Sample records for model analysis based

  1. Practical Application of Model-based Programming and State-based Architecture to Space Missions

    NASA Technical Reports Server (NTRS)

    Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian

    2006-01-01

    A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps

  2. Comparing model-based and model-free analysis methods for QUASAR arterial spin labeling perfusion quantification.

    PubMed

    Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J

    2013-05-01

    Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.

  3. Model Based Analysis and Test Generation for Flight Software

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  4. Dynamic Chest Image Analysis: Evaluation of Model-Based Pulmonary Perfusion Analysis With Pyramid Images

    DTIC Science & Technology

    2001-10-25

    Image Analysis aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the Dynamic Pulmonary Imaging technique 18,5,17,6. We have proposed and evaluated a multiresolutional method with an explicit ventilation model based on pyramid images for ventilation analysis. We have further extended the method for ventilation analysis to pulmonary perfusion. This paper focuses on the clinical evaluation of our method for

  5. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

  6. Marker-based or model-based RSA for evaluation of hip resurfacing arthroplasty? A clinical validation and 5-year follow-up.

    PubMed

    Lorenzen, Nina Dyrberg; Stilling, Maiken; Jakobsen, Stig Storgaard; Gustafson, Klas; Søballe, Kjeld; Baad-Hansen, Thomas

    2013-11-01

    The stability of implants is vital to ensure a long-term survival. RSA determines micro-motions of implants as a predictor of early implant failure. RSA can be performed as a marker- or model-based analysis. So far, CAD and RE model-based RSA have not been validated for use in hip resurfacing arthroplasty (HRA). A phantom study determined the precision of marker-based and CAD and RE model-based RSA on a HRA implant. In a clinical study, 19 patients were followed with stereoradiographs until 5 years after surgery. Analysis of double-examination migration results determined the clinical precision of marker-based and CAD model-based RSA, and at the 5-year follow-up, results of the total translation (TT) and the total rotation (TR) for marker- and CAD model-based RSA were compared. The phantom study showed that comparison of the precision (SDdiff) in marker-based RSA analysis was more precise than model-based RSA analysis in TT (p CAD < 0.001; p RE = 0.04) and TR (p CAD = 0.01; p RE < 0.001). The clinical precision (double examination in 8 patients) comparing the precision SDdiff was better evaluating the TT using the marker-based RSA analysis (p = 0.002), but showed no difference between the marker- and CAD model-based RSA analysis regarding the TR (p = 0.91). Comparing the mean signed values regarding the TT and the TR at the 5-year follow-up in 13 patients, the TT was lower (p = 0.03) and the TR higher (p = 0.04) in the marker-based RSA compared to CAD model-based RSA. The precision of marker-based RSA was significantly better than model-based RSA. However, problems with occluded markers lead to exclusion of many patients which was not a problem with model-based RSA. HRA were stable at the 5-year follow-up. The detection limit was 0.2 mm TT and 1° TR for marker-based and 0.5 mm TT and 1° TR for CAD model-based RSA for HRA.

  7. Derivation of Continuum Models from An Agent-based Cancer Model: Optimization and Sensitivity Analysis.

    PubMed

    Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank

    2017-01-01

    Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Model-Based Safety Analysis

    NASA Technical Reports Server (NTRS)

    Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.

    2006-01-01

    System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.

  9. Integrating model behavior, optimization, and sensitivity/uncertainty analysis: overview and application of the MOUSE software toolbox

    USDA-ARS?s Scientific Manuscript database

    This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...

  10. Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination

    NASA Technical Reports Server (NTRS)

    Groen, Frank

    2010-01-01

    This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.

  11. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  12. Error Propagation Analysis in the SAE Architecture Analysis and Design Language (AADL) and the EDICT Tool Framework

    NASA Technical Reports Server (NTRS)

    LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.

    2011-01-01

    This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.

  13. SensA: web-based sensitivity analysis of SBML models.

    PubMed

    Floettmann, Max; Uhlendorf, Jannis; Scharp, Till; Klipp, Edda; Spiesser, Thomas W

    2014-10-01

    SensA is a web-based application for sensitivity analysis of mathematical models. The sensitivity analysis is based on metabolic control analysis, computing the local, global and time-dependent properties of model components. Interactive visualization facilitates interpretation of usually complex results. SensA can contribute to the analysis, adjustment and understanding of mathematical models for dynamic systems. SensA is available at http://gofid.biologie.hu-berlin.de/ and can be used with any modern browser. The source code can be found at https://bitbucket.org/floettma/sensa/ (MIT license) © The Author 2014. Published by Oxford University Press.

  14. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  15. A catalog of automated analysis methods for enterprise models.

    PubMed

    Florez, Hector; Sánchez, Mario; Villalobos, Jorge

    2016-01-01

    Enterprise models are created for documenting and communicating the structure and state of Business and Information Technologies elements of an enterprise. After models are completed, they are mainly used to support analysis. Model analysis is an activity typically based on human skills and due to the size and complexity of the models, this process can be complicated and omissions or miscalculations are very likely. This situation has fostered the research of automated analysis methods, for supporting analysts in enterprise analysis processes. By reviewing the literature, we found several analysis methods; nevertheless, they are based on specific situations and different metamodels; then, some analysis methods might not be applicable to all enterprise models. This paper presents the work of compilation (literature review), classification, structuring, and characterization of automated analysis methods for enterprise models, expressing them in a standardized modeling language. In addition, we have implemented the analysis methods in our modeling tool.

  16. Exploratory Model Analysis of the Space Based Infrared System (SBIRS) Low Global Scheduler Problem

    DTIC Science & Technology

    1999-12-01

    solution. The non- linear least squares model is defined as Y = f{e,t) where: 0 =M-element parameter vector Y =N-element vector of all data t...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXPLORATORY MODEL ANALYSIS OF THE SPACE BASED INFRARED SYSTEM (SBIRS) LOW GLOBAL SCHEDULER...December 1999 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE EXPLORATORY MODEL ANALYSIS OF THE SPACE BASED INFRARED SYSTEM

  17. Performance analysis and dynamic modeling of a single-spool turbojet engine

    NASA Astrophysics Data System (ADS)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  18. A logical model of cooperating rule-based systems

    NASA Technical Reports Server (NTRS)

    Bailin, Sidney C.; Moore, John M.; Hilberg, Robert H.; Murphy, Elizabeth D.; Bahder, Shari A.

    1989-01-01

    A model is developed to assist in the planning, specification, development, and verification of space information systems involving distributed rule-based systems. The model is based on an analysis of possible uses of rule-based systems in control centers. This analysis is summarized as a data-flow model for a hypothetical intelligent control center. From this data-flow model, the logical model of cooperating rule-based systems is extracted. This model consists of four layers of increasing capability: (1) communicating agents, (2) belief-sharing knowledge sources, (3) goal-sharing interest areas, and (4) task-sharing job roles.

  19. Nonlinear multi-analysis of agent-based financial market dynamics by epidemic system

    NASA Astrophysics Data System (ADS)

    Lu, Yunfan; Wang, Jun; Niu, Hongli

    2015-10-01

    Based on the epidemic dynamical system, we construct a new agent-based financial time series model. In order to check and testify its rationality, we compare the statistical properties of the time series model with the real stock market indices, Shanghai Stock Exchange Composite Index and Shenzhen Stock Exchange Component Index. For analyzing the statistical properties, we combine the multi-parameter analysis with the tail distribution analysis, the modified rescaled range analysis, and the multifractal detrended fluctuation analysis. For a better perspective, the three-dimensional diagrams are used to present the analysis results. The empirical research in this paper indicates that the long-range dependence property and the multifractal phenomenon exist in the real returns and the proposed model. Therefore, the new agent-based financial model can recurrence some important features of real stock markets.

  20. Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom

    2014-01-01

    Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…

  1. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  2. A Methodology and Software Environment for Testing Process Model’s Sequential Predictions with Protocols

    DTIC Science & Technology

    1992-12-21

    in preparation). Foundations of artificial intelligence. Cambridge, MA: MIT Press. O’Reilly, R. C. (1991). X3DNet: An X- Based Neural Network ...2.2.3 Trace based protocol analysis 19 2.2A Summary of important data features 21 2.3 Tools related to process model testing 23 2.3.1 Tools for building...algorithm 57 3. Requirements for testing process models using trace based protocol 59 analysis 3.1 Definition of trace based protocol analysis (TBPA) 59

  3. Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models

    NASA Astrophysics Data System (ADS)

    Giesen, Joachim; Mueller, Klaus; Taneva, Bilyana; Zolliker, Peter

    Conjoint analysis is a family of techniques that originated in psychology and later became popular in market research. The main objective of conjoint analysis is to measure an individual's or a population's preferences on a class of options that can be described by parameters and their levels. We consider preference data obtained in choice-based conjoint analysis studies, where one observes test persons' choices on small subsets of the options. There are many ways to analyze choice-based conjoint analysis data. Here we discuss the intuition behind a classification based approach, and compare this approach to one based on statistical assumptions (discrete choice models) and to a regression approach. Our comparison on real and synthetic data indicates that the classification approach outperforms the discrete choice models.

  4. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  5. ADAM: analysis of discrete models of biological systems using computer algebra.

    PubMed

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.

  6. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  7. Gradient-based model calibration with proxy-model assistance

    NASA Astrophysics Data System (ADS)

    Burrows, Wesley; Doherty, John

    2016-02-01

    Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater model with large run times and problematic numerical behaviour is described. The methodology is general, and can be used with models of all types. The proxy model is based on a series of analytical functions that link all model outputs used in the calibration process to all parameters requiring estimation. In enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy model in this fashion dramatically reduces the computational burden of complex model calibration and uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integrity in finite-difference derivatives calculation would otherwise have impeded such access. Construction of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncertainties of predictions made by that model, is implemented in the PEST suite.

  8. An efficient current-based logic cell model for crosstalk delay analysis

    NASA Astrophysics Data System (ADS)

    Nazarian, Shahin; Das, Debasish

    2013-04-01

    Logic cell modelling is an important component in the analysis and design of CMOS integrated circuits, mostly due to nonlinear behaviour of CMOS cells with respect to the voltage signal at their input and output pins. A current-based model for CMOS logic cells is presented, which can be used for effective crosstalk noise and delta delay analysis in CMOS VLSI circuits. Existing current source models are expensive and need a new set of Spice-based characterisation, which is not compatible with typical EDA tools. In this article we present Imodel, a simple nonlinear logic cell model that can be derived from the typical cell libraries such as NLDM, with accuracy much higher than NLDM-based cell delay models. In fact, our experiments show an average error of 3% compared to Spice. This level of accuracy comes with a maximum runtime penalty of 19% compared to NLDM-based cell delay models on medium-sized industrial designs.

  9. A simulations approach for meta-analysis of genetic association studies based on additive genetic model.

    PubMed

    John, Majnu; Lencz, Todd; Malhotra, Anil K; Correll, Christoph U; Zhang, Jian-Ping

    2018-06-01

    Meta-analysis of genetic association studies is being increasingly used to assess phenotypic differences between genotype groups. When the underlying genetic model is assumed to be dominant or recessive, assessing the phenotype differences based on summary statistics, reported for individual studies in a meta-analysis, is a valid strategy. However, when the genetic model is additive, a similar strategy based on summary statistics will lead to biased results. This fact about the additive model is one of the things that we establish in this paper, using simulations. The main goal of this paper is to present an alternate strategy for the additive model based on simulating data for the individual studies. We show that the alternate strategy is far superior to the strategy based on summary statistics.

  10. Structural reliability analysis under evidence theory using the active learning kriging model

    NASA Astrophysics Data System (ADS)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  11. Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Knox, Lenora A.

    The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.

  12. [Model-based biofuels system analysis: a review].

    PubMed

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  13. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  14. Trajectory-Based Loads for the Ares I-X Test Flight Vehicle

    NASA Technical Reports Server (NTRS)

    Vause, Roland F.; Starr, Brett R.

    2011-01-01

    In trajectory-based loads, the structural engineer treats each point on the trajectory as a load case. Distributed aero, inertial, and propulsion forces are developed for the structural model which are equivalent to the integrated values of the trajectory model. Free-body diagrams are then used to solve for the internal forces, or loads, that keep the applied aero, inertial, and propulsion forces in dynamic equilibrium. There are several advantages to using trajectory-based loads. First, consistency is maintained between the integrated equilibrium equations of the trajectory analysis and the distributed equilibrium equations of the structural analysis. Second, the structural loads equations are tied to the uncertainty model for the trajectory systems analysis model. Atmosphere, aero, propulsion, mass property, and controls uncertainty models all feed into the dispersions that are generated for the trajectory systems analysis model. Changes in any of these input models will affect structural loads response. The trajectory systems model manages these inputs as well as the output from the structural model over thousands of dispersed cases. Large structural models with hundreds of thousands of degrees of freedom would execute too slowly to be an efficient part of several thousand system analyses. Trajectory-based loads provide a means for the structures discipline to be included in the integrated systems analysis. Successful applications of trajectory-based loads methods for the Ares I-X vehicle are covered in this paper. Preliminary design loads were based on 2000 trajectories using Monte Carlo dispersions. Range safety loads were tied to 8423 malfunction turn trajectories. In addition, active control system loads were based on 2000 preflight trajectories using Monte Carlo dispersions.

  15. Applying STAMP in Accident Analysis

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy; Daouk, Mirna; Dulac, Nicolas; Marais, Karen

    2003-01-01

    Accident models play a critical role in accident investigation and analysis. Most traditional models are based on an underlying chain of events. These models, however, have serious limitations when used for complex, socio-technical systems. Previously, Leveson proposed a new accident model (STAMP) based on system theory. In STAMP, the basic concept is not an event but a constraint. This paper shows how STAMP can be applied to accident analysis using three different views or models of the accident process and proposes a notation for describing this process.

  16. Analysis of sensitivity and uncertainty in an individual-based model of a threatened wildlife species

    Treesearch

    Bruce G. Marcot; Peter H. Singleton; Nathan H. Schumaker

    2015-01-01

    Sensitivity analysis—determination of how prediction variables affect response variables—of individual-based models (IBMs) are few but important to the interpretation of model output. We present sensitivity analysis of a spatially explicit IBM (HexSim) of a threatened species, the Northern Spotted Owl (NSO; Strix occidentalis caurina) in Washington...

  17. Effects of Instructional Design with Mental Model Analysis on Learning.

    ERIC Educational Resources Information Center

    Hong, Eunsook

    This paper presents a model for systematic instructional design that includes mental model analysis together with the procedures used in developing computer-based instructional materials in the area of statistical hypothesis testing. The instructional design model is based on the premise that the objective for learning is to achieve expert-like…

  18. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  19. Estimating the Regional Economic Significance of Airports

    DTIC Science & Technology

    1992-09-01

    following three options for estimating induced impacts: the economic base model , an econometric model , and a regional input-output model . One approach to...limitations, however, the economic base model has been widely used for regional economic analysis. A second approach is to develop an econometric model of...analysis is the principal statistical tool used to estimate the economic relationships. Regional econometric models are capable of estimating a single

  20. A web-based portfolio model as the students' final assignment: Dealing with the development of higher education trend

    NASA Astrophysics Data System (ADS)

    Utanto, Yuli; Widhanarto, Ghanis Putra; Maretta, Yoris Adi

    2017-03-01

    This study aims to develop a web-based portfolio model. The model developed in this study could reveal the effectiveness of the new model in experiments conducted at research respondents in the department of curriculum and educational technology FIP Unnes. In particular, the further research objectives to be achieved through this development of research, namely: (1) Describing the process of implementing a portfolio in a web-based model; (2) Assessing the effectiveness of web-based portfolio model for the final task, especially in Web-Based Learning courses. This type of research is the development of research Borg and Gall (2008: 589) says "educational research and development (R & D) is a process used to develop and validate educational production". The series of research and development carried out starting with exploration and conceptual studies, followed by testing and evaluation, and also implementation. For the data analysis, the technique used is simple descriptive analysis, analysis of learning completeness, which then followed by prerequisite test for normality and homogeneity to do T - test. Based on the data analysis, it was concluded that: (1) a web-based portfolio model can be applied to learning process in higher education; (2) The effectiveness of web-based portfolio model with field data from the respondents of large group trial participants (field trial), the number of respondents who reached mastery learning (a score of 60 and above) were 24 people (92.3%) in which it indicates that the web-based portfolio model is effective. The conclusion of this study is that a web-based portfolio model is effective. The implications of the research development of this model, the next researcher is expected to be able to use the guideline of the development model based on the research that has already been conducted to be developed on other subjects.

  1. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

    PubMed Central

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  2. ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    PubMed Central

    2011-01-01

    Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817

  3. Model-Based Linkage Analysis of a Quantitative Trait.

    PubMed

    Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H

    2017-01-01

    Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.

  4. Application of discriminant analysis-based model for prediction of risk of low back disorders due to workplace design in industrial jobs.

    PubMed

    Ganga, G M D; Esposto, K F; Braatz, D

    2012-01-01

    The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.

  5. Requirements analysis, domain knowledge, and design

    NASA Technical Reports Server (NTRS)

    Potts, Colin

    1988-01-01

    Two improvements to current requirements analysis practices are suggested: domain modeling, and the systematic application of analysis heuristics. Domain modeling is the representation of relevant application knowledge prior to requirements specification. Artificial intelligence techniques may eventually be applicable for domain modeling. In the short term, however, restricted domain modeling techniques, such as that in JSD, will still be of practical benefit. Analysis heuristics are standard patterns of reasoning about the requirements. They usually generate questions of clarification or issues relating to completeness. Analysis heuristics can be represented and therefore systematically applied in an issue-based framework. This is illustrated by an issue-based analysis of JSD's domain modeling and functional specification heuristics. They are discussed in the context of the preliminary design of simple embedded systems.

  6. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  7. Process for computing geometric perturbations for probabilistic analysis

    DOEpatents

    Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX

    2012-04-10

    A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.

  8. A Method for Generating Reduced Order Linear Models of Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1997-01-01

    For the modeling of high speed propulsion systems, there are at least two major categories of models. One is based on computational fluid dynamics (CFD), and the other is based on design and analysis of control systems. CFD is accurate and gives a complete view of the internal flow field, but it typically has many states and runs much slower dm real-time. Models based on control design typically run near real-time but do not always capture the fundamental dynamics. To provide improved control models, methods are needed that are based on CFD techniques but yield models that are small enough for control analysis and design.

  9. Fire flame detection based on GICA and target tracking

    NASA Astrophysics Data System (ADS)

    Rong, Jianzhong; Zhou, Dechuang; Yao, Wei; Gao, Wei; Chen, Juan; Wang, Jian

    2013-04-01

    To improve the video fire detection rate, a robust fire detection algorithm based on the color, motion and pattern characteristics of fire targets was proposed, which proved a satisfactory fire detection rate for different fire scenes. In this fire detection algorithm: (a) a rule-based generic color model was developed based on analysis on a large quantity of flame pixels; (b) from the traditional GICA (Geometrical Independent Component Analysis) model, a Cumulative Geometrical Independent Component Analysis (C-GICA) model was developed for motion detection without static background and (c) a BP neural network fire recognition model based on multi-features of the fire pattern was developed. Fire detection tests on benchmark fire video clips of different scenes have shown the robustness, accuracy and fast-response of the algorithm.

  10. ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS

    PubMed Central

    MIAO, HONGYU; XIA, XIAOHUA; PERELSON, ALAN S.; WU, HULIN

    2011-01-01

    Ordinary differential equations (ODE) are a powerful tool for modeling dynamic processes with wide applications in a variety of scientific fields. Over the last 2 decades, ODEs have also emerged as a prevailing tool in various biomedical research fields, especially in infectious disease modeling. In practice, it is important and necessary to determine unknown parameters in ODE models based on experimental data. Identifiability analysis is the first step in determing unknown parameters in ODE models and such analysis techniques for nonlinear ODE models are still under development. In this article, we review identifiability analysis methodologies for nonlinear ODE models developed in the past one to two decades, including structural identifiability analysis, practical identifiability analysis and sensitivity-based identifiability analysis. Some advanced topics and ongoing research are also briefly reviewed. Finally, some examples from modeling viral dynamics of HIV, influenza and hepatitis viruses are given to illustrate how to apply these identifiability analysis methods in practice. PMID:21785515

  11. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  12. A Rational Analysis of Rule-Based Concept Learning

    ERIC Educational Resources Information Center

    Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.

    2008-01-01

    This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…

  13. Using Structural Equation Modeling To Fit Models Incorporating Principal Components.

    ERIC Educational Resources Information Center

    Dolan, Conor; Bechger, Timo; Molenaar, Peter

    1999-01-01

    Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…

  14. An analysis of the Petri net based model of the human body iron homeostasis process.

    PubMed

    Sackmann, Andrea; Formanowicz, Dorota; Formanowicz, Piotr; Koch, Ina; Blazewicz, Jacek

    2007-02-01

    In the paper a Petri net based model of the human body iron homeostasis is presented and analyzed. The body iron homeostasis is an important but not fully understood complex process. The modeling of the process presented in the paper is expressed in the language of Petri net theory. An application of this theory to the description of biological processes allows for very precise analysis of the resulting models. Here, such an analysis of the body iron homeostasis model from a mathematical point of view is given.

  15. FacetModeller: Software for manual creation, manipulation and analysis of 3D surface-based models

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter G.; Carter-McAuslan, Angela E.; Dunham, Michael W.; Jones, Drew J.; Nalepa, Mariella; Squires, Chelsea L.; Tycholiz, Cassandra J.; Vallée, Marc A.; Farquharson, Colin G.

    2018-01-01

    The creation of 3D models is commonplace in many disciplines. Models are often built from a collection of tessellated surfaces. To apply numerical methods to such models it is often necessary to generate a mesh of space-filling elements that conforms to the model surfaces. While there are meshing algorithms that can do so, they place restrictive requirements on the surface-based models that are rarely met by existing 3D model building software. Hence, we have developed a Java application named FacetModeller, designed for efficient manual creation, modification and analysis of 3D surface-based models destined for use in numerical modelling.

  16. Comparative analysis of zonal systems for macro-level crash modeling.

    PubMed

    Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen

    2017-06-01

    Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it. Based on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning. The findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  17. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  18. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    PubMed Central

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  19. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  20. Accessing and constructing driving data to develop fuel consumption forecast model

    NASA Astrophysics Data System (ADS)

    Yamashita, Rei-Jo; Yao, Hsiu-Hsen; Hung, Shih-Wei; Hackman, Acquah

    2018-02-01

    In this study, we develop a forecasting models, to estimate fuel consumption based on the driving behavior, in which vehicles and routes are known. First, the driving data are collected via telematics and OBDII. Then, the driving fuel consumption formula is used to calculate the estimate fuel consumption, and driving behavior indicators are generated for analysis. Based on statistical analysis method, the driving fuel consumption forecasting model is constructed. Some field experiment results were done in this study to generate hundreds of driving behavior indicators. Based on data mining approach, the Pearson coefficient correlation analysis is used to filter highly fuel consumption related DBIs. Only highly correlated DBI will be used in the model. These DBIs are divided into four classes: speed class, acceleration class, Left/Right/U-turn class and the other category. We then use K-means cluster analysis to group to the driver class and the route class. Finally, more than 12 aggregate models are generated by those highly correlated DBIs, using the neural network model and regression analysis. Based on Mean Absolute Percentage Error (MAPE) to evaluate from the developed AMs. The best MAPE values among these AM is below 5%.

  1. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  2. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  3. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it; Technology Department, European Organization for Nuclear Research; Girone, M., E-mail: mario.girone@cern.ch

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sourcesmore » most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.« less

  4. Conjoint analysis: using a market-based research model for healthcare decision making.

    PubMed

    Mele, Nancy L

    2008-01-01

    Conjoint analysis is a market-based research model that has been used by businesses for more than 35 years to predict consumer preferences in product design and purchasing. Researchers in medicine, healthcare economics, and health policy have discovered the value of this methodology in determining treatment preferences, resource allocation, and willingness to pay. To describe the conjoint analysis methodology and explore value-added applications in nursing research. Conjoint analysis methodology is described, using examples from the healthcare and business literature, and personal experience with the method. Nurses are called upon to increase interdisciplinary research, provide an evidence base for nursing practice, create patient-centered treatments, and revise nursing education. Other disciplines have met challenges like these using conjoint analysis and discrete choice modeling.

  5. A MULTISTAGE BIOLOGICALLY BASED MATHEMATICAL MODEL FOR MOUSE LIVER TUMORS INDUCED BY DICHLOROACETIC ACID (DCA) - EXPLORATION OF THE MODEL

    EPA Science Inventory

    A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...

  6. A brain-region-based meta-analysis method utilizing the Apriori algorithm.

    PubMed

    Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao

    2016-05-18

    Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.

  7. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors.

    PubMed

    Ge, Xiaoliang; Theuwissen, Albert J P

    2018-02-27

    This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.

  8. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors †

    PubMed Central

    Theuwissen, Albert J. P.

    2018-01-01

    This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS) image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS) technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models. PMID:29495496

  9. Modeling and Analysis of Wrinkled Membranes: An Overview

    NASA Technical Reports Server (NTRS)

    Yang, B.; Ding, H.; Lou, M.; Fang, H.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Thin-film membranes are basic elements of a variety of space inflatable/deployable structures. Wrinkling degrades the performance and reliability of these membrane structures, and hence has been a topic of continued interest. Wrinkling analysis of membranes for general geometry and arbitrary boundary conditions is quite challenging. The objective of this presentation is two-fold. Firstly, the existing models of wrinkled membranes and related numerical solution methods are reviewed. The important issues to be discussed are the capability of a membrane model to characterize taut, wrinkled and slack states of membranes in a consistent and physically reasonable manner; the ability of a wrinkling analysis method to predict the formation and growth of wrinkled regions, and to determine out-of-plane deformation and wrinkled waves; the convergence of a numerical solution method for wrinkling analysis; and the compatibility of a wrinkling analysis with general-purpose finite element codes. According to this review, several opening issues in modeling and analysis of wrinkled membranes that are to be addressed in future research are summarized, The second objective of this presentation is to discuss a newly developed membrane model of two viable parameters (2-VP model) and associated parametric finite element method (PFEM) for wrinkling analysis are introduced. The innovations and advantages of the proposed membrane model and PFEM-based wrinkling analysis are: (1) Via a unified stress-strain relation; the 2-VP model treat the taut, wrinkled, and slack states of membranes consistently; (2) The PFEM-based wrinkling analysis has guaranteed convergence; (3) The 2-VP model along with PFEM is capable of predicting membrane out-of-plane deformations; and (4) The PFEM can be integrated into any existing finite element code. Preliminary numerical examples are also included in this presentation to demonstrate the 2-VP model and PFEM-based wrinkling analysis approach.

  10. Temporal patterns of variable relationships in person-oriented research: longitudinal models of configural frequency analysis.

    PubMed

    von Eye, Alexander; Mun, Eun Young; Bogat, G Anne

    2008-03-01

    This article reviews the premises of configural frequency analysis (CFA), including methods of choosing significance tests and base models, as well as protecting alpha, and discusses why CFA is a useful approach when conducting longitudinal person-oriented research. CFA operates at the manifest variable level. Longitudinal CFA seeks to identify those temporal patterns that stand out as more frequent (CFA types) or less frequent (CFA antitypes) than expected with reference to a base model. A base model that has been used frequently in CFA applications, prediction CFA, and a new base model, auto-association CFA, are discussed for analysis of cross-classifications of longitudinal data. The former base model takes the associations among predictors and among criteria into account. The latter takes the auto-associations among repeatedly observed variables into account. Application examples of each are given using data from a longitudinal study of domestic violence. It is demonstrated that CFA results are not redundant with results from log-linear modeling or multinomial regression and that, of these approaches, CFA shows particular utility when conducting person-oriented research.

  11. Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis.

    PubMed

    Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J

    2013-01-01

    Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.

  12. Ascertaining Validity in the Abstract Realm of PMESII Simulation Models: An Analysis of the Peace Support Operations Model (PSOM)

    DTIC Science & Technology

    2009-06-01

    simulation is the campaign-level Peace Support Operations Model (PSOM). This thesis provides a quantitative analysis of PSOM. The results are based ...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . 15. NUMBER OF PAGES 159...multiple potential outcomes , further development and analysis is required before the model is used for large scale analysis . vi THIS PAGE

  13. PLACE-BASED GREEN BUILDING: INTEGRATING LOCAL ENVIRONMENTAL AND PLANNING ANALYSIS INTO GREEN BUILDING GUIDELINES

    EPA Science Inventory

    This project will develop a model for place-based green building guidelines based on an analysis of local environmental, social, and land use conditions. The ultimate goal of this project is to develop a methodology and model for placing green buildings within their local cont...

  14. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  15. Case Problems for Problem-Based Pedagogical Approaches: A Comparative Analysis

    ERIC Educational Resources Information Center

    Dabbagh, Nada; Dass, Susan

    2013-01-01

    A comparative analysis of 51 case problems used in five problem-based pedagogical models was conducted to examine whether there are differences in their characteristics and the implications of such differences on the selection and generation of ill-structured case problems. The five pedagogical models were: situated learning, goal-based scenario,…

  16. Point-based and model-based geolocation analysis of airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet

    2017-01-01

    Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.

  17. Student Background, School Climate, School Disorder, and Student Achievement: An Empirical Study of New York City's Middle Schools

    ERIC Educational Resources Information Center

    Chen, Greg; Weikart, Lynne A.

    2008-01-01

    This study develops and tests a school disorder and student achievement model based upon the school climate framework. The model was fitted to 212 New York City middle schools using the Structural Equations Modeling Analysis method. The analysis shows that the model fits the data well based upon test statistics and goodness of fit indices. The…

  18. Cost drivers and resource allocation in military health care systems.

    PubMed

    Fulton, Larry; Lasdon, Leon S; McDaniel, Reuben R

    2007-03-01

    This study illustrates the feasibility of incorporating technical efficiency considerations in the funding of military hospitals and identifies the primary drivers for hospital costs. Secondary data collected for 24 U.S.-based Army hospitals and medical centers for the years 2001 to 2003 are the basis for this analysis. Technical efficiency was measured by using data envelopment analysis; subsequently, efficiency estimates were included in logarithmic-linear cost models that specified cost as a function of volume, complexity, efficiency, time, and facility type. These logarithmic-linear models were compared against stochastic frontier analysis models. A parsimonious, three-variable, logarithmic-linear model composed of volume, complexity, and efficiency variables exhibited a strong linear relationship with observed costs (R(2) = 0.98). This model also proved reliable in forecasting (R(2) = 0.96). Based on our analysis, as much as $120 million might be reallocated to improve the United States-based Army hospital performance evaluated in this study.

  19. Impact of model-based risk analysis for liver surgery planning.

    PubMed

    Hansen, C; Zidowitz, S; Preim, B; Stavrou, G; Oldhafer, K J; Hahn, H K

    2014-05-01

    A model-based risk analysis for oncologic liver surgery was described in previous work (Preim et al. in Proceedings of international symposium on computer assisted radiology and surgery (CARS), Elsevier, Amsterdam, pp. 353–358, 2002; Hansen et al. Int I Comput Assist Radiol Surg 4(5):469–474, 2009). In this paper, we present an evaluation of this method. To prove whether and how the risk analysis facilitates the process of liver surgery planning, an explorative user study with 10 liver experts was conducted. The purpose was to compare and analyze their decision-making. The results of the study show that model-based risk analysis enhances the awareness of surgical risk in the planning stage. Participants preferred smaller resection volumes and agreed more on the safety margins’ width in case the risk analysis was available. In addition, time to complete the planning task and confidence of participants were not increased when using the risk analysis. This work shows that the applied model-based risk analysis may influence important planning decisions in liver surgery. It lays a basis for further clinical evaluations and points out important fields for future research.

