Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer
NASA Technical Reports Server (NTRS)
Broderick, Daniel
2012-01-01
This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.
State and Parameter Estimation for a Coupled Ocean--Atmosphere Model
NASA Astrophysics Data System (ADS)
Ghil, M.; Kondrashov, D.; Sun, C.
2006-12-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trampedach, Regner; Asplund, Martin; Collet, Remo
2013-05-20
Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less
Recent advances in non-LTE stellar atmosphere models
NASA Astrophysics Data System (ADS)
Sander, Andreas A. C.
2017-11-01
In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.
NASA Astrophysics Data System (ADS)
Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.
2016-12-01
This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.
[Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].
Lu, Yu; Li, Xiang-Ru; Yang, Tan
2014-11-01
It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.
Modeling the atmospheric chemistry of TICs
NASA Astrophysics Data System (ADS)
Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John
2009-05-01
An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Troutman, P. A.
1984-01-01
The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments.
NASA Astrophysics Data System (ADS)
Montzka, S. A.; Butler, J. H.; Dutton, G.; Thompson, T. M.; Hall, B.; Mondeel, D. J.; Elkins, J. W.
2005-05-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
The bulk composition of Titan's atmosphere.
NASA Technical Reports Server (NTRS)
Trafton, L.
1972-01-01
Consideration of the physical constraints for Titan's atmosphere leads to a model which describes the bulk composition of the atmosphere in terms of observable parameters. Intermediate-resolution photometric scans of both Saturn and Titan, including scans of the Q branch of Titan's methane band, constrain these parameters in such a way that the model indicates the presence of another important atmospheric gas, namely, another bulk constituent or a significant thermal opacity. Further progress in determining the composition and state of Titan's atmosphere requires additional observations to eliminate present ambiguities. For this purpose, particular observational targets are suggested.
Local Infrasound Variability Related to In Situ Atmospheric Observation
NASA Astrophysics Data System (ADS)
Kim, Keehoon; Rodgers, Arthur; Seastrand, Douglas
2018-04-01
Local infrasound is widely used to constrain source parameters of near-surface events (e.g., chemical explosions and volcanic eruptions). While atmospheric conditions are critical to infrasound propagation and source parameter inversion, local atmospheric variability is often ignored by assuming homogeneous atmospheres, and their impact on the source inversion uncertainty has never been accounted for due to the lack of quantitative understanding of infrasound variability. We investigate atmospheric impacts on local infrasound propagation by repeated explosion experiments with a dense acoustic network and in situ atmospheric measurement. We perform full 3-D waveform simulations with local atmospheric data and numerical weather forecast model to quantify atmosphere-dependent infrasound variability and address the advantage and restriction of local weather data/numerical weather model for sound propagation simulation. Numerical simulations with stochastic atmosphere models also showed nonnegligible influence of atmospheric heterogeneity on infrasound amplitude, suggesting an important role of local turbulence.
Climate modeling for Yamal territory using supercomputer atmospheric circulation model ECHAM5-wiso
NASA Astrophysics Data System (ADS)
Denisova, N. Y.; Gribanov, K. G.; Werner, M.; Zakharov, V. I.
2015-11-01
Dependences of monthly means of regional averages of model atmospheric parameters on initial and boundary condition remoteness in the past are the subject of the study. We used atmospheric general circulation model ECHAM5-wiso for simulation of monthly means of regional averages of climate parameters for Yamal region and different periods of premodeling. Time interval was varied from several months to 12 years. We present dependences of model monthly means of regional averages of surface temperature, 2 m air temperature and humidity for December of 2000 on duration of premodeling. Comparison of these results with reanalysis data showed that best coincidence with true parameters could be reached if duration of pre-modelling is approximately 10 years.
Dependence of tropical cyclone development on coriolis parameter: A theoretical model
NASA Astrophysics Data System (ADS)
Deng, Liyuan; Li, Tim; Bi, Mingyu; Liu, Jia; Peng, Melinda
2018-03-01
A simple theoretical model was formulated to investigate how tropical cyclone (TC) intensification depends on the Coriolis parameter. The theoretical framework includes a two-layer free atmosphere and an Ekman boundary layer at the bottom. The linkage between the free atmosphere and the boundary layer is through the Ekman pumping vertical velocity in proportion to the vorticity at the top of the boundary layer. The closure of this linear system assumes a simple relationship between the free atmosphere diabatic heating and the boundary layer moisture convergence. Under a set of realistic atmospheric parameter values, the model suggests that the most preferred latitude for TC development is around 5° without considering other factors. The theoretical result is confirmed by high-resolution WRF model simulations in a zero-mean flow and a constant SST environment on an f -plane with different Coriolis parameters. Given an initially balanced weak vortex, the TC-like vortex intensifies most rapidly at the reference latitude of 5°. Thus, the WRF model simulations confirm the f-dependent characteristics of TC intensification rate as suggested by the theoretical model.
NASA Astrophysics Data System (ADS)
Riedel, S.; Gege, P.; Schneider, M.; Pfug, B.; Oppelt, N.
2016-08-01
Atmospheric correction is a critical step and can be a limiting factor in the extraction of aquatic ecosystem parameters from remote sensing data of coastal and lake waters. Atmospheric correction models commonly in use for open ocean water and land surfaces can lead to large errors when applied to hyperspectral images taken from satellite or aircraft. The main problems arise from uncertainties in aerosol parameters and neglecting the adjacency effect, which originates from multiple scattering of upwelling radiance from the surrounding land. To better understand the challenges for developing an atmospheric correction model suitable for lakes, we compare atmospheric parameters derived from Sentinel- 2A and airborne hyperspectral data (HySpex) of two Bavarian lakes (Klostersee, Lake Starnberg) with in-situ measurements performed with RAMSES and Ibsen spectrometer systems and a Microtops sun photometer.
Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing
NASA Astrophysics Data System (ADS)
Datta, D.
2010-10-01
Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.
Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc
2014-09-15
Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.
Modeling the Atmospheric Phase Effects of a Digital Antenna Array Communications System
NASA Technical Reports Server (NTRS)
Tkacenko, A.
2006-01-01
In an antenna array system such as that used in the Deep Space Network (DSN) for satellite communication, it is often necessary to account for the effects due to the atmosphere. Typically, the atmosphere induces amplitude and phase fluctuations on the transmitted downlink signal that invalidate the assumed stationarity of the signal model. The degree to which these perturbations affect the stationarity of the model depends both on parameters of the atmosphere, including wind speed and turbulence strength, and on parameters of the communication system, such as the sampling rate used. In this article, we focus on modeling the atmospheric phase fluctuations in a digital antenna array communications system. Based on a continuous-time statistical model for the atmospheric phase effects, we show how to obtain a related discrete-time model based on sampling the continuous-time process. The effects of the nonstationarity of the resulting signal model are investigated using the sample matrix inversion (SMI) algorithm for minimum mean-squared error (MMSE) equalization of the received signal
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee
2007-01-01
An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.
Understanding Coupling of Global and Diffuse Solar Radiation with Climatic Variability
NASA Astrophysics Data System (ADS)
Hamdan, Lubna
Global solar radiation data is very important for wide variety of applications and scientific studies. However, this data is not readily available because of the cost of measuring equipment and the tedious maintenance and calibration requirements. Wide variety of models have been introduced by researchers to estimate and/or predict the global solar radiations and its components (direct and diffuse radiation) using other readily obtainable atmospheric parameters. The goal of this research is to understand the coupling of global and diffuse solar radiation with climatic variability, by investigating the relationships between these radiations and atmospheric parameters. For this purpose, we applied multilinear regression analysis on the data of National Solar Radiation Database 1991--2010 Update. The analysis showed that the main atmospheric parameters that affect the amount of global radiation received on earth's surface are cloud cover and relative humidity. Global radiation correlates negatively with both variables. Linear models are excellent approximations for the relationship between atmospheric parameters and global radiation. A linear model with the predictors total cloud cover, relative humidity, and extraterrestrial radiation is able to explain around 98% of the variability in global radiation. For diffuse radiation, the analysis showed that the main atmospheric parameters that affect the amount received on earth's surface are cloud cover and aerosol optical depth. Diffuse radiation correlates positively with both variables. Linear models are very good approximations for the relationship between atmospheric parameters and diffuse radiation. A linear model with the predictors total cloud cover, aerosol optical depth, and extraterrestrial radiation is able to explain around 91% of the variability in diffuse radiation. Prediction analysis showed that the linear models we fitted were able to predict diffuse radiation with efficiency of test adjusted R2 values equal to 0.93, using the data of total cloud cover, aerosol optical depth, relative humidity and extraterrestrial radiation. However, for prediction purposes, using nonlinear terms or nonlinear models might enhance the prediction of diffuse radiation.
NASA Astrophysics Data System (ADS)
Saito, M.; Ito, A.; Maksyutov, S. S.
2013-12-01
This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial vegetation compositions in some grids. These misfits are assumed to derive from simplified representation in the biosphere model without the impact of land use change and dire disturbance and the seasonal variability in the physiological parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covey, Curt; Lucas, Donald D.; Trenberth, Kevin E.
2016-03-02
This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in additionmore » to one run with default inputparameter values.« less
NASA Technical Reports Server (NTRS)
Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.
2017-01-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.
NASA Astrophysics Data System (ADS)
Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.
2015-11-01
Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.
Global Reference Atmosphere Model (GRAM)
NASA Technical Reports Server (NTRS)
Woodrum, A. W.
1989-01-01
GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.
Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E
2016-11-10
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves
Ripepe, M.; Barfucci, G.; De Angelis, S.; Delle Donne, D.; Lacanna, G.; Marchetti, E.
2016-01-01
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models. PMID:27830768
O-star parameters from line profiles of wind-blanketed model atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voels, S.A.
1989-01-01
The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less
NASA Astrophysics Data System (ADS)
Ulfah, S.; Awalludin, S. A.; Wahidin
2018-01-01
Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.
Calibration of AIS Data Using Ground-based Spectral Reflectance Measurements
NASA Technical Reports Server (NTRS)
Conel, J. E.
1985-01-01
Present methods of correcting airborne imaging spectrometer (AIS) data for instrumental and atmospheric effects include the flat- or curved-field correction and a deviation-from-the-average adjustment performed on a line-by-line basis throughout the image. Both methods eliminate the atmospheric absorptions, but remove the possibility of studying the atmosphere for its own sake, or of using the atmospheric information present as a possible basis for theoretical modeling. The method discussed here relies on use of ground-based measurements of the surface spectral reflectance in comparison with scanner data to fix in a least-squares sense parameters in a simplified model of the atmosphere on a wavelength-by-wavelength basis. The model parameters (for optically thin conditions) are interpretable in terms of optical depth and scattering phase function, and thus, in principle, provide an approximate description of the atmosphere as a homogeneous body intervening between the sensor and the ground.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
Ensemble-Based Parameter Estimation in a Coupled General Circulation Model
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-09-10
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
Stellar atmosphere modeling of extremely hot, compact stars
NASA Astrophysics Data System (ADS)
Rauch, Thomas; Ringat, Ellen; Werner, Klaus
Present X-ray missions like Chandra and XMM-Newton provide excellent spectra of extremely hot white dwarfs, e.g. burst spectra of novae. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) can calculate such model at-mospheres and spectral energy distributions at a high level of sophistication. We present a new grid of models that is calculated in the parameter range of novae and supersoft X-ray sources and show examples of their application.
NASA Technical Reports Server (NTRS)
Chamberlain, D. M.; Elliot, J. L.
1997-01-01
We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.
Optimisation of dispersion parameters of Gaussian plume model for CO₂ dispersion.
Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip
2015-11-01
The carbon capture and storage (CCS) and enhanced oil recovery (EOR) projects entail the possibility of accidental release of carbon dioxide (CO2) into the atmosphere. To quantify the spread of CO2 following such release, the 'Gaussian' dispersion model is often used to estimate the resulting CO2 concentration levels in the surroundings. The Gaussian model enables quick estimates of the concentration levels. However, the traditionally recommended values of the 'dispersion parameters' in the Gaussian model may not be directly applicable to CO2 dispersion. This paper presents an optimisation technique to obtain the dispersion parameters in order to achieve a quick estimation of CO2 concentration levels in the atmosphere following CO2 blowouts. The optimised dispersion parameters enable the Gaussian model to produce quick estimates of CO2 concentration levels, precluding the necessity to set up and run much more complicated models. Computational fluid dynamics (CFD) models were employed to produce reference CO2 dispersion profiles in various atmospheric stability classes (ASC), different 'source strengths' and degrees of ground roughness. The performance of the CFD models was validated against the 'Kit Fox' field measurements, involving dispersion over a flat horizontal terrain, both with low and high roughness regions. An optimisation model employing a genetic algorithm (GA) to determine the best dispersion parameters in the Gaussian plume model was set up. Optimum values of the dispersion parameters for different ASCs that can be used in the Gaussian plume model for predicting CO2 dispersion were obtained.
Theoretical Advances in Sequential Data Assimilation for the Atmosphere and Oceans
NASA Astrophysics Data System (ADS)
Ghil, M.
2007-05-01
We concentrate here on two aspects of advanced Kalman--filter-related methods: (i) the stability of the forecast- assimilation cycle, and (ii) parameter estimation for the coupled ocean-atmosphere system. The nonlinear stability of a prediction-assimilation system guarantees the uniqueness of the sequentially estimated solutions in the presence of partial and inaccurate observations, distributed in space and time; this stability is shown to be a necessary condition for the convergence of the state estimates to the true evolution of the turbulent flow. The stability properties of the governing nonlinear equations and of several data assimilation systems are studied by computing the spectrum of the associated Lyapunov exponents. These ideas are applied to a simple and an intermediate model of atmospheric variability and we show that the degree of stabilization depends on the type and distribution of the observations, as well as on the data assimilation method. These results represent joint work with A. Carrassi, A. Trevisan and F. Uboldi. Much is known by now about the main physical mechanisms that give rise to and modulate the El-Nino/Southern- Oscillation (ENSO), but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean-atmosphere model of ENSO. Model behavior is very sensitive to two key parameters: (a) "mu", the ocean-atmosphere coupling coefficient between the sea-surface temperature (SST) and wind stress anomalies; and (b) "delta-s", the surface-layer coefficient. Previous work has shown that "delta- s" determines the period of the model's self-sustained oscillation, while "mu' measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Assimilation of SST data from the NCEP- NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean-atmosphere GCMs will be discussed. These results arise from joint work with D. Kondrashov and C.-j. Sun.
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
Song, Jiyun; Wang, Zhi-Hua
2015-01-01
An advanced Markov-Chain Monte Carlo approach called Subset Simulation is described in Au and Beck (2001) [1] was used to quantify parameter uncertainty and model sensitivity of the urban land-atmospheric framework, viz. the coupled urban canopy model-single column model (UCM-SCM). The results show that the atmospheric dynamics are sensitive to land surface conditions. The most sensitive parameters are dimensional parameters, i.e. roof width, aspect ratio, roughness length of heat and momentum, since these parameters control the magnitude of sensible heat flux. The relative insensitive parameters are hydrological parameters since the lawns or green roofs in urban areas are regularly irrigated so that the water availability for evaporation is never constrained. PMID:26702421
GRAM 88 - 4D GLOBAL REFERENCE ATMOSPHERE MODEL-1988
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1994-01-01
The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.
Estimating Convection Parameters in the GFDL CM2.1 Model Using Ensemble Data Assimilation
NASA Astrophysics Data System (ADS)
Li, Shan; Zhang, Shaoqing; Liu, Zhengyu; Lu, Lv; Zhu, Jiang; Zhang, Xuefeng; Wu, Xinrong; Zhao, Ming; Vecchi, Gabriel A.; Zhang, Rong-Hua; Lin, Xiaopei
2018-04-01
Parametric uncertainty in convection parameterization is one major source of model errors that cause model climate drift. Convection parameter tuning has been widely studied in atmospheric models to help mitigate the problem. However, in a fully coupled general circulation model (CGCM), convection parameters which impact the ocean as well as the climate simulation may have different optimal values. This study explores the possibility of estimating convection parameters with an ensemble coupled data assimilation method in a CGCM. Impacts of the convection parameter estimation on climate analysis and forecast are analyzed. In a twin experiment framework, five convection parameters in the GFDL coupled model CM2.1 are estimated individually and simultaneously under both perfect and imperfect model regimes. Results show that the ensemble data assimilation method can help reduce the bias in convection parameters. With estimated convection parameters, the analyses and forecasts for both the atmosphere and the ocean are generally improved. It is also found that information in low latitudes is relatively more important for estimating convection parameters. This study further suggests that when important parameters in appropriate physical parameterizations are identified, incorporating their estimation into traditional ensemble data assimilation procedure could improve the final analysis and climate prediction.
GRAM-86 - FOUR DIMENSIONAL GLOBAL REFERENCE ATMOSPHERE MODEL
NASA Technical Reports Server (NTRS)
Johnson, D.
1994-01-01
The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The UNIVAC version of GRAM is written in UNIVAC FORTRAN and has been implemented on a UNIVAC 1110 under control of EXEC 8 with a central memory requirement of approximately 30K of 36 bit words. The GRAM program was developed in 1976 and GRAM-86 was released in 1986. The monthly data files were last updated in 1986. The DEC VAX version of GRAM is written in FORTRAN 77 and has been implemented on a DEC VAX 11/780 under control of VMS 4.X with a central memory requirement of approximately 100K of 8 bit bytes. The GRAM program was originally developed in 1976 and later converted to the VAX in 1986 (GRAM-86). The monthly data files were last updated in 1986.
Sensitivity of the Eocene climate to CO2 and orbital variability
NASA Astrophysics Data System (ADS)
Keery, John S.; Holden, Philip B.; Edwards, Neil R.
2018-02-01
The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth's climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth's orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280-3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean-land temperature contrast in high northern latitudes and northern summer tropical-polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 °C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback. Our method gives a quantitative ranking of the influence of each of the forcing parameters on key climatic model outputs, with additional spatial information from singular value decomposition providing insights into likely physical mechanisms. The results demonstrate the importance of orbital variation as an agent of change in climates of the past, and we demonstrate that emulators derived from our modelling output can be used as rapid and efficient surrogates of the full complexity model to provide estimates of climate conditions from any set of forcing parameters.
Global Reference Atmosphere Model (GRAM)
NASA Technical Reports Server (NTRS)
Johnson, D. L.; Blocker, Rhonda; Justus, C. G.
1993-01-01
4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.
Greenhouse effect in the atmosphere
NASA Astrophysics Data System (ADS)
Smirnov, B. M.
2016-04-01
Average optical atmospheric parameters for the infrared spectrum range are evaluated on the basis of the Earth energetic balance and parameters of the standard atmosphere. The average optical thickness of the atmosphere is u ≈ 2.5 and this atmospheric emission is originated at altitudes below 10 km. Variations of atmospheric radiative fluxes towards the Earth and outward are calculated as a function of the concentration of \\text{CO}2 molecules for the regular model of molecular spectrum. As a result of doubling of the \\text{CO}2 concentration the change of the global Earth temperature is (0.4 +/- 0.2) \\text{K} if other atmospheric parameters are conserved compared to the value (3.0 +/- 1.5) \\text{K} under real atmospheric conditions with the variation of the amount of atmospheric water. An observed variation of the global Earth temperature during the last century (0.8 ^\\circ \\text{C}) follows from an increase of the mass of atmospheric water by 7% or by conversion of 1% of atmospheric water in aerosols.
Parameter Estimation in Atmospheric Data Sets
NASA Technical Reports Server (NTRS)
Wenig, Mark; Colarco, Peter
2004-01-01
In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .
Tuning a climate model using nudging to reanalysis.
NASA Astrophysics Data System (ADS)
Cheedela, S. K.; Mapes, B. E.
2014-12-01
Tuning a atmospheric general circulation model involves a daunting task of adjusting non-observable parameters to adjust the mean climate. These parameters arise from necessity to describe unresolved flow through parametrizations. Tuning a climate model is often done with certain set of priorities, such as global mean temperature, net top of the atmosphere radiation. These priorities are hard enough to reach let alone reducing systematic biases in the models. The goal of currently study is to explore alternate ways to tune a climate model to reduce some systematic biases that can be used in synergy with existing efforts. Nudging a climate model to a known state is a poor man's inverse of tuning process described above. Our approach involves nudging the atmospheric model to state of art reanalysis fields thereby providing a balanced state with respect to the global mean temperature and winds. The tendencies derived from nudging are negative of errors from physical parametrizations as the errors from dynamical core would be small. Patterns of nudging are compared to the patterns of different physical parametrizations to decipher the cause for certain biases in relation to tuning parameters. This approach might also help in understanding certain compensating errors that arise from tuning process. ECHAM6 is a comprehensive general model, also used in recent Coupled Model Intercomparision Project(CMIP5). The approach used to tune it and effect of certain parameters that effect its mean climate are reported clearly, hence it serves as a benchmark for our approach. Our planned experiments include nudging ECHAM6 atmospheric model to European Center Reanalysis (ERA-Interim) and reanalysis from National Center for Environmental Prediction (NCEP) and decipher choice of certain parameters that lead to systematic biases in its simulations. Of particular interest are reducing long standing biases related to simulation of Asian summer monsoon.
The thermal structure of Titan's atmosphere
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.; Pollack, James B.; Courtin, Regis
1989-01-01
The present radiative-convective model of the Titan atmosphere thermal structure obtains the solar and IR radiation in a series of spectral intervals with vertical resolution. Haze properties have been determined with a microphysics model encompassing a minimum of free parameters. It is determined that gas and haze opacity alone, using temperatures established by Voyager observations, yields a model that is within a few percent of the radiative convective balance throughout the Titan atmosphere. Model calculations of the surface temperature are generally colder than the observed value by 5-10 K; better agreement is obtained through adjustment of the model parameters. Sunlight absorption by stratospheric haze and pressure-induced gas opacity in the IR are the most important thermal structure-controlling factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Liu, Z.; Zhang, S.
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
Real-time Retrieving Atmospheric Parameters from Multi-GNSS Constellations
NASA Astrophysics Data System (ADS)
Li, X.; Zus, F.; Lu, C.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H.
2016-12-01
The multi-constellation GNSS (e.g. GPS, GLONASS, Galileo, and BeiDou) bring great opportunities and challenges for real-time retrieval of atmospheric parameters for supporting numerical weather prediction (NWP) nowcasting or severe weather event monitoring. In this study, the observations from different GNSS are combined together for atmospheric parameter retrieving based on the real-time precise point positioning technique. The atmospheric parameters retrieved from multi-GNSS observations, including zenith total delay (ZTD), integrated water vapor (IWV), horizontal gradient (especially high-resolution gradient estimates) and slant total delay (STD), are carefully analyzed and evaluated by using the VLBI, radiosonde, water vapor radiometer and numerical weather model to independently validate the performance of individual GNSS and also demonstrate the benefits of multi-constellation GNSS for real-time atmospheric monitoring. Numerous results show that the multi-GNSS processing can provide real-time atmospheric products with higher accuracy, stronger reliability and better distribution, which would be beneficial for atmospheric sounding systems, especially for nowcasting of extreme weather.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newsom, R. K.; Sivaraman, C.; Shippert, T. R.
Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.
Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi
2017-11-04
This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.
NASA Astrophysics Data System (ADS)
Swallow, B.; Rigby, M. L.; Rougier, J.; Manning, A.; Thomson, D.; Webster, H. N.; Lunt, M. F.; O'Doherty, S.
2016-12-01
In order to understand underlying processes governing environmental and physical phenomena, a complex mathematical model is usually required. However, there is an inherent uncertainty related to the parameterisation of unresolved processes in these simulators. Here, we focus on the specific problem of accounting for uncertainty in parameter values in an atmospheric chemical transport model. Systematic errors introduced by failing to account for these uncertainties have the potential to have a large effect on resulting estimates in unknown quantities of interest. One approach that is being increasingly used to address this issue is known as emulation, in which a large number of forward runs of the simulator are carried out, in order to approximate the response of the output to changes in parameters. However, due to the complexity of some models, it is often unfeasible to run large numbers of training runs that is usually required for full statistical emulators of the environmental processes. We therefore present a simplified model reduction method for approximating uncertainties in complex environmental simulators without the need for very large numbers of training runs. We illustrate the method through an application to the Met Office's atmospheric transport model NAME. We show how our parameter estimation framework can be incorporated into a hierarchical Bayesian inversion, and demonstrate the impact on estimates of UK methane emissions, using atmospheric mole fraction data. We conclude that accounting for uncertainties in the parameterisation of complex atmospheric models is vital if systematic errors are to be minimized and all relevant uncertainties accounted for. We also note that investigations of this nature can prove extremely useful in highlighting deficiencies in the simulator that might otherwise be missed.
NASA Astrophysics Data System (ADS)
Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel
2016-12-01
On its way through the atmosphere, radio signals are delayed and affected by bending and attenuation effects relative to a theoretical path in vacuum. In particular, the neutral part of the atmosphere contributes considerably to the error budget of space-geodetic observations. At the same time, space-geodetic techniques become more and more important in the understanding of the Earth's atmosphere, because atmospheric parameters can be linked to the water vapor content in the atmosphere. The tropospheric delay is usually taken into account by applying an adequate model for the hydrostatic component and by additionally estimating zenith wet delays for the highly variable wet component. Sometimes, the Ordinary Least Squares (OLS) approach leads to negative estimates, which would be equivalent to negative water vapor in the atmosphere and does, of course, not reflect meteorological and physical conditions in a plausible way. To cope with this phenomenon, we introduce an Inequality Constrained Least Squares (ICLS) method from the field of convex optimization and use inequality constraints to force the tropospheric parameters to be non-negative allowing for a more realistic tropospheric parameter estimation in a meteorological sense. Because deficiencies in the a priori hydrostatic modeling are almost fully compensated by the tropospheric estimates, the ICLS approach urgently requires suitable a priori hydrostatic delays. In this paper, we briefly describe the ICLS method and validate its impact with regard to station positions.
NASA Technical Reports Server (NTRS)
Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, Allen V.; Grundahl, F.
