1000 ppm. For the perpendicular configuration, the Linac transverse magnetic fields were more than 0.3T, which altered the beam trajectory significantly. A 8mm-thick cylinder steel shield surrounding the Linac was used to compensate the output losses of Linac, which shifted the magnetic fields' uniformity of DSV to 400 ppm. Conclusion: For both configurations, the Linac shielding was used to ensure normal operation of the Linac. The effect of magnetic fields on the uniformity of DSV could be modulated by the shimming technique of the MRI magnet. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less
NASA Technical Reports Server (NTRS)
Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.
2004-01-01
With 5-7 month long duration missions at 51.6 degrees inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (CnHn) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.
2004-01-01
With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.
NASA Astrophysics Data System (ADS)
Poh, Jonathan; Yamato, Philippe; Gapais, Denis; Duretz, Thibault; Ledru, Patrick
2017-04-01
The formation of the architecture of the main cratons of the Canadian Shield has been debated over the past three decades. Understanding the role of tangential Vs. vertical tectonics in the Rae craton is of great interest as the role of inherited structure is fundamental for the subsequent drainage of fluids and the formation of high to ultra-high grade unconformity-type uranium deposits. These deposits are located in the vicinity of the intersection between the unconformity at the base of the Paleoproterozoic Athabasca sedimentary basin (1.75-1.5 Ga) and the graphite-rich metasediments of the Wollaston-Mudjatik transition zone, one of the main fault system of the Rae Craton related to the Trans-Hudson orogeny (1.82-1.78 Ga). A new tectonic model, Pop-down tectonics, was proposed as the primary driving process to concentrate supracrustal materials, strains, fluid transfers and metal transport in permeability enhanced deformation zones. The sub-vertical structural patterns with regional horizontal shortening seen in the tectonic model appear to be consistent with field evidences and has the potential for sustaining strong fluid-rock interactions. In the light of previous analogue modelling studies, we test the viability of the Pop-down tectonics model in a thermo-mechanical framework. The numerical experiments are based on a series of 2D visco-elasto-plastic thermo-mechanical models. We employ various thermal and rheological parameters derived from laboratory experiments. The geometry, thermicity and kinematics of the models are further constrained by applying existing geophysical and geological data. We impose a fixed upper mantle temperature of 1330 °C and a thin crust ranging from 30 - 40 km. The outcome of the models will provide insights into the mechanical processes controlling the deformation of hot lithospheres in convergent settings.
ISS Observations of the Trapped Proton Anisotropic Effect: A Comparison with Model Calculations
NASA Astrophysics Data System (ADS)
Dachev, T.; Atwell, W.; Semones, E.; Tomov, B.; Reddell, B.
Space radiation measurements were made on the International Space Station (ISS) with the Bulgarian Liulin-E094 instrument, which contains 4 Mobile Dosimetry Unit (MDU), and the NASA Tissue Equivalent Proportional Counter (TEPC) during 2001. Four MDUs were placed at fixed locations: one unit (MDU #1) in the ISS "Unity" Node-1 and three (MDU #2-#4) units were located in the US Laboratory module. The MDU #2 and the TEPC were located in the US Laboratory module Human Research Facility (rack #1, port side). Space radiation flight measurements were obtained during the time period May 11 - July 26, 2001. In this paper we discuss the flight observed asymmetries in different detectors on the ascending and descending parts of the ISS orbits. The differences are described by the development of a shielding model using combinatorial geometry and 3-D visualization and the orientation and placement of the five detectors at the locations within the ISS. Shielding distributions were generated for the combined ISS and detector shielding models. The AP8MAX and AE8MAX trapped radiation models were used to compute the daily absorbed dose for the five detectors and are compared with the flight measurements. In addition, the trapped proton anisotropy (East-West effect) was computed for the individual passes through the South Atlantic Anomaly based on the Badhwar-Konradi anisotropy model.
Dimmuborgir: a rootless shield complex in northern Iceland
NASA Astrophysics Data System (ADS)
Skelton, Alasdair; Sturkell, Erik; Jakobsson, Martin; Einarsson, Draupnir; Tollefsen, Elin; Orr, Tim
2016-05-01
The origin of Dimmuborgir, a shield-like volcanic structure within the Younger Laxá lava flow field near Lake Mývatn, in northern Iceland, has long been questioned. New airborne laser mapping (light detection and ranging (LiDAR)), combined with ground-penetrating radar results and a detailed field study, suggests that Dimmuborgir is a complex of at least two overlapping rootless shields fed by lava erupting from the nearby Lúdentarborgir crater row. This model builds upon previous explanations for the formation of Dimmuborgir and is consistent with observations of rootless shield development at Kīlauea Volcano, Hawaii. The larger rootless shields at Dimmuborgir, 1-1.5 km in diameter, elliptical in plan view, ˜30 m in height, and each with a 500-m-wide summit depression, were capable of storing as much as 2-3 × 106 m3 of lava. They were fed by lava which descended 30-60 m in lava tubes along a distance of 3 km from the crater row. The height difference generated pressure sufficient to build rootless shields at Dimmuborgir in a timescale of weeks. The main summit depressions, inferred to be drained lava ponds, could have emptied via a 30-m-wide × 5-m-deep channel, with estimated effusion rates of 0.7-7 m3 s-1 and minimum flow durations of 5-50 days. We argue that the pillars for which Dimmuborgir is famed are remnants of lava pond rims, at various stages of disintegration that formed during pond drainage.
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.; Bollweg, Ken; Martin, Trent; Westover, Shayne; Battiston, Roberto; Burger, William J.; Meinke, Rainer
2015-01-01
A trade study for an active shielding concept based on magnetic fields in a solenoid configuration versus mass based shielding was developed. Monte Carlo simulations were used to estimate the radiation exposure for two values of the magnetic field strength and the mass of the magnetic shield configuration. For each field strength, results were reported for the magnetic region shielding (end caps ignored) and total region shielding (end caps included but no magnetic field protection) configurations. A value of 15 cSv was chosen to be the maximum exposure for an astronaut. The radiation dose estimate over the total shield region configuration cannot be used at this time without a better understanding of the material and mass present in the end cap regions through a detailed vehicle design. The magnetic shield region configuration, assuming the end cap regions contribute zero exposure, can be launched on a single Space Launch System rocket and up to a two year mission can be supported. The magnetic shield region configuration results in two versus nine launches for a comparable mass based shielding configuration. The active shielding approach is clearly more mass efficient because of the reduced number of launches than the mass based shielding for long duration missions.
Computer aided radiation analysis for manned spacecraft
NASA Technical Reports Server (NTRS)
Appleby, Matthew H.; Griffin, Brand N.; Tanner, Ernest R., II; Pogue, William R.; Golightly, Michael J.
1991-01-01
In order to assist in the design of radiation shielding an analytical tool is presented that can be employed in combination with CAD facilities and NASA transport codes. The nature of radiation in space is described, and the operational requirements for protection are listed as background information for the use of the technique. The method is based on the Boeing radiation exposure model (BREM) for combining NASA radiation transport codes and CAD facilities, and the output is given as contour maps of the radiation-shield distribution so that dangerous areas can be identified. Computational models are used to solve the 1D Boltzmann transport equation and determine the shielding needs for the worst-case scenario. BREM can be employed directly with the radiation computations to assess radiation protection during all phases of design which saves time and ultimately spacecraft weight.
Influences of the shielding cylinder on the length of radio-frequency cold atmospheric plasma jets
NASA Astrophysics Data System (ADS)
Li, He-Ping; Li, Jing; Zhang, Xiao-Fei; Guo, Heng; Chen, Jian; Department of Engineering Physics Team
2017-10-01
Cold atmospheric plasma jets driven by a radio frequency power supply contain abundant species and complex chemical reactions, which have wide applications in the fields of materials processing and modifications, food engineering, bio-medical science, etc. Our previous experiments have shown that the total length of a radio-frequency cold atmospheric plasma (RF-CAP) jet can exceed 1 meter with the shielding of a quartz tube. However, the shielding mechanisms of the solid cylinder has not been studied systematically. In this study, a two-dimensional, quasi-steady fluid model is used to investigate the influences of the shielding tube on the length of the RF-CAP jets under different conditions. The simulation results show that the total jet length grows monotonously; while simultaneously, the jet length out of the tube shows a non-monotonic variation trend, with the increase of the tube length, which is in good agreement with the experimental observations. The shielding mechanisms of the solid cylinder on the RF-CAP jet is also discussed in detail based on the modeling results. This work was supported by the National Natural Science Foundation of China (11475103, 21627812), the National Key Research and Development Program of China (2016YFD0102106) and Tsinghua University Initiative Scientific Program (20161080108).
Acoustic Shielding for a Model Scale Counter-rotation Open Rotor
NASA Technical Reports Server (NTRS)
Stephens, David B.; Edmane, Envia
2012-01-01
The noise shielding benefit of installing an open rotor above a simplified wing or tail is explored experimentally. The test results provide both a benchmark data set for validating shielding prediction tools and an opportunity for a system level evaluation of the noise reduction potential of propulsion noise shielding by an airframe component. A short barrier near the open rotor was found to provide up to 8.5 dB of attenuation at some directivity angles, with tonal sound particularly well shielded. Predictions from two simple shielding theories were found to overestimate the shielding benefit.
Modeling of Small Martian Volcanoes: A Changing View of Volcanic Shield and Cone Fields
NASA Astrophysics Data System (ADS)
Sakimoto, S. E.; Bradley, B. A.; Garvin, J. B.
2001-05-01
The small volcanic features on Mars (channels, flows, shields, and cratered cones) are key to understanding eruption styles, rates, and volumes because they are ubiquitous and simple enough to attempt modeling. Several of these small features have been suggested to be geologically recent [1,2,3]. This study measures and models small (3-50 km) volcanic edifices. Recent Mars Global Surveyor data reveal that these small features are more common that we had previously thought from the lower resolution Viking mission data (e.g., [3,4]). Furthermore, there are clear geometric differences in the Mars Orbiter Laser Altimeter (MOLA) data between regions suggesting local and regional eruption styles may vary with latitude. While a few of the pre-MGS construction models predict the martian mid-latitude volcanic shield shapes fairly well, the small explosive volcanic edifice shapes were not well predicted by existing models (see[5]), and there are a host of types-mostly polar-that are not well described by prior modeling. We compare small edifice construction model results for a percolation style model of effusive and mixed effusive and explosive edifices to prior model results for several martian volcanic regions. While mid-latitude edifices match well to predicted cross-section shapes, steeper flank slopes (See [6]; Glaze and Sakimoto, this volume) for the polar edifices suggest that the magma supply rate or the edifice permeability may be higher in the polar regions for some edifices types. However, polar edifice flank slopes do not commonly reach the greater than 10 degree flanks expected from prior explosive edifice models. Additionally, we do not observe shallow flank slope shields in the polar regions. This suggests that simple shield building may be significantly influenced or modified by volatile involvement near the martian poles, while a range of poorly understood explosive activity may be active in both regions. [1] Keszthelyi et al. JGR 105, 15027-15049, 2000. [2] Hartmann and Berman, JGR, 105, 15011-15025, 2000. [3] Garvin, et al., Icarus, 145, 648-652, 2000. [4] Sakimoto, et al., LPSC XXXII, CDROM, abstract #1808, 2001. [5] Glaze and Baloga LPSC XXXII, CDROM, abstract #1209, 2001. [6] Wong, et al., LPSC XXXII, CDROM, abstract #1563, 2001.
NASA Astrophysics Data System (ADS)
Panich, A. M.
The analysis of 19F NMR spectra of polycrystalline and partially oriented samples of fluorinated graphite (C 2F) n intercalated with chlorine trifluoride has been carried out. Molecular mobility results in almost complete averaging of the dipole-dipole interactions of nuclei, while the essential chemical shielding anisotropy (CSA) is manifested. There is suggested molecular rotation about its C2 axes, which in turn rotates about the normal to the graphite plane. The CSA (σ || - σ ⊥) is determined to be 510 and -640 ppm, respectively, for the two inequivalent fluorine atoms of the molecule. The effect of the "antiparamagnetic" shielding leading to inversion of the chemical shielding tenser [(σ || - σ ⊥) < 0] for the equatorial F atom and anomalous line disposition in the NMR spectrum is discussed.
Effectiveness of metal matrix and ceramic matrix composites as orbital debris shield materials
NASA Technical Reports Server (NTRS)
Mcgill, Preston B.; Mount, Angela R.
1992-01-01
The effectiveness of two metal matrix composites and one ceramic matrix material in defeating hypervelocity impacts at about 3.8 km/s are evaluated to determine the potential of these composites as spacecraft shield materials. The metal matrix composites investigated consist of SiC particles (70 percent by volume) in an aluminum matrix and Al2O3 particles (50 percent by volume) in an Al matrix. The ceramic composite consists of ZrB2 platelets in a ZrC matrix. Both the metal matrix and ceramic matrix composites are found to perform as well or better than 6061-T6 aluminum, which is presently used in the Whipple type bumper shield of Space Station Freedom. Test results indicate that the composites tested may have applications as micrometeoroid/orbital debris shield materials.
Gamma Imaging using Rotational Modulation Collimation
2014-01-01
c © Commonwealth of...in Table A1. 4 UNCLASSIFIED UNCLASSIFIED DSTO–TR–2946 0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 160 C O U N T S...P E R S E C O N D MASK ROTATION ANGLE (DEGREES) Co-60 shielded by lead 44 mm Cs-137 in storage container (lead 59 mm) Figure 3.2: RMC
Santos, D M; St Aubin, J; Fallone, B G; Steciw, S
2012-02-01
In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84% of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration. Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields. The FEM model above agreed within 1.5% with the manufacturer supplied fringe magnetic field isoline data. When passive magnetic shields are used, the target current is recoverable to greater than 99% of nominal for shield thicknesses greater than 0.75 mm. The optimized active shield which resulted in 100% target current recovery consists of two thin current rings 110 mm in diameter with 625 and 430 A-turns in each ring. With the length of the passive shield kept constant, the thickness of the shield had to be increased to achieve the same target current within the increased longitudinal magnetic fields. A ≥99% original target current is recovered with passive shield thicknesses >0.75 mm. An active shield consisting of two current rings of diameter of 110 mm with 625 and 430 A-turns fully recovers the loss that would have been caused by the magnetic fields. The minimal passive or active shielding requirements to essentially fully recover the current output of the linac in our parallel-configured linac-MR system have been determined and are easily achieved for practical implementation of the system.
Radiation shielding properties of barite coated fabric by computer programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akarslan, F.; Molla, T.; Üncü, I. S.
2015-03-30
With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by usingmore » computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.« less
Fabrication of SiC-Particles-Shielded Al Spheres upon Recycling Al/SiC Composites
NASA Astrophysics Data System (ADS)
Madarasz, D.; Budai, I.; Kaptay, G.
2011-06-01
Wettability of liquid A359 alloy on SiC particles under molten salt NaCl-KCl-NaF is found at 180 deg, meaning that SiC particles prefer the molten salt phase against the Al phase or the Al/molten salt interface. Thus, this molten salt can be used for recycling, i.e., to separate the phases in the SiC reinforced Al matrix composites. If the separation process is interrupted, Al droplets (submillimeter solidified powder) can be produced, stabilized/surrounded by a monolayer of shielding SiC particles.
A New Light Weight Structural Material for Nuclear Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabiei, Afsaneh
2016-01-14
Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable.more » Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0mCi 60Co, 1.8mCi 137Cs, 13.5mCi 241Am, and 5.0mCi 133Ba were used for gamma-ray attenuation analysis. The evaluations of neutron transmission measurements were conducted at the Neutron Powder Diffractometer beam facility at North Carolina State University. The experimental results were verified theoretically through XCOM and Monte Carlo Z-particle Transport Code (MCNP). A mechanical investigation was performed by means of quasi-static compressive testing. Thermal characterizations were carried out through effective thermal conductivity and thermal expansion analyses in terms of high temperature guarded-comparative-longitudinal heat flow technique and thermomechanical analyzer (TMA), respectively. The experimental results were compared with analytical results obtained from, respectively, Brailsford and Major’s model and modified Turner’s model for verification. Flame test was performed in accordance with United States Nuclear Regulatory Commission (USNRC) standard. CMF sample and a 304L stainless steel control sample were subjected to a fully engulfing fire with an average flame temperature of 800°C for a period of 30 minutes. Finite Element Analysis was conducted to secure the credibility of the experimental results. This research indicates the potential of utilizing the light-weight close-cell CMFs and open-cell Al foam with fillers as shielding material replacing current heavy structures with additional advantage of high-energy absorption and excellent thermal characteristics.« less
ERIC Educational Resources Information Center
Spano, Richard; Rivera, Craig; Bolland, John M.
2011-01-01
Five waves of longitudinal data collected from 349 African American youth living in extreme poverty were used to determine if parental monitoring shielded youth from exposure to violence during adolescence. Semiparametric group-based modeling was used to identify trajectories of parental monitoring and exposure to violence from T1 to T5. Results…
Cloud immersion building shielding factors for US residential structures.
Dickson, E D; Hamby, D M
2014-12-01
This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario within a semi-infinite cloud of radioactive material. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement, as well for single-wide manufactured housing-units.
Ida, Ramsey; De Clerk, Maurice; Wu, Gang
2006-01-26
We report a computational study for the 17O NMR tensors (electric field gradient and chemical shielding tensors) in crystalline uracil. We found that N-H...O and C-H...O hydrogen bonds around the uracil molecule in the crystal lattice have quite different influences on the 17O NMR tensors for the two C=O groups. The computed 17O NMR tensors on O4, which is involved in two strong N-H...O hydrogen bonds, show remarkable sensitivity toward the choice of cluster model, whereas the 17O NMR tensors on O2, which is involved in two weak C-H...O hydrogen bonds, show much smaller improvement when the cluster model includes the C-H...O hydrogen bonds. Our results demonstrate that it is important to have accurate hydrogen atom positions in the molecular models used for 17O NMR tensor calculations. In the absence of low-temperature neutron diffraction data, an effective way to generate reliable hydrogen atom positions in the molecular cluster model is to employ partial geometry optimization for hydrogen atom positions using a cluster model that includes all neighboring hydrogen-bonded molecules. Using an optimized seven-molecule model (a total of 84 atoms), we were able to reproduce the experimental 17O NMR tensors to a reasonably good degree of accuracy. However, we also found that the accuracy for the calculated 17O NMR tensors at O2 is not as good as that found for the corresponding tensors at O4. In particular, at the B3LYP/6-311++G(d,p) level of theory, the individual 17O chemical shielding tensor components differ by less than 10 and 30 ppm from the experimental values for O4 and O2, respectively. For the 17O quadrupole coupling constant, the calculated values differ by 0.30 and 0.87 MHz from the experimental values for O4 and O2, respectively.
NASA Astrophysics Data System (ADS)
Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph
2018-01-01
A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.
NASA Astrophysics Data System (ADS)
Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Lu, Ming-Ming; Wang, Chan-Yuan; Yuan, Jie; Fan, Li-Zhen
2014-09-01
As the development of electronic and communication technology, electromagnetic interference (EMI) shielding and attenuation is an effective strategy to ensure the operation of the electronic devices. Among the materials for high-performance shielding in aerospace industry and related high-temperature working environment, the thermally stable metal oxide semiconductors with narrow band gap are promising candidates. In this work, beta-manganese dioxide ( β-MnO2) nanorods were synthesized by a hydrothermal method. The bulk materials of the β-MnO2 were fabricated to evaluate the EMI shielding performance in the temperature range of 20-500 °C between 8.2 and 12.4 GHz (X-band). To understand the mechanisms of high-temperature EMI shielding, the contribution of reflection and absorption to EMI shielding was discussed based on temperature-dependent electrical properties and complex permittivity. Highly sufficient shielding effectiveness greater than 20 dB was observed over all the investigated range, suggesting β-MnO2 nanorods as promising candidates for high-temperature EMI shielding. The results have also established a platform to develop high-temperature EMI shielding materials based on nanoscale semiconductors.
A Monte-Carlo Benchmark of TRIPOLI-4® and MCNP on ITER neutronics
NASA Astrophysics Data System (ADS)
Blanchet, David; Pénéliau, Yannick; Eschbach, Romain; Fontaine, Bruno; Cantone, Bruno; Ferlet, Marc; Gauthier, Eric; Guillon, Christophe; Letellier, Laurent; Proust, Maxime; Mota, Fernando; Palermo, Iole; Rios, Luis; Guern, Frédéric Le; Kocan, Martin; Reichle, Roger
2017-09-01
Radiation protection and shielding studies are often based on the extensive use of 3D Monte-Carlo neutron and photon transport simulations. ITER organization hence recommends the use of MCNP-5 code (version 1.60), in association with the FENDL-2.1 neutron cross section data library, specifically dedicated to fusion applications. The MCNP reference model of the ITER tokamak, the `C-lite', is being continuously developed and improved. This article proposes to develop an alternative model, equivalent to the 'C-lite', but for the Monte-Carlo code TRIPOLI-4®. A benchmark study is defined to test this new model. Since one of the most critical areas for ITER neutronics analysis concerns the assessment of radiation levels and Shutdown Dose Rates (SDDR) behind the Equatorial Port Plugs (EPP), the benchmark is conducted to compare the neutron flux through the EPP. This problem is quite challenging with regard to the complex geometry and considering the important neutron flux attenuation ranging from 1014 down to 108 n•cm-2•s-1. Such code-to-code comparison provides independent validation of the Monte-Carlo simulations, improving the confidence in neutronic results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, G.E.; Bell, F.R.
1963-06-26
A protective arrangement is designed for shielding the environment and for preventing the leakage of radioactive gases from a ship nuclear power plant. In this arrangement, the core has inner and outer pressure vessels and a biological shielding around the outer pressure vessel. The shielding comprises a series of steel cylindrical shells immersed in water, and its inner wall may comprise part of the outer pressure vessel. (D.L.C.)
SPACECRAFT (S/C)-012 - COMMAND MODULE (CM) - HEAT SHIELD INSTALLATION
1966-04-18
S66-41851 (1966) --- High angle view of Spacecraft 012 Command Module, looking toward -Z axis, during preparation for installation of the crew compartment heat shield, showing mechanics working on aft bay.
Experiment K-6-24, K-6-25, K-6-26. Radiation dosimetry and spectrometry
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A.; Benton, E. R.; Dudkin, V.; Marennyi, A.