  20. Accurate evaluation of sensitivity for calibration between a LiDAR and a panoramic camera used for remote sensing

    NASA Astrophysics Data System (ADS)

    García-Moreno, Angel-Iván; González-Barbosa, José-Joel; Ramírez-Pedraza, Alfonso; Hurtado-Ramos, Juan B.; Ornelas-Rodriguez, Francisco-Javier

    2016-04-01

    Computer-based reconstruction models can be used to approximate urban environments. These models are usually based on several mathematical approximations and the usage of different sensors, which implies dependency on many variables. The sensitivity analysis presented in this paper is used to weigh the relative importance of each uncertainty contributor into the calibration of a panoramic camera-LiDAR system. Both sensors are used for three-dimensional urban reconstruction. Simulated and experimental tests were conducted. For the simulated tests we analyze and compare the calibration parameters using the Monte Carlo and Latin hypercube sampling techniques. Sensitivity analysis for each variable involved into the calibration was computed by the Sobol method, which is based on the analysis of the variance breakdown, and the Fourier amplitude sensitivity test method, which is based on Fourier's analysis. Sensitivity analysis is an essential tool in simulation modeling and for performing error propagation assessments.

  1. Infiltration modeling guidelines for commercial building energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less

  2. Model Documentation of Base Case Data | Regional Energy Deployment System

    Science.gov Websites

    Model | Energy Analysis | NREL Documentation of Base Case Data Model Documentation of Base Case base case of the model. The base case was developed simply as a point of departure for other analyses Base Case derives many of its inputs from the Energy Information Administration's (EIA's) Annual Energy

  3. A Cyber-Attack Detection Model Based on Multivariate Analyses

    NASA Astrophysics Data System (ADS)

    Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  4. Stepwise Analysis of Differential Item Functioning Based on Multiple-Group Partial Credit Model.

    ERIC Educational Resources Information Center

    Muraki, Eiji

    1999-01-01

    Extended an Item Response Theory (IRT) method for detection of differential item functioning to the partial credit model and applied the method to simulated data using a stepwise procedure. Then applied the stepwise DIF analysis based on the multiple-group partial credit model to writing trend data from the National Assessment of Educational…

  5. Wind Energy Conversion System Analysis Model (WECSAM) computer program documentation

    NASA Astrophysics Data System (ADS)

    Downey, W. T.; Hendrick, P. L.

    1982-07-01

    Described is a computer-based wind energy conversion system analysis model (WECSAM) developed to predict the technical and economic performance of wind energy conversion systems (WECS). The model is written in CDC FORTRAN V. The version described accesses a data base containing wind resource data, application loads, WECS performance characteristics, utility rates, state taxes, and state subsidies for a six state region (Minnesota, Michigan, Wisconsin, Illinois, Ohio, and Indiana). The model is designed for analysis at the county level. The computer model includes a technical performance module and an economic evaluation module. The modules can be run separately or together. The model can be run for any single user-selected county within the region or looped automatically through all counties within the region. In addition, the model has a restart capability that allows the user to modify any data-base value written to a scratch file prior to the technical or economic evaluation.

  6. Integrated Formulation of Beacon-Based Exception Analysis for Multimissions

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; James, Mark; Park, Han; Zak, Mickail

    2003-01-01

    Further work on beacon-based exception analysis for multimissions (BEAM), a method of real-time, automated diagnosis of a complex electromechanical systems, has greatly expanded its capability and suitability of application. This expanded formulation, which fully integrates physical models and symbolic analysis, is described. The new formulation of BEAM expands upon previous advanced techniques for analysis of signal data, utilizing mathematical modeling of the system physics, and expert-system reasoning,

  7. Making the most of sparse clinical data by using a predictive-model-based analysis, illustrated with a stavudine pharmacokinetic study.

    PubMed

    Zhang, L; Price, R; Aweeka, F; Bellibas, S E; Sheiner, L B

    2001-02-01

    A small-scale clinical investigation was done to quantify the penetration of stavudine (D4T) into cerebrospinal fluid (CSF). A model-based analysis estimates the steady-state ratio of AUCs of CSF and plasma concentrations (R(AUC)) to be 0.270, and the mean residence time of drug in the CSF to be 7.04 h. The analysis illustrates the advantages of a causal (scientific, predictive) model-based approach to analysis over a noncausal (empirical, descriptive) approach when the data, as here, demonstrate certain problematic features commonly encountered in clinical data, namely (i) few subjects, (ii) sparse sampling, (iii) repeated measures, (iv) imbalance, and (v) individual design variation. These features generally require special attention in data analysis. The causal-model-based analysis deals with features (i) and (ii), both of which reduce efficiency, by combining data from different studies and adding subject-matter prior information. It deals with features (iii)--(v), all of which prevent 'averaging' individual data points directly, first, by adjusting in the model for interindividual data differences due to design differences, secondly, by explicitly differentiating between interpatient, interoccasion, and measurement error variation, and lastly, by defining a scientifically meaningful estimand (R(AUC)) that is independent of design.

  8. An Analysis of a Model for Developing Instructional Materials for Teaching Physical Science Concepts for Grade 8 Students in the Republic of China.

    ERIC Educational Resources Information Center

    Hsu, Shun-Yi

    An instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) was developed and applied to design an instructional module for grade 8 students in Taiwan, Republic of China. The CAG model was based on Piagetian theory and a concept model (Pella, 1975). The module developed for heat and temperature was…

  9. Web-Based Tools for Modelling and Analysis of Multivariate Data: California Ozone Pollution Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicolas

    2011-01-01

    This article presents a hands-on web-based activity motivated by the relation between human health and ozone pollution in California. This case study is based on multivariate data collected monthly at 20 locations in California between 1980 and 2006. Several strategies and tools for data interrogation and exploratory data analysis, model fitting…

  10. Developing a Learning Progression for Number Sense Based on the Rule Space Model in China

    ERIC Educational Resources Information Center

    Chen, Fu; Yan, Yue; Xin, Tao

    2017-01-01

    The current study focuses on developing the learning progression of number sense for primary school students, and it applies a cognitive diagnostic model, the rule space model, to data analysis. The rule space model analysis firstly extracted nine cognitive attributes and their hierarchy model from the analysis of previous research and the…

  11. The transcription factor p53: Not a repressor, solely an activator

    PubMed Central

    Fischer, Martin; Steiner, Lydia; Engeland, Kurt

    2014-01-01

    The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway. PMID:25486564

  12. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  13. Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain

    NASA Technical Reports Server (NTRS)

    Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem

    2016-01-01

    The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.

  14. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM)

    NASA Astrophysics Data System (ADS)

    Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi

    2018-05-01

    The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.

  15. Material model of pelvic bone based on modal analysis: a study on the composite bone.

    PubMed

    Henyš, Petr; Čapek, Lukáš

    2017-02-01

    Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.

  16. Data-Flow Based Model Analysis

    NASA Technical Reports Server (NTRS)

    Saad, Christian; Bauer, Bernhard

    2010-01-01

    The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application domain with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become an integral part of many areas in computer science. While the definition of modeling languages through the use of meta models, e.g. in Unified Modeling Language (UML), is a well-understood process, their validation and the extraction of behavioral information is still a challenge. In this paper we present a novel approach for dynamic model analysis along with several fields of application. Examining the propagation of information along the edges and nodes of the model graph allows to extend and simplify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an "abstract interpretation"-like analysis method for the modeling domain.

  17. Changing essay writing in undergraduate nursing education through action research: a Swedish example.

    PubMed

    Friberg, Febe; Lyckhage, Elisabeth Dahlborg

    2013-01-01

    This article describes the development of literature-based models for bachelor degree essays in Swedish undergraduate nursing education. Students' experiences in a course with literature-based models for bachelor degree essays are discussed. The ever-growing body of nursing research and specialized and complex health care practices make great demands on nursing education in terms of preparing students to be both skilled practitioners and users of research. Teaching to help students understand evidence-based practice is a challenge for nursing education. Action research was used to generate knowledge of and practical solutions to problems in everyday locations. Six models were developed: concept analysis, contributing to evidence-based nursing by means of quantitative research, contributing to evidence-based nursing by means of qualitative research, discourse analysis, analysis of narratives, and literature review. Action research was found to be a relevant procedure for changing ways of working with literature-based, bachelor degree essays. The models that were developed increased students' confidence in writing essays and preparedness for the nursing role.

  18. Hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties

    NASA Astrophysics Data System (ADS)

    Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan

    2017-09-01

    Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.

  19. Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients

    PubMed Central

    Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia

    2012-01-01

    Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521

  20. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  1. Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions

    NASA Technical Reports Server (NTRS)

    Moore, Gregory; Broduer, Steve (Technical Monitor)

    2001-01-01

    Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.

  2. Multi-Year Revenue and Expenditure Forecasting for Small Municipal Governments.

    DTIC Science & Technology

    1981-03-01

    Management Audit Econometric Revenue Forecast Gap and Impact Analysis Deterministic Expenditure Forecast Municipal Forecasting Municipal Budget Formlto...together with a multi-year revenue and expenditure forecasting model for the City of Monterey, California. The Monterey model includes an econometric ...65 5 D. FORECAST BASED ON THE ECONOMETRIC MODEL ------- 67 E. FORECAST BASED ON EXPERT JUDGMENT AND TREND ANALYSIS

  3. A Model for Communications Satellite System Architecture Assessment

    DTIC Science & Technology

    2011-09-01

    This is shown in Equation 4. The total system cost includes all development, acquisition, fielding, operations, maintenance and upgrades, and system...protection. A mathematical model was implemented to enable the analysis of communications satellite system architectures based on multiple system... implemented to enable the analysis of communications satellite system architectures based on multiple system attributes. Utilization of the model in

  4. Monte Carlo based statistical power analysis for mediation models: methods and software.

    PubMed

    Zhang, Zhiyong

    2014-12-01

    The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.

  5. Programs for transferring data between a relational data base and a finite element structural analysis program

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1982-01-01

    An interface system for passing data between a relational information management (RIM) data base complex and engineering analysis language (EAL), a finite element structural analysis program is documented. The interface system, implemented on a CDC Cyber computer, is composed of two FORTRAN programs called RIM2EAL and EAL2RIM. The RIM2EAL reads model definition data from RIM and creates a file of EAL commands to define the model. The EAL2RIM reads model definition and EAL generated analysis data from EAL's data library and stores these data dirctly in a RIM data base. These two interface programs and the format for the RIM data complex are described.

  6. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  7. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.

  8. Displacement-based back-analysis of the model parameters of the Nuozhadu high earth-rockfill dam.

    PubMed

    Wu, Yongkang; Yuan, Huina; Zhang, Bingyin; Zhang, Zongliang; Yu, Yuzhen

    2014-01-01

    The parameters of the constitutive model, the creep model, and the wetting model of materials of the Nuozhadu high earth-rockfill dam were back-analyzed together based on field monitoring displacement data by employing an intelligent back-analysis method. In this method, an artificial neural network is used as a substitute for time-consuming finite element analysis, and an evolutionary algorithm is applied for both network training and parameter optimization. To avoid simultaneous back-analysis of many parameters, the model parameters of the three main dam materials are decoupled and back-analyzed separately in a particular order. Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations. Good agreement between the numerical results and the monitoring data was obtained for most observation points, which implies that the back-analysis method and decoupling method are effective for solving complex problems with multiple models and parameters. The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams. With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.

  9. Heading in the right direction: thermodynamics-based network analysis and pathway engineering.

    PubMed

    Ataman, Meric; Hatzimanikatis, Vassily

    2015-12-01

    Thermodynamics-based network analysis through the introduction of thermodynamic constraints in metabolic models allows a deeper analysis of metabolism and guides pathway engineering. The number and the areas of applications of thermodynamics-based network analysis methods have been increasing in the last ten years. We review recent applications of these methods and we identify the areas that such analysis can contribute significantly, and the needs for future developments. We find that organisms with multiple compartments and extremophiles present challenges for modeling and thermodynamics-based flux analysis. The evolution of current and new methods must also address the issues of the multiple alternatives in flux directionalities and the uncertainties and partial information from analytical methods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Integrated Modeling Activities for the James Webb Space Telescope (JWST): Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.

    2004-01-01

    This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.

  11. Responder analysis without dichotomization.

    PubMed

    Zhang, Zhiwei; Chu, Jianxiong; Rahardja, Dewi; Zhang, Hui; Tang, Li

    2016-01-01

    In clinical trials, it is common practice to categorize subjects as responders and non-responders on the basis of one or more clinical measurements under pre-specified rules. Such a responder analysis is often criticized for the loss of information in dichotomizing one or more continuous or ordinal variables. It is worth noting that a responder analysis can be performed without dichotomization, because the proportion of responders for each treatment can be derived from a model for the original clinical variables (used to define a responder) and estimated by substituting maximum likelihood estimators of model parameters. This model-based approach can be considerably more efficient and more effective for dealing with missing data than the usual approach based on dichotomization. For parameter estimation, the model-based approach generally requires correct specification of the model for the original variables. However, under the sharp null hypothesis, the model-based approach remains unbiased for estimating the treatment difference even if the model is misspecified. We elaborate on these points and illustrate them with a series of simulation studies mimicking a study of Parkinson's disease, which involves longitudinal continuous data in the definition of a responder.

  12. Skeletal maturity determination from hand radiograph by model-based analysis

    NASA Astrophysics Data System (ADS)

    Vogelsang, Frank; Kohnen, Michael; Schneider, Hansgerd; Weiler, Frank; Kilbinger, Markus W.; Wein, Berthold B.; Guenther, Rolf W.

    2000-06-01

    Derived from a model based segmentation algorithm for hand radiographs proposed in our former work we now present a method to determine skeletal maturity by an automated analysis of regions of interest (ROI). These ROIs including the epiphyseal and carpal bones, which are most important for skeletal maturity determination, can be extracted out of the radiograph by knowledge based algorithms.

  13. Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.

    PubMed

    Wang, Minkun; Tsai, Tsung-Heng; Di Poto, Cristina; Ferrarini, Alessia; Yu, Guoqiang; Ressom, Habtom W

    2016-08-18

    A fundamental challenge in quantitation of biomolecules for cancer biomarker discovery is owing to the heterogeneous nature of human biospecimens. Although this issue has been a subject of discussion in cancer genomic studies, it has not yet been rigorously investigated in mass spectrometry based proteomic and metabolomic studies. Purification of mass spectometric data is highly desired prior to subsequent analysis, e.g., quantitative comparison of the abundance of biomolecules in biological samples. We investigated topic models to computationally analyze mass spectrometric data considering both integrated peak intensities and scan-level features, i.e., extracted ion chromatograms (EICs). Probabilistic generative models enable flexible representation in data structure and infer sample-specific pure resources. Scan-level modeling helps alleviate information loss during data preprocessing. We evaluated the capability of the proposed models in capturing mixture proportions of contaminants and cancer profiles on LC-MS based serum proteomic and GC-MS based tissue metabolomic datasets acquired from patients with hepatocellular carcinoma (HCC) and liver cirrhosis as well as synthetic data we generated based on the serum proteomic data. The results we obtained by analysis of the synthetic data demonstrated that both intensity-level and scan-level purification models can accurately infer the mixture proportions and the underlying true cancerous sources with small average error ratios (<7 %) between estimation and ground truth. By applying the topic model-based purification to mass spectrometric data, we found more proteins and metabolites with significant changes between HCC cases and cirrhotic controls. Candidate biomarkers selected after purification yielded biologically meaningful pathway analysis results and improved disease discrimination power in terms of the area under ROC curve compared to the results found prior to purification. We investigated topic model-based inference methods to computationally address the heterogeneity issue in samples analyzed by LC/GC-MS. We observed that incorporation of scan-level features have the potential to lead to more accurate purification results by alleviating the loss in information as a result of integrating peaks. We believe cancer biomarker discovery studies that use mass spectrometric analysis of human biospecimens can greatly benefit from topic model-based purification of the data prior to statistical and pathway analyses.

  14. Innovating Method of Existing Mechanical Product Based on TRIZ Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyou; Shi, Dongyan; Wu, Han

    Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.

  15. Some Statistics for Assessing Person-Fit Based on Continuous-Response Models

    ERIC Educational Resources Information Center

    Ferrando, Pere Joan

    2010-01-01

    This article proposes several statistics for assessing individual fit based on two unidimensional models for continuous responses: linear factor analysis and Samejima's continuous response model. Both models are approached using a common framework based on underlying response variables and are formulated at the individual level as fixed regression…

  16. Economic Modeling and Analysis of Educational Vouchers

    ERIC Educational Resources Information Center

    Epple, Dennis; Romano, Richard

    2012-01-01

    The analysis of educational vouchers has evolved from market-based analogies to models that incorporate distinctive features of the educational environment. These distinctive features include peer effects, scope for private school pricing and admissions based on student characteristics, the linkage of household residential and school choices in…

  17. Modeling spatiotemporal covariance for magnetoencephalography or electroencephalography source analysis.

    PubMed

    Plis, Sergey M; George, J S; Jun, S C; Paré-Blagoev, J; Ranken, D M; Wood, C C; Schmidt, D M

    2007-01-01

    We propose a new model to approximate spatiotemporal noise covariance for use in neural electromagnetic source analysis, which better captures temporal variability in background activity. As with other existing formalisms, our model employs a Kronecker product of matrices representing temporal and spatial covariance. In our model, spatial components are allowed to have differing temporal covariances. Variability is represented as a series of Kronecker products of spatial component covariances and corresponding temporal covariances. Unlike previous attempts to model covariance through a sum of Kronecker products, our model is designed to have a computationally manageable inverse. Despite increased descriptive power, inversion of the model is fast, making it useful in source analysis. We have explored two versions of the model. One is estimated based on the assumption that spatial components of background noise have uncorrelated time courses. Another version, which gives closer approximation, is based on the assumption that time courses are statistically independent. The accuracy of the structural approximation is compared to an existing model, based on a single Kronecker product, using both Frobenius norm of the difference between spatiotemporal sample covariance and a model, and scatter plots. Performance of ours and previous models is compared in source analysis of a large number of single dipole problems with simulated time courses and with background from authentic magnetoencephalography data.

  18. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  19. Classification and quantitation of milk powder by near-infrared spectroscopy and mutual information-based variable selection and partial least squares

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Tan, Chao; Lin, Zan; Wu, Tong

    2018-01-01

    Milk is among the most popular nutrient source worldwide, which is of great interest due to its beneficial medicinal properties. The feasibility of the classification of milk powder samples with respect to their brands and the determination of protein concentration is investigated by NIR spectroscopy along with chemometrics. Two datasets were prepared for experiment. One contains 179 samples of four brands for classification and the other contains 30 samples for quantitative analysis. Principal component analysis (PCA) was used for exploratory analysis. Based on an effective model-independent variable selection method, i.e., minimal-redundancy maximal-relevance (MRMR), only 18 variables were selected to construct a partial least-square discriminant analysis (PLS-DA) model. On the test set, the PLS-DA model based on the selected variable set was compared with the full-spectrum PLS-DA model, both of which achieved 100% accuracy. In quantitative analysis, the partial least-square regression (PLSR) model constructed by the selected subset of 260 variables outperforms significantly the full-spectrum model. It seems that the combination of NIR spectroscopy, MRMR and PLS-DA or PLSR is a powerful tool for classifying different brands of milk and determining the protein content.

  20. AHP-based spatial analysis of water quality impact assessment due to change in vehicular traffic caused by highway broadening in Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Banerjee, Polash; Ghose, Mrinal Kanti; Pradhan, Ratika

    2018-05-01

    Spatial analysis of water quality impact assessment of highway projects in mountainous areas remains largely unexplored. A methodology is presented here for Spatial Water Quality Impact Assessment (SWQIA) due to highway-broadening-induced vehicular traffic change in the East district of Sikkim. Pollution load of the highway runoff was estimated using an Average Annual Daily Traffic-Based Empirical model in combination with mass balance model to predict pollution in the rivers within the study area. Spatial interpolation and overlay analysis were used for impact mapping. Analytic Hierarchy Process-Based Water Quality Status Index was used to prepare a composite impact map. Model validation criteria, cross-validation criteria, and spatial explicit sensitivity analysis show that the SWQIA model is robust. The study shows that vehicular traffic is a significant contributor to water pollution in the study area. The model is catering specifically to impact analysis of the concerned project. It can be an aid for decision support system for the project stakeholders. The applicability of SWQIA model needs to be explored and validated in the context of a larger set of water quality parameters and project scenarios at a greater spatial scale.

  1. Product Lifecycle Management Architecture: A Model Based Systems Engineering Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noonan, Nicholas James

    2015-07-01

    This report is an analysis of the Product Lifecycle Management (PLM) program. The analysis is centered on a need statement generated by a Nuclear Weapons (NW) customer. The need statement captured in this report creates an opportunity for the PLM to provide a robust service as a solution. Lifecycles for both the NW and PLM are analyzed using Model Based System Engineering (MBSE).

  2. An NCME Instructional Module on Latent DIF Analysis Using Mixture Item Response Models

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Suh, Youngsuk; Lee, Woo-yeol

    2016-01-01

    The purpose of this ITEMS module is to provide an introduction to differential item functioning (DIF) analysis using mixture item response models. The mixture item response models for DIF analysis involve comparing item profiles across latent groups, instead of manifest groups. First, an overview of DIF analysis based on latent groups, called…

  3. A nonparametric analysis of plot basal area growth using tree based models

    Treesearch

    G. L. Gadbury; H. K. lyer; H. T. Schreuder; C. Y. Ueng

    1997-01-01

    Tree based statistical models can be used to investigate data structure and predict future observations. We used nonparametric and nonlinear models to reexamine the data sets on tree growth used by Bechtold et al. (1991) and Ruark et al. (1991). The growth data were collected by Forest Inventory and Analysis (FIA) teams from 1962 to 1972 (4th cycle) and 1972 to 1982 (...

  4. Instantiating the art of war for effects-based operations

    NASA Astrophysics Data System (ADS)

    Burns, Carla L.

    2002-07-01

    Effects-Based Operations (EBO) is a mindset, a philosophy and an approach for planning, executing and assessing military operations for the effects they produce rather than the targets or even objectives they deal with. An EBO approach strives to provide economy of force, dynamic tasking, and reduced collateral damage. The notion of EBO is not new. Military Commanders certainly have desired effects in mind when conducting military operations. However, to date EBO has been an art of war that lacks automated techniques and tools that enable effects-based analysis and assessment. Modeling and simulation is at the heart of this challenge. The Air Force Research Laboratory (AFRL) EBO Program is developing modeling techniques and corresponding tool capabilities that can be brought to bear against the challenges presented by effects-based analysis and assessment. Effects-based course-of-action development, center of gravity/target system analysis, and wargaming capabilities are being developed and integrated to help give Commanders the information decision support required to achieve desired national security objectives. This paper presents an introduction to effects-based operations, discusses the benefits of an EBO approach, and focuses on modeling and analysis for effects-based strategy development. An overview of modeling and simulation challenges for EBO is presented, setting the stage for the detailed technical papers in the subject session.

  5. Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes

    EPA Science Inventory

    This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier develo...

  6. Analysis of Sensitivity and Uncertainty in an Individual-Based Model of a Threatened Wildlife Species

    EPA Science Inventory

    We present a multi-faceted sensitivity analysis of a spatially explicit, individual-based model (IBM) (HexSim) of a threatened species, the Northern Spotted Owl (Strix occidentalis caurina) on a national forest in Washington, USA. Few sensitivity analyses have been conducted on ...

  7. The Analysis of Organizational Diagnosis on Based Six Box Model in Universities

    ERIC Educational Resources Information Center

    Hamid, Rahimi; Siadat, Sayyed Ali; Reza, Hoveida; Arash, Shahin; Ali, Nasrabadi Hasan; Azizollah, Arbabisarjou

    2011-01-01

    Purpose: The analysis of organizational diagnosis on based six box model at universities. Research method: Research method was descriptive-survey. Statistical population consisted of 1544 faculty members of universities which through random strafed sampling method 218 persons were chosen as the sample. Research Instrument were organizational…

  8. A Unified Framework for Monetary Theory and Policy Analysis.

    ERIC Educational Resources Information Center

    Lagos, Ricardo; Wright, Randall

    2005-01-01

    Search-theoretic models of monetary exchange are based on explicit descriptions of the frictions that make money essential. However, tractable versions of these models typically make strong assumptions that render them ill suited for monetary policy analysis. We propose a new framework, based on explicit micro foundations, within which macro…

  9. Likelihood-Based Random-Effect Meta-Analysis of Binary Events.

    PubMed

    Amatya, Anup; Bhaumik, Dulal K; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D

    2015-01-01

    Meta-analysis has been used extensively for evaluation of efficacy and safety of medical interventions. Its advantages and utilities are well known. However, recent studies have raised questions about the accuracy of the commonly used moment-based meta-analytic methods in general and for rare binary outcomes in particular. The issue is further complicated for studies with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alternative to moment-based methods such as inverse-variance weighted fixed- and random-effects estimators. In this article, we compare and contrast different mixed-effect modeling strategies in the context of meta-analysis. Their performance in estimation and testing of overall effect and heterogeneity are evaluated when combining results from studies with a binary outcome. Models that allow heterogeneity in both baseline rate and treatment effect across studies have low type I and type II error rates, and their estimates are the least biased among the models considered.

  10. Hybrid diagnostic system: beacon-based exception analysis for multimissions - Livingstone integration

    NASA Technical Reports Server (NTRS)

    Park, Han G.; Cannon, Howard; Bajwa, Anupa; Mackey, Ryan; James, Mark; Maul, William

    2004-01-01

    This paper describes the initial integration of a hybrid reasoning system utilizing a continuous domain feature-based detector, Beacon-based Exceptions Analysis for Multimissions (BEAM), and a discrete domain model-based reasoner, Livingstone.

  11. Improve FREQ macroscopic freeway analysis model

    DOT National Transportation Integrated Search

    2008-07-01

    The primary objectives of this project have been to provide technical assistance on district freeway analysis projects, enhance the FREQ model based on guidance and suggestions from Caltrans staff members, and offer three freeway analysis workshops f...

  12. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    NASA Astrophysics Data System (ADS)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  13. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    PubMed

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  14. On the use of three hydrological models as hypotheses to investigate the behaviour of a small Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ruiz Pérez, Guiomar; Latron, Jérôme; Llorens, Pilar; Gallart, Francesc; Francés, Félix

    2017-04-01

    Selecting an adequate hydrological model is the first step to carry out a rainfall-runoff modelling exercise. A hydrological model is a hypothesis of catchment functioning, encompassing a description of dominant hydrological processes and predicting how these processes interact to produce the catchment's response to external forcing. Current research lines emphasize the importance of multiple working hypotheses for hydrological modelling instead of only using a single model. In line with this philosophy, here different hypotheses were considered and analysed to simulate the nonlinear response of a small Mediterranean catchment and to progress in the analysis of its hydrological behaviour. In particular, three hydrological models were considered representing different potential hypotheses: two lumped models called LU3 and LU4, and one distributed model called TETIS. To determine how well each specific model performed and to assess whether a model was more adequate than another, we raised three complementary tests: one based on the analysis of residual errors series, another based on a sensitivity analysis and the last one based on using multiple evaluation criteria associated to the concept of Pareto frontier. This modelling approach, based on multiple working hypotheses, helped to improve our perceptual model of the catchment behaviour and, furthermore, could be used as a guidance to improve the performance of other environmental models.

  15. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    NASA Astrophysics Data System (ADS)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.

  16. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  17. Interactive Visualization of DGA Data Based on Multiple Views

    NASA Astrophysics Data System (ADS)

    Geng, Yujie; Lin, Ying; Ma, Yan; Guo, Zhihong; Gu, Chao; Wang, Mingtao

    2017-01-01

    The commission and operation of dissolved gas analysis (DGA) online monitoring makes up for the weakness of traditional DGA method. However, volume and high-dimensional DGA data brings a huge challenge for monitoring and analysis. In this paper, we present a novel interactive visualization model of DGA data based on multiple views. This model imitates multi-angle analysis by combining parallel coordinates, scatter plot matrix and data table. By offering brush, collaborative filter and focus + context technology, this model provides a convenient and flexible interactive way to analyze and understand the DGA data.

  18. Shape-memory-alloy-based smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study.

    PubMed

    Gautam, Arvind; Callejas, Miguel A; Acharyya, Amit; Acharyya, Swati Ghosh

    2018-05-01

    This study introduced a shape memory alloy (SMA)-based smart knee spacer for total knee arthroplasty (TKA). Subsequently, a 3D CAD model of a smart tibial component of TKA was designed in Solidworks software, and verified using a finite element analysis in ANSYS Workbench. The two major properties of the SMA (NiTi), the pseudoelasticity (PE) and shape memory effect (SME), were exploited, modelled, and analysed for a TKA application. The effectiveness of the proposed model was verified in ANSYS Workbench through the finite element analysis (FEA) of the maximum deformation and equivalent (von Mises) stress distribution. The proposed model was also compared with a polymethylmethacrylate (PMMA)-based spacer for the upper portion of the tibial component for three subjects with body mass index (BMI) of 23.88, 31.09, and 38.39. The proposed SMA -based smart knee spacer contained 96.66978% less deformation with a standard deviation of 0.01738 than that of the corresponding PMMA based counterpart for the same load and flexion angle. Based on the maximum deformation analysis, the PMMA-based spacer had 30 times more permanent deformation than that of the proposed SMA-based spacer for the same load and flexion angle. The SME property of the lower portion of the tibial component for fixation of the spacer at its position was verified by an FEA in ANSYS. Wherein, a strain life-based fatigue analysis was performed and tested for the PE and SME built spacers through the FEA. Therefore, the SMA-based smart knee spacer eliminated the drawbacks of the PMMA-based spacer, including spacer fracture, loosening, dislocation, tilting or translation, and knee subluxation. Copyright © 2018. Published by Elsevier Ltd.

  19. Graph configuration model based evaluation of the education-occupation match

    PubMed Central

    2018-01-01

    To study education—occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education. PMID:29509783

  20. Graph configuration model based evaluation of the education-occupation match.

    PubMed

    Gadar, Laszlo; Abonyi, Janos

    2018-01-01

    To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.