2014-01-01
Context. NGC288 is a globular cluster with a well developed blue horizontal branch covering the so-called u-jump which indicates the onset of diffusion. It is therefore well suited to study the effects of diffusion in blue horizontal branch (HB) stars. Aims. We compare observed abundances to predictions from stellar evolution models calculated with diffusion and from stratified atmospheric models. We verify the effect of using stratified model spectra to derive atmospheric parameters. In addition we investigate the nature of the overluminous blue HB stars around the u-jump. Methods. We define a new photometric index sz from uvby measurements that is gravity sensitive between 8 000K and 12 000 K. Using medium-resolution spectra and Stroemgren photometry we determine atmospheric parameters (Teff, logg) and abundances for the blue HB stars. We use both homogeneous and stratified model spectra for our spectroscopic analyses. Results. The atmospheric parameters and masses of the hot HB stars in NGC288 show a behaviour seen also in other clusters for temperatures between 9 000K and 14 000 K. Outside this temperature range, however, they follow rather the results found for such stars in (omega)Cen. The abundances derived from our observations are for most elements (except He and P) within the abundance range expected from evolutionary models that include the effects of atomic diffusion and assume a surface mixed mass of 10(exp -7) M. The abundances predicted by stratified model atmospheres are generally significantly more extreme than observed, except for Mg. The use of stratified model spectra to determine effective temperatures, surface gravities and masses moves the hotter stars to a closer agreement with canonical evolutionary predictions. Conclusions. Our results show definite promise towards solving the long-standing issue of surface gravity and mass discrepancies for hot HB stars, but there is still much work needed to arrive at a self-consistent solution.
NASA Astrophysics Data System (ADS)
Lundquist, K. A.; Jensen, D. D.; Lucas, D. D.
2017-12-01
Atmospheric source reconstruction allows for the probabilistic estimate of source characteristics of an atmospheric release using observations of the release. Performance of the inversion depends partially on the temporal frequency and spatial scale of the observations. The objective of this study is to quantify the sensitivity of the source reconstruction method to sparse spatial and temporal observations. To this end, simulations of atmospheric transport of noble gasses are created for the 2006 nuclear test at the Punggye-ri nuclear test site. Synthetic observations are collected from the simulation, and are taken as "ground truth". Data denial techniques are used to progressively coarsen the temporal and spatial resolution of the synthetic observations, while the source reconstruction model seeks to recover the true input parameters from the synthetic observations. Reconstructed parameters considered here are source location, source timing and source quantity. Reconstruction is achieved by running an ensemble of thousands of dispersion model runs that sample from a uniform distribution of the input parameters. Machine learning is used to train a computationally-efficient surrogate model from the ensemble simulations. Monte Carlo sampling and Bayesian inversion are then used in conjunction with the surrogate model to quantify the posterior probability density functions of source input parameters. This research seeks to inform decision makers of the tradeoffs between more expensive, high frequency observations and less expensive, low frequency observations.
Sensitivity of boundary layer variables to PBL schemes over the central Tibetan Plateau
NASA Astrophysics Data System (ADS)
Xu, L.; Liu, H.; Wang, L.; Du, Q.; Liu, Y.
2017-12-01
Planetary Boundary Layer (PBL) parameterization schemes play critical role in numerical weather prediction and research. They describe physical processes associated with the momentum, heat and humidity exchange between land surface and atmosphere. In this study, two non-local (YSU and ACM2) and two local (MYJ and BouLac) planetary boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model have been tested over the central Tibetan Plateau regarding of their capability to model boundary layer parameters relevant for surface energy exchange. The model performance has been evaluated against measurements from the Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III). Simulated meteorological parameters and turbulence fluxes have been compared with observations through standard statistical measures. Model results show acceptable behavior, but no particular scheme produces best performance for all locations and parameters. All PBL schemes underestimate near surface air temperatures over the Tibetan Plateau. By investigating the surface energy budget components, the results suggest that downward longwave radiation and sensible heat flux are the main factors causing the lower near surface temperature. Because the downward longwave radiation and sensible heat flux are respectively affected by atmosphere moisture and land-atmosphere coupling, improvements in water vapor distribution and land-atmosphere energy exchange is meaningful for better presentation of PBL physical processes over the central Tibetan Plateau.
StePar: an automatic code for stellar parameter determination
NASA Astrophysics Data System (ADS)
Tabernero, H. M.; González Hernández, J. I.; Montes, D.
2013-05-01
We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.
Supervised machine learning for analysing spectra of exoplanetary atmospheres
NASA Astrophysics Data System (ADS)
Márquez-Neila, Pablo; Fisher, Chloe; Sznitman, Raphael; Heng, Kevin
2018-06-01
The use of machine learning is becoming ubiquitous in astronomy1-3, but remains rare in the study of the atmospheres of exoplanets. Given the spectrum of an exoplanetary atmosphere, a multi-parameter space is swept through in real time to find the best-fit model4-6. Known as atmospheric retrieval, this technique originates in the Earth and planetary sciences7. Such methods are very time-consuming, and by necessity there is a compromise between physical and chemical realism and computational feasibility. Machine learning has previously been used to determine which molecules to include in the model, but the retrieval itself was still performed using standard methods8. Here, we report an adaptation of the `random forest' method of supervised machine learning9,10, trained on a precomputed grid of atmospheric models, which retrieves full posterior distributions of the abundances of molecules and the cloud opacity. The use of a precomputed grid allows a large part of the computational burden to be shifted offline. We demonstrate our technique on a transmission spectrum of the hot gas-giant exoplanet WASP-12b using a five-parameter model (temperature, a constant cloud opacity and the volume mixing ratios or relative abundances of molecules of water, ammonia and hydrogen cyanide)11. We obtain results consistent with the standard nested-sampling retrieval method. We also estimate the sensitivity of the measured spectrum to the model parameters, and we are able to quantify the information content of the spectrum. Our method can be straightforwardly applied using more sophisticated atmospheric models to interpret an ensemble of spectra without having to retrain the random forest.
White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources
NASA Astrophysics Data System (ADS)
Rauch, Thomas
2013-01-01
The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.
Atmospheric parameters, spectral indexes and their relation to CPV spectral performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es
2014-09-26
Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatchmore » Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.« less
NASA Astrophysics Data System (ADS)
Longman, Ryan J.; Giambelluca, Thomas W.; Frazier, Abby G.
2012-01-01
Estimates of clear sky global solar irradiance using the parametric model SPCTRAL2 were tested against clear sky radiation observations at four sites in Hawai`i using daily, mean monthly, and 1 year mean model parameter settings. Atmospheric parameters in SPCTRAL2 and similar models are usually set at site-specific values and are not varied to represent the effects of fluctuating humidity, aerosol amount and type, or ozone concentration, because time-dependent atmospheric parameter estimates are not available at most sites of interest. In this study, we sought to determine the added value of using time dependent as opposed to fixed model input parameter settings. At the AERONET site, Mauna Loa Observatory (MLO) on the island of Hawai`i, where daily measurements of atmospheric optical properties and hourly solar radiation observations are available, use of daily rather than 1 year mean aerosol parameter values reduced mean bias error (MBE) from 18 to 10 W m-2 and root mean square error from 25 to 17 W m-2. At three stations in the HaleNet climate network, located at elevations of 960, 1640, and 2590 m on the island of Maui, where aerosol-related parameter settings were interpolated from observed values for AERONET sites at MLO (3397 m) and Lāna`i (20 m), and precipitable water was estimated using radiosonde-derived humidity profiles from nearby Hilo, the model performed best when using constant 1 year mean parameter values. At HaleNet Station 152, for example, MBE was 18, 10, and 8 W m-2 for daily, monthly, and 1 year mean parameters, respectively.
NASA Astrophysics Data System (ADS)
Wang, Yong; Liu, Xiaohong
2014-12-01
We introduce a simplified version of the soccer ball model (SBM) developed by Niedermeier et al (2014 Geophys. Res. Lett. 41 736-741) into the Community Atmospheric Model version 5 (CAM5). It is the first time that SBM is used in an atmospheric model to parameterize the heterogeneous ice nucleation. The SBM, which was simplified for its suitable application in atmospheric models, uses the classical nucleation theory to describe the immersion/condensation freezing by dust in the mixed-phase cloud regime. Uncertain parameters (mean contact angle, standard deviation of contact angle probability distribution, and number of surface sites) in the SBM are constrained by fitting them to recent natural dust (Saharan dust) datasets. With the SBM in CAM5, we investigate the sensitivity of modeled cloud properties to the SBM parameters, and find significant seasonal and regional differences in the sensitivity among the three SBM parameters. Changes of mean contact angle and the number of surface sites lead to changes of cloud properties in Arctic in spring, which could be attributed to the transport of dust ice nuclei to this region. In winter, significant changes of cloud properties induced by these two parameters mainly occur in northern hemispheric mid-latitudes (e.g., East Asia). In comparison, no obvious changes of cloud properties caused by changes of standard deviation can be found in all the seasons. These results are valuable for understanding the heterogeneous ice nucleation behavior, and useful for guiding the future model developments.
Influence of speckle image reconstruction on photometric precision for large solar telescopes
NASA Astrophysics Data System (ADS)
Peck, C. L.; Wöger, F.; Marino, J.
2017-11-01
Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.
NASA Astrophysics Data System (ADS)
Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.
2009-04-01
Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an uncertainty analysis. We chose the Monte Carlo method which has already been applied to atmospheric dispersion models [2, 3, 4]. The main advantage of this method is to be insensitive to the number of perturbed parameters but its drawbacks are its computation cost and its slow convergence. In order to speed up this one we used the method of antithetic variable which takes adavantage of the symmetry of probability laws. The air quality model simulations were carried out by the Association for study and watching of Atmospheric Pollution in Alsace (ASPA). The output concentrations distributions can then be updated with a Bayesian method. This work is part of an INERIS Research project also aiming at assessing the uncertainty of the CHIMERE dispersion model used in the Prev'Air forecasting platform (www.prevair.org) in order to deliver more accurate predictions. (1) Rao, K.S. Uncertainty Analysis in Atmospheric Dispersion Modeling, Pure and Applied Geophysics, 2005, 162, 1893-1917. (2) Beekmann, M. and Derognat, C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the PAris Area (ESQUIF) campaign, Journal of Geophysical Research, 2003, 108, 8559-8576. (3) Hanna, S.R. and Lu, Z. and Frey, H.C. and Wheeler, N. and Vukovich, J. and Arunachalam, S. and Fernau, M. and Hansen, D.A. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmospheric Environment, 2001, 35, 891-903. (4) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.
Hot, cold, and annual reference atmospheres for Edwards Air Force Base, California (1975 version)
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1975-01-01
Reference atmospheres pertaining to summer (hot), winter (cold), and mean annual conditions for Edwards Air Force Base, California, are presented from surface to 90 km altitude (700 km for the annual model). Computed values of pressure, kinetic temperature, virtual temperature, and density and relative differences percentage departure from the Edwards reference atmospheres, 1975 (ERA-75) of the atmospheric parameters versus altitude are tabulated in 250 m increments. Hydrostatic and gas law equations were used in conjunction with radiosonde and rocketsonde thermodynamic data in determining the vertical structure of these atmospheric models. The thermodynamic parameters were all subjected to a fifth degree least-squares curve-fit procedure, and the resulting coefficients were incorporated into Univac 1108 computer subroutines so that any quantity may be recomputed at any desired altitude using these subroutines.
Large-Scale Aerosol Modeling and Analysis
2009-09-30
Modeling of Burning Emissions ( FLAMBE ) project, and other related parameters. Our plans to embed NAAPS inside NOGAPS may need to be put on hold...AOD, FLAMBE and FAROP at FNMOC are supported by 6.4 funding from PMW-120 for “Large-scale Atmospheric Models”, “Small-scale Atmospheric Models
NASA Astrophysics Data System (ADS)
Gross, N. A.; Withers, P.; Sojka, J. J.
2014-12-01
The Chapman Layer Model is a "textbook" model of the ionosphere (for example, "Theory of Planetary Atmospheres" by Chamberlain and Hunten, Academic Press (1978)). The model use fundamental assumptions about the neutral atmosphere, the flux of ionizing radiation, and the recombination rate to calculation the ionization rate, and ion/electron density for a single species atmosphere. We have developed a "Chapman Layer Calculator" application that is deployed on the web using Java. It allows the user to see how various parameters control ion density, peak height, and profile of the ionospheric layer. Users can adjust parameters relevant to thermosphere scale height (temperature, gravitational acceleration, molecular weight, neutral atmosphere density) and to Extreme Ultraviolet solar flux (reference EUV, distance from the Sun, and solar Zenith Angle) and then see how the layer changes. This allows the user to simulate the ionosphere on other planets, by adjusting to the appropriate parameters. This simulation has been used as an exploratory activity for the NASA/LWS - Heliophysics Summer School 2014 and has an accompanying activity guide.
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Krupp, B. M.
1975-01-01
An opacity sampling (OS) technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is presented. Tests were conducted and results show that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 500 frequency points is often adequate. The effects of atomic and molecular lines are separately studied. A test model computed by using the OS method agrees very well with a model having identical atmospheric parameters computed by the giant line (opacity distribution function) method.
LANDSAT-D investigations in snow hydrology. [Sierra Nevada Mountains
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
Thematic mapper data for the southern Sierra Nevada area were registered to digital topographic data and compared to LANDSAT MSS and NOAA-7 AVHRR data of snow covered areas in order to determine the errors associated with using coarser resolution and to qualify the information lost when high resolution data are not available. Both the zenith and the azimuth variations in the radiative field are considered in an atmospheric radiative transfer model which deals with a plane parallel structured atmosphere composed of different layers, each assumed to be homogeneous in composition and to have a linear in tau temperature profile. Astronomical parameters for each layer are Earth-Sun distance and solar flux at the top of the atmosphere. Atmospheric parameters include pressure temperature, chemical composition of the air molecules, and the composition and size of the aerosol, water droplets, and ice crystals. Outputs of the model are the monochromatic radiance and irradiance at each level. The use of the model in atmospheric correction of remotely sensed data is discussed.
Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective
NASA Astrophysics Data System (ADS)
Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.
2018-05-01
Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.
NASA Astrophysics Data System (ADS)
Budak, Vladimir P.; Korkin, Sergey V.
2009-03-01
The singularity subtraction on the vectorial modification of spherical harmonics method (VMSH) of the solution of the vectorial radiative transfer equation boundary problem is applied to the problem of influence of atmosphere parameters on the polarimetric system signal. We assume in this model different phase matrices (Mie, Rayleigh, and Henyey-Greenstein), reflecting bottom and particle size distribution. The authors describe the main features of the model and some results of its implementation.
NASA Technical Reports Server (NTRS)
Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.
2003-01-01
We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13
A new statistical method for characterizing the atmospheres of extrasolar planets
NASA Astrophysics Data System (ADS)
Henderson, Cassandra S.; Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.
2017-10-01
By detecting light from extrasolar planets, we can measure their compositions and bulk physical properties. The technologies used to make these measurements are still in their infancy, and a lack of self-consistency suggests that previous observations have underestimated their systemic errors. We demonstrate a statistical method, newly applied to exoplanet characterization, which uses a Bayesian formalism to account for underestimated errorbars. We use this method to compare photometry of a substellar companion, GJ 758b, with custom atmospheric models. Our method produces a probability distribution of atmospheric model parameters including temperature, gravity, cloud model (fsed) and chemical abundance for GJ 758b. This distribution is less sensitive to highly variant data and appropriately reflects a greater uncertainty on parameter fits.
Atmospherical simulations of the OMEGA/MEX observations
NASA Astrophysics Data System (ADS)
Melchiorri, R.; Drossart, P.; Combes, M.; Encrenaz, T.; Fouchet, T.; Forget, F.; Bibring, J. P.; Ignatiev, N.; Moroz, V.; OMEGA Team
The modelization of the atmospheric contribution in the martian spectrum is an important step for the OMEGA data analysis.A full line by line radiative transfer calculation is made for the gas absorption; the dust opacity component, in a first approximation, is calculated as an optically thin additive component.Due to the large number of parameters needed in the calculations, the building of a huge data base to be interpolated is not envisageable, for each observed OMEGA spectrum with calculation for all the involved parameters (atmospheric pressure, water abundance, CO abundance, dust opacity and geometric angles of observation). The simulation of the observations allows us to fix all the orbital parameters and leave the unknown parameters as the only variables.Starting from the predictions of the current meteorological models of Mars we build a smaller data base corresponding on each observation. We present here a first order simulation, which consists in retrieving atmospheric contribution from the solar reflected component as a multiplicative (for gas absorption) and an additive component (for suspended dust contribution); although a fully consistent approach will require to include surface and atmosphere contributions together in synthetic calculations, this approach is sufficient for retrieving mineralogic information cleaned from atmospheric absorption at first order.First comparison to OMEGA spectra will be presented, with first order retrieval of CO2 pressure, CO and H2O abundance, and dust opacity.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
NASA Astrophysics Data System (ADS)
Putri, R. J. A.; Setyawan, T.
2017-01-01
In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)
Improving Fermi Orbit Determination and Prediction in an Uncertain Atmospheric Drag Environment
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Newman, Clark P.; Slojkowski, Steven E.; Carpenter, J. Russell
2014-01-01
Orbit determination and prediction of the Fermi Gamma-ray Space Telescope trajectory is strongly impacted by the unpredictability and variability of atmospheric density and the spacecraft's ballistic coefficient. Operationally, Global Positioning System point solutions are processed with an extended Kalman filter for orbit determination, and predictions are generated for conjunction assessment with secondary objects. When these predictions are compared to Joint Space Operations Center radar-based solutions, the close approach distance between the two predictions can greatly differ ahead of the conjunction. This work explores strategies for improving prediction accuracy and helps to explain the prediction disparities. Namely, a tuning analysis is performed to determine atmospheric drag modeling and filter parameters that can improve orbit determination as well as prediction accuracy. A 45% improvement in three-day prediction accuracy is realized by tuning the ballistic coefficient and atmospheric density stochastic models, measurement frequency, and other modeling and filter parameters.
NASA Astrophysics Data System (ADS)
Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens
2017-04-01
Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.
NASA Astrophysics Data System (ADS)
Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide
2017-12-01
This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.
Stüeken, E E; Kipp, M A; Koehler, M C; Schwieterman, E W; Johnson, B; Buick, R
2016-12-01
Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N 2 , but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N 2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN 2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN 2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO 2 , and (c) atmospheric oxygenation could have initiated a stepwise pN 2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN 2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N 2 and O 2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitman, A.J.
The sensitivity of a land-surface scheme (the Biosphere Atmosphere Transfer Scheme, BATS) to its parameter values was investigated using a single column model. Identifying which parameters were important in controlling the turbulent energy fluxes, temperature, soil moisture, and runoff was dependent upon many factors. In the simulation of a nonmoisture-stressed tropical forest, results were dependent on a combination of reservoir terms (soil depth, root distribution), flux efficiency terms (roughness length, stomatal resistance), and available energy (albedo). If moisture became limited, the reservoir terms increased in importance because the total fluxes predicted depended on moisture availability and not on the ratemore » of transfer between the surface and the atmosphere. The sensitivity shown by BATS depended on which vegetation type was being simulated, which variable was used to determine sensitivity, the magnitude and sign of the parameter change, the climate regime (precipitation amount and frequency), and soil moisture levels and proximity to wilting. The interactions between these factors made it difficult to identify the most important parameters in BATS. Therefore, this paper does not argue that a particular set of parameters is important in BATS, rather it shows that no general ranking of parameters is possible. It is also emphasized that using `stand-alone` forcing to examine the sensitivity of a land-surface scheme to perturbations, in either parameters or the atmosphere, is unreliable due to the lack of surface-atmospheric feedbacks.« less
NASA Astrophysics Data System (ADS)
Kopka, P.; Wawrzynczak, A.; Borysiewicz, M.
2015-09-01
In many areas of application, a central problem is a solution to the inverse problem, especially estimation of the unknown model parameters to model the underlying dynamics of a physical system precisely. In this situation, the Bayesian inference is a powerful tool to combine observed data with prior knowledge to gain the probability distribution of searched parameters. We have applied the modern methodology named Sequential Approximate Bayesian Computation (S-ABC) to the problem of tracing the atmospheric contaminant source. The ABC is technique commonly used in the Bayesian analysis of complex models and dynamic system. Sequential methods can significantly increase the efficiency of the ABC. In the presented algorithm, the input data are the on-line arriving concentrations of released substance registered by distributed sensor network from OVER-LAND ATMOSPHERIC DISPERSION (OLAD) experiment. The algorithm output are the probability distributions of a contamination source parameters i.e. its particular location, release rate, speed and direction of the movement, start time and duration. The stochastic approach presented in this paper is completely general and can be used in other fields where the parameters of the model bet fitted to the observable data should be found.
Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.
2014-07-01
The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.
NASA Astrophysics Data System (ADS)
Howe, Alex R.; Burrows, Adam; Deming, Drake
2017-01-01
We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klevtsova, Yu Yu
2013-09-30
The paper is concerned with a nonlinear system of partial differential equations with parameters. This system describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. Sufficient conditions on the parameters and the right-hand side are obtained for the existence of a stationary measure. Bibliography: 25 titles.
Planets of the solar system. [Jupiter and Venus
NASA Technical Reports Server (NTRS)
Kondratyev, K. Y.; Moskalenko, N. I.
1978-01-01
Venera and Mariner spacecraft and ground based radio astronomy and spectroscopic observations of the atmosphere and surface of venus are examined. The composition and structural parameters of the atmosphere are discussed as the basis for development of models and theories of the vertical structure of the atmosphere, the greenhouse effect, atmospheric circulation and cloud cover. Recommendations for further meteorological studies are given. Ground based and Pioneer satellite observation data on Jupiter are explored as well as calculations and models of the cloud structure, atmospheric circulation and thermal emission field of Jupiter.
Sensitivity studies with a coupled ice-ocean model of the marginal ice zone
NASA Technical Reports Server (NTRS)
Roed, L. P.
1983-01-01
An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.
NASA Technical Reports Server (NTRS)
Robertson, J. S.; Siegman, W. L.; Jacobson, M. J.
1989-01-01
There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal.
Semiempirical photospheric models of a solar flare on May 28, 2012
NASA Astrophysics Data System (ADS)
Andriets, E. S.; Kondrashova, N. N.
2015-02-01
The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.
NASA Astrophysics Data System (ADS)
Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.
2018-06-01
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L, a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.
NASA Technical Reports Server (NTRS)
Hunt, G. E.
1972-01-01
The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.
Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects
NASA Astrophysics Data System (ADS)
Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.
2013-08-01
In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
A user-friendly one-dimensional model for wet volcanic plumes
Mastin, Larry G.
2007-01-01
This paper presents a user-friendly graphically based numerical model of one-dimensional steady state homogeneous volcanic plumes that calculates and plots profiles of upward velocity, plume density, radius, temperature, and other parameters as a function of height. The model considers effects of water condensation and ice formation on plume dynamics as well as the effect of water added to the plume at the vent. Atmospheric conditions may be specified through input parameters of constant lapse rates and relative humidity, or by loading profiles of actual atmospheric soundings. To illustrate the utility of the model, we compare calculations with field-based estimates of plume height (∼9 km) and eruption rate (>∼4 × 105 kg/s) during a brief tephra eruption at Mount St. Helens on 8 March 2005. Results show that the atmospheric conditions on that day boosted plume height by 1–3 km over that in a standard dry atmosphere. Although the eruption temperature was unknown, model calculations most closely match the observations for a temperature that is below magmatic but above 100°C.
Modelling of interaction of the large disrupted meteoroid with the Earth atmosphere
NASA Astrophysics Data System (ADS)
Brykina, Irina G.
2018-05-01
The model of atmospheric fragmentation of large meteoroids to the cloud of fragments is proposed. The comparison with similar models used in the literature is made. The approximate analytical solution of meteor physics equations is obtained for the mass loss of the disrupted meteoroid, the energy deposition and for the light curve normalized to the maximum brightness. This solution is applied to modelling of interaction of the Chelyabinsk meteoroid with the atmosphere. The influence of uncertainty of initial parameters of the meteoroid on characteristics of its interaction with the atmosphere is estimated. Comparison of the analytical solution with the observational data is made.
Effects of the seasonal cycle on superrotation in planetary atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Jonathan L.; Vallis, Geoffrey K.; Potter, Samuel F.
2014-05-20
The dynamics of dry atmospheric general circulation model simulations forced by seasonally varying Newtonian relaxation are explored over a wide range of two control parameters and are compared with the large-scale circulation of Earth, Mars, and Titan in their relevant parameter regimes. Of the parameters that govern the behavior of the system, the thermal Rossby number (Ro) has previously been found to be important in governing the spontaneous transition from an Earth-like climatology of winds to a superrotating one with prograde equatorial winds, in the absence of a seasonal cycle. This case is somewhat unrealistic as it applies only ifmore » the planet has zero obliquity or if surface thermal inertia is very large. While Venus has nearly vanishing obliquity, Earth, Mars, and Titan (Saturn) all have obliquities of ∼25° and varying degrees of seasonality due to their differing thermal inertias and orbital periods. Motivated by this, we introduce a time-dependent Newtonian cooling to drive a seasonal cycle using idealized model forcing, and we define a second control parameter that mimics non-dimensional thermal inertia of planetary surfaces. We then perform and analyze simulations across the parameter range bracketed by Earth-like and Titan-like regimes, assess the impact on the spontaneous transition to superrotation, and compare Earth, Mars, and Titan to the model simulations in the relevant parameter regime. We find that a large seasonal cycle (small thermal inertia) prevents model atmospheres with large thermal Rossby numbers from developing superrotation by the influences of (1) cross-equatorial momentum advection by the Hadley circulation and (2) hemispherically asymmetric zonal-mean zonal winds that suppress instabilities leading to equatorial momentum convergence. We also demonstrate that baroclinic instabilities must be sufficiently weak to allow superrotation to develop. In the relevant parameter regimes, our seasonal model simulations compare favorably to large-scale, seasonal phenomena observed on Earth and Mars. In the Titan-like regime the seasonal cycle in our model acts to prevent superrotation from developing, and it is necessary to increase the value of a third parameter—the atmospheric Newtonian cooling time—to achieve a superrotating climatology.« less
NASA Astrophysics Data System (ADS)
Marçais, J.; de Dreuzy, J.-R.; Ginn, T. R.; Rousseau-Gueutin, P.; Leray, S.