1990-01-01
Radiation experiments flown by the University of San Francisco on the Cosmos 1887 spacecraft were designed to measure the depth dependence of both total dose and heavy particle flux, dose and dose equivalent, down to very thin shielding. Three experiments were flown and were located both inside and outside the Cosmos 1887 spacecraft. Tissue absorbed dose rates of 264 to 0.028 rad d(-1) under shielding of 0.013 to 3.4 g/sq cm of (7)LiF were found outside the spacecraft and 0.025 rad d(-1) inside. Heavy particle fluxes of 3.43 to 1.03 x 10 to the minus 3rd power cm -2 sub s -1 sub sr -1 under shielding of 0.195 to 1.33 g/sq cm plastic were found outside the spacecraft and 4.25 times 10 to the minus 4th power cm -2 sub s -1 sub sr -1 inside (LET infinity H2O greater than or equal to 4 keV/micron m). The corresponding heavy particle dose equivalent rates outside the spacecraft were 30.8 to 19.8 mrem d(-1) and 11.4 mrem d(-1) inside. The large dose and particle fluxes found at small shielding thicknesses emphasize the importance of these and future measurements at low shielding, for predicting radiation effects on space materials and experiments where shielding is minimal and on astronauts during EVA. The Cosmos 1887 mission contained a variety of international radiobiological investigations to which the measurements apply. The high inclination orbit (62 degrees) of this mission provided a radiation environment which is seldom available to U.S. investigators. The radiation measurements will be compared with those of other research groups and also with those performed on the Shuttle, and will be used to refine computer models employed to calculate radiation exposures on other spacecraft, including the Space Station.
Process and Energy Optimization Assessment, Tobyhanna Army Depot, PA
2006-04-17
assembly of electronic-communication components, different welding processes are performed at TYAD. It uses shielded arc, metal inert gas (MIG...tungsten inert gas ( TIG ), and silver braz- ing oxygen/acetylene cutting plasma arc methods to complete mission re- quirements. Major welding jobs are...ER D C/ CE R L TR -0 6 -1 1 Process and Energy Optimization Assessment Tobyhanna Army Depot, PA Mike C.J. Lin, Alexander M. Zhivov
Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yongqiang; Luo, Heng; Zhang, Haibin, E-mail: hbzhang@caep.cn, E-mail: pengshuming@caep.cn
2016-03-15
Lightweight graphene nanoplatelet (GNP)/boron carbide (B{sub 4}C) composites were prepared and the effect of GNPs loading on the electromagnetic interference (EMI) shielding effectiveness (SE) has been evaluated in the X-band frequency range. Results have shown that the EMI SE of GNP/B{sub 4}C composite increases with increasing the GNPs loading. An EMI SE as high as 37 ∼ 39 dB has been achieved in composite with 5 vol% GNPs. The high EMI SE is mainly attributed to the high electrical conductivity, high dielectric loss as well as multiple reflections by aligned GNPs inside the composite. The GNP/B{sub 4}C composite is demonstratedmore » to be promising candidate of high-temperature microwave EMI shielding material.« less
NASA Technical Reports Server (NTRS)
1983-01-01
Grumman OV-1C in the hangar used at the time by the Army at Edwards Air Force Base. This OV-1C Mohawk, serial #67-15932, was used in a joint NASA/US Army Aviation Engineering Flight Activity (USAAEFA) program to study a stall-speed warning system in the early 1980s. NASA designed and built an automated stall-speed warning system which presented both airspeed and stall speed to the pilot. Visual indication of impending stall would be displayed to the pilot as a cursor or pointer located on a conventional airspeed indicator. In addition, an aural warning at predetermined stall margins was presented to the pilot through a voice synthesizer. The Mohawk was developed by Grumman Aircraft as a photo observation and electronic reconnaissance aircraft for the US Marines and the US Army. The OV-1 entered production in October 1959 and served the US Army in Europe, Korea, the Viet Nam War, Central and South America, Alaska, and during Desert Shield/Desert Storm in the Middle East. The Mohawk was retired from service in September 1996. 133 OV-1Cs were built, the 'C' designating the model which used an IR (infrared) imaging system to provide reconnaissance.
1993-06-01
Volume 1: Study Report ARI 113-01 RN George B. Dibble Charles L. Home, III William E. Lindsay Prcpare] pursuit t 0epartme of( I )’ense (ontra.Ni M’A9N...90C-.(’X.Ś. The "c%,, exprc,.sed hcrc we those( of the Ltoguiics Mjnu1)crncnt Insitu(c at the tIim of IuSu [ul rn,, nt,, c&%r.iv iru,.c of the I ...cpartnlcnt of I )cfcn c -Pernn on .n t, quote or reproduce dny pr. c x, cpu It Sc • n. rnflu• i iI p1 ,1 scs m u t be 4c , t~ i it cd J fro in tI i I .1., 1 t
Galactic cosmic ray abundances and spectra behind defined shielding.
Heinrich, W; Benton, E V; Wiegel, B; Zens, R; Rusch, G
1994-10-01
LET spectra have been measured for lunar missions and for several near Earth orbits ranging from 28 degrees to 83 degrees inclination. In some of the experiments the flux of GCR was determined separately from contributions caused by interactions in the detector material. Results of these experiments are compared to model calculations. The general agreement justifies the use of the model to calculate GCR fluxes. The magnitude of variations caused by solar modulation, geomagnetic shielding, and shielding by matter determined from calculated LET spectra is generally in agreement with experimental data. However, more detailed investigations show that there are some weak points in modeling solar modulation and shielding by material. These points are discussed in more detail.
A remanent and induced magnetization model of Magsat vector anomalies over the west African craton
NASA Technical Reports Server (NTRS)
Toft, P. B.; Haggerty, S. E.
1986-01-01
Scalar and vector Magsat anomalies over the west African craton are analyzed by forward and inverse models. A forward model of the Man shield is based on Liberia. Induced magnetization contrasts due to sporadic iron-formations and to regional metamorphic rocks, and a contrast in remanent magnetization within the lower crust are included. This combination reproduces the location, magnitude and adopted local zero level of anomalies in the initial Magsat maps. An inverse model of the Reguibat shield estimates the magnetization contrast of its lithosphere, and when magnetism is restricted to shallower than 75 km both shields can be represented by a susceptibility contrast of +0.02. A residual anomaly between the shields involves a relative deficiency of induced magnetization along with other causes.
A remanent and induced magnetization model of Magsat vector anomalies over the west African craton
NASA Astrophysics Data System (ADS)
Toft, P. B.; Haggerty, S. E.
1986-04-01
Scalar and vector Magsat anomalies over the west African craton are analyzed by forward and inverse models. A forward model of the Man shield is based on Liberia. Induced magnetization contrasts due to sporadic iron-formations and to regional metamorphic rocks, and a contrast in remanent magnetization within the lower crust are included. This combination reproduces the location, magnitude and adopted local zero level of anomalies in the initial Magsat maps. An inverse model of the Reguibat shield estimates the magnetization contrast of its lithosphere, and when magnetism is restricted to shallower than 75 km both shields can be represented by a susceptibility contrast of +0.02. A residual anomaly between the shields involves a relative deficiency of induced magnetization along with other causes.
Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source
Ghosh, Vinita J.; Schaefer, Charles; Kahnhauser, Henry
2017-06-30
The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. Thismore » entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project’s resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed in this paper. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Finally, post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.« less
Induced Radioactivity in Lead Shielding at the National Synchrotron Light Source.
Ghosh, Vinita J; Schaefer, Charles; Kahnhauser, Henry
2017-06-01
The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. This entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project's resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.
Gan, Rong Z; Nakmali, Don; Ji, Xiao D; Leckness, Kegan; Yokell, Zachary
2016-10-01
Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
Absorption property of C@CIPs composites by the mechanical milling process
NASA Astrophysics Data System (ADS)
Liu, Ting; Zhou, Li; Zheng, Dianliang; Xu, Yonggang
2017-09-01
The C@CIPs absorbents were fabricated by the mechanical milling method. The particle morphology and crystal grain structure were characterized by the scanning electron microscopy and the X-ray diffraction patterns, respectively. The complex permittivity and permeability of the absorbing composites added the hybrid particles were tested in 2-18 GHz. The reflection loss (RL) and shielding effectiveness were calculated using the tested parameters. It was found that the MWCNTs were bonded to the CIPs surface. The permittivity and permeability of the C@CIPs were increased as the MWCNTs coated on the CIPs. It was attributed to the dielectric property of MWCNTs, particle shape and the interactions of the two particles according to the Debye equation and the Maxwell-Garnett mixing rule. The C@CIPs composites had a better absorbing property as RL < -4 dB in 4.6-17 GHz with thickness 0.6 mm as well as shielding property (maximum 12.7 dB) in 2-18 GHz. It indicated that C@CIPs might be an effective absorbing/shielding absorbent.
Shielding Analysis of a Small Compact Space Nuclear Reactor
1987-08-01
RESPONSE) =4, MAXWELLIAN FISSION SPECTRUM (ILNTEGRAL RESPONSE) =5, LOS ALAMOS FISSION SPECTRUM, 1982 (INTEGRAL RESPONSE) =6, VITAMIN C NEUTRON SPECTRUM...Appendices Appendix A: Calculations of Effective Radii.. A-1 Appendix B: Atom Density Calculations for FEMPlD and FEMP2D ................ B-I Appendix C ...FEMPID and FEM22D Data........... C -i Appendix D: Energy Group Definition .......... D-I Appendix E: Transport Equation, Legendr4 Polynomial
Designing dual-plate meteoroid shields: A new analysis
NASA Technical Reports Server (NTRS)
Swift, H. F.; Bamford, R.; Chen, R.
1982-01-01
Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.
Ellis, Paul D; Sears, Jesse A; Yang, Ping; Dupuis, Michel; Boron, Thaddeus T; Pecoraro, Vincent L; Stich, Troy A; Britt, R David; Lipton, Andrew S
2010-12-01
We have examined the antiferromagneticly coupled bis(μ-oxo)dimanganese(IV) complex [Mn(2)O(2)(salpn)(2)] (1) with (55)Mn solid-state NMR at cryogenic temperatures and first-principle theory. The extracted values of the (55)Mn quadrupole coupling constant, C(Q), and its asymmetry parameter, η(Q), for 1 are 24.7 MHz and 0.43, respectively. Further, there was a large anisotropic contribution to the shielding of each Mn(4+), i.e. a Δσ of 3375 ppm. Utilizing broken symmetry density functional theory, the predicted values of the electric field gradient (EFG) or equivalently the C(Q) and η(Q) at ZORA, PBE QZ4P all electron level of theory are 23.4 MHz and 0.68, respectively, in good agreement with experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y; Goenka, A; Sharma, A
Purpose: To assess and report the in vivo dose for a patient with a pacemaker being treated in left breast intraoperative radiation therapy (IORT). The ZEISS Intrabeam 50 kVp X-ray beam with a spherical applicator was used. Methods: The optically stimulated luminescent dosimeters (OSLDs) (Landauer nanoDots) were employed and calibrated under the conditions of the Intrabeam 50 kVp X-rays. The nanoDots were placed on the patient at approximately 15 cm away from the lumpectomy cavity both under and above a shield of lead equivalence 0.25 mm (RayShield X-Drape D-110) covering the pacemaker area during IORT with a 5 cm sphericalmore » applicator. Results: The skin surface dose near the pacemaker during the IORT with a prescription of 20 Gy was measured as 4.0±0.8 cGy. The dose behind the shield was 0.06±0.01 Gy, demonstrating more than 98% dose reduction. The in vivo skin surface doses during a typical breast IORT at a 4.5 cm spherical applicator surface were further measured at 5, 10, 15, and 20 cm away to be 159±11 cGy, 15±1 cGy, 6.6±0.5 cGy, and 1.8±0.1 cGy, respectively. A power law fit to the dose versus the distance z from the applicator surface yields the dose fall off at the skin surface following z^-2.5, which can be used to estimate skin doses in future cases. The comparison to an extrapolation of depth dose in water reveals an underestimate of far field dose using the manufactory provided data. Conclusion: The study suggests the appropriateness of OSLD as an in vivo skin dosimeter in IORT using the Intrabeam system in a wide dose range. The pacemaker dose measured during the left breast IORT was within a safe limit.« less
Dimmuborgir: a rootless shield complex in northern Iceland
Skelton, Alasdair; Sturkell, Erik; Jakobsson, Martin; Einarsson, Draupnir; Tollefsen, Elin; Orr, Tim R.
2016-01-01
The origin of Dimmuborgir, a shield-like volcanic structure within the Younger Laxá lava flow field near Lake Mývatn, in northern Iceland, has long been questioned. New airborne laser mapping (light detection and ranging (LiDAR)), combined with ground-penetrating radar results and a detailed field study, suggests that Dimmuborgir is a complex of at least two overlapping rootless shields fed by lava erupting from the nearby Lúdentarborgir crater row. This model builds upon previous explanations for the formation of Dimmuborgir and is consistent with observations of rootless shield development at Kīlauea Volcano, Hawaii. The larger rootless shields at Dimmuborgir, 1–1.5 km in diameter, elliptical in plan view, ∼30 m in height, and each with a 500-m-wide summit depression, were capable of storing as much as 2–3 × 106 m3 of lava. They were fed by lava which descended 30–60 m in lava tubes along a distance of 3 km from the crater row. The height difference generated pressure sufficient to build rootless shields at Dimmuborgir in a timescale of weeks. The main summit depressions, inferred to be drained lava ponds, could have emptied via a 30-m-wide × 5-m-deep channel, with estimated effusion rates of 0.7–7 m3 s−1 and minimum flow durations of 5–50 days. We argue that the pillars for which Dimmuborgir is famed are remnants of lava pond rims, at various stages of disintegration that formed during pond drainage.
Heat flow, seismic cut-off depth and thermal modeling of the Fennoscandian Shield
NASA Astrophysics Data System (ADS)
Veikkolainen, Toni; Kukkonen, Ilmo T.; Tiira, Timo
2017-12-01
Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000-2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyse the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40-60 mW m-2). The 1-D geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9-15 mW m-2), upper crustal heat production values (3.3-1.1 μWm-3) and the brittle-ductile transition temperature (350 °C) assigned to the cut-off depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 μWm-3 were assigned, respectively. The models suggest a Moho temperature range of 460-500 °C.
NASA Astrophysics Data System (ADS)
Kartashov, Dmitry; Shurshakov, Vyacheslav
2018-03-01
A ray-tracing method to calculate radiation exposure levels of astronauts at different spacecraft shielding configurations has been developed. The method uses simplified shielding geometry models of the spacecraft compartments together with depth-dose curves. The depth-dose curves can be obtained with different space radiation environment models and radiation transport codes. The spacecraft shielding configurations are described by a set of geometry objects. To calculate the shielding probability functions for each object its surface is composed from a set of the disjoint adjacent triangles that fully cover the surface. Such description can be applied for any complex shape objects. The method is applied to the space experiment MATROSHKA-R modeling conditions. The experiment has been carried out onboard the ISS from 2004 to 2016. Dose measurements were realized in the ISS compartments with anthropomorphic and spherical phantoms, and the protective curtain facility that provides an additional shielding on the crew cabin wall. The space ionizing radiation dose distributions in tissue-equivalent spherical and anthropomorphic phantoms and for an additional shielding installed in the compartment are calculated. There is agreement within accuracy of about 15% between the data obtained in the experiment and calculated ones. Thus the calculation method used has been successfully verified with the MATROSHKA-R experiment data. The ray-tracing radiation dose calculation method can be recommended for estimation of dose distribution in astronaut body in different space station compartments and for estimation of the additional shielding efficiency, especially when exact compartment shielding geometry and the radiation environment for the planned mission are not known.
Eliminating bias in rainfall estimates from microwave links due to antenna wetting
NASA Astrophysics Data System (ADS)
Fencl, Martin; Rieckermann, Jörg; Bareš, Vojtěch
2014-05-01
Commercial microwave links (MWLs) are point-to-point radio systems which are widely used in telecommunication systems. They operate at frequencies where the transmitted power is mainly disturbed by precipitation. Thus, signal attenuation from MWLs can be used to estimate path-averaged rain rates, which is conceptually very promising, since MWLs cover about 20 % of surface area. Unfortunately, MWL rainfall estimates are often positively biased due to additional attenuation caused by antenna wetting. To correct MWL observations a posteriori to reduce the wet antenna effect (WAE), both empirically and physically based models have been suggested. However, it is challenging to calibrate these models, because the wet antenna attenuation depends both on the MWL properties (frequency, type of antennas, shielding etc.) and different climatic factors (temperature, due point, wind velocity and direction, etc.). Instead, it seems straight forward to keep antennas dry by shielding them. In this investigation we compare the effectiveness of antenna shielding to model-based corrections to reduce the WAE. The experimental setup, located in Dübendorf-Switzerland, consisted of 1.85-km long commercial dual-polarization microwave link at 38 GHz and 5 optical disdrometers. The MWL was operated without shielding in the period from March to October 2011 and with shielding from October 2011 to July 2012. This unique experimental design made it possible to identify the attenuation due to antenna wetting, which can be computed as the difference between the measured and theoretical attenuation. The theoretical path-averaged attenuation was calculated from the path-averaged drop size distribution. During the unshielded periods, the total bias caused by WAE was 0.74 dB, which was reduced by shielding to 0.39 dB for the horizontal polarization (vertical: reduction from 0.96 dB to 0.44 dB). Interestingly, the model-based correction (Schleiss et al. 2013) was more effective because it reduced the bias of unshielded periods to 0.07 dB for the horizontal polarization (vertical: 0.06 dB). Applying the same model-based correction to shielded periods reduces the bias even more, to -0.03 dB and -0.01 dB, respectively. This indicates that additional attenuation could be caused also by different effects, such as reflection of sidelobes from wet surfaces and other environmental factors. Further, model-based corrections do not capture correctly the nature of WAE, but more likely provide only an empirical correction. This claim is supported by the fact that detailed analysis of particular events reveals that both antenna shielding and model-based correction performance differ substantially from event to event. Further investigation based on direct observation of antenna wetting and other environmental variables needs to be performed to identify more properly the nature of the attenuation bias. Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett., 10.1109/LGRS.2012.2236074.
Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.
2009-01-01
Hybrid closed bore x-ray∕MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (≈1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789
Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A
2009-05-01
Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.
NASA Astrophysics Data System (ADS)
Jokisaari, J.; Hiltunen, Y.; Lounila, J.
1986-09-01
The anisotropy of the indirect 13C-19F spin-spin coupling tensor of methyl fluoride-13C in the liquid crystals ZLI 1167, EBBA, their mixtures, phase IV, and phase 1221 was studied by applying 1H and 19F NMR spectroscopy. The relative anisotropy ΔJCF/JCF gets values between -4.3 (in ZLI 1167) and +30.7 (in EBBA) when determined in the conventional way from the experimental dipolar coupling constants taking into account only harmonic vibrational corrections. The inclusion of the deformational corrections in both the direct and indirect C-F coupling tensors leads to a constant, solvent independent relative anisotropy of -2.5±0.2. This result is also obtained when a mixture of the liquid crystals ZLI 1167 and EBBA is used which mixture gives an undistorted geometry for methyl fluoride. The chemical shielding anisotropies ΔσH, ΔσC, and ΔσF for methyl fluoride were determined by applying the method of mixing two thermotropic nematogens (ZLI 1167 and EBBA) with opposite anisotropies of diamagnetic susceptibility. The results ΔσH =+5.2±0.2 ppm, ΔσC =+87±4 ppm, and ΔσF =-90±4 ppm are in fair agreement with theoretical calculations.
Contaminant deposition building shielding factors for US residential structures.
Dickson, Elijah; Hamby, David; Eckerman, Keith
2017-10-10
This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit. © 2017 IOP Publishing Ltd.
Contaminant deposition building shielding factors for US residential structures.
Dickson, E D; Hamby, D M; Eckerman, K F
2015-06-01
This paper presents validated building shielding factors designed for contemporary US housing-stock under an idealized, yet realistic, exposure scenario from contaminant deposition on the roof and surrounding surfaces. The building shielding factors are intended for use in emergency planning and level three probabilistic risk assessments for a variety of postulated radiological events in which a realistic assessment is necessary to better understand the potential risks for accident mitigation and emergency response planning. Factors are calculated from detailed computational housing-units models using the general-purpose Monte Carlo N-Particle computational code, MCNP5, and are benchmarked from a series of narrow- and broad-beam measurements analyzing the shielding effectiveness of ten common general-purpose construction materials and ten shielding models representing the primary weather barriers (walls and roofs) of likely US housing-stock. Each model was designed to scale based on common residential construction practices and include, to the extent practical, all structurally significant components important for shielding against ionizing radiation. Calculations were performed for floor-specific locations from contaminant deposition on the roof and surrounding ground as well as for computing a weighted-average representative building shielding factor for single- and multi-story detached homes, both with and without basement as well for single-wide manufactured housing-unit.
Evaluation of Multi-Functional Materials for Deep Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Atwell, William; Wilkins, Richard; Gersey, Brad; Badavi, Francis F.
2009-01-01
Small scale trade study of materials for radiation shielding: a) High-hydrogen polymers; b) Z-graded materials; c) Fiber-reinforced polymer composites. Discussed multi-functionality of fiber-reinforced polymer composites. Preliminary results of ground testing data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell Feder and Mahmoud Z. Yousef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken frommore » the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later. __________________________________________________« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell E. Feder and Mahmoud Z. Youssef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from themore » ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later.« less
Measurement of the transient shielding effectiveness of shielding cabinets
NASA Astrophysics Data System (ADS)
Herlemann, H.; Koch, M.
2008-05-01
Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martynenko, Yu. V., E-mail: Martynenko-YV@nrcki.ru
It is shown that the shielding plasma layer and metal droplet erosion in tokamaks are closely interrelated, because shielding plasma forms from the evaporated metal droplets, while droplet erosion is caused by the shielding plasma flow over the melted metal surface. Analysis of experimental data and theoretical models of these processes is presented.
Breathing Mode in Complex Plasmas
NASA Astrophysics Data System (ADS)
Fujioka, K.; Henning, C.; Ludwig, P.; Bonitz, M.; Melzer, A.; Vitkalov, S.