  1. Use of CellNetAnalyzer in biotechnology and metabolic engineering.

    PubMed

    von Kamp, Axel; Thiele, Sven; Hädicke, Oliver; Klamt, Steffen

    2017-11-10

    Mathematical models of the cellular metabolism have become an essential tool for the optimization of biotechnological processes. They help to obtain a systemic understanding of the metabolic processes in the used microorganisms and to find suitable genetic modifications maximizing the production performance. In particular, methods of stoichiometric and constraint-based modeling are frequently used in the context of metabolic and bioprocess engineering. Since metabolic networks can be complex and comprise hundreds or even thousands of metabolites and reactions, dedicated software tools are required for an efficient analysis. One such software suite is CellNetAnalyzer, a MATLAB package providing, among others, various methods for analyzing stoichiometric and constraint-based metabolic models. CellNetAnalyzer can be used via command-line based operations or via a graphical user interface with embedded network visualizations. Herein we will present key functionalities of CellNetAnalyzer for applications in biotechnology and metabolic engineering and thereby review constraint-based modeling techniques such as metabolic flux analysis, flux balance analysis, flux variability analysis, metabolic pathway analysis (elementary flux modes) and methods for computational strain design. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Taming Log Files from Game/Simulation-Based Assessments: Data Models and Data Analysis Tools. Research Report. ETS RR-16-10

    ERIC Educational Resources Information Center

    Hao, Jiangang; Smith, Lawrence; Mislevy, Robert; von Davier, Alina; Bauer, Malcolm

    2016-01-01

    Extracting information efficiently from game/simulation-based assessment (G/SBA) logs requires two things: a well-structured log file and a set of analysis methods. In this report, we propose a generic data model specified as an extensible markup language (XML) schema for the log files of G/SBAs. We also propose a set of analysis methods for…

  3. Stochastic Game Analysis and Latency Awareness for Self-Adaptation

    DTIC Science & Technology

    2014-01-01

    this paper, we introduce a formal analysis technique based on model checking of stochastic multiplayer games (SMGs) that enables us to quantify the...Additional Key Words and Phrases: Proactive adaptation, Stochastic multiplayer games , Latency 1. INTRODUCTION When planning how to adapt, self-adaptive...contribution of this paper is twofold: (1) A novel analysis technique based on model checking of stochastic multiplayer games (SMGs) that enables us to

  4. Formal Transformations from Graphically-Based Object-Oriented Representations to Theory-Based Specifications

    DTIC Science & Technology

    1996-06-01

    for Software Synthesis." KBSE 󈨡. IEEE, 1993. 51. Kang, Kyo C., et al. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Technical Report...and usefulness in domain analysis and modeling. Rumbaugh uses three distinct views to describe a domain: (1) the object model describes structural...Gibbons describe a methodology where Structured Analysis is used to build a hierarchical system structure chart. This structure chart is then translated

  5. A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents.

    PubMed

    Yu, Hongyang; Khan, Faisal; Veitch, Brian

    2017-09-01

    Safety analysis of rare events with potentially catastrophic consequences is challenged by data scarcity and uncertainty. Traditional causation-based approaches, such as fault tree and event tree (used to model rare event), suffer from a number of weaknesses. These include the static structure of the event causation, lack of event occurrence data, and need for reliable prior information. In this study, a new hierarchical Bayesian modeling based technique is proposed to overcome these drawbacks. The proposed technique can be used as a flexible technique for risk analysis of major accidents. It enables both forward and backward analysis in quantitative reasoning and the treatment of interdependence among the model parameters. Source-to-source variability in data sources is also taken into account through a robust probabilistic safety analysis. The applicability of the proposed technique has been demonstrated through a case study in marine and offshore industry. © 2017 Society for Risk Analysis.

  6. Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihisa; Tsuji, Hiroshi

    In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.

  7. Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2008-01-01

    This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.

  8. SaaS Platform for Time Series Data Handling

    NASA Astrophysics Data System (ADS)

    Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail

    2018-02-01

    The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.

  9. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  10. State space model approach for forecasting the use of electrical energy (a case study on: PT. PLN (Persero) district of Kroya)

    NASA Astrophysics Data System (ADS)

    Kurniati, Devi; Hoyyi, Abdul; Widiharih, Tatik

    2018-05-01

    Time series data is a series of data taken or measured based on observations at the same time interval. Time series data analysis is used to perform data analysis considering the effect of time. The purpose of time series analysis is to know the characteristics and patterns of a data and predict a data value in some future period based on data in the past. One of the forecasting methods used for time series data is the state space model. This study discusses the modeling and forecasting of electric energy consumption using the state space model for univariate data. The modeling stage is began with optimal Autoregressive (AR) order selection, determination of state vector through canonical correlation analysis, estimation of parameter, and forecasting. The result of this research shows that modeling of electric energy consumption using state space model of order 4 with Mean Absolute Percentage Error (MAPE) value 3.655%, so the model is very good forecasting category.

  11. The Trans-Contextual Model of Autonomous Motivation in Education: Conceptual and Empirical Issues and Meta-Analysis.

    PubMed

    Hagger, Martin S; Chatzisarantis, Nikos L D

    2016-06-01

    The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods.

  12. Weighted functional linear regression models for gene-based association analysis.

    PubMed

    Belonogova, Nadezhda M; Svishcheva, Gulnara R; Wilson, James F; Campbell, Harry; Axenovich, Tatiana I

    2018-01-01

    Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P < 0.1 in at least one analysis had lower P values with weighted models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

  13. Data-base development for water-quality modeling of the Patuxent River basin, Maryland

    USGS Publications Warehouse

    Fisher, G.T.; Summers, R.M.

    1987-01-01

    Procedures and rationale used to develop a data base and data management system for the Patuxent Watershed Nonpoint Source Water Quality Monitoring and Modeling Program of the Maryland Department of the Environment and the U.S. Geological Survey are described. A detailed data base and data management system has been developed to facilitate modeling of the watershed for water quality planning purposes; statistical analysis; plotting of meteorologic, hydrologic and water quality data; and geographic data analysis. The system is Maryland 's prototype for development of a basinwide water quality management program. A key step in the program is to build a calibrated and verified water quality model of the basin using the Hydrological Simulation Program--FORTRAN (HSPF) hydrologic model, which has been used extensively in large-scale basin modeling. The compilation of the substantial existing data base for preliminary calibration of the basin model, including meteorologic, hydrologic, and water quality data from federal and state data bases and a geographic information system containing digital land use and soils data is described. The data base development is significant in its application of an integrated, uniform approach to data base management and modeling. (Lantz-PTT)

  14. 40 CFR 93.158 - Criteria for determining conformity of general Federal actions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements: (i) Specified in paragraph (b) of this section, based on areawide air quality modeling analysis and local air quality modeling analysis; or (ii) Meet the requirements of paragraph (a)(5) of this section and, for local air quality modeling analysis, the requirement of paragraph (b) of this section; (4...

  15. 40 CFR 93.158 - Criteria for determining conformity of general Federal actions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements: (i) Specified in paragraph (b) of this section, based on areawide air quality modeling analysis and local air quality modeling analysis; or (ii) Meet the requirements of paragraph (a)(5) of this section and, for local air quality modeling analysis, the requirement of paragraph (b) of this section; (4...

  16. 40 CFR 93.158 - Criteria for determining conformity of general Federal actions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements: (i) Specified in paragraph (b) of this section, based on areawide air quality modeling analysis and local air quality modeling analysis; or (ii) Meet the requirements of paragraph (a)(5) of this section and, for local air quality modeling analysis, the requirement of paragraph (b) of this section; (4...

  17. Using argument notation to engineer biological simulations with increased confidence

    PubMed Central

    Alden, Kieran; Andrews, Paul S.; Polack, Fiona A. C.; Veiga-Fernandes, Henrique; Coles, Mark C.; Timmis, Jon

    2015-01-01

    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions. PMID:25589574

  18. Using argument notation to engineer biological simulations with increased confidence.

    PubMed

    Alden, Kieran; Andrews, Paul S; Polack, Fiona A C; Veiga-Fernandes, Henrique; Coles, Mark C; Timmis, Jon

    2015-03-06

    The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions.

  19. Tertiary structure-based analysis of microRNA–target interactions

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2013-01-01

    Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009

  20. A generalized spatiotemporal covariance model for stationary background in analysis of MEG data.

    PubMed

    Plis, S M; Schmidt, D M; Jun, S C; Ranken, D M

    2006-01-01

    Using a noise covariance model based on a single Kronecker product of spatial and temporal covariance in the spatiotemporal analysis of MEG data was demonstrated to provide improvement in the results over that of the commonly used diagonal noise covariance model. In this paper we present a model that is a generalization of all of the above models. It describes models based on a single Kronecker product of spatial and temporal covariance as well as more complicated multi-pair models together with any intermediate form expressed as a sum of Kronecker products of spatial component matrices of reduced rank and their corresponding temporal covariance matrices. The model provides a framework for controlling the tradeoff between the described complexity of the background and computational demand for the analysis using this model. Ways to estimate the value of the parameter controlling this tradeoff are also discussed.

  1. A one-model approach based on relaxed combinations of inputs for evaluating input congestion in DEA

    NASA Astrophysics Data System (ADS)

    Khodabakhshi, Mohammad

    2009-08-01

    This paper provides a one-model approach of input congestion based on input relaxation model developed in data envelopment analysis (e.g. [G.R. Jahanshahloo, M. Khodabakhshi, Suitable combination of inputs for improving outputs in DEA with determining input congestion -- Considering textile industry of China, Applied Mathematics and Computation (1) (2004) 263-273; G.R. Jahanshahloo, M. Khodabakhshi, Determining assurance interval for non-Archimedean ele improving outputs model in DEA, Applied Mathematics and Computation 151 (2) (2004) 501-506; M. Khodabakhshi, A super-efficiency model based on improved outputs in data envelopment analysis, Applied Mathematics and Computation 184 (2) (2007) 695-703; M. Khodabakhshi, M. Asgharian, An input relaxation measure of efficiency in stochastic data analysis, Applied Mathematical Modelling 33 (2009) 2010-2023]. This approach reduces solving three problems with the two-model approach introduced in the first of the above-mentioned reference to two problems which is certainly important from computational point of view. The model is applied to a set of data extracted from ISI database to estimate input congestion of 12 Canadian business schools.

  2. Sensitivity analysis of Repast computational ecology models with R/Repast.

    PubMed

    Prestes García, Antonio; Rodríguez-Patón, Alfonso

    2016-12-01

    Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems. Among the existing modeling formalisms, the individual-based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities, or populations due to individual variability. In addition, being a bottom-up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course, no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in-silico experimental setup. In this article, we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.

  3. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  4. [Simulation and data analysis of stereological modeling based on virtual slices].

    PubMed

    Wang, Hao; Shen, Hong; Bai, Xiao-yan

    2008-05-01

    To establish a computer-assisted stereological model for simulating the process of slice section and evaluate the relationship between section surface and estimated three-dimensional structure. The model was designed by mathematic method as a win32 software based on the MFC using Microsoft visual studio as IDE for simulating the infinite process of sections and analysis of the data derived from the model. The linearity of the fitting of the model was evaluated by comparison with the traditional formula. The win32 software based on this algorithm allowed random sectioning of the particles distributed randomly in an ideal virtual cube. The stereological parameters showed very high throughput (>94.5% and 92%) in homogeneity and independence tests. The data of density, shape and size of the section were tested to conform to normal distribution. The output of the model and that from the image analysis system showed statistical correlation and consistency. The algorithm we described can be used for evaluating the stereologic parameters of the structure of tissue slices.

  5. Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution

    NASA Astrophysics Data System (ADS)

    Ahmadian, A.; Ismail, F.; Salahshour, S.; Baleanu, D.; Ghaemi, F.

    2017-12-01

    The analysis of the behaviors of physical phenomena is important to discover significant features of the character and the structure of mathematical models. Frequently the unknown parameters involve in the models are assumed to be unvarying over time. In reality, some of them are uncertain and implicitly depend on several factors. In this study, to consider such uncertainty in variables of the models, they are characterized based on the fuzzy notion. We propose here a new model based on fractional calculus to deal with the Kelvin-Voigt (KV) equation and non-Newtonian fluid behavior model with fuzzy parameters. A new and accurate numerical algorithm using a spectral tau technique based on the generalized fractional Legendre polynomials (GFLPs) is developed to solve those problems under uncertainty. Numerical simulations are carried out and the analysis of the results highlights the significant features of the new technique in comparison with the previous findings. A detailed error analysis is also carried out and discussed.

  6. Development of Rock Engineering Systems-Based Models for Flyrock Risk Analysis and Prediction of Flyrock Distance in Surface Blasting

    NASA Astrophysics Data System (ADS)

    Faramarzi, Farhad; Mansouri, Hamid; Farsangi, Mohammad Ali Ebrahimi

    2014-07-01

    The environmental effects of blasting must be controlled in order to comply with regulatory limits. Because of safety concerns and risk of damage to infrastructures, equipment, and property, and also having a good fragmentation, flyrock control is crucial in blasting operations. If measures to decrease flyrock are taken, then the flyrock distance would be limited, and, in return, the risk of damage can be reduced or eliminated. This paper deals with modeling the level of risk associated with flyrock and, also, flyrock distance prediction based on the rock engineering systems (RES) methodology. In the proposed models, 13 effective parameters on flyrock due to blasting are considered as inputs, and the flyrock distance and associated level of risks as outputs. In selecting input data, the simplicity of measuring input data was taken into account as well. The data for 47 blasts, carried out at the Sungun copper mine, western Iran, were used to predict the level of risk and flyrock distance corresponding to each blast. The obtained results showed that, for the 47 blasts carried out at the Sungun copper mine, the level of estimated risks are mostly in accordance with the measured flyrock distances. Furthermore, a comparison was made between the results of the flyrock distance predictive RES-based model, the multivariate regression analysis model (MVRM), and, also, the dimensional analysis model. For the RES-based model, R 2 and root mean square error (RMSE) are equal to 0.86 and 10.01, respectively, whereas for the MVRM and dimensional analysis, R 2 and RMSE are equal to (0.84 and 12.20) and (0.76 and 13.75), respectively. These achievements confirm the better performance of the RES-based model over the other proposed models.

  7. How Much? Cost Models for Online Education.

    ERIC Educational Resources Information Center

    Lorenzo, George

    2001-01-01

    Reviews some of the research being done in the area of cost models for online education. Describes a cost analysis handbook; an activity-based costing model that was based on an economic model for traditional instruction at the Indiana University Purdue University Indianapolis; and blending other costing models. (LRW)

  8. Using SEM to Analyze Complex Survey Data: A Comparison between Design-Based Single-Level and Model-Based Multilevel Approaches

    ERIC Educational Resources Information Center

    Wu, Jiun-Yu; Kwok, Oi-man

    2012-01-01

    Both ad-hoc robust sandwich standard error estimators (design-based approach) and multilevel analysis (model-based approach) are commonly used for analyzing complex survey data with nonindependent observations. Although these 2 approaches perform equally well on analyzing complex survey data with equal between- and within-level model structures…

  9. Micro-scale blood particulate dynamics using a non-uniform rational B-spline-based isogeometric analysis.

    PubMed

    Chivukula, V; Mousel, J; Lu, J; Vigmostad, S

    2014-12-01

    The current research presents a novel method in which blood particulates - biconcave red blood cells (RBCs) and spherical cells are modeled using isogeometric analysis, specifically Non-Uniform Rational B-Splines (NURBS) in 3-D. The use of NURBS ensures that even with a coarse representation, the geometry of the blood particulates maintains an accurate description when subjected to large deformations. The fundamental advantage of this method is the coupling of the geometrical description and the stress analysis of the cell membrane into a single, unified framework. Details on the modeling approach, implementation of boundary conditions and the membrane mechanics analysis using isogeometric modeling are presented, along with validation cases for spherical and biconcave cells. Using NURBS - based isogeometric analysis, the behavior of individual cells in fluid flow is presented and analyzed in different flow regimes using as few as 176 elements for a spherical cell and 220 elements for a biconcave RBC. This work provides a framework for modeling a large number of 3-D deformable biological cells, each with its own geometric description and membrane properties. To the best knowledge of the authors, this is the first application of the NURBS - based isogeometric analysis to model and simulate blood particulates in flow in 3D. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Field Evaluation of the Pedostructure-Based Model (Kamel®)

    USDA-ARS?s Scientific Manuscript database

    This study involves a field evaluation of the pedostructure-based model Kamel and comparisons between Kamel and the Hydrus-1D model for predicting profile soil moisture. This paper also presents a sensitivity analysis of Kamel with an evaluation field site used as the base scenario. The field site u...

  11. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  12. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  13. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  14. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  15. Self-reconfigurable ship fluid-network modeling for simulation-based design

    NASA Astrophysics Data System (ADS)

    Moon, Kyungjin

    Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models representing different design configurations of the fluid system were created, and damage analyses were performed with them in order to find an optimal design configuration for system survivability. Finally, the benefits and drawbacks of the developed method were discussed based on the result of the demonstration.

  16. Parameter Uncertainty Analysis Using Monte Carlo Simulations for a Regional-Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pohlmann, K.

    2016-12-01

    Regional-scale grid-based groundwater models for flow and transport often contain multiple types of parameters that can intensify the challenge of parameter uncertainty analysis. We propose a Monte Carlo approach to systematically quantify the influence of various types of model parameters on groundwater flux and contaminant travel times. The Monte Carlo simulations were conducted based on the steady-state conversion of the original transient model, which was then combined with the PEST sensitivity analysis tool SENSAN and particle tracking software MODPATH. Results identified hydrogeologic units whose hydraulic conductivity can significantly affect groundwater flux, and thirteen out of 173 model parameters that can cause large variation in travel times for contaminant particles originating from given source zones.

  17. A Hierarchical Visualization Analysis Model of Power Big Data

    NASA Astrophysics Data System (ADS)

    Li, Yongjie; Wang, Zheng; Hao, Yang

    2018-01-01

    Based on the conception of integrating VR scene and power big data analysis, a hierarchical visualization analysis model of power big data is proposed, in which levels are designed, targeting at different abstract modules like transaction, engine, computation, control and store. The regularly departed modules of power data storing, data mining and analysis, data visualization are integrated into one platform by this model. It provides a visual analysis solution for the power big data.

  18. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    NASA Astrophysics Data System (ADS)

    Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.

    2016-12-01

    Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.

  19. Analytical transmissibility based transfer path analysis for multi-energy-domain systems using four-pole parameter theory

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Mohammad Jalali; Behdinan, Kamran

    2017-10-01

    The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.

  20. An information-based approach to change-point analysis with applications to biophysics and cell biology.

    PubMed

    Wiggins, Paul A

    2015-07-21

    This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. How Many Separable Sources? Model Selection In Independent Components Analysis

    PubMed Central

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  2. Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis

    NASA Astrophysics Data System (ADS)

    Hamim, Salah Uddin Ahmed

    Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.

  3. Reliability analysis in interdependent smart grid systems

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  4. Modeling potential Emerald Ash Borer spread through GIS/cell-based/gravity models with data bolstered by web-based inputs

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Davis Sydnor; Jonathan Bossenbroek; Mark W. Schwartz; Mark W. Schwartz

    2006-01-01

    We model the susceptibility and potential spread of the organism across the eastern United States and especially through Michigan and Ohio using Forest Inventory and Analysis (FIA) data. We are also developing a cell-based model for the potential spread of the organism. We have developed a web-based tool for public agencies and private individuals to enter the...

  5. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  6. Dependability modeling and assessment in UML-based software development.

    PubMed

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results.

  7. Dependability Modeling and Assessment in UML-Based Software Development

    PubMed Central

    Bernardi, Simona; Merseguer, José; Petriu, Dorina C.

    2012-01-01

    Assessment of software nonfunctional properties (NFP) is an important problem in software development. In the context of model-driven development, an emerging approach for the analysis of different NFPs consists of the following steps: (a) to extend the software models with annotations describing the NFP of interest; (b) to transform automatically the annotated software model to the formalism chosen for NFP analysis; (c) to analyze the formal model using existing solvers; (d) to assess the software based on the results and give feedback to designers. Such a modeling→analysis→assessment approach can be applied to any software modeling language, be it general purpose or domain specific. In this paper, we focus on UML-based development and on the dependability NFP, which encompasses reliability, availability, safety, integrity, and maintainability. The paper presents the profile used to extend UML with dependability information, the model transformation to generate a DSPN formal model, and the assessment of the system properties based on the DSPN results. PMID:22988428

  8. Modeling analysis of pulsed magnetization process of magnetic core based on inverse Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang

    2018-05-01

    The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.

  9. Comparison of an Agent-based Model of Disease Propagation with the Generalised SIR Epidemic Model

    DTIC Science & Technology

    2009-08-01

    has become a practical method for conducting Epidemiological Modelling. In the agent- based approach the whole township can be modelled as a system of...SIR system was initially developed based on a very simplified model of social interaction. For instance an assumption of uniform population mixing was...simulating the progress of a disease within a host and of transmission between hosts is based upon Transportation Analysis and Simulation System

  10. Performer-centric Interface Design.

    ERIC Educational Resources Information Center

    McGraw, Karen L.

    1995-01-01

    Describes performer-centric interface design and explains a model-based approach for conducting performer-centric analysis and design. Highlights include design methodology, including cognitive task analysis; creating task scenarios; creating the presentation model; creating storyboards; proof of concept screens; object models and icons;…

  11. Graph-based analysis of connectivity in spatially-explicit population models: HexSim and the Connectivity Analysis Toolkit

    EPA Science Inventory

    Background / Question / Methods Planning for the recovery of threatened species is increasingly informed by spatially-explicit population models. However, using simulation model results to guide land management decisions can be difficult due to the volume and complexity of model...

  12. PDF-based heterogeneous multiscale filtration model.

    PubMed

    Gong, Jian; Rutland, Christopher J

    2015-04-21

    Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.

  13. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  14. Funding Ohio Community Colleges: An Analysis of the Performance Funding Model

    ERIC Educational Resources Information Center

    Krueger, Cynthia A.

    2013-01-01

    This study examined Ohio's community college performance funding model that is based on seven student success metrics. A percentage of the regular state subsidy is withheld from institutions; funding is earned back based on the three-year average of success points achieved in comparison to other community colleges in the state. Analysis of…

  15. USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY

    EPA Science Inventory

    USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY.
    CR Eklund, MV Evans, and JE Simmons. US EPA, ORD, NHEERL, ETD,PKB, Research Triangle Park, NC.

    Chloroform (CHCl3) is a disinfec...

  16. Challenges in Mentoring Software Development Projects in the High School: Analysis According to Shulman's Teacher Knowledge Base Model

    ERIC Educational Resources Information Center

    Meerbaum-Salant, Orni; Hazzan, Orit

    2009-01-01

    This paper focuses on challenges in mentoring software development projects in the high school and analyzes difficulties encountered by Computer Science teachers in the mentoring process according to Shulman's Teacher Knowledge Base Model. The main difficulties that emerged from the data analysis belong to the following knowledge sources of…

  17. Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Yucheng; Oikonomou, Anastasia; Wong, Alexander; Haider, Masoom A.; Khalvati, Farzad

    2017-04-01

    Radiomics characterizes tumor phenotypes by extracting large numbers of quantitative features from radiological images. Radiomic features have been shown to provide prognostic value in predicting clinical outcomes in several studies. However, several challenges including feature redundancy, unbalanced data, and small sample sizes have led to relatively low predictive accuracy. In this study, we explore different strategies for overcoming these challenges and improving predictive performance of radiomics-based prognosis for non-small cell lung cancer (NSCLC). CT images of 112 patients (mean age 75 years) with NSCLC who underwent stereotactic body radiotherapy were used to predict recurrence, death, and recurrence-free survival using a comprehensive radiomics analysis. Different feature selection and predictive modeling techniques were used to determine the optimal configuration of prognosis analysis. To address feature redundancy, comprehensive analysis indicated that Random Forest models and Principal Component Analysis were optimum predictive modeling and feature selection methods, respectively, for achieving high prognosis performance. To address unbalanced data, Synthetic Minority Over-sampling technique was found to significantly increase predictive accuracy. A full analysis of variance showed that data endpoints, feature selection techniques, and classifiers were significant factors in affecting predictive accuracy, suggesting that these factors must be investigated when building radiomics-based predictive models for cancer prognosis.

  18. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  19. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  20. Mathematical Analysis for Non-reciprocal-interaction-based Model of Collective Behavior

    NASA Astrophysics Data System (ADS)

    Kano, Takeshi; Osuka, Koichi; Kawakatsu, Toshihiro; Ishiguro, Akio

    2017-12-01

    In many natural and social systems, collective behaviors emerge as a consequence of non-reciprocal interaction between their constituents. As a first step towards understanding the core principle that underlies these phenomena, we previously proposed a minimal model of collective behavior based on non-reciprocal interactions by drawing inspiration from friendship formation in human society, and demonstrated via simulations that various non-trivial patterns emerge by changing parameters. In this study, a mathematical analysis of the proposed model wherein the system size is small is performed. Through the analysis, the mechanism of the transition between several patterns is elucidated.

  1. A Method for Cognitive Task Analysis

    DTIC Science & Technology

    1992-07-01

    A method for cognitive task analysis is described based on the notion of ’generic tasks’. The method distinguishes three layers of analysis. At the...model for applied areas such as the development of knowledge-based systems and training, are discussed. Problem solving, Cognitive Task Analysis , Knowledge, Strategies.

  2. No control genes required: Bayesian analysis of qRT-PCR data.

    PubMed

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  3. A reduced-order adaptive neuro-fuzzy inference system model as a software sensor for rapid estimation of five-day biochemical oxygen demand

    NASA Astrophysics Data System (ADS)

    Noori, Roohollah; Safavi, Salman; Nateghi Shahrokni, Seyyed Afshin

    2013-07-01

    The five-day biochemical oxygen demand (BOD5) is one of the key parameters in water quality management. In this study, a novel approach, i.e., reduced-order adaptive neuro-fuzzy inference system (ROANFIS) model was developed for rapid estimation of BOD5. In addition, an uncertainty analysis of adaptive neuro-fuzzy inference system (ANFIS) and ROANFIS models was carried out based on Monte-Carlo simulation. Accuracy analysis of ANFIS and ROANFIS models based on both developed discrepancy ratio and threshold statistics revealed that the selected ROANFIS model was superior. Pearson correlation coefficient (R) and root mean square error for the best fitted ROANFIS model were 0.96 and 7.12, respectively. Furthermore, uncertainty analysis of the developed models indicated that the selected ROANFIS had less uncertainty than the ANFIS model and accurately forecasted BOD5 in the Sefidrood River Basin. Besides, the uncertainty analysis also showed that bracketed predictions by 95% confidence bound and d-factor in the testing steps for the selected ROANFIS model were 94% and 0.83, respectively.

  4. A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network.

    PubMed

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.

  5. A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network

    PubMed Central

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J.

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483

  6. Numerical modeling and performance analysis of zinc oxide (ZnO) thin-film based gas sensor

    NASA Astrophysics Data System (ADS)

    Punetha, Deepak; Ranjan, Rashmi; Pandey, Saurabh Kumar

    2018-05-01

    This manuscript describes the modeling and analysis of Zinc Oxide thin film based gas sensor. The conductance and sensitivity of the sensing layer has been described by change in temperature as well as change in gas concentration. The analysis has been done for reducing and oxidizing agents. Simulation results revealed the change in resistance and sensitivity of the sensor with respect to temperature and different gas concentration. To check the feasibility of the model, all the simulated results have been analyze by different experimental reported work. Wolkenstein theory has been used to model the proposed sensor and the simulation results have been shown by using device simulation software.

  7. Model authoring system for fail safe analysis

    NASA Technical Reports Server (NTRS)

    Sikora, Scott E.

    1990-01-01

    The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.

  8. Modeling and Analysis of Geoelectric Fields: Extended Solar Shield

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.

    2016-12-01

    In the NASA Applied Sciences Program Solar Shield project, an unprecedented first-principles-based system to forecast geomagnetically induced current (GIC) in high-voltage power transmission systems was developed. Rapid progress in the field of numerical physics-based space environment modeling has led to major developments over the past few years. In this study modeling and analysis of induced geoelectric fields is discussed. Specifically, we focus on the successful incorporation of 3-D EM transfer functions in the modeling of E-fields, and on the analysis of near real-time simulation outputs used in the Solar Shield forecast system. The extended Solar Shield is a collaborative project between DHS, NASA, NOAA, CUA and EPRI.

  9. Simulation-based sensitivity analysis for non-ignorably missing data.

    PubMed

    Yin, Peng; Shi, Jian Q

    2017-01-01

    Sensitivity analysis is popular in dealing with missing data problems particularly for non-ignorable missingness, where full-likelihood method cannot be adopted. It analyses how sensitively the conclusions (output) may depend on assumptions or parameters (input) about missing data, i.e. missing data mechanism. We call models with the problem of uncertainty sensitivity models. To make conventional sensitivity analysis more useful in practice we need to define some simple and interpretable statistical quantities to assess the sensitivity models and make evidence based analysis. We propose a novel approach in this paper on attempting to investigate the possibility of each missing data mechanism model assumption, by comparing the simulated datasets from various MNAR models with the observed data non-parametrically, using the K-nearest-neighbour distances. Some asymptotic theory has also been provided. A key step of this method is to plug in a plausibility evaluation system towards each sensitivity parameter, to select plausible values and reject unlikely values, instead of considering all proposed values of sensitivity parameters as in the conventional sensitivity analysis method. The method is generic and has been applied successfully to several specific models in this paper including meta-analysis model with publication bias, analysis of incomplete longitudinal data and mean estimation with non-ignorable missing data.

  10. The Influence of Study-Level Inference Models and Study Set Size on Coordinate-Based fMRI Meta-Analyses

    PubMed Central

    Bossier, Han; Seurinck, Ruth; Kühn, Simone; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L. W.; Martinot, Jean-Luc; Lemaitre, Herve; Paus, Tomáš; Millenet, Sabina; Moerkerke, Beatrijs

    2018-01-01

    Given the increasing amount of neuroimaging studies, there is a growing need to summarize published results. Coordinate-based meta-analyses use the locations of statistically significant local maxima with possibly the associated effect sizes to aggregate studies. In this paper, we investigate the influence of key characteristics of a coordinate-based meta-analysis on (1) the balance between false and true positives and (2) the activation reliability of the outcome from a coordinate-based meta-analysis. More particularly, we consider the influence of the chosen group level model at the study level [fixed effects, ordinary least squares (OLS), or mixed effects models], the type of coordinate-based meta-analysis [Activation Likelihood Estimation (ALE) that only uses peak locations, fixed effects, and random effects meta-analysis that take into account both peak location and height] and the amount of studies included in the analysis (from 10 to 35). To do this, we apply a resampling scheme on a large dataset (N = 1,400) to create a test condition and compare this with an independent evaluation condition. The test condition corresponds to subsampling participants into studies and combine these using meta-analyses. The evaluation condition corresponds to a high-powered group analysis. We observe the best performance when using mixed effects models in individual studies combined with a random effects meta-analysis. Moreover the performance increases with the number of studies included in the meta-analysis. When peak height is not taken into consideration, we show that the popular ALE procedure is a good alternative in terms of the balance between type I and II errors. However, it requires more studies compared to other procedures in terms of activation reliability. Finally, we discuss the differences, interpretations, and limitations of our results. PMID:29403344

  11. Sobol‧ sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates

    NASA Astrophysics Data System (ADS)

    Luo, Jiannan; Lu, Wenxi

    2014-06-01

    Sobol‧ sensitivity analyses based on different surrogates were performed on a trichloroethylene (TCE)-contaminated aquifer to assess the sensitivity of the design variables of remediation duration, surfactant concentration and injection rates at four wells to remediation efficiency First, the surrogate models of a multi-phase flow simulation model were constructed by applying radial basis function artificial neural network (RBFANN) and Kriging methods, and the two models were then compared. Based on the developed surrogate models, the Sobol‧ method was used to calculate the sensitivity indices of the design variables which affect the remediation efficiency. The coefficient of determination (R2) and the mean square error (MSE) of these two surrogate models demonstrated that both models had acceptable approximation accuracy, furthermore, the approximation accuracy of the Kriging model was slightly better than that of the RBFANN model. Sobol‧ sensitivity analysis results demonstrated that the remediation duration was the most important variable influencing remediation efficiency, followed by rates of injection at wells 1 and 3, while rates of injection at wells 2 and 4 and the surfactant concentration had negligible influence on remediation efficiency. In addition, high-order sensitivity indices were all smaller than 0.01, which indicates that interaction effects of these six factors were practically insignificant. The proposed Sobol‧ sensitivity analysis based on surrogate is an effective tool for calculating sensitivity indices, because it shows the relative contribution of the design variables (individuals and interactions) to the output performance variability with a limited number of runs of a computationally expensive simulation model. The sensitivity analysis results lay a foundation for the optimal groundwater remediation process optimization.