2015-06-01
While central in groundwater resources and contaminant fate, Transit Time Distributions (TTDs) are never directly accessible from field measurements but always deduced from a combination of tracer data and more or less involved models. We evaluate the predictive capabilities of approximate distributions (Lumped Parameter Models abbreviated as LPMs) instead of fully developed aquifer models. We develop a generic assessment methodology based on synthetic aquifer models to establish references for observable quantities as tracer concentrations and prediction targets as groundwater renewal times. Candidate LPMs are calibrated on the observable tracer concentrations and used to infer renewal time predictions, which are compared with the reference ones. This methodology is applied to the produced crystalline aquifer of Plœmeur (Brittany, France) where flows leak through a micaschists aquitard to reach a sloping aquifer where they radially converge to the producing well, issuing broad rather than multi-modal TTDs. One, two and three parameters LPMs were calibrated to a corresponding number of simulated reference anthropogenic tracer concentrations (CFC-11, 85Kr and SF6). Extensive statistical analysis over the aquifer shows that a good fit of the anthropogenic tracer concentrations is neither a necessary nor a sufficient condition to reach acceptable predictive capability. Prediction accuracy is however strongly conditioned by the use of a priori relevant LPMs. Only adequate LPM shapes yield unbiased estimations. In the case of Plœmeur, relevant LPMs should have two parameters to capture the mean and the standard deviation of the residence times and cover the first few decades [0; 50 years]. Inverse Gaussian and shifted exponential performed equally well for the wide variety of the reference TTDs from strongly peaked in recharge zones where flows are diverging to broadly distributed in more converging zones. When using two sufficiently different atmospheric tracers like CFC-11 and 85Kr, groundwater renewal time predictions are accurate at 1-5 years for estimating mean transit times of some decades (10-50 years). 1-parameter LPMs calibrated on a single atmospheric tracer lead to substantially larger errors of the order of 10 years, while 3-parameter LPMs calibrated with a third atmospheric tracers (SF6) do not improve the prediction capabilities. Based on a specific site, this study highlights the high predictive capacities of two atmospheric tracers on the same time range with sufficiently different atmospheric concentration chronicles.
Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.
1992-01-01
Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.
Covey, Curt; Lucas, Donald D.; Tannahill, John; ...
2013-07-01
Modern climate models contain numerous input parameters, each with a range of possible values. Since the volume of parameter space increases exponentially with the number of parameters N, it is generally impossible to directly evaluate a model throughout this space even if just 2-3 values are chosen for each parameter. Sensitivity screening algorithms, however, can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination.This can aid both model development and the uncertainty quantification (UQ) process. Here we report results from a parameter sensitivity screening algorithm hitherto untested in climate modeling,more » the Morris one-at-a-time (MOAT) method. This algorithm drastically reduces the computational cost of estimating sensitivities in a high dimensional parameter space because the sample size grows linearly rather than exponentially with N. It nevertheless samples over much of the N-dimensional volume and allows assessment of parameter interactions, unlike traditional elementary one-at-a-time (EOAT) parameter variation. We applied both EOAT and MOAT to the Community Atmosphere Model (CAM), assessing CAM’s behavior as a function of 27 uncertain input parameters related to the boundary layer, clouds, and other subgrid scale processes. For radiation balance at the top of the atmosphere, EOAT and MOAT rank most input parameters similarly, but MOAT identifies a sensitivity that EOAT underplays for two convection parameters that operate nonlinearly in the model. MOAT’s ranking of input parameters is robust to modest algorithmic variations, and it is qualitatively consistent with model development experience. Supporting information is also provided at the end of the full text of the article.« less
Using Indirect Turbulence Measurements for Real-Time Parameter Estimation in Turbulent Air
NASA Technical Reports Server (NTRS)
Martos, Borja; Morelli, Eugene A.
2012-01-01
The use of indirect turbulence measurements for real-time estimation of parameters in a linear longitudinal dynamics model in atmospheric turbulence was studied. It is shown that measuring the atmospheric turbulence makes it possible to treat the turbulence as a measured explanatory variable in the parameter estimation problem. Commercial off-the-shelf sensors were researched and evaluated, then compared to air data booms. Sources of colored noise in the explanatory variables resulting from typical turbulence measurement techniques were identified and studied. A major source of colored noise in the explanatory variables was identified as frequency dependent upwash and time delay. The resulting upwash and time delay corrections were analyzed and compared to previous time shift dynamic modeling research. Simulation data as well as flight test data in atmospheric turbulence were used to verify the time delay behavior. Recommendations are given for follow on flight research and instrumentation.
Convenient models of the atmosphere: optics and solar radiation
NASA Astrophysics Data System (ADS)
Alexander, Ginsburg; Victor, Frolkis; Irina, Melnikova; Sergey, Novikov; Dmitriy, Samulenkov; Maxim, Sapunov
2017-11-01
Simple optical models of clear and cloudy atmosphere are proposed. Four versions of atmospheric aerosols content are considered: a complete lack of aerosols in the atmosphere, low background concentration (500 cm-3), high concentrations (2000 cm-3) and very high content of particles (5000 cm-3). In a cloud scenario, the model of external mixture is assumed. The values of optical thickness and single scattering albedo for 13 wavelengths are calculated in the short wavelength range of 0.28-0.90 µm, with regard to the molecular absorption bands, that is simulated with triangle function. A comparison of the proposed optical parameters with results of various measurements and retrieval (lidar measurement, sampling, processing radiation measurements) is presented. For a cloudy atmosphere models of single-layer and two-layer atmosphere are proposed. It is found that cloud optical parameters with assuming the "external mixture" agrees with retrieved values from airborne observations. The results of calculating hemispherical fluxes of the reflected and transmitted solar radiation and the radiative divergence are obtained with the Delta-Eddington approach. The calculation is done for surface albedo values of 0, 0.5, 0.9 and for spectral values of the sandy surface. Four values of solar zenith angle: 0°, 30°, 40° and 60° are taken. The obtained values are compared with data of radiative airborne observations. Estimating the local instantaneous radiative forcing of atmospheric aerosols and clouds for considered models is presented together with the heating rate.
Anand, N; Satheesh, S K; Krishna Moorthy, K
2017-07-15
Effects of absorbing atmospheric aerosols in modulating the tropospheric refractive index structure parameter (Cn2) are estimated using high resolution radiosonde and multi-satellite data along with a radiative transfer model. We report the influence of variations in residence time and vertical distribution of aerosols in modulating Cn2 and why the aerosol induced atmospheric heating needs to be considered while estimating a free space optical communication link budget. The results show that performance of the link is seriously affected if large concentrations of absorbing aerosols reside for a long time in the atmospheric path.
Forecasting surface-layer atmospheric parameters at the Large Binocular Telescope site
NASA Astrophysics Data System (ADS)
Turchi, Alessio; Masciadri, Elena; Fini, Luca
2017-04-01
In this paper, we quantify the performance of an automated weather forecast system implemented on the Large Binocular Telescope (LBT) site at Mt Graham (Arizona) in forecasting the main atmospheric parameters close to the ground. The system employs a mesoscale non-hydrostatic numerical model (Meso-Nh). To validate the model, we compare the forecasts of wind speed, wind direction, temperature and relative humidity close to the ground with the respective values measured by instrumentation installed on the telescope dome. The study is performed over a large sample of nights uniformly distributed over 2 yr. The quantitative analysis is done using classical statistical operators [bias, root-mean-square error (RMSE) and σ] and contingency tables, which allows us to extract complementary key information, such as the percentage of correct detections (PC) and the probability of obtaining a correct detection within a defined interval of values (POD). The results of our study indicate that the model performance in forecasting the atmospheric parameters we have just cited are very good, in some cases excellent: RMSE for temperature is below 1°C, for relative humidity it is 14 per cent and for the wind speed it is around 2.5 m s-1. The relative error of the RMSE for wind direction varies from 9 to 17 per cent depending on the wind speed conditions. This work is performed in the context of the ALTA (Advanced LBT Turbulence and Atmosphere) Center project, whose final goal is to provide forecasts of all the atmospheric parameters and the optical turbulence to support LBT observations, adaptive optics facilities and interferometric facilities.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.
2010-04-01
This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.
Utilization of Short-Simulations for Tuning High-Resolution Climate Model
NASA Astrophysics Data System (ADS)
Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.
2016-12-01
Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (< 10 days ) and longer ( 1 year) Perturbed Parameters Ensemble (PPE) simulations at low resolution to identify model feature sensitivity to parameter changes. The CAPT tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in greater detail once an educated set of parameter choice is selected. Limitations on using short-term simulations for tuning climate model are also discussed.
Ground temperature measurement by PRT-5 for maps experiment
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.
Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, Tim; Bell, Evaleigh; Dixon, Kenneth
MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.
Digital simulation of a communication link for Pioneer Saturn Uranus atmospheric entry probe, part 1
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1975-01-01
A digital simulation study is presented for a candidate modulator/demodulator design in an atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the conditions of an outer planet atmospheric probe. The simulation results indicate that the mean channel error rate with and without scintillation are similar to theoretical characterizations of the link. The simulation gives information for calculating other channel statistics and generates a quantized symbol stream on magnetic tape from which error correction decoding is analyzed. Results from the magnetic tape data analyses are also included. The receiver and bit synchronizer are modeled in the simulation at the level of hardware component parameters rather than at the loop equation level and individual hardware parameters are identified. The atmospheric scintillation amplitude and phase are modeled independently. Normal and log normal amplitude processes are studied. In each case the scintillations are low pass filtered. The receiver performance is given for a range of signal to noise ratios with and without the effects of scintillation. The performance is reviewed for critical reciever parameter variations.
NASA Astrophysics Data System (ADS)
Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa
2017-04-01
This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.
Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1981-01-01
A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.
Volcanic Ash Data Assimilation System for Atmospheric Transport Model
NASA Astrophysics Data System (ADS)
Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.
2017-12-01
The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Alex R.; Burrows, Adam; Deming, Drake, E-mail: arhowe@umich.edu, E-mail: burrows@astro.princeton.edu, E-mail: ddeming@astro.umd.edu
We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope ( JWST ) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs ofmore » combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.« less
Non-LTE model atmospheres for supersoft X-ray sources
NASA Astrophysics Data System (ADS)
Rauch, T.; Werner, K.
2010-02-01
In the last decade, X-ray observations of hot stellar objects became available with unprecedented resolution and S/N ratio. For an adequate interpretation, fully metal-line blanketed Non-LTE model-atmospheres are necessary. The Tübingen Non-LTE Model Atmosphere Package (TMAP) can calculate such model atmospheres at a high level of sophistication. Although TMAP is not especially designed for the calculation of spectral energy distributions (SEDs) at extreme photospheric parameters, it can be employed for the spectral analysis of burst spectra of novae like V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.
2008-01-01
The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated indicating a high vertical structure of atmosphere is retrieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca
2016-12-14
A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.« less
NASA Technical Reports Server (NTRS)
Laufer, A. H.; Gardner, E. P.; Kwok, T. L.; Yung, Y. L.
1983-01-01
The rate coefficients, including Arrhenius parameters, have been computed for a number of chemical reactions involving hydrocarbon species for which experimental data are not available and which are important in planetary atmospheric models. The techniques used to calculate the kinetic parameters include the Troe and semiempirical bond energy-bond order (BEBO) or bond strength-bond length (BSBL) methods.
Atmospheric seeing measurements obtained with MISOLFA in the framework of the PICARD Mission
NASA Astrophysics Data System (ADS)
Ikhlef, R.; Corbard, T.; Irbah, A.; Morand, F.; Fodil, M.; Chauvineau, B.; Assus, P.; Renaud, C.; Meftah, M.; Abbaki, S.; Borgnino, J.; Cissé, E. M.; D'Almeida, E.; Hauchecorne, A.; Laclare, F.; Lesueur, P.; Lin, M.; Martin, F.; Poiet, G.; Rouzé, M.; Thuillier, G.; Ziad, A.
2012-09-01
PICARD is a space mission launched in June 2010 to study mainly the geometry of the Sun. The PICARD mission has a ground program consisting mostly in four instruments based at the Calern Observatory (Observatoire de la Côte d’Azur). They allow recording simultaneous solar images and various atmospheric data from ground. The ground instruments consist in the qualification model of the PICARD space instrument (SODISM II: Solar Diameter Imager and Surface Mapper), standard sun-photometers, a pyranometer for estimating a global sky quality index, and MISOLFA a generalized daytime seeing monitor. Indeed, astrometric observations of the Sun using ground-based telescopes need an accurate modeling of optical effects induced by atmospheric turbulence. MISOLFA is founded on the observation of Angle-of-Arrival (AA) fluctuations and allows us to analyze atmospheric turbulence optical effects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried parameter r0, size of the isoplanatic patch, the spatial coherence outer scale L0 and atmospheric correlation times). We present in this paper simulations showing how the Fried parameter infered from MISOLFA records can be used to interpret radius measurements extracted from SODISM II images. We show an example of daily and monthly evolution of r0 and present its statistics over 2 years at Calern Observatory with a global mean value of 3.5cm.
NASA Astrophysics Data System (ADS)
Kramm, Gerhard
2010-07-01
In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.
NASA Technical Reports Server (NTRS)
Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.
2002-01-01
We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M13 and M3, which form a famous second parameter pair. From the spectra we derived - for the first time in M13 - atmospheric parameters (effective temperature and surface gravity) as well as abundances of helium, magnesium, and iron. Consistent with analyses of hot HB stars in other globular clusters we find evidence for helium depletion and iron enrichment in stars hotter than about 12,000 K in both M3 and M13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars with radiative levitation. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latour, M.; Fontaine, G.; Brassard, P.
As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 Å to 8.7 Å, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are:more » T {sub eff} = 29,850 ± 60 K, log g = 5.46 ± 0.01, and log N(He)/N(H) = –2.88 ± 0.02. We also modeled, for the first time, the He II line at 1640 Å from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.« less
A quasi-static model of global atmospheric electricity. I - The lower atmosphere
NASA Technical Reports Server (NTRS)
Hays, P. B.; Roble, R. G.
1979-01-01
A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.
INDIRECT ESTIMATION OF CONVECTIVE BOUNDARY LAYER STRUCTURE FOR USE IN ROUTINE DISPERSION MODELS
Dispersion models of the convectively driven atmospheric boundary layer (ABL) often require as input meteorological parameters that are not routinely measured. These parameters usually include (but are not limited to) the surface heat and momentum fluxes, the height of the cappin...
A Study on Planetary Atmospheric Circulations using THOR
NASA Astrophysics Data System (ADS)
Mendonça, João; Grosheintz, Luc; Lukas Grimm, Simon; Heng, Kevin
2015-12-01
The large variety of planetary parameters observed leads us to think that exoplanets may show a large range of possible climates. It is therefore of the uttermost importance to investigate the influence of astronomical and planetary bulk parameters in driving the atmospheric circulations. In the solar system the results from planetary spacecraft missions have demonstrated how different the planetary climate and atmospheric circulations can be. The study of exoplanets will require probing a far wider range of physical and orbital parameters than the ones of our neighbor planets. For this reason, such a study will involve exploring an even larger diversity of circulation and climate regimes. Our new atmospheric model, THOR, is intended to be extremely flexible and to explore the large diversity of planetary atmospheres.THOR is part of the Exoclimes Simulation Platform, and is a project of the Exoplanet and Exoclimes Group (see www.exoclime.org). THOR solves the complex atmospheric fluid equations in a rotating sphere (fully compressible - nonhydrostatic system) using an icosahedral grid. The main advantages of using our new platform against other recent exoplanet models is that 1) The atmospheric fluid equations are completely represented and no approximations are used that could compromise the physics of the problem; 2) The model uses for the first time in exoplanet studies, a specific icosahedral grid that solves the pole problem; 3) The interface is user friendly and can be easily adapted to a multitude of atmospheric conditions; 4) By using GPU computation, our code greatly improves the typical code running time.We will present and discuss the first detailed results of our simulations, more specifically of two benchmark tests that are a representative sample of the large range of exoplanetary parameters: Earth-like conditions (the Held-Suarez test) and a tidally locked hot-Jupiter. THOR has successfully passed these tests and is able to determine the main mechanisms driving the circulation in the simulated planets. From the 3D numerical simulations we found that some hot-Jupiters atmospheres can sustain multiple dynamical steady states. The results also suggest the presence of a new mechanism that transports heat from the upper to the lower atmosphere. The presence and impact of this mechanism in the global temperature will be discussed in this presentation.
NASA Technical Reports Server (NTRS)
Zurek, R. W.
1981-01-01
The tidal heating components for the dusty Martian atmosphere are computed based on dust optical parameters estimated from Viking Lander imaging data, and used to compute the variation of the tidal surface pressure components at the Viking Lander sites as a function of season and the total vertical extinction optical depth of the atmosphere. An atmospheric tidal model is used which is based on the inviscid, hydrostatic primitive equations linearized about a motionless basic state the temperature of which varies only with height, and the profiles of the tidal forcing components are computed using a delta-Eddington approximation to the radiative transfer equations. Comparison of the model results with the observed variations of surface pressure and overhead dust opacity at the Viking Lander 1 site reveal that the dust opacities and optical parameters derived from imaging data are roughly representative of the global dust haze necessary to reproduce the observed surface pressure amplitudes, with the exception of the model-inferred asymmetry parameter, which is smaller during the onset of a great storm. The observed preferential enhancement of the semidiurnal tide with respect to the diurnal tide during dust storm onset is shown to be due primarily to the elevation of the tidal heating source in a very dusty atmosphere.
Venus Global Reference Atmospheric Model
NASA Technical Reports Server (NTRS)
Justh, Hilary L.
2017-01-01
Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.
NASA Technical Reports Server (NTRS)
Schwan, Karsten
1994-01-01
Atmospheric modeling is a grand challenge problem for several reasons, including its inordinate computational requirements and its generation of large amounts of data concurrent with its use of very large data sets derived from measurement instruments like satellites. In addition, atmospheric models are typically run several times, on new data sets or to reprocess existing data sets, to investigate or reinvestigate specific chemical or physical processes occurring in the earth's atmosphere, to understand model fidelity with respect to observational data, or simply to experiment with specific model parameters or components.
NASA Astrophysics Data System (ADS)
Christensen, H. M.; Moroz, I.; Palmer, T.
2015-12-01
It is now acknowledged that representing model uncertainty in atmospheric simulators is essential for the production of reliable probabilistic ensemble forecasts, and a number of different techniques have been proposed for this purpose. Stochastic convection parameterization schemes use random numbers to represent the difference between a deterministic parameterization scheme and the true atmosphere, accounting for the unresolved sub grid-scale variability associated with convective clouds. An alternative approach varies the values of poorly constrained physical parameters in the model to represent the uncertainty in these parameters. This study presents new perturbed parameter schemes for use in the European Centre for Medium Range Weather Forecasts (ECMWF) convection scheme. Two types of scheme are developed and implemented. Both schemes represent the joint uncertainty in four of the parameters in the convection parametrisation scheme, which was estimated using the Ensemble Prediction and Parameter Estimation System (EPPES). The first scheme developed is a fixed perturbed parameter scheme, where the values of uncertain parameters are changed between ensemble members, but held constant over the duration of the forecast. The second is a stochastically varying perturbed parameter scheme. The performance of these schemes was compared to the ECMWF operational stochastic scheme, Stochastically Perturbed Parametrisation Tendencies (SPPT), and to a model which does not represent uncertainty in convection. The skill of probabilistic forecasts made using the different models was evaluated. While the perturbed parameter schemes improve on the stochastic parametrisation in some regards, the SPPT scheme outperforms the perturbed parameter approaches when considering forecast variables that are particularly sensitive to convection. Overall, SPPT schemes are the most skilful representations of model uncertainty due to convection parametrisation. Reference: H. M. Christensen, I. M. Moroz, and T. N. Palmer, 2015: Stochastic and Perturbed Parameter Representations of Model Uncertainty in Convection Parameterization. J. Atmos. Sci., 72, 2525-2544.
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
NASA Astrophysics Data System (ADS)
Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.
2011-12-01
The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.
NASA Astrophysics Data System (ADS)
Korbacz, A.; Brzeziński, A.; Thomas, M.
2008-04-01
We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.
Model of the vertical structure of the optical parameters of the Neptune atmosphere.
NASA Astrophysics Data System (ADS)
Morozhenko, A. V.
Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.
Summertime Thunderstorms Prediction in Belarus
NASA Astrophysics Data System (ADS)
Lapo, Palina; Sokolovskaya, Yaroslava; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei
2015-04-01
Mesoscale modeling with the Weather Research & Forecasting (WRF) system makes it possible to predict thunderstorm formation events by direct numerical simulation. In the present study, we analyze the feasibility and quality of thunderstorm prediction on the territory of Belarus for the summer period of 2014 based on analysis of several characteristic parameters in WRF modeling results that can serve as indicators of thunderstorms formation. These parameters include vertical velocity distribution, convective available potential energy (CAPE), K-index, SWEAT-index, Thompson index, lifted condensation level (LCL), and others, all of them being indicators of favorable atmospheric conditions for thunderstorms development. We perform mesoscale simulations of several cases of thunderstorm development in Belarus with WRF-ARW modeling system using 3 km grid spacing, WSM6 microphysics parameterization and explicit convection (no convective parameterization). Typical modeling duration makes 48 hours, which is equivalent to next-day thunderstorm prediction in operational use. We focus our attention to most prominent cases of intense thunderstorms in Minsk. For validation purposes, we use radar and satellite data in addition to surface observations. In summertime, the territory of Belarus is quite often under the influence of atmospheric fronts and stationary anticyclones. In this study, we subdivide thunderstorm cases under consideration into 2 categories: thunderstorms related to free convection and those related to forced convection processes. Our aim is to study the differences in thunderstorm indicator parameters between these two categories of thunderstorms in order to elaborate a set of parameters that can be used for operational thunderstorm forecasting. For that purpose, we analyze characteristic features of thunderstorms development on cold atmospheric fronts as well as thunderstorms formation in stable air masses. Modeling results demonstrate good predictive skill for thunderstorms development forecasting in summertime, which is even better in cases of atmospheric fronts passage. Integrated use of thunderstorm indicator parameters makes it possible to further improve the predictive skill.
NASA Astrophysics Data System (ADS)
Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.
2016-12-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.
Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin
2018-04-20
We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.
Dust Quantization and Effects on Agriculture Over Uttar Pradesh, India
NASA Astrophysics Data System (ADS)
Munshi, Pavel; Tiwari, Shubhansh
2017-01-01
Dust plays a very important role in the atmosphere and the biosphere. In this communication, the effect of atmospheric dust on the yields of certain crops grown in Uttar Pradesh, India is assessed. Coherent physical and thermodynamic fingerprints of dust parameters such as from Satellite data- KALPANA-1, MODIS, OMI, CALIPSO; Model data- DREAM, HYSPLIT, ECMWF; have been considered to run the APSIM model to derive the impacts. This paper assesses dust as a physical atmospheric phenomenon including its Long Range Transport (LRT) and dispersion along with considerable variations of Aerosol Optical Depths (AODs) over the subcontinent of India. While AODs significantly increase by more dust concentration, the local dispersion of pollutants is a major concern with deposition of atmospheric dust such as sulphates and other chemical constituents that affect agricultural land. An approach in atmospheric physics is also taken to parameterize the model outputs. This communication indicates dust to be a positive factor for the cultivation of certain crops such as wheat, maize in the experimental location. Initial results suggest that LRT dust is a viable counterpart to decrease the concentration of soil acidity and related parameters thus enhancing the vitality of crops.
Models and parameters for environmental radiological assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C W
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Study of the ablative effects on tektites. [wake shielding during atmospheric entry
NASA Technical Reports Server (NTRS)
Sepri, P.; Chen, K. K.
1976-01-01
Equations are presented which provide approximate parameters describing surface heating and tektite deceleration during atmosphere passage. Numerical estimates of these parameters using typical initial and ambient conditions support the conclusion that the commonly assumed trajectories would not have produced some of the observed surface markings. It is suggested that tektites did not enter the atmosphere singly but rather in a swarm dense enough to afford wake shielding according to a shock envelope model which is proposed. A further aerodynamic mechanism is described which is compatible with hemispherical pits occurring on tektite surfaces.
Inflight thermodynamic properties
NASA Technical Reports Server (NTRS)
Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.
1973-01-01
The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.
Mapping the Pressure-radius Relationship of Exoplanets
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Fossati, Luca; Kubyshkina, Darya
2017-10-01
The radius of a planet is one of the most physically meaningful and readily accessible parameters of extra-solar planets. This parameter is extensively used in the literature to compare planets or study trends in the know population of exoplanets. However, in an atmosphere, the concept of a planet radius is inherently fuzzy. The atmospheric pressures probed by trasmission (transit) or emission (eclipse) spectra are not directly constrained by the observations, they vary as a function of the atmospheric properties and observing wavelengths, and further correlate with the atmospheric properties producing degenerate solutions.Here, we characterize the properties of exoplanet radii using a radiative-transfer model to compute clear- atmosphere transmission and emission spectra of gas-dominated planets. We explore a wide range of planetary temperatures, masses, and radii, sampling from 300 to 3000 K and Jupiter- to Earth-like values. We will discuss how transit and photospheric radii vary over the parameter space, and map the global trends in the atmospheric pressures associated with these radii. We will also highlight the biases introduced by the choice of an observing band, or the assumption of a clear/cloudy atmosphere, and the relevance that these biases take as better instrumentation improves the precision of photometric observations.
Analysis of longwave radiation for the Earth-atmosphere system
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Venuru, C. S.; Subramanian, S. V.