2007-11-01
The breathing mode is a fundamental normal mode present in Coulomb systems, and may have utility in identifying particle charge and the Debye length of certain systems. The question remains whether this mode can be extended to strongly coupled Yukawa balls [1]. These systems are characterized by particles confined within a parabolic potential well and interacting through a shielded Coulomb potential [2,3]. The breathing modes for a variety of systems in 1, 2, and 3 dimensions are computed by solving the eigenvalue problem given by the dynamical (Hesse) matrix. These results are compared to theoretical investigations that assume a strict definition for a breathing mode within the system, and an analysis is made of the most fitting model to utilize in the study of particular systems of complex plasmas [1,4]. References [1] T.E. Sheridan, Phys. of Plasmas. 13, 022106 (2006)[2] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[3] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[4] C. Henning et al., submitted for publication
A space radiation shielding model of the Martian radiationenvironment experiment (MARIE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwell, William; Saganti, Premkumar; Cucinotta, Francis A.
2004-12-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding modelmore » and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.« less
MgB2 thick films on three-dimensional structures fabricated by HPCVD
NASA Astrophysics Data System (ADS)
Guo, Zhengshan; Cai, Xingwei; Liao, Xuebin; Chen, Yiling; Yang, Can; Niu, Ruirui; Luo, Wenhao; Huang, Zigeng; Feng, Qingrong; Gan, Zizhao
2018-06-01
Magnetic shielding has been a key factor in the measurement of ultra-weak magnetic fields, especially for shielding from low frequency electromagnetic noise. With the recent development of superconducting quantum interference devices, superconducting magnetic shielding has become an important area of research. MgB2 has shown great potential in magnetic shielding for its remarkable superconducting properties, the feasibility of its use in this capacity having been demonstrated by MgB2 bulk samples. However, the potential for application of such bulk samples is limited. In this work, we have investigated the possibility of the fabrication of MgB2 films on three-dimensional (3D) structures using a hybrid physical‑chemical vapor deposition system. MgB2 films 10 μm thick have been fabricated on the outer surface of a polycrystalline Al2O3 cylinder. The deposited film showed a transition temperature (TC) of 39 K and J C of 5.1 × 105 A · cm‑2, which are comparable to those of planar MgB2 films. This work shows the feasibility of depositing MgB2 films onto a 3D structure, and sheds light on the potential use of MgB2 films in superconducting magnetic shielding.
Effectiveness of thyroid gland shielding in dental CBCT using a paediatric anthropomorphic phantom
Davies, J; Horner, K; Theodorakou, C
2015-01-01
Objectives: The purpose of the study is to evaluate the effectiveness of thyroid shielding in dental CBCT examinations using a paediatric anthropomorphic phantom. Methods: An ATOM® 706-C anthropomorphic phantom (Computerized Imaging Reference Systems Inc., Norfolk, VA) representing a 10-year-old child was loaded with six thermoluminescent dosemeters positioned at the level of the thyroid gland. Absorbed doses to the thyroid were measured for five commercially available thyroid shields using a large field of view (FOV). Results: A statistically significant thyroid gland dose reduction was found using thyroid shielding for paediatric CBCT examinations for a large FOV. In addition, a statistically significant difference in thyroid gland doses was found depending on the position of the thyroid gland. There was little difference in the effectiveness of thyroid shielding when using a lead vs a lead-equivalent thyroid shield. Similar dose reduction was found using 0.25- and 0.50-mm lead-equivalent thyroid shields. Conclusions: Thyroid shields are to be recommended when undertaking large FOV CBCT examinations on young patients. PMID:25411710
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard;
2015-01-01
NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.
Fiber Optic Temperature Sensors in TPS: Arc Jet Model Design & Testing
NASA Technical Reports Server (NTRS)
Black, Richard; Feldman, Jay; Ellerby, Donald; Monk, Joshua; Moslehi, Behzad; Oblea, Levy; Switzer, Matthew
2017-01-01
Techniques for using fiber optics with Fiber Bragg Gratings (FBGs) have been developed by IFOS Corp. for use in thermal protection systems (TPS) on spacecraft heat shield materials through NASA Phase 1 and 2 SBIR efforts and have been further improved in a recent collaboration between IFOS and NASA that will be described here. Fiber optic temperature sensors offer several potential advantages over traditional thermocouple sensors including a) multiplexing many sensors in a single fiber to increase sensor density in a given array or to provide spatial resolution, b) improved thermal property match between sensor and TPS to reduce heat flow disruption, c) lack of electrical conductivity.
Test report dot 7A type a liquid packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ketusky, E. T.; Brandjes, C.; Benoit, T. J.
This test report documents the performance of Savannah River National Laboratory’s (SRNL’s) U.S. Department of Transportation (DOT) Specification 7A; General Packaging, Type A shielded liquid shipping packaging and compliance with the regulatory requirements of Title 49 of the Code of Federal Regulations (CFR). The primary use of this packaging design is for the transport of radioactive liquids of up to 1.3 liters in an unshielded configuration and up to 113 mL of radioactive liquids in a shielded configuration, with no more than an A2 quantity in either configuration, over public highways and/or commercial aircraft. The contents are liquid radioactive materialsmore » sufficiently shielded and within the activity limits specified in173.435 or 173.433 for A2 (normal form) materials, as well as within the analyzed thermal heat limits. Any contents must be compatibly packaged and must be compatible with the packaging. The basic packaging design is based on the U.S. Department of Energy’s (DOE’s) Model 9979 Type A fissile shipping packaging designed and tested by SRNL. The shielded liquid configuration consists of the outer and inner drums of the 9979 package with additional low density polyethylene (LDPE) dunnage nesting a tungsten shielded cask assembly (WSCA) within the 30-gallon inner drum. The packaging model for the DOT Specification 7A, Type A liquids packaging is HVYTAL.« less
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona
2009-09-01
Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.
NASA Astrophysics Data System (ADS)
Reyes, Javier; Lara, Luis E.; Morata, Diego
2017-07-01
A remarkable expression of intraplate volcanism is the occurrence of evolutionary stages with important variations of magmatic processes and products. Plumbing systems and storage conditions seem to be different for shield and rejuvenated volcanism, two classical stages notably preserved in Robinson Crusoe Island, Juan Fernández Ridge in the SE Pacific Ocean. We here present first order geochemical features for rocks from both shield and rejuvenated stages and through geothermobarometry and textural analysis we unravel their contrasting ascent and storage history. The shield stage ( 3.8 Ma) is represented by a 900 m thick sequence of basalt, picrobasalt and picrite lava flows forming subsets according their chemistry and mineralogy: 'differentiated', 'near-primitive' and 'olivine-rich' lavas. Pressure estimates for in equilibrium assemblages are < 3.2 kbar, and temperature ranges around 1321 °C for the 'near-primitive' and 1156-1181 °C for the 'differentiated' groups. Volcanic rocks from the rejuvenated stage ( 0.9 Ma) fill the eroded morphology of the shield pile with basanite and picrite lava flows with two compositional varieties: the primitive 'high-Mg' group that crystallized clinopyroxene at pressures < 3.7 kbar and olivine at temperatures in the range 1316-1354 °C; and the 'low-Mg' group that carries notably zoned crystals formed at a wide range of pressures (0-10.8 kbar) and temperatures (1256-1295 °C). This allows us to infer contrasting patterns of ascent and storage during these archetypical stages in Robinson Crusoe Island, which also controlled volcanic processes on surface and finally shaped the island. We propose the existence of shallow magmatic reservoirs in the shield stage, where the ascending magmas would have been stored and differentiated. On the other hand, rejuvenated magmas experimented rapid ascent with polybaric crystallization and sometimes short-time storage in low-volume reservoirs. Similar conditions have been proposed in other oceanic islands suggesting that shallow reservoirs in the shield stage and deeper crystallization of more alkaline magmas in the rejuvenated stage seems to describe a global pattern.
George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A
2002-01-01
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.
2002-01-01
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina
2010-01-01
Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event
Preliminary calculation of solar cosmic ray dose to the female breast in space mission
NASA Technical Reports Server (NTRS)
Shavers, Mark; Poston, John W.; Atwell, William; Hardy, Alva C.; Wilson, John W.
1991-01-01
No regulatory dose limits are specifically assigned for the radiation exposure of female breasts during manned space flight. However, the relatively high radiosensitivity of the glandular tissue of the breasts and its potential exposure to solar flare protons on short- and long-term missions mandate a priori estimation of the associated risks. A model for estimating exposure within the breast is developed for use in future NASA missions. The female breast and torso geometry is represented by a simple interim model. A recently developed proton dose-buildup procedure is used for estimating doses. The model considers geomagnetic shielding, magnetic-storm conditions, spacecraft shielding, and body self-shielding. Inputs to the model include proton energy spectra, spacecraft orbital parameters, STS orbiter-shielding distribution at a given position, and a single parameter allowing for variation in breast size.
Development and optimization of hardware for delta relaxation enhanced MRI.
Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J
2014-10-01
Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Stackpoole, M.; Kao, D.; Qu, V.; Gonzales, G.
2013-01-01
Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities.
NASA Astrophysics Data System (ADS)
Radhakrishna, T.; Krishnendu, N. R.; Balasubramonian, G.
2013-11-01
Palaeomagnetic study of Palaeoproterozoic mafic dykes in the basement along the margins of the Cuddapah basin, the largest Precambrian sedimentary basin in south India, is presented in detail for a general discussion of Palaeoproterozoic igneous activity in India. The results are compared with all earlier published data on mafic dykes in India and are integrated with recently-published high-precision U-Pb baddeleyite ages to provide a comprehensive account of Palaeoproterozoic igneous activity in India. The analysis consolidates palaeomagnetic poles for six age divisions between 2.45 and 1.85 Ga with robust statistical criteria. Our best estimates of overall mean poles from 241 dykes are situated at (1) λ = 17.7°N; Φ = 106.0°E (A95 = 9.0°; 7N = 24) at c. 2.45 Ga, (2) λ = 7.1°N; Φ = 57.2°E (A95 = 4.5°; N = 69) at c. 2.37 Ga, (3) λ = 41.6°S; Φ = 5.5°E (A95 = 5.1°; N = 34) at c. 2.22 Ga, (4) λ = 4.7°N; Φ = 343.0°E (A95 = 4.4°; N = 31) at 2.18 Ga, (5) λ = 49.2°N; Φ = 332.9°E (A95 = 4.8°; N = 24) at 1.99-1.89 Ga and (6) λ = 73.7°N; Φ = 282.6°E (A95 = 2.9°; N = 39) at 1.86 Ga. The data permit us to construct an apparent polar wander path for the Indian shield for an ~ 600 Ma interval of the Palaeoproterozoic eon (2.45-1.85 Ga). Testing and evaluation of continental reconstructions for this interval, which are mostly based on geological correlations, reveal many inconsistencies. Between 2.45 and 2.37 Ga, the Indian shield was situated at higher latitudes similar to the Yilgarn craton of Australia. It was subsequently located near the equator at 2.22, 2.18, 1.99 and 1.86 Ga. Thus, an India-Australia connection is supported during these times, but a proposed Australia-Kaapvaal link in "Zimvaalbara" and a Dharwar (India)-Slave connection in "Sclavia" or a Superior-Zimbabwe-India connection in "Superia" are inconsistent with Indian data. In addition, the close palaeomagnetic comparison between the Palaeoproterozoic dykes of Dharwar-Bastar-Bundelkhand cratons in India indicates an age of > 2.45 Ga for orogenic activity along the central Indian tectonic zone; hence, matching this zone with the 2.0-1.8 Ga Trans-North China orogenic belt, or positioning North China adjacent to India or juxtaposition of the Indian shield along the western margin of Laurentia in the Columbia reconstructions is not supported. The Indian data appear to be in accord with the essential features of the refined Protopangaea model and the original Ur configuration. Finally, the results are interpreted in terms of four dyke emplacement events in the age range 2.45-2.18 Ga linked to short-lived (5-10 Ma) LIPs developed over mantle plumes. The dykes of ~ 1.99-1.89 Ga age probably relate to continued long lived igneous activity while the ~ 1.86 Ga dykes are relatively fewer in number and may represent waning stage of a large igneous event related to a major mantle plume.
GARLIC, A SHIELDING PROGRAM FOR GAMMA RADIATION FROM LINE- AND CYLINDER- SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, M.
1959-06-01
GARLlC is a program for computing the gamma ray flux or dose rate at a shielded isotropic point detector, due to a line source or the line equivalent of a cylindrical source. The source strength distribution along the line must be either uniform or an arbitrary part of the positive half-cycle of a cosine function The line source can be orierted arbitrarily with respect to the main shield and the detector, except that the detector must not be located on the line source or on its extensionThe main source is a homogeneous plane slab in which scattered radiation is accountedmore » for by multiplying each point element of the line source by a point source buildup factor inside the integral over the point elements. Between the main shield and the line source additional shields can be introduced, which are either plane slabs, parallel to the main shield, or cylindrical rings, coaxial with the line source. Scattered radiation in the additional shields can only be accounted for by constant build-up factors outside the integral. GARLlC-xyz is an extended version particularly suited for the frequently met problem of shielding a room containing a large number of line sources in diHerent positions. The program computes the angles and linear dimensions of a problem for GARLIC when the positions of the detector point and the end points of the line source are given as points in an arbitrary rectangular coordinate system. As an example the isodose curves in water are presented for a monoenergetic cosine-distributed line source at several source energies and for an operating fuel element of the Swedish reactor R3, (auth)« less
NASA Astrophysics Data System (ADS)
Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao
2017-05-01
The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... Configuration Control Limitations (CDCCL) task to make certain that the by-pass wire remains installed. On later... in-tank Fuel Quantity Indication (FQI) cable plug and the cable shield of the shielded FQI system... (FQI) cable plug and the cable shield of the shielded FQI system cables in the main and collector fuel...
Shielded-Twisted-Pair Cable Model for Chafe Fault Detection via Time-Domain Reflectometry
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2012-01-01
This report details the development, verification, and validation of an innovative physics-based model of electrical signal propagation through shielded-twisted-pair cable, which is commonly found on aircraft and offers an ideal proving ground for detection of small holes in a shield well before catastrophic damage occurs. The accuracy of this model is verified through numerical electromagnetic simulations using a commercially available software tool. The model is shown to be representative of more realistic (analytically intractable) cable configurations as well. A probabilistic framework is developed for validating the model accuracy with reflectometry data obtained from real aircraft-grade cables chafed in the laboratory.
X-ray shielding behaviour of kaolin derived mullite-barites ceramic
NASA Astrophysics Data System (ADS)
Ripin, A.; Mohamed, F.; Choo, T. F.; Yusof, M. R.; Hashim, S.; Ghoshal, S. K.
2018-03-01
Mullite-barite ceramic (MBC) is an emergent material for effective shielding of redundant ionizing radiation exposure. The composition dependent mechanical, thermal, and microstructure properties of MBC that makes MBC a high performing novel radiation shielding candidate remained unexplored. This paper examines the possibility of exploiting Malaysian kaolin (AKIM-35) and barite (BaSO4) derived ceramic (MBC) system for X-ray shielding operation. Using conventional pressing and sintering method six ceramic samples are prepared by mixing AKIM-35 with barite at varying contents (0, 10, 20, 30, 40 and 50 wt%). Synthesized pressed mixtures are calcined at 400 °C for 30 min and then sintered to 1300 °C for 120 min at a heating rate of 10 °C/min. Sintered samples are characterized via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), lead equivalent (LE), uniformity and dose reduction analyses. XRD pattern of prepared ceramics revealed the presence of monoclinic barium alumino-silicate (BAS) and orthorhombic mullite as major shielding phases together with other minor phase of barite and hexagonal quartz (SiO2) structures. Furthermore, FESEM images of ceramics (between 0 and 30 wt%) displayed the existence of compacted monoclinic plate of BAS and acicular mullite morphology (ceramics at 40 and 50 wt%). Radiation tests displayed the capacity of ceramics (at 0 and 10 wt%) to shield the X-ray radiation emanated at tube potential range of 50-120 kV. The highest radiation attenuation is ascertained at 70 kV where the dose is reduced remarkably between 99.11% and 97.42%. Ceramics at 0 and 10 wt% demonstrated the highest lead (Pb) equivalent thickness (LE) of 0.44 mm and 0.34 mm, respectively. It is established that such MBC may contribute towards the development of shielding material against ionizing radiation in diagnostic radiology (X-ray) dose range.
High-fidelity cryothermal test of a subscale large space telescope
NASA Astrophysics Data System (ADS)
DiPirro, M.; Tuttle, J.; Ollendorf, S.; Mattern, A.; Leisawitz, D.; Jackson, M.; Francis, J.; Hait, T.; Cleveland, P.; Muheim, D.; Mastropietro, A. J.
2007-09-01
To take advantage of the unique environment of space and optimize infrared observations for faint sources, space telescopes must be cooled to low temperatures. The new paradigm in cooling large space telescopes is to use a combination of passive radiative cooling and mechanical cryocoolers. The passive system must shield the telescope from the Sun, Earth, and the warm spacecraft components while providing radiative cooling to deep space. This shield system is larger than the telescope itself, and must attenuate the incoming energy by over one million to limit heat input to the telescope. Testing of such a system on the ground is a daunting task due to the size of the thermal/vacuum chamber required and the degree of thermal isolation necessary between the room temperature and cryogenic parts of the shield. These problems have been attacked in two ways: by designing a subscale version of a larger sunshield and by carefully closing out radiation sneak paths. The 18% scale (the largest diameter shield was 1.5 m) version of the SPIRIT Origins Probe telescope shield was tested in a low cost helium shroud within a 3.1 m diameter x 4.6 m long LN II shrouded vacuum chamber. Thermal straps connected from three shield stages to the liquid helium cooled shroud were instrumented with heaters and thermometers to simulate mechanical cryocooler stages at 6 K, 18-20 K, and 45-51 K. Performance data showed that less than 10 microwatts of radiative heat leaked from the warm to cold sides of the shields during the test. The excellent agreement between the data and the thermal models is discussed along with shroud construction techniques.
Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008).
Harris, Robin K; Becker, Edwin D; De Menezes, Sonia M Cabral; Granger, Pierre; Hoffman, Roy E; Zilm, Kurt W
2008-06-01
IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the (1)H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating (13)C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. Copyright (c) 2008 John Wiley & Sons, Ltd
A theoretical case study of type I and type II beta-turns.
Czinki, Eszter; Császár, Attila G; Perczel, András
2003-03-03
NMR chemical shielding anisotropy tensors have been computed by employing a medium size basis set and the GIAO-DFT(B3LYP) formalism of electronic structure theory for all of the atoms of type I and type II beta-turn models. The models contain all possible combinations of the amino acid residues Gly, Ala, Val, and Ser, with all possible side-chain orientations where applicable in a dipeptide. The several hundred structures investigated contain either constrained or optimized phi, psi, and chi dihedral angles. A statistical analysis of the resulting large database was performed and multidimensional (2D and 3D) chemical-shift/chemical-shift plots were generated. The (1)H(alpha-13)C(alpha), (13)C(alpha-1)H(alpha-13)C(beta), and (13)C(alpha-1)H(alpha-13)C' 2D and 3D plots have the notable feature that the conformers clearly cluster in distinct regions. This allows straightforward identification of the backbone and side-chain conformations of the residues forming beta-turns. Chemical shift calculations on larger For-(L-Ala)(n)-NH(2) (n=4, 6, 8) models, containing a single type I or type II beta-turn, prove that the simple models employed are adequate. A limited number of chemical shift calculations performed at the highly correlated CCSD(T) level prove the adequacy of the computational method chosen. For all nuclei, statistically averaged theoretical and experimental shifts taken from the BioMagnetic Resonance Bank (BMRB) exhibit good correlation. These results confirm and extend our previous findings that chemical shift information from selected multiple-pulse NMR experiments could be employed directly to extract folding information for polypeptides and proteins.
NASA Astrophysics Data System (ADS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.
Active magnetic compensation composed of shielding panels.
Kato, K; Yamazaki, K; Sato, T; Haga, A; Okitsu, T; Muramatsu, K; Ueda, T; Kobayashi, K; Yoshizawa, M
2004-11-30
Magnetically shielded rooms (MSRs) with materials of high permeability and active shield systems have been used to shield magnetic noise for biomagnetic measurements up to now. However, these techniques have various disadvantages. Therefore, we have developed a new shielding system composed of shielding panels using an active compensation technique. In this study, we evaluated the shielding performance of several unit panels attached together. Numerical and experimental approaches indicated that the shielding factor of a cubic model composed of 24 panels was 17 for uniform fields, and 7 for disturbances due to car movement. Furthermore, the compensation space is larger than that of an ordinary active system using large coils rather than panels. Moreover, the new active compensation system has the important advantage that panels of any shape can be assembled for occasional use because the unit panels are small and light.
Classical and quantum production of cornucopions at energies below 1018 GeV
NASA Astrophysics Data System (ADS)
Banks, T.; O'loughlin, M.
1993-01-01
We argue that the paradoxes associated with infinitely degenerate states, which plague relic particle scenarios for the end point of black hole evaporation, may be absent when the relics are horned particles. Most of our arguments are based on simple observations about the classical geometry of extremal dilaton black holes, but at a crucial point we are forced to speculate about classical solutions to string theory in which the infinite coupling singularity of the extremal dilaton solution is shielded by a condensate of massless modes propagating in its infinite horn. We use the nonsingular c=1 solution of (1+1)-dimensional string theory as a crude model for the properties of the condensate. We also present a brief discussion of more general relic scenarios based on large relics of low mass.
Performance of solar shields. [Skylab 1 micrometeoroid shield difficulties
NASA Technical Reports Server (NTRS)
Schwinghamer, R. J.