  12. POD Analysis of Jet-Plume/Afterbody-Wake Interaction

    NASA Astrophysics Data System (ADS)

    Murray, Nathan E.; Seiner, John M.; Jansen, Bernard J.; Gui, Lichuan; Sockwell, Shuan; Joachim, Matthew

    2009-11-01

    The understanding of the flow physics in the base region of a powered rocket is one of the keys to designing the next generation of reusable launchers. The base flow features affect the aerodynamics and the heat loading at the base of the vehicle. Recent efforts at the National Center for Physical Acoustics at the University of Mississippi have refurbished two models for studying jet-plume/afterbody-wake interactions in the NCPA's 1-foot Tri-Sonic Wind Tunnel Facility. Both models have a 2.5 inch outer diameter with a nominally 0.5 inch diameter centered exhaust nozzle. One of the models is capable of being powered with gaseous H2 and O2 to study the base flow in a fully combusting senario. The second model uses hi-pressure air to drive the exhaust providing an unheated representative flow field. This unheated model was used to acquire PIV data of the base flow. Subsequently, a POD analysis was performed to provide a first look at the large-scale structures present for the interaction between an axisymmetric jet and an axisymmetric afterbody wake. PIV and Schlieren data are presented for a single jet-exhaust to free-stream flow velocity along with the POD analysis of the base flow field.

  13. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  14. An Integrated Analysis of the Physiological Effects of Space Flight: Executive Summary

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    A large array of models were applied in a unified manner to solve problems in space flight physiology. Mathematical simulation was used as an alternative way of looking at physiological systems and maximizing the yield from previous space flight experiments. A medical data analysis system was created which consist of an automated data base, a computerized biostatistical and data analysis system, and a set of simulation models of physiological systems. Five basic models were employed: (1) a pulsatile cardiovascular model; (2) a respiratory model; (3) a thermoregulatory model; (4) a circulatory, fluid, and electrolyte balance model; and (5) an erythropoiesis regulatory model. Algorithms were provided to perform routine statistical tests, multivariate analysis, nonlinear regression analysis, and autocorrelation analysis. Special purpose programs were prepared for rank correlation, factor analysis, and the integration of the metabolic balance data.

  15. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    NASA Astrophysics Data System (ADS)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  16. Measuring Model-Based High School Science Instruction: Development and Application of a Student Survey

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.; Liang, Ling L.

    2013-01-01

    This study tested a student survey to detect differences in instruction between teachers in a modeling-based science program and comparison group teachers. The Instructional Activities Survey measured teachers' frequency of modeling, inquiry, and lecture instruction. Factor analysis and Rasch modeling identified three subscales, Modeling and…

  17. Examination of Modeling Languages to Allow Quantitative Analysis for Model-Based Systems Engineering

    DTIC Science & Technology

    2014-06-01

    x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF ACRONYMS AND ABBREVIATIONS BOM Base Object Model BPMN Business Process Model & Notation DOD...SysML. There are many variants such as the Unified Profile for DODAF/MODAF (UPDM) and Business Process Model & Notation ( BPMN ) that have origins in

  18. Method of Testing and Predicting Failures of Electronic Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, Frances A.

    1996-01-01

    A method employing a knowledge base of human expertise comprising a reliability model analysis implemented for diagnostic routines is disclosed. The reliability analysis comprises digraph models that determine target events created by hardware failures human actions, and other factors affecting the system operation. The reliability analysis contains a wealth of human expertise information that is used to build automatic diagnostic routines and which provides a knowledge base that can be used to solve other artificial intelligence problems.

  19. Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis

    NASA Astrophysics Data System (ADS)

    Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya

    2018-03-01

    In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.

  20. Brief Lags in Interrupted Sequential Performance: Evaluating a Model and Model Evaluation Method

    DTIC Science & Technology

    2015-01-05

    rehearsal mechanism in the model. To evaluate the model we developed a simple new goodness-of-fit test based on analysis of variance that offers an...repeated step). Sequen- tial constraints are common in medicine, equipment maintenance, computer programming and technical support, data analysis ...legal analysis , accounting, and many other home and workplace environ- ments. Sequential constraints also play a role in such basic cognitive processes

  1. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  2. Injury risk functions based on population-based finite element model responses: Application to femurs under dynamic three-point bending.

    PubMed

    Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R

    2018-02-28

    The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.

  3. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  4. A Multidimensional Analysis of the Joint Strike Fighter (JSF) Acquisition Program from the Perspective of Turkey

    DTIC Science & Technology

    2016-12-01

    Conceptual Models,” includes a thorough analysis of Turkey’s involvement in the F-35 program, based on Allison’s Rational Actor and Organizational ...TuAF, but also suggested an organizational structure similar to the U.S. DOD. In May 1949, the Turkish Parliament passed a law to reform the Turkish... organizational behavior model and a governmental politics model provide a base for improved explanations and predictions. (Allison & Zelikow, 1999) 40

  5. A Model-Based Systems Engineering Methodology for Employing Architecture In System Analysis: Developing Simulation Models Using Systems Modeling Language Products to Link Architecture and Analysis

    DTIC Science & Technology

    2016-06-01

    characteristics, experimental design techniques, and analysis methodologies that distinguish each phase of the MBSE MEASA. To ensure consistency... methodology . Experimental design selection, simulation analysis, and trade space analysis support the final two stages. Figure 27 segments the MBSE MEASA...rounding has the potential to increase the correlation between columns of the experimental design matrix. The design methodology presented in Vieira

  6. A New Search Paradigm for Correlated Neutrino Emission from Discrete GRBs using Antarctic Cherenkov Telescopes in the Swift Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamatikos, Michael; Band, David L.; JCA/UMBC, Baltimore, MD 21250

    2006-05-19

    We describe the theoretical modeling and analysis techniques associated with a preliminary search for correlated neutrino emission from GRB980703a, which triggered the Burst and Transient Source Experiment (BATSE GRB trigger 6891), using archived data from the Antarctic Muon and Neutrino Detector Array (AMANDA-B10). Under the assumption of associated hadronic acceleration, the expected observed neutrino energy flux is directly derived, based upon confronting the fireball phenomenology with the discrete set of observed electromagnetic parameters of GRB980703a, gleaned from ground-based and satellite observations, for four models, corrected for oscillations. Models 1 and 2, based upon spectral analysis featuring a prompt photon energymore » fit to the Band function, utilize an observed spectroscopic redshift, for isotropic and anisotropic emission geometry, respectively. Model 3 is based upon averaged burst parameters, assuming isotropic emission. Model 4 based upon a Band fit, features an estimated redshift from the lag-luminosity relation, with isotropic emission. Consistent with our AMANDA-II analysis of GRB030329, which resulted in a flux upper limit of {approx} 0.150GeV /cm2/s for model 1, we find differences in excess of an order of magnitude in the response of AMANDA-B10, among the various models for GRB980703a. Implications for future searches in the era of Swift and IceCube are discussed.« less

  7. Modal analysis of graphene-based structures for large deformations, contact and material nonlinearities

    NASA Astrophysics Data System (ADS)

    Ghaffari, Reza; Sauer, Roger A.

    2018-06-01

    The nonlinear frequencies of pre-stressed graphene-based structures, such as flat graphene sheets and carbon nanotubes, are calculated. These structures are modeled with a nonlinear hyperelastic shell model. The model is calibrated with quantum mechanics data and is valid for high strains. Analytical solutions of the natural frequencies of various plates are obtained for the Canham bending model by assuming infinitesimal strains. These solutions are used for the verification of the numerical results. The performance of the model is illustrated by means of several examples. Modal analysis is performed for square plates under pure dilatation or uniaxial stretch, circular plates under pure dilatation or under the effects of an adhesive substrate, and carbon nanotubes under uniaxial compression or stretch. The adhesive substrate is modeled with van der Waals interaction (based on the Lennard-Jones potential) and a coarse grained contact model. It is shown that the analytical natural frequencies underestimate the real ones, and this should be considered in the design of devices based on graphene structures.

  8. Modeling and performance analysis of QoS data

    NASA Astrophysics Data System (ADS)

    Strzeciwilk, Dariusz; Zuberek, Włodzimierz M.

    2016-09-01

    The article presents the results of modeling and analysis of data transmission performance on systems that support quality of service. Models are designed and tested, taking into account multiservice network architecture, i.e. supporting the transmission of data related to different classes of traffic. Studied were mechanisms of traffic shaping systems, which are based on the Priority Queuing with an integrated source of data and the various sources of data that is generated. Discussed were the basic problems of the architecture supporting QoS and queuing systems. Designed and built were models based on Petri nets, supported by temporal logics. The use of simulation tools was to verify the mechanisms of shaping traffic with the applied queuing algorithms. It is shown that temporal models of Petri nets can be effectively used in the modeling and analysis of the performance of computer networks.

  9. Direct coal liquefaction baseline design and system analysis. Quarterly report, January--March 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlyingmore » assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.« less

  10. Direct coal liquefaction baseline design and system analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlyingmore » assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.« less

  11. In defence of model-based inference in phylogeography

    PubMed Central

    Beaumont, Mark A.; Nielsen, Rasmus; Robert, Christian; Hey, Jody; Gaggiotti, Oscar; Knowles, Lacey; Estoup, Arnaud; Panchal, Mahesh; Corander, Jukka; Hickerson, Mike; Sisson, Scott A.; Fagundes, Nelson; Chikhi, Lounès; Beerli, Peter; Vitalis, Renaud; Cornuet, Jean-Marie; Huelsenbeck, John; Foll, Matthieu; Yang, Ziheng; Rousset, Francois; Balding, David; Excoffier, Laurent

    2017-01-01

    Recent papers have promoted the view that model-based methods in general, and those based on Approximate Bayesian Computation (ABC) in particular, are flawed in a number of ways, and are therefore inappropriate for the analysis of phylogeographic data. These papers further argue that Nested Clade Phylogeographic Analysis (NCPA) offers the best approach in statistical phylogeography. In order to remove the confusion and misconceptions introduced by these papers, we justify and explain the reasoning behind model-based inference. We argue that ABC is a statistically valid approach, alongside other computational statistical techniques that have been successfully used to infer parameters and compare models in population genetics. We also examine the NCPA method and highlight numerous deficiencies, either when used with single or multiple loci. We further show that the ages of clades are carelessly used to infer ages of demographic events, that these ages are estimated under a simple model of panmixia and population stationarity but are then used under different and unspecified models to test hypotheses, a usage the invalidates these testing procedures. We conclude by encouraging researchers to study and use model-based inference in population genetics. PMID:29284924

  12. Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine

    NASA Astrophysics Data System (ADS)

    Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren

    2018-07-01

    The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.

  13. A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis.

    PubMed

    Tervonen, Tommi; van Valkenhoef, Gert; Buskens, Erik; Hillege, Hans L; Postmus, Douwe

    2011-05-30

    Drug benefit-risk (BR) analysis is based on firm clinical evidence regarding various safety and efficacy outcomes. In this paper, we propose a new and more formal approach for constructing a supporting multi-criteria model that fully takes into account the evidence on efficacy and adverse drug reactions. Our approach is based on the stochastic multi-criteria acceptability analysis methodology, which allows us to compute the typical value judgments that support a decision, to quantify decision uncertainty, and to compute a comprehensive BR profile. We construct a multi-criteria model for the therapeutic group of second-generation antidepressants. We assess fluoxetine and venlafaxine together with placebo according to incidence of treatment response and three common adverse drug reactions by using data from a published study. Our model shows that there are clear trade-offs among the treatment alternatives. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  15. Automatic pole-like object modeling via 3D part-based analysis of point cloud

    NASA Astrophysics Data System (ADS)

    He, Liu; Yang, Haoxiang; Huang, Yuchun

    2016-10-01

    Pole-like objects, including trees, lampposts and traffic signs, are indispensable part of urban infrastructure. With the advance of vehicle-based laser scanning (VLS), massive point cloud of roadside urban areas becomes applied in 3D digital city modeling. Based on the property that different pole-like objects have various canopy parts and similar trunk parts, this paper proposed the 3D part-based shape analysis to robustly extract, identify and model the pole-like objects. The proposed method includes: 3D clustering and recognition of trunks, voxel growing and part-based 3D modeling. After preprocessing, the trunk center is identified as the point that has local density peak and the largest minimum inter-cluster distance. Starting from the trunk centers, the remaining points are iteratively clustered to the same centers of their nearest point with higher density. To eliminate the noisy points, cluster border is refined by trimming boundary outliers. Then, candidate trunks are extracted based on the clustering results in three orthogonal planes by shape analysis. Voxel growing obtains the completed pole-like objects regardless of overlaying. Finally, entire trunk, branch and crown part are analyzed to obtain seven feature parameters. These parameters are utilized to model three parts respectively and get signal part-assembled 3D model. The proposed method is tested using the VLS-based point cloud of Wuhan University, China. The point cloud includes many kinds of trees, lampposts and other pole-like posters under different occlusions and overlaying. Experimental results show that the proposed method can extract the exact attributes and model the roadside pole-like objects efficiently.

  16. Alternative model for administration and analysis of research-based assessments

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Zwickl, Benjamin M.; Hobbs, Robert D.; Aiken, John M.; Welch, Nathan M.; Lewandowski, H. J.

    2016-06-01

    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption of these assessments within the broader community of physics instructors. Within this historical model, assessment developers create high quality, validated assessments, make them available for a wide range of instructors to use, and provide minimal (if any) support to assist with administration or analysis of the results. Here, we present and discuss an alternative model for assessment dissemination, which is characterized by centralized data collection and analysis. This model provides a greater degree of support for both researchers and instructors in order to more explicitly support adoption of research-based assessments. Specifically, we describe our experiences developing a centralized, automated system for an attitudinal assessment we previously created to examine students' epistemologies and expectations about experimental physics. This system provides a proof of concept that we use to discuss the advantages associated with centralized administration and data collection for research-based assessments in PER. We also discuss the challenges that we encountered while developing, maintaining, and automating this system. Ultimately, we argue that centralized administration and data collection for standardized assessments is a viable and potentially advantageous alternative to the default model characterized by decentralized administration and analysis. Moreover, with the help of online administration and automation, this model can support the long-term sustainability of centralized assessment systems.

  17. What Constitutes a "Good" Sensitivity Analysis? Elements and Tools for a Robust Sensitivity Analysis with Reduced Computational Cost

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin; Haghnegahdar, Amin

    2016-04-01

    Global sensitivity analysis (GSA) is a systems theoretic approach to characterizing the overall (average) sensitivity of one or more model responses across the factor space, by attributing the variability of those responses to different controlling (but uncertain) factors (e.g., model parameters, forcings, and boundary and initial conditions). GSA can be very helpful to improve the credibility and utility of Earth and Environmental System Models (EESMs), as these models are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. However, conventional approaches to GSA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we identify several important sensitivity-related characteristics of response surfaces that must be considered when investigating and interpreting the ''global sensitivity'' of a model response (e.g., a metric of model performance) to its parameters/factors. Accordingly, we present a new and general sensitivity and uncertainty analysis framework, Variogram Analysis of Response Surfaces (VARS), based on an analogy to 'variogram analysis', that characterizes a comprehensive spectrum of information on sensitivity. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices are contained within the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.

  18. Building confidence and credibility amid growing model and computing complexity

    NASA Astrophysics Data System (ADS)

    Evans, K. J.; Mahajan, S.; Veneziani, C.; Kennedy, J. H.

    2017-12-01

    As global Earth system models are developed to answer an ever-wider range of science questions, software products that provide robust verification, validation, and evaluation must evolve in tandem. Measuring the degree to which these new models capture past behavior, predict the future, and provide the certainty of predictions is becoming ever more challenging for reasons that are generally well known, yet are still challenging to address. Two specific and divergent needs for analysis of the Accelerated Climate Model for Energy (ACME) model - but with a similar software philosophy - are presented to show how a model developer-based focus can address analysis needs during expansive model changes to provide greater fidelity and execute on multi-petascale computing facilities. A-PRIME is a python script-based quick-look overview of a fully-coupled global model configuration to determine quickly if it captures specific behavior before significant computer time and expense is invested. EVE is an ensemble-based software framework that focuses on verification of performance-based ACME model development, such as compiler or machine settings, to determine the equivalence of relevant climate statistics. The challenges and solutions for analysis of multi-petabyte output data are highlighted from the aspect of the scientist using the software, with the aim of fostering discussion and further input from the community about improving developer confidence and community credibility.

  19. MDR-TB patients in KwaZulu-Natal, South Africa: Cost-effectiveness of 5 models of care

    PubMed Central

    Wallengren, Kristina; Reddy, Tarylee; Besada, Donela; Brust, James C. M.; Voce, Anna; Desai, Harsha; Ngozo, Jacqueline; Radebe, Zanele; Master, Iqbal; Padayatchi, Nesri; Daviaud, Emmanuelle

    2018-01-01

    Background South Africa has a high burden of MDR-TB, and to provide accessible treatment the government has introduced different models of care. We report the most cost-effective model after comparing cost per patient successfully treated across 5 models of care: centralized hospital, district hospitals (2), and community-based care through clinics or mobile injection teams. Methods In an observational study five cohorts were followed prospectively. The cost analysis adopted a provider perspective and economic cost per patient successfully treated was calculated based on country protocols and length of treatment per patient per model of care. Logistic regression was used to calculate propensity score weights, to compare pairs of treatment groups, whilst adjusting for baseline imbalances between groups. Propensity score weighted costs and treatment success rates were used in the ICER analysis. Sensitivity analysis focused on varying treatment success and length of hospitalization within each model. Results In 1,038 MDR-TB patients 75% were HIV-infected and 56% were successfully treated. The cost per successfully treated patient was 3 to 4.5 times lower in the community-based models with no hospitalization. Overall, the Mobile model was the most cost-effective. Conclusion Reducing the length of hospitalization and following community-based models of care improves the affordability of MDR-TB treatment without compromising its effectiveness. PMID:29668748

  20. Polynomial Conjoint Analysis of Similarities: A Model for Constructing Polynomial Conjoint Measurement Algorithms.

    ERIC Educational Resources Information Center

    Young, Forrest W.

    A model permitting construction of algorithms for the polynomial conjoint analysis of similarities is presented. This model, which is based on concepts used in nonmetric scaling, permits one to obtain the best approximate solution. The concepts used to construct nonmetric scaling algorithms are reviewed. Finally, examples of algorithmic models for…

  1. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    ERIC Educational Resources Information Center

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  2. Behavior Analysis in Distance Education: A Systems Approach.

    ERIC Educational Resources Information Center

    Coldeway, Dan O.

    1987-01-01

    Describes a model of instructional theory relevant to individualized distance education that is based on Keller's Personalized System of Instruction (PSI), behavior analysis, and the instructional systems development model (ISD). Systems theory is emphasized, and ISD and behavior analysis are discussed as cybernetic processes. (LRW)

  3. Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection

    PubMed Central

    Jones, Douglas E.; Dorman, Karin S.

    2009-01-01

    Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen’s ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell. PMID:19837088

  4. Mathematical modeling in realistic mathematics education

    NASA Astrophysics Data System (ADS)

    Riyanto, B.; Zulkardi; Putri, R. I. I.; Darmawijoyo

    2017-12-01

    The purpose of this paper is to produce Mathematical modelling in Realistics Mathematics Education of Junior High School. This study used development research consisting of 3 stages, namely analysis, design and evaluation. The success criteria of this study were obtained in the form of local instruction theory for school mathematical modelling learning which was valid and practical for students. The data were analyzed using descriptive analysis method as follows: (1) walk through, analysis based on the expert comments in the expert review to get Hypothetical Learning Trajectory for valid mathematical modelling learning; (2) analyzing the results of the review in one to one and small group to gain practicality. Based on the expert validation and students’ opinion and answers, the obtained mathematical modeling problem in Realistics Mathematics Education was valid and practical.

  5. Functional Behavioral Assessment: A School Based Model.

    ERIC Educational Resources Information Center

    Asmus, Jennifer M.; Vollmer, Timothy R.; Borrero, John C.

    2002-01-01

    This article begins by discussing requirements for functional behavioral assessment under the Individuals with Disabilities Education Act and then describes a comprehensive model for the application of behavior analysis in the schools. The model includes descriptive assessment, functional analysis, and intervention and involves the participation…

  6. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    NASA Astrophysics Data System (ADS)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  7. The impact of structural uncertainty on cost-effectiveness models for adjuvant endocrine breast cancer treatments: the need for disease-specific model standardization and improved guidance.

    PubMed

    Frederix, Gerardus W J; van Hasselt, Johan G C; Schellens, Jan H M; Hövels, Anke M; Raaijmakers, Jan A M; Huitema, Alwin D R; Severens, Johan L

    2014-01-01

    Structural uncertainty relates to differences in model structure and parameterization. For many published health economic analyses in oncology, substantial differences in model structure exist, leading to differences in analysis outcomes and potentially impacting decision-making processes. The objectives of this analysis were (1) to identify differences in model structure and parameterization for cost-effectiveness analyses (CEAs) comparing tamoxifen and anastrazole for adjuvant breast cancer (ABC) treatment; and (2) to quantify the impact of these differences on analysis outcome metrics. The analysis consisted of four steps: (1) review of the literature for identification of eligible CEAs; (2) definition and implementation of a base model structure, which included the core structural components for all identified CEAs; (3) definition and implementation of changes or additions in the base model structure or parameterization; and (4) quantification of the impact of changes in model structure or parameterizations on the analysis outcome metrics life-years gained (LYG), incremental costs (IC) and the incremental cost-effectiveness ratio (ICER). Eleven CEA analyses comparing anastrazole and tamoxifen as ABC treatment were identified. The base model consisted of the following health states: (1) on treatment; (2) off treatment; (3) local recurrence; (4) metastatic disease; (5) death due to breast cancer; and (6) death due to other causes. The base model estimates of anastrazole versus tamoxifen for the LYG, IC and ICER were 0.263 years, €3,647 and €13,868/LYG, respectively. In the published models that were evaluated, differences in model structure included the addition of different recurrence health states, and associated transition rates were identified. Differences in parameterization were related to the incidences of recurrence, local recurrence to metastatic disease, and metastatic disease to death. The separate impact of these model components on the LYG ranged from 0.207 to 0.356 years, while incremental costs ranged from €3,490 to €3,714 and ICERs ranged from €9,804/LYG to €17,966/LYG. When we re-analyzed the published CEAs in our framework by including their respective model properties, the LYG ranged from 0.207 to 0.383 years, IC ranged from €3,556 to €3,731 and ICERs ranged from €9,683/LYG to €17,570/LYG. Differences in model structure and parameterization lead to substantial differences in analysis outcome metrics. This analysis supports the need for more guidance regarding structural uncertainty and the use of standardized disease-specific models for health economic analyses of adjuvant endocrine breast cancer therapies. The developed approach in the current analysis could potentially serve as a template for further evaluations of structural uncertainty and development of disease-specific models.

  8. A Risk-Analysis Approach to Implementing Web-Based Assessment

    ERIC Educational Resources Information Center

    Ricketts, Chris; Zakrzewski, Stan

    2005-01-01

    Computer-Based Assessment is a risky business. This paper proposes the use of a model for web-based assessment systems that identifies pedagogic, operational, technical (non web-based), web-based and financial risks. The strategies and procedures for risk elimination or reduction arise from risk analysis and management and are the means by which…

  9. Copula-based regression modeling of bivariate severity of temporary disability and permanent motor injuries.

    PubMed

    Ayuso, Mercedes; Bermúdez, Lluís; Santolino, Miguel

    2016-04-01

    The analysis of factors influencing the severity of the personal injuries suffered by victims of motor accidents is an issue of major interest. Yet, most of the extant literature has tended to address this question by focusing on either the severity of temporary disability or the severity of permanent injury. In this paper, a bivariate copula-based regression model for temporary disability and permanent injury severities is introduced for the joint analysis of the relationship with the set of factors that might influence both categories of injury. Using a motor insurance database with 21,361 observations, the copula-based regression model is shown to give a better performance than that of a model based on the assumption of independence. The inclusion of the dependence structure in the analysis has a higher impact on the variance estimates of the injury severities than it does on the point estimates. By taking into account the dependence between temporary and permanent severities a more extensive factor analysis can be conducted. We illustrate that the conditional distribution functions of injury severities may be estimated, thus, providing decision makers with valuable information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. SLS Navigation Model-Based Design Approach

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and management of design requirements to the development of usable models, model requirements, and model verification and validation efforts. The models themselves are represented in C/C++ code and accompanying data files. Under the idealized process, potential ambiguity in specification is reduced because the model must be implementable versus a requirement which is not necessarily subject to this constraint. Further, the models are shown to emulate the hardware during validation. For models developed by the Navigation Team, a common interface/standalone environment was developed. The common environment allows for easy implementation in design and analysis tools. Mechanisms such as unit test cases ensure implementation as the developer intended. The model verification and validation process provides a very high level of component design insight. The origin and implementation of the SLS variant of Model-based Design is described from the perspective of the SLS Navigation Team. The format of the models and the requirements are described. The Model-based Design approach has many benefits but is not without potential complications. Key lessons learned associated with the implementation of the Model Based Design approach and process from infancy to verification and certification are discussed

  11. A unifying framework for systems modeling, control systems design, and system operation

    NASA Technical Reports Server (NTRS)

    Dvorak, Daniel L.; Indictor, Mark B.; Ingham, Michel D.; Rasmussen, Robert D.; Stringfellow, Margaret V.

    2005-01-01

    Current engineering practice in the analysis and design of large-scale multi-disciplinary control systems is typified by some form of decomposition- whether functional or physical or discipline-based-that enables multiple teams to work in parallel and in relative isolation. Too often, the resulting system after integration is an awkward marriage of different control and data mechanisms with poor end-to-end accountability. System of systems engineering, which faces this problem on a large scale, cries out for a unifying framework to guide analysis, design, and operation. This paper describes such a framework based on a state-, model-, and goal-based architecture for semi-autonomous control systems that guides analysis and modeling, shapes control system software design, and directly specifies operational intent. This paper illustrates the key concepts in the context of a large-scale, concurrent, globally distributed system of systems: NASA's proposed Array-based Deep Space Network.

  12. Traffic Flow Density Distribution Based on FEM

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Cui, Jianming

    In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.

  13. Component isolation for multi-component signal analysis using a non-parametric gaussian latent feature model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Peng, Zhike; Dong, Xingjian; Zhang, Wenming; Clifton, David A.

    2018-03-01

    A challenge in analysing non-stationary multi-component signals is to isolate nonlinearly time-varying signals especially when they are overlapped in time and frequency plane. In this paper, a framework integrating time-frequency analysis-based demodulation and a non-parametric Gaussian latent feature model is proposed to isolate and recover components of such signals. The former aims to remove high-order frequency modulation (FM) such that the latter is able to infer demodulated components while simultaneously discovering the number of the target components. The proposed method is effective in isolating multiple components that have the same FM behavior. In addition, the results show that the proposed method is superior to generalised demodulation with singular-value decomposition-based method, parametric time-frequency analysis with filter-based method and empirical model decomposition base method, in recovering the amplitude and phase of superimposed components.

  14. An effective convolutional neural network model for Chinese sentiment analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Chen, Mengdong; Liu, Lianzhong; Wang, Yadong

    2017-06-01

    Nowadays microblog is getting more and more popular. People are increasingly accustomed to expressing their opinions on Twitter, Facebook and Sina Weibo. Sentiment analysis of microblog has received significant attention, both in academia and in industry. So far, Chinese microblog exploration still needs lots of further work. In recent years CNN has also been used to deal with NLP tasks, and already achieved good results. However, these methods ignore the effective use of a large number of existing sentimental resources. For this purpose, we propose a Lexicon-based Sentiment Convolutional Neural Networks (LSCNN) model focus on Weibo's sentiment analysis, which combines two CNNs, trained individually base on sentiment features and word embedding, at the fully connected hidden layer. The experimental results show that our model outperforms the CNN model only with word embedding features on microblog sentiment analysis task.

  15. VISUALIZATION-BASED ANALYSIS FOR A MIXED-INHIBITION BINARY PBPK MODEL: DETERMINATION OF INHIBITION MECHANISM

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based se...

  16. Study of a risk-based piping inspection guideline system.

    PubMed

    Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung

    2007-02-01

    A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.

  17. Rasch analysis on OSCE data : An illustrative example.

    PubMed

    Tor, E; Steketee, C

    2011-01-01

    The Objective Structured Clinical Examination (OSCE) is a widely used tool for the assessment of clinical competence in health professional education. The goal of the OSCE is to make reproducible decisions on pass/fail status as well as students' levels of clinical competence according to their demonstrated abilities based on the scores. This paper explores the use of the polytomous Rasch model in evaluating the psychometric properties of OSCE scores through a case study. The authors analysed an OSCE data set (comprised of 11 stations) for 80 fourth year medical students based on the polytomous Rasch model in an effort to answer two research questions: (1) Do the clinical tasks assessed in the 11 OSCE stations map on to a common underlying construct, namely clinical competence? (2) What other insights can Rasch analysis offer in terms of scaling, item analysis and instrument validation over and above the conventional analysis based on classical test theory? The OSCE data set has demonstrated a sufficient degree of fit to the Rasch model (Χ(2) = 17.060, DF=22, p=0.76) indicating that the 11 OSCE station scores have sufficient psychometric properties to form a measure for a common underlying construct, i.e. clinical competence. Individual OSCE station scores with good fit to the Rasch model (p > 0.1 for all Χ(2) statistics) further corroborated the characteristic of unidimensionality of the OSCE scale for clinical competence. A Person Separation Index (PSI) of 0.704 indicates sufficient level of reliability for the OSCE scores. Other useful findings from the Rasch analysis that provide insights, over and above the analysis based on classical test theory, are also exemplified using the data set. The polytomous Rasch model provides a useful and supplementary approach to the calibration and analysis of OSCE examination data.

  18. Hypothesis testing in functional linear regression models with Neyman's truncation and wavelet thresholding for longitudinal data.