1983-01-01
Accurate radiative transfer models are used to determine the upwelling atmospheric radiance and net radiative flux in the entire longwave spectral range. The validity of the quasi-random band model is established by comparing the results of this model with those of line-by-line formulations and with available theoretical and experimental results. Existing radiative transfer models and computer codes are modified to include various surface and atmospheric effects (surface reflection, nonequilibrium radiation, and cloud effects). The program is used to evaluate the radiative flux in clear atmosphere, provide sensitivity analysis of upwelling radiance in the presence of clouds, and determine the effects of various climatological parameters on the upwelling radiation and anisotropic function. Homogeneous and nonhomogeneous gas emissivities can also be evaluated under different conditions.
A statistical-based approach for acoustic tomography of the atmosphere.
Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid
2014-01-01
Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.
Parameter Uncertainty on AGCM-simulated Tropical Cyclones
NASA Astrophysics Data System (ADS)
He, F.
2015-12-01
This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.
Development of a Nonlinear Soft-Sensor Using a GMDH Network for a Refinery Crude Distillation Tower
NASA Astrophysics Data System (ADS)
Fujii, Kenzo; Yamamoto, Toru
In atmospheric distillation processes, the stabilization of processes is required in order to optimize the crude-oil composition that corresponds to product market conditions. However, the process control systems sometimes fall into unstable states in the case where unexpected disturbances are introduced, and these unusual phenomena have had an undesirable affect on certain products. Furthermore, a useful chemical engineering model has not yet been established for these phenomena. This remains a serious problem in the atmospheric distillation process. This paper describes a new modeling scheme to predict unusual phenomena in the atmospheric distillation process using the GMDH (Group Method of Data Handling) network which is one type of network model. According to the GMDH network, the model structure can be determined systematically. However, the least squares method has been commonly utilized in determining weight coefficients (model parameters). Estimation accuracy is not entirely expected, because the sum of squared errors between the measured values and estimates is evaluated. Therefore, instead of evaluating the sum of squared errors, the sum of absolute value of errors is introduced and the Levenberg-Marquardt method is employed in order to determine model parameters. The effectiveness of the proposed method is evaluated by the foaming prediction in the crude oil switching operation in the atmospheric distillation process.
Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.
NASA Astrophysics Data System (ADS)
Heinkelmann, Robert; Dick, Galina; Nilsson, Tobias; Soja, Benedikt; Wickert, Jens; Zus, Florian; Schuh, Harald
2015-04-01
Observations from space-geodetic techniques are nowadays increasingly used to derive atmospheric information for various commercial and scientific applications. A prominent example is the operational use of GNSS data to improve global and regional weather forecasts, which was started in 2006. Atmosphere gradients describe the azimuthal asymmetry of zenith delays. Estimates of geodetic and other parameters significantly improve when atmosphere gradients are determined in addition. Here we assess the capability of several space geodetic techniques (GNSS, VLBI, DORIS) to determine atmosphere gradients of refractivity. For this purpose we implement and compare various strategies for gradient estimation, such as different values for the temporal resolution and the corresponding parameter constraints. Applying least squares estimation the gradients are usually deterministically modelled as constants or piece-wise linear functions. In our study we compare this approach with a stochastic approach modelling atmosphere gradients as random walk processes and applying a Kalman Filter for parameter estimation. The gradients, derived from space geodetic techniques are verified by comparison with those derived from Numerical Weather Models (NWM). These model data were generated using raytracing calculations based on European Centre for Medium-Range Weather Forecast (ECMWF) and National Centers for Environmental Prediction (NCEP) analyses with different spatial resolutions. The investigation of the differences between the ECMWF and NCEP gradients hereby in addition allow for an empirical assessment of the quality of model gradients and how suitable the NWM data are for verification. CONT14 (2014-05-06 until 2014-05-20) is the youngest two week long continuous VLBI campaign carried out by IVS (International VLBI Service for Geodesy and Astrometry). It presents the state-of-the-art VLBI performance in terms of number of stations and number of observations and presents thus an excellent test period for comparisons with other space geodetic techniques. During the VLBI campaign CONT14 the HOBART12 and HOBART26 (Hobart, Tasmania, Australia) VLBI antennas were involved that co-locate with each other. The investigation of the gradient estimate differences from these co-located antennas allows for a valuable empirical quality assessment. Another quality criterion for gradient estimates are the differences of parameters at the borders of adjacent 24h-sessions. Both are investigated in our study.
Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations
NASA Technical Reports Server (NTRS)
Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.
2013-01-01
On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.
Single Plant Root System Modeling under Soil Moisture Variation
NASA Astrophysics Data System (ADS)
Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.
2016-12-01
A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.
Algorithms and physical parameters involved in the calculation of model stellar atmospheres
NASA Astrophysics Data System (ADS)
Merlo, D. C.
This contribution summarizes the Doctoral Thesis presented at Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba for the degree of PhD in Astronomy. We analyze some algorithms and physical parameters involved in the calculation of model stellar atmospheres, such as atomic partition functions, functional relations connecting gaseous and electronic pressure, molecular formation, temperature distribution, chemical compositions, Gaunt factors, atomic cross-sections and scattering sources, as well as computational codes for calculating models. Special attention is paid to the integration of hydrostatic equation. We compare our results with those obtained by other authors, finding reasonable agreement. We make efforts on the implementation of methods that modify the originally adopted temperature distribution in the atmosphere, in order to obtain constant energy flux throughout. We find limitations and we correct numerical instabilities. We integrate the transfer equation solving directly the integral equation involving the source function. As a by-product, we calculate updated atomic partition functions of the light elements. Also, we discuss and enumerate carefully selected formulae for the monochromatic absorption and dispersion of some atomic and molecular species. Finally, we obtain a flexible code to calculate model stellar atmospheres.
NASA Astrophysics Data System (ADS)
Stumpp, C.; Nützmann, G.; Maciejewski, S.; Maloszewski, P.
2009-09-01
SummaryIn this paper, five model approaches with different physical and mathematical concepts varying in their model complexity and requirements were applied to identify the transport processes in the unsaturated zone. The applicability of these model approaches were compared and evaluated investigating two tracer breakthrough curves (bromide, deuterium) in a cropped, free-draining lysimeter experiment under natural atmospheric boundary conditions. The data set consisted of time series of water balance, depth resolved water contents, pressure heads and resident concentrations measured during 800 days. The tracer transport parameters were determined using a simple stochastic (stream tube model), three lumped parameter (constant water content model, multi-flow dispersion model, variable flow dispersion model) and a transient model approach. All of them were able to fit the tracer breakthrough curves. The identified transport parameters of each model approach were compared. Despite the differing physical and mathematical concepts the resulting parameters (mean water contents, mean water flux, dispersivities) of the five model approaches were all in the same range. The results indicate that the flow processes are also describable assuming steady state conditions. Homogeneous matrix flow is dominant and a small pore volume with enhanced flow velocities near saturation was identified with variable saturation flow and transport approach. The multi-flow dispersion model also identified preferential flow and additionally suggested a third less mobile flow component. Due to high fitting accuracy and parameter similarity all model approaches indicated reliable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Hilding R.; Lester, John B.; Baron, Fabien
2016-10-20
One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less
Investigating the Martian Ionospheric Conductivity Using MAVEN Key Parameter Data
NASA Astrophysics Data System (ADS)
Aleryani, O.; Raftery, C. L.; Fillingim, M. O.; Fogle, A. L.; Dunn, P.; McFadden, J. P.; Connerney, J. E. P.; Mahaffy, P. R.; Ergun, R. E.; Andersson, L.
2015-12-01
Since the Viking orbiters and landers in 1976, the Martian atmospheric composition has scarcely been investigated. New data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, launched in 2013, allows for a thorough study of the electrically conductive nature of the Martian ionosphere. Determinations of the electrical conductivity will be made using in-situ atmospheric and ionospheric measurements, rather than scientific models for the first time. The objective of this project is to calculate the conductivity of the Martian atmosphere, whenever possible, throughout the trajectory of the MAVEN spacecraft. MAVEN instrumentation used includes the Neutral Gas and Ion Mass Spectrometer (NGIMS) for neutral species density, the Suprathermal and Thermal Ion Compositions (STATIC) for ion composition, temperature and density, the Magnetometer (MAG) for the magnetic field strength and the Langmuir Probe and Waves (LPW) for electron temperature and density. MAVEN key parameter data are used for these calculations. We compare our results with previous, model-based estimates of the conductivity. These results will allow us to quantify the flow of atmospheric electric currents which can be analyzed further for a deeper understanding of the Martian ionospheric electrodynamics, bringing us closer to understanding the mystery of the loss of the Martian atmosphere.
NASA Astrophysics Data System (ADS)
Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.
2003-04-01
The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.
VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters
NASA Astrophysics Data System (ADS)
Arroyo-Torres, B.; Martí-Vidal, I.; Marcaide, J. M.; Wittkowski, M.; Guirado, J. C.; Hauschildt, P. H.; Quirrenbach, A.; Fabregat, J.
2014-06-01
Aims: The main goal of this research is to determine the angular size and the atmospheric structures of cool giant stars (ɛ Oct, β Peg, NU Pav, ψ Peg, and γ Hya) and to compare them with hydrostatic stellar model atmospheres, to estimate the fundamental parameters, and to obtain a better understanding of the circumstellar environment. Methods: We conducted spectro-interferometric observations of ɛ Oct, β Peg, NU Pav, and ψ Peg in the near-infrared K band (2.13-2.47 μm), and γ Hya (1.9-2.47 μm) with the VLTI/AMBER instrument at medium spectral resolution (~1500). To obtain the fundamental parameters, we compared our data with hydrostatic atmosphere models (PHOENIX). Results: We estimated the Rosseland angular diameters of ɛ Oct, β Peg, NU Pav, ψ Peg, and γ Hya to be 11.66±1.50 mas, 16.87±1.00 mas, 13.03±1.75 mas, 6.31±0.35 mas, and 3.78±0.65 mas, respectively. Together with distances and bolometric fluxes (obtained from the literature), we estimated radii, effective temperatures, and luminosities of our targets. In the β Peg visibility, we observed a molecular layer of CO with a size similar to that modeled with PHOENIX. However, there is an additional slope in absorption starting around 2.3 μm. This slope is possibly due to a shell of H2O that is not modeled with PHOENIX (the size of the layer increases to about 5% with respect to the near-continuum level). The visibility of ψ Peg shows a low increase in the CO bands, compatible with the modeling of the PHOENIX model. The visibility data of ɛ Oct, NU Pav, and γ Hya show no increase in molecular bands. Conclusions: The spectra and visibilities predicted by the PHOENIX atmospheres agree with the spectra and the visibilities observed in our stars (except for β Peg). This indicates that the opacity of the molecular bands is adequately included in the model, and the atmospheres of our targets have an extension similar to the modeled atmospheres. The atmosphere of β Peg is more extended than that predicted by the model. The role of pulsations, if relevant in other cases and unmodeled by PHOENIX, therefore seems negligible for the atmospheric structures of our sample. The targets are located close to the red limits of the evolutionary tracks of the STAREVOL model, corresponding to masses between 1 M⊙ and 3 M⊙. The STAREVOL model fits the position of our stars in the Hertzsprung-Russell (HR) diagram better than the Ekström model does. STAREVOL includes thermohaline mixing, unlike the Ekström model, and complements the latter for intermediate-mass stars. Based on observations made with the VLT Interferometer (VLTI) at Paranal Observatory under programme ID 089.D-0801.Figures 2-4 are available in electronic form at http://www.aanda.org
Topics in Extrasolar Planet Characterization
NASA Astrophysics Data System (ADS)
Howe, Alex Ryan
I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.
NASA Astrophysics Data System (ADS)
Li, S.; Rupp, D. E.; Hawkins, L.; Mote, P.; McNeall, D. J.; Sarah, S.; Wallom, D.; Betts, R. A.
2017-12-01
This study investigates the potential to reduce known summer hot/dry biases over Pacific Northwest in the UK Met Office's atmospheric model (HadAM3P) by simultaneously varying multiple model parameters. The bias-reduction process is done through a series of steps: 1) Generation of perturbed physics ensemble (PPE) through the volunteer computing network weather@home; 2) Using machine learning to train "cheap" and fast statistical emulators of climate model, to rule out regions of parameter spaces that lead to model variants that do not satisfy observational constraints, where the observational constraints (e.g., top-of-atmosphere energy flux, magnitude of annual temperature cycle, summer/winter temperature and precipitation) are introduced sequentially; 3) Designing a new PPE by "pre-filtering" using the emulator results. Steps 1) through 3) are repeated until results are considered to be satisfactory (3 times in our case). The process includes a sensitivity analysis to find dominant parameters for various model output metrics, which reduces the number of parameters to be perturbed with each new PPE. Relative to observational uncertainty, we achieve regional improvements without introducing large biases in other parts of the globe. Our results illustrate the potential of using machine learning to train cheap and fast statistical emulators of climate model, in combination with PPEs in systematic model improvement.
Evaluation of the Atmospheric Boundary-Layer Electrical Variability
NASA Astrophysics Data System (ADS)
Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.
2017-12-01
Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.
NASA Astrophysics Data System (ADS)
Vallis, Geoffrey K.; Colyer, Greg; Geen, Ruth; Gerber, Edwin; Jucker, Martin; Maher, Penelope; Paterson, Alexander; Pietschnig, Marianne; Penn, James; Thomson, Stephen I.
2018-03-01
Isca is a framework for the idealized modelling of the global circulation of planetary atmospheres at varying levels of complexity and realism. The framework is an outgrowth of models from the Geophysical Fluid Dynamics Laboratory in Princeton, USA, designed for Earth's atmosphere, but it may readily be extended into other planetary regimes. Various forcing and radiation options are available, from dry, time invariant, Newtonian thermal relaxation to moist dynamics with radiative transfer. Options are available in the dry thermal relaxation scheme to account for the effects of obliquity and eccentricity (and so seasonality), different atmospheric optical depths and a surface mixed layer. An idealized grey radiation scheme, a two-band scheme, and a multiband scheme are also available, all with simple moist effects and astronomically based solar forcing. At the complex end of the spectrum the framework provides a direct connection to comprehensive atmospheric general circulation models. For Earth modelling, options include an aquaplanet and configurable continental outlines and topography. Continents may be defined by changing albedo, heat capacity, and evaporative parameters and/or by using a simple bucket hydrology model. Oceanic Q fluxes may be added to reproduce specified sea surface temperatures, with arbitrary continental distributions. Planetary atmospheres may be configured by changing planetary size and mass, solar forcing, atmospheric mass, radiation, and other parameters. Examples are given of various Earth configurations as well as a giant planet simulation, a slowly rotating terrestrial planet simulation, and tidally locked and other orbitally resonant exoplanet simulations. The underlying model is written in Fortran and may largely be configured with Python scripts. Python scripts are also used to run the model on different architectures, to archive the output, and for diagnostics, graphics, and post-processing. All of these features are publicly available in a Git-based repository.
A Numerical Model of the Performance of the Howard University Raman Lidar System
NASA Astrophysics Data System (ADS)
Connell, Rasheen M.; Adam, Mariana; Venable, Demetrius
2009-07-01
At the Howard University Atmospheric Observatory in Beltsville, MD, a Raman Lidar system was developed to provide both daytime and nighttime measurements of water vapor, aerosols, and cirrus clouds with 1 min temporal and 7.5 m spatial resolution in the lower troposphere. Signals at three wavelengths associated with Rayleigh/Mie scattering for aerosols and cirrus clouds at 354.7 nm, Raman scattering for nitrogen at 386.7 nm, and water vapor at 407.5 nm are analyzed. The transmitter is a triple harmonic Nd: YAG solid state laser. The receiver is a 40 cm Cassegrain telescope. Our detector system consists of a multi-channel wavelength separator unit and data acquisition system. We are developing a numerical model to provide a realistic representation of the system behavior. The variants of the lidar equation in the model use system parameters and are solved to determine the return signals for our lidar system. In this paper, we report on two of the five case studies being investigated: clear sky and cirrus cloud covered molecular atmosphere. The first simulations are based on a standard atmosphere, which assumes an unpolluted (aerosol-free) dry air atmosphere. The second set of simulations is based on a cloudy atmosphere, where cirrus clouds are added to the conditions in case study I. Lidar signals are simulated over the altitude range covered by our measurements (up to 14 km). Results will show comparisons between the simulated and actual measurements when varying lidar and atmospheric optical parameters in the model.
Photospheres of hot stars. IV - Spectral type O4
NASA Technical Reports Server (NTRS)
Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.
1990-01-01
The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.
Very narrow band model calculations of atmospheric fluxes and cooling rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, L.S.; Berk, A.; Acharya, P.K.
1996-10-15
A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d ismore » introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.« less
Line shape parameters of the 22-GHz water line for accurate modeling in atmospheric applications
NASA Astrophysics Data System (ADS)
Koshelev, M. A.; Golubiatnikov, G. Yu.; Vilkov, I. N.; Tretyakov, M. Yu.
2018-01-01
The paper concerns refining parameters of one of the major atmospheric diagnostic lines of water vapor at 22 GHz. Two high resolution microwave spectrometers based on different principles of operation covering together the pressure range from a few milliTorr up to a few Torr were used. Special efforts were made to minimize possible sources of systematic measurement errors. Satisfactory self-consistency of the obtained data was achieved ensuring reliability of the obtained parameters. Collisional broadening and shifting parameters of the line in pure water vapor and in its mixture with air were determined at room temperature. Comparative analysis of the obtained parameters with previous data is given. The speed dependence effect impact on the line shape was evaluated.
Dynamical Behavior of Meteor in AN Atmosphere: Theory vs Observations
NASA Astrophysics Data System (ADS)
Gritsevich, Maria
Up to now the only quantities which directly follow from the available meteor observations are its brightness, the height above sea level, the length along the trajectory, and as a consequence its velocity as a function of time. Other important parameters like meteoroid's mass, its shape, bulk and grain density, temperature remain unknown and should be found based on physical theories and special experiments. In this study I will consider modern methods for evaluating meteoroid parameters from observational data, and some of their applications. The study in particular takes an approach in modelling the meteoroids' mass and other properties from the aerodynamical point of view, e.g. from the rate of body deceleration in the atmosphere as opposed to conventionally used luminosity [1]. An analytical model of the atmospheric entry is calculated for registered meteors using published observational data and evaluating parameters describing drag, ablation and rotation rate of meteoroid along the luminous segment of the trajectory. One of the special features of this approach is the possibility of considering a change in body shape during its motion in the atmosphere. The correct mathematical modelling of meteor events is necessary for further studies of consequences for collisions of cosmic bodies with the Earth [2]. It also helps us to estimate the key parameters of the meteoroids, including deceleration, pre-entry mass, terminal mass, ablation coefficient, effective destruction enthalpy, and heat-transfer coefficient. With this information, one can use models for the dust influx onto Earth to estimate the number of meteors detected by a camera of a given sensitivity. References 1. Gritsevich M. I. Determination of Parameters of Meteor Bodies based on Flight Obser-vational Data // Advances in Space Research, 44, p. 323-334, 2009. 2. Gritsevich M. I., Stulov V. P. and Turchak L. I. Classification of Consequences for Col-lisions of Natural Cosmic Bodies with the Earth // Doklady Physics, 54, p. 499-503, 2009.
Land-surface influences on weather and climate
NASA Technical Reports Server (NTRS)
Baer, F.; Mintz, Y.
1984-01-01
Land-surface influences on weather and climate are reviewed. The interrelationship of vegetation, evapotranspiration, atmospheric circulation, and climate is discussed. Global precipitation, soil moisture, the seasonal water cycle, heat transfer, and atmospheric temperature are among the parameters considered in the context of a general biosphere model.
NASA Astrophysics Data System (ADS)
Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.
2016-12-01
Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8-2035-2015,2015. Ryder, J., et al. : A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations, Geoscientific Model Development, 9, 223-245, doi:10.5194/gmd-9-223-2016, 2016.
The Dynamic Atmospheres of Carbon Rich Giants: Constraining Models Via Interferometry
NASA Astrophysics Data System (ADS)
Rau, Gioia; Hron, Josef; Paladini, Claudia; Aringer, Bernard; Eriksson, Kjell; Marigo, Paola
2016-07-01
Dynamic models for the atmospheres of C-rich Asymptotic Giant Branch stars are quite advanced and have been overall successful in reproducing spectroscopic and photometric observations. Interferometry provides independent information and is thus an important technique to study the atmospheric stratification and to further constrain the dynamic models. We observed a sample of six C-rich AGBs with the mid infrared interferometer VLTI/MIDI. These observations, combined with photometric and spectroscopic data from the literature, are compared with synthetic observables derived from dynamic model atmospheres (DMA, Eriksson et al. 2014). The SEDs can be reasonably well modelled and the interferometry supports the extended and multi-component structure of the atmospheres, but some differences remain. We discuss the possible reasons for these differences and we compare the stellar parameters derived from this comparison with stellar evolution models. Finally, we point out the high potential of MATISSE, the second generation VLTI instrument allowing interferometric imaging in the L, M, and N bands, for further progress in this field.
NASA Astrophysics Data System (ADS)
Khan, Tanvir R.; Perlinger, Judith A.
2017-10-01
Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 µm, friction velocity was one of the three most influential parameters in all parameterizations. For giant particles (dp = 10 µm), relative humidity was the most influential parameter. Because it is the least complex of the five parameterizations, and it has the greatest accuracy and least uncertainty, we propose that the ZH14 parameterization is currently superior for incorporation into atmospheric transport models.
NASA Astrophysics Data System (ADS)
Ruan, Wenzhi; Yan, Limei; He, Jiansen; Zhang, Lei; Wang, Linghua; Wei, Yong
2018-06-01
Shock waves are believed to play an important role in plasma heating. The shock-like temporal jumps in radiation intensity and Doppler shift have been identified in the solar atmosphere. However, a quantitative diagnosis of the shocks in the solar atmosphere is still lacking, seriously hindering the understanding of shock dissipative heating of the solar atmosphere. Here, we propose a new method to realize the goal of the shock quantitative diagnosis, based on Rankine–Hugoniot equations and taking the advantages of simultaneous imaging and spectroscopic observations from, e.g., IRIS (Interface Region Imaging Spectrograph). Because of this method, the key parameters of shock candidates can be derived, such as the bulk velocity and temperature of the plasma in the upstream and downstream, the propagation speed and direction. The method is applied to the shock candidates observed by IRIS, and the overall characteristics of the shocks are revealed quantitatively for the first time. This method is also tested with the help of forward modeling, i.e., virtual observations of simulated shocks. The parameters obtained from the method are consistent with the parameters of the shock formed in the model and are independent of the viewing direction. Therefore, the method we proposed here is applicable to the quantitative and comprehensive diagnosis of the observed shocks in the solar atmosphere.
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.; Hammarstrand, Ulla; Petty, Grant W.
1990-01-01
Existing and experimental algorithms for various parameters of atmospheric water content such as integrated water vapor, cloud water, precipitation, are used to examine the distribution of these quantities in mid latitude cyclones. The data was obtained from signals given by the special sensor microwave/imager (SSM/I) and compared with data from the nimbus scanning multichannel microwave radiometer (SMMR) for North Atlantic cyclones. The potential of microwave remote sensing for enhancing knowledge of the horizontal structure of these storms and to aid the development and testing of the cloud and precipitation aspects of limited area numerical models of cyclonic storms is investigated.
VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)
NASA Astrophysics Data System (ADS)
Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.
2016-06-01
Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).
Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters
NASA Astrophysics Data System (ADS)
Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun
2015-05-01
We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].
NASA Astrophysics Data System (ADS)
Boukabara, S. A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A.
2002-08-01
Spaceborne microwave remote sensing allows the determination of oceanic and atmospheric parameters. Operational payloads such as ERS-1 and ERS-2 and TOPEX/Poseidon as well as missions such as Jason (from NASA-Centre National d'Etudes) or Envisat (from the European Space Agency), have contained or contain paired microwave instruments looking at the nadir direction. This combination consists of microwave radiometers and a radar-altimeter. For the frequencies chosen in oceanographic satellite payloads, the active mode signal is mostly dependent on the surface state through its reflectivity and thus used for the near-surface wind speed retrieval. The active mode can also be attenuated by the atmosphere. On the other hand, the passive mode is related to the surface emissivity and the atmospheric radiation through the radiative transfer equation. Until now, the oceanic and atmospheric parameters have been retrieved separately, the latter being used to correct radar measurements. However, the reflectivity and the emissivity of a target are not independent quantities; hence the synergistic use of these two kinds of microwave measurements should allow one to improve the retrieval quality of the sea and atmosphere parameters. For this purpose, a unified model has been developed for the simulation of both the microwave backscattering coefficient σ° (active measurement) and the microwave emissivity, an important factor for the brightness temperature TB simulation, for every configuration (incidence angles, frequency, polarizations), taking into account the fact that the reflectivity and the emissivity are complementary to unity. The atmospheric absorption is computed following a widely used model from the literature. This paper gives a description and a first attempt of validation of this approach through a comparison with real data. The performance of the model is assessed by comparing the simulations to both brightness temperatures and backscattering coefficients from ERS-1 and TOPEX/Poseidon's instruments during the SEMAPHORE experiment, over a two-month period.
Spectral energy distribution of M-subdwarfs: A study of their atmospheric properties
NASA Astrophysics Data System (ADS)
Rajpurohit, A. S.; Reylé, C.; Allard, F.; Homeier, D.; Bayo, A.; Mousis, O.; Rajpurohit, S.; Fernández-Trincado, J. G.