1974-01-01
The loss of the micrometeoroid shield from the Orbital Workshop section of Skylab 1 about 63 seconds after lift-off, was the catalyst for a prodigious effort to develop a substitute for the passive portion of the thermal control system. An intensive effort is described in which numerous potential thermal shield materials were assessed, and during which period ten specific shield designs were developed and carried through various stages of development and test. Thermal shield materials data are discussed, including optical, strength, fatigue, outgassing, tackiness, ultraviolet radiation, and material memory properties. Specifically addressed are thermal shield materials selection criteria and the design, development, and test requirements associated with the successful development of Skylab thermal shields, and specifically the two thermal shields subsequently deployed over the exposed gold foil skin of the Orbital Workshop. Also considered are the general performance and thermal improvements provided by both the parasol design deployed by the Skylab 1 crew, and the sail design deployed by the Skylab 2 crew.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butson, M
Purpose: Intraoral electron shields used in radiotherapy are designed to minimize radiation exposure to non-treatment tissue. Sites where shields are used include but are not limited to, the treatment of lips, cheeks and ears whilst shielding the underlying oral cavity, tongue, gingival or temporal region. However their use produces an enhancement in dose on the beam side caused by an increase in electron backscatter radiation. This work designs a new shield incorporating copper, aluminium and wax in a step down filter arrangement to minimise backscatter whilst minimizing overall shield thickness. Methods: For electron beams ranging from 6 MeV to 10more » MeV, shields of varying designs and thicknesses were assessed to determine the thinnest shield design that could be produced whilst minimising backscattered radiation to a clinically acceptable level. This was performed with conventional lead and wax shields as well as varying quantities of aluminium and copper foils. Results: From tested shield designs, a new shield design of 4 mm lead, 0.6 mm copper, 1.0 mm aluminium and 1.5 mm wax (3.1 mm added filtration, 7.1 mm total thickness) provided a clinically acceptable (no greater than 110% dose) backscatter and transmission reduction and matched a standard 4.5 mm lead and 10 mm wax (total thickness 14.5 mm) electron shield. Dose enhancement values of no more than 10 % were measured utilising this shield design with a 50 % reduction in shield thickness. Conclusion: The thinner layered shield reduced backscattered radiation dose to less than 10% enhancement for beam energies on 10 MeV and less and will allow easier patient set up. The thinner shields are tolerated better by patients when mucosal reactions occur as they place less physical pressure on these sites during treatment due to their smaller size and thickness.« less
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei
2005-01-01
This document addresses calculations of probability distribution functions (PDFs) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPEs). PDFs are used to test the effectiveness of potential radiation shielding approaches. Monte-Carlo techniques are used to propagate uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. The cancer risk uncertainty is about four-fold for lunar and Mars mission risk projections. For short-stay lunar missins (<180 d), SPEs present the most significant risk, but one effectively mitigated by shielding. For long-duration (>180 d) lunar or Mars missions, GCR risks may exceed radiation risk limits. While shielding materials are marginally effective in reducing GCR cancer risks because of the penetrating nature of GCR and secondary radiation produced in tissue by relativisitc particles, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding. Therefore, improving our knowledge of space radiobiology to narrow uncertainties that lead to wide PDFs is the best approach to ensure radiation protection goals are met for space exploration.
Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Pope, Dennis S.
2014-01-01
One approach toward achieving NASA's aggressive N+2 noise goal of 42 EPNdB cumulative margin below Stage 4 is through the use of novel vehicle configurations like the Hybrid Wing Body (HWB). Jet noise measurements from an HWB acoustic test in NASA Langley's 14- by 22-Foot Subsonic Tunnel are described. Two dual-stream, heated Compact Jet Engine Simulator (CJES) units are mounted underneath the inverted HWB model on a traversable support to permit measurement of varying levels of shielding provided by the fuselage. Both an axisymmetric and low noise chevron nozzle set are investigated in the context of shielding. The unshielded chevron nozzle set shows 1 to 2 dB of source noise reduction (relative to the unshielded axisymmetric nozzle set) with some penalties at higher frequencies. Shielding of the axisymmetric nozzles shows up to 6.5 dB of reduction at high frequency. The combination of shielding and low noise chevrons shows benefits beyond the expected additive benefits of the two, up to 10 dB, due to the effective migration of the jet source peak noise location upstream for increased shielding effectiveness. Jet noise source maps from phased array results processed with the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm reinforce these observations.
Vieira, Ana; Snellen, Mirjam; Simons, Dick G
2018-01-01
Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.
Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena
2013-04-09
(13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.
Nuclear fragmentation of GCR-like ions: comparisons between data and PHITS
NASA Astrophysics Data System (ADS)
Zeitlin, Cary; Guetersloh, Stephen; Heilbronn, Lawrence; Miller, Jack; Sihver, Lembit; Mancusi, Davide; Fukumura, Aki; Iwata, Yoshi; Murakami, Takeshi
We present a summary of results from recent work in which we have compared nuclear fragmentation cross section data to predictions of the PHITS Monte Carlo simulation. The studies used beams of 12 C, 35 Cl, 40 Ar, 48 Ti, and 56 Fe at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Some of the data were obtained at the Brookhaven National Laboratory, others at the National Institute of Radiological Sciences in Japan. These energies and ion species are representative of the heavy ion component of the Galactic Cosmic Rays (GCR), which contribute significantly to the dose and dose equivalent that will be received by astronauts on deep-space missions. A critical need for NASA is the ability to accurately model the transport of GCR heavy ions through matter, including spacecraft walls, equipment racks, and other shielding materials, as well as through tissue. Nuclear interaction cross sections are of primary importance in the GCR transport problem. These interactions generally cause the incoming ion to break up (fragment) into one or more lighter ions, which continue approximately along the initial trajectory and with approximately the same velocity the incoming ion had prior to the interaction. Since the radiation dose delivered by a particle is proportional to the square of the quantity (charge/velocity), i.e., to (Z/β)2 , fragmentation reduces the dose (and, typically, dose equivalent) delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight, since the particles in the GCR tend to be highly energetic and because shielding must be relatively thin in order to keep overall mass as low as possible, keeping launch costs within reason. To support these goals, our group has systematically measured a large number of nuclear cross sections, intended to be used as either input to, or validation of, NASA transport models. A database containing over 200 charge-changing cross sections, and over 2000 fragment production cross sections, is nearing completion, with most results available online. In the past year, we have been investigating the PHITS (Particle and Heavy Ion Transport System) model of Niita et al. For purposes of modeling nuclear interactions, PHITS combines the Jet AA Microscopic Transport Model (JAM) hadron cascade model, the Jaeri Quantum Molecular Dynamics (JQMD) model, and the Generalized Evaporation Model (GEM). We will present detailed comparisons of our data to the cross sections and fragment angular distributions that arise from this model. The model contains some significant deficiencies, but, as we will show, also represents a significant advance over older, simpler models of fragmentation. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78
Liquid and gas phase NMR spectra of 13CH313CHO acetaldehyde
NASA Astrophysics Data System (ADS)
Makulski, Włodzimierz; Wikieł, Agata J.
2018-01-01
The gas phase NMR experiments perform a vital role in establishing the magnetic shielding and spin-spin coupling constants which are free from intermolecular interactions, equivalent to the parameter of isolated molecules. This work is concerned with an acetaldehyde molecule. Small amounts of acetaldehyde 13CH313CHO in gaseous matrices of CO2 and Xe were studied using high-precision 1H and 13C NMR measurements. Results were extrapolated to the zero-density limit permitting the determinations of the 1H and 13C absolute nuclear magnetic shielding of an isolated acetaldehyde molecule. The difference between the experimental and recent theoretical DFT results is discussed. Several samples of 13CH313CHO dissolved in popular organic and inorganic solvents were also investigated. Gas-to-solution shifts show the influence of the association process when acetaldehyde is transferred from gas to liquid state. Several spin-spin coupling constants in the gas phase and in different solvents were precisely measured.
Gravity, antigravity and gravitational shielding in (2+1) dimensions
NASA Astrophysics Data System (ADS)
Accioly, Antonio; Helayël-Neto, José; Lobo, Matheus
2009-07-01
Higher-derivative terms are introduced into three-dimensional gravity, thereby allowing for a dynamical theory. The resulting system, viewed as a classical field model, is endowed with a novel and peculiar feature: its nonrelativistic potential describes three gravitational regimes. Depending on the choice of the parameters in the action functional, one obtains gravity, antigravity or gravitational shielding. Interesting enough, this potential is very similar, mutatis mutandis, to the potential for the interaction of two superconducting vortices. Furthermore, the gravitational deflection angle of a light ray, unlike that of Einstein gravity in (2+1) dimensions, is dependent on the impact parameter.
Wing shielding of high velocity jet and shock-associated noise with cold and hot flow jets
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Groesbeck, D.; Wagner, J.
1976-01-01
Jet exhaust noise shielding data are presented for cold and hot flows (ambient to 1,100 K) and pressure ratios from 1.7 to 2.75. A nominal 9.5-cm diameter conical nozzle was used with simple shielding surfaces that were varied in length from 28.8 to 114.3 cm. The nozzle was located 8.8 cm above the surfaces. The acoustic data with the various sheilding lengths are compared to each other and to that for the nozzle alone. In general, short shielding surfaces that provided shielding for subsonic jets did not provide as much shielding for jets with shock noise, however, long shielding surfaces did shield shock noise effectively.
ERIC Educational Resources Information Center
Prawat, Richard S.
2003-01-01
Criticizes the evidence used by M. Gredler and C. Shields in their critique of Prawat's article about John Dewey and Lev Vygotsky and their educational philosophies. Notes specific problems with citations and interpretations. (SLD)
34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT ...
34. DETAILS AND SECTIONS OF SHIELDING TANK FUEL ELEMENT SUPPORT FRAME. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-S-4. INEL INDEX CODE NUMBER: 075 0701 60 851 151978. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Wadhams, T.P.; MacLean, M.; Holden, M.S.; Cassady, A.M.
2009-01-01
An experimental program has been completed by CUBRC exploring laminar, transitional, and turbulent flows over a 7.0% scale model of the Project ORION CEV geometry. This program was executed primarily to answer questions concerning the increase in heat transfer on the windward, or "hot shoulder" of the CEV heat shield from laminar to turbulent flow. To answer these questions CUBRC constructed and instrumented a 14.0 inch diameter Project ORION CEV model and ran a range of Reynolds numbers based on diameter from 1.0 to over 40 million at a Mach number of 8.0. These Reynolds numbers were selected to cover laminar to turbulent heating data on the "hot shoulder". Data obtained during these runs will be used to guide design decisions as they apply to heat shield thickness and extent. Several experiments at higher enthalpies were achieved to obtain data for code validation with real gas effects and transition. CUBRC also performed computation studies of these experiments to aid in the data reduction process and study turbulence modeling.
Split-core heat-pipe reactors for out-of-pile thermionic power systems.
NASA Technical Reports Server (NTRS)
Niederauer, G.; Lantz, E.; Breitweiser, R.
1971-01-01
Description of the concept of splitting a heat-pipe reactor for out-of-core thermionics into two identical halves and using the resulting center gap for reactivity control. Short Li-W reactor heat pipes penetrate the axial reflectors and form a heat exchanger with long heat pipes which wind through the shield to the thermionic diodes. With one reactor half anchored to the shield, the other is attached to a long arm with a pivot behind the shield and swings through a small arc for reactivity control. A safety shim prevents large reactivity inputs, and a fueled control arm drive shaft acts as a power stabilizer. Reactors fueled with U-235C and with U-233C have been studied.-
AN ASSESSMENT OF MCNP WEIGHT WINDOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. S. HENDRICKS; C. N. CULBERTSON
2000-01-01
The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomingsmore » of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.« less
Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.
Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J
2009-06-01
A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.
NASA Astrophysics Data System (ADS)
Alver, Özgür; Dikmen, Gökhan
2016-03-01
Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.
Double shroud delivery of silica precursor for reducing hexavalent chromium in welding fume.
Wang, Jun; Kalivoda, Mark; Guan, Jianying; Theodore, Alexandros; Sharby, Jessica; Wu, Chang-Yu; Paulson, Kathleen; Es-Said, Omar
2012-01-01
The welding process yields a high concentration of nanoparticles loaded with hexavalent chromium (Cr(6+)), a known human carcinogen. Previous studies have demonstrated that using tetramethylsilane (TMS) as a shielding gas additive can significantly reduce the Cr(6+) concentration in welding fume particles. In this study, a novel insulated double shroud torch (IDST) was developed to further improve the reduction of airborne Cr(6+) concentration by separating the flows of the primary shielding gas and the TMS carrier gas. Welding fumes were collected from a welding chamber in the laboratory and from a fixed location near the welding arc in a welding facility. The Cr(6+) content was analyzed with ion chromatography and X-ray photoelectron spectroscopy (XPS). Results from the chamber sampling demonstrated that the addition of 3.2 ≈ 5.1% of TMS carrier gas to the primary shielding gas resulted in more than a 90% reduction of airborne Cr(6+) under all shielding gas flow rates. The XPS result confirmed complete elimination of Cr(6+) inside the amorphous silica shell. Adding 100 ≈ 1000 ppm of nitric oxide or carbon monoxide to the shielding gas could also reduce Cr(6+) concentrations up to 57% and 35%, respectively; however, these reducing agents created potential hazards from the release of unreacted agents. Results of the field test showed that the addition of 1.6% of TMS carrier gas to the primary shielding gas reduced Cr(6+) concentration to the limitation of detection (1.1 μg/m(3)). In a worst-case scenario, if TMS vapor leaked into the environment without decomposition and ventilation, the estimated TMS concentration in the condition of field sampling would be a maximum 5.7 ppm, still well below its flammability limit (1%). Based on a previously developed cost model, the use of TMS increases the general cost by 3.8%. No visual deterioration of weld quality caused by TMS was found, although further mechanical testing is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharrati, Hedi; Agrebi, Amel; Karaoui, Mohamed-Karim
2007-04-15
X-ray buildup factors of lead in broad beam geometry for energies from 15 to 150 keV are determined using the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C). The obtained buildup factors data are fitted to a modified three parameter Archer et al. model for ease in calculating the broad beam transmission with computer at any tube potentials/filters combinations in diagnostic energies range. An example for their use to compute the broad beam transmission at 70, 100, 120, and 140 kVp is given. The calculated broad beam transmission is compared to data derived from literature, presenting good agreement.more » Therefore, the combination of the buildup factors data as determined and a mathematical model to generate x-ray spectra provide a computationally based solution to broad beam transmission for lead barriers in shielding x-ray facilities.« less
NASA Technical Reports Server (NTRS)
Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.
2013-01-01
NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.
Dennis, John H; French, Michael J; Hewitt, Peter J; Mortazavi, Seyed B; Redding, Christopher A J
2002-01-01
Previous work has demonstrated that the shield gas composition in gas metal arc welding can have a considerable effect on hexavalent chromium [Cr(VI)] concentration in the fume and on ozone concentrations near the arc. Normally a single shield gas is used. This paper describes a double shroud torch that allows used of concentric shield gases of different compositions. A solid stainless steel wire was used for welding. The double shroud torch used secondary shield gases containing small amounts of the reducing agents NO and C2H4. The Cr(VI) concentration in the fume and ozone concentration at a fixed point relative to the arc were measured and compared with results when using a single shield gas. Use of the reducing agents in secondary shielding using the double shroud torch was found to offer advantages for ozone concentration reduction compared with use in a conventional torch, but this was not found to be an advantage for reducing Cr(VI) concentrations.
Sherrod, D.R.; Murai, T.; Tagami, Takahiro
2007-01-01
Thirty-seven new K-Ar ages from West Maui volcano, Hawai'i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9-2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai'anae volcano (O'ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai'i). These rates diminish sharply during the final 0.3-0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Sherrod, David R.; Murai, Takashi; Tagami, Takahiro
2007-04-01
Thirty-seven new K Ar ages from West Maui volcano, Hawai‘i, are used to define the waning stages of shield growth and a brief episode of postshield volcanism. All but two samples from shield-stage strata have reversed polarity magnetization, so conceivably the exposed shield is not much older than the Olduvai Normal-Polarity subchron, or about 1.8 Ma. The oldest ages obtained are in the range 1.9 2.1 Ma but have large analytical error. Shield volcanism ended about 1.35 Ma, and postshield volcanism followed soon thereafter, persisting until about 1.2 Ma. Exposed shield-stage strata were emplaced at a rate of about 0.001 km3 per year, a rate smaller than historic Hawaiian magmatic rates by a factor of 100. Stratigraphic accumulation rates are similar to those measured previously at Wai‘anae volcano (O‘ahu) or the upper part of the Mauna Kea shield sequence (Hilo drill core, Hawai‘i). These rates diminish sharply during the final 0.3 0.5 m.y. of the shield stage. Hawaiian shield volcanoes begin waning well before their last 0.5 m.y. of life, then end quickly, geologically speaking, if West Maui is representative.
77 FR 67678 - Content Specifications and Shielding Evaluations for Type B Transportation Packages
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment Draft Regulatory Issue Summary (RIS) 2012-XX, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This RIS clarifies the NRC's use of staff guidance in NUREG-1609, ``Standard Review Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations included in the Certificates of Compliance (CoC) and safety analysis reports (SARs) for Type B transportation packages.
Department of Defense Standard Family of Tactical Shelters (Rigid/Soft/Hybrid)
2012-05-01
01-092-0892 Shelter, Electrical Equipment, S-280(C)/G, EMI Shielded 5411-01-304-3069 Shelter, Electrical Equipment, Lightweight, S-788/G Type I 5411...Electrical Equipment, S-250/G, Unshielded 5411-00-999-4935 Shelter, Electrical Equipment, S-250/G, EMI Shielded 5411-00-489-6076 MARINE CORPS (LEGACY) ISO...10 Foot, General Purpose 5411-01-287-4341 ISO, 10 Foot, EMI Shielded 5411-01-206-6079 ISO, 20 Foot, General Purpose 5411-01-209-3451 ISO, 20 Foot
Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui
2016-08-01
Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jie, E-mail: yangjie396768@163.com; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Qingquan
Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors withmore » a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.« less
Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal
2013-08-15
The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.
Performance study of galactic cosmic ray shield materials
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Thibeault, Sheila A.; Nealy, John E.; Badavi, Francis F.; Kiefer, Richard L.
1994-01-01
The space program is faced with two difficult radiation protection issues for future long-term operations. First, retrofit of shield material or conservatism in shield design is prohibitively expensive and often impossible. Second, shielding from the cosmic heavy ions is faced with limited knowledge on the physical properties and biological responses of these radiations. The current status of space shielding technology and its impact on radiation health is discussed herein in terms of conventional protection practice and a test biological response model. The impact of biological response on the selection of optimum materials for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although the systematics of nuclear cross sections are able to demonstrate the relation of exposure risk to shield-material composition, the current uncertainty in-nuclear cross sections will not allow an accurate evaluation of risk reduction. This paper presents a theoretical study of risk-related factors and a pilot experiment to study the effectiveness of choice of shield materials to reduce the risk in space operations.
Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface
NASA Technical Reports Server (NTRS)
Brown, Cliff
2015-01-01
Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.
Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2016-01-01
Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.
29 CFR 1910.252 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas-shielded welding operations. (12) Cutting of stainless steels. Oxygen cutting, using either a chemical flux or iron powder or gas-shielded arc cutting of stainless steel, shall be done using mechanical... special regard to height of ceiling). (B) Number of welders. (C) Possible evolution of hazardous fumes...
29 CFR 1910.252 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... gas-shielded welding operations. (12) Cutting of stainless steels. Oxygen cutting, using either a chemical flux or iron powder or gas-shielded arc cutting of stainless steel, shall be done using mechanical... special regard to height of ceiling). (B) Number of welders. (C) Possible evolution of hazardous fumes...
29 CFR 1910.252 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... gas-shielded welding operations. (12) Cutting of stainless steels. Oxygen cutting, using either a chemical flux or iron powder or gas-shielded arc cutting of stainless steel, shall be done using mechanical... special regard to height of ceiling). (B) Number of welders. (C) Possible evolution of hazardous fumes...
NASA Technical Reports Server (NTRS)
Lyons, Frankel
2013-01-01
A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array
NASA Astrophysics Data System (ADS)
Hunacek, J.; Bock, J.; Bradford, C. M.; Butler, V.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A.; Crites, A.; Frez, C.; Hailey-Dunsheath, S.; Hoscheit, B.; Kim, D. W.; Li, C.-T.; Marrone, D.; Moncelsi, L.; Shirokoff, E.; Steinbach, B.; Sun, G.; Trumper, I.; Turner, A.; Uzgil, B.; Weber, A.; Zemcov, M.
2018-04-01
TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-μm emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z ˜ 5-9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a ˜ 3 × 3 mm silicon nitride micro-mesh suspended near the corners by 1 × 1 × 500 μm silicon nitride legs targeting a photon-noise-dominated NEP ˜ 1 × 10^{-17} W/√{Hz} . Hafnium films are explored as a lower-T_c alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf T_c is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be 5 × 10^7.
The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2012-01-01
The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
NASA Astrophysics Data System (ADS)
Sturrock, C. P.; Flowers, R. M.; Zhong, S.; Metcalf, J. R.; Kohn, B. P.
2017-12-01
Ancient, cratonic continental interiors are often presumed to be stable in the long term, neither accumulating nor shedding significant amounts of overlying sediment. However, recent low-temperature thermochronologic work suggests that such long term stability is an overly simplistic view and that forces besides plate tectonics, such as dynamic topography, may play a significant role. New apatite (U-Th)/He (AHe) and apatite fission track (AFT) data from Archean-Proterozoic basement rocks along a 1400km NW-SE transect in the Superior Province of the Canadian Shield record a spatially variable thermal history for the craton in Paleozoic through the end of Mesozoic time. Dates range from 600±60 Ma (AHe) and 529±48 Ma (AFT) in the west to 184±14 Ma (AHe) and 174±9 Ma (AFT) in the east. Tectonic activity within the Superior Province ceased by 1.8 Ga, with the latest activity at the margins ending at 1 Ga. Widespread resetting of both AHe and AFT systems post 1 Ga is most likely due to regional scale burial at one or more times since the Cambrian. The temperature sensitivity of the AHe and AFT systems (30-90°C and 60-120°C, respectively) require at least a few km of burial across the craton that has since been stripped away. Preliminary inverse thermal history models, utilizing geologic constraints and radiation damage effects on He diffusion in apatite, indicate significant reheating in the Paleozoic-early Mesozoic (37 to >120°C) and a possible lesser reheating event since the mid Mesozoic (<100°C). Making the simplified assumption of a 25°C/km geothermal gradient and 0°C surface temperature, burial in some areas must have been at least 2-5km in the Paleozoic and was <4km in the Mesozoic. These burial and denudation patterns do not correlate with global sea level changes, making dynamic topography a good candidate for a driving mechanism. New AHe data from kimberlites emplaced in the early to mid-Jurassic will provide an important new constraint on the post-Jurassic thermal history of the Superior Province and result in better temperature/burial estimates for the earlier history. Ongoing work will compare these histories with dynamic topography predictions from geodynamic models back into the Paleozoic.