    PubMed

    Yang, Xiaowei; Nie, Kun

    2008-03-15

    Longitudinal data sets in biomedical research often consist of large numbers of repeated measures. In many cases, the trajectories do not look globally linear or polynomial, making it difficult to summarize the data or test hypotheses using standard longitudinal data analysis based on various linear models. An alternative approach is to apply the approaches of functional data analysis, which directly target the continuous nonlinear curves underlying discretely sampled repeated measures. For the purposes of data exploration, many functional data analysis strategies have been developed based on various schemes of smoothing, but fewer options are available for making causal inferences regarding predictor-outcome relationships, a common task seen in hypothesis-driven medical studies. To compare groups of curves, two testing strategies with good power have been proposed for high-dimensional analysis of variance: the Fourier-based adaptive Neyman test and the wavelet-based thresholding test. Using a smoking cessation clinical trial data set, this paper demonstrates how to extend the strategies for hypothesis testing into the framework of functional linear regression models (FLRMs) with continuous functional responses and categorical or continuous scalar predictors. The analysis procedure consists of three steps: first, apply the Fourier or wavelet transform to the original repeated measures; then fit a multivariate linear model in the transformed domain; and finally, test the regression coefficients using either adaptive Neyman or thresholding statistics. Since a FLRM can be viewed as a natural extension of the traditional multiple linear regression model, the development of this model and computational tools should enhance the capacity of medical statistics for longitudinal data.

  19. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  20. UV spectroscopy including ISM line absorption: of the exciting star of Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    Reliable spectral analysis that is based on high-resolution UV observations requires an adequate, simultaneous modeling of the interstellar line absorption and reddening. In the case of the central star of the planetary nebula Abell 35, BD-22 3467, we demonstrate our current standard spectral-analysis method that is based on the Tübingen NLTE Model-Atmosphere Package (TMAP). We present an on- going spectral analysis of FUSE and HST/STIS observations of BD-22 3467.

  1. Comparing microscopic activity-based and traditional models of travel demand : an Austin area case study

    DOT National Transportation Integrated Search

    2007-09-01

    Two competing approaches to travel demand modeling exist today. The more traditional 4-step travel demand models rely on aggregate demographic data at a traffic analysis zone (TAZ) level. Activity-based microsimulation methods employ more robus...

  2. Synthetic Training Data Generation for Activity Monitoring and Behavior Analysis

    NASA Astrophysics Data System (ADS)

    Monekosso, Dorothy; Remagnino, Paolo

    This paper describes a data generator that produces synthetic data to simulate observations from an array of environment monitoring sensors. The overall goal of our work is to monitor the well-being of one occupant in a home. Sensors are embedded in a smart home to unobtrusively record environmental parameters. Based on the sensor observations, behavior analysis and modeling are performed. However behavior analysis and modeling require large data sets to be collected over long periods of time to achieve the level of accuracy expected. A data generator - was developed based on initial data i.e. data collected over periods lasting weeks to facilitate concurrent data collection and development of algorithms. The data generator is based on statistical inference techniques. Variation is introduced into the data using perturbation models.

  3. Anomalous diffusion in the evolution of soccer championship scores: Real data, mean-field analysis, and an agent-based model

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Vainstein, Mendeli H.; Gonçalves, Sebastián; Paula, Felipe S. F.

    2013-08-01

    Statistics of soccer tournament scores based on the double round robin system of several countries are studied. Exploring the dynamics of team scoring during tournament seasons from recent years we find evidences of superdiffusion. A mean-field analysis results in a drift velocity equal to that of real data but in a different diffusion coefficient. Along with the analysis of real data we present the results of simulations of soccer tournaments obtained by an agent-based model which successfully describes the final scoring distribution [da Silva , Comput. Phys. Commun.CPHCBZ0010-465510.1016/j.cpc.2012.10.030 184, 661 (2013)]. Such model yields random walks of scores over time with the same anomalous diffusion as observed in real data.

  4. Acid-base disturbances in nephrotic syndrome: analysis using the CO2/HCO3 method (traditional Boston model) and the physicochemical method (Stewart model).

    PubMed

    Kasagi, Tomomichi; Imai, Hirokazu; Miura, Naoto; Suzuki, Keisuke; Yoshino, Masabumi; Nobata, Hironobu; Nagai, Takuhito; Banno, Shogo

    2017-10-01

    The Stewart model for analyzing acid-base disturbances emphasizes serum albumin levels, which are ignored in the traditional Boston model. We compared data derived using the Stewart model to those using the Boston model in patients with nephrotic syndrome. Twenty-nine patients with nephrotic syndrome and six patients without urinary protein or acid-base disturbances provided blood and urine samples for analysis that included routine biochemical and arterial blood gas tests, plasma renin activity, and aldosterone. The total concentration of non-volatile weak acids (A TOT ), apparent strong ion difference (SIDa), effective strong ion difference (SIDe), and strong ion gap (SIG) were calculated according to the formulas of Agrafiotis in the Stewart model. According to the Boston model, 25 of 29 patients (90%) had alkalemia. Eighteen patients had respiratory alkalosis, 11 had metabolic alkalosis, and 4 had both conditions. Only three patients had hyperreninemic hyperaldosteronism. The Stewart model demonstrated respiratory alkalosis based on decreased PaCO 2 , metabolic alkalosis based on decreased A TOT , and metabolic acidosis based on decreased SIDa. We could diagnose metabolic alkalosis or acidosis with a normal anion gap after comparing delta A TOT [(14.09 - measured A TOT ) or (11.77 - 2.64 × Alb (g/dL))] and delta SIDa [(42.7 - measured SIDa) or (42.7 - (Na + K - Cl)]). We could also identify metabolic acidosis with an increased anion gap using SIG > 7.0 (SIG = 0.9463 × corrected anion gap-8.1956). Patients with nephrotic syndrome had primary respiratory alkalosis, decreased A TOT due to hypoalbuminemia (power to metabolic alkalosis), and decreased levels of SIDa (power to metabolic acidosis). We could detect metabolic acidosis with an increased anion gap by calculating SIG. The Stewart model in combination with the Boston model facilitates the analysis of complex acid-base disturbances in nephrotic syndrome.

  5. Formal Analysis of Self-Efficacy in Job Interviewee’s Mental State Model

    NASA Astrophysics Data System (ADS)

    Ajoge, N. S.; Aziz, A. A.; Yusof, S. A. Mohd

    2017-08-01

    This paper presents a formal analysis approach for self-efficacy model of interviewee’s mental state during a job interview session. Self-efficacy is a construct that has been hypothesised to combine with motivation and interviewee anxiety to define state influence of interviewees. The conceptual model was built based on psychological theories and models related to self-efficacy. A number of well-known relations between events and the course of self-efficacy are summarized from the literature and it is shown that the proposed model exhibits those patterns. In addition, this formal model has been mathematically analysed to find out which stable situations exist. Finally, it is pointed out how this model can be used in a software agent or robot-based platform. Such platform can provide an interview coaching approach where support to the user is provided based on their individual metal state during interview sessions.

  6. MSEE: Stochastic Cognitive Linguistic Behavior Models for Semantic Sensing

    DTIC Science & Technology

    2013-09-01

    recognition, a Gaussian Process Dynamic Model with Social Network Analysis (GPDM-SNA) for a small human group action recognition, an extended GPDM-SNA...44  3.2. Small Human Group Activity Modeling Based on Gaussian Process Dynamic Model and Social Network Analysis (SN-GPDM...51  Approved for public release; distribution unlimited. 3 3.2.3. Gaussian Process Dynamical Model and

  7. Seepage-Based Factor of Safety Analysis Using 3D Groundwater Simulation Results

    DTIC Science & Technology

    2014-08-01

    Edris, and D . Richards. 2006. A first-principle, physics- based watershed model: WASH123D. In Watershed models, ed. V. P. Singh and D . K . Frevert...should be cited as follows: Cheng, H.-P., K . D . Winters, S. M. England, and R. E. Pickett. 2014. Factor of safety analysis using 3D groundwater...Journal of Dam Safety 11(3): 33–42. Pickett, R. E., K . D . Winters, H.-P. Cheng, and S. M. England. 2013. Herbert Hoover Dike (HHD) flow model. Project

  8. A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items

    ERIC Educational Resources Information Center

    Fukuhara, Hirotaka; Kamata, Akihito

    2011-01-01

    A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…

  9. An Intelligent Decision Support System for Workforce Forecast

    DTIC Science & Technology

    2011-01-01

    ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models

  10. DAMS: A Model to Assess Domino Effects by Using Agent-Based Modeling and Simulation.

    PubMed

    Zhang, Laobing; Landucci, Gabriele; Reniers, Genserik; Khakzad, Nima; Zhou, Jianfeng

    2017-12-19

    Historical data analysis shows that escalation accidents, so-called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent-based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent-based modeling technique explains the domino effects from a bottom-up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher-level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large-scale complicated cases. © 2017 Society for Risk Analysis.

  11. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  12. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  13. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    PubMed

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  14. Comparing model-based adaptive LMS filters and a model-free hysteresis loop analysis method for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zhou, Cong; Chase, J. Geoffrey; Rodgers, Geoffrey W.; Xu, Chao

    2017-02-01

    The model-free hysteresis loop analysis (HLA) method for structural health monitoring (SHM) has significant advantages over the traditional model-based SHM methods that require a suitable baseline model to represent the actual system response. This paper provides a unique validation against both an experimental reinforced concrete (RC) building and a calibrated numerical model to delineate the capability of the model-free HLA method and the adaptive least mean squares (LMS) model-based method in detecting, localizing and quantifying damage that may not be visible, observable in overall structural response. Results clearly show the model-free HLA method is capable of adapting to changes in how structures transfer load or demand across structural elements over time and multiple events of different size. However, the adaptive LMS model-based method presented an image of greater spread of lesser damage over time and story when the baseline model is not well defined. Finally, the two algorithms are tested over a simpler hysteretic behaviour typical steel structure to quantify the impact of model mismatch between the baseline model used for identification and the actual response. The overall results highlight the need for model-based methods to have an appropriate model that can capture the observed response, in order to yield accurate results, even in small events where the structure remains linear.

  15. The research on medical image classification algorithm based on PLSA-BOW model.

    PubMed

    Cao, C H; Cao, H L

    2016-04-29

    With the rapid development of modern medical imaging technology, medical image classification has become more important for medical diagnosis and treatment. To solve the existence of polysemous words and synonyms problem, this study combines the word bag model with PLSA (Probabilistic Latent Semantic Analysis) and proposes the PLSA-BOW (Probabilistic Latent Semantic Analysis-Bag of Words) model. In this paper we introduce the bag of words model in text field to image field, and build the model of visual bag of words model. The method enables the word bag model-based classification method to be further improved in accuracy. The experimental results show that the PLSA-BOW model for medical image classification can lead to a more accurate classification.

  16. Work domain constraints for modelling surgical performance.

    PubMed

    Morineau, Thierry; Riffaud, Laurent; Morandi, Xavier; Villain, Jonathan; Jannin, Pierre

    2015-10-01

    Three main approaches can be identified for modelling surgical performance: a competency-based approach, a task-based approach, both largely explored in the literature, and a less known work domain-based approach. The work domain-based approach first describes the work domain properties that constrain the agent's actions and shape the performance. This paper presents a work domain-based approach for modelling performance during cervical spine surgery, based on the idea that anatomical structures delineate the surgical performance. This model was evaluated through an analysis of junior and senior surgeons' actions. Twenty-four cervical spine surgeries performed by two junior and two senior surgeons were recorded in real time by an expert surgeon. According to a work domain-based model describing an optimal progression through anatomical structures, the degree of adjustment of each surgical procedure to a statistical polynomial function was assessed. Each surgical procedure showed a significant suitability with the model and regression coefficient values around 0.9. However, the surgeries performed by senior surgeons fitted this model significantly better than those performed by junior surgeons. Analysis of the relative frequencies of actions on anatomical structures showed that some specific anatomical structures discriminate senior from junior performances. The work domain-based modelling approach can provide an overall statistical indicator of surgical performance, but in particular, it can highlight specific points of interest among anatomical structures that the surgeons dwelled on according to their level of expertise.

  17. Method Development for Clinical Comprehensive Evaluation of Pediatric Drugs Based on Multi-Criteria Decision Analysis: Application to Inhaled Corticosteroids for Children with Asthma.

    PubMed

    Yu, Yuncui; Jia, Lulu; Meng, Yao; Hu, Lihua; Liu, Yiwei; Nie, Xiaolu; Zhang, Meng; Zhang, Xuan; Han, Sheng; Peng, Xiaoxia; Wang, Xiaoling

    2018-04-01

    Establishing a comprehensive clinical evaluation system is critical in enacting national drug policy and promoting rational drug use. In China, the 'Clinical Comprehensive Evaluation System for Pediatric Drugs' (CCES-P) project, which aims to compare drugs based on clinical efficacy and cost effectiveness to help decision makers, was recently proposed; therefore, a systematic and objective method is required to guide the process. An evidence-based multi-criteria decision analysis model that involved an analytic hierarchy process (AHP) was developed, consisting of nine steps: (1) select the drugs to be reviewed; (2) establish the evaluation criterion system; (3) determine the criterion weight based on the AHP; (4) construct the evidence body for each drug under evaluation; (5) select comparative measures and calculate the original utility score; (6) place a common utility scale and calculate the standardized utility score; (7) calculate the comprehensive utility score; (8) rank the drugs; and (9) perform a sensitivity analysis. The model was applied to the evaluation of three different inhaled corticosteroids (ICSs) used for asthma management in children (a total of 16 drugs with different dosage forms and strengths or different manufacturers). By applying the drug analysis model, the 16 ICSs under review were successfully scored and evaluated. Budesonide suspension for inhalation (drug ID number: 7) ranked the highest, with comprehensive utility score of 80.23, followed by fluticasone propionate inhaled aerosol (drug ID number: 16), with a score of 79.59, and budesonide inhalation powder (drug ID number: 6), with a score of 78.98. In the sensitivity analysis, the ranking of the top five and lowest five drugs remains unchanged, suggesting this model is generally robust. An evidence-based drug evaluation model based on AHP was successfully developed. The model incorporates sufficient utility and flexibility for aiding the decision-making process, and can be a useful tool for the CCES-P.

  18. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  19. A new rational-based optimal design strategy of ship structure based on multi-level analysis and super-element modeling method

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Deyu

    2011-09-01

    A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.

  20. Remediation Strategies for Learners at Risk of Failure: A Course Based Retention Model

    ERIC Educational Resources Information Center

    Gajewski, Agnes; Mather, Meera

    2015-01-01

    This paper presents an overview and discussion of a course based remediation model developed to enhance student learning and increased retention based on literature. This model focuses on course structure and course delivery in a compressed semester format. A comparative analysis was applied to a pilot study of students enrolled in a course…

  1. Airflow and Particle Transport Through Human Airways: A Systematic Review

    NASA Astrophysics Data System (ADS)

    Kharat, S. B.; Deoghare, A. B.; Pandey, K. M.

    2017-08-01

    This paper describes review of the relevant literature about two phase analysis of air and particle flow through human airways. An emphasis of the review is placed on elaborating the steps involved in two phase analysis, which are Geometric modelling methods and Mathematical models. The first two parts describes various approaches that are followed for constructing an Airway model upon which analysis are conducted. Broad two categories of geometric modelling viz. Simplified modelling and Accurate modelling using medical scans are discussed briefly. Ease and limitations of simplified models, then examples of CT based models are discussed. In later part of the review different mathematical models implemented by researchers for analysis are briefed. Mathematical models used for Air and Particle phases are elaborated separately.

  2. Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two- and three-dimensional objective analysis

    NASA Technical Reports Server (NTRS)

    Shiau, Jyh-Jen; Wahba, Grace; Johnson, Donald R.

    1986-01-01

    A new method, based on partial spline models, is developed for including specified discontinuities in otherwise smooth two- and three-dimensional objective analyses. The method is appropriate for including tropopause height information in two- and three-dimensinal temperature analyses, using the O'Sullivan-Wahba physical variational method for analysis of satellite radiance data, and may in principle be used in a combined variational analysis of observed, forecast, and climate information. A numerical method for its implementation is described and a prototype two-dimensional analysis based on simulated radiosonde and tropopause height data is shown. The method may also be appropriate for other geophysical problems, such as modeling the ocean thermocline, fronts, discontinuities, etc.

  3. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    NASA Astrophysics Data System (ADS)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  4. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.

    2017-05-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.

  5. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2017-12-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.

  6. High-frequency analysis of Earth gravity field models based on terrestrial gravity and GPS/levelling data: a case study in Greece

    NASA Astrophysics Data System (ADS)

    Papanikolaou, T. D.; Papadopoulos, N.

    2015-06-01

    The present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.

  7. Predicting Raters’ Transparency Judgments of English and Chinese Morphological Constituents using Latent Semantic Analysis

    PubMed Central

    Wang, Hsueh-Cheng; Hsu, Li-Chuan; Tien, Yi-Min; Pomplun, Marc

    2013-01-01

    The morphological constituents of English compounds (e.g., “butter” and “fly” for “butterfly”) and two-character Chinese compounds may differ in meaning from the whole word. Subjective differences and ambiguity of transparency make the judgments difficult, and a computational alternative based on a general model may be a way to average across subjective differences. The current study proposes two approaches based on Latent Semantic Analysis (Landauer & Dumais, 1997): Model 1 compares the semantic similarity between a compound word and each of its constituents, and Model 2 derives the dominant meaning of a constituent based on a clustering analysis of morphological family members (e.g., “butterfingers” or “buttermilk” for “butter”). The proposed models successfully predicted participants’ transparency ratings, and we recommend that experimenters use Model 1 for English compounds and Model 2 for Chinese compounds, due to raters’ morphological processing in different writing systems. The dominance of lexical meaning, semantic transparency, and the average similarity between all pairs within a morphological family are provided, and practical applications for future studies are discussed. PMID:23784009

  8. Tools and techniques for developing policies for complex and uncertain systems.

    PubMed

    Bankes, Steven C

    2002-05-14

    Agent-based models (ABM) are examples of complex adaptive systems, which can be characterized as those systems for which no model less complex than the system itself can accurately predict in detail how the system will behave at future times. Consequently, the standard tools of policy analysis, based as they are on devising policies that perform well on some best estimate model of the system, cannot be reliably used for ABM. This paper argues that policy analysis by using ABM requires an alternative approach to decision theory. The general characteristics of such an approach are described, and examples are provided of its application to policy analysis.

  9. Using enterprise architecture to analyse how organisational structure impact motivation and learning

    NASA Astrophysics Data System (ADS)

    Närman, Pia; Johnson, Pontus; Gingnell, Liv

    2016-06-01

    When technology, environment, or strategies change, organisations need to adjust their structures accordingly. These structural changes do not always enhance the organisational performance as intended partly because organisational developers do not understand the consequences of structural changes in performance. This article presents a model-based analysis framework for quantitative analysis of the effect of organisational structure on organisation performance in terms of employee motivation and learning. The model is based on Mintzberg's work on organisational structure. The quantitative analysis is formalised using the Object Constraint Language (OCL) and the Unified Modelling Language (UML) and implemented in an enterprise architecture tool.

  10. Analysis of the hydrological response of a distributed physically-based model using post-assimilation (EnKF) diagnostics of streamflow and in situ soil moisture observations

    NASA Astrophysics Data System (ADS)

    Trudel, Mélanie; Leconte, Robert; Paniconi, Claudio

    2014-06-01

    Data assimilation techniques not only enhance model simulations and forecast, they also provide the opportunity to obtain a diagnostic of both the model and observations used in the assimilation process. In this research, an ensemble Kalman filter was used to assimilate streamflow observations at a basin outlet and at interior locations, as well as soil moisture at two different depths (15 and 45 cm). The simulation model is the distributed physically-based hydrological model CATHY (CATchment HYdrology) and the study site is the Des Anglais watershed, a 690 km2 river basin located in southern Quebec, Canada. Use of Latin hypercube sampling instead of a conventional Monte Carlo method to generate the ensemble reduced the size of the ensemble, and therefore the calculation time. Different post-assimilation diagnostics, based on innovations (observation minus background), analysis residuals (observation minus analysis), and analysis increments (analysis minus background), were used to evaluate assimilation optimality. An important issue in data assimilation is the estimation of error covariance matrices. These diagnostics were also used in a calibration exercise to determine the standard deviation of model parameters, forcing data, and observations that led to optimal assimilations. The analysis of innovations showed a lag between the model forecast and the observation during rainfall events. Assimilation of streamflow observations corrected this discrepancy. Assimilation of outlet streamflow observations improved the Nash-Sutcliffe efficiencies (NSE) between the model forecast (one day) and the observation at both outlet and interior point locations, owing to the structure of the state vector used. However, assimilation of streamflow observations systematically increased the simulated soil moisture values.

  11. Markov Random Fields, Stochastic Quantization and Image Analysis

    DTIC Science & Technology

    1990-01-01

    Markov random fields based on the lattice Z2 have been extensively used in image analysis in a Bayesian framework as a-priori models for the...of Image Analysis can be given some fundamental justification then there is a remarkable connection between Probabilistic Image Analysis , Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.

  12. Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization.

    PubMed

    Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil

    2016-03-15

    Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk. © The Author 2015. Published by Oxford University Press.

  13. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  14. Compartmental and Data-Based Modeling of Cerebral Hemodynamics: Linear Analysis.

    PubMed

    Henley, B C; Shin, D C; Zhang, R; Marmarelis, V Z

    Compartmental and data-based modeling of cerebral hemodynamics are alternative approaches that utilize distinct model forms and have been employed in the quantitative study of cerebral hemodynamics. This paper examines the relation between a compartmental equivalent-circuit and a data-based input-output model of dynamic cerebral autoregulation (DCA) and CO2-vasomotor reactivity (DVR). The compartmental model is constructed as an equivalent-circuit utilizing putative first principles and previously proposed hypothesis-based models. The linear input-output dynamics of this compartmental model are compared with data-based estimates of the DCA-DVR process. This comparative study indicates that there are some qualitative similarities between the two-input compartmental model and experimental results.

  15. Performance analysis of mini-propellers based on FlightGear

    NASA Astrophysics Data System (ADS)

    Vogeltanz, Tomáš

    2016-06-01

    This paper presents a performance analysis of three mini-propellers based on the FlightGear flight simulator. Although a basic propeller analysis has to be performed before the use of FlightGear, for a complex and more practical performance analysis, it is advantageous to use a propeller model in cooperation with a particular aircraft model. This approach may determine whether the propeller has sufficient quality in respect of aircraft requirements. In the first section, the software used for the analysis is illustrated. Then, the parameters of the analyzed mini-propellers and the tested UAV are described. Finally, the main section shows and discusses the results of the performance analysis of the mini-propellers.

  16. Direct biomechanical modeling of trabecular bone using a nonlinear manifold-based volumetric representation

    NASA Astrophysics Data System (ADS)

    Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.

    2017-03-01

    Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This preliminary results show the accuracy of the new nonlinear manifold modelling algorithm for TB, and demonstrate the feasibility of a new direct mechanical strain-strain analysis on a nonlinear manifold model of a highly complex biological structure.

  17. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  18. A Petri Net Approach Based Elementary Siphons Supervisor for Flexible Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Abdul-Hussin, Mowafak Hassan

    2015-05-01

    This paper presents an approach to constructing a class of an S3PR net for modeling, simulation and control of processes occurring in the flexible manufacturing system (FMS) used based elementary siphons of a Petri net. Siphons are very important to the analysis and control of deadlocks of FMS that is significant objectives of siphons. Petri net models in the efficiency structure analysis, and utilization of the FMSs when different policy can be implemented lead to the deadlock prevention. We are representing an effective deadlock-free policy of a special class of Petri nets called S3PR. Simulation of Petri net structural analysis and reachability graph analysis is used for analysis and control of Petri nets. Petri nets contain been successfully as one of the most powerful tools for modelling of FMS, where Using structural analysis, we show that liveness of such systems can be attributed to the absence of under marked siphons.

  19. Spanish Velar-Insertion and Analogy: A Usage-Based Diachronic Analysis

    ERIC Educational Resources Information Center

    Fondow, Steven Richard

    2010-01-01

    The theory of Analogical and Exemplar Modeling (AEM) suggests renewed discussion of the formalization of analogy and its possible incorporation in linguistic theory. AEM is a usage-based model founded upon Exemplar Modeling (Bybee 2007, Pierrehumbert 2001) that utilizes several principles of the Analogical Modeling of Language (Skousen 1992, 1995,…

  20. Linking population viability, habitat suitability, and landscape simulation models for conservation planning

    Treesearch

    Michael A. Larson; Frank R., III Thompson; Joshua J. Millspaugh; William D. Dijak; Stephen R. Shifley

    2004-01-01

    Methods for habitat modeling based on landscape simulations and population viability modeling based on habitat quality are well developed, but no published study of which we are aware has effectively joined them in a single, comprehensive analysis. We demonstrate the application of a population viability model for ovenbirds (Seiurus aurocapillus)...

  1. Item Parameter Estimation for the MIRT Model: Bias and Precision of Confirmatory Factor Analysis-Based Models

    ERIC Educational Resources Information Center

    Finch, Holmes

    2010-01-01

    The accuracy of item parameter estimates in the multidimensional item response theory (MIRT) model context is one that has not been researched in great detail. This study examines the ability of two confirmatory factor analysis models specifically for dichotomous data to properly estimate item parameters using common formulae for converting factor…

  2. Examining the Utility of Topic Models for Linguistic Analysis of Couple Therapy

    ERIC Educational Resources Information Center

    Doeden, Michelle A.

    2012-01-01

    This study examined the basic utility of topic models, a computational linguistics model for text-based data, to the investigation of the process of couple therapy. Linguistic analysis offers an additional lens through which to examine clinical data, and the topic model is presented as a novel methodology within couple and family psychology that…

  3. Decision modeling for fire incident analysis

    Treesearch

    Donald G. MacGregor; Armando González-Cabán

    2009-01-01

    This paper reports on methods for representing and modeling fire incidents based on concepts and models from the decision and risk sciences. A set of modeling techniques are used to characterize key fire management decision processes and provide a basis for incident analysis. The results of these methods can be used to provide insights into the structure of fire...

  4. Diagnostic evaluation of distributed physically based model at the REW scale (THREW) using rainfall-runoff event analysis

    NASA Astrophysics Data System (ADS)

    Tian, F.; Sivapalan, M.; Li, H.; Hu, H.

    2007-12-01

    The importance of diagnostic analysis of hydrological models is increasingly recognized by the scientific community (M. Sivapalan, et al., 2003; H. V. Gupta, et al., 2007). Model diagnosis refers to model structures and parameters being identified not only by statistical comparison of system state variables and outputs but also by process understanding in a specific watershed. Process understanding can be gained by the analysis of observational data and model results at the specific watershed as well as through regionalization. Although remote sensing technology can provide valuable data about the inputs, state variables, and outputs of the hydrological system, observational rainfall-runoff data still constitute the most accurate, reliable, direct, and thus a basic component of hydrology related database. One critical question in model diagnostic analysis is, therefore, what signature characteristic can we extract from rainfall and runoff data. To this date only a few studies have focused on this question, such as Merz et al. (2006) and Lana-Renault et al. (2007), still none of these studies related event analysis with model diagnosis in an explicit, rigorous, and systematic manner. Our work focuses on the identification of the dominant runoff generation mechanisms from event analysis of rainfall-runoff data, including correlation analysis and analysis of timing pattern. The correlation analysis involves the identification of the complex relationship among rainfall depth, intensity, runoff coefficient, and antecedent conditions, and the timing pattern analysis aims to identify the clustering pattern of runoff events in relation to the patterns of rainfall events. Our diagnostic analysis illustrates the changing pattern of runoff generation mechanisms in the DMIP2 test watersheds located in Oklahoma region, which is also well recognized by numerical simulations based on TsingHua Representative Elementary Watershed (THREW) model. The result suggests the usefulness of rainfall-runoff event analysis for model development as well as model diagnostics.

  5. Multiple-Group Analysis Using the sem Package in the R System

    ERIC Educational Resources Information Center

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  6. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  7. Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search

    NASA Astrophysics Data System (ADS)

    Chen, Caixia; Shi, Chun

    2018-03-01

    Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.

  8. Non-Contact Heart Rate and Blood Pressure Estimations from Video Analysis and Machine Learning Modelling Applied to Food Sensory Responses: A Case Study for Chocolate.

    PubMed

    Gonzalez Viejo, Claudia; Fuentes, Sigfredo; Torrico, Damir D; Dunshea, Frank R

    2018-06-03

    Traditional methods to assess heart rate (HR) and blood pressure (BP) are intrusive and can affect results in sensory analysis of food as participants are aware of the sensors. This paper aims to validate a non-contact method to measure HR using the photoplethysmography (PPG) technique and to develop models to predict the real HR and BP based on raw video analysis (RVA) with an example application in chocolate consumption using machine learning (ML). The RVA used a computer vision algorithm based on luminosity changes on the different RGB color channels using three face-regions (forehead and both cheeks). To validate the proposed method and ML models, a home oscillometric monitor and a finger sensor were used. Results showed high correlations with the G color channel (R² = 0.83). Two ML models were developed using three face-regions: (i) Model 1 to predict HR and BP using the RVA outputs with R = 0.85 and (ii) Model 2 based on time-series prediction with HR, magnitude and luminosity from RVA inputs to HR values every second with R = 0.97. An application for the sensory analysis of chocolate showed significant correlations between changes in HR and BP with chocolate hardness and purchase intention.

  9. An uncertainty analysis of wildfire modeling [Chapter 13

    Treesearch

    Karin Riley; Matthew Thompson

    2017-01-01

    Before fire models can be understood, evaluated, and effectively applied to support decision making, model-based uncertainties must be analyzed. In this chapter, we identify and classify sources of uncertainty using an established analytical framework, and summarize results graphically in an uncertainty matrix. Our analysis facilitates characterization of the...

  10. Analysis of Asymmetry by a Slide-Vector.

    ERIC Educational Resources Information Center

    Zielman, Berrie; Heiser, Willem J.

    1993-01-01

    An algorithm based on the majorization theory of J. de Leeuw and W. J. Heiser is presented for fitting the slide-vector model. It views the model as a constrained version of the unfolding model. A three-way variant is proposed, and two examples from market structure analysis are presented. (SLD)

  11. A Noncentral "t" Regression Model for Meta-Analysis

    ERIC Educational Resources Information Center

    Camilli, Gregory; de la Torre, Jimmy; Chiu, Chia-Yi

    2010-01-01

    In this article, three multilevel models for meta-analysis are examined. Hedges and Olkin suggested that effect sizes follow a noncentral "t" distribution and proposed several approximate methods. Raudenbush and Bryk further refined this model; however, this procedure is based on a normal approximation. In the current research literature, this…

  12. Automatic identification of fault surfaces through Object Based Image Analysis of a Digital Elevation Model in the submarine area of the North Aegean Basin

    NASA Astrophysics Data System (ADS)

    Argyropoulou, Evangelia

    2015-04-01

    The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.

  13. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform

    PubMed Central

    Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. PMID:27304979

  14. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang; Tsai, Tung-Hu; Chang, Hen-Hong

    2016-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  15. AUTOCASK (AUTOmatic Generation of 3-D CASK models). A microcomputer based system for shipping cask design review analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard, M.A.; Sommer, S.C.

    1995-04-01

    AUTOCASK (AUTOmatic Generation of 3-D CASK models) is a microcomputer-based system of computer programs and databases developed at the Lawrence Livermore National Laboratory (LLNL) for the structural analysis of shipping casks for radioactive material. Model specification is performed on the microcomputer, and the analyses are performed on an engineering workstation or mainframe computer. AUTOCASK is based on 80386/80486 compatible microcomputers. The system is composed of a series of menus, input programs, display programs, a mesh generation program, and archive programs. All data is entered through fill-in-the-blank input screens that contain descriptive data requests.