2016-11-01
Context. M-type subdwarfs are metal-poor low-mass stars and are probes for the old populations in our Galaxy. Accurate knowledge of their atmospheric parameters and especially their composition is essential for understanding the chemical history of our Galaxy. Aims: The purpose of this work is to perform a detailed study of M-subdwarf spectra covering the full wavelength range from the optical to the near-infrared. It allows us to perform a more detailed analysis of the atmospheric composition in order to determine the stellar parameters, and to constrain the atmospheric models. The study will allow us to further understand physical and chemical processes such as increasing condensation of gas into dust, to point out the missing continuum opacities, and to see how the main band features are reproduced by the models. The spectral resolution and the large wavelength coverage used is a unique combination that can constrain the processes that occur in a cool atmosphere. Methods: We obtained medium-resolution spectra (R = 5000-7000) over the wavelength range 0.3-2.5 μm of ten M-type subdwarfs with X-shooter at VLT. These data constitute a unique atlas of M-subdwarfs from optical to near-infrared. We performed a spectral synthesis analysis using a full grid of synthetic spectra computed from BT-Settl models and obtained consistent stellar parameters such as effective temperature, surface gravity, and metallicity. Results: We show that state-of the-art atmospheric models correctly represent the overall shape of their spectral energy distribution, as well as atomic and molecular line profiles both in the optical and near-infrared. We find that the actual fitted gravities of almost all our sample are consistent with old objects, except for LHS 73 where it is found to be surprisingly low. Based on observations made with the ESO Very Large Telescope at the Paranal Observatory under programme 092.D-0600(A).
The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)
NASA Technical Reports Server (NTRS)
Shuttleworth, W. James; Sorooshian, Soroosh
1996-01-01
This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be recognized from space, but also in then applying remotely-sensed land cover data to map aggregate values of BATS parameters for heterogeneous covers and interpreting these parameters in terms of surface-atmosphere exchanges.
Analysis of the August and November dynamical structures in the MLT region
NASA Astrophysics Data System (ADS)
Gusev, O.; Grossmann, K.-U.; Schmidt, H.
The inversion of the infrared limb radiance measurements made by {CR}yogenic {I}nfrared {S}pectrometers and {T}elescopes for the {A}tmosphere (CRISTA) satellite experiment provided a global dataset of pressures, temperatures and atmospheric gas number densities for November 1994 and August 1997 in the altitude range 7-180 km. The {HAM}burg {MO}del of the {N}eutral and {I}onized {A}tmosphere (HAMMONIA) is a general circulation and chemistry model covering the atmosphere from the Earth's surface up to about 250 km. To simulate the conditions found during both CRISTA time periods a special HAMMONIA run was performed. We discuss the MLT dynamical parameters found by analysing the measured and modelled data, their similarities and differences.
Pregger, Thomas; Friedrich, Rainer
2009-02-01
Emission data needed as input for the operation of atmospheric models should not only be spatially and temporally resolved. Another important feature is the effective emission height which significantly influences modelled concentration values. Unfortunately this information, which is especially relevant for large point sources, is usually not available and simple assumptions are often used in atmospheric models. As a contribution to improve knowledge on emission heights this paper provides typical default values for the driving parameters stack height and flue gas temperature, velocity and flow rate for different industrial sources. The results were derived from an analysis of the probably most comprehensive database of real-world stack information existing in Europe based on German industrial data. A bottom-up calculation of effective emission heights applying equations used for Gaussian dispersion models shows significant differences depending on source and air pollutant and compared to approaches currently used for atmospheric transport modelling.
Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms
NASA Technical Reports Server (NTRS)
Schubert, Wayne W.; Spry, James A.; Ronney, Paul D.; Pandian, Nathan R.; Welder, Eric
2012-01-01
The objective of this research was to design, build, and test an experimental apparatus for studying the parameters of atmospheric entry heating, and the inactivation of temperature-resistant bacterial spores. The apparatus is capable of controlled, rapid heating of sample coupons to temperatures of 200 to 350 C and above. The vacuum chamber permits operation under vacuum or special atmospheric gas mixtures.
Atomic hydrogen distribution. [in Titan atmospheric model
NASA Technical Reports Server (NTRS)
Tabarie, N.
1974-01-01
Several possible H2 vertical distributions in Titan's atmosphere are considered with the constraint of 5 km-A a total quantity. Approximative calculations show that hydrogen distribution is quite sensitive to two other parameters of Titan's atmosphere: the temperature and the presence of other constituents. The escape fluxes of H and H2 are also estimated as well as the consequent distributions trapped in the Saturnian system.
Atmospheric radiation model for water surfaces
NASA Technical Reports Server (NTRS)
Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.
1982-01-01
An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.
Study of atmospheric diffusion using LANDSAT
NASA Technical Reports Server (NTRS)
Torsani, J. A.; Viswanadham, Y.
1982-01-01
The parameters of diffusion patterns of atmospheric pollutants under different conditions were investigated for use in the Gaussian model for calculation of pollution concentration. Value for the divergence pattern of concentration distribution along the Y axis were determined using LANDSAT images. Multispectral scanner images of a point source plume having known characteristics, wind and temperature data, and cloud cover and solar elevation data provided by LANDSAT, were analyzed using the 1-100 system for image analysis. These measured values are compared with pollution transport as predicted by the Pasquill-Gifford, Juelich, and Hoegstroem atmospheric models.
Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets
NASA Astrophysics Data System (ADS)
Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana E.; Freedman, Richard; Visscher, Channon
2017-06-01
Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure.In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations.We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 ≤ Teff ≤ 2400 K and 2.5 ≤ log g ≤ 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.
Photospheric properties and fundamental parameters of M dwarfs
NASA Astrophysics Data System (ADS)
Rajpurohit, A. S.; Allard, F.; Teixeira, G. D. C.; Homeier, D.; Rajpurohit, S.; Mousis, O.
2018-02-01
Context. M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. Aim. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere. Methods: The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-Settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g, and [Fe/H]), respectively. Results: We have determined Teff, log g, and [Fe/H] for 45 M dwarfs using high-resolution H-band spectra. The derived Teff for the sample ranges from 3100 to 3900 K, values of log g lie in the range 4.5 ≤ log g ≤ 5.5, and the resulting metallicities lie in the range ‑0.5 ≤ [Fe/H] ≤ +0.5. We have explored systematic differences between effective temperature and metallicity calibrations with other studies using the same sample of M dwarfs. We have also shown that the stellar parameters determined using the BT-Settl model are more accurate and reliable compared to other comparative studies using alternative models.
The influence of atmospheric turbulence on partially coherent two-photon entangled field
NASA Astrophysics Data System (ADS)
Qiu, Y.; She, W.
2012-09-01
The propagation of a two-photon field from down-conversion of a partially coherent Gaussian Schell-model (GSM) pump beam in free space has been reported. However, the propagation of this two-photon field through a turbulent atmosphere has not been investigated yet. In this paper, an analytical expression of the coincidence count rate of the two-photon entangled field is derived. Unlike what has been reported, the field is from a parameter down-conversion of a partially coherent dark hollow pump beam and propagates through a turbulent atmosphere. The effects of the propagation parameters on the coincidence count rate are evaluated and illustrated. The results show that the pump beam parameters and atmospheric turbulence can evidently affect the detection probability of the photon pair at two different positions. It is found that the detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a lower mode of partially coherent pump beam.
NASA Astrophysics Data System (ADS)
Bellotti, A.; Steffes, P. G.
2016-12-01
The Juno Microwave Radiometer (MWR) has six channels ranging from 1.36-50 cm and the ability to peer deep into the Jovian atmosphere. An Artifical Neural Network algorithm has been developed to rapidly perform inversion for the deep abundance of ammonia, the deep abundance of water vapor, and atmospheric "stretch" (a parameter that reflects the deviation from a wet adiabate in the higher atmosphere). This algorithm is "trained" by using simulated emissions at the six wavelengths computed using the Juno atmospheric microwave radiative transfer (JAMRT) model presented by Oyafuso et al. (This meeting). By exploiting the emission measurements conducted at six wavelengths and at various incident angles, the neural network can provide preliminary results to a useful precison in a computational method hundreds of times faster than conventional methods. This can quickly provide important insights into the variability and structure of the Jovian atmosphere.
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei
2018-05-01
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).
Refining atmosphere light to improve the dark channel prior algorithm
NASA Astrophysics Data System (ADS)
Gan, Ling; Li, Dagang; Zhou, Can
2017-05-01
The defogging image gotten through dark channel prior algorithm has some shortcomings, such like color distortion, dimmer light and detail-loss near the observer. The main reasons are that the atmosphere light is estimated as one value and its change in different scene depth is not considered. So we modeled the atmosphere, one parameter of the defogging model. Firstly, we scatter the atmosphere light into equivalent point and build discrete model of the light. Secondly, we build some rough and possible models through analyzing the relationship between the atmosphere light and the medium transmission. Finally, by analyzing the results of many experiments qualitatively and quantitatively, we get the selected and optimized model. Although using this method causes the time-consuming to increase slightly, the evaluations, histogram correlation coefficient and peak signal-to-noise ratio are improved significantly and the defogging result is more conformed to human visual. And the color and the details near the observer in the defogging image are better than that achieved by the primal method.
PREFACE: Stellar Atmospheres in the Gaia Era - Preface
NASA Astrophysics Data System (ADS)
Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter
2011-12-01
Volume 328 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GREAT-ESF workshop entitled `Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling' (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf). The conference was held on 23-24 June 2011 at the Vrije Universiteit Brussel, Belgium. 47 scientists from 11 countries around the world attended the workshop. The ESA-Gaia satellite (launch mid 2013) will observe a billion stellar objects in the Galaxy and provide spectrophotometric and high-resolution spectra of an unprecedented number of stars observed with a space-based instrument. The confrontation of these data with theoretical models will significantly advance our understanding of the physics of stellar atmospheres. New stellar populations such as previously unknown emission line stars will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. The 33 presentations and 4 main discussion sessions at the workshop addressed important topics in spectrum synthesis methods and detailed line profile calculations urgently needed for accurate modelling of stellar spectra. It brought together leading scientists and students of the stellar physics communities investigating hot and cool star spectra. The scientific programme of the workshop consisted of 23 oral (6 invited) and 10 poster presentations about cool stars (first day; Comparative Spectrum Modelling and Quantitative Spectroscopy of Cool Stars), and hot stars (second day; Quantitative Spectroscopy of Hot Stars). The hot and cool stars communities use different spectrum modelling codes for determining basic parameters such as the effective temperature, surface gravity, iron abundance, and the chemical composition of stellar atmospheres. The chaired sessions of the first day highlighted new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the abundance of various chemical elements from stellar spectra. The presented methods utilize spectra observed with large spectral dispersion, for example for accurately measuring iron, carbon, and nitrogen abundances. These methods are important for ongoing development and testing of automated and supervised algorithms for determining detailed chemical composition in tagging studies of large (chemo-dynamical) spectroscopic surveys planned to complement the Gaia (astrometric and kinematic) census of the Galaxy. The complete scientific programme is available here. The workshop website also offers the presentation viewgraphs (in PDF format) and some nice photographs of the talks and poster breaks http://great-esf.oma.be/program.php.
The role of updraft velocity in temporal variability of cloud hydrometeor number
NASA Astrophysics Data System (ADS)
Sullivan, Sylvia; Nenes, Athanasios; Lee, Dong Min; Oreopoulos, Lazaros
2016-04-01
Significant effort has been dedicated to incorporating direct aerosol-cloud links, through parameterization of liquid droplet activation and ice crystal nucleation, within climate models. This significant accomplishment has generated the need for understanding which parameters affecting hydrometer formation drives its variability in coupled climate simulations, as it provides the basis for optimal parameter estimation as well as robust comparison with data, and other models. Sensitivity analysis alone does not address this issue, given that the importance of each parameter for hydrometer formation depends on its variance and sensitivity. To address the above issue, we develop and use a series of attribution metrics defined with adjoint sensitivities to attribute the temporal variability in droplet and crystal number to important aerosol and dynamical parameters. This attribution analysis is done both for the NASA Global Modeling and Assimilation Office Goddard Earth Observing System Model, Version 5 and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1. Within the GEOS simulation, up to 48% of temporal variability in output ice crystal number and 61% in droplet number can be attributed to input updraft velocity fluctuations, while for the CAM simulation, they explain as much as 89% of the ice crystal number variability. This above results suggest that vertical velocity in both model frameworks is seen to be a very important (or dominant) driver of hydrometer variability. Yet, observations of vertical velocity are seldomly available (or used) to evaluate the vertical velocities in simulations; this strikingly contrasts the amount and quality of data available for aerosol-related parameters. Consequentially, there is a strong need for retrievals or measurements of vertical velocity for addressing this important knowledge gap that requires a significant investment and effort by the atmospheric community. The attribution metrics as a tool of understanding for hydrometer variability can be instrumental for understanding the source of differences between models used for aerosol-cloud-climate interaction studies.
The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version
NASA Technical Reports Server (NTRS)
Leslie, F.W.; Justus, C.G.
2008-01-01
Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available parameters to enable the user to generate special output. Appendix G gives an example and guidance on incorporating GRAM07 as a subroutine in other programs such as trajectory codes or orbital propagation routines.
Le, Pichon Alexis; Garcés, Milton; Blanc, Elisabeth; Barthélémy, Maud; Drob, Doug P
2002-01-01
Infrasonic signals generated by daily supersonic Concorde flights between North America and Europe have been consistently recorded by an array of microbarographs in France. These signals are used to investigate the effects of atmospheric variability on long-range sound propagation. Statistical analysis of wave parameters shows seasonal and daily variations associated with changes in the wind structure of the atmosphere. The measurements are compared to the predictions obtained by tracing rays through realistic atmospheric models. Theoretical ray paths allow a consistent interpretation of the observed wave parameters. Variations in the reflection level, travel time, azimuth deviation and propagation range are explained by the source and propagation models. The angular deviation of a ray's azimuth direction, due to the seasonal and diurnal fluctuations of the transverse wind component, is found to be approximately 5 degrees from the initial launch direction. One application of the seasonal and diurnal variations of the observed phase parameters is the use of ground measurements to estimate fluctuations in the wind velocity at the reflection heights. The simulations point out that care must be taken when ascribing a phase velocity to a turning height. Ray path simulations which allow the correct computation of reflection heights are essential for accurate phase identifications.
NASA Astrophysics Data System (ADS)
Smits, K. M.; Forsythe, L.; Riley, W. J.; Bisht, G.
2016-12-01
Land Surface Models (LSMs) are used to predict heat, energy, and momentum fluxesoccurring at the land surface and the resulting effects in the soil and atmosphere at various scales.Evaporation from bare soil is an integral component of the water balance that is very difficult toaccurately predict since it is complexly affected by the coupled effects of atmospheric conditions andsoil properties. Inaccurate or simplifying assumptions can have drastic effects on regional and globalLSM predictions and cause available LSMs to predict conflicting values for the soil moistureconditions and surface fluxes (e.g. evapotranspiration, infiltration, run off). The goal of this work isto see how heterogeneities in soil properties can be properly represented with a soil resistance termthat accounts for physically based parameters of the soil system at the land-atmosphere interface.Utilizing a comprehensive, experimental dataset generated from a soil with known, heterogeneousproperties under highly controlled atmospheric conditions, we are able to compare the effectivenessof various parameterizations in two different models. The first being a multiphase, non-equilibrium,and non-isothermal model that minimizes the dependence on fitting parameters. The effects ofcertain mechanisms are better understood at this fine scale and incorporated into the land surfacecomponent of the Accelerated Climate Modeling for Energy project (ALM), which is focused oncapturing the interactions between the surface and the atmosphere at larger scales. The formulationsof the resistance parameter, soil water retention curve (SWRC), and diffusivity through partiallysaturated porous media are of particular interest. The fine scale model was used in conjunction withthe experimental data to test formulations before implementing them into the ACME Land Model(ALM). Effects of these alterations were compared to the existing mechanisms in ALM and thentested against lab and field scale data sets. Initial findings suggest the Tang and Riley (2013a) soilresistance more accurately reproduces results lab and field results on multiple scales whereheterogeneity is present. Further understanding of soil resistance will lead to more robust landsurface models which decrease the reliance on such empirical relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspi, Yohai; Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il
The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relativemore » humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.« less
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
NASA Technical Reports Server (NTRS)
Frouin, Robert; Deschamps, Pierre-Yves
1997-01-01
Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
NASA Technical Reports Server (NTRS)
Kopasakis, George
2015-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoran, Maria; Savastru, Roxana; Savastru, Dan
This paper presents a complex multidisciplinary approach concept to explain the nature of short-term earthquake precursors observed in land surface, atmosphere, ionosphere and magnetosphere for strong intermediate depth earthquakes recorded in Vrancea region in Romania. A developed Lithosphere-Surfacesphere-Atmosphere-Ionosphere (LSAI) coupling model can explain most of these presignals as a synergy between different anomalies of geophysical/geochemical parameters. These anomalies prior to medium to strong earthquakes are attributed to the thermodynamic, degassing and ionization processes in the Earth-Atmosphere system and micro-fracturing in the rocks especially along area’s active faults. The main outcome of this paper is an unified concept for systematic validationmore » of different types of earthquake precursors of which Land Surface Temperature (LST), outgoing Long wave Radiation (OLR), Surface Latent Heat Flux (SLHF), Air Temperature (AT), radon gas concentration, ionospheric Total Electron Content (TEC) are the most reliable parameters within the chain of the processes described by LSAI model.« less
Reliable inference of light curve parameters in the presence of systematics
NASA Astrophysics Data System (ADS)
Gibson, Neale P.
2016-10-01
Time-series photometry and spectroscopy of transiting exoplanets allow us to study their atmospheres. Unfortunately, the required precision to extract atmospheric information surpasses the design specifications of most general purpose instrumentation. This results in instrumental systematics in the light curves that are typically larger than the target precision. Systematics must therefore be modelled, leaving the inference of light-curve parameters conditioned on the subjective choice of systematics models and model-selection criteria. Here, I briefly review the use of systematics models commonly used for transmission and emission spectroscopy, including model selection, marginalisation over models, and stochastic processes. These form a hierarchy of models with increasing degree of objectivity. I argue that marginalisation over many systematics models is a minimal requirement for robust inference. Stochastic models provide even more flexibility and objectivity, and therefore produce the most reliable results. However, no systematics models are perfect, and the best strategy is to compare multiple methods and repeat observations where possible.
Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra
NASA Technical Reports Server (NTRS)
Valenti, J. A.; Piskunov, N.
1996-01-01
We describe a new software package that may be used to determine stellar and atomic parameters by matching observed spectra with synthetic spectra generated from parameterized atmospheres. A nonlinear least squares algorithm is used to solve for any subset of allowed parameters, which include atomic data (log gf and van der Waals damping constants), model atmosphere specifications (T(sub eff, log g), elemental abundances, and radial, turbulent, and rotational velocities. LTE synthesis software handles discontiguous spectral intervals and complex atomic blends. As a demonstration, we fit 26 Fe I lines in the NSO Solar Atlas (Kurucz et al.), determining various solar and atomic parameters.
Polarimetría de las atmósferas de Urano y Neptuno
NASA Astrophysics Data System (ADS)
López Sisterna, C.; Gil-Hutton, R.
2015-08-01
We present imaging polarimetry for Uranus and Neptune, the observations were taken with the 2.15 m telescope at CASLEO. The patterns observed for both planets turn to be centro-symmetric; unlike the observations on Jupiter and Saturn. However, the Stokes parameters introduce large errors on the degree of polarization, and the radial Stokes parameters are used instead. We obtain that the radial limb polarization is about 0.20. Further, we corrected the parameters for seeing, and compared the results with analytical models of semi-infinite and finite Rayleigh scattering atmospheres. From this comparison we conclude the polarization agrees with the semi-infinite Rayleigh scattering atmosphere.
EK Draconis. Magnetic activity in the photosphere and chromosphere
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Berdyugina, S. V.; Korhonen, H.; Ilyin, I.; Tuominen, I.
2007-09-01
Context: As a young solar analogue, EK Draconis provides an opportunity to study the magnetic activity of the infant Sun. Aims: We present three new surface temperature maps of EK Draconis and compare them with previous results obtained from long-term photometry. Furthermore, we determined a set of stellar parameters and compared the determined values with the corresponding solar values. Methods: Atmospheric parameters were determined by comparing observed and synthetic spectra calculated with stellar atmosphere models. Surface temperature maps were obtained using the Occamian approach inversion technique. The differential rotation of EK Dra was estimated using two different methods. Results: A detailed model atmosphere analysis of high resolution spectra of EK Dra has yielded a self-consistent set of atmospheric parameters: T_eff = 5750 K, log g = 4.5, [M/H] = 0.0, ξt = 1.6 km s-1. The evolutionary models imply that the star is slightly more massive than the Sun and has an age between 30-50 Myr, which agrees with the determined lithium abundance of log N(Li) = 3.02. Moreover, the atmospheric parameters, as well as the wings of the Ca ii 8662 Å, indicate that the photosphere of EK Dra is very similar to the one of the present Sun, while their chromospheres differ. There also seems to be a correlation between magnetic features seen in the photosphere and chromosphere. The temperature images reveal spots of only 500 K cooler than the quiet photosphere. The mean spot latitude varies with time. The obtained differential rotation is very small, but the sign of it supports solar type differential rotation on EK Dra. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table [see full text] and Figs. [see full text] and [see full text] are only available in electronic form at http://www.aanda.org
Learning About Climate and Atmospheric Models Through Machine Learning
NASA Astrophysics Data System (ADS)
Lucas, D. D.
2017-12-01
From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Campbell, J. W.
1973-01-01
A stochasitc model of the atmosphere between 30 and 90 km was developed for use in Monte Carlo space shuttle entry studies. The model is actually a family of models, one for each latitude-season category as defined in the 1966 U.S. Standard Atmosphere Supplements. Each latitude-season model generates a pseudo-random temperature profile whose mean is the appropriate temperature profile from the Standard Atmosphere Supplements. The standard deviation of temperature at each altitude for a given latitude-season model was estimated from sounding-rocket data. Departures from the mean temperature at each altitude were produced by assuming a linear regression of temperature on the solar heating rate of ozone. A profile of random ozone concentrations was first generated using an auxiliary stochastic ozone model, also developed as part of this study, and then solar heating rates were computed for the random ozone concentrations.
NASA Astrophysics Data System (ADS)
Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim
2018-02-01
We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.
NASA Astrophysics Data System (ADS)
Kanzaki, Yoshiki; Murakami, Takashi
2018-07-01
We have developed a weathering model to comprehensively understand the determining factors of the apparent activation energy of silicate weathering in order to better estimate the silicate-weathering flux in the Precambrian. The model formulates the reaction rate of a mineral as a basis, then the elemental loss by summing the reaction rates of whole minerals, and finally the weathering flux from a given weathering profile by integrating the elemental losses along the depth of the profile. The rate expressions are formulated with physicochemical parameters relevant to weathering, including solution and atmospheric compositions. The apparent activation energies of silicate weathering are then represented by the temperature dependences of the physicochemical parameters based on the rate expressions. It was found that the interactions between individual mineral-reactions and the compositions of solution and atmosphere are necessarily accompanied by those of temperature-dependence counterparts. Indeed, the model calculates the apparent activation energy of silicate weathering as a function of the temperature dependence of atmospheric CO2 (Δ HCO2‧) . The dependence of the apparent activation energy of silicate weathering on Δ HCO2‧ may explain the empirical dependence of silicate weathering on the atmospheric composition. We further introduce a compensation law between the apparent activation energy and the pre-exponential factor to obtain the relationship between the silicate-weathering flux (FCO2), temperature and the apparent activation energy. The model calculation and the compensation law enable us to predict FCO2 as a function of temperature, once Δ HCO2‧ is given. The validity of the model is supported by agreements between the model prediction and observations of the apparent activation energy and FCO2 in the modern weathering systems. The present weathering model will be useful for the estimation of FCO2 in the Precambrian, for which Δ HCO2‧ can be deduced from the greenhouse effect of atmospheric CO2.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM)
Guo, Zhun; Wang, Minghuai; Qian, Yun; ...
2015-07-03
In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained bymore » the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. Furthermore, this study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.« less
NASA Data Evaluation (2015): Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J.; Barker, J. R.; Huie, R. E.; Kolb, C. E., Jr.; Kurylo, M. J., III; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-12-01
Atmospheric chemistry models must include a large number of processes to accurately describe the temporal and spatial behavior of atmospheric composition. They require a wide range of chemical and physical data (parameters) that describe elementary gas-phase and heterogeneous processes. The review and evaluation of chemical and physical data has, therefore, played an important role in the development of chemical models and in their use in environmental assessment activities. The NASA data panel evaluation has a broad atmospheric focus that includes Ox, O(1D), singlet O2, HOx, NOx, Organic, FOx, ClOx, BrOx, IOx, SOx, and Na reactions, three-body reactions, equilibrium constants, photochemistry, Henry's Law coefficients, aqueous chemistry, heterogeneous chemistry and processes, and thermodynamic parameters. The 2015 evaluation includes critical coverage of ~700 bimolecular reactions, 86 three-body reactions, 33 equilibrium constants, ~220 photochemical species, ~360 aqueous and heterogeneous processes, and thermodynamic parameters for ~800 species with over 5000 literature citations reviewed. Each evaluation includes (1) recommended values (e.g. rate coefficients, absorption cross sections, solubilities, and uptake coefficients) with estimated uncertainty factors and (2) a note describing the available experimental and theoretical data and an explanation for the recommendation. This presentation highlights some of the recent additions to the evaluation that include: (1) expansion of thermochemical parameters, including Hg species, (2) CH2OO (Criegee) chemistry, (3) Isoprene and its major degradation product chemistry, (4) halocarbon chemistry, (5) Henry's law solubility data, and (6) uptake coefficients. In addition, a listing of complete references with the evaluation notes has been implemented. Users of the data evaluation are encouraged to suggest potential improvements and ways that the evaluation can better serve the atmospheric chemistry community.
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-05-01
Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.
Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon
2017-01-01
Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.
2017-12-01
Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.
NASA Astrophysics Data System (ADS)
Petrus, H. T. B. M.; Diga, A.; Rhamdani, A. R.; Warmada, I. W.; Yuliansyah, A. T.; Perdana, I.