NASA Astrophysics Data System (ADS)
Bispo-Santos, F.; Dagrella Filho, M. S.; Reis, N. J.; Trindade, R. I.
2013-05-01
Definition of continental paleogeography for times prior to formation of Columbia Supercontinent (1900-1850 Ma) is very complex, since amalgamation of some continental blocks of Earth was still in progress, as in the case of Laurentia, Baltica and Amazonian Craton. So, paleogeographic models proposed for this time are still very speculative and/or subjective. The use of the paleomagnetic technique tracing apparent polar wander (APW) paths for the various cratonic blocks can contribute to understand the continental amalgamation and breakup, especially for times where all created oceanic lithosphere was fully consumed. In this study, we present the paleomagnetic data obtained for samples collected from 39 sites from the well-dated 1980-1960 Ma (U-Pb) volcanic rocks belonging to the Surumu Group, cropping out in the northern Roraima State (Guiana Shield, Amazonian Craton). AF and thermal treatment revealed northwestern directions with moderate downward inclinations on samples from 20 out of the 39 analyzed sites. Site mean directions cluster around the mean, Dm = 298.6°; Im = 39.4° (N = 20; α95 = 10.1°), which yielded a key paleomagnetic pole (SG) for the Guiana Shield, located at 234.8°E, 27.4°N (A95 = 9.8°). Magnetic mineralogy experiments show that the magnetization of these rocks, probably of primary origin, is carried by magnetite and/or hematite. The SG pole contributes to a better fit of the APW path traced for Guiana Shield during the Paleoproterozoic (2070-1960 Ma). Comparison with the APW path traced for the West-Africa Craton for the same time interval suggests that these cratonic blocks were linked at 2000-1960 Ma ago, forming a paleogeography in which the Guri (Guiana Shield) and Sassandra (West-Africa Craton) shear zones were aligned as suggested in previous geologic models. KEYWORDS: Paleoproterozoic, Paleomagnetism, APWP, Amazonian Craton, Surumu Group.
NASA Technical Reports Server (NTRS)
Stubbs, Sandy M.
1967-01-01
An experimental investigation was made to determine impact water pressures, accelerations, and landing dynamics of a 1/4-scale dynamic model of the command module of the Apollo spacecraft. A scaled-stiffness aft heat shield was used on the model to simulate the structural deflections of the full-scale heat shield. Tests were made on water to obtain impact pressure data at a simulated parachute letdown (vertical) velocity component of approximately 30 ft/sec (9.1 m/sec) full scale. Additional tests were made on water, sand, and hard clay-gravel landing surfaces at simulated vertical velocity components of 23 ft/sec (7.0 m/sec) full scale. Horizontal velocity components investigated ranged from 0 to 50 ft/sec (15 m/sec) full scale and the pitch attitudes ranged from -40 degrees to 29 degrees. Roll attitudes were O degrees, 90 degrees, and 180 degrees, and the yaw attitude was 0 degrees.
Distance determinations to shield galaxies from Hubble space telescope imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Cannon, John M.
The Survey of H I in Extremely Low-mass Dwarf (SHIELD) galaxies is an ongoing multi-wavelength program to characterize the gas, star formation, and evolution in gas-rich, very low-mass galaxies. The galaxies were selected from the first ∼10% of the H I Arecibo Legacy Fast ALFA (ALFALFA) survey based on their inferred low H I mass and low baryonic mass, and all systems have recent star formation. Thus, the SHIELD sample probes the faint end of the galaxy luminosity function for star-forming galaxies. Here, we measure the distances to the 12 SHIELD galaxies to be between 5 and 12 Mpc bymore » applying the tip of the red giant method to the resolved stellar populations imaged by the Hubble Space Telescope. Based on these distances, the H I masses in the sample range from 4 × 10{sup 6} to 6 × 10{sup 7} M {sub ☉}, with a median H I mass of 1 × 10{sup 7} M {sub ☉}. The tip of the red giant branch distances are up to 73% farther than flow-model estimates in the ALFALFA catalog. Because of the relatively large uncertainties of flow-model distances, we are biased toward selecting galaxies from the ALFALFA catalog where the flow model underestimates the true distances. The measured distances allow for an assessment of the native environments around the sample members. Five of the galaxies are part of the NGC 672 and NGC 784 groups, which together constitute a single structure. One galaxy is part of a larger linear ensemble of nine systems that stretches 1.6 Mpc from end to end. Three galaxies reside in regions with 1-9 neighbors, and four galaxies are truly isolated with no known system identified within a radius of 1 Mpc.« less
Passive dosimetry aboard the Mir Orbital Station: external measurements.
Benton, E R; Benton, E V; Frank, A L
2002-10-01
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope. c2002 Elsevier Science Ltd. All rights reserved.
Passive dosimetry aboard the Mir Orbital Station: external measurements
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2002-01-01
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope. c2002 Elsevier Science Ltd. All rights reserved.
Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods
NASA Astrophysics Data System (ADS)
Lai, Bo-Lun; Sheu, Rong-Jiun
2017-09-01
Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.
Cook, Suellen S; Whittock, Lucy; Wright, Simon W; Hallegraeff, Gustaaf M
2011-06-01
The widespread coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler plays a pivotal role in the carbon pump and is known to exhibit significant morphological, genetic, and physiological diversity. In this study, we compared photosynthetic pigments and morphology of triplicate strains of Southern Ocean types A and B/C. The two morphotypes differed in width of coccolith distal shield elements (0.11-0.24 μm, type A; 0.06-0.12 μm, type B/C) and morphology of distal shield central area (grill of curved rods in type A; thin plain plate in type B/C) and showed differences in carotenoid composition. The mean 19'-hexanoyloxyfucoxanthin (Hex):chl a ratio in type B/C was >1, whereas the type A ratio was <1. The Hex:fucoxanthin (fuc) ratio for type B/C was 11 times greater than that for type A, and the proportion of fuc in type A was 6 times higher than that in type B/C. The fuc derivative 4-keto-19'-hexanoyloxyfucoxanthin (4-keto-hex) was present in type A but undetected in B/C. DNA sequencing of tufA distinguished morphotypes A, B/C (indistinguishable from B), and R, while little variation was observed within morphotypes. Thirty single nucleotide polymorphisms were identified in the 710 bp tufA sequence, of which 10 alleles were unique to B/C and B morphotypes, seven alleles were unique to type A, and six alleles were unique to type R. We propose that the morphologically, physiologically, and genetically distinct Southern Ocean type B/C sensu Young et al. (2003) be classified as E. huxleyi var. aurorae var. nov. S. S. Cook et Hallegr. © 2011 Phycological Society of America.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Huff, H.; Wilkins, R.; Thibeault, Sheila
2002-01-01
Space radiation transport models clearly show that low atomic weight materials provide a better shielding protection for interplanetary human missions than high atomic weight materials. These model studies have concentrated on shielding properties against charged particles. A light-weight, inflatable habitat module called TransHab was built and shown to provide adequate protection against micrometeoroid impacts and good shielding properties against charged particle radiation in the International Space Station orbits. An experiment using a tissue equivalent proportional counter, to study the changes in dose and lineal energy spectra with graphite, aluminum, and a TransHab build-up as shielding, was carried out at the Los Alamos Nuclear Science Center neutron facility. It is a continuation of a previous study using regolith and doped polyethylene materials. This paper describes the results and their comparison with the previous study. Published by Elsevier Science Ltd.
Impact of Advance Rate on Entrapment Risk of a Double-Shielded TBM in Squeezing Ground
NASA Astrophysics Data System (ADS)
Hasanpour, Rohola; Rostami, Jamal; Barla, Giovanni
2015-05-01
Shielded tunnel boring machines (TBMs) can get stuck in squeezing ground due to excessive tunnel convergence under high in situ stress. This typically coincides with extended machine stoppages, when the ground has sufficient time to undergo substantial displacements. Excessive convergence of the ground beyond the designated overboring means ground pressure against the shield and high shield frictional resistance that, in some cases, cannot be overcome by the TBM thrust system. This leads to machine entrapment in the ground, which causes significant delays and requires labor-intensive and risky operations of manual excavation to release the machine. To evaluate the impact of the time factor on the possibility of machine entrapment, a comprehensive 3D finite difference simulation of a double-shielded TBM in squeezing ground was performed. The modeling allowed for observation of the impact of the tunnel advance rate on the possibility of machine entrapment in squeezing ground. For this purpose, the model included rock mass properties related to creep in severe squeezing conditions. This paper offers an overview of the modeling results for a given set of rock mass and TBM parameters, as well as lining characteristics, including the magnitude of displacement and contact forces on shields and ground pressure on segmental lining versus time for different advance rates.
NASA Astrophysics Data System (ADS)
Khan, Ziauddin; Pathan, Firozkhan S.; Yuvakiran, Paravastu; George, Siju; Manthena, Himabindu; Raval, Dilip C.; Thankey, Prashant L.; Dhanani, Kalpesh R.; Gupta, Manoj Kumar; Pradhan, Subrata
2012-11-01
SST-1 Tokamak, a steady state super-conducting device, is under refurbishment to demonstrate the plasma discharge for the duration of 1000 second. The major fabricated components of SST-1 like vacuum vessel, thermal shields, superconducting magnets etc have to be tested for their functional parameters. During machine operation, vacuum vessel will be baked at 150 °C, thermal shields will be operated at 85 K and magnet system will be operated at 4.5 K. All these components must have helium leak tightness under these conditions so far as the machine operation is concerned. In order to validate the helium leak tightness of these components, in-house high vacuum chamber is fabricated. This paper describes the analysis, design and fabrication of high vacuum chamber to demonstrate these functionalities. Also some results will be presented.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Walker, Bruce E.
2014-01-01
An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.
Verification of Small Hole Theory for Application to Wire Chaffing Resulting in Shield Faults
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Timucin, Dogan A.; Wheeler, Kevin R.
2011-01-01
Our work is focused upon developing methods for wire chafe fault detection through the use of reflectometry to assess shield integrity. When shielded electrical aircraft wiring first begins to chafe typically the resulting evidence is small hole(s) in the shielding. We are focused upon developing algorithms and the signal processing necessary to first detect these small holes prior to incurring damage to the inner conductors. Our approach has been to develop a first principles physics model combined with probabilistic inference, and to verify this model with laboratory experiments as well as through simulation. Previously we have presented the electromagnetic small-hole theory and how it might be applied to coaxial cable. In this presentation, we present our efforts to verify this theoretical approach with high-fidelity electromagnetic simulations (COMSOL). Laboratory observations are used to parameterize the computationally efficient theoretical model with probabilistic inference resulting in quantification of hole size and location. Our efforts in characterizing faults in coaxial cable are subsequently leading to fault detection in shielded twisted pair as well as analysis of intermittent faulty connectors using similar techniques.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-04-01
The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Nyblade, A; Rodgers, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanicmore » line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sah, Sanjay
Particle accelerators produce beams of high-energy particles, which are used for both fundamental and applied scientific research and are critical to the development of accelerator driven sub-critical reactor systems. An effective magnetic shield is very important to achieve higher quality factor (Qo) of the cryomodule of a particle accelerator. The allowed value of field inside the cavity due to all external fields (particularly the Earth’s magnetic field) is ~15 mG or less. The goal of this PhD dissertation is to comprehensively study the magnetic properties of commonly used magnetic shielding materials at both cryogenic and room temperatures. This knowledge canmore » be used for the enhanced design of magnetic shields of cryomodes (CM) in particle accelerators. To this end, we first studied the temperature dependent magnetization behavior (M-H curves) of Amumetal and A4K under different annealing and deformation conditions. This characterized the effect of stress or deformation induced during the manufacturing processes and subsequent restoration of high permeability with appropriate heat treatment. Next, an energy based stochastic model for temperature dependent anhysteretic magnetization behavior of ferromagnetic materials was proposed and benchmarked against experimental data. We show that this model is able to simulate and explain the magnetic behavior of as rolled, deformed and annealed amumetal and A4K over a large range of temperatures. The experimental results for permeability are then used in a finite element model (FEM) in COMSOL to evaluate the shielding effectiveness of multiple shield designs at room temperature as well as cryogenic temperature. This work could serve as a guideline for future design, development and fabrication of magnetic shields of CMs.« less
Optimal shielding thickness for galactic cosmic ray environments
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Bahadori, Amir A.; Reddell, Brandon D.; Singleterry, Robert C.; Clowdsley, Martha S.; Blattnig, Steve R.
2017-02-01
Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20 g/cm2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20 g/cm2. The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail.
Optimal shielding thickness for galactic cosmic ray environments.
Slaba, Tony C; Bahadori, Amir A; Reddell, Brandon D; Singleterry, Robert C; Clowdsley, Martha S; Blattnig, Steve R
2017-02-01
Models have been extensively used in the past to evaluate and develop material optimization and shield design strategies for astronauts exposed to galactic cosmic rays (GCR) on long duration missions. A persistent conclusion from many of these studies was that passive shielding strategies are inefficient at reducing astronaut exposure levels and the mass required to significantly reduce the exposure is infeasible, given launch and associated cost constraints. An important assumption of this paradigm is that adding shielding mass does not substantially increase astronaut exposure levels. Recent studies with HZETRN have suggested, however, that dose equivalent values actually increase beyond ∼20g/cm 2 of aluminum shielding, primarily as a result of neutron build-up in the shielding geometry. In this work, various Monte Carlo (MC) codes and 3DHZETRN are evaluated in slab geometry to verify the existence of a local minimum in the dose equivalent versus aluminum thickness curve near 20g/cm 2 . The same codes are also evaluated in polyethylene shielding, where no local minimum is observed, to provide a comparison between the two materials. Results are presented so that the physical interactions driving build-up in dose equivalent values can be easily observed and explained. Variation of transport model results for light ions (Z ≤ 2) and neutron-induced target fragments, which contribute significantly to dose equivalent for thick shielding, is also highlighted and indicates that significant uncertainties are still present in the models for some particles. The 3DHZETRN code is then further evaluated over a range of related slab geometries to draw closer connection to more realistic scenarios. Future work will examine these related geometries in more detail. Published by Elsevier Ltd.
Grounding, Bonding, Shielding, and Lightning Bibliography 1972 to 1979
1981-02-01
Transactions on Biomedical Engineering, vol. BME -22, no. 1, 3anuary 1975, pp. 62-65. Several basic facts about the effects of steel conduits in a.c. power...34 Institution of Engineers, Australia, Electrical Engineering Transactions, (Australia), vol. EE- 14, no. 2, 1978, pp. 73-77. Statistics on Australian
29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...
29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
32. ISOMETRIC VIEW OF PIPING PLAN, SHOWING PATH OF CONDUIT ...
32. ISOMETRIC VIEW OF PIPING PLAN, SHOWING PATH OF CONDUIT FROM CONTROL BUNKER TO SHIELDING TANK. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-P-1. INEL INDEX CODE NUMBER: 075 0701 60 851 151977. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
40 CFR 721.555 - Alkyl amino nitriles (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (c). A full face shield is required if splashing or spraying occurs. (ii) Hazard communication... to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96-1674 and P-96-1675) are subject to reporting under this section for the significant new uses described...
Mars Orbiters Duck and Cover for Comet Siding Spring Flyby Artist Concept
2014-10-09
This artist concept shows NASA Mars orbiters lining up behind the Red Planet for their duck and cover maneuver to shield them from comet dust that may result from the close flyby of comet Siding Spring C/2013 A1 on Oct. 19, 2014.
NASA Technical Reports Server (NTRS)
King, J. H.; Stassinopoulos, E. G.
1975-01-01
The relative importance of solar and trapped proton fluxes in the consideration of shielding requirements for geocentric space missions is analyzed. Using models of these particles, their fluences encountered by spacecraft in circular orbits are computed as functions of orbital altitude and inclination, mission duration, threshold energy (10 to 100 MeV), and risk factor (for solar protons only), and ratios of solar-to-trapped fluences are derived. It is shown that solar protons predominate for low-altitude polar and very high-altitude missions, while trapped protons predominate for missions at low and medium altitudes and low inclinations. It is recommended that if the ratio of solar-to-trapped protons falls between 0.1 and 10, both fluences should be considered in planning shielding systems.
NASA Astrophysics Data System (ADS)
Hinterberger, A.; Gerber, S.; Doser, M.
2017-09-01
In this paper we report on measurements and simulations of superconducting tubes in the presence of inhomogeneous externally applied magnetic fields in a cryogenic environment. The shielding effect is studied for two different tube materials, Pb and Nb, employing Hall sensors in a tabletop experiment. The measured internal and external fields of the tubes agree with the theory of the Meissner-Ochsenfeld effect [1], field trapping of type 2 superconductors, phase transitions and tube geometries. The obtained measurements are compared to a finite element simulation. Next, the simulation model is applied to estimate the shielding effect in the vicinity of a cryogenic Penning trap experiment. The controlled suppression of external magnetic fields is important for future precision experiments in atomic and antimatter physics in cryogenic environments.
Combat Search and Rescue: Searching the History; Rescuing the Doctrine
2003-06-01
crew search effort KIA 23-Feb USMC Pride 16 AV-8 Capt Wilbourn none KIA 25-Feb USMC Jump 42 AV-8 Capt Walsh none Recovered by USMC in minutes USMC...61 Hallion, Richard P. Storm Over Iraq Air Power and the Gulf War. Washington, D.C.: Smithsonian Institution Press, 1992. Hampton, Lt Col Joseph C...Operation DESERT SHIELD Combat SAR Plan, 1 November 1990, in JPRA library. (Secret) Hampton, Lt Col Joseph C. Joint Universal Lessons Learned
Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A
2010-01-01
Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.
Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air
NASA Technical Reports Server (NTRS)
Patel, Vrajen; Monje, Oscar
2013-01-01
Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.
MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts
NASA Astrophysics Data System (ADS)
Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark
2016-04-01
The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the dated basalts. We find that in several cases the low shields are younger than their adjacent mare basalts. However, the stratigraphic relationships might be more complicated because [2,5] observed that basalts embay the low shields. Thus, further studies are required to unambiguously constrain the stratigraphic relationships and to characterize possible effects of small count areas and topography on the determination of AMAs with CSFD measurements. Provided the AMAs were not affected by the relatively small size of the count areas and topographic slopes, these results imply that the volcanic activity in the Marius Hills region lasted > 1 Ga longer than previously thought [e.g., 4]. [1] McCauley (1967b) Mantles of the Earth an terrestrial planets, 431-460; [2] Lawrence et al. (2013) JGR 118; [3] Wilhelms (1987) USGS Spec. Pub. 1348; [4] Heather et al. (2003) JGR 108; [5] Weitz and Head (1999) JGR 104; [6] Hiesinger et al. (2003) JGR 108; [7] Kneissl et al. (2012) PSS 59; [8] Michael and Neukum, (2010) EPSL 294; [9] Neukum et al. (2001) SSR 96.
Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A
2012-06-01
The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1, secured on a transporter, arrives at the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Evolution of technologies applied to space and aeronautic structures
NASA Astrophysics Data System (ADS)
Abiven, H.
Advanced materials in aerospace structures and their use in reusable launch vehicles are discussed. It is found that composite materials can be used for structures with temperatures up to 400 C, and for most structures with heat shielding. For structures with temperatures up to 1000 C, metals such as Norsial, based on rene alloys could be used. It is concluded that a combination of silicon and carbon composites with Aerocoat/TH hydrotranspiration heat shielding give a heat flux resistant structure with no thermal dilation problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Ingham Institute, Liverpool, Aus
Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0Tmore » MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.« less
Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.; Keyes, J. W.; Beckwith, I. E.
1980-01-01
A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise.
Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder
NASA Technical Reports Server (NTRS)
Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm
1996-01-01
This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed well. Approximately 70 percent of the thermocouples yielded good data.
Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu
2015-04-07
To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craciunescu, Oana I., E-mail: oana.craciunescu@duke.ed; Steffey, Beverly A.; Kelsey, Chris R.
2011-03-15
Purpose: To describe renal shielding techniques and dosimetry in delivering total body irradiation (TBI) to patients with severe systemic sclerosis (SSc) enrolled in a hematopoietic stem cell transplant protocol. Methods and Materials: The Scleroderma: Cyclophosphamide or Transplantation (SCOT) protocol uses a lymphoablative preparative regimen including 800 cGy TBI delivered in two 200-cGy fractions twice a day before CD34{sup +} selected autologous hematopoietic stem cell transplantation. Lung and kidney doses are limited to 200 cGy to protect organs damaged by SSc. Kidney block proximity to the spinal cord was investigated, and guidelines were developed for acceptable lumbar area TBI dosing. Informationmore » about kidney size and the organ shifts from supine to standing positions were recorded using diagnostic ultrasound (US). Minimum distance between the kidney blocks (dkB) and the lumbar spine region dose was recorded, and in vivo dosimetry was performed at several locations to determine the radiation doses delivered. Results: Eleven patients were treated at our center with an anteroposterior (AP)/posteroanterior (PA) TBI technique. A 10% to 20% dose inhomogeneity in the lumbar spine region was achieved with a minimum kidney block separation of 4 to 5 cm. The average lumbar spine dose was 179.6 {+-} 18.1 cGy, with an average dkB of 5.0 {+-} 1.0 cm. Kidney block shield design was accomplished using a combination of US and noncontrast computerized tomography (CT) or CT imaging alone. The renal US revealed a wide range of kidney displacement from upright to supine positions. Overall, the average in vivo dose for the kidney prescription point was 193.4 {+-} 5.1 cGy. Conclusions: The dose to the kidneys can be attenuated while maintaining a 10% to 20% dose inhomogeneity in the lumbar spine area. Kidneys were localized more accurately using both US and CT imaging. With this technique, renal function has been preserved, and the study continues to enroll patients.« less
Stuckless, J.S.; Futa, Kiyoto
1987-01-01
Available data indicate that postorogenic granites tend to be older in the southern part of the Arabian Shield. This suggests that plutonism started in the south and progressed to the north. Initial 87Sr/86Sr values also form a regional pattern. These ratios tend to be higher in the eastern part of the Arabian Shield, and suggest one source of continental affinity to the east and one of oceanic affinity to the west. The distribution of initial strontium isotope ratios does not clearly discriminate between the various models for Shield evolution; however, a sedimentary source region of mixed end members seems more compatible with the data pattern than models based on discrete boundaries between unrelated accreted blocks.
HZE reactions and data-base development
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.