  16. Exploratory reconstructability analysis of accident TBI data

    NASA Astrophysics Data System (ADS)

    Zwick, Martin; Carney, Nancy; Nettleton, Rosemary

    2018-02-01

    This paper describes the use of reconstructability analysis to perform a secondary study of traumatic brain injury data from automobile accidents. Neutral searches were done and their results displayed with a hypergraph. Directed searches, using both variable-based and state-based models, were applied to predict performance on two cognitive tests and one neurological test. Very simple state-based models gave large uncertainty reductions for all three DVs and sizeable improvements in percent correct for the two cognitive test DVs which were equally sampled. Conditional probability distributions for these models are easily visualized with simple decision trees. Confounding variables and counter-intuitive findings are also reported.

  17. Recent literature on structural modeling, identification, and analysis

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1990-01-01

    The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.

  18. Service-based analysis of biological pathways

    PubMed Central

    Zheng, George; Bouguettaya, Athman

    2009-01-01

    Background Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper. PMID:19796403

  19. The Trans-Contextual Model of Autonomous Motivation in Education

    PubMed Central

    Hagger, Martin S.; Chatzisarantis, Nikos L. D.

    2015-01-01

    The trans-contextual model outlines the processes by which autonomous motivation toward activities in a physical education context predicts autonomous motivation toward physical activity outside of school, and beliefs about, intentions toward, and actual engagement in, out-of-school physical activity. In the present article, we clarify the fundamental propositions of the model and resolve some outstanding conceptual issues, including its generalizability across multiple educational domains, criteria for its rejection or failed replication, the role of belief-based antecedents of intentions, and the causal ordering of its constructs. We also evaluate the consistency of model relationships in previous tests of the model using path-analytic meta-analysis. The analysis supported model hypotheses but identified substantial heterogeneity in the hypothesized relationships across studies unattributed to sampling and measurement error. Based on our meta-analysis, future research needs to provide further replications of the model in diverse educational settings beyond physical education and test model hypotheses using experimental methods. PMID:27274585

  20. Finite element modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.

    1983-01-01

    Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.

  1. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    NASA Technical Reports Server (NTRS)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  2. Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals

    NASA Technical Reports Server (NTRS)

    Padavala, Satya; Palazzolo, Alan

    1994-01-01

    One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is established between linearized coefficients based transient motion and the same motion as predicted by the original governing equations. An innovative method is developed to model nonlinearities in an annular seal based on dynamic coefficients computed at various static eccentricities. This method is thoroughly tested for various types of transient motion using bulk flow model results as a benchmark.

  3. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    PubMed

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  4. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses

    PubMed Central

    Desai, Trunil S.

    2018-01-01

    13C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13C-MFA software that works in various operating systems will enable more researchers to perform 13C-MFA and to further modify and develop the package. PMID:29736347

  5. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  6. Comparing the Fit of Item Response Theory and Factor Analysis Models

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Alberto; Cai, Li; Hernandez, Adolfo

    2011-01-01

    Linear factor analysis (FA) models can be reliably tested using test statistics based on residual covariances. We show that the same statistics can be used to reliably test the fit of item response theory (IRT) models for ordinal data (under some conditions). Hence, the fit of an FA model and of an IRT model to the same data set can now be…

  7. An analysis of USSPACECOM's space surveillance network sensor tasking methodology

    NASA Astrophysics Data System (ADS)

    Berger, Jeff M.; Moles, Joseph B.; Wilsey, David G.

    1992-12-01

    This study provides the basis for the development of a cost/benefit assessment model to determine the effects of alterations to the Space Surveillance Network (SSN) on orbital element (OE) set accuracy. It provides a review of current methods used by NORAD and the SSN to gather and process observations, an alternative to the current Gabbard classification method, and the development of a model to determine the effects of observation rate and correction interval on OE set accuracy. The proposed classification scheme is based on satellite J2 perturbations. Specifically, classes were established based on mean motion, eccentricity, and inclination since J2 perturbation effects are functions of only these elements. Model development began by creating representative sensor observations using a highly accurate orbital propagation model. These observations were compared to predicted observations generated using the NORAD Simplified General Perturbation (SGP4) model and differentially corrected using a Bayes, sequential estimation, algorithm. A 10-run Monte Carlo analysis was performed using this model on 12 satellites using 16 different observation rate/correction interval combinations. An ANOVA and confidence interval analysis of the results show that this model does demonstrate the differences in steady state position error based on varying observation rate and correction interval.

  8. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  9. A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis

    PubMed Central

    Rahman, M. M.; Antani, S. K.; Thoma, G. R.

    2011-01-01

    We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350

  10. Application of enhanced modern structured analysis techniques to Space Station Freedom electric power system requirements

    NASA Technical Reports Server (NTRS)

    Biernacki, John; Juhasz, John; Sadler, Gerald

    1991-01-01

    A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.

  11. Hybrid modeling and empirical analysis of automobile supply chain network

    NASA Astrophysics Data System (ADS)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  12. Logic-Based Models for the Analysis of Cell Signaling Networks†

    PubMed Central

    2010-01-01

    Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks. PMID:20225868

  13. Space station interior noise analysis program

    NASA Technical Reports Server (NTRS)

    Stusnick, E.; Burn, M.

    1987-01-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  14. Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data

    PubMed Central

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.

    2017-01-01

    Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564

  15. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  16. Dairy Analytics and Nutrient Analysis (DANA) Prototype System User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sam Alessi; Dennis Keiser

    2012-10-01

    This document is a user manual for the Dairy Analytics and Nutrient Analysis (DANA) model. DANA provides an analysis of dairy anaerobic digestion technology and allows users to calculate biogas production, co-product valuation, capital costs, expenses, revenue and financial metrics, for user customizable scenarios, dairy and digester types. The model provides results for three anaerobic digester types; Covered Lagoons, Modified Plug Flow, and Complete Mix, and three main energy production technologies; electricity generation, renewable natural gas generation, and compressed natural gas generation. Additional options include different dairy types, bedding types, backend treatment type as well as numerous production, and economicmore » parameters. DANA’s goal is to extend the National Market Value of Anaerobic Digester Products analysis (informa economics, 2012; Innovation Center, 2011) to include a greater and more flexible set of regional digester scenarios and to provide a modular framework for creation of a tool to support farmer and investor needs. Users can set up scenarios from combinations of existing parameters or add new parameters, run the model and view a variety of reports, charts and tables that are automatically produced and delivered over the web interface. DANA is based in the INL’s analysis architecture entitled Generalized Environment for Modeling Systems (GEMS) , which offers extensive collaboration, analysis, and integration opportunities and greatly speeds the ability construct highly scalable web delivered user-oriented decision tools. DANA’s approach uses server-based data processing and web-based user interfaces, rather a client-based spreadsheet approach. This offers a number of benefits over the client-based approach. Server processing and storage can scale up to handle a very large number of scenarios, so that analysis of county, even field level, across the whole U.S., can be performed. Server based databases allow dairy and digester parameters be held and managed in a single managed data repository, while allows users to customize standard values and perform individual analysis. Server-based calculations can be easily extended, versions and upgrades managed, and any changes are immediately available to all users. This user manual describes how to use and/or modify input database tables, run DANA, view and modify reports.« less

  17. Granger causality--statistical analysis under a configural perspective.

    PubMed

    von Eye, Alexander; Wiedermann, Wolfgang; Mun, Eun-Young

    2014-03-01

    The concept of Granger causality can be used to examine putative causal relations between two series of scores. Based on regression models, it is asked whether one series can be considered the cause for the second series. In this article, we propose extending the pool of methods available for testing hypotheses that are compatible with Granger causation by adopting a configural perspective. This perspective allows researchers to assume that effects exist for specific categories only or for specific sectors of the data space, but not for other categories or sectors. Configural Frequency Analysis (CFA) is proposed as the method of analysis from a configural perspective. CFA base models are derived for the exploratory analysis of Granger causation. These models are specified so that they parallel the regression models used for variable-oriented analysis of hypotheses of Granger causation. An example from the development of aggression in adolescence is used. The example shows that only one pattern of change in aggressive impulses over time Granger-causes change in physical aggression against peers.

  18. Analyzing Cyber Security Threats on Cyber-Physical Systems Using Model-Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Kerzhner, Aleksandr; Pomerantz, Marc; Tan, Kymie; Campuzano, Brian; Dinkel, Kevin; Pecharich, Jeremy; Nguyen, Viet; Steele, Robert; Johnson, Bryan

    2015-01-01

    The spectre of cyber attacks on aerospace systems can no longer be ignored given that many of the components and vulnerabilities that have been successfully exploited by the adversary on other infrastructures are the same as those deployed and used within the aerospace environment. An important consideration with respect to the mission/safety critical infrastructure supporting space operations is that an appropriate defensive response to an attack invariably involves the need for high precision and accuracy, because an incorrect response can trigger unacceptable losses involving lives and/or significant financial damage. A highly precise defensive response, considering the typical complexity of aerospace environments, requires a detailed and well-founded understanding of the underlying system where the goal of the defensive response is to preserve critical mission objectives in the presence of adversarial activity. In this paper, a structured approach for modeling aerospace systems is described. The approach includes physical elements, network topology, software applications, system functions, and usage scenarios. We leverage Model-Based Systems Engineering methodology by utilizing the Object Management Group's Systems Modeling Language to represent the system being analyzed and also utilize model transformations to change relevant aspects of the model into specialized analyses. A novel visualization approach is utilized to visualize the entire model as a three-dimensional graph, allowing easier interaction with subject matter experts. The model provides a unifying structure for analyzing the impact of a particular attack or a particular type of attack. Two different example analysis types are demonstrated in this paper: a graph-based propagation analysis based on edge labels, and a graph-based propagation analysis based on node labels.

  19. Optimization of life support systems and their systems reliability

    NASA Technical Reports Server (NTRS)

    Fan, L. T.; Hwang, C. L.; Erickson, L. E.

    1971-01-01

    The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.

  20. Quantitative analysis of factors that affect oil pipeline network accident based on Bayesian networks: A case study in China

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Qin, Ting Xin; Huang, Shuai; Wu, Jian Song; Meng, Xin Yan

    2018-06-01

    Some factors can affect the consequences of oil pipeline accident and their effects should be analyzed to improve emergency preparation and emergency response. Although there are some qualitative analysis models of risk factors' effects, the quantitative analysis model still should be researched. In this study, we introduce a Bayesian network (BN) model of risk factors' effects analysis in an oil pipeline accident case that happened in China. The incident evolution diagram is built to identify the risk factors. And the BN model is built based on the deployment rule for factor nodes in BN and the expert knowledge by Dempster-Shafer evidence theory. Then the probabilities of incident consequences and risk factors' effects can be calculated. The most likely consequences given by this model are consilient with the case. Meanwhile, the quantitative estimations of risk factors' effects may provide a theoretical basis to take optimal risk treatment measures for oil pipeline management, which can be used in emergency preparation and emergency response.

  1. Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism

    NASA Astrophysics Data System (ADS)

    Cao, Zhoujian; Han, Wen-Biao

    2017-08-01

    Binary black hole systems are among the most important sources for gravitational wave detection. They are also good objects for theoretical research for general relativity. A gravitational waveform template is important to data analysis. An effective-one-body-numerical-relativity (EOBNR) model has played an essential role in the LIGO data analysis. For future space-based gravitational wave detection, many binary systems will admit a somewhat orbit eccentricity. At the same time, the eccentric binary is also an interesting topic for theoretical study in general relativity. In this paper, we construct the first eccentric binary waveform model based on an effective-one-body-numerical-relativity framework. Our basic assumption in the model construction is that the involved eccentricity is small. We have compared our eccentric EOBNR model to the circular one used in the LIGO data analysis. We have also tested our eccentric EOBNR model against another recently proposed eccentric binary waveform model; against numerical relativity simulation results; and against perturbation approximation results for extreme mass ratio binary systems. Compared to numerical relativity simulations with an eccentricity as large as about 0.2, the overlap factor for our eccentric EOBNR model is better than 0.98 for all tested cases, including spinless binary and spinning binary, equal mass binary, and unequal mass binary. Hopefully, our eccentric model can be the starting point to develop a faithful template for future space-based gravitational wave detectors.

  2. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models

    NASA Astrophysics Data System (ADS)

    Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea

    2017-12-01

    Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

  3. Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS

    NASA Astrophysics Data System (ADS)

    Barani, T.; Bruschi, E.; Pizzocri, D.; Pastore, G.; Van Uffelen, P.; Williamson, R. L.; Luzzi, L.

    2017-04-01

    The modelling of fission gas behaviour is a crucial aspect of nuclear fuel performance analysis in view of the related effects on the thermo-mechanical performance of the fuel rod, which can be particularly significant during transients. In particular, experimental observations indicate that substantial fission gas release (FGR) can occur on a small time scale during transients (burst release). To accurately reproduce the rapid kinetics of the burst release process in fuel performance calculations, a model that accounts for non-diffusional mechanisms such as fuel micro-cracking is needed. In this work, we present and assess a model for transient fission gas behaviour in oxide fuel, which is applied as an extension of conventional diffusion-based models to introduce the burst release effect. The concept and governing equations of the model are presented, and the sensitivity of results to the newly introduced parameters is evaluated through an analytic sensitivity analysis. The model is assessed for application to integral fuel rod analysis by implementation in two structurally different fuel performance codes: BISON (multi-dimensional finite element code) and TRANSURANUS (1.5D code). Model assessment is based on the analysis of 19 light water reactor fuel rod irradiation experiments from the OECD/NEA IFPE (International Fuel Performance Experiments) database, all of which are simulated with both codes. The results point out an improvement in both the quantitative predictions of integral fuel rod FGR and the qualitative representation of the FGR kinetics with the transient model relative to the canonical, purely diffusion-based models of the codes. The overall quantitative improvement of the integral FGR predictions in the two codes is comparable. Moreover, calculated radial profiles of xenon concentration after irradiation are investigated and compared to experimental data, illustrating the underlying representation of the physical mechanisms of burst release.

  4. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models

    NASA Astrophysics Data System (ADS)

    Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea

    2018-06-01

    Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

  5. Conditional analysis of mixed Poisson processes with baseline counts: implications for trial design and analysis.

    PubMed

    Cook, Richard J; Wei, Wei

    2003-07-01

    The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).

  6. Temporal Drivers of Liking Based on Functional Data Analysis and Non-Additive Models for Multi-Attribute Time-Intensity Data of Fruit Chews.

    PubMed

    Kuesten, Carla; Bi, Jian

    2018-06-03

    Conventional drivers of liking analysis was extended with a time dimension into temporal drivers of liking (TDOL) based on functional data analysis methodology and non-additive models for multiple-attribute time-intensity (MATI) data. The non-additive models, which consider both direct effects and interaction effects of attributes to consumer overall liking, include Choquet integral and fuzzy measure in the multi-criteria decision-making, and linear regression based on variance decomposition. Dynamics of TDOL, i.e., the derivatives of the relative importance functional curves were also explored. Well-established R packages 'fda', 'kappalab' and 'relaimpo' were used in the paper for developing TDOL. Applied use of these methods shows that the relative importance of MATI curves offers insights for understanding the temporal aspects of consumer liking for fruit chews.

  7. A neural network model of metaphor understanding with dynamic interaction based on a statistical language analysis: targeting a human-like model.

    PubMed

    Terai, Asuka; Nakagawa, Masanori

    2007-08-01

    The purpose of this paper is to construct a model that represents the human process of understanding metaphors, focusing specifically on similes of the form an "A like B". Generally speaking, human beings are able to generate and understand many sorts of metaphors. This study constructs the model based on a probabilistic knowledge structure for concepts which is computed from a statistical analysis of a large-scale corpus. Consequently, this model is able to cover the many kinds of metaphors that human beings can generate. Moreover, the model implements the dynamic process of metaphor understanding by using a neural network with dynamic interactions. Finally, the validity of the model is confirmed by comparing model simulations with the results from a psychological experiment.

  8. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.

    PubMed

    Geng, Jun; Yuan, Jingqi

    2010-08-01

    A macrokinetic model employing cybernetic methodology is proposed to describe mycelium growth and penicillin production. Based on the primordial and complete metabolic network of Penicillium chrysogenum found in the literature, the modeling procedure is guided by metabolic flux analysis and cybernetic modeling framework. The abstracted cybernetic model describes the transients of the consumption rates of the substrates, the assimilation rates of intermediates, the biomass growth rate, as well as the penicillin formation rate. Combined with the bioreactor model, these reaction rates are linked with the most important state variables, i.e., mycelium, substrate and product concentrations. Simplex method is used to estimate the sensitive parameters of the model. Finally, validation of the model is carried out with 20 batches of industrial-scale penicillin cultivation.

  9. Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

    PubMed

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie

    2010-10-10

    The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

  10. Trace Assessment for BWR ATWS Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Diamond, D.; Arantxa Cuadra, Gilad Raitses, Arnold Aronson

    2010-04-22

    A TRACE/PARCS input model has been developed in order to be able to analyze anticipated transients without scram (ATWS) in a boiling water reactor. The model is based on one developed previously for the Browns Ferry reactor for doing loss-of-coolant accident analysis. This model was updated by adding the control systems needed for ATWS and a core model using PARCS. The control systems were based on models previously developed for the TRAC-B code. The PARCS model is based on information (e.g., exposure and moderator density (void) history distributions) obtained from General Electric Hitachi and cross sections for GE14 fuel obtainedmore » from an independent source. The model is able to calculate an ATWS, initiated by the closure of main steam isolation valves, with recirculation pump trip, water level control, injection of borated water from the standby liquid control system and actuation of the automatic depres-surization system. The model is not considered complete and recommendations are made on how it should be improved.« less

  11. A novel visual saliency analysis model based on dynamic multiple feature combination strategy

    NASA Astrophysics Data System (ADS)

    Lv, Jing; Ye, Qi; Lv, Wen; Zhang, Libao

    2017-06-01

    The human visual system can quickly focus on a small number of salient objects. This process was known as visual saliency analysis and these salient objects are called focus of attention (FOA). The visual saliency analysis mechanism can be used to extract the salient regions and analyze saliency of object in an image, which is time-saving and can avoid unnecessary costs of computing resources. In this paper, a novel visual saliency analysis model based on dynamic multiple feature combination strategy is introduced. In the proposed model, we first generate multi-scale feature maps of intensity, color and orientation features using Gaussian pyramids and the center-surround difference. Then, we evaluate the contribution of all feature maps to the saliency map according to the area of salient regions and their average intensity, and attach different weights to different features according to their importance. Finally, we choose the largest salient region generated by the region growing method to perform the evaluation. Experimental results show that the proposed model cannot only achieve higher accuracy in saliency map computation compared with other traditional saliency analysis models, but also extract salient regions with arbitrary shapes, which is of great value for the image analysis and understanding.

  12. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    PubMed

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets.

  13. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science

    PubMed Central

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets. PMID:27532883

  14. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  15. To Control False Positives in Gene-Gene Interaction Analysis: Two Novel Conditional Entropy-Based Approaches

    PubMed Central

    Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng

    2013-01-01

    Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984

  16. 10 CFR 503.34 - Inability to comply with applicable environmental requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... environmental compliance of the facility, including an analysis of its ability to meet applicable standards and... will be based solely on an analysis of the petitioner's capacity to physically achieve applicable... exemption. All such analysis must be based on accepted analytical techniques, such as air quality modeling...

  17. 10 CFR 503.34 - Inability to comply with applicable environmental requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... environmental compliance of the facility, including an analysis of its ability to meet applicable standards and... will be based solely on an analysis of the petitioner's capacity to physically achieve applicable... exemption. All such analysis must be based on accepted analytical techniques, such as air quality modeling...

  18. Predictive value of EEG in postanoxic encephalopathy: A quantitative model-based approach.

    PubMed

    Efthymiou, Evdokia; Renzel, Roland; Baumann, Christian R; Poryazova, Rositsa; Imbach, Lukas L

    2017-10-01

    The majority of comatose patients after cardiac arrest do not regain consciousness due to severe postanoxic encephalopathy. Early and accurate outcome prediction is therefore essential in determining further therapeutic interventions. The electroencephalogram is a standardized and commonly available tool used to estimate prognosis in postanoxic patients. The identification of pathological EEG patterns with poor prognosis relies however primarily on visual EEG scoring by experts. We introduced a model-based approach of EEG analysis (state space model) that allows for an objective and quantitative description of spectral EEG variability. We retrospectively analyzed standard EEG recordings in 83 comatose patients after cardiac arrest between 2005 and 2013 in the intensive care unit of the University Hospital Zürich. Neurological outcome was assessed one month after cardiac arrest using the Cerebral Performance Category. For a dynamic and quantitative EEG analysis, we implemented a model-based approach (state space analysis) to quantify EEG background variability independent from visual scoring of EEG epochs. Spectral variability was compared between groups and correlated with clinical outcome parameters and visual EEG patterns. Quantitative assessment of spectral EEG variability (state space velocity) revealed significant differences between patients with poor and good outcome after cardiac arrest: Lower mean velocity in temporal electrodes (T4 and T5) was significantly associated with poor prognostic outcome (p<0.005) and correlated with independently identified visual EEG patterns such as generalized periodic discharges (p<0.02). Receiver operating characteristic (ROC) analysis confirmed the predictive value of lower state space velocity for poor clinical outcome after cardiac arrest (AUC 80.8, 70% sensitivity, 15% false positive rate). Model-based quantitative EEG analysis (state space analysis) provides a novel, complementary marker for prognosis in postanoxic encephalopathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Knowledge-Based Environmental Context Modeling

    NASA Astrophysics Data System (ADS)

    Pukite, P. R.; Challou, D. J.

    2017-12-01

    As we move from the oil-age to an energy infrastructure based on renewables, the need arises for new educational tools to support the analysis of geophysical phenomena and their behavior and properties. Our objective is to present models of these phenomena to make them amenable for incorporation into more comprehensive analysis contexts. Starting at the level of a college-level computer science course, the intent is to keep the models tractable and therefore practical for student use. Based on research performed via an open-source investigation managed by DARPA and funded by the Department of Interior [1], we have adapted a variety of physics-based environmental models for a computer-science curriculum. The original research described a semantic web architecture based on patterns and logical archetypal building-blocks (see figure) well suited for a comprehensive environmental modeling framework. The patterns span a range of features that cover specific land, atmospheric and aquatic domains intended for engineering modeling within a virtual environment. The modeling engine contained within the server relied on knowledge-based inferencing capable of supporting formal terminology (through NASA JPL's Semantic Web for Earth and Environmental Technology (SWEET) ontology and a domain-specific language) and levels of abstraction via integrated reasoning modules. One of the key goals of the research was to simplify models that were ordinarily computationally intensive to keep them lightweight enough for interactive or virtual environment contexts. The breadth of the elements incorporated is well-suited for learning as the trend toward ontologies and applying semantic information is vital for advancing an open knowledge infrastructure. As examples of modeling, we have covered such geophysics topics as fossil-fuel depletion, wind statistics, tidal analysis, and terrain modeling, among others. Techniques from the world of computer science will be necessary to promote efficient use of our renewable natural resources. [1] C2M2L (Component, Context, and Manufacturing Model Library) Final Report, https://doi.org/10.13140/RG.2.1.4956.3604

  20. Parametric Model Based On Imputations Techniques for Partly Interval Censored Data

    NASA Astrophysics Data System (ADS)

    Zyoud, Abdallah; Elfaki, F. A. M.; Hrairi, Meftah

    2017-12-01

    The term ‘survival analysis’ has been used in a broad sense to describe collection of statistical procedures for data analysis. In this case, outcome variable of interest is time until an event occurs where the time to failure of a specific experimental unit might be censored which can be right, left, interval, and Partly Interval Censored data (PIC). In this paper, analysis of this model was conducted based on parametric Cox model via PIC data. Moreover, several imputation techniques were used, which are: midpoint, left & right point, random, mean, and median. Maximum likelihood estimate was considered to obtain the estimated survival function. These estimations were then compared with the existing model, such as: Turnbull and Cox model based on clinical trial data (breast cancer data), for which it showed the validity of the proposed model. Result of data set indicated that the parametric of Cox model proved to be more superior in terms of estimation of survival functions, likelihood ratio tests, and their P-values. Moreover, based on imputation techniques; the midpoint, random, mean, and median showed better results with respect to the estimation of survival function.

  1. Validating Human Behavioral Models for Combat Simulations Using Techniques for the Evaluation of Human Performance

    DTIC Science & Technology

    2004-01-01

    Cognitive Task Analysis Abstract As Department of Defense (DoD) leaders rely more on modeling and simulation to provide information on which to base...capabilities and intent. Cognitive Task Analysis (CTA) Cognitive Task Analysis (CTA) is an extensive/detailed look at tasks and subtasks performed by a...Domain Analysis and Task Analysis: A Difference That Matters. In Cognitive Task Analysis , edited by J. M. Schraagen, S.

  2. Association between glutathione S-transferase P1 Ile (105) Val gene polymorphism and chronic obstructive pulmonary disease: A meta-analysis based on seventeen case-control studies.

    PubMed

    Yang, Lingjing; Li, Xixia; Tong, Xiang; Fan, Hong

    2015-12-01

    Previous studies have shown that glutathione S-transferase P1 (GSTP1) was associated with chronic obstructive pulmonary disease (COPD). However, the association between GSTP1 Ile (105) Val gene polymorphism and COPD remains controversial. To drive a more precise estimation, we performed a meta-analysis based on published case-control studies. An electronic search of PubMed, EMBASE, Cochrane library, Web of Science and China Knowledge Resource Integrated (CNKI) Database for papers on GSTP1 Ile (105) Val gene polymorphism and COPD risk was performed. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the homozygote model, heterozygote model, dominant model, recessive model and an additive mode. Statistical heterogeneity, test of publication bias and sensitivity analysis was performed. The software STATA (Version 13.0) was used data analysis. Overall, seventeen studies with 1892 cases and 2012 controls were included in this meta-analysis. The GSTP1 Ile (105) Val polymorphism showed pooled odds ratios for the homozygote comparison (OR = 1.501, 95%CI [0.862, 2.614]), heterozygote comparison (OR = 0.924, 95%CI [0.733, 1.165]), dominant model (OR = 1.003, 95%CI [0.756, 1.331]), recessive model (OR = 1.510, 95%CI [0.934, 2.439]), and an additive model (OR = 1.072, 95%CI [0.822, 1.398]). In conclusion, the current meta-analysis, based on the most updated information, showed no significant association between GSTP1 Ile (105) Val gene polymorphism and COPD risk in any genetic models. The results of subgroup analysis also showed no significant association between GSTP1 Ile (105) Val gene polymorphism and COPD risk in Asian population and Caucasian population. Further studies involving large populations and careful control with age, sex, ethnicity, and cigarette smoking are greatly needed.

  3. Association between glutathione S-transferase P1 Ile (105) Val gene polymorphism and chronic obstructive pulmonary disease: A meta-analysis based on seventeen case–control studies

    PubMed Central

    Yang, Lingjing; Li, Xixia; Tong, Xiang; Fan, Hong

    2015-01-01

    Introduction Previous studies have shown that glutathione S-transferase P1 (GSTP1) was associated with chronic obstructive pulmonary disease (COPD). However, the association between GSTP1 Ile (105) Val gene polymorphism and COPD remains controversial. To drive a more precise estimation, we performed a meta-analysis based on published case–control studies. Methods An electronic search of PubMed, EMBASE, Cochrane library, Web of Science and China Knowledge Resource Integrated (CNKI) Database for papers on GSTP1 Ile (105) Val gene polymorphism and COPD risk was performed. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the homozygote model, heterozygote model, dominant model, recessive model and an additive mode. Statistical heterogeneity, test of publication bias and sensitivity analysis was performed. The software STATA (Version 13.0) was used data analysis. Results Overall, seventeen studies with 1892 cases and 2012 controls were included in this meta-analysis. The GSTP1 Ile (105) Val polymorphism showed pooled odds ratios for the homozygote comparison (OR = 1.501, 95%CI [0.862, 2.614]), heterozygote comparison (OR = 0.924, 95%CI [0.733, 1.165]), dominant model (OR = 1.003, 95%CI [0.756, 1.331]), recessive model (OR = 1.510, 95%CI [0.934, 2.439]), and an additive model (OR = 1.072, 95%CI [0.822, 1.398]). Conclusions In conclusion, the current meta-analysis, based on the most updated information, showed no significant association between GSTP1 Ile (105) Val gene polymorphism and COPD risk in any genetic models. The results of subgroup analysis also showed no significant association between GSTP1 Ile (105) Val gene polymorphism and COPD risk in Asian population and Caucasian population. Further studies involving large populations and careful control with age, sex, ethnicity, and cigarette smoking are greatly needed. PMID:26504746

  4. New approaches in agent-based modeling of complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2017-12-01

    Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

  5. A Conceptual Model for Multidimensional Analysis of Documents

    NASA Astrophysics Data System (ADS)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  6. mRNA translation and protein synthesis: an analysis of different modelling methodologies and a new PBN based approach

    PubMed Central

    2014-01-01

    Background mRNA translation involves simultaneous movement of multiple ribosomes on the mRNA and is also subject to regulatory mechanisms at different stages. Translation can be described by various codon-based models, including ODE, TASEP, and Petri net models. Although such models have been extensively used, the overlap and differences between these models and the implications of the assumptions of each model has not been systematically elucidated. The selection of the most appropriate modelling framework, and the most appropriate way to develop coarse-grained/fine-grained models in different contexts is not clear. Results We systematically analyze and compare how different modelling methodologies can be used to describe translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution matches those of numerical simulation from other methods and acts as a complementary tool to analytical approximations and simulations. The advantages and limitations of various codon-based models are compared, and illustrated by examples with real biological complexities such as slow codons, premature termination and feedback regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters. Furthermore, the update rule affects the steady state solution. Conclusions The codon-based models are based on different levels of abstraction. Our analysis suggests that a multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are robust with respect to the choice of modelling methodology, and when (and why) important differences may arise. This approach also allows for an optimal use of analysis tools, which is especially important when additional complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting translation, and results in an improved predictive framework for applications in systems and synthetic biology. PMID:24576337

  7. Estimating Sobol Sensitivity Indices Using Correlations

    EPA Science Inventory

    Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...

  8. GEO Collisional Risk Assessment Based on Analysis of NASA-WISE Data and Modeling

    DTIC Science & Technology

    2015-10-18

    GEO Collisional Risk Assessment Based on Analysis of NASA -WISE Data and Modeling Jeremy Murray Krezan1, Samantha Howard1, Phan D. Dao1, Derek...Surka2 1AFRL Space Vehicles Directorate,2Applied Technology Associates Incorporated From December 2009 through 2011 the NASA Wide-Field Infrared...of known debris. The NASA -WISE GEO belt debris population adds potentially thousands previously uncataloged objects. This paper describes

  9. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    DTIC Science & Technology

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  10. Cost-effectiveness Analysis in R Using a Multi-state Modeling Survival Analysis Framework: A Tutorial.