2017-04-01
The performance and kinetic of nickel laterite reduction were studied. In this work, the reduction of nickel laterite ores by anthracite coal, representing the high-grade carbon content matter, and lamtoro charcoal, representing the bioreductor, were conducted in air and CO2 atmosphere, within the temperature ranged from 800°C and 1000°C. XRD analysis was applied to observe the performance of anthracite and lamtoro as a reductor. Two models were applied, sphere particle geometry model and Ginstling-Brounhstein diffusion model, to study the kinetic parameters. The results indicated that the type of reductant and the reduction atmosphere used greatly influence the kinetic parameters. The obtained values of activation energy vary in the range of 13.42-18.12 kcal/mol.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-05-29
Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less
Venus climate stability and volcanic resurfacing rates
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.
1994-01-01
The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.
Assessment of diffuse radiation models in Azores
NASA Astrophysics Data System (ADS)
Magarreiro, Clarisse; Brito, Miguel; Soares, Pedro; Azevedo, Eduardo
2014-05-01
Measured irradiance databases usually consist of global solar radiation data with limited spatial coverage. Hence, solar radiation models have been developed to estimate the diffuse fraction from the measured global irradiation. This information is critical for the assessment of the potential of solar energy technologies; for example, the decision to use photovoltaic systems with tracking system. The different solar radiation models for this purpose differ on the parameters used as input. The simplest, and most common, are models which use global radiation information only. More sophisticated models require meteorological parameters such as information from clouds, atmospheric turbidity, temperature or precipitable water content. Most of these models comprise correlations with the clearness index, kt (portion of horizontal extra-terrestrial radiation reaching the Earth's surface) to obtain the diffuse fraction kd (portion of diffuse component from global radiation). The applicability of these different models is related to the local atmospheric conditions and its climatic characteristics. The models are not of general validity and can only be applicable to locations where the albedo of the surrounding terrain and the atmospheric contamination by dust are not significantly different from those where the corresponding methods were developed. Thus, models of diffuse fraction exhibit a relevant degree of location dependence: e.g. models developed considering data acquired in Europe are mainly linked to Northern, Central or, more recently, Mediterranean areas. The Azores Archipelago, with its particular climate and cloud cover characteristics, different from mainland Europe, has not yet been considered for the development of testing of such models. The Azorean climate reveals large amounts of cloud cover in its annual cycle, with spatial and temporal variabilities more complex than the common Summer/Winter pattern. This study explores the applicability of different existing correlation models of diffuse fraction and clearness index or other plain parameters to the Azorean region. Reliable data provided by the Atmospheric Radiation Measurements (ARM) Climate Research Facility from the Graciosa Island deployment of the ARM Mobile Facility (http://www.arm.gov/sites/amf/grw) was used to perform the analysis. Model results showed a tendency to underestimate higher values of diffuse radiation. From the performance results of the correlation models reviewed it was clear that there is room for improvement.
Guo, Zhun; Wang, Minghuai; Qian, Yun; ...
2014-08-13
In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus clouds to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow convection cases are configured at both coarse and fine vertical resolutions in this study.. Our results show that most of the variance in simulated cloudmore » fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the choice of the vertical resolution while little sensitivity is found for the shallow convection cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties.« less
Meteoric Magnesium Ions in the Martian Atmosphere
NASA Technical Reports Server (NTRS)
Pesnell, William Dean; Grebowsky, Joseph
1999-01-01
From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.
Modeling the Effect of Modified Atmospheres on Conidial Germination of Fungi from Dairy Foods
Nguyen Van Long, Nicolas; Vasseur, Valérie; Couvert, Olivier; Coroller, Louis; Burlot, Marion; Rigalma, Karim; Mounier, Jérôme
2017-01-01
Modified atmosphere packaging (MAP) is commonly applied to extend food shelf-life. Despite growth of a wide variety of fungal contaminants has been previously studied in relation to modified-atmospheres, few studies aimed at quantifying the effects of dioxygen (O2) and carbon dioxide (CO2) partial pressures on conidial germination in solid agar medium. In the present study, an original culture method was developed, allowing microscopic monitoring of conidial germination under modified-atmospheres in static conditions. An asymmetric model was utilized to describe germination kinetics of Paecilomyces niveus, Mucor lanceolatus, Penicillium brevicompactum, Penicillium expansum, and Penicillium roquefoti, using two main parameters, i.e., median germination time (τ) and maximum germination percentage (Pmax). These two parameters were subsequently modeled as a function of O2 partial pressure ranging from 0 to 21% and CO2 partial pressure ranging from 0.03 to 70% (8 tested levels for both O2 and CO2). Modified atmospheres with residual O2 or CO2 partial pressures below 1% and up to 70%, respectively, were not sufficient to totally inhibit conidial germination,. However, O2 levels < 1% or CO2 levels > 20% significantly increased τ and/or reduced Pmax, depending on the fungal species. Overall, the present method and results are of interest for predictive mycology applied to fungal spoilage of MAP food products. PMID:29163403
Effect of Global Warming and Increased Freshwater Flux on Northern Hemispheric Cooling
NASA Astrophysics Data System (ADS)
Girihagama, L. N.; Nof, D.
2016-02-01
We wish to answer the, fairly complicated, question of whether global warming and an increased freshwater flux can cause Northern Hemispheric warming or cooling. Starting from the assumption that the ocean is the primary source of variability in the Northern hemispheric ocean-atmosphere coupled system, we employed a simple non-linear one-dimensional coupled ocean-atmosphere model. The simplicity of the model allows us to analytically predict the evolution of many dynamical variables of interest such as, the strength of the Atlantic Meridional overturning circulation (AMOC), temperatures of the ocean and atmosphere, mass transports, salinity, and ocean-atmosphere heat fluxes. The model results show that a reduced AMOC transport due to an increased freshwater flux causes cooling in both the atmosphere and ocean in the North Atlantic (NA) deep-water formation region. Cooling in both the ocean and atmosphere can cause reduction of the ocean-atmosphere temperature difference, which in turn reduces heat fluxes in both the ocean and atmosphere. For present day climate parameters, the calculated critical freshwater flux needed to arrest AMOC is 0.08 Sv. For a constant atmospheric zonal flow, there is minimal reduction in the AMOC strength, as well as minimal warming of the ocean and atmosphere. This model provides a conceptual framework for a dynamically sound response of the ocean and atmosphere to AMOC variability as a function of increased freshwater flux. The results are qualitatively consistent with numerous realistic coupled numerical models of varying complexity.
Inference of soil hydrologic parameters from electronic soil moisture records
USDA-ARS?s Scientific Manuscript database
Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...
No One's Home: the Fate of Carbon on Lifeless Earths
NASA Astrophysics Data System (ADS)
Neveu, Marc
Although several thousands of exoplanets are now known, including many terrestrial planets, their possible geology and climates remain poorly understood and understudied. Yet, understanding how elements such as carbon are cycled between a planet's interior, surface, and atmosphere is crucial to predict how lifeless planets operate and, by contrast, be able to detect deviations from abiotic backgrounds due to biology, the holy grail of exoplanet science. As a first, feasible step towards the difficult, long-term goal of understanding how key reactive elements (H, C, N, O, S) are cycled in the atmospheres, surfaces, and interiors of terrestrial exoplanets through time, we propose to carry out a self-consistent theoretical study of the fate of carbon in the atmospheres and at the surfaces of Earth-like, lifeless exoplanets. We will: 1. Model the near-surface geochemistry and geophysics of the carbon cycle to determine net carbon gas fluxes as a function of terrestrial planet size and redox conditions; 2. Model the atmospheric fate of carbon species as a function of stellar input; 3. Perform simulations that self-consistently combine geological and atmospheric processes; 4. Convert resulting atmospheric compositions to spectra to be archived as a public database for use by observers. We will track the abiotic fate of carbon and its atmospheric expression on Earth-like planets as a function of three key parameters: planet size, surface and atmospheric redox conditions, and stellar irradiation. To do so, we will further develop and use state-of-theart planetary geological ("Geo") and atmospheric ("Atmos") models. We have previously developed a code that couples geophysical evolution and water-rock geochemistry (Neveu et al. 2015, GRL 42, 10197). Using this code, we will calculate the speciation of carbon species versus depth in subaerial oceans, their possible incorporation into the crust by water-rock interaction at the seafloor or by subduction of sediments, and outgassing as a function of temperature, pressure, and fluid/rock composition. We will expand this code with benchmarked parameterizations of land and seafloor weathering and outgassing rates. This modeling will result in detailed boundary conditions to be implemented into an existing atmospheric photochemical-climate model (DomagalGoldman et al. 2014, ApJ 792, 90). The atmospheric model will be used to predict species mixing ratios from net surface fluxes, given planetary and stellar parameters. The models will be benchmarked against what is known of the surfaces and atmospheres of the Earth (present and prior to atmospheric oxygenation) and Titan. Atmospheric model outputs will be fed back into the geological model in combined simulations of carbon cycling. We will investigate in detail the mutual feedbacks between geological and atmospheric processes, so far understudied for terrestrial exoplanets. The resulting atmospheric compositions will be converted to predicted exoplanet spectra using the Spectral Mapping Atmospheric Radiative Transfer model (SMART; Meadows & Crisp 1996, JGR 101, 4595). This grid of spectra will be made freely available to the exoplanet community. This proposal is relevant to the Exoplanets Research Program (E.3) objectives, as it "supports directly the scientific goals of advancing our knowledge and understanding of exoplanetary systems." It involves the "characterization of exoplanets (including their surfaces, interiors, and atmospheres) [...] including the determination of their compositions, dynamics, energetics, and chemical behaviors." This investigation will also advance "understanding the chemical and physical processes of exoplanets (including the state and evolution of their surfaces, interiors, and atmospheres)." Furthermore, this proposal is not "aimed at investigating the habitability of an exoplanet" and therefore not relevant to the Habitable Worlds program element (E.4).
AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Tyler D.; Catling, David C., E-mail: robinson@astro.washington.edu
2012-09-20
We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions formore » the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.« less
NASA Technical Reports Server (NTRS)
Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes
1997-01-01
A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.
Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system
NASA Technical Reports Server (NTRS)
Palmer, J. M.; Slater, P. N. (Principal Investigator)
1985-01-01
The effects of the atmosphere on propagating radiation must be known in order to calibrate an in orbit sensor using ground based measurements. A set of model atmosphere parameters, applicable to the White Sands (New Mexico) area is defined with particular attention given to those parameters which are required as input to the Herman Code. The radial size distribution, refractive index, vertical distribution, and visibility of aerosols are discussed as well as the molecular absorbers in the visible and near IR wavelength which produce strong absorption lines. Solar irradiance is also considered.
NASA Astrophysics Data System (ADS)
Bieringer, Paul E.; Rodriguez, Luna M.; Vandenberghe, Francois; Hurst, Jonathan G.; Bieberbach, George; Sykes, Ian; Hannan, John R.; Zaragoza, Jake; Fry, Richard N.
2015-12-01
Accurate simulations of the atmospheric transport and dispersion (AT&D) of hazardous airborne materials rely heavily on the source term parameters necessary to characterize the initial release and meteorological conditions that drive the downwind dispersion. In many cases the source parameters are not known and consequently based on rudimentary assumptions. This is particularly true of accidental releases and the intentional releases associated with terrorist incidents. When available, meteorological observations are often not representative of the conditions at the location of the release and the use of these non-representative meteorological conditions can result in significant errors in the hazard assessments downwind of the sensors, even when the other source parameters are accurately characterized. Here, we describe a computationally efficient methodology to characterize both the release source parameters and the low-level winds (eg. winds near the surface) required to produce a refined downwind hazard. This methodology, known as the Variational Iterative Refinement Source Term Estimation (STE) Algorithm (VIRSA), consists of a combination of modeling systems. These systems include a back-trajectory based source inversion method, a forward Gaussian puff dispersion model, a variational refinement algorithm that uses both a simple forward AT&D model that is a surrogate for the more complex Gaussian puff model and a formal adjoint of this surrogate model. The back-trajectory based method is used to calculate a ;first guess; source estimate based on the available observations of the airborne contaminant plume and atmospheric conditions. The variational refinement algorithm is then used to iteratively refine the first guess STE parameters and meteorological variables. The algorithm has been evaluated across a wide range of scenarios of varying complexity. It has been shown to improve the source parameters for location by several hundred percent (normalized by the distance from source to the closest sampler), and improve mass estimates by several orders of magnitude. Furthermore, it also has the ability to operate in scenarios with inconsistencies between the wind and airborne contaminant sensor observations and adjust the wind to provide a better match between the hazard prediction and the observations.
An automatic and effective parameter optimization method for model tuning
NASA Astrophysics Data System (ADS)
Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.
2015-11-01
Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.
MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS
Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; ...
2016-11-21
The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-raymore » telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.« less
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.
2015-12-01
Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.
Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J
2014-02-01
The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.
Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...
2016-08-03
A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z 0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z 0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z 0 in DART. Using DART to estimate z 0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z 0 ensembles by 4%–22%. Finally, however, parameter estimation of z 0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Zhong, L.
2017-12-01
In this study, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in situ long-term CAMP/Tibet observations. Firstly our field observation sites will be introduced based on ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences). Then, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in situ long-term CAMP/Tibet observations. The differences between the AMSR-E initialized model runs with the default model configuration and in situ data showed an apparent inconsistency in the model-simulated land surface heat fluxes. The results showed that the soil moisture was sensitive to the specific model configuration. To evaluate and verify the model stability, a long-term modeling study with AMSR-E soil moisture data ingestion was performed. Based on test simulations, AMSR-E data were assimilated into an atmospheric model for July and August 2007. The results showed that the land surface fluxes agreed well with both the in situ data and the results of the default model configuration. Therefore, the simulation can be used to retrieve land surface heat fluxes from an atmospheric model over the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Labute, M.; Chowdhary, K.; Debusschere, B.; Cameron-Smith, P. J.
2014-12-01
Simulating the atmospheric cycles of ozone, methane, and other radiatively important trace gases in global climate models is computationally demanding and requires the use of 100's of photochemical parameters with uncertain values. Quantitative analysis of the effects of these uncertainties on tracer distributions, radiative forcing, and other model responses is hindered by the "curse of dimensionality." We describe efforts to overcome this curse using ensemble simulations and advanced statistical methods. Uncertainties from 95 photochemical parameters in the trop-MOZART scheme were sampled using a Monte Carlo method and propagated through 10,000 simulations of the single column version of the Community Atmosphere Model (CAM). The variance of the ensemble was represented as a network with nodes and edges, and the topology and connections in the network were analyzed using lasso regression, Bayesian compressive sensing, and centrality measures from the field of social network theory. Despite the limited sample size for this high dimensional problem, our methods determined the key sources of variation and co-variation in the ensemble and identified important clusters in the network topology. Our results can be used to better understand the flow of photochemical uncertainty in simulations using CAM and other climate models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC).
The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation
NASA Astrophysics Data System (ADS)
Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.
2015-12-01
Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.
A study of model parameters associated with the urban climate using HCMM data
NASA Technical Reports Server (NTRS)
1981-01-01
Infrared and visible data from the Heat Capacity Mapping Mission (HCMM) satellite were used to study the intensity of the urban heat island, commonly defined as the temperature difference between the center of the city and the surrounding suburban and rural regions, as a function of changes in the season and changes in meteorological conditions in order to derive various parameters which may be used in numerical models for urban climate. The analysis was focused on the city of St. Louis; and in situ data from St. Louis was combined with HCMM data in order to derive the various parameters. The HCMM data were mapped onto a Mercator projection map of the city and ground temperatures were established using data corrected for the effects of atmospheric absorption. The corrected and uncorrected HCMM data were compared to determine the magnitude of the error induced by atmospheric effects.
DECIPHERING THERMAL PHASE CURVES OF DRY, TIDALLY LOCKED TERRESTRIAL PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koll, Daniel D. B.; Abbot, Dorian S., E-mail: dkoll@uchicago.edu
2015-03-20
Next-generation space telescopes will allow us to characterize terrestrial exoplanets. To do so effectively it will be crucial to make use of all available data. We investigate which atmospheric properties can, and cannot, be inferred from the broadband thermal phase curve of a dry and tidally locked terrestrial planet. First, we use dimensional analysis to show that phase curves are controlled by six nondimensional parameters. Second, we use an idealized general circulation model to explore the relative sensitivity of phase curves to these parameters. We find that the feature of phase curves most sensitive to atmospheric parameters is the peak-to-troughmore » amplitude. Moreover, except for hot and rapidly rotating planets, the phase amplitude is primarily sensitive to only two nondimensional parameters: (1) the ratio of dynamical to radiative timescales and (2) the longwave optical depth at the surface. As an application of this technique, we show how phase curve measurements can be combined with transit or emission spectroscopy to yield a new constraint for the surface pressure and atmospheric mass of terrestrial planets. We estimate that a single broadband phase curve, measured over half an orbit with the James Webb Space Telescope, could meaningfully constrain the atmospheric mass of a nearby super-Earth. Such constraints will be important for studying the atmospheric evolution of terrestrial exoplanets as well as characterizing the surface conditions on potentially habitable planets.« less
NASA Astrophysics Data System (ADS)
Gao, Wei; Li, Xiang-ru
2017-07-01
The multi-task learning takes the multiple tasks together to make analysis and calculation, so as to dig out the correlations among them, and therefore to improve the accuracy of the analyzed results. This kind of methods have been widely applied to the machine learning, pattern recognition, computer vision, and other related fields. This paper investigates the application of multi-task learning in estimating the stellar atmospheric parameters, including the surface temperature (Teff), surface gravitational acceleration (lg g), and chemical abundance ([Fe/H]). Firstly, the spectral features of the three stellar atmospheric parameters are extracted by using the multi-task sparse group Lasso algorithm, then the support vector machine is used to estimate the atmospheric physical parameters. The proposed scheme is evaluated on both the Sloan stellar spectra and the theoretical spectra computed from the Kurucz's New Opacity Distribution Function (NEWODF) model. The mean absolute errors (MAEs) on the Sloan spectra are: 0.0064 for lg (Teff /K), 0.1622 for lg (g/(cm · s-2)), and 0.1221 dex for [Fe/H]; the MAEs on the synthetic spectra are 0.0006 for lg (Teff /K), 0.0098 for lg (g/(cm · s-2)), and 0.0082 dex for [Fe/H]. Experimental results show that the proposed scheme has a rather high accuracy for the estimation of stellar atmospheric parameters.
Releve et analyse spectroscopiques d'etoiles naines blanches brillantes et riches en hydrogene
NASA Astrophysics Data System (ADS)
Gianninas, Alexandros
2011-04-01
We present a spectroscopic survey and analysis of over 1300 bright (V ≤ 17.5), hydrogen-rich white dwarfs. High signal-to-noise ratio optical spectra were obtained and are then analyzed using our standard spectroscopic technique which compares the observed Balmer line profiles to synthetic spectra computed from the latest generation of model atmospheres. First, we present a detailed analysis 29 DAO white dwarfs using our new up-to-date model atmosphere grids in which we have included carbon, nitrogen, and oxygen at solar abundances. We demonstrate that the inclusion of these metals in the model atmospheres is essential in overcoming the Balmer-line problem, which manifests itself as an inability to fit all the Balmer lines simultaneously with consistent atmospheric parameters. We also identify 18 hot DA white dwarfs that also suffer from the Balmer-line problem. Far ultraviolet spectra from the FUSE archive are then examined to demonstrate that there exists a correlation between higher metallic abundances and instances of the Balmer-line problem. The implications of these findings for all hot, hydrogen-rich white dwarfs are discussed. Specifically, the possible evolutionary scenario for DAO white dwarfs is revised and post-EHB evolution need no longer be invoked to explain the evolution for the majority of the DAO stars. Finally, we discuss how the presence of metals might drive a weak stellar wind which in turn could explain the presence of helium in DAO white dwarfs. We then present the complete results from our survey, including the spectroscopic analysis of over 1200 DA white dwarfs. First we present the spectroscopic content of our sample which includes many misclassifications as well as several DAB, DAZ and magnetic white dwarfs. We then discuss the new model atmospheres we employ in our analysis. In addition, we use M dwarf templates to obtain better estimates of the atmospheric parameters for those white dwarfs which are in DA+dM binary systems. A handful of unique white dwarfs and double-degenerate binary systems are also analyzed in greater detail. We then examine the global properties of our sample including the mass distribution and mass distribution as a function of temperature. Next, we look at how the new Balmer-line profiles affect the determination of the atmospheric parameters. We then proceed to test the accuracy and robustness of our method by comparing our results to those of the SPY survey which has analyzed over 300 of the same white dwarfs in a completely independent manner. Finally, we also re-visit the ZZ Ceti instability strip and how the determination of its empirical boundaries is affected by the latest line profile calculations. Subject headings: stars: abundances -- stars: atmospheres -- stars: evolution -- stars fundamental parameters -- white dwarfs
Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions
NASA Astrophysics Data System (ADS)
Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele
2016-04-01
The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.
NASA Astrophysics Data System (ADS)
Alp, D.; Demory, B.-O.
2018-01-01
Context. Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. Aims: The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. Methods: We use the model of Hui & Seager (2002, ApJ, 572, 540) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. Results: We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of 10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. In-transit, ingress, and egress refraction features are challenging to detect because of the short timescales and degeneracies with other transit model parameters. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs and ultra-cool stars. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.
Modeling the Infrared Spectra of Earth-Analog Exoplanets
NASA Astrophysics Data System (ADS)
Nixon, C.
2014-04-01
As a preparation for future observations with the James Webb Space Telescope (JWST) and other facilities, we have undertaken to model the infrared spectra of Earth-like exoplanets. Two atmospheric models were used: the modern (low CO2) and archean (high CO2) predictive models of the Kasting group at Penn state. Several model parameters such as distance to star, and stellar type (visible-UV spectrum spectrum) were adjusted, and the models reconverged. Subsequently, the final model atmospheres were input to a radiative transfer code (NEMESIS) and the results intercompared to search for the most significant spectral changes. Implications for exoplanet spectrum detectivity will be discussed.
NASA Astrophysics Data System (ADS)
Bo, Zhang; Li, Jin-Ling; Wang, Guan-Gli
2002-01-01
We checked the dependence of the estimation of parameters on the choice of piecewise interval in the continuous piecewise linear modeling of the residual clock and atmosphere effects by single analysis of 27 VLBI experiments involving Shanghai station (Seshan 25m). The following are tentatively shown: (1) Different choices of the piecewise interval lead to differences in the estimation of station coordinates and in the weighted root mean squares ( wrms ) of the delay residuals, which can be of the order of centimeters or dozens of picoseconds respectively. So the choice of piecewise interval should not be arbitrary . (2) The piecewise interval should not be too long, otherwise the short - term variations in the residual clock and atmospheric effects can not be properly modeled. While in order to maintain enough degrees of freedom in parameter estimation, the interval can not be too short, otherwise the normal equation may become near or solely singular and the noises can not be constrained as well. Therefore the choice of the interval should be within some reasonable range. (3) Since the conditions of clock and atmosphere are different from experiment to experiment and from station to station, the reasonable range of the piecewise interval should be tested and chosen separately for each experiment as well as for each station by real data analysis. This is really arduous work in routine data analysis. (4) Generally speaking, with the default interval for clock as 60min, the reasonable range of piecewise interval for residual atmospheric effect modeling is between 10min to 40min, while with the default interval for atmosphere as 20min, that for residual clock behavior is between 20min to 100min.
NASA Astrophysics Data System (ADS)
Nikolaidou, Thalia; Santos, Marcelo
2017-04-01
The caused time delay induced by the atmosphere on the GNSS signals (NAD), depends primarily on the amount of atmosphere the signal traverses till it reaches to the Earth's surface and can exceed t 20 m for low elevation angles (around 3 degrees). For a particular ray i.e. satellite/quasar-antenna link, the delay depends on the atmospheric parameters of total pressure, temperature, and the partial pressure of water vapor. Because of that, numerical weather models (NWM) have already proven beneficial for atmospheric modelling and geodesy. By direct raytracing, inside NWM, the VMF1 and the University of New Brunswick VMF1 (UNB-VMF1) (Urquhart et al. 2011), access the 3D variation of the meteorological parameters that determine the delay thus being the state-the-art mapping functions used today. The raytracing procedure is capable of providing NADs delays for any point on the Earth's surface. In this study we study the impact of regional numerical weather models, with high spatial and temporal resolution, namely 25km and 6h. These models outweigh the currently used NWM by having about 2.6 times better spatial resolution. Raytracing through such NWM, using the independent raytracing algorithm develop at UNB (Nievinski, 2009), we acquire superior quality NADs with regional application. We ray-trace for the International GNSS service (IGS) network stations for a time span of 11 years. Benchmarking against the IGS troposphere product is performed to access the accuracy of our results. A periodicity analysis is conducted to examine the signature of atmospheric oscillations on the NAD time series. In order to recognize the NAD periodicities, we compared our product against the GPS-derived IGS troposphere product. Systematic effects within each single technique are identified and long-term NAD stability is accessed.
NASA Astrophysics Data System (ADS)
Mollière, P.; van Boekel, R.; Dullemond, C.; Henning, Th.; Mordasini, C.
2015-11-01
Many parameters constraining the spectral appearance of exoplanets are still poorly understood. We therefore study the properties of irradiated exoplanet atmospheres over a wide parameter range including metallicity, C/O ratio, and host spectral type. We calculate a grid of 1D radiative-convective atmospheres and emission spectra. We perform the calculations with our new Pressure-Temperature Iterator and Spectral Emission Calculator for Planetary Atmospheres (PETIT) code, assuming chemical equilibrium. The atmospheric structures and spectra are made available online. We find that atmospheres of planets with C/O ratios ˜1 and {T}{{eff}} ≳ 1500 K can exhibit inversions due to heating by the alkalis because the main coolants CH4, H2O, and HCN are depleted. Therefore, temperature inversions possibly occur without the presence of additional absorbers like TiO and VO. At low temperatures we find that the pressure level of the photosphere strongly influences whether the atmospheric opacity is dominated by either water (for low C/O) or methane (for high C/O), or both (regardless of the C/O). For hot, carbon-rich objects this pressure level governs whether the atmosphere is dominated by methane or HCN. Further we find that host stars of late spectral type lead to planetary atmospheres which have shallower, more isothermal temperature profiles. In agreement with prior work we find that for planets with {T}{{eff}}\\lt 1750 K the transition between water or methane dominated spectra occurs at C/O ˜ 0.7, instead of ˜1, because condensation preferentially removes oxygen.