1993-01-01
The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myagkov, N. N., E-mail: nn-myagkov@mail.ru
The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c}more » (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.« less
The Togo-Benin-Nigeria Shield: evidence of crustal aggregation in the Pan-African belt
NASA Astrophysics Data System (ADS)
Ajibade, A. C.; Wright, J. B.
1989-08-01
The importance of "suspect" or "exotic" (i.e. allochthonous) terranes as a major element in collisional orogenic belts is becoming well established. We propose that the southern Pan-African domain in West Africa is an aggregation or " mosaic" of island arcs, interarc (ensimatic) basins and continental fragments. A fracture zone in northwestern Nigeria, already identified as a possible crustal suture, is shown to separate two contrasted basement terranes. Elsewhere in the shield are flat-lying structures characteristic of those associated with crustal convergence, lying within or near to major fractures. Many small ultramafic/mafic bodies occur in the shield and some of them may be remnants of ophiolites caught up in suture zones. An aggregation of allochthonous terranes (island arcs, sedimentary basins and continental blocks) would help to explain: (a) the great width of the Pan-African belt; (b) the spread of ages within the "Pan-African" range (c. 750-450 Ma), also the relict Liberian and Eburnian ages (c. 2700 and 2000 Ma respectively); and the enigmatic Kibaran "event" (c. 1100 Ma); (c) the contrasted volcano-sedimentary characteristics of the different supracrustal belts.
NASA Astrophysics Data System (ADS)
Jones, Jerry; Rhoades, Valerie; Arner, Radford; Clem, Timothy; Cuneo, Adam
2007-04-01
NDE measurements, monitoring, and control of smart and adaptive composite structures requires that the central knowledge system have an awareness of the entire structure. Achieving this goal necessitates the implementation of an integrated network of significant numbers of sensors. Additionally, in order to temporally coordinate the data from specially distributed sensors, the data must be time relevant. Early adoption precludes development of sensor technology specifically for this application, instead it will depend on the ability to utilize legacy systems. Partially supported by the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Development Program (NIST-ATP), a scalable integrated system has been developed to implement monitoring of structural integrity and the control of adaptive/intelligent structures. The project, called SHIELD (Structural Health Identification and Electronic Life Determination), was jointly undertaken by: Caterpillar, N.A. Tech., Motorola, and Microstrain. SHIELD is capable of operation with composite structures, metallic structures, or hybrid structures. SHIELD consists of a real-time processing core on a Motorola MPC5200 using a C language based real-time operating system (RTOS). The RTOS kernel was customized to include a virtual backplane which makes the system completely scalable. This architecture provides for multiple processes to be operating simultaneously. They may be embedded as multiple threads on the core hardware or as separate independent processors connected to the core using a software driver called a NAT-Network Integrator (NATNI). NATNI's can be created for any communications application. In it's current embodiment, NATNI's have been created for CAN bus, TCP/IP (Ethernet) - both wired and 802.11 b and g, and serial communications using RS485 and RS232. Since SHIELD uses standard C language, it is easy to port any monitoring or control algorithm, thus providing for legacy technology which may use other hardware processors and various communications means. For example, two demonstrations of SHIELD have been completed, in January and May 2005 respectively. One demonstration used algorithms in C running in multiple threads in the SHIELD core and utilizing two different sensor networks, one CAN bus and one wireless. The second had algorithms operating in C on the SHIELD core and other algorithms running on multiple Texas Instruments DSP processors using a NATNI that communicated via wired TCP/IP. A key feature of SHIELD is the implementation of a wireless ZIGBEE (802.15.4) network for implementing large numbers of small, low cost, low power sensors communication via a meshstar wireless network. While SHIELD was designed to integrate with a wide variety of existing communications protocols, a ZIGBEE network capability was implemented specifically for SHIELD. This will facilitate the monitoring of medium to very large structures including marine applications, utility scale multi-megawatt wind energy systems, and aircraft/spacecraft. The SHIELD wireless network will facilitate large numbers of sensors (up to 32000), accommodate sensors embedded into the composite material, can communicate to both sensors and actuators, and prevents obsolescence by providing for re-programming of the nodes via remote RF communications. The wireless network provides for ultra-low energy use, spatial location, and accurate timestamping, utilizing the beaconing feature of ZIGBEE.
Simulated E-Bomb Effects on Electronically Equipped Targets
2009-09-01
coupling model program (CEMPAT), pursuing a feasible geometry of attack, practical antennas, best coupling approximations of ground conductivity and...procedure to determine these possible effects is to estimate the electromagnetic coupling from first principles and simulations using a coupling model ...Applications .................................... 16 B. SYSTEM OF INTEREST MODEL AS A TARGET ............................. 16 1. Shielding Methods, as
Noise Modeling From Conductive Shields Using Kirchhoff Equations.
Sandin, Henrik J; Volegov, Petr L; Espy, Michelle A; Matlashov, Andrei N; Savukov, Igor M; Schultz, Larry J
2010-10-09
Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding the magnetic noise of conductive materials, especially of magnetic shields based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have radio frequency shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems with complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies, knowledge of the noise correlation between sensors is as important as knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for arbitrary shaped shields and multiple sensor systems. The approach is efficient enough to be able to run on a single PC system and return results on a minute scale. With a multiple sensor system our approach calculates not only the noise for each sensor but also the noise correlation matrix between sensors. Here we will show how the algorithm can be implemented.
NASA Astrophysics Data System (ADS)
Chaudhary, Anisha; Teotia, Satish; Kumar, Rajeev; Ramesha, K.; Dhakate, Sanjay R.; Kumari, Saroj
2018-04-01
To assess the challenge of affordable technology, present synthetic strategies can be extended to new low-cost synthesis and processing methods that have potential to tailor the properties of the materials. Here we report, a novel method for the synthesis of mesocarbon microbeads (MCMB) through a pre-processing involved pyrolysis technique. The resulting MCMB is compressed into a product and effects of heat treatment temperature on different properties of MCMB is studied. The use of MCMB for the electromagnetic interference (EMI) shielding is new and hence, the effect of heat treatment temperature on EMI shielding effectiveness is studied in X-band. It is observed that EMI shielding effectiveness increases to ‑39.6 dB on increasing the heat treatment temperature. The high conductivity of MCMB plate heat treated upto 2500 °C contributes to highly conducting networks. Additionally, to investigate the electrochemical performance of MCMB as an anode material for lithium ion batteries, 2500 °C heat treated MCMB powder is used to fabricate the electrode. The MCMB electrode exhibits high discharge capacity of 345 mAh g‑1 with a stable capacity for over 50 cycles and good rate capability. Thus, MCMB synthesized by this novel approach can be used for the development of high performance anode materials for Li-ion batteries.
Magsat investigation. [Canadian shield
NASA Technical Reports Server (NTRS)
Hall, D. H. (Principal Investigator)
1980-01-01
A computer program was prepared for modeling segments of the Earth's crust allowing for heterogeneity in magnetization in calculating the Earth's field at Magsat heights. This permits investigation of a large number of possible models in assessing the magnetic signatures of subprovinces of the Canadian shield. The fit between the model field and observed fields is optimized in a semi-automatic procedure.
NASA Astrophysics Data System (ADS)
Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.
2006-04-01
An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.
Note: Additionally refined new possibilities of plasma probe diagnostics.
Riaby, V A; Savinov, V P; Masherov, P E; Yakunin, V G
2018-03-01
In two previous Notes published in this journal, a method of measuring probe sheath thickness and ion mass was described using Langmuir probe diagnostics in low pressure xenon plasma close to Maxwellian substance. According to the first Note, this method includes two stages: (i) in a special experiment with known ion mass, the Bohm and Child-Langmuir-Boguslavsky (CLB) equations for cylindrical Langmuir probes used in this xenon plasma were solved jointly to determine the probe sheath thicknesses and Bohm coefficient C BCyl ≈ 1.13; and (ii) in a general experiment, with known C BCyl , the same equations could be solved to obtain the probe sheath thicknesses and the mean ion mass. In the second Note, the (i) stage of this method was refined: the results of the CLB probe sheath model application, which were termed "evaluations," were corrected using the step-front probe sheath model, which was closer to reality in the special experiment with the xenon plasma. This process resulted in a Bohm coefficient of C BCyl ≈ 1.23 for the cylindrical probe. In the present Note, corrected xenon plasma parameters without the influence of the bare probe protective shield were used for the (i) stage of this diagnostic method. This action also refined the Bohm coefficient, lowering it to C BCyl ≈ 0.745 for cylindrical probes. This advance makes the new diagnostics method more objective and reliable.
Issues in Space Radiation Protection: Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.
1995-01-01
With shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current status of space shielding technology and its impact on radiation health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen gas is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William
2011-01-01
A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.
The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases
NASA Technical Reports Server (NTRS)
Sagan, C.; Chyba, C.
1997-01-01
Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.
78 FR 26090 - Content Specifications and Shielding Evaluations for Type B Transportation Packages
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
...The U.S. Nuclear Regulatory Commission (NRC) is issuing Regulatory Issue Summary (RIS) 2013-04, ``Content Specifications and Shielding Evaluations for Type B Transportation Packages.'' This RIS clarifies the NRC's use of staff guidance in NUREG-1609, ``Standard Review Plan for Transport Packages for Radioactive Material,'' for the review of content specifications and shielding evaluations included in the Certificates of Compliance (CoC) and safety analysis reports (SARs) for Type B transportation packages. The RIS does not impose any additional regulatory requirements on NRC licensees.
Brazing of refractory, superalloy, and composite materials for Space Shuttle applications.
NASA Technical Reports Server (NTRS)
Beuyukian, C. S.
1972-01-01
Research work concerning the metallic portion of the shuttle-orbiter heat shield (expected to experience temperatures up to 2500 F) is described. The five metals being evaluated are TD-Ni-Cr, Cb-C129Y, Cb752, Hayes 188, and Inconel 625. Brazing techniques whereby pairs of these materials are joined into thin-membered assemblies for heat shield applications are described. Results obtained with the vacuum-furnace brazing process are examined. In addition, the use of brazed aluminum-boron metal-matrix-contoured composite structures for heat shield applications is evaluated.
1990-05-01
in the surface morphology caused by the paint removal process. 0F Shields [4] has investigated the stripping process on T-34C aircrafts; specifically...he has investigated the effect of residual stresses, induced by the impacting media particles, on the fatigu2 life of the aluminum substrate. Shields ...is lower than the life of unblasted material. Shields recommended the use of softer particles such as polyextra (MOH 3.0) to minimize the damage to the
Elevated gamma-rays shielding property in lead-free bismuth tungstate by nanofabricating structures
NASA Astrophysics Data System (ADS)
Liu, Jun-Hua; Zhang, Quan-Ping; Sun, Nan; Zhao, Yang; Shi, Rui; Zhou, Yuan-Lin; Zheng, Jian
2018-01-01
Radiation shielding materials have attracted much attention across academia and industry because of the increasing of nuclear activities. To achieve the materials with low toxicity but good protective capability is one of the most significant goals for personal protective articles. Here, bismuth tungstate nanostructures are controllably fabricated by a versatile hydrothermal treatment under various temperatures. The crystals structure and morphology of products are detailedly characterized with X-ray diffraction, electron microscope and specific surface area. It is noteworthy that desired Bi2WO6 nanosheets treated with 190 °C show the higher specific surface area (19.5 m2g-1) than that of the other two products. Importantly, it has a close attenuating property to lead based counterpart for low energy gamma-rays. Due to the less toxicity, Bi2WO6 nanosheets are more suitable than lead based materials to fabricate personal protective articles for shielding low energy radiations and have great application prospect as well as market potential.
Radiation protection using Martian surface materials in human exploration of Mars
NASA Technical Reports Server (NTRS)
Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.
2001-01-01
To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.
Iwamoto, Yosuke; Ronningen, R M; Niita, Koji
2010-04-01
It has been sometimes necessary for personnel to work in areas where low-energy heavy ions interact with targets or with beam transport equipment and thereby produce significant levels of radiation. Methods to predict doses and to assist shielding design are desirable. The Particle and Heavy Ion Transport code System (PHITS) has been typically used to predict radiation levels around high-energy (above 100 MeV amu(-1)) heavy ion accelerator facilities. However, predictions by PHITS of radiation levels around low-energy (around 10 MeV amu(-1)) heavy ion facilities to our knowledge have not yet been investigated. The influence of the "switching time" in PHITS calculations of low-energy heavy ion reactions, defined as the time when the JAERI Quantum Molecular Dynamics model (JQMD) calculation stops and the Generalized Evaporation Model (GEM) calculation begins, was studied using neutron energy spectra from 6.25 MeV amu(-1) and 10 MeV amu(-1) (12)C ions and 10 MeV amu(-1) (16)O ions incident on a copper target. Using a value of 100 fm c(-1) for the switching time, calculated neutron energy spectra obtained agree well with the experimental data. PHITS was then used with the switching time of 100 fm c(-1) to simulate an experimental study by Ohnesorge et al. by calculating neutron dose equivalent rates produced by 3 MeV amu(-1) to 16 MeV amu(-1) (12)C, (14)N, (16)O, and (20)Ne beams incident on iron, nickel and copper targets. The calculated neutron dose equivalent rates agree very well with the data and follow a general pattern which appears to be insensitive to the heavy ion species but is sensitive to the target material.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... Additional Electrical Penetration Assemblies AGENCY: Nuclear Regulatory Commission. ACTION: Exemption and... requested adding four electrical penetration assemblies to the containment vessel and shield building in... assemblies to containment and the shield building. As part of this request, the licensee needed to change...
Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N
2015-07-28
In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; De Monte, V.; Di Lieto, A.
In the LEReC Cooling Section (CS) the RHIC ions are traveling together with and getting cooled by the LEReC electrons. The required cooling rate sets the limit of 150 urad on tolerable angles of the electrons in the CS. One of the components of overall electron angle is the angle of the e-beam trajectory with respect to the ion beam trajectory. We set the limit for electron trajectory angle to 100 urad. It is critical for preserving small trajectory angle to keep the transverse magnetic field inside the CS drifts within +/- 2.3 mG. The drifts in the CS mustmore » be shielded from the ambient magnetic fields of the RHIC tunnel, which can be as high as 0.5 G, to minimize the transverse field inside the CS vacuum chamber. In this paper we present the final design of the magnetic shielding of the LEReC CS and discuss the results of tests dedicated to studies of the shielding effectiveness.« less
Optimizing Gas Generator Efficiency in a Forward Operating Base Using an Energy Management System
2013-06-01
Navy, Bethesda, MD. [4] E. Shields, B. Newell , “Current power and energy requirements of forward Deployed USMC Locations,” Released January 2012...kW and t0 was 6 hours, which resulted in Etotal=64.8 MJ . EMS logic remained the same as in Chapter IV with one exception. If the EMS sensed a...Battery Load (kW) Intial Capacity ( MJ ) Energy Drawn ( MJ ) Remaining Capacity ( MJ ) Initial SoC Final SoC 1 5 1.5 64.8 27.0 37.8 100.0% 58.3% 2 5 1.1
Multilayer film shields for the protection of PMT from constant magnetic field.
Dmitrenko, V V; Besson, David; Nyunt, PhyoWai; Grabchikov, S S; Grachev, V M; Muraviev-Smirnov, C C; Ulin, S E; Uteshev, Z M; Vlasik, K F
2015-01-01
Photomultiplier tubes (PMTs) are widely used in physical experiments as well as in applied devices. PMTs are sensitive to magnetic field, so creation of effective magnetic shields for their protection is very important. In this paper, the results of measurements of shielding effectiveness of multilayer film magnetic shields on PMT-85 are presented. Shields were formed by alternating layers of a material with high magnetic permeability (Ni-Fe) and high electric conductivity-Cu. The maximum number of bilayers reached 45. It is shown that in weak magnetic fields up to 0.5 mT, the output signal amplitude from PMT-85 does not change for all used multilayer shields. In strong magnetic field of 2-4 mT, the output signal amplitude decrease with 10%-40% depending from the number of layers in the shield. The Pulse distribution of PMT-85 in magnetic field 0.2-4 mT slightly changed in the range 1.1%-1.3% for the case when the number of layers do not exceed 10 and practically did not change for a shield with 45 double layers.
Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanami, T.; Hagiwara, M.; Iwase, H.
2008-02-01
The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energymore » range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target station in FNAL.« less
Two-dimensional over-all neutronics analysis of the ITER device
NASA Astrophysics Data System (ADS)
Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi
1993-07-01
The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Vinita J.; Schaefer, Charles; Kahnhauser, Henry
The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was shut down in September 2014. Lead bricks used as radiological shadow shielding within the accelerator were exposed to stray radiation fields during normal operations. The FLUKA code, a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter, was used to estimate induced radioactivity in this shielding and stainless steel beam pipe from known beam losses. The FLUKA output was processed using MICROSHIELD® to estimate on-contact exposure rates with individually exposed bricks to help design and optimize the radiological survey process. Thismore » entire process can be modeled using FLUKA, but use of MICROSHIELD® as a secondary method was chosen because of the project’s resource constraints. Due to the compressed schedule and lack of shielding configuration data, simple FLUKA models were developed in this paper. FLUKA activity estimates for stainless steel were compared with sampling data to validate results, which show that simple FLUKA models and irradiation geometries can be used to predict radioactivity inventories accurately in exposed materials. During decommissioning 0.1% of the lead bricks were found to have measurable levels of induced radioactivity. Finally, post-processing with MICROSHIELD® provides an acceptable secondary method of estimating residual exposure rates.« less
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, prepares to back into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Move from LASF to VAB Highbay 2
2017-04-26
A flatbed truck carrying the Orion heat shield from Exploration Flight Test-1, backs into High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield was moved from the Launch Abort System Facility. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
NASA Astrophysics Data System (ADS)
Lee, Yi-Kang
2017-09-01
Nuclear decommissioning takes place in several stages due to the radioactivity in the reactor structure materials. A good estimation of the neutron activation products distributed in the reactor structure materials impacts obviously on the decommissioning planning and the low-level radioactive waste management. Continuous energy Monte-Carlo radiation transport code TRIPOLI-4 has been applied on radiation protection and shielding analyses. To enhance the TRIPOLI-4 application in nuclear decommissioning activities, both experimental and computational benchmarks are being performed. To calculate the neutron activation of the shielding and structure materials of nuclear facilities, the knowledge of 3D neutron flux map and energy spectra must be first investigated. To perform this type of neutron deep penetration calculations with the Monte Carlo transport code, variance reduction techniques are necessary in order to reduce the uncertainty of the neutron activation estimation. In this study, variance reduction options of the TRIPOLI-4 code were used on the NAIADE 1 light water shielding benchmark. This benchmark document is available from the OECD/NEA SINBAD shielding benchmark database. From this benchmark database, a simplified NAIADE 1 water shielding model was first proposed in this work in order to make the code validation easier. Determination of the fission neutron transport was performed in light water for penetration up to 50 cm for fast neutrons and up to about 180 cm for thermal neutrons. Measurement and calculation results were benchmarked. Variance reduction options and their performance were discussed and compared.
DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Chichester; E. H. Seabury; J. M. Zabriskie
2009-06-01
A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault.more » The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.« less
Reliability of Monte Carlo simulations in modeling neutron yields from a shielded fission source
NASA Astrophysics Data System (ADS)
McArthur, Matthew S.; Rees, Lawrence B.; Czirr, J. Bart
2016-08-01
Using the combination of a neutron-sensitive 6Li glass scintillator detector with a neutron-insensitive 7Li glass scintillator detector, we are able to make an accurate measurement of the capture rate of fission neutrons on 6Li. We used this detector with a 252Cf neutron source to measure the effects of both non-borated polyethylene and 5% borated polyethylene shielding on detection rates over a range of shielding thicknesses. Both of these measurements were compared with MCNP calculations to determine how well the calculations reproduced the measurements. When the source is highly shielded, the number of interactions experienced by each neutron prior to arriving at the detector is large, so it is important to compare Monte Carlo modeling with actual experimental measurements. MCNP reproduces the data fairly well, but it does generally underestimate detector efficiency both with and without polyethylene shielding. For non-borated polyethylene it underestimates the measured value by an average of 8%. This increases to an average of 11% for borated polyethylene.
Molecular beam mass spectrometer development
NASA Technical Reports Server (NTRS)
Brock, F. J.; Hueser, J. E.
1976-01-01
An analytical model, based on the kinetics theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. The concept of a molecular shield in terrestrial orbit above 200 km is also analyzed using the kinetic theory of a drifting Maxwellian gas. Data are presented for the components of the gas density within the shield due to the free stream atmosphere, outgassing from the shield and enclosed experiments, and atmospheric gas scattered off a shield orbiter system. A description is given of a FORTRAN program for computating the three dimensional transition flow regime past the space shuttle orbiter that employs the Monte Carlo simulation method to model real flow by some thousands of simulated molecules.
On the role of the radiation directivity in noise reduction for STOL aircraft.
NASA Technical Reports Server (NTRS)
Gruschka, H. D.
1972-01-01
The radiation characteristics of distributed randomly fluctuating acoustic sources when shielded by finite surfaces are discussed briefly. A number of model tests using loudspeakers as artificial noise sources with a given broadband power density spectrum are used to demonstrate the effectiveness of reducing the radiated noise intensity in certain directions due to shielding. In the lateral direction of the source array noise reductions of 12 dB are observed with relatively small shields. The same shields reduce the backward radiation by approximately 20 dB. With the results obtained in these acoustic model tests the potentials of jet noise reduction of jet flap propulsion systems applicable in future STOL aircraft are discussed. The jet flap configuration as a complex aerodynamic noise source is described briefly.
A Herschel [C ii] Galactic plane survey. II. CO-dark H2 in clouds
NASA Astrophysics Data System (ADS)
Langer, W. D.; Velusamy, T.; Pineda, J. L.; Willacy, K.; Goldsmith, P. F.