    PubMed

    Williams, Claire; Lewsey, James D; Briggs, Andrew H; Mackay, Daniel F

    2017-05-01

    This tutorial provides a step-by-step guide to performing cost-effectiveness analysis using a multi-state modeling approach. Alongside the tutorial, we provide easy-to-use functions in the statistics package R. We argue that this multi-state modeling approach using a package such as R has advantages over approaches where models are built in a spreadsheet package. In particular, using a syntax-based approach means there is a written record of what was done and the calculations are transparent. Reproducing the analysis is straightforward as the syntax just needs to be run again. The approach can be thought of as an alternative way to build a Markov decision-analytic model, which also has the option to use a state-arrival extended approach. In the state-arrival extended multi-state model, a covariate that represents patients' history is included, allowing the Markov property to be tested. We illustrate the building of multi-state survival models, making predictions from the models and assessing fits. We then proceed to perform a cost-effectiveness analysis, including deterministic and probabilistic sensitivity analyses. Finally, we show how to create 2 common methods of visualizing the results-namely, cost-effectiveness planes and cost-effectiveness acceptability curves. The analysis is implemented entirely within R. It is based on adaptions to functions in the existing R package mstate to accommodate parametric multi-state modeling that facilitates extrapolation of survival curves.

  11. Analysis of rocket engine injection combustion processes

    NASA Technical Reports Server (NTRS)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  12. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  13. The impact of design-based modeling instruction on seventh graders' spatial abilities and model-based argumentation

    NASA Astrophysics Data System (ADS)

    McConnell, William J.

    Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed models to better assist them in scientific argumentation over paper drawing models. In fact, when given a choice, students rarely used paper drawing to assist in argument. There was also a difference in model utility between the two different model types. Participants explicitly used 3D printed models to complete gestural modeling, while participants rarely looked at 2D models when involved in gestural modeling. This study's findings added to current theory dealing with the varied spatial challenges involved in different modes of expressed models. This study found that depth, symmetry and the manipulation of perspectives are typically spatial challenges students will attend to using CAD while they will typically ignore them when drawing using paper and pencil. This study also revealed a major difference in model-based argument in a design-based instruction context as opposed to model-based argument in a typical science classroom context. In the context of design-based instruction, data revealed that design process is an important part of model-based argument. Due to the importance of design process in model-based argumentation in this context, trusted methods of argument analysis, like the coding system of the IASCA, was found lacking in many respects. Limitations and recommendations for further research were also presented.

  14. 77 FR 25904 - Acequinocyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    .../oppefed1/models/water/index.htm . Based on the Pesticide Root Zone Model/Exposure Analysis Modeling System... Classification System (NAICS) codes have been provided to assist you and others in determining whether this... comments received in response to the notice of filing. Based upon review of the data supporting the...

  15. No Control Genes Required: Bayesian Analysis of qRT-PCR Data

    PubMed Central

    Matz, Mikhail V.; Wright, Rachel M.; Scott, James G.

    2013-01-01

    Background Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. Results In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the “classic” analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Conclusions Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R. PMID:23977043

  16. Reasserting the Fundamentals of Systems Analysis and Design through the Rudiments of Artifacts

    ERIC Educational Resources Information Center

    Jafar, Musa; Babb, Jeffry

    2012-01-01

    In this paper we present an artifacts-based approach to teaching a senior level Object-Oriented Analysis and Design course. Regardless of the systems development methodology and process model, and in order to facilitate communication across the business modeling, analysis, design, construction and deployment disciplines, we focus on (1) the…

  17. Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory

    ERIC Educational Resources Information Center

    Muthen, Bengt; Asparouhov, Tihomir

    2012-01-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…

  18. How Stationary Are the Internal Tides in a High-Resolution Global Ocean Circulation Model?

    DTIC Science & Technology

    2014-05-12

    Egbert et al., 1994] and that the model global internal tide amplitudes compare well with an altimetric-based tidal analysis [Ray and Byrne, 2010]. The... analysis [Foreman, 1977] applied to the HYCOM total SSH. We will follow Shriver et al. [2012], analyzing the tides along satellite altimeter tracks...spots,’’ the comparison between the model and altimetric analysis is not as good due, in part, to two prob- lems, errors in the model barotropic tides and

  19. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  20. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.

  1. Modified optimal control pilot model for computer-aided design and analysis

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Schmidt, David K.

    1992-01-01

    This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.

  2. Seismic slope-performance analysis: from hazard map to decision support system

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.; Ho, Carlton L.

    1999-01-01

    In response to the growing recognition of engineers and decision-makers of the regional effects of earthquake-induced landslides, this paper presents a general approach to conducting seismic landslide zonation, based on the popular Newmark's sliding block analogy for modeling coherent landslides. Four existing models based on the sliding block analogy are compared. The comparison shows that the models forecast notably different levels of slope performance. Considering this discrepancy along with the limitations of static maps as a decision tool, a spatial decision support system (SDSS) for seismic landslide analysis is proposed, which will support investigations over multiple scales for any number of earthquake scenarios and input conditions. Most importantly, the SDSS will allow use of any seismic landslide analysis model and zonation approach. Developments associated with the SDSS will produce an object-oriented model for encapsulating spatial data, an object-oriented specification to allow construction of models using modular objects, and a direct-manipulation, dynamic user-interface that adapts to the particular seismic landslide model configuration.

  3. Creating system engineering products with executable models in a model-based engineering environment

    NASA Astrophysics Data System (ADS)

    Karban, Robert; Dekens, Frank G.; Herzig, Sebastian; Elaasar, Maged; Jankevičius, Nerijus

    2016-08-01

    Applying systems engineering across the life-cycle results in a number of products built from interdependent sources of information using different kinds of system level analysis. This paper focuses on leveraging the Executable System Engineering Method (ESEM) [1] [2], which automates requirements verification (e.g. power and mass budget margins and duration analysis of operational modes) using executable SysML [3] models. The particular value proposition is to integrate requirements, and executable behavior and performance models for certain types of system level analysis. The models are created with modeling patterns that involve structural, behavioral and parametric diagrams, and are managed by an open source Model Based Engineering Environment (named OpenMBEE [4]). This paper demonstrates how the ESEM is applied in conjunction with OpenMBEE to create key engineering products (e.g. operational concept document) for the Alignment and Phasing System (APS) within the Thirty Meter Telescope (TMT) project [5], which is under development by the TMT International Observatory (TIO) [5].

  4. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    NASA Astrophysics Data System (ADS)

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-12-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.

  5. A Systemic Cause Analysis Model for Human Performance Technicians

    ERIC Educational Resources Information Center

    Sostrin, Jesse

    2011-01-01

    This article presents a systemic, research-based cause analysis model for use in the field of human performance technology (HPT). The model organizes the most prominent barriers to workplace learning and performance into a conceptual framework that explains and illuminates the architecture of these barriers that exist within the fabric of everyday…

  6. Mathematical Modelling Research in Turkey: A Content Analysis Study

    ERIC Educational Resources Information Center

    Çelik, H. Coskun

    2017-01-01

    The aim of the present study was to examine the mathematical modelling studies done between 2004 and 2015 in Turkey and to reveal their tendencies. Forty-nine studies were selected using purposeful sampling based on the term, "mathematical modelling" with Higher Education Academic Search Engine. They were analyzed with content analysis.…

  7. Understanding Parental Monitoring through Analysis of Monitoring Episodes in Context

    ERIC Educational Resources Information Center

    Hayes, Louise; Hudson, Alan; Matthews, Jan

    2007-01-01

    A model of monitoring interactions was proposed that is based on behavioural principles and places episodic parent-adolescent interactions at the centre of analysis for monitoring. The process-monitoring model contends that monitoring is an interactive process between parents and their adolescents, nested within a social setting. In the model it…

  8. The Tuition Advance Fund: An Analysis Prepared for Boston University.

    ERIC Educational Resources Information Center

    Botsford, Keith

    Three models for anlayzing the Tuition Advance Fund (TAF) are examined. The three models are: projections by the Institute for Demographic and Economic Studies (IDES), projections by Data Resources, Inc. (DRI), and the Tuition Advance Fund Simulation (TAFSIM) models from Boston University. Analysis of the TAF is based on enrollment, price, and…

  9. AR(p) -based detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramirez, J.; Rodriguez, E.

    2018-07-01

    Autoregressive models are commonly used for modeling time-series from nature, economics and finance. This work explored simple autoregressive AR(p) models to remove long-term trends in detrended fluctuation analysis (DFA). Crude oil prices and bitcoin exchange rate were considered, with the former corresponding to a mature market and the latter to an emergent market. Results showed that AR(p) -based DFA performs similar to traditional DFA. However, the former DFA provides information on stability of long-term trends, which is valuable for understanding and quantifying the dynamics of complex time series from financial systems.

  10. Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin

    USGS Publications Warehouse

    Leaf, Andrew T.; Fienen, Michael N.; Hunt, Randall J.; Buchwald, Cheryl A.

    2015-11-23

    Finally, a new data-worth analysis of potential new monitoring-well locations was performed by using the model. The relative worth of new measurements was evaluated based on their ability to increase confidence in model predictions of groundwater levels and base flows at 35 locations, under the condition of a proposed open-pit iron mine. Results of the new data-worth analysis, and other inputs and outputs from the Bad River model, are available through an online dynamic web mapping service at (http://wim.usgs.gov/badriver/).

  11. Space-time latent component modeling of geo-referenced health data.

    PubMed

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  12. Structural analysis consultation using artificial intelligence

    NASA Technical Reports Server (NTRS)

    Melosh, R. J.; Marcal, P. V.; Berke, L.

    1978-01-01

    The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.

  13. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models.

    PubMed

    Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj

    2016-10-01

    Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.

  14. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  15. Application of State Analysis and Goal-Based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, J. Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the behavior of states and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  16. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals.

    PubMed

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R; Guerra-Hernandez, Erick I; Almanza-Ojeda, Dora L; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J; Ibarra-Manzano, Mario A

    2016-03-05

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.

  17. Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals

    PubMed Central

    Batres-Mendoza, Patricia; Montoro-Sanjose, Carlos R.; Guerra-Hernandez, Erick I.; Almanza-Ojeda, Dora L.; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene J.; Ibarra-Manzano, Mario A.

    2016-01-01

    Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states. PMID:26959029

  18. A PLSPM-Based Test Statistic for Detecting Gene-Gene Co-Association in Genome-Wide Association Study with Case-Control Design

    PubMed Central

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809

  19. A PLSPM-based test statistic for detecting gene-gene co-association in genome-wide association study with case-control design.

    PubMed

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.

  20. A quantitative analysis of the F18 flight control system

    NASA Technical Reports Server (NTRS)

    Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann

    1993-01-01

    This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.

  1. Spatial analysis of relative humidity during ungauged periods in a mountainous region

    NASA Astrophysics Data System (ADS)

    Um, Myoung-Jin; Kim, Yeonjoo

    2017-08-01

    Although atmospheric humidity influences environmental and agricultural conditions, thereby influencing plant growth, human health, and air pollution, efforts to develop spatial maps of atmospheric humidity using statistical approaches have thus far been limited. This study therefore aims to develop statistical approaches for inferring the spatial distribution of relative humidity (RH) for a mountainous island, for which data are not uniformly available across the region. A multiple regression analysis based on various mathematical models was used to identify the optimal model for estimating monthly RH by incorporating not only temperature but also location and elevation. Based on the regression analysis, we extended the monthly RH data from weather stations to cover the ungauged periods when no RH observations were available. Then, two different types of station-based data, the observational data and the data extended via the regression model, were used to form grid-based data with a resolution of 100 m. The grid-based data that used the extended station-based data captured the increasing RH trend along an elevation gradient. Furthermore, annual RH values averaged over the regions were examined. Decreasing temporal trends were found in most cases, with magnitudes varying based on the season and region.

  2. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  3. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation

    NASA Technical Reports Server (NTRS)

    Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.

    1974-01-01

    The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.

  4. Equivalent-circuit model for stacked slot-based 2D periodic arrays of arbitrary geometry for broadband analysis

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2018-03-01

    The analysis of the transmission and reflection spectra of stacked slot-based 2D periodic structures of arbitrary geometry and the ability to devise and control their electromagnetic responses have been a matter of extensive research for many decades. The purpose of this paper is to develop an equivalent Π circuit model based on the transmission-line theory and Floquet harmonic interactions, for broadband and short longitudinal period analysis. The proposed circuit model overcomes the limits of identical and symmetrical configurations imposed by the even/odd excitation approach, exploiting both the circuit topology of a single 2D periodic array of apertures and the ABCD matrix formalism. The transmission spectra obtained through the equivalent-circuit model have been validated by comparison with full-wave simulations carried out with a finite-element commercial electromagnetic solver. This allowed for a physical insight into the spectral and angular responses of multilayer devices with arbitrary aperture shapes, guaranteeing a noticeable saving of computational resources.

  5. PSAMM: A Portable System for the Analysis of Metabolic Models

    PubMed Central

    Steffensen, Jon Lund; Dufault-Thompson, Keith; Zhang, Ying

    2016-01-01

    The genome-scale models of metabolic networks have been broadly applied in phenotype prediction, evolutionary reconstruction, community functional analysis, and metabolic engineering. Despite the development of tools that support individual steps along the modeling procedure, it is still difficult to associate mathematical simulation results with the annotation and biological interpretation of metabolic models. In order to solve this problem, here we developed a Portable System for the Analysis of Metabolic Models (PSAMM), a new open-source software package that supports the integration of heterogeneous metadata in model annotations and provides a user-friendly interface for the analysis of metabolic models. PSAMM is independent of paid software environments like MATLAB, and all its dependencies are freely available for academic users. Compared to existing tools, PSAMM significantly reduced the running time of constraint-based analysis and enabled flexible settings of simulation parameters using simple one-line commands. The integration of heterogeneous, model-specific annotation information in PSAMM is achieved with a novel format of YAML-based model representation, which has several advantages, such as providing a modular organization of model components and simulation settings, enabling model version tracking, and permitting the integration of multiple simulation problems. PSAMM also includes a number of quality checking procedures to examine stoichiometric balance and to identify blocked reactions. Applying PSAMM to 57 models collected from current literature, we demonstrated how the software can be used for managing and simulating metabolic models. We identified a number of common inconsistencies in existing models and constructed an updated model repository to document the resolution of these inconsistencies. PMID:26828591

  6. A reformulation of the Cost Plus Net Value Change (C+NVC) model of wildfire economics

    Treesearch

    Geoffrey H. Donovan; Douglas B. Rideout

    2003-01-01

    The Cost plus Net Value Change (C+NVC) model provides the theoretical foundation for wildland fire economics and provides the basis for the National Fire Management Analysis System (NFMAS). The C+NVC model is based on the earlier least Cost plus Loss model (LC+L) expressed by Sparhawk (1925). Mathematical and graphical analysis of the LC+L model illustrates two errors...

  7. Short-term forecasting of meteorological time series using Nonparametric Functional Data Analysis (NPFDA)

    NASA Astrophysics Data System (ADS)

    Curceac, S.; Ternynck, C.; Ouarda, T.

    2015-12-01

    Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed

  8. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue.

    PubMed

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided.

  9. Significance of the model considering mixed grain-size for inverse analysis of turbidites

    NASA Astrophysics Data System (ADS)

    Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.

    2016-12-01

    A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The uniform grain-size model often reaches to local optimum condition that is significantly different from true solution. In conclusion, we propose a method of optimization based on the model considering mixed grain-size particles, and show its application to examples of turbidites in the Kiyosumi Formation, Boso Peninsula, Japan.

  10. VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data

    PubMed Central

    Daunizeau, Jean; Adam, Vincent; Rigoux, Lionel

    2014-01-01

    This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization. PMID:24465198

  11. Regression-based model of skin diffuse reflectance for skin color analysis

    NASA Astrophysics Data System (ADS)

    Tsumura, Norimichi; Kawazoe, Daisuke; Nakaguchi, Toshiya; Ojima, Nobutoshi; Miyake, Yoichi

    2008-11-01

    A simple regression-based model of skin diffuse reflectance is developed based on reflectance samples calculated by Monte Carlo simulation of light transport in a two-layered skin model. This reflectance model includes the values of spectral reflectance in the visible spectra for Japanese women. The modified Lambert Beer law holds in the proposed model with a modified mean free path length in non-linear density space. The averaged RMS and maximum errors of the proposed model were 1.1 and 3.1%, respectively, in the above range.

  12. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: a tutorial.

    PubMed

    Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J

    2014-02-01

    Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model (Markov) that needs the parameterization of transition probabilities, and only has summary KM plots available.

  13. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    NASA Astrophysics Data System (ADS)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  14. Enriching step-based product information models to support product life-cycle activities

    NASA Astrophysics Data System (ADS)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  15. Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model: A Web-based program designed to evaluate the cost-effectiveness of disease management programs in heart failure.

    PubMed

    Reed, Shelby D; Neilson, Matthew P; Gardner, Matthew; Li, Yanhong; Briggs, Andrew H; Polsky, Daniel E; Graham, Felicia L; Bowers, Margaret T; Paul, Sara C; Granger, Bradi B; Schulman, Kevin A; Whellan, David J; Riegel, Barbara; Levy, Wayne C

    2015-11-01

    Heart failure disease management programs can influence medical resource use and quality-adjusted survival. Because projecting long-term costs and survival is challenging, a consistent and valid approach to extrapolating short-term outcomes would be valuable. We developed the Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model, a Web-based simulation tool designed to integrate data on demographic, clinical, and laboratory characteristics; use of evidence-based medications; and costs to generate predicted outcomes. Survival projections are based on a modified Seattle Heart Failure Model. Projections of resource use and quality of life are modeled using relationships with time-varying Seattle Heart Failure Model scores. The model can be used to evaluate parallel-group and single-cohort study designs and hypothetical programs. Simulations consist of 10,000 pairs of virtual cohorts used to generate estimates of resource use, costs, survival, and incremental cost-effectiveness ratios from user inputs. The model demonstrated acceptable internal and external validity in replicating resource use, costs, and survival estimates from 3 clinical trials. Simulations to evaluate the cost-effectiveness of heart failure disease management programs across 3 scenarios demonstrate how the model can be used to design a program in which short-term improvements in functioning and use of evidence-based treatments are sufficient to demonstrate good long-term value to the health care system. The Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model provides researchers and providers with a tool for conducting long-term cost-effectiveness analyses of disease management programs in heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Surrogate models for efficient stability analysis of brake systems

    NASA Astrophysics Data System (ADS)

    Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques

    2015-07-01

    This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.

  17. Modeling intelligent adversaries for terrorism risk assessment: some necessary conditions for adversary models.

    PubMed

    Guikema, Seth

    2012-07-01

    Intelligent adversary modeling has become increasingly important for risk analysis, and a number of different approaches have been proposed for incorporating intelligent adversaries in risk analysis models. However, these approaches are based on a range of often-implicit assumptions about the desirable properties of intelligent adversary models. This "Perspective" paper aims to further risk analysis for situations involving intelligent adversaries by fostering a discussion of the desirable properties for these models. A set of four basic necessary conditions for intelligent adversary models is proposed and discussed. These are: (1) behavioral accuracy to the degree possible, (2) computational tractability to support decision making, (3) explicit consideration of uncertainty, and (4) ability to gain confidence in the model. It is hoped that these suggested necessary conditions foster discussion about the goals and assumptions underlying intelligent adversary modeling in risk analysis. © 2011 Society for Risk Analysis.

  18. Web-Based Model Visualization Tools to Aid in Model Optimization and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Alder, J.; van Griensven, A.; Meixner, T.

    2003-12-01

    Individuals applying hydrologic models have a need for a quick easy to use visualization tools to permit them to assess and understand model performance. We present here the Interactive Hydrologic Modeling (IHM) visualization toolbox. The IHM utilizes high-speed Internet access, the portability of the web and the increasing power of modern computers to provide an online toolbox for quick and easy model result visualization. This visualization interface allows for the interpretation and analysis of Monte-Carlo and batch model simulation results. Often times a given project will generate several thousands or even hundreds of thousands simulations. This large number of simulations creates a challenge for post-simulation analysis. IHM's goal is to try to solve this problem by loading all of the data into a database with a web interface that can dynamically generate graphs for the user according to their needs. IHM currently supports: a global samples statistics table (e.g. sum of squares error, sum of absolute differences etc.), top ten simulations table and graphs, graphs of an individual simulation using time step data, objective based dotty plots, threshold based parameter cumulative density function graphs (as used in the regional sensitivity analysis of Spear and Hornberger) and 2D error surface graphs of the parameter space. IHM is ideal for the simplest bucket model to the largest set of Monte-Carlo model simulations with a multi-dimensional parameter and model output space. By using a web interface, IHM offers the user complete flexibility in the sense that they can be anywhere in the world using any operating system. IHM can be a time saving and money saving alternative to spending time producing graphs or conducting analysis that may not be informative or being forced to purchase or use expensive and proprietary software. IHM is a simple, free, method of interpreting and analyzing batch model results, and is suitable for novice to expert hydrologic modelers.

  19. Load Model Verification, Validation and Calibration Framework by Statistical Analysis on Field Data

    NASA Astrophysics Data System (ADS)

    Jiao, Xiangqing; Liao, Yuan; Nguyen, Thai

    2017-11-01

    Accurate load models are critical for power system analysis and operation. A large amount of research work has been done on load modeling. Most of the existing research focuses on developing load models, while little has been done on developing formal load model verification and validation (V&V) methodologies or procedures. Most of the existing load model validation is based on qualitative rather than quantitative analysis. In addition, not all aspects of model V&V problem have been addressed by the existing approaches. To complement the existing methods, this paper proposes a novel load model verification and validation framework that can systematically and more comprehensively examine load model's effectiveness and accuracy. Statistical analysis, instead of visual check, quantifies the load model's accuracy, and provides a confidence level of the developed load model for model users. The analysis results can also be used to calibrate load models. The proposed framework can be used as a guidance to systematically examine load models for utility engineers and researchers. The proposed method is demonstrated through analysis of field measurements collected from a utility system.

  20. Text mining factor analysis (TFA) in green tea patent data

    NASA Astrophysics Data System (ADS)

    Rahmawati, Sela; Suprijadi, Jadi; Zulhanif

    2017-03-01

    Factor analysis has become one of the most widely used multivariate statistical procedures in applied research endeavors across a multitude of domains. There are two main types of analyses based on factor analysis: Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Both EFA and CFA aim to observed relationships among a group of indicators with a latent variable, but they differ fundamentally, a priori and restrictions made to the factor model. This method will be applied to patent data technology sector green tea to determine the development technology of green tea in the world. Patent analysis is useful in identifying the future technological trends in a specific field of technology. Database patent are obtained from agency European Patent Organization (EPO). In this paper, CFA model will be applied to the nominal data, which obtain from the presence absence matrix. While doing processing, analysis CFA for nominal data analysis was based on Tetrachoric matrix. Meanwhile, EFA model will be applied on a title from sector technology dominant. Title will be pre-processing first using text mining analysis.

  1. COBRA ATD minefield detection model initial performance analysis

    NASA Astrophysics Data System (ADS)

    Holmes, V. Todd; Kenton, Arthur C.; Hilton, Russell J.; Witherspoon, Ned H.; Holloway, John H., Jr.

    2000-08-01

    A statistical performance analysis of the USMC Coastal Battlefield Reconnaissance and Analysis (COBRA) Minefield Detection (MFD) Model has been performed in support of the COBRA ATD Program under execution by the Naval Surface Warfare Center/Dahlgren Division/Coastal Systems Station . This analysis uses the Veridian ERIM International MFD model from the COBRA Sensor Performance Evaluation and Computational Tools for Research Analysis modeling toolbox and a collection of multispectral mine detection algorithm response distributions for mines and minelike clutter objects. These mine detection response distributions were generated form actual COBRA ATD test missions over littoral zone minefields. This analysis serves to validate both the utility and effectiveness of the COBRA MFD Model as a predictive MFD performance too. COBRA ATD minefield detection model algorithm performance results based on a simulate baseline minefield detection scenario are presented, as well as result of a MFD model algorithm parametric sensitivity study.

  2. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  3. Numerical model a graphene component for the sensing of weak electromagnetic signals

    NASA Astrophysics Data System (ADS)

    Nasswettrova, A.; Fiala, P.; Nešpor, D.; Drexler, P.; Steinbauer, M.

    2015-05-01

    The paper discusses a numerical model and provides an analysis of a graphene coaxial line suitable for sub-micron sensors of magnetic fields. In relation to the presented concept, the target areas and disciplines include biology, medicine, prosthetics, and microscopic solutions for modern actuators or SMART elements. The proposed numerical model is based on an analysis of a periodic structure with high repeatability, and it exploits a graphene polymer having a basic dimension in nanometers. The model simulates the actual random motion in the structure as the source of spurious signals and considers the pulse propagation along the structure; furthermore, the model also examines whether and how the pulse will be distorted at the beginning of the line, given the various ending versions. The results of the analysis are necessary for further use of the designed sensing devices based on graphene structures.

  4. Quantum random oracle model for quantum digital signature

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Lei, Qi; Liu, Jianwei

    2016-10-01

    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  5. Study on SOC wavelet analysis for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.

  6. Some aspects of the anemia of chronic disorders modeled and analyzed by petri net based approach.

    PubMed

    Formanowicz, Dorota; Sackmann, Andrea; Kozak, Adam; Błażewicz, Jacek; Formanowicz, Piotr

    2011-06-01

    Anemia of chronic disorders is a very important phenomenon and iron is a crucial factor of this complex process. To better understand this process and its influence on some other factors we have built a mathematical model of the human body iron homeostasis, which possibly most exactly would reflect the metabolism of iron in the case of anemia and inflammation. The model has been formulated in the language of Petri net theory, which allows for its simulation and precise analysis. The obtained results of the analysis of the model's behavior, concerning the influence of anemia and inflammation on the transferrin receptors, and hepcidin concentration changes are the valuable complements to the knowledge following from clinical research. This analysis is one of the first attempts to investigate properties and behavior of a not fully understood biological system on a basis of its Petri net based model.

  7. Construction of dynamic stochastic simulation models using knowledge-based techniques

    NASA Technical Reports Server (NTRS)

    Williams, M. Douglas; Shiva, Sajjan G.

    1990-01-01

    Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).

  8. [Causal analysis approaches in epidemiology].

    PubMed

    Dumas, O; Siroux, V; Le Moual, N; Varraso, R

    2014-02-01

    Epidemiological research is mostly based on observational studies. Whether such studies can provide evidence of causation remains discussed. Several causal analysis methods have been developed in epidemiology. This paper aims at presenting an overview of these methods: graphical models, path analysis and its extensions, and models based on the counterfactual approach, with a special emphasis on marginal structural models. Graphical approaches have been developed to allow synthetic representations of supposed causal relationships in a given problem. They serve as qualitative support in the study of causal relationships. The sufficient-component cause model has been developed to deal with the issue of multicausality raised by the emergence of chronic multifactorial diseases. Directed acyclic graphs are mostly used as a visual tool to identify possible confounding sources in a study. Structural equations models, the main extension of path analysis, combine a system of equations and a path diagram, representing a set of possible causal relationships. They allow quantifying direct and indirect effects in a general model in which several relationships can be tested simultaneously. Dynamic path analysis further takes into account the role of time. The counterfactual approach defines causality by comparing the observed event and the counterfactual event (the event that would have been observed if, contrary to the fact, the subject had received a different exposure than the one he actually received). This theoretical approach has shown limits of traditional methods to address some causality questions. In particular, in longitudinal studies, when there is time-varying confounding, classical methods (regressions) may be biased. Marginal structural models have been developed to address this issue. In conclusion, "causal models", though they were developed partly independently, are based on equivalent logical foundations. A crucial step in the application of these models is the formulation of causal hypotheses, which will be a basis for all methodological choices. Beyond this step, statistical analysis tools recently developed offer new possibilities to delineate complex relationships, in particular in life course epidemiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Web-based applications for building, managing and analysing kinetic models of biological systems.

    PubMed

    Lee, Dong-Yup; Saha, Rajib; Yusufi, Faraaz Noor Khan; Park, Wonjun; Karimi, Iftekhar A

    2009-01-01

    Mathematical modelling and computational analysis play an essential role in improving our capability to elucidate the functions and characteristics of complex biological systems such as metabolic, regulatory and cell signalling pathways. The modelling and concomitant simulation render it possible to predict the cellular behaviour of systems under various genetically and/or environmentally perturbed conditions. This motivates systems biologists/bioengineers/bioinformaticians to develop new tools and applications, allowing non-experts to easily conduct such modelling and analysis. However, among a multitude of systems biology tools developed to date, only a handful of projects have adopted a web-based approach to kinetic modelling. In this report, we evaluate the capabilities and characteristics of current web-based tools in systems biology and identify desirable features, limitations and bottlenecks for further improvements in terms of usability and functionality. A short discussion on software architecture issues involved in web-based applications and the approaches taken by existing tools is included for those interested in developing their own simulation applications.

  10. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.

    PubMed

    Li, Haiyun; Wang, Zheng

    2006-01-01

    In this paper, a 3D geometric model of the intervertebral and lumbar disks has been presented, which integrated the spine CT and MRI data-based anatomical structure. Based on the geometric model, a 3D finite element model of an L1-L2 segment was created. Loads, which simulate the pressure from above were applied to the FEM, while a boundary condition describing the relative L1-L2 displacement is imposed on the FEM to account for 3D physiological states. The simulation calculation illustrates the stress and strain distribution and deformation of the spine. The method has two characteristics compared to previous studies: first, the finite element model of the lumbar are based on the data directly derived from medical images such as CTs and MRIs. Second, the result of analysis will be more accurate than using the data of geometric parameters. The FEM provides a promising tool in clinical diagnosis and for optimizing individual therapy in the intervertebral disc herniation.

  11. Global Sensitivity Analysis for Process Identification under Model Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.

    2015-12-01

    The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.

  12. On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models.

    PubMed

    Tang, Yongqiang

    2017-12-01

    Control-based pattern mixture models (PMM) and delta-adjusted PMMs are commonly used as sensitivity analyses in clinical trials with non-ignorable dropout. These PMMs assume that the statistical behavior of outcomes varies by pattern in the experimental arm in the imputation procedure, but the imputed data are typically analyzed by a standard method such as the primary analysis model. In the multiple imputation (MI) inference, Rubin's variance estimator is generally biased when the imputation and analysis models are uncongenial. One objective of the article is to quantify the bias of Rubin's variance estimator in the control-based and delta-adjusted PMMs for longitudinal continuous outcomes. These PMMs assume the same observed data distribution as the mixed effects model for repeated measures (MMRM). We derive analytic expressions for the MI treatment effect estimator and the associated Rubin's variance in these PMMs and MMRM as functions of the maximum likelihood estimator from the MMRM analysis and the observed proportion of subjects in each dropout pattern when the number of imputations is infinite. The asymptotic bias is generally small or negligible in the delta-adjusted PMM, but can be sizable in the control-based PMM. This indicates that the inference based on Rubin's rule is approximately valid in the delta-adjusted PMM. A simple variance estimator is proposed to ensure asymptotically valid MI inferences in these PMMs, and compared with the bootstrap variance. The proposed method is illustrated by the analysis of an antidepressant trial, and its performance is further evaluated via a simulation study. © 2017, The International Biometric Society.

  13. Bivariate categorical data analysis using normal linear conditional multinomial probability model.

    PubMed

    Sun, Bingrui; Sutradhar, Brajendra

    2015-02-10

    Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.

  14. 10 CFR 431.173 - Requirements applicable to all manufacturers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and... is based on engineering or statistical analysis, computer simulation or modeling, or other analytic... method or methods used; (B) The mathematical model, the engineering or statistical analysis, computer...

  15. Sonographically guided intrasheath percutaneous release of the first annular pulley for trigger digits, part 2: randomized comparative study of the economic impact of 3 surgical models.