On the impact of reducing global geophysical fluid model deformations in SLR data processing
NASA Astrophysics Data System (ADS)
Weigelt, Matthias; Thaller, Daniela
2016-04-01
Mass redistributions in the atmosphere, oceans and the continental hydrology cause elastic loading deformations of the Earth's crust and thus systematically influence Earth-bound observation systems such as VLBI, GNSS or SLR. Causing non-linear station variations, these loading deformations have a direct impact on the estimated station coordinates and an indirect impact on other parameters of global space-geodetic solutions, e.g. Earth orientation parameters, geocenter coordinates, satellite orbits or troposphere parameters. Generally, the impact can be mitigated by co-parameterisation or by reducing deformations derived from global geophysical fluid models. Here, we focus on the latter approach. A number of data sets modelling the (non-tidal) loading deformations are generated by various groups. They show regionally and locally significant differences and consequently the impact on the space-geodetic solutions heavily depends on the available network geometry. We present and discuss the differences between these models and choose SLR as the speace-geodetic technique of interest in order to discuss the impact of atmospheric, oceanic and hydrological loading on the parameters of space-geodetic solutions when correcting for the global geophysical fluid models at the observation level. Special emphasis is given to a consistent usage of models for geometric and gravimetric corrections during the data processing. We quantify the impact of the different deformation models on the station coordinates and discuss the improvement in the Earth orientation parameters and the geocenter motion. We also show that a significant reduction in the RMS of the station coordinates can be achieved depending on the model of choice.
NASA Astrophysics Data System (ADS)
Hoadley, Keri; France, Kevin
2015-01-01
Probing the surviving molecular gas within the inner regions of protoplanetary disks (PPDs) around T Tauri stars (1 - 10 Myr) provides insight into the conditions in which planet formation and migration occurs while the gas disk is still present. We model observed far ultraviolet (FUV) molecular hydrogen (H₂) fluorescent emission lines that originate within the inner regions (< 10 AU) of 9 well-studied Classic T Tauri stars, using the Hubble Space Telescope Cosmic Origins Spectrograph (COS), to explore the physical structure of the molecular disk at different PPD dust evolutionary stages. We created a 2D radiative transfer model that estimates the density and temperature distributions of warm, inner radial H₂ (T > 1500 K) with a set of 6 free parameters and produces a data cube of expected emission line profiles that describe the physical structure of the inner molecular disk atmosphere. By comparing the modeled emission lines with COS H₂ fluorescence emission features, we estimate the physical structure of the molecular disk atmosphere for each target with the set of free parameters that best replicate the observed lines. First results suggest that, for all dust evolutionary stages of disks considered, ground-state H₂ populations are described by a roughly constant temperature T(H₂) = 2500 +/- 1000 K. Possible evolution of the density structure of the H₂ atmosphere between intact and depleting dust disks may be distinguishable, but large errors in the inferred best-fit parameter sets prevent us from making this conclusion. Further improvements to the modeling framework and statistical comparison in determining the best-fit model-to-data parameter sets are ongoing, beginning with improvements to the radiative transfer model and use of up-to-date HI Lyman α absorption optical depths (see McJunkin in posters) to better estimate disk structural parameters. Once improvements are implemented, we will investigate the possible presence of a molecular wind component in the observed H₂ fluorescence features by determining blue-shifted flux residuals in the data after best-fit model-to-data comparisons are complete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Peter J.; Feddema, Johannes J.; Bonan, Gordon B.
To assess the climate impacts of historical and projected land cover change and land use in the Community Climate System Model (CCSM4) we have developed new time series of transient Community Land Model (CLM4) Plant Functional Type (PFT) parameters and wood harvest parameters. The new parameters capture the dynamics of the Coupled Model Inter-comparison Project phase 5 (CMIP5) land cover change and wood harvest trajectories for the historical period from 1850 to 2005, and for the four Representative Concentration Pathways (RCP) periods from 2006 to 2100. Analysis of the biogeochemical impacts of land cover change in CCSM4 with the parametersmore » found the model produced an historical cumulative land use flux of 148.4 PgC from 1850 to 2005, which was in good agreement with other global estimates of around 156 PgC for the same period. The biogeophysical impacts of only applying the transient land cover change parameters in CCSM4 were cooling of the near surface atmospheric over land by -0.1OC, through increased surface albedo and reduced shortwave radiation absorption. When combined with other transient climate forcings, the higher albedo from land cover change was overwhelmed at global scales by decreases in snow albedo from black carbon deposition and from high latitude warming. At regional scales however the land cover change forcing persisted resulting in reduced warming, with the biggest impacts in eastern North America. The future CCSM4 RCP simulations showed that the CLM4 transient PFT and wood harvest parameters could be used to represent a wide range of human land cover change and land use scenarios. Furthermore, these simulations ranged from the RCP 4.5 reforestation scenario that was able to draw down 82.6 PgC from the atmosphere, to the RCP 8.5 wide scale deforestation scenario that released 171.6 PgC to the atmosphere.« less
Sensor-Web Operations Explorer
NASA Technical Reports Server (NTRS)
Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard
2008-01-01
Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.
Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.
NASA Astrophysics Data System (ADS)
Lemonsu, A.; Grimmond, C. S. B.; Masson, V.
2004-02-01
The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.
Assessment of environments for Mars Science Laboratory entry, descent, and surface operations
Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.
2012-01-01
The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.
Atmospheric inverse modeling via sparse reconstruction
NASA Astrophysics Data System (ADS)
Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten
2017-10-01
Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.
A Public Set of Synthetic Spectra from Expanding Atmospheres for X-Ray Novae. I. Solar Abundances
NASA Astrophysics Data System (ADS)
van Rossum, Daniel R.
2012-09-01
X-ray grating observations have revealed great detail in the spectra of novae in the Super Soft Source (SSS) phase. Notable features in the SSS spectra are blueshifted absorption lines, P-Cygni line profiles, and the absence of strong ionization edges, all of which are indicators of an expanding atmosphere. We present, and make publicly available, a set of 672 wind-type (WT) synthetic spectra, obtained from the expanding NLTE SSS models introduced in Van Rossum & Ness with the PHOENIX stellar atmosphere code. The set presented in this paper is limited to solar abundances with the aim to focus on the basic model parameters and their effect on the spectra, providing the basis upon which abundance effects can be studied using a much bigger non-solar set in the next paper in this series. We fit the WT spectra to the five grating spectra taken in the SSS phase of nova V4743 Sgr 2003 as an example application of the WT models. Within the limits of solar abundances we demonstrate that the following parameters are constrained by the data (in order of decreasing accuracy): column density N H, bolometric luminosity L bol, effective temperature T eff, white dwarf radius R, wind asymptotic velocity v ∞, and the mass-loss rate \\dot{M}. The models are also sensitive to the assumed white dwarf mass M WD but the effect on the spectra can largely be compensated by the other model parameters. The WT spectra with solar abundances fit the data better than abundance optimized hydrostatic models.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
NASA Astrophysics Data System (ADS)
Waldmann, Ingo
2016-10-01
Radiative transfer retrievals have become the standard in modelling of exoplanetary transmission and emission spectra. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain.To address these issues, we have developed the Tau-REx (tau-retrieval of exoplanets) retrieval and the RobERt spectral recognition algorithms. Tau-REx is a bayesian atmospheric retrieval framework using Nested Sampling and cluster computing to fully map these large correlated parameter spaces. Nonetheless, data volumes can become prohibitively large and we must often select a subset of potential molecular/atomic absorbers in an atmosphere.In the era of open-source, automated and self-sufficient retrieval algorithms, such manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is build to address these issues. RobERt is a deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.In this talk I will discuss how neural networks and Bayesian Nested Sampling can be used to solve highly degenerate spectral retrieval problems and what 'dreaming' neural networks can tell us about atmospheric characteristics.
Impact of the time scale of model sensitivity response on coupled model parameter estimation
NASA Astrophysics Data System (ADS)
Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu
2017-11-01
That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.
Spectral analysis of the He-enriched sdO-star HD 127493
NASA Astrophysics Data System (ADS)
Dorsch, Matti; Latour, Marilyn; Heber, Ulrich
2018-02-01
The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.
Towards a new parameterization of ice particles growth
NASA Astrophysics Data System (ADS)
Krakovska, Svitlana; Khotyayintsev, Volodymyr; Bardakov, Roman; Shpyg, Vitaliy
2017-04-01
Ice particles are the main component of polar clouds, unlike in warmer regions. That is why correct representation of ice particle formation and growth in NWP and other numerical atmospheric models is crucial for understanding of the whole chain of water transformation, including precipitation formation and its further deposition as snow in polar glaciers. Currently, parameterization of ice in atmospheric models is among the most difficult challenges. In the presented research, we present a renewed theoretical analysis of the evolution of mixed cloud or cold fog from the moment of ice nuclei activation until complete crystallization. The simplified model is proposed that includes both supercooled cloud droplets and initially uniform particles of ice, as well as water vapor. We obtain independent dimensionless input parameters of a cloud, and find main scenarios and stages of evolution of the microphysical state of the cloud. The characteristic times and particle sizes have been found, as well as the peculiarities of microphysical processes at each stage of evolution. In the future, the proposed original and physically grounded approximations may serve as a basis for a new scientifically substantiated and numerically efficient parameterizations of microphysical processes in mixed clouds for modern atmospheric models. The relevance of theoretical analysis is confirmed by numerical modeling for a wide range of combinations of possible conditions in the atmosphere, including cold polar regions. The main conclusion of the research is that until complete disappearance of cloud droplets, the growth of ice particles occurs at a practically constant humidity corresponding to the saturated humidity over water, regardless to all other parameters of a cloud. This process can be described by the one differential equation of the first order. Moreover, a dimensionless parameter has been proposed as a quantitative criterion of a transition from dominant depositional to intense collectional growth of ice particles; it could be used in models with bulk parameterization of cloud and precipitation formation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupu, Roxana E.; Marley, Mark S.; Zahnle, Kevin
Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler ( emcee ) and a multimodal nested sampling algorithm ( MultiNest ) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model andmore » highlights possible discrepancies in the likelihood maps. As a proof of concept, our current atmospheric model contains one or two cloud layers, methane as a major absorber, and a H{sub 2}–He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise ratio in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets.« less
Three-dimensional computer model for the atmospheric general circulation experiment
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
An efficient, flexible, three-dimensional, hydrodynamic, computer code has been developed for a spherical cap geometry. The code will be used to simulate NASA's Atmospheric General Circulation Experiment (AGCE). The AGCE is a spherical, baroclinic experiment which will model the large-scale dynamics of our atmosphere; it has been proposed to NASA for future Spacelab flights. In the AGCE a radial dielectric body force will simulate gravity, with hot fluid tending to move outwards. In order that this force be dominant, the AGCE must be operated in a low gravity environment such as Spacelab. The full potential of the AGCE will only be realized by working in conjunction with an accurate computer model. Proposed experimental parameter settings will be checked first using model runs. Then actual experimental results will be compared with the model predictions. This interaction between experiment and theory will be very valuable in determining the nature of the AGCE flows and hence their relationship to analytical theories and actual atmospheric dynamics.
NASA Astrophysics Data System (ADS)
Faye, M.; Manceron, L.; Roy, P.; Boudon, V.; Loëte, M.
2018-06-01
Sulfur hexafluoride is a greenhouse gas with a long lifetime in the atmosphere and an important tracer for air mass circulation atmospheric models. The IR spectrum of this heavy species, however, features many hot bands at room temperature (at which only 30% of the molecules lie in the ground vibrational state), especially those originating from the lowest, v6 and v5 = 1 vibrational states. Using a cryogenic long path cell with variable optical path length and temperatures regulated between 168 and 163 K, coupled to Synchrotron Radiation and a high resolution interferometer, Doppler-limited spectra of the very weak ν3 +ν5 band near 1450 cm-1 have been recorded. Low temperature was used to limit the presence of hot bands and simplify the rotational structure. The spectrum has been analyzed thanks to the XTDS software package. Combining with the results obtained previously on the weak difference bands in the far infrared region involving the v5 = 1 states, we are thus able to use the tensorial model to propose a spectroscopic parameter set for modelling the strong ν3 +ν5 -ν5 hot band. The model constitutes a coherent set of molecular parameters and enable spectral simulation for atmospheric sounding. Test simulations at different temperatures and in nitrogen broadened conditions are presented and compared with new experimental cross section data for the absorption region relevant for atmospheric quantification.
Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.
NASA Astrophysics Data System (ADS)
Gubler, S.; Gruber, S.; Purves, R. S.
2012-06-01
As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions reduces MBD and RMSD strongly compared to using the published values of the parameters, resulting in relative MBD and RMSD of less than 5% respectively 10% for the best parameterizations. The best results to estimate cloud transmissivity during nighttime were obtained by linearly interpolating the average of the cloud transmissivity of the four hours of the preceeding afternoon and the following morning. Model uncertainty can be caused by different errors such as code implementation, errors in input data and in estimated parameters, etc. The influence of the latter (errors in input data and model parameter uncertainty) on model outputs is determined using Monte Carlo. Model uncertainty is provided as the relative standard deviation σrel of the simulated frequency distributions of the model outputs. An optimistic estimate of the relative uncertainty σrel resulted in 10% for the clear-sky direct, 30% for diffuse, 3% for global SDR, and 3% for the fitted all-sky LDR.
NASA Astrophysics Data System (ADS)
Buntoung, Sumaman; Janjai, Serm; Nunez, Manuel; Choosri, Pranomkorn; Pratummasoot, Noppamas; Chiwpreecha, Kulanist
2014-11-01
Factors affecting the ratio of erythemal UV (UVER) to broadband (G) irradiance were investigated in this study. Data from four solar monitoring sites in Thailand, namely Chiang Mai, Ubon Ratchathani, Nakhon Pathom and Songkhla were used to investigate the UVER/G ratio in response to geometric and atmospheric parameters. These comprised solar zenith angle, aerosol load, total ozone column, precipitable water and clearness index. A modeling scheme was developed to isolate and examine the effect of each individual environmental parameter on the ratio. Results showed that all parameters with the exception of solar zenith angle and clearness index influenced the ratios in a linear manner. These results were also used to develop a semi-empirical model for estimating hourly erythemal UV irradiance. Data from 2009 to 2010 were used to construct the ratio model while validation was performed using erythemal UV irradiance at the above four sites in 2011. The validation results showed reasonable agreement with a root mean square difference of 13.5% and mean bias difference of - 0.5%, under all sky conditions and 10.9% and - 0.3%, respectively, under cloudless conditions.
What Drives the Variability of the Mid-Latitude Ionosphere?
NASA Astrophysics Data System (ADS)
Goncharenko, L. P.; Zhang, S.; Erickson, P. J.; Harvey, L.; Spraggs, M. E.; Maute, A. I.
2016-12-01
The state of the ionosphere is determined by the superposition of the regular changes and stochastic variations of the ionospheric parameters. Regular variations are represented by diurnal, seasonal and solar cycle changes, and can be well described by empirical models. Short-term perturbations that vary from a few seconds to a few hours or days can be induced in the ionosphere by solar flares, changes in solar wind, coronal mass ejections, travelling ionospheric disturbances, or meteorological influences. We use over 40 years of observations by the Millstone Hill incoherent scatter radar (42.6oN, 288.5oE) to develop an updated empirical model of ionospheric parameters, and wintertime data collected in 2004-2016 to study variability in ionospheric parameters. We also use NASA MERRA2 atmospheric reanalysis data to examine possible connections between the state of the stratosphere & mesosphere and the upper atmosphere (250-400km). A case of major SSW of January 2013 is selected for in-depth study and reveals large anomalies in ionospheric parameters. Modeling with the NCAR Thermospheric-Ionospheric-Mesospheric-Electrodynamics general Circulation Model (TIME-GCM) nudged by WACCM-GEOS5 simulation indicates that during the 2013 SSW the neutral and ion temperature in the polar through mid-latitude region deviates from the seasonal behavior.
Ultraspectral sounding retrieval error budget and estimation
NASA Astrophysics Data System (ADS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larrabee L.; Yang, Ping
2011-11-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI).
Ultraspectral Sounding Retrieval Error Budget and Estimation
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2011-01-01
The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..
The Tropospheric Products of the International VLBI Service for Geodesy and Astrometry
NASA Technical Reports Server (NTRS)
Heinkelmann, Robert; Schwatke, Christian
2010-01-01
The IVS runs two tropospheric products: The IVS tropospheric parameter rapid combination monitors the zenith wet delay (ZWD) and zenith total delay (ZTD) of the rapid turnaround sessions R1 and R4. Goal of the combination is the identification and the exclusion of outliers by comparison and the assessment of the precision of current VLBI solutions in terms of tropospheric parameters. The rapid combination is done on a weekly basis four weeks after the observation files are released on IVS Data Centers. Since tropospheric and geodetic parameters, such as vertical station components, can significantly correlate, the consistency of the ZTD can be a measure of the consistency of the corresponding TRF as well. The ZWD mainly rely on accurate atmospheric pressure data. Thus, besides estimation techniques, modeling and analyst s noise, ZWD reflects differences in the atmospheric pressure data applied to the VLBI analysis. The second product, called tropospheric parameter long-term combination, aims for an accurate determination of climatological signals, such as trends of the atmospheric water vapor observed by VLBI. Therefore, the long-term homogeneity of atmospheric pressure data plays a crucial role for this product. The paper reviews the methods applied and results achieved so far and describes the new maintenance through DGFI.
Probing new physics with atmospheric neutrinos at KM3NeT-ORCA
NASA Astrophysics Data System (ADS)
Coelho, João A. B.;
2017-09-01
We present the prospects of ORCA searches for new physics phenomena using atmospheric neutrinos. Focus is given to exploiting the impact of strong matter effects on the oscillation of atmospheric neutrinos in light of expanded models, such as sterile neutrinos and non-standard interactions. In the presence of light sterile neutrinos that mix with active neutrinos, additional resonances and suppressions may occur at different energies. One may also use neutrino oscillations to probe the properties of the coherent forward scattering which may be altered by new interactions beyond the Standard Model. Preliminary studies show that ORCA would be able to probe some parameters of these models with sensitivity up to one order of magnitude better than current constraints.
NASA Technical Reports Server (NTRS)
Giver, Lawrence P.; Benner, D. C.; Tomasko, M. G.; Fink, U.; Kerola, D.
1990-01-01
Transmission measurements made on near-infrared laboratory methane spectra have previously been fit using a Malkmus band model. The laboratory spectra were obtained in three groups at temperatures averaging 112, 188, and 295 K; band model fitting was done separately for each temperature group. These band model parameters cannot be used directly in scattering atmosphere model computations, so an exponential sum model is being developed which includes pressure and temperature fitting parameters. The goal is to obtain model parameters by least square fits at 10/cm intervals from 3800 to 9100/cm. These results will be useful in the interpretation of current planetary spectra and also NIMS spectra of Jupiter anticipated from the Galileo mission.
A Unified Computational Model for Solar and Stellar Flares
NASA Technical Reports Server (NTRS)
Allred, Joel C.; Kowalski, Adam F.; Carlsson, Mats
2015-01-01
We present a unified computational framework that can be used to describe impulsive flares on the Sun and on dMe stars. The models assume that the flare impulsive phase is caused by a beam of charged particles that is accelerated in the corona and propagates downward depositing energy and momentum along the way. This rapidly heats the lower stellar atmosphere causing it to explosively expand and dramatically brighten. Our models consist of flux tubes that extend from the sub-photosphere into the corona. We simulate how flare-accelerated charged particles propagate down one-dimensional flux tubes and heat the stellar atmosphere using the Fokker-Planck kinetic theory. Detailed radiative transfer is included so that model predictions can be directly compared with observations. The flux of flare-accelerated particles drives return currents which additionally heat the stellar atmosphere. These effects are also included in our models. We examine the impact of the flare-accelerated particle beams on model solar and dMe stellar atmospheres and perform parameter studies varying the injected particle energy spectra. We find the atmospheric response is strongly dependent on the accelerated particle cutoff energy and spectral index.
Stratospheric effects on trends of mesospheric ice clouds (Invited)
NASA Astrophysics Data System (ADS)
Luebken, F.; Baumgarten, G.; Berger, U.
2009-12-01
Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.
Extracting atmospheric turbulence and aerosol characteristics from passive imagery
NASA Astrophysics Data System (ADS)
Reinhardt, Colin N.; Wayne, D.; McBryde, K.; Cauble, G.
2013-09-01
Obtaining accurate, precise and timely information about the local atmospheric turbulence and extinction conditions and aerosol/particulate content remains a difficult problem with incomplete solutions. It has important applications in areas such as optical and IR free-space communications, imaging systems performance, and the propagation of directed energy. The capability to utilize passive imaging data to extract parameters characterizing atmospheric turbulence and aerosol/particulate conditions would represent a valuable addition to the current piecemeal toolset for atmospheric sensing. Our research investigates an application of fundamental results from optical turbulence theory and aerosol extinction theory combined with recent advances in image-quality-metrics (IQM) and image-quality-assessment (IQA) methods. We have developed an algorithm which extracts important parameters used for characterizing atmospheric turbulence and extinction along the propagation channel, such as the refractive-index structure parameter C2n , the Fried atmospheric coherence width r0 , and the atmospheric extinction coefficient βext , from passive image data. We will analyze the algorithm performance using simulations based on modeling with turbulence modulation transfer functions. An experimental field campaign was organized and data were collected from passive imaging through turbulence of Siemens star resolution targets over several short littoral paths in Point Loma, San Diego, under conditions various turbulence intensities. We present initial results of the algorithm's effectiveness using this field data and compare against measurements taken concurrently with other standard atmospheric characterization equipment. We also discuss some of the challenges encountered with the algorithm, tasks currently in progress, and approaches planned for improving the performance in the near future.
Non-LTE Line-Blanketed Model Atmospheres of B-type Stars
NASA Astrophysics Data System (ADS)
Lanz, T.; Hubeny, I.
2005-12-01
We present an extension of our OSTAR2002 grid of NLTE model atmospheres to B-type stars. We have calculated over 1,300 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to B stars. The grid covers 16 effective temperatures from 15,000 to 30,000 K, with 1000 K steps, 13 surface gravities, log g≤ 4.75 down to the Eddington limit, and 5 compositions (2, 1, 0.5, 0.2, and 0.1 times solar). We have adopted a microturbulent velocity of 2 km/s for all models. In the lower surface gravity range (log g≤ 3.0), we supplemented the main grid with additional model atmospheres accounting for higher microtutbulent velocity (10 km/s) and for alterated surface composition (He and N-rich, C-deficient), as observed in B supergiants. The models incorporate basically all known atomic levels of 46 ions of H, He, C, N, O, Ne, Mg, Al, Si, S, and Fe, which are grouped into 1127 superlevels. Models and spectra will be available at our Web site, http://nova.astro.umd.edu.
NASA Astrophysics Data System (ADS)
Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.
2013-06-01
This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.
Moses, Wesley J.; Bowles, Jeffrey H.; Corson, Michael R.
2015-01-01
Using simulated data, we investigated the effect of noise in a spaceborne hyperspectral sensor on the accuracy of the atmospheric correction of at-sensor radiances and the consequent uncertainties in retrieved water quality parameters. Specifically, we investigated the improvement expected as the F-number of the sensor is changed from 3.5, which is the smallest among existing operational spaceborne hyperspectral sensors, to 1.0, which is foreseeable in the near future. With the change in F-number, the uncertainties in the atmospherically corrected reflectance decreased by more than 90% across the visible-near-infrared spectrum, the number of pixels with negative reflectance (caused by over-correction) decreased to almost one-third, and the uncertainties in the retrieved water quality parameters decreased by more than 50% and up to 92%. The analysis was based on the sensor model of the Hyperspectral Imager for the Coastal Ocean (HICO) but using a 30-m spatial resolution instead of HICO’s 96 m. Atmospheric correction was performed using Tafkaa. Water quality parameters were retrieved using a numerical method and a semi-analytical algorithm. The results emphasize the effect of sensor noise on water quality parameter retrieval and the need for sensors with high Signal-to-Noise Ratio for quantitative remote sensing of optically complex waters. PMID:25781507
NASA Technical Reports Server (NTRS)
Lupu, R. E.; Marley, M. S.; Lewis, N.; Line, M.; Traub, W.; Zahnle, K.
2016-01-01
Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs an albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane can be determined with high accuracy, while parameters uncertainties are model-dependent.
An adaptive semi-Lagrangian advection model for transport of volcanic emissions in the atmosphere
NASA Astrophysics Data System (ADS)
Gerwing, Elena; Hort, Matthias; Behrens, Jörn; Langmann, Bärbel
2018-06-01
The dispersion of volcanic emissions in the Earth atmosphere is of interest for climate research, air traffic control and human wellbeing. Current volcanic emission dispersion models rely on fixed-grid structures that often are not able to resolve the fine filamented structure of volcanic emissions being transported in the atmosphere. Here we extend an existing adaptive semi-Lagrangian advection model for volcanic emissions including the sedimentation of volcanic ash. The advection of volcanic emissions is driven by a precalculated wind field. For evaluation of the model, the explosive eruption of Mount Pinatubo in June 1991 is chosen, which was one of the largest eruptions in the 20th century. We compare our simulations of the climactic eruption on 15 June 1991 to satellite data of the Pinatubo ash cloud and evaluate different sets of input parameters. We could reproduce the general advection of the Pinatubo ash cloud and, owing to the adaptive mesh, simulations could be performed at a high local resolution while minimizing computational cost. Differences to the observed ash cloud are attributed to uncertainties in the input parameters and the course of Typhoon Yunya, which is probably not completely resolved in the wind data used to drive the model. The best results were achieved for simulations with multiple ash particle sizes.
A simple biosphere model (SiB) for use within general circulation models
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.
1986-01-01
A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.