2014-01-01
Context. H i and CO large scale surveys of the Milky Way trace the diffuse atomic clouds and the dense shielded regions of molecular hydrogen clouds, respectively. However, until recently, we have not had spectrally resolved C+ surveys in sufficient lines of sight to characterize the ionized and photon dominated components of the interstellar medium, in particular, the H2 gas without CO, referred to as CO-dark H2, in a large sample of interstellar clouds. Aims: We use a sparse Galactic plane survey of the 1.9 THz (158 μm) [C ii] spectral line from the Herschel open time key programme, Galactic Observations of Terahertz C+ (GOT C+), to characterize the H2 gas without CO in a statistically significant sample of interstellar clouds. Methods: We identify individual clouds in the inner Galaxy by fitting the [C ii] and CO isotopologue spectra along each line of sight. We then combine these spectra with those of H i and use them along with excitation models and cloud models of C+ to determine the column densities and fractional mass of CO-dark H2 clouds. Results: We identify1804 narrow velocity [C ii] components corresponding to interstellar clouds in different categories and evolutionary states. About 840 are diffuse molecular clouds with no CO, ~510 are transition clouds containing [C ii] and 12CO, but no 13CO, and the remainder are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are concentrated between Galactic radii of ~3.5 to 7.5 kpc and the column density of the CO-dark H2 layer varies significantly from cloud to cloud with a global average of 9 × 1020 cm-2. These clouds contain a significant fraction by mass of CO-dark H2, that varies from ~75% for diffuse molecular clouds to ~20% for dense molecular clouds. Conclusions: We find a significant fraction of the warm molecular ISM gas is invisible in H i and CO, but is detected in [C ii]. The fraction of CO-dark H2 is greatest in the diffuse clouds and decreases with increasing total column density, and is lowest in the massive clouds. The column densities and mass fraction of CO-dark H2 are less than predicted by models of diffuse molecular clouds using solar metallicity, which is not surprising as most of our detections are in Galactic regions where the metallicity is larger and shielding more effective. There is an overall trend towards a higher fraction of CO-dark H2 in clouds with increasing Galactic radius, consistent with lower metallicity there. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Distribution of forbidden neutral carbon emission in the ring nebula (NGC 6720)
NASA Technical Reports Server (NTRS)
Jewitt, D. C.; Danielson, G. E.; Kupferman, P. N.; Maran, S. P.
1983-01-01
The spatial distribution of forbidden C I 9823, 9850 A emission in NGC 6720 is reported. Like forbidden O I, the forbidden C I radiation appears enhanced in the region of the bright filaments. A few percent of the carbon atoms in the filaments are neutral. The neutral fraction is consistent with ionization equilibrium calculations made under the assumption of complete shielding of direct stellar radiation by hydrogen. The observed carbon lines are excited by photoelectrons produced from hydrogen by the nebular diffuse radiation field. The forbidden C I observations confirm that the filaments in NGC 6720 are regions of locally enhanced shielding.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
Dong, Mengge; Xue, Xiangxin; Kumar, Ashok; Yang, He; Sayyed, M I; Liu, Shan; Bu, Erjun
2018-02-15
A novel, unconventional, low cost, eco-friendly and effective shielding materials have been made utilizing the hot dip galvanizing slag using the heat waste from itself, thereby saving the natural resources and preventing the environmental pollution. SEM-EDS of shielding materials indicates that the other elements are distributed in Zn element. The mass attenuation properties of shielding materials were measured using a narrow beam geometrical setup at 0.662MeV, 1.17MeV and 1.33MeV. The half value thickness layer, effective atomic number, and electron density were used to analyze the shielding performance of the materials. The EBFs and EABFs for the prepared shielding materials were also studied with incident photon energy for penetration depths upto 40mfp. The shielding effectiveness has been compared with lead, iron, zinc, some standard shielding concretes, different glasses and some alloys. The shielding effectiveness of the prepared samples is almost found comparable to iron, zinc, selected alloys and glasses while better than some standard shielding concretes. In addition, it is also found that the bending strength of all shielding materials is more than 110MPa. Copyright © 2017 Elsevier B.V. All rights reserved.
Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, P; Schwegler, E; Galli, G
2008-11-14
We study the proton nuclear magnetic resonance ({sup 1}H-NMR) of a model system consisting of liquid water in infinite carbon nanotubes (CNT). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory (DFT) with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water confined in (14,0) and (19,0) CNTs with diameters d = 11 {angstrom} and 14.9 {angstrom}, respectively. We find that confinement within the CNT leads to a large ({approx} -23 ppm) upfield shift relative tomore » bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.« less
NASA Technical Reports Server (NTRS)
Dittmar, James H.
1988-01-01
A simple barrier shielding model was used to estimate the amount of noise shielding on the fuselage that could result from installing a short duct around a wing-mounted advanced propeller. With the propeller located one-third of the duct length from the inlet, estimates for the maximum blade passing tone attenuation varied from 7 dB for a duct 0.25 propeller diameter long to 16.75 dB for a duct 1 diameter long. Attenuations for the higher harmonics would be even larger because of their shorter wavelengths relative to the duct length. These estimates show that the fuselage noise reduction potential of a ducted compared with an unducted propeller is significant. Even more reduction might occur if acoustic attenuation material were installed in the duct.
GCR Environmental Models III: GCR Model Validation and Propagated Uncertainties in Effective Dose
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Xu, Xiaojing; Blattnig, Steve R.; Norman, Ryan B.
2014-01-01
This is the last of three papers focused on quantifying the uncertainty associated with galactic cosmic rays (GCR) models used for space radiation shielding applications. In the first paper, it was found that GCR ions with Z>2 and boundary energy below 500 MeV/nucleon induce less than 5% of the total effective dose behind shielding. This is an important finding since GCR model development and validation have been heavily biased toward Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer measurements below 500 MeV/nucleon. Weights were also developed that quantify the relative contribution of defined GCR energy and charge groups to effective dose behind shielding. In the second paper, it was shown that these weights could be used to efficiently propagate GCR model uncertainties into effective dose behind shielding. In this work, uncertainties are quantified for a few commonly used GCR models. A validation metric is developed that accounts for measurements uncertainty, and the metric is coupled to the fast uncertainty propagation method. For this work, the Badhwar-O'Neill (BON) 2010 and 2011 and the Matthia GCR models are compared to an extensive measurement database. It is shown that BON2011 systematically overestimates heavy ion fluxes in the range 0.5-4 GeV/nucleon. The BON2010 and BON2011 also show moderate and large errors in reproducing past solar activity near the 2000 solar maximum and 2010 solar minimum. It is found that all three models induce relative errors in effective dose in the interval [-20%, 20%] at a 68% confidence level. The BON2010 and Matthia models are found to have similar overall uncertainty estimates and are preferred for space radiation shielding applications.
NASA Astrophysics Data System (ADS)
Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi
1994-07-01
Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.
TU-AB-201-08: Rotating Shield High Dose Rate Brachytherapy with 153Gd and 75Se Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Enger, S
Purpose: To introduce rotating shield brachytherapy (RSBT) for different cancer sites with {sup 153}Gd and {sup 75}Se isotopes. RSBT is a form of intensity modulated brachytherapy, using shielded rotating catheters to provide a better dose distribution in the tumour while protecting healthy tissue. Methods: BrachySource, a Geant4-based Monte Carlo dose planning system was developed for investigation of RSBT with {sup 153}Gd and {sup 75}Se for different cancer sites. Dose distributions from {sup 153}Gd, {sup 75}Se and {sup 192}Ir isotopes were calculated in a 40 cm radius water phantom by using the microSelectron-v2 source model. The source was placed inside amore » cylindrical platinum shield with 1.3 mm diameter. An emission window coinciding with the active core of the source was created by removing half (180°) of the wall of the shield. Relative dose rate distributions of the three isotopes were simulated. As a proof of concept, a breast cancer patient originally treated with Mammosite was re-simulated with unshielded {sup 192}Ir and shielded {sup 153}Gd. Results: The source with the lowest energy, {sup 153}Gd, decreased the dose on the shielded side by 91%, followed by {sup 75}Se and {sup 192}Ir with 36% and 16% reduction at 1 cm from the source. The breast cancer patient simulation showed the ability of shielded {sup 153}Gd to spare the chest wall by a 90% dose reduction when only one emission window angle is considered. In this case, fully covering the PTV would require more delivery angles and the chest wall dose reduction would be less, however, the simulation demonstrates the potential of shielded {sup 153}Gd to selectively isolate organs at risk. Conclusion: Introducing {sup 153}Gd and {sup 75}Se sources combined with RSBT will allow escalation of dose in the target volume while maintaining low doses in radiation sensitive healthy tissue. Tailoring treatments to each individual patient by treating all parts of the tumour without over-irradiation of normal tissues will be possible. The author acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290), and the Quebec Fonds de recherche Nature et Technologies.« less
Shields for protecting cables from the effects of electromagnetic noise and interference
NASA Astrophysics Data System (ADS)
Hoeft, L. O.; Hofstra, J. S.; Karaskiewicz, R. J.; Torres, B. W.
1988-12-01
The intrinsic electromagnetic property of a cable or connector shield is its surface transfer impedance. This is the ratio of the longitudinal open circuit voltage measured on one side of the shield (normally the inside) to the axial current on the other side (normally the outside). In cases where a high electric field is present at the surface of the shield, the transfer admittance or charge transfer elastance is also important. Measurements of typical cables, connectors, backshells and cable terminations are presented and explained in terms of simple models.
New Materials for EMI Shielding
NASA Technical Reports Server (NTRS)
Gaier, James R.
1999-01-01
Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.
NASA Astrophysics Data System (ADS)
Shang, Yanliang; Shi, Wenjun; Han, Tongyin; Qin, Zhichao; Du, Shouji
2017-10-01
The shield method has many advantages in the construction of urban subway, and has become the preferred method for the construction of urban subway tunnel. Taking Shijiazhuang metro line 3 (administrative center station - garden park station interval) Passing alongside bridge as the engineering background, double shield crossing the bridge pile foundation model was set up. The deformation and internal force of the pile foundation during the construction of the shield were analyzed. Pile stress caused by shield construction increases, but the maximum stress is less than the design strength; the maximum surface settlement caused by the construction of 10.2 mm, the results meet the requirements of construction.
Micellar Drug Delivery and Proteomics Analysis for Effective Treatment of Resistant Prostate Cancer
2015-12-01
22.4 g, 0.1 mol) dissolved in pyridine (50 mL) and CH2Cl2 (200 mL), and chilled to −78°C over dry ice. A solution of triphosgene (50 mmol, 14.8 g...chloroform, and precipitate in large amount of isopropanol and diethyl ether, followed by drying under vacuum for 48 h. Purified copolymer (100 mg...immunoassay. Biosens. Bioelectron. 2013, 39 (1), 296−9. (146) Shields, N.; Dodd, K. J.; Abblitt, C. Do children with Down Syndrome perform sufficient
Morphological Control of Metal Oxide-Doped Zinc Oxide and Application to Cosmetics
NASA Astrophysics Data System (ADS)
Goto, Takehiro; Yin, Shu; Sato, Tsugio; Tanaka, Takumi
2012-06-01
Zinc oxide shows excellent transparency and ultraviolet radiation shielding ability, and is used for various cosmetics.1-3 However, it possesses high catalytic activity and lower dispersibility. Therefore, spherical particles of zinc oxide have been synthesized by soft solution reaction using zinc nitrate, ethylene glycol, sodium hydroxide and triethanolamine as starting materials. After dissolving these compounds in water, the solution was heated at 90°C for 1 h to form almost mono-dispersed spherical zinc oxide particles. The particle size changed depending on zinc ion concentration, ethylene glycol concentration and so on. Furthermore, with doping some metal ions, the phtocatalytic activity could be decreased. The obtained monodispersed metal ion-doped spherical zinc oxides showed excellent UV shielding ability and low photocatalytic activity. Therefore, they are expected to be used as cosmetics ingredients.
2012-01-01
Grujicic et al. /Materials and Design 35 (2012) 144–155 where Zsh is the average size of the shielding zone defined as: ktðtÞZshðtÞ ¼ Z t 0 dkt dt...of the flaws at time s, given as 1kt ðtÞ dkt dt s withR t 0 ktðtÞ dkt dt sds ¼ 1 (since for a shielding zone to exist the crack must have...the term dktdt s can be written as: dkt dt ¼ k0m _r mtm1 Sm0 ð12Þ After substitution of Eq. (12) into Eq. (11) and, in turn, into Eq. (10
NASA Astrophysics Data System (ADS)
Yang, Hongli; Yu, Zhi; Wu, Peng; Zou, Huawei; Liu, Pengbo
2018-03-01
A simple and effective method was adopted to fabricate microcellular polyimide (PI)/reduced graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposites. Firstly, microcellular poly (amic acid) (PAA)/GO/MWCNTs nanocomposites were prepared through solvent evaporation induced phase separation. In this process, PAA and dibutyl phthalate (DBP) co-dissolved in N,N-dimethylacetamide (DMAc) underwent phase separation with DMAc evaporating, and DBP microdomains were formed in continuous PAA phase. Subsequently, PAA was thermally imidized and simultaneously GO was in situ reduced. After DBP was removed, the microcellular PI/reduced GO (RGO)/MWCNTs nanocomposites were finally obtained. When the initial filler loading was 8 wt%, the electrical conductivity of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 0.05, 0.02 and 1.87 S·m-1, respectively, and the electromagnetic interference (EMI) shielding efficiency (SE) of microcellular PI/RGO, PI/MWCNTs and PI/RGO/MWCNTs nanocomposites were 13.7-15.1, 13.0-14.3 and 16.6-18.2 dB, respectively. The synergistic effect between RGO and MWCNTs enhanced both the electrical conductivity and EMI shielding performance of the microcellular PI/RGO/MWCNTs nanocomposites. The dominating EMI shielding mechanism for these materials was microwave absorption. While the initial loading of GO and MWCNT was 8 wt%, the microcellular PI/RGO/MWCNTs nanocomposite (500 μm thickness) had extremely high specific EMI SE value of 755-823 dB·cm2·g-1. Its thermal stability was also obviously improved, the 5% weight loss temperature in nitrogen was 548 °C. In addition, it also possessed a high Young's modulus of 789 MPa.
Spacecraft ceramic protective shield
NASA Technical Reports Server (NTRS)
Larriva, Rene F. (Inventor); Nelson, Anne (M.); Czechanski, James G. (Inventor); Poff, Ray E. (Inventor)
1995-01-01
A low areal density protective shield apparatus, and method for making same, for protecting spacecraft structures from impact with hypervelocity objects, including a bumper member comprising a bumper ceramic layer, a bumper shock attenuator layer, and a bumper confining layer. The bumper ceramic layer can be SiC or B.sub.4 C; the bumper shock attenuator layer can be zirconia felt; and the bumper confining layer can be aluminum. A base armor member can be spaced from the bumper member and a ceramic fiber-based curtain can be positioned between the bumper and base armor members.
Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi
NASA Astrophysics Data System (ADS)
Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.
2014-11-01
Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.
1998-01-01
The transport properties of galactic cosmic rays (GCR) in the atmosphere, material structures, and human body (self-shielding) am of interest in risk assessment for supersonic and subsonic aircraft and for space travel in low-Earth orbit and on interplanetary missions. Nuclear reactions, such as knockout and fragmentation, present large modifications of particle type and energies of the galactic cosmic rays in penetrating materials. We make an assessment of the current nuclear reaction models and improvements in these model for developing required transport code data bases. A new fragmentation data base (QMSFRG) based on microscopic models is compared to the NUCFRG2 model and implications for shield assessment made using the HZETRN radiation transport code. For deep penetration problems, the build-up of light particles, such as nucleons, light clusters and mesons from nuclear reactions in conjunction with the absorption of the heavy ions, leads to the dominance of the charge Z = 0, 1, and 2 hadrons in the exposures at large penetration depths. Light particles are produced through nuclear or cluster knockout and in evaporation events with characteristically distinct spectra which play unique roles in the build-up of secondary radiation's in shielding. We describe models of light particle production in nucleon and heavy ion induced reactions and make an assessment of the importance of light particle multiplicity and spectral parameters in these exposures.
Energy spectrum of 50-250 MeV/nucleon iron nuclei inside the MIR space craft.
Gunther, W; Leugner, D; Becker, E; Heinrich, W; Reitz, G
2002-10-01
Stacks of CR-39 plastic nuclear track detectors were mounted inside the MIR spacecraft during the EUROMIR95 space mission for a period of 6 months. This long exposure time resulted in a large number of tracks of HZE-particles in the detector foils. All trajectories of stopping iron nuclei could be reconstructed by optimizing the etching conditions so that an automatic track measurement using image analysis techniques was possible. We found 185 stopping iron nuclei and used the énergy-range relation to calculate their energies at the stack surface. The measured spectrum of iron nuclei inside the MIR station is compared to results of model predictions considering the effect of the solar modulation for the mission period, the geomagnetic shielding effect for the MIR orbit and the shielding by material of the spacecraft walls and its instrumentation. c2002 Elsevier Science Ltd. All rights reserved.
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Technical Reports Server (NTRS)
Bourrieau, J.
1993-01-01
One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.
LDEF: Dosimetric measurement results (AO 138-7 experiment)
NASA Astrophysics Data System (ADS)
Bourrieau, J.
1993-04-01
One of the objectives of the AO 138-7 experiment on board the Long Duration Exposure Facility (LDEF) was a total dose measurement with Thermo Luminescent Detectors (TLD 100). Two identical packages, both of them including five TLD's inside various aluminum shields, are exposed to the space environment in order to obtain the absorbed dose profile. Radiation fluence received during the total mission length was computed, taking into account the trapped particles (AE8 and AP8 models during solar maximum and minimum periods) and the cosmic rays; due to the magnetospheric shielding the solar proton fluences are negligible on the LDEF orbit. The total dose induced by these radiations inside a semi infinite plane shield of aluminum are computed with the radiation transport codes available at DERTS. The dose profile obtained is in good agreement with the evaluation by E.V. Benton. TLD readings are performed after flight; due to the mission duration increase a post flight calibration was necessary in order to cover the range of the in flight induced dose. The results obtained, similar (plus or minus 30 percent) for both packages, are compared with the dose profile computation. For thick shields it seems that the measurements exceed the forecast (about 40 percent). That can be due to a cosmic ray and trapped proton contributions coming from the backside (assumed as perfectly shielded by the LDEF structure in the computation), or to an underestimate of the proton or cosmic ray fluences. A fine structural shielding analysis should be necessary in order to determine the origin of this slight discrepancy between forecast and in flight measurements. For the less shielded dosimeters, mainly exposed to the trapped electron flux, a slight overestimation of the dose (less than 40 percent) appears. Due to the dispersion of the TLD's response, this cannot be confirmed. In practice these results obtained on board LDEF, with less than a factor 1.4 between measurements and forecast, reinforce the validity of the computation methods and models used for the long term evaluation of the radiation levels (flux and dose) encountered in space on low inclination and altitude Earth orbits.
Terrestrial Background Reduction in RPM Systems by Direct Internal Shielding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.
2008-11-19
Gamma-ray detection systems that are close to the earth or other sources of background radiation often require shielding, especially when trying to detect a relatively weak source. One particular case of interest that we address in this paper is that encountered by the Radiation Portal Monitors (RPMs) systems placed at border-crossing Ports of Entry (POE). These RPM systems are used to screen for illicit radiological materials, and they are often placed in situations where terrestrial background is large. In such environments, it is desirable to consider simple physical modifications that could be implemented to reduce the effects from background radiationmore » without affecting the flow of traffic and the normal operation of the portal. Simple modifications include adding additional shielding to the environment, either inside or outside the apparatus. Previous work [2] has shown the utility of some of these shielding configurations for increasing the Signal to Noise Ratio (SNR) of gross-counting RPMs. Because the total cost for purchasing and installing RPM systems can be quite expensive, in the range of hundreds of thousands of dollars for each cargo-screening installation, these shielding variations may offer increases in detection capability for relatively small cost. Several modifications are considered here in regard to their real-world applicability, and are meant to give a general idea of the effectiveness of the schemes used to reduce background for both gross-counting and spectroscopic detectors. These scenarios are modeled via the Monte-Carlo N-Particle (MCNP) code package [1] for ease of altering shielding configurations, as well as enacting unusual scenarios prior to prototyping in the field. The objective of this paper is to provide results representative of real modifications that could enhance the sensitivity of this, as well as the next generation of radiation detectors. The models used in this work were designed to provide the most general results for an RPM. These results are therefore presented as general guidance on what shielding configurations will be the most valuable for a generalized RPM, considered in light of their economic and geometric possibility in the real world.« less
Studies of HZE particle interactions and transport for space radiation protection purposes
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Wilson, John W.; Schimmerling, Walter; Wong, Mervyn
1987-01-01
The main emphasis is on developing general methods for accurately predicting high-energy heavy ion (HZE) particle interactions and transport for use by researchers in mission planning studies, in evaluating astronaut self-shielding factors, and in spacecraft shield design and optimization studies. The two research tasks are: (1) to develop computationally fast and accurate solutions to the Boltzmann (transport) equation; and (2) to develop accurate HZE interaction models, from fundamental physical considerations, for use as inputs into these transport codes. Accurate solutions to the HZE transport problem have been formulated through a combination of analytical and numerical techniques. In addition, theoretical models for the input interaction parameters are under development: stopping powers, nuclear absorption cross sections, and fragmentation parameters.
[Methods for reducing dacarbazine photodegradation and its accompanying venous pain].
Tsuji, Takumi; Ohtsubo, Tatsuya; Umeyama, Takayo; Sudou, Miho; Komesu, Kana; Matsumoto, Minako; Yoshida, Yuya; Banno, Rie; Mikami, Tadashi; Kohno, Takeyuki
2014-01-01
The anticancer drug dacarbazine (DTIC) is photosensitive, and the photodegradation product 5-diazoimidazole-4-carboxamide (diazo-IC) induces adverse reactions including local venous pain during intravenous injection. In this study we evaluated the effectiveness of colored shields (orange and red) to protect against photodegradation of DTIC as determined by ascertaining the concentration of diazo-IC. Samples were prepared and stored under four conditions: (1) no shield; (2) covered with an aluminum (opaque) shield; (3) covered with an orange shield; and (4) covered with a red shield. The samples were exposed to natural light for a specified time (0, 30, 60, 120, and 180 min) prior to measuring the concentration of diazo-IC by HPLC. We found that after 180 min, the diazo-IC concentration was 5.7±0.6 (S.D.) μg/mL with no shield and 1.9±0.2 μg/mL in both colored shield conditions. This production of diazo-IC under the colored shields was suppressed to a level similar to that under the aluminum shield (1.7±0.2 μg/mL). We also evaluated the effectiveness of NSAIDs (zaltoprofen, loxoprofen sodium, and diclofenac sodium) administered to mice prior to DTIC treatment on venous pain by counting their stretching and writhing reactions. Premedication with zaltoprofen significantly decreased expression of pain behavior in the DTIC-treated mice. These results suggest that storing DTIC under the protection of an orange or red shield is clinically beneficial because the shield prevents DTIC photodegradation, and that NSAIDs such as zaltoprofen are a promising premedication candidate for pain.
Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da
2015-12-01
The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.
Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster
NASA Technical Reports Server (NTRS)
Jorns, Benjamin A.; Hofery, Richard R.
2013-01-01
The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.
A food contaminant detection system based on high-Tc SQUIDs
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Fujita, H.; Hatsukade, Y.; Nagaishi, T.; Nishi, K.; Ota, H.; Otani, T.; Suzuki, S.
2006-05-01
We have designed and constructed a computer controlled food contaminant detection system for practical use, based on high-Tc SQUID detectors. The system, which features waterproof stainless steel construction, is acceptable under the HACCP (Hazard Analysis and Critical Control Point) programme guidelines. The outer dimensions of the system are 1500 mm length × 477 mm width × 1445 mm height, and it can accept objects up to 200 mm wide × 80 mm high. An automatic liquid nitrogen filling system was installed in the standard model. This system employed a double-layered permeable metallic shield with a thickness of 1 mm as a magnetically shielded box. The distribution of the magnetic field in the box was simulated by FEM; the gap between each shield layer was optimized before fabrication. A shielding factor of 732 in the Z-component was achieved. This value is high enough to safely operate the system in a non-laboratory environment, i.e., a factory. During testing, we successfully detected a steel contaminant as small as 0.3 mm in diameter at a distance of 75 mm.
NASA Technical Reports Server (NTRS)
Harvey, W. D.
1975-01-01
Results are presented of a coordinated experimental and theoretical study of a sound shield concept which aims to provide a means of noise reduction in the test section of supersonic wind tunnels at high Reynolds numbers. The model used consists of a planar array of circular rods aligned with the flow, with adjustable gaps between them for boundary layer removal by suction, i.e., laminar flow control. One of the basic requirements of the present sound shield concept is to achieve sonic cross flow through the gaps in order to prevent lee-side flow disturbances from penetrating back into the shielded region. Tests were conducted at Mach 6 over a local unit Reynolds number range from about 1.2 x 10 to the 6th power to 13.5 x 10 to the 6th power per foot. Measurements of heat transfer, static pressure, and sound levels were made to establish the transition characteristics of the boundary layer on the rod array and the sound shielding effectiveness.
Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.
2008-01-01
Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.
MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model
NASA Technical Reports Server (NTRS)
James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert
2008-01-01
The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.
GRAYSKY-A new gamma-ray skyshine code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witts, D.J.; Twardowski, T.; Watmough, M.H.
1993-01-01
This paper describes a new prototype gamma-ray skyshine code GRAYSKY (Gamma-RAY SKYshine) that has been developed at BNFL, as part of an industrially based master of science course, to overcome the problems encountered with SKYSHINEII and RANKERN. GRAYSKY is a point kernel code based on the use of a skyshine response function. The scattering within source or shield materials is accounted for by the use of buildup factors. This is an approximate method of solution but one that has been shown to produce results that are acceptable for dose rate predictions on operating plants. The novel features of GRAYSKY aremore » as follows: 1. The code is fully integrated with a semianalytical point kernel shielding code, currently under development at BNFL, which offers powerful solid-body modeling capabilities. 2. The geometry modeling also allows the skyshine response function to be used in a manner that accounts for the shielding of air-scattered radiation. 3. Skyshine buildup factors calculated using the skyshine response function have been used as well as dose buildup factors.« less
Groundwater mixing dynamics at a Canadian Shield mine
NASA Astrophysics Data System (ADS)
Douglas, M.; Clark, I. D.; Raven, K.; Bottomley, D.
2000-08-01
Temporal and spatial variations in geochemistry and isotopes in mine inflows at the Con Mine, Yellowknife, are studied to access the impact of underground openings on deep groundwater flow in the Canadian Shield. Periodic sampling of inflow at 20 sites from 700 to 1615 m depth showed that salinities range from 1.4 to 290 g/l, with tritium detected at all depths. Three mixing end-members are identified: (1) Ca(Na)-Cl Shield brine; (2) glacial meltwater recharged at the margin of the retreating Laurentide ice sheet at ˜10 ka; and (3) modern meteoric water. Mixing fractions, calculated for inflows on five mine levels, illustrate the infiltration of modern water along specific fault planes. Tritium data for the modern component are corrected for mixing with brine and glacial waters and interpreted with an exponential-piston flow model. Results indicate that the mean transit time from surface to 1300 m depth is about 23 years in the early period after drift construction in 1979, but decreases to about 17 years in the past decade. The persistence of glacial meltwater in the subsurface to the present time, and the rapid circulation of modern meteoric water since the start of mining activities underline the importance of gradient, in addition to permeability, as a control on deep groundwater flow in the Canadian Shield.
Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.
2001-01-01
NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation methods--shielding and anti-carcinogens. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.
2017-07-01
We report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MAJORANADEMONSTRATOR muon veto system arranged in two different configurations. The measured total flux is (5.31 ± 0.17) ×10-9 μ /s/cm2. Demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y)in the 4-keV region of interest (ROI) around the 2039-keV Q-value for 76Ge ββ(0ν) decay. This is required for tonne-scale germanium-based searches that will probe the inverted-ordering neutrino-mass parameter space for the effective Majorana neutrino mass in ββ(0ν) decay. Show technical and engineering scalability toward a tonne-scale instrument. Perform searches for additional physics beyond the Standard Model, such as dark matter and axions. The MAJORANA Collaboration has designed a modular instrument composed of two cryostats built from ultra-pure electroformed copper, with each cryostat capable of housing over 20 kg of HPGe detectors. The MAJORANADEMONSTRATOR contains 30 kg of detectors fabricated from Ge material enriched to 88% in 76Ge and another 15 kg fabricated from natural Ge (7.8% 76Ge). The modular approach allows us to assemble and optimize each cryostat independently, providing a fast deployment with minimal effect on already-operational detectors.Starting from the innermost cavity, the cryostats are surrounded by a compact graded shield composed of an inner layer of electroformed copper, a layer of commercially sourced C10100 copper, high-purity lead, an active muon veto, borated polyethylene, and pure polyethylene shielding. The cryostats, copper, and lead shielding are enclosed in a radon exclusion box and rest on an over-floor table that has openings for the active muon veto and polyethylene shielding panels situated below the detector. The entire experiment is located in a clean room at the 4850 ft level of SURF. A high-level summary of shield components is shown in Fig. 1.A large fraction of the plastic scintillator panels comprising the active muon-veto system were operated in different configurations at the experimental site during Ge detector constructions and commissioning. We used the resulting data to measure the total muon flux at the Davis Campus at SURF for the first time.
Determination of shielding requirements for mammography.
Okunade, Akintunde Akangbe; Ademoroti, Olalekan Albert
2004-05-01
Shielding requirements for mammography when considerations are to be given to attenuation by compression paddle, breast tissue, grid and image receptor (intervening materials) has been investigated. By matching of the attenuation and hardening properties, comparisons are made between shielding afforded by breast tissue materials (water, Lucite and 50%-50% adipose-glandular tissue) and some materials considered for shielding diagnostic x-ray beams, namely lead, steel and gypsum wallboard. Results show that significant differences exist between the thickness required to produce equal attenuation and that required to produce equal hardening of a given incident beam. While attenuation equivalent thickness produces equal exposure, it does not produce equal hardening. For shielding purposes, equivalence in exposure reduction without equivalence in penetrating power of an emerging beam does not amount to equivalence in shielding affordable by two different materials. Presented are models and results of sample calculations of additional shielding requirements apart from that provided by intervening materials. The shielding requirements for the integrated beam emerging from intervening materials are different from those for the integrated beam emerging from materials (lead/steel/gypsum wallboard) with attenuation equivalent thicknesses of these intervening materials.
A solid-state [sup 13]C NMR study of the molecular motion of ethylene adsorbed on a silver surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianxin Wang; Ellis, P.D.
1993-01-13
The reorientation of ethylene on a silver catalyst surface has been studied by solid-state [sup 13]C NMR. The static cross-polarization spectra at different temperatures have been measured. Different jump site models are proposed to simulate the experimental results. It was found that the models involving a low number of jump sites are more sensitive to the experimental details. By comparison of the simulated and experimental results, the 6- and 4-site jump models are chosen as the most satisfactory model to fit the experimental spectra. On the basis of this representation, the activation energy derived for the jump process is 4.3more » kJ/mol. From the simulated results, it was concluded that the symmetry axis for the motion of the ethylene at low temperatures ([minus]173 to ca. [minus]45[degrees]C) is perpendicular to the plane of the ethylene molecule. At higher temperatures motion about other axes is initiated such that at room temperature a nearly isotropically averaged [sup 13]C shielding tensor is observed. 20 refs., 9 figs.« less
Hysteresis prediction inside magnetic shields and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morić, Igor; CNES, Edouard Belin 18, 31400 Toulouse; De Graeve, Charles-Marie
2014-07-15
We have developed a simple model that is able to describe and predict hysteresis behavior inside Mumetal magnetic shields, when the shields are submitted to ultra-low frequency (<0.01 Hz) magnetic perturbations with amplitudes lower than 60 μT. This predictive model has been implemented in a software to perform an active compensation system. With this compensation the attenuation of longitudinal magnetic fields is increased by two orders of magnitude. The system is now integrated in the cold atom space clock called PHARAO. The clock will fly onboard the International Space Station in the frame of the ACES space mission.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.
A New Structural Model for the Red Sea from Seismic Data
NASA Astrophysics Data System (ADS)
Mooney, W. D.; Yao, Z.; Zahran, H. M.; El-Hadidy, S. Y.
2017-12-01
We present a new structureal model for the Red Sea that shows opening on an east-dipping low-angle detachment fault. We measured phase velocities using Rayleigh-wave data recorded at recently-installed, dense broadband seismic stations in the Arabian shield and determined the shear-wave velocity structure. Our results clearly reveal a 300-km wide upper mantle seismic low-velocity zone (LVZ) beneath the western Arabian shield at a depth of 60 km and with a thickness of 130 km. The LVZ has a north-south trend and follows the late-Cenozoic volcanic areas. The lithosphere beneath the western Arabian shield is remarkably thin (60-90 km). The 130-km thick mantle LVZ does not appear beneath the western Red Sea and the spreading axis. Thus, the Red Sea at 20°- 26° N is an asymmetric rift, with thin lithosphere located east of the Red Sea axis, as predicted by the low-angle detachment model for rift development. Passive rifting at the Red Sea and extensional stresses in the shield are probably driven by slab pull from the Zagros subduction zone. The low shear-wave velocity (4.0-4.2 km/s) and the geometry of LVZ beneath the western shield indicate northward flow of hot asthenosphere from the Afar hot spot. The upwelling of basaltic melt in fractures or zones of localized lithospheric thinning has produced extensive late Cenozoic volcanism on the western edge of the shield, and the buoyant LVZ has caused pronounced topography uplift there. Thus, the evolution of the Red Sea and the Arabian shield is driven by subduction of the Arabian plate along its northeastern boundary, and the Red Sea opened on a east-dipping low-angle detachment fault.
NASA Astrophysics Data System (ADS)
Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao
2016-08-01
We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.
Project W-320, 241-C-106 sluicing HVAC calculations, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, J.W.
1998-08-07
This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following calculations: Exhaust airflow sizing for Tank 241-C-106; Equipment sizing and selection recirculation fan; Sizing high efficiency mist eliminator; Sizing electric heating coil; Equipment sizing and selection of recirculation condenser; Chiller skid system sizing and selection; High efficiency metal filter shielding input and flushing frequency; and Exhaust skid stack sizing and fan sizing.
Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B and G
Stewart-Jones, Guillaume B. E.; Soto, Cinque; Lemmin, Thomas; Chuang, Gwo-Yu; Druz, Aliaksandr; Kong, Rui; Thomas, Paul V.; Wagh, Kshitij; Zhou, Tongqing; Behrens, Anna-Janina; Bylund, Tatsiana; Choi, Chang W.; Davison, Jack R.; Georgiev, Ivelin S.; Joyce, M. Gordon; Do Kwon, Young; Pancera, Marie; Taft, Justin; Yang, Yongping; Zhang, Baoshan; Shivatare, Sachin S.; Shivatare, Vidya S.; Lee, Chang-Chun D.; Wu, Chung-Yi; Bewley, Carole A.; Burton, Dennis R.; Koff, Wayne C.; Connors, Mark; Crispin, Max; Baxa, Ulrich; Korber, Bette T.; Wong, Chi-Huey; Mascola, John R.; Kwong, Peter D.
2017-01-01
The HIV-1-envelope (Env) trimer is covered by a glycan shield of ~90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, which encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans amongst known broadly neutralizing antibodies that target the glycan-shielded trimer. PMID:27114034
Estimation of ground motion for Bhuj (26 January 2001; Mw 7.6 and for future earthquakes in India
Singh, S.K.; Bansal, B.K.; Bhattacharya, S.N.; Pacheco, J.F.; Dattatrayam, R.S.; Ordaz, M.; Suresh, G.; ,; Hough, S.E.
2003-01-01
Only five moderate and large earthquakes (Mw ???5.7) in India-three in the Indian shield region and two in the Himalayan arc region-have given rise to multiple strong ground-motion recordings. Near-source data are available for only two of these events. The Bhuj earthquake (Mw 7.6), which occurred in the shield region, gave rise to useful recordings at distances exceeding 550 km. Because of the scarcity of the data, we use the stochastic method to estimate ground motions. We assume that (1) S waves dominate at R < 100 km and Lg waves at R ??? 100 km, (2) Q = 508f0.48 is valid for the Indian shield as well as the Himalayan arc region, (3) the effective duration is given by fc-1 + 0.05R, where fc is the corner frequency, and R is the hypocentral distance in kilometer, and (4) the acceleration spectra are sharply cut off beyond 35 Hz. We use two finite-source stochastic models. One is an approximate model that reduces to the ??2-source model at distances greater that about twice the source dimension. This model has the advantage that the ground motion is controlled by the familiar stress parameter, ????. In the other finite-source model, which is more reliable for near-source ground-motion estimation, the high-frequency radiation is controlled by the strength factor, sfact, a quantity that is physically related to the maximum slip rate on the fault. We estimate ???? needed to fit the observed Amax and Vmax data of each earthquake (which are mostly in the far field). The corresponding sfact is obtained by requiring that the predicted curves from the two models match each other in the far field up to a distance of about 500 km. The results show: (1) The ???? that explains Amax data for shield events may be a function of depth, increasing from ???50 bars at 10 km to ???400 bars at 36 km. The corresponding sfact values range from 1.0-2.0. The ???? values for the two Himalayan arc events are 75 and 150 bars (sfact = 1.0 and 1.4). (2) The ???? required to explain Vmax data is, roughly, half the corresponding value for Amax, while the same sfact explains both sets of data. (3) The available far-field Amax and Vmax data for the Bhuj mainshock are well explained by ???? = 200 and 100 bars, respectively, or, equivalently, by sfact = 1.4. The predicted Amax and Vmax in the epicentral region of this earthquake are 0.80 to 0.95 g and 40 to 55 cm/sec, respectively.
Process for producing an aggregate suitable for inclusion into a radiation shielding product
Lessing, Paul A.; Kong, Peter C.
2000-01-01
The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.
Morphometry of terrestrial shield volcanoes
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu
2018-03-01
Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.
30 CFR 56.14213 - Ventilation and shielding for welding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...
30 CFR 56.14213 - Ventilation and shielding for welding.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...
30 CFR 56.14213 - Ventilation and shielding for welding.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...
30 CFR 56.14213 - Ventilation and shielding for welding.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...
30 CFR 56.14213 - Ventilation and shielding for welding.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Ventilation and shielding for welding. 56.14213... Equipment Safety Practices and Operational Procedures § 56.14213 Ventilation and shielding for welding. (a) Welding operations shall be shielded when performed at locations where arc flash could be hazardous to...
Geologic mapping of Northern Atla Regio on Venus: Preliminary data
NASA Technical Reports Server (NTRS)
Nikishin, A. M.; Burba, G. A.
1993-01-01
The Northern part of Atla Regio within the frame of C1-formate Magellan photo map 15N197 was mapped geologically at scale 1:8,000,000. This is a part of Russia's contribution into C1 geologic mapping efforts. The map is reproduced here being reduced about twice. The map shows that the Northern Atla area is predominantly a volcanic plain with numerous volcanic features: shield volcanoes, domes and hills with various morphology, corona-like constructions, radar bright and dark spots often with flow-like outlines. Relatively small areas of tessera occurred in the area are mainly semi-flooded with the plain material. Tesserae are considered to be the oldest terrains within the map sheet. There are many lineated terrains in the region. They are interpreted as the old, almost-buried tesserae (those with crossed lineaments) or partly buried ridge belts (those with parallel lineaments). These lineated terrains have an intermediate age between the young volcanic plains and the old tessera areas. Two prominent high volcanic shields are located within the region - Ozza Mons and Sapas Mona. The most prominent structure in Northern Atla is Ganis Chasma rift. The rift cuts volcanic plain and is considered to be under formation during approximately the same time with Ozza Mons shield. Ganis Chasma rift valley is highly fractured and bounded with fault scarps. Rift shoulder uplifts are typical for Ganis Chasma. There are few relatively young volcanic features inside the rift valley. The analysis of fracturing and rift valley geometry shows the rift originated due to 5-10 percent crustal extention followed by the crustal subsidence. The age sequence summary for the main terrain types in the region is (from older to younger ones): tesserae; lineated terrains with crossed lineaments; lineated terrains with parallel lineaments; volcanic plains; and prominent volcanic shields and Ganis Chasma rift valley. The geologic structure of Atla Regio as it appeared now with the Magellan high resolution images is very close to that of Beta Regio. Such conclusion coincide with the earlier ones based on the coarser data.
A LFER analysis of the singlet-triplet gap in a series of sixty-six carbenes
NASA Astrophysics Data System (ADS)
Alkorta, Ibon; Elguero, José
2018-01-01
Ab initio G4 calculations have been performed to investigate the singlet-triplet gap in a series of 66 simple carbenes. Energies and geometries were analyzed. An additive model has been explored that include four interaction terms. An abnormal behavior of the cyano group has been found. The 13C absolute shieldings of the carbenic carbon atom were calculated at the GIAO/B3LYP/6-311++G(d, p).
ERIC Educational Resources Information Center
American Inst. of Architects, Washington, DC.
A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…
Sol-gel antireflective spin-coating process for large-size shielding windows
NASA Astrophysics Data System (ADS)
Belleville, Philippe F.; Prene, Philippe; Mennechez, Francoise; Bouigeon, Christian
2002-10-01
The interest of the antireflective coatings applied onto large-area glass components increases everyday for the potential application such as building or shop windows. Today, because of the use of large size components, sol-gel process is a competitive way for antireflective coating mass production. The dip-coating technique commonly used for liquid-deposition, implies a safety hazard due to coating solution handling and storage in the case of large amounts of highly flammable solvent use. On the other hand, spin-coating is a liquid low-consumption technique. Mainly devoted to coat circular small-size substrate, we have developed a spin-coating machine able to coat large-size rectangular windows (up to 1 x 1.7 m2). Both solutions and coating conditions have been optimized to deposit optical layers with accurate and uniform thickness and to highly limit the edge effects. Experimental single layer antireflective coating deposition process onto large-area shielding windows (1000 x 1700 x 20 mm3) is described. Results show that the as-developed process could produce low specular reflection value (down to 1% one side) onto white-glass windows over the visible range (460-750 nm). Low-temperature curing process (120°C) used after sol-gel deposition enables antireflective-coating to withstand abrasion-resistance properties in compliance to US-MIL-C-0675C moderate test.
Innovative Research Program: Supershields for Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Hailey, Charles J.
2000-01-01
The supershield project evaluated the importance of novel shield configurations for suppressing neutron induced background in new classes of gamma-ray detectors such as CZT. The basic concept was to use a two-part shield. The outer shield material heavily moderates the incoming neutron spectrum. This moderated neutron beam is then more easily absorbed by the inner material, which is an efficient neutron absorber. This approach is, in principle, more efficient than that in previous attempts to make neutron shields. These previous attempts involved biatomic, monlithic shields (eg. LiH) in which the shield consisted of a single material but with two types of atoms - one for moderating and one for absorbing. The problem with this type of monolithic shield is that moderating neutrons, without the efficient absorption of them, leads to the leakage into the detector of neutrons with a low energy component (approx. 10-100 KeV). These energy neutrons are particularly problematic for many types of detectors. The project was roughly divided into phases. In the first phase we attempted to carefully define the neutron source function incident on any space instrument. This is essential since the design of any shield depends on the shape of the incident neutron spectrum. We found that approximations commonly used in gamma-ray astronomy for photon background is inadequate. In addition, we found that secondary neutrons produced in any passive shield, and dominated by inelastic neutron scattering, are far more important than background due to neutron activation. The second phase of our work involved design of supershield geometries (one and three dimensional) in order to compare different shield configurations and materials for their effectiveness as neutron shields. Moreover we wanted to compare these supershields with previous neutron shields to confirm the performance differences between the supershield (two material) and monolithic (one material) designs and to understand the physics origins of these differences more clearly. The third phase of the supershield program involved the benchmarking of the supershield designs through direct experimental verification. This required fabricating various supershields and exposing them to beams of neutrons to directly characterize their performance. With explicit verification that our modeling procedures can be used with confidence, we are now in a position to design shields for realistic space geometries. Using the supershield modeling capacity developed as part of this program we are attempting to evaluate their utility for a specific proposed mission--the Energetic X-ray Imaging Survey Telescope (EXIST). It is anticipated that this experiment, which is limited by internal background at high energies, might benefit from a neutron shield.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
The Orion heat shield from Exploration Flight Test-1 has arrived in High Bay 2 of the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.
Orion EFT-1 Heat Shield Offload from Truck onto Foam Pads (Dunna
2017-04-27
Inside High Bay 2 in the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, the Orion heat shield from Exploration Flight Test-1 is secured on foam blocks. The heat shield is being transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations. In the VAB, the heat shield will be integrated with the Orion ground test article and used for future underway recovery testing.