    PubMed

    Rojo-Manaute, Jose Manuel; Capa-Grasa, Alberto; Del Cerro-Gutiérrez, Miguel; Martínez, Manuel Villanueva; Chana-Rodríguez, Francisco; Martín, Javier Vaquero

    2012-03-01

    Trigger digit surgery can be performed by an open approach using classic open surgery, by a wide-awake approach, or by sonographically guided first annular pulley release in day surgery and office-based ambulatory settings. Our goal was to perform a turnover and economic analysis of 3 surgical models. Two studies were conducted. The first was a turnover analysis of 57 patients allocated 4:4:1 into the surgical models: sonographically guided-office-based, classic open-day surgery, and wide-awake-office-based. Regression analysis for the turnover time was monitored for assessing stability (R(2) < .26). Second, on the basis of turnover times and hospital tariff revenues, we calculated the total costs, income to cost ratio, opportunity cost, true cost, true net income (primary variable), break-even points for sonographically guided fixed costs, and 1-way analysis for identifying thresholds among alternatives. Thirteen sonographically guided-office-based patients were withdrawn because of a learning curve influence. The wide-awake (n = 6) and classic (n = 26) models were compared to the last 25% of the sonographically guided group (n = 12), which showed significantly less mean turnover times, income to cost ratios 2.52 and 10.9 times larger, and true costs 75.48 and 20.92 times lower, respectively. A true net income break-even point happened after 19.78 sonographically guided-office-based procedures. Sensitivity analysis showed a threshold between wide-awake and last 25% sonographically guided true costs if the last 25% sonographically guided turnover times reached 65.23 and 27.81 minutes, respectively. However, this trial was underpowered. This trial comparing surgical models was underpowered and is inconclusive on turnover times; however, the sonographically guided-office-based approach showed shorter turnover times and better economic results with a quick recoup of the costs of sonographically assisted surgery.

  16. Error rate information in attention allocation pilot models

    NASA Technical Reports Server (NTRS)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  17. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  18. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  19. Latent Class Analysis of Incomplete Data via an Entropy-Based Criterion

    PubMed Central

    Larose, Chantal; Harel, Ofer; Kordas, Katarzyna; Dey, Dipak K.

    2016-01-01

    Latent class analysis is used to group categorical data into classes via a probability model. Model selection criteria then judge how well the model fits the data. When addressing incomplete data, the current methodology restricts the imputation to a single, pre-specified number of classes. We seek to develop an entropy-based model selection criterion that does not restrict the imputation to one number of clusters. Simulations show the new criterion performing well against the current standards of AIC and BIC, while a family studies application demonstrates how the criterion provides more detailed and useful results than AIC and BIC. PMID:27695391

  20. Safety Assessment of Dangerous Goods Transport Enterprise Based on the Relative Entropy Aggregation in Group Decision Making Model

    PubMed Central

    Wu, Jun; Li, Chengbing; Huo, Yueying

    2014-01-01

    Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises. PMID:25477954

  1. Modeling of short fiber reinforced injection moulded composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.

    2012-09-01

    A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.

  2. Safety assessment of dangerous goods transport enterprise based on the relative entropy aggregation in group decision making model.

    PubMed

    Wu, Jun; Li, Chengbing; Huo, Yueying

    2014-01-01

    Safety of dangerous goods transport is directly related to the operation safety of dangerous goods transport enterprise. Aiming at the problem of the high accident rate and large harm in dangerous goods logistics transportation, this paper took the group decision making problem based on integration and coordination thought into a multiagent multiobjective group decision making problem; a secondary decision model was established and applied to the safety assessment of dangerous goods transport enterprise. First of all, we used dynamic multivalue background and entropy theory building the first level multiobjective decision model. Secondly, experts were to empower according to the principle of clustering analysis, and combining with the relative entropy theory to establish a secondary rally optimization model based on relative entropy in group decision making, and discuss the solution of the model. Then, after investigation and analysis, we establish the dangerous goods transport enterprise safety evaluation index system. Finally, case analysis to five dangerous goods transport enterprises in the Inner Mongolia Autonomous Region validates the feasibility and effectiveness of this model for dangerous goods transport enterprise recognition, which provides vital decision making basis for recognizing the dangerous goods transport enterprises.

  3. ASME V\\&V challenge problem: Surrogate-based V&V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beghini, Lauren L.; Hough, Patricia D.

    2015-12-18

    The process of verification and validation can be resource intensive. From the computational model perspective, the resource demand typically arises from long simulation run times on multiple cores coupled with the need to characterize and propagate uncertainties. In addition, predictive computations performed for safety and reliability analyses have similar resource requirements. For this reason, there is a tradeoff between the time required to complete the requisite studies and the fidelity or accuracy of the results that can be obtained. At a high level, our approach is cast within a validation hierarchy that provides a framework in which we perform sensitivitymore » analysis, model calibration, model validation, and prediction. The evidence gathered as part of these activities is mapped into the Predictive Capability Maturity Model to assess credibility of the model used for the reliability predictions. With regard to specific technical aspects of our analysis, we employ surrogate-based methods, primarily based on polynomial chaos expansions and Gaussian processes, for model calibration, sensitivity analysis, and uncertainty quantification in order to reduce the number of simulations that must be done. The goal is to tip the tradeoff balance to improving accuracy without increasing the computational demands.« less

  4. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  5. Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam

    2016-10-01

    In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.

  6. Spreadsheet-based engine data analysis tool - user's guide.

    DOT National Transportation Integrated Search

    2016-07-01

    This record refers to both the spreadsheet tool - Fleet Equipment Performance Measurement Preventive Maintenance Model: Spreadsheet-Based Engine Data Analysis Tool, http://ntl.bts.gov/lib/60000/60000/60007/0-6626-P1_Final.xlsm - and its accompanying ...

  7. Structure-based Markov random field model for representing evolutionary constraints on functional sites.

    PubMed

    Jeong, Chan-Seok; Kim, Dongsup

    2016-02-24

    Elucidating the cooperative mechanism of interconnected residues is an important component toward understanding the biological function of a protein. Coevolution analysis has been developed to model the coevolutionary information reflecting structural and functional constraints. Recently, several methods have been developed based on a probabilistic graphical model called the Markov random field (MRF), which have led to significant improvements for coevolution analysis; however, thus far, the performance of these models has mainly been assessed by focusing on the aspect of protein structure. In this study, we built an MRF model whose graphical topology is determined by the residue proximity in the protein structure, and derived a novel positional coevolution estimate utilizing the node weight of the MRF model. This structure-based MRF method was evaluated for three data sets, each of which annotates catalytic site, allosteric site, and comprehensively determined functional site information. We demonstrate that the structure-based MRF architecture can encode the evolutionary information associated with biological function. Furthermore, we show that the node weight can more accurately represent positional coevolution information compared to the edge weight. Lastly, we demonstrate that the structure-based MRF model can be reliably built with only a few aligned sequences in linear time. The results show that adoption of a structure-based architecture could be an acceptable approximation for coevolution modeling with efficient computation complexity.

  8. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.

    PubMed

    Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng

    2015-04-24

    Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.

  9. TREX13 Data Analysis/Modeling

    DTIC Science & Technology

    2015-09-30

    TREX13 data analysis /modeling Dajun (DJ) Tang Applied Physics Laboratory, University of Washington 1013 NE 40th Street, Seattle, WA 98105...accuracy in those predictions. With extensive TREX13 data in hand, the objective now shifts to realizing the long-term goals using data analysis and...be quantitatively addressed. The approach to analysis can be summarized into the following steps: 1. Based on measurements, assess to what degree

  10. Model-based image analysis of a tethered Brownian fibre for shear stress sensing

    PubMed Central

    2017-01-01

    The measurement of fluid dynamic shear stress acting on a biologically relevant surface is a challenging problem, particularly in the complex environment of, for example, the vasculature. While an experimental method for the direct detection of wall shear stress via the imaging of a synthetic biology nanorod has recently been developed, the data interpretation so far has been limited to phenomenological random walk modelling, small-angle approximation, and image analysis techniques which do not take into account the production of an image from a three-dimensional subject. In this report, we develop a mathematical and statistical framework to estimate shear stress from rapid imaging sequences based firstly on stochastic modelling of the dynamics of a tethered Brownian fibre in shear flow, and secondly on a novel model-based image analysis, which reconstructs fibre positions by solving the inverse problem of image formation. This framework is tested on experimental data, providing the first mechanistically rational analysis of the novel assay. What follows further develops the established theory for an untethered particle in a semi-dilute suspension, which is of relevance to, for example, the study of Brownian nanowires without flow, and presents new ideas in the field of multi-disciplinary image analysis. PMID:29212755

  11. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  12. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.

    PubMed

    Borbély, Bence J; Szolgay, Péter

    2017-01-17

    Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.

  13. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine.

    PubMed

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-02-06

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human-machine-environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines.

  14. A 3D Human-Machine Integrated Design and Analysis Framework for Squat Exercises with a Smith Machine

    PubMed Central

    Lee, Haerin; Jung, Moonki; Lee, Ki-Kwang; Lee, Sang Hun

    2017-01-01

    In this paper, we propose a three-dimensional design and evaluation framework and process based on a probabilistic-based motion synthesis algorithm and biomechanical analysis system for the design of the Smith machine and squat training programs. Moreover, we implemented a prototype system to validate the proposed framework. The framework consists of an integrated human–machine–environment model as well as a squat motion synthesis system and biomechanical analysis system. In the design and evaluation process, we created an integrated model in which interactions between a human body and machine or the ground are modeled as joints with constraints at contact points. Next, we generated Smith squat motion using the motion synthesis program based on a Gaussian process regression algorithm with a set of given values for independent variables. Then, using the biomechanical analysis system, we simulated joint moments and muscle activities from the input of the integrated model and squat motion. We validated the model and algorithm through physical experiments measuring the electromyography (EMG) signals, ground forces, and squat motions as well as through a biomechanical simulation of muscle forces. The proposed approach enables the incorporation of biomechanics in the design process and reduces the need for physical experiments and prototypes in the development of training programs and new Smith machines. PMID:28178184

  15. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine

    DTIC Science & Technology

    2016-09-01

    are suitable. To model the behavior of the engine, an autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas... time series model of engine speed and exhaust gas temperature is derived. The lag length for ARDL is determined by whitening of residuals using the...15 B. REGRESSION ANALYSIS ....................................................................15 1. Time Series Analysis

  16. Reachability analysis of real-time systems using time Petri nets.

    PubMed

    Wang, J; Deng, Y; Xu, G

    2000-01-01

    Time Petri nets (TPNs) are a popular Petri net model for specification and verification of real-time systems. A fundamental and most widely applied method for analyzing Petri nets is reachability analysis. The existing technique for reachability analysis of TPNs, however, is not suitable for timing property verification because one cannot derive end-to-end delay in task execution, an important issue for time-critical systems, from the reachability tree constructed using the technique. In this paper, we present a new reachability based analysis technique for TPNs for timing property analysis and verification that effectively addresses the problem. Our technique is based on a concept called clock-stamped state class (CS-class). With the reachability tree generated based on CS-classes, we can directly compute the end-to-end time delay in task execution. Moreover, a CS-class can be uniquely mapped to a traditional state class based on which the conventional reachability tree is constructed. Therefore, our CS-class-based analysis technique is more general than the existing technique. We show how to apply this technique to timing property verification of the TPN model of a command and control (C2) system.

  17. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2017-01-01

    This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...

  18. Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.

    2009-01-01

    A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.

  19. Instructional Misconceptions in Acid-Base Equilibria: An Analysis from a History and Philosophy of Science Perspective

    ERIC Educational Resources Information Center

    Kousathana, Margarita; Demerouti, Margarita; Tsaparlis, Georgios

    2005-01-01

    The implications of history and philosophy of chemistry are explored in the context of chemical models. Models and modeling provide the context through which epistemological aspects of chemistry can be promoted. In this work, the development of ideas and models about acids and bases (with emphasis on the Arrhenius, the Bronsted-Lowry, and the…

  20. Contributions of the Model of Modelling Diagram to the Learning of Ionic Bonding: Analysis of a Case Study

    ERIC Educational Resources Information Center

    Mendonca, Paula Cristina Cardoso; Justi, Rosaria

    2011-01-01

    Current proposals for science education recognise the importance of students' involvement in activities aimed at favouring the understanding of science as a human, dynamic and non-linear construct. Modelling-based teaching is one of the alternatives through which to address such issues. Modelling-based teaching activities for ionic bonding were…

  1. An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations

    ERIC Educational Resources Information Center

    Chan, Lap Ki; Cheng, Maurice M. W.

    2011-01-01

    Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…

  2. Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2016-01-01

    This paper presents a simplified analytical model and balanced design approach for modeling lightweight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical...

  3. A Model of Reading Teaching for University EFL Students: Need Analysis and Model Design

    ERIC Educational Resources Information Center

    Hamra, Arifuddin; Syatriana, Eny

    2012-01-01

    This study designed a model of teaching reading for university EFL students based on the English curriculum at the Faculty of Languages and Literature and the concept of the team-based learning in order to improve the reading comprehension of the students. What kind of teaching model can help students to improve their reading comprehension? The…

  4. A comprehensive approach to identify dominant controls of the behavior of a land surface-hydrology model across various hydroclimatic conditions

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al

    2017-04-01

    Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.

  5. Is risk analysis scientific?

    PubMed

    Hansson, Sven Ove; Aven, Terje

    2014-07-01

    This article discusses to what extent risk analysis is scientific in view of a set of commonly used definitions and criteria. We consider scientific knowledge to be characterized by its subject matter, its success in developing the best available knowledge in its fields of study, and the epistemic norms and values that guide scientific investigations. We proceed to assess the field of risk analysis according to these criteria. For this purpose, we use a model for risk analysis in which science is used as a base for decision making on risks, which covers the five elements evidence, knowledge base, broad risk evaluation, managerial review and judgment, and the decision; and that relates these elements to the domains experts and decisionmakers, and to the domains fact-based or value-based. We conclude that risk analysis is a scientific field of study, when understood as consisting primarily of (i) knowledge about risk-related phenomena, processes, events, etc., and (ii) concepts, theories, frameworks, approaches, principles, methods and models to understand, assess, characterize, communicate, and manage risk, in general and for specific applications (the instrumental part). © 2014 Society for Risk Analysis.

  6. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    DOE PAGES

    King, Zachary A.; Lu, Justin; Drager, Andreas; ...

    2015-10-17

    In this study, genome-scale metabolic models are mathematically structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scalemore » metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.« less

  7. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    PubMed Central

    King, Zachary A.; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A.; Ebrahim, Ali; Palsson, Bernhard O.; Lewis, Nathan E.

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data. PMID:26476456

  8. A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight Gas Turbine Engine Diagnostics

    DTIC Science & Technology

    2001-04-05

    Margin (ADM) and (ii) Fault Detection Margin (FDM). Key Words: ANFIS, Engine Health Monitoring , Gas Path Analysis, and Stochastic Analysis Adaptive Network...The paper illustrates the application of a hybrid Stochastic- Fuzzy -Inference Model-Based System (StoFIS) to fault diagnostics and prognostics for both...operational history monitored on-line by the engine health management (EHM) system. To capture the complex functional relationships between different

  9. Fusing Quantitative Requirements Analysis with Model-based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven

    2006-01-01

    A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.

  10. Physically-based modelling of high magnitude torrent events with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wing-Yuen Chow, Candace; Ramirez, Jorge; Zimmermann, Markus; Keiler, Margreth

    2017-04-01

    High magnitude torrent events are associated with the rapid propagation of vast quantities of water and available sediment downslope where human settlements may be established. Assessing the vulnerability of built structures to these events is a part of consequence analysis, where hazard intensity is related to the degree of loss sustained. The specific contribution of the presented work describes a procedure simulate these damaging events by applying physically-based modelling and to include uncertainty information about the simulated results. This is a first step in the development of vulnerability curves based on several intensity parameters (i.e. maximum velocity, sediment deposition depth and impact pressure). The investigation process begins with the collection, organization and interpretation of detailed post-event documentation and photograph-based observation data of affected structures in three sites that exemplify the impact of highly destructive mudflows and flood occurrences on settlements in Switzerland. Hazard intensity proxies are then simulated with the physically-based FLO-2D model (O'Brien et al., 1993). Prior to modelling, global sensitivity analysis is conducted to support a better understanding of model behaviour, parameterization and the quantification of uncertainties (Song et al., 2015). The inclusion of information describing the degree of confidence in the simulated results supports the credibility of vulnerability curves developed with the modelled data. First, key parameters are identified and selected based on literature review. Truncated a priori ranges of parameter values were then defined by expert solicitation. Local sensitivity analysis is performed based on manual calibration to provide an understanding of the parameters relevant to the case studies of interest. Finally, automated parameter estimation is performed to comprehensively search for optimal parameter combinations and associated values, which are evaluated using the observed data collected in the first stage of the investigation. O'Brien, J.S., Julien, P.Y., Fullerton, W. T., 1993. Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2): 244-261.
 Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu C., 2015. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical frameworks, Journal of Hydrology 523: 739-757.

  11. Mental Models about Seismic Effects: Students' Profile Based Comparative Analysis

    ERIC Educational Resources Information Center

    Moutinho, Sara; Moura, Rui; Vasconcelos, Clara

    2016-01-01

    Nowadays, meaningful learning takes a central role in science education and is based in mental models that allow the representation of the real world by individuals. Thus, it is essential to analyse the student's mental models by promoting an easier reconstruction of scientific knowledge, by allowing them to become consistent with the curricular…

  12. Predictor-Based Model Reference Adaptive Control

    NASA Technical Reports Server (NTRS)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  13. The Effect on Non-Normal Distributions on the Integrated Moving Average Model of Time-Series Analysis.

    ERIC Educational Resources Information Center

    Doerann-George, Judith

    The Integrated Moving Average (IMA) model of time series, and the analysis of intervention effects based on it, assume random shocks which are normally distributed. To determine the robustness of the analysis to violations of this assumption, empirical sampling methods were employed. Samples were generated from three populations; normal,…

  14. Assessing School Work Culture: A Higher-Order Analysis and Strategy.

    ERIC Educational Resources Information Center

    Johnson, William L.; Johnson, Annabel M.; Zimmerman, Kurt J.

    This paper reviews a work culture productivity model and reports the development of a work culture instrument based on the culture productivity model. Higher order principal components analysis was used to assess work culture, and a third-order factor analysis shows how the first-order factors group into higher-order factors. The school work…

  15. The Controlling Function of the Agent in the Analysis of Question-Response Relationships.

    ERIC Educational Resources Information Center

    Bierschenk, Inger

    In contrast to traditional linguistic analysis, a model based on the empirical agent is presented and tested. A text is regarded as an intentionally produced cognitive process. The analysis has to take the agent (perspective) into account to facilitate an adequate processing of its objectives (viewpoints). Moreover, the model is surface-oriented…

  16. Stress analysis of 27% scale model of AH-64 main rotor hub

    NASA Technical Reports Server (NTRS)

    Hodges, R. V.

    1985-01-01

    Stress analysis of an AH-64 27% scale model rotor hub was performed. Component loads and stresses were calculated based upon blade root loads and motions. The static and fatigue analysis indicates positive margins of safety in all components checked. Using the format developed here, the hub can be stress checked for future application.

  17. Variogram Analysis of Response surfaces (VARS): A New Framework for Global Sensitivity Analysis of Earth and Environmental Systems Models

    NASA Astrophysics Data System (ADS)

    Razavi, S.; Gupta, H. V.

    2015-12-01

    Earth and environmental systems models (EESMs) are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. Complexity and dimensionality are manifested by introducing many different factors in EESMs (i.e., model parameters, forcings, boundary conditions, etc.) to be identified. Sensitivity Analysis (SA) provides an essential means for characterizing the role and importance of such factors in producing the model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to 'variogram analysis', that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are limiting cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.

  18. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  19. Model Based Mission Assurance: Emerging Opportunities for Robotic Systems

    NASA Technical Reports Server (NTRS)

    Evans, John W.; DiVenti, Tony

    2016-01-01

    The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).

  20. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    PubMed Central

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035

  1. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  2. An Operational Model for the Prediction of Jet Blast

    DOT National Transportation Integrated Search

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  3. Can the concept of fundamental and realized niches be applied to the distribution of dominant phytoplankton in the global ocean?

    NASA Astrophysics Data System (ADS)

    Dowell, M.; Moore, T.; Follows, M.; Dutkiewicz, S.

    2006-12-01

    In recent years there has been significant progress both in the use of satellite ocean colour remote sensing and coupled hydrodynamic biological models for producing maps of different dominant phytoplankton groups in the global ocean. In parallel to these initiatives, there is ongoing research largely following on from Alan Longhurst's seminal work on defining a template of distinct ecological and biogeochemical provinces for the oceans based on their physical and biochemical characteristics. For these products and models to be of maximum use in their subsequent inclusion in re-analysis and climate scale models, there is a need to understand how the "observed" distributions of dominant phytoplankton (realized niche) coincide with of the environmental constraints in which they occur (fundamental niche). In the current paper, we base our analysis on the recently published results on the distribution of dominant phytoplankton species at global scale, resulting both from satellite and model analysis. Furthermore, we will present research in defining biogeochemical provinces using satellite and model data inputs and a fuzzy logic based approach. This will be compared with ongoing modelling efforts, which include competitive exclusion and therefore compatible with the definition of the realized ecological niche, to define the emergent distribution of dominant phytoplankton species. Ultimately we investigate the coherence of these two distinct approaches in studying phytoplankton distributions and propose the significance of this in the context of modelling and analysis at various scales.

  4. The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - A government overview. [of rotorcraft technology development using finite element method

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.

  5. Evaluating performances of simplified physically based landslide susceptibility models.

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale

    2015-04-01

    Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.

  6. A Risk Stratification Model for Lung Cancer Based on Gene Coexpression Network and Deep Learning

    PubMed Central

    2018-01-01

    Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could predict patients' survival independent of clinicopathological variables. Five networks were significantly associated with patients' survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for input of the model. The output of the model was significantly associated with patients' survival in two test sets and training set (p < 0.00001, p < 0.0001 and p = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated with patients' prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science for prognosis prediction. PMID:29581968

  7. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models.

    PubMed

    Elsawah, Sondoss; Guillaume, Joseph H A; Filatova, Tatiana; Rook, Josefine; Jakeman, Anthony J

    2015-03-15

    This paper aims to contribute to developing better ways for incorporating essential human elements in decision making processes for modelling of complex socio-ecological systems. It presents a step-wise methodology for integrating perceptions of stakeholders (qualitative) into formal simulation models (quantitative) with the ultimate goal of improving understanding and communication about decision making in complex socio-ecological systems. The methodology integrates cognitive mapping and agent based modelling. It cascades through a sequence of qualitative/soft and numerical methods comprising: (1) Interviews to elicit mental models; (2) Cognitive maps to represent and analyse individual and group mental models; (3) Time-sequence diagrams to chronologically structure the decision making process; (4) All-encompassing conceptual model of decision making, and (5) computational (in this case agent-based) Model. We apply the proposed methodology (labelled ICTAM) in a case study of viticulture irrigation in South Australia. Finally, we use strengths-weakness-opportunities-threats (SWOT) analysis to reflect on the methodology. Results show that the methodology leverages the use of cognitive mapping to capture the richness of decision making and mental models, and provides a combination of divergent and convergent analysis methods leading to the construction of an Agent Based Model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  9. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Minding the Cyber-Physical Gap: Model-Based Analysis and Mitigation of Systemic Perception-Induced Failure.

    PubMed

    Mordecai, Yaniv; Dori, Dov

    2017-07-17

    The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.

  11. Decision curve analysis assessing the clinical benefit of NMP22 in the detection of bladder cancer: secondary analysis of a prospective trial.

    PubMed

    Barbieri, Christopher E; Cha, Eugene K; Chromecki, Thomas F; Dunning, Allison; Lotan, Yair; Svatek, Robert S; Scherr, Douglas S; Karakiewicz, Pierre I; Sun, Maxine; Mazumdar, Madhu; Shariat, Shahrokh F

    2012-03-01

    • To employ decision curve analysis to determine the impact of nuclear matrix protein 22 (NMP22) on clinical decision making in the detection of bladder cancer using data from a prospective trial. • The study included 1303 patients at risk for bladder cancer who underwent cystoscopy, urine cytology and measurement of urinary NMP22 levels. • We constructed several prediction models to estimate risk of bladder cancer. The base model was generated using patient characteristics (age, gender, race, smoking and haematuria); cytology and NMP22 were added to the base model to determine effects on predictive accuracy. • Clinical net benefit was calculated by summing the benefits and subtracting the harms and weighting these by the threshold probability at which a patient or clinician would opt for cystoscopy. • In all, 72 patients were found to have bladder cancer (5.5%). In univariate analyses, NMP22 was the strongest predictor of bladder cancer presence (predictive accuracy 71.3%), followed by age (67.5%) and cytology (64.3%). • In multivariable prediction models, NMP22 improved the predictive accuracy of the base model by 8.2% (area under the curve 70.2-78.4%) and of the base model plus cytology by 4.2% (area under the curve 75.9-80.1%). • Decision curve analysis revealed that adding NMP22 to other models increased clinical benefit, particularly at higher threshold probabilities. • NMP22 is a strong, independent predictor of bladder cancer. • Addition of NMP22 improves the accuracy of standard predictors by a statistically and clinically significant margin. • Decision curve analysis suggests that integration of NMP22 into clinical decision making helps avoid unnecessary cystoscopies, with minimal increased risk of missing a cancer. © 2011 THE AUTHORS. BJU INTERNATIONAL © 2011 BJU INTERNATIONAL.

  12. Intelligent Decisions Need Intelligent Choice of Models and Data - a Bayesian Justifiability Analysis for Models with Vastly Different Complexity

    NASA Astrophysics Data System (ADS)

    Nowak, W.; Schöniger, A.; Wöhling, T.; Illman, W. A.

    2016-12-01

    Model-based decision support requires justifiable models with good predictive capabilities. This, in turn, calls for a fine adjustment between predictive accuracy (small systematic model bias that can be achieved with rather complex models), and predictive precision (small predictive uncertainties that can be achieved with simpler models with fewer parameters). The implied complexity/simplicity trade-off depends on the availability of informative data for calibration. If not available, additional data collection can be planned through optimal experimental design. We present a model justifiability analysis that can compare models of vastly different complexity. It rests on Bayesian model averaging (BMA) to investigate the complexity/performance trade-off dependent on data availability. Then, we disentangle the complexity component from the performance component. We achieve this by replacing actually observed data by realizations of synthetic data predicted by the models. This results in a "model confusion matrix". Based on this matrix, the modeler can identify the maximum model complexity that can be justified by the available (or planned) amount and type of data. As a side product, the matrix quantifies model (dis-)similarity. We apply this analysis to aquifer characterization via hydraulic tomography, comparing four models with a vastly different number of parameters (from a homogeneous model to geostatistical random fields). As a testing scenario, we consider hydraulic tomography data. Using subsets of these data, we determine model justifiability as a function of data set size. The test case shows that geostatistical parameterization requires a substantial amount of hydraulic tomography data to be justified, while a zonation-based model can be justified with more limited data set sizes. The actual model performance (as opposed to model justifiability), however, depends strongly on the quality of prior geological information.

  13. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling

    NASA Technical Reports Server (NTRS)

    Gabel, R.; Lang, P.; Reed, D.

    1993-01-01

    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.

  14. BCM: toolkit for Bayesian analysis of Computational Models using samplers.

    PubMed

    Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A

    2016-10-21

    Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.

  15. Analysis of microarray leukemia data using an efficient MapReduce-based K-nearest-neighbor classifier.

    PubMed

    Kumar, Mukesh; Rath, Nitish Kumar; Rath, Santanu Kumar

    2016-04-01

    Microarray-based gene expression profiling has emerged as an efficient technique for classification, prognosis, diagnosis, and treatment of cancer. Frequent changes in the behavior of this disease generates an enormous volume of data. Microarray data satisfies both the veracity and velocity properties of big data, as it keeps changing with time. Therefore, the analysis of microarray datasets in a small amount of time is essential. They often contain a large amount of expression, but only a fraction of it comprises genes that are significantly expressed. The precise identification of genes of interest that are responsible for causing cancer are imperative in microarray data analysis. Most existing schemes employ a two-phase process such as feature selection/extraction followed by classification. In this paper, various statistical methods (tests) based on MapReduce are proposed for selecting relevant features. After feature selection, a MapReduce-based K-nearest neighbor (mrKNN) classifier is also employed to classify microarray data. These algorithms are successfully implemented in a Hadoop framework. A comparative analysis is done on these MapReduce-based models using microarray datasets of various dimensions. From the obtained results, it is observed that these models consume much less execution time than conventional models in processing big data. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A One-System Theory Which is Not Propositional.

    PubMed

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2009-04-01

    We argue that the propositional and link-based approaches to human contingency learning represent different levels of analysis because propositional reasoning requires a basis, which is plausibly provided by a link-based architecture. Moreover, in their attempt to compare two general classes of models (link-based and propositional), Mitchell et al. have referred to only two generic models and ignore the large variety of different models within each class.

  17. Research on monocentric model of urbanization by agent-based simulation

    NASA Astrophysics Data System (ADS)

    Xue, Ling; Yang, Kaizhong

    2008-10-01

    Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.

  18. Bayesian-network-based safety risk assessment for steel construction projects.

    PubMed

    Leu, Sou-Sen; Chang, Ching-Miao

    2013-05-01

    There are four primary accident types at steel building construction (SC) projects: falls (tumbles), object falls, object collapse, and electrocution. Several systematic safety risk assessment approaches, such as fault tree analysis (FTA) and failure mode and effect criticality analysis (FMECA), have been used to evaluate safety risks at SC projects. However, these traditional methods ineffectively address dependencies among safety factors at various levels that fail to provide early warnings to prevent occupational accidents. To overcome the limitations of traditional approaches, this study addresses the development of a safety risk-assessment model for SC projects by establishing the Bayesian networks (BN) based on fault tree (FT) transformation. The BN-based safety risk-assessment model was validated against the safety inspection records of six SC building projects and nine projects in which site accidents occurred. The ranks of posterior probabilities from the BN model were highly consistent with the accidents that occurred at each project site. The model accurately provides site safety-management abilities by calculating the probabilities of safety risks and further analyzing the causes of accidents based on their relationships in BNs. In practice, based on the analysis of accident risks and significant safety factors, proper preventive safety management strategies can be established to reduce the occurrence of accidents on SC sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Probabilistic Finite Element Analysis & Design Optimization for Structural Designs

    NASA Astrophysics Data System (ADS)

    Deivanayagam, Arumugam

    This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.

  20. IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    NASA Astrophysics Data System (ADS)

    Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.

    2013-12-01

    Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities using ground based observations. The developed IMPACT framework is an open research framework enabling the exchange and testing of a variety of atmospheric density models, orbital propagators, drag coefficient models, ground based observations, etc. and study their effect on conjunctions and uncertainty predictions. The framework is based on a modern service-oriented architecture controlled by a web interface and providing 3D visualizations. The goal of this project is to revolutionize the ability to monitor and track space objects during highly disturbed space weather conditions, provide suitable forecasts for satellite drag conditions and conjunction analysis, and enable the exchange of models, codes, and data in an open research environment. We will present capabilities and results of the IMPACT framework including a demo of the control interface and visualizations.

Top