1-D Photochemical Modeling of the Martian Atmosphere: Seasonal Variations
NASA Astrophysics Data System (ADS)
Boxe, C.; Emmanuel, S.; Hafsa, U.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Smith, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Blue, S.; Gurung, D.; Salako, O.
2016-12-01
High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), utilize Caltech/JPL's one-dimensional atmospheric, photochemical models. These sophisticated models, were built over the course of the last four decades, describing all planetary bodies in our Solar System and selected extrasolar planets. Specifically, students employed the Martian one-dimensional photochemical model to assess the seasonal variability of molecules in its atmosphere. Students learned the overall model construct, running a baseline simulation, and fluctuating parameters (e.g., obliquity, orbital eccentricity) which affects the incoming solar radiation on Mars, temperature and pressure induce by seasonal variations. Students also attain a `real-world' experience that exemplifies the required level of coding competency and innovativeness needed for building an environment that can simulate observations and forecast. Such skills permeate STEM-related occupations that model systems and/or predict how that system may/will behave.
The global reference atmospheric model, mod 2 (with two scale perturbation model)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Hargraves, W. R.
1976-01-01
The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.
NASA Astrophysics Data System (ADS)
Wetzel, Peter J.; Boone, Aaron
1995-07-01
This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.
Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr.; Chandler, M. O.; Yelle, R. V.; Sandel, B. R.
1987-01-01
Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow.
Ground-based solar astrometric measurements during the PICARD mission
NASA Astrophysics Data System (ADS)
Irbah, A.; Meftah, M.; Corbard, T.; Ikhlef, R.; Morand, F.; Assus, P.; Fodil, M.; Lin, M.; Ducourt, E.; Lesueur, P.; Poiet, G.; Renaud, C.; Rouze, M.
2011-11-01
PICARD is a space mission developed mainly to study the geometry of the Sun. The satellite was launched in June 2010. The PICARD mission has a ground program which is based at the Calern Observatory (Observatoire de la C^ote d'Azur). It will allow recording simultaneous solar images from ground. Astrometric observations of the Sun using ground-based telescopes need however an accurate modelling of optical e®ects induced by atmospheric turbulence. Previous works have revealed a dependence of the Sun radius measurements with the observation conditions (Fried's parameter, atmospheric correlation time(s) ...). The ground instruments consist mainly in SODISM II, replica of the PICARD space instrument and MISOLFA, a generalized daytime seeing monitor. They are complemented by standard sun-photometers and a pyranometer for estimating a global sky quality index. MISOLFA is founded on the observation of Angle-of-Arrival (AA) °uctuations and allows us to analyze atmospheric turbulence optical e®ects on measurements performed by SODISM II. It gives estimations of the coherence parameters characterizing wave-fronts degraded by the atmospheric turbulence (Fried's parameter, size of the isoplanatic patch, the spatial coherence outer scale and atmospheric correlation times). This paper presents an overview of the ground based instruments of PICARD and some results obtained from observations performed at Calern observatory in 2011.
Atmospheric Properties Of T Dwarfs Inferred From Model Fits At Low Spectral Resolution
NASA Astrophysics Data System (ADS)
Giorla Godfrey, Paige A.; Rice, Emily L.; Filippazzo, Joseph C.; Douglas, Stephanie E.
2016-09-01
Brown dwarf spectral types (M, L, T, Y) correlate with spectral morphology, and generally appear to correspond with decreasing mass and effective temperature (Teff). Model fits to observed spectra suggest, however, that spectral subclasses do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. We seekto disentangle the fundamental parameters that underlie the spectral type sequence of the coolest fully populated spectral class of brown dwarfs using atmosphere models. We investigate the relationship between spectral type and best fit model parameters for a sample of over 150 T dwarfs with low resolution (R 75-100) near-infrared ( 0.8-2.5 micron) SpeX Prism spectra. We use synthetic spectra from four model grids (Saumon & Marley 2008, Morley+ 2012, Saumon+ 2012, BT Settl 2013) and a Markov-Chain Monte Carlo (MCMC) analysis to determine robust best fit parameters and their uncertainties. We compare the consistency of each model grid by performing our analysis on the full spectrum and also on individual wavelength bands (Y,J,H,K). We find more consistent results between the J band and full spectrum fits and that our best fit spectral type-Teff results agree with the polynomial relationships of Stephens+2009 and Filippazzo+ 2015 using bolometric luminosities. Our analysis consists of the most extensive low resolution T dwarf model comparison to date, and lays the foundation for interpretation of cool brown dwarf and exoplanet spectra.
Application of a statistical emulator to fire emission modeling
Marwan Katurji; Jovanka Nikolic; Shiyuan Zhong; Scott Pratt; Lejiang Yu; Warren E. Heilman
2015-01-01
We have demonstrated the use of an advanced Gaussian-Process (GP) emulator to estimate wildland fire emissions over a wide range of fuel and atmospheric conditions. The Fire Emission Production Simulator, or FEPS, is used to produce an initial set of emissions data that correspond to some selected values in the domain of the input fuel and atmospheric parameters for...
Physics of the atmosphere: Response of the water vapor channel of the Meteosat satellite
NASA Technical Reports Server (NTRS)
Roulleau, M.; Poc, M. M.; Scott, N.; Chedin, A.
1980-01-01
An accurate model of the atmospheric transmission function is used to obtain the relationship between the cloudless radiances measured by the 6-7 microns Meteosat radiometer (water vapor channel) and the numerical parameters associated to each point of an image. This relationship is compared to the temporary calibration curve published by the European Space Agency.
NASA Technical Reports Server (NTRS)
Murphy, R. E.; Deering, D. W.
1984-01-01
Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.
Analysis of the surface heat balance over the world ocean
NASA Technical Reports Server (NTRS)
Esbenson, S. K.
1981-01-01
The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.
NASA Technical Reports Server (NTRS)
Mondelain, Didier; Payan, Sebastien; Deng, Wenping; Camy-Peyret, Claude; Hurtmans, Daniel; Mantz, Arlan W.
2007-01-01
We measured the temperature dependence of the nitrogen broadening, narrowing and line-mixing coefficients of four lines of the P9 manifold in the v3 band of 12CH4 for atmospheric purposes. The data were collected using our tunable diode laser (TDL) spectrometer with active wavenumber control coupled to a newly developed cold Herriott cell with a path length of 5.37 m and a temperature uniformity of better than 0.01 K along the cell. We recorded and analyzed spectra recorded at sample temperature between 90 K and room temperature. We have investigate the influence of our new results in the inversion model used to retrieve methane profiles from atmospheric spectra; our new results make it possible to retrieve significantly more precise methane profiles. The atmospheric spectra we utilized were obtained by several of us with a balloon-born Fourier Transform infrared experiment in a limb configuration. Differences up to 7% on the retrieved volume mixing ratio were found compared to an inversion model using only HITRAN04 spectroscopic parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genest-Beaulieu, C.; Bergeron, P., E-mail: genest@astro.umontreal.ca, E-mail: bergeron@astro.umontreal.ca
We present a comparative analysis of atmospheric parameters obtained with the so-called photometric and spectroscopic techniques. Photometric and spectroscopic data for 1360 DA white dwarfs from the Sloan Digital Sky Survey (SDSS) are used, as well as spectroscopic data from the Villanova White Dwarf Catalog. We first test the calibration of the ugriz photometric system by using model atmosphere fits to observed data. Our photometric analysis indicates that the ugriz photometry appears well calibrated when the SDSS to AB{sub 95} zeropoint corrections are applied. The spectroscopic analysis of the same data set reveals that the so-called high-log g problem canmore » be solved by applying published correction functions that take into account three-dimensional hydrodynamical effects. However, a comparison between the SDSS and the White Dwarf Catalog spectra also suggests that the SDSS spectra still suffer from a small calibration problem. We then compare the atmospheric parameters obtained from both fitting techniques and show that the photometric temperatures are systematically lower than those obtained from spectroscopic data. This systematic offset may be linked to the hydrogen line profiles used in the model atmospheres. We finally present the results of an analysis aimed at measuring surface gravities using photometric data only.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Hui; Rasch, Philip J.; Zhang, Kai
2014-09-08
This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivitymore » of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.« less
ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár
2017-05-01
We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).
NASA Technical Reports Server (NTRS)
Thomas, R. N.
1982-01-01
Observational data on atmospheric structure and mass fluxes from the sun and Be stars are applied to test the adequacy of the original Parker 'hot corona' approach to predicting atmospheric structure and the size of the mass flux from only the radiative and nonradiative energy fluxes, and from gravity, and imposing the condition that thermal and escape points must coincide. Observations do not support this latter condition. It is concluded that the Parker approach is an asymptotic approximation to the very low mass flux limit in a nonvariable stellar atmosphere.
NASA Technical Reports Server (NTRS)
Gibbons, D. E.; Richard, R. R.
1979-01-01
The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.
NASA Astrophysics Data System (ADS)
Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide
2017-10-01
Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.
Blom, Philip Stephen; Marcillo, Omar Eduardo
2016-12-05
A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less
Mg I as a probe of the solar chromosphere - The atomic model
NASA Technical Reports Server (NTRS)
Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf
1988-01-01
This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.
Improving 1D Stellar Models with 3D Atmospheres
NASA Astrophysics Data System (ADS)
Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner
2017-10-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
[Atmospheric correction of visible-infrared band FY-3A/MERSI data based on 6S model].
Wu, Yong-Li; Luan, Qing; Tian, Guo-Zhen
2011-06-01
Based on the observation data from the meteorological stations in Taiyuan City and its surrounding areas of Shanxi Province, the atmosphere parameters for 6S model were supplied, and the atmospheric correction of visible-infrared band (precision 250 meters) FY-3A/MERSI data was conducted. After atmospheric correction, the range of visible-infrared band FY-3A/MERSI data was widened, reflectivity increased, high peak was higher, and distribution histogram was smoother. In the meantime, the threshold value of NDVI data reflecting vegetation condition increased, and its high peak was higher, more close to the real data. Moreover, the color synthesis image of correction data showed more abundant information, its brightness increased, contrast enhanced, and the information reflected was more close to real.
Modelling uncertainties in the climate of the last millennium: the ASTER project
NASA Astrophysics Data System (ADS)
Loutre, M. F.; Mouchet, A.; Fichefet, T.; Goosse, H.; Goelzer, H.; Huybrechts, P.
2009-04-01
The LOVECLIM model (Driesschaert et al., 2007; Goosse et al., 2007) is used to simulate the climate of the last millennium with several ‘climate' parameter sets yielding different sensitivities of the climate and the carbon cycle model. The purpose of these simulations is twofold. We intend to assess first the role of the carbon cycle on the climate, and second, the ability of the different selected parameter sets to drive the model within the range of the observed climate, and further to assess the uncertainty related to these parameters. The high frequency variability of the forcings is taken into account. For each set of parameters, LOVECLIM is driven by the natural evolution of insolation, solar irradiance and stratospheric aerosol concentrations due to volcanic activity as well as by changes caused by human activities such as deforestation, CO2 emission or concentration changes, changes in concentrations of greenhouse gases other than CO2 (including ozone) and in sulphate aerosol load. Several transient experiments are conducted for each parameter set. A first transient simulation (Conc) is forced with reconstructed atmospheric CO2 concentration. In the next two simulations, the emissions of carbon were taken into account, the model computing the corresponding atmospheric CO2 concentration. First (EMIS), the emissions due both to the land use changes and the fossil fuel burning are provided. Second (Efor), only the emissions from fossil fuel burning are provided in addition to the vegetation change related to deforestation. The Northern Hemisphere annual mean temperatures simulated by the model according to the different parameter sets and carbon cycle sensitivities and the different experimental setups do not show striking differences compared to the NH temperature recontructions (IPCC, 2007). However, the simulated values are generally in the lower range of the reconstructions in the interval 900-1200 AD. Moreover some experiments are displaying a too large warming during the last century as well as a large variability occasionally out of the range of observation. The increase in atmospheric CO2 concentration over the last century is strongly depending on how the anthropogenic emission and the land-use scenario are taken into account. Difference in atmospheric CO2 concentration can reach up to 50 ppmv. All the parameter sets are not able to reproduce the decreasing trend of the Arctic summer sea ice as recorded over the last decades. Parameter sets corresponding to the largest climate sensitivity lead to a strong reduction of the summer sea ice. However, different scenarios for deforestation lead to significantly different time evolution of the NH Summer sea ice area for the same parameter set. The ocean C storage remains within the range of estimates when CO2 is prescribed. However, values are much larger when both fossil fuel and land cover change emission are prescribed. The deforestation emissions as computed by the model lead to intermediate cumulative CO2 fluxes to the atmosphere. Driesschaert E., Fichefet T., Goosse H., Huybrechts P., Janssens I., Mouchet A., Munhoven G., Brovkin V., and Weber S. L., 2007. Modelling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys. Res. Lett., 34:L1070, 2007. Goosse H., Driesschaert E., Fichefet T., and Loutre M.F., 2007. Information on the early Holocene climate constrains the summer sea ice projections for the 21st century Clim. Past 3, 683-692. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.
Neutrino Phenomenology: Highlights of Oscillation Results and Future Prospects
NASA Astrophysics Data System (ADS)
Goswami, Srubabati
2016-04-01
In this talk the current status of neutrino oscillation parameters are presented. The prospects of determination of neutrino mass hierarchy, octant of θ23 and the CP phase δCP in future long-baseline and atmospheric experiments are reviewed. The impact of precision measurement of oscillation parameters on neutrino mass models are also discussed.
NASA Technical Reports Server (NTRS)
Kerr, Yann H.; Njoku, Eni G.
1990-01-01
A radiative-transfer model for simulating microwave brightness temperatures over land surfaces is described. The model takes into account sensor viewing conditions (spacecraft altitude, viewing angle, frequency, and polarization) and atmospheric parameters over a soil surface characterized by its moisture, roughness, and temperature and covered with a layer of vegetation characterized by its temperature, water content, single scattering albedo, structure, and percent coverage. In order to reduce the influence of atmospheric and surface temperature effects, the brightness temperatures are expressed as polarization ratios that depend primarily on the soil moisture and roughness, canopy water content, and percentage of cover. The sensitivity of the polarization ratio to these parameters is investigated. Simulation of the temporal evolution of the microwave signal over semiarid areas in the African Sahel is presented and compared to actual satellite data from the SMMR instrument on Nimbus-7.
Developing a weather observation routine during ICARUS
NASA Astrophysics Data System (ADS)
Mei, F.; Hubbe, J. M.; de Boer, G.; Lawrence, D.; Shupe, M.; Ivey, M.; Dexheimer, D.; Schmid, B.
2016-12-01
Starting in 2014, the Atmospheric Radiation Measurement (ARM) program began a major reconfiguration to more tightly link measurements and atmospheric models. As part of this the reconfiguration, ARM's North Slope of Alaska (NSA) site is being upgraded to include additional observations to support modeling and process studies. The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) have been launched in 2016. This internal initiative at Oliktok Point, Alaska focus on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The main purpose of ICARUS is to collect spatial data about surface radiation, heat fluxes, and vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind). Based on the data collected during ICARUS, we will develop the operation routines for each atmospheric state measurement, and then optimize the operation schedule to maximize the data collection capacity. The statistical representation of important atmospheric state parameters will be discussed.
Light self-focusing in the atmosphere: Thin window model
Vaseva, Irina A.; Fedoruk, Mikhail P.; Rubenchik, Alexander M.; ...
2016-08-02
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminatemore » the impact of self-focusing in the atmosphere on the laser beam. Furthermore, the area of applicability of the proposed “thin window” model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.« less
A Novel Scale Up Model for Prediction of Pharmaceutical Film Coating Process Parameters.
Suzuki, Yasuhiro; Suzuki, Tatsuya; Minami, Hidemi; Terada, Katsuhide
2016-01-01
In the pharmaceutical tablet film coating process, we clarified that a difference in exhaust air relative humidity can be used to detect differences in process parameters values, the relative humidity of exhaust air was different under different atmospheric air humidity conditions even though all setting values of the manufacturing process parameters were the same, and the water content of tablets was correlated with the exhaust air relative humidity. Based on this experimental data, the exhaust air relative humidity index (EHI), which is an empirical equation that includes as functional parameters the pan coater type, heated air flow rate, spray rate of coating suspension, saturated water vapor pressure at heated air temperature, and partial water vapor pressure at atmospheric air pressure, was developed. The predictive values of exhaust relative humidity using EHI were in good correlation with the experimental data (correlation coefficient of 0.966) in all datasets. EHI was verified using the date of seven different drug products of different manufacturing scales. The EHI model will support formulation researchers by enabling them to set film coating process parameters when the batch size or pan coater type changes, and without the time and expense of further extensive testing.
NASA Astrophysics Data System (ADS)
Kopytova, Taisiya
2016-01-01
When studying isolated brown dwarfs and directly imaged exoplanets with insignificant orbital motion,we have to rely on theoretical models to determine basic parameters such as mass, age, effective temperature, and surface gravity.While stellar and atmospheric models are rapidly evolving, we need a powerful tool to test and calibrate them.In my thesis, I focussed on comparing interior and atmospheric models with observational data, in the effort of taking into account various systematic effects that can significantly influence the data analysis.As a first step, about 460 candidate member os the Hyades were screened for companions using diffraction limited imaging observation (both our own data and archival data). As a result I could establish the single star sequence for the Hyades comprising about 250 stars (Kopytova et al. 2015, accepted to A&A). Open clusters contain many coeval objects of the same chemical composition and age, and spanning a range of masses. We compare the obtained sequence with a set of theoretical isochrones identifying systematic offsets and revealing probable issues in the models.However, there are many cases when it is impossible to test models before comparing them with observations.As a second step, we apply atmospheric models for constraining parameters of WISE 0855-07, the coolest known Y dwarf(Kopytova et al. 2014, ApJ 797, 3). We demonstrate the limits of constraining effective temperature and the presence/absence of water clouds.As a third step, we introduce a novel method to take into account the above-mentioned systematics. We construct a "systematics vector" that allows us to reveal problematic wavelength ranges when fitting atmospheric models to observed near-infrared spectraof brown dwarfs and exoplanets (Kopytova et al., in prep.). This approach plays a crucial role when retrieving abundances for these objects, in particularly, a C/O ratio. The latter parameter is an important key to formation scenarios of brown dwarf and exoplanets. We show the way to constrain a C/O ratio while eliminating systematics effects, which significantly improves the reliability of a final result and our conclusions about formation history of certain exoplanets and brown dwarfs.
NASA Astrophysics Data System (ADS)
Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.
2014-09-01
Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining the two modeling approaches and assimilating data of surface carbon flux as well as atmospheric CO2 mixing ratios might significantly improve the quantification of terrestrial carbon fluxes.
NASA Astrophysics Data System (ADS)
Yufeng, Wang; Qiang, Fu; Meina, Zhao; Fei, Gao; Huige, Di; Yuehui, Song; Dengxin, Hua
2018-01-01
To monitor the variability and the correlation of multiple atmospheric parameters in the whole troposphere and the lower stratosphere, a ground-based ultraviolet multifunctional Raman lidar system was established to simultaneously measure the atmospheric parameters in Xi'an (34.233°N, 108.911°E). A set of dichroic mirrors (DMs) and narrow-band interference filters (IFs) with narrow angles of incidence were utilized to construct a high-efficiency 5-channel polychromator. A series of high-quality data obtained from October 2013 to December 2015 under different weather conditions were used to investigate the functionality of the Raman lidar system and to study the variability of multiple atmospheric parameters in the whole stratosphere. Their conveying characteristics are also investigated using back trajectories with a hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT). The lidar system can be operated efficiently under weather conditions with a cloud backscattering ratio of less than 18 and an atmospheric visibility of 3 km. We observed an obvious temperature inversion phenomenon at the tropopause height of 17-18 km and occasional temperature inversion layers below the boundary layer. The rapidly changing atmospheric water vapor is mostly concentrated at the lower troposphere, below ∼4-5 km, accounting for ∼90% of the total water vapor content at 0.5-10 km. The back trajectory analysis shows that the air flow from the northwest and the west mainly contributes to the transport of aerosols and water vapor over Xi'an. The simultaneous continuous observational results demonstrate the variability and correlation among the multiple atmospheric parameters, and the accumulated water vapor density in the bottom layer causes an increase in the aerosol extinction coefficient and enhances the relative humidity in the early morning. The long-term observations provide a large amount of reliable atmospheric data below the lower stratosphere, and can be used to study their correlation and to improve local climate change research.
Coupled atmosphere/canopy model for remote sensing of plant reflectance features
NASA Technical Reports Server (NTRS)
Gerstl, S. A.; Zardecki, A.
1985-01-01
Solar radiative transfer through a coupled system of atmosphere and plant canopy is modeled as a multiple-scattering problem through a layered medium of random scatterers. The radiative transfer equation is solved by the discrete-ordinates finite-element method. Analytic expressions are derived that allow the calculation of scattering and absorption cross sections for any plant canopy layer form measurable biophysical parameters such as the leaf area index, leaf angle distribution, and individual leaf reflectance and transmittance data. An expression for a canopy scattering phase function is also given. Computational results are in good agreement with spectral reflectance measurements directly above a soybean canopy, and the concept of greenness- and brightness-transforms of Landsat MSS data is reconfirmed with the computed results. A sensitivity analysis with the coupled atmosphere/canopy model quantifies how satellite-sensed spectral radiances are affected by increased atmospheric aerosols, by varying leaf area index, by anisotropic leaf scattering, and by non-Lambertian soil boundary conditions. Possible extensions to a 2-D model are also discussed.
Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation
NASA Technical Reports Server (NTRS)
Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.
1988-01-01
Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.
NASA Astrophysics Data System (ADS)
Rocadenbosch, Francesc; Comeron, Adolfo; Vazquez, Gregori; Rodriguez-Gomez, Alejandro; Soriano, Cecilia; Baldasano, Jose M.
1998-12-01
Up to now, retrieval of the atmospheric extinction and backscatter has mainly relied on standard straightforward non-memory procedures such as slope-method, exponential- curve fitting and Klett's method. Yet, their performance becomes ultimately limited by the inherent lack of adaptability as they only work with present returns and neither past estimations, nor the statistics of the signals or a prior uncertainties are taken into account. In this work, a first inversion of the backscatter and extinction- to-backscatter ratio from pulsed elastic-backscatter lidar returns is tackled by means of an extended Kalman filter (EKF), which overcomes these limitations. Thus, as long as different return signals income,the filter updates itself weighted by the unbalance between the a priori estimates of the optical parameters and the new ones based on a minimum variance criterion. Calibration errors or initialization uncertainties can be assimilated also. The study begins with the formulation of the inversion problem and an appropriate stochastic model. Based on extensive simulation and realistic conditions, it is shown that the EKF approach enables to retrieve the sought-after optical parameters as time-range-dependent functions and hence, to track the atmospheric evolution, its performance being only limited by the quality and availability of the 'a priori' information and the accuracy of the atmospheric model assumed. The study ends with an encouraging practical inversion of a live-scene measured with the Nd:YAG elastic-backscatter lidar station at our premises in Barcelona.
Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilic, C.; Raible, C. C.; Stocker, T. F., E-mail: stocker@climate.unibe.ch
Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant.more » Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.« less
Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance
NASA Astrophysics Data System (ADS)
Kilic, C.; Raible, C. C.; Stocker, T. F.
2017-08-01
Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.
NASA Astrophysics Data System (ADS)
Petropoulos, George; Wooster, Martin J.; Carlson, Toby N.; Drake, Nick
2010-05-01
Accurate information on spatially explicit distributed estimates of key land-atmosphere fluxes and related land surface parameters is of key importance in a range of disciplines including hydrology, meteorology, agriculture and ecology. Estimation of those parameters from remote sensing frequently employs the integration of such data with mathematical representations of the transfers of energy, mass and radiation between soil, vegetation and atmosphere continuum, known as Soil Vegetation Atmosphere Transfer (SVAT) models. The ability of one such inversion modelling scheme to resolve for key surface energy fluxes and of soil surface moisture content is examined here using data from a multispectral high spatial resolution imaging instrument, the Advanced Spaceborne Thermal Emission and Reflection Scanning Radiometer (ASTER) and SimSphere one-dimensional SVAT model. Accuracy of the investigated methodology, so-called as the "triangle" method, is verified using validated ground observations obtained from selected days collected from nine CARBOEUROPE IP sites representing a variety of climatic, topographic and environmental conditions. Subsequently, a new framework is suggested for the retrieval of two additional parameters by the investigated method, namely the Evaporative (EF) and the Non-Evaporative (NEF) Fractions. Results indicated a close agreement between the inverted surface fluxes and surface moisture availability maps as well as of the EF and NEF parameters with the observations both spatially and temporally with accuracies comparable to those obtained in similar experiments with high spatial resolution data. Inspection of the inverted surface fluxes maps regionally, showed an explainable distribution in the range of the inverted parameters in relation with the surface heterogeneity. Overall performance of the "triangle" inversion methodology was found to be affected predominantly by the SVAT model "correct" initialisation representative of the test site environment, most importantly the atmospheric conditions required in the SVAT model initial conditions. This study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting using the SimSphere SVAT with the ASTER data. The present work is also very timely in that, a variation of this specific inversion methodology has been proposed for the operational retrieval of the soil surface moisture content by National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellite platforms that are due to be launched in the next 12 years starting from 2012. KEYWORDS: micrometeorology, surface heat fluxes, soil moisture content, ASTER, triangle method, SimSphere, CarboEurope IP
Studying the Structure of Condensables Jupiter’s 24deg Jet
NASA Astrophysics Data System (ADS)
Flom, Abigail; Sankar, Ramanakumar; Palotai, Csaba J.; Dowling, Timothy E.
2017-10-01
Simulations of the atmospheres of Jovian planets can be used to check our current understanding of the physics of their atmospheres. Such studies have been performed in the past, but the development of cloud microphysics models allows us to gain new insight in how the clouds form and behave in areas of interest. This study conducts high resolution cloudy simulations of the 24 degree north high speed jet for a period of 200 days. The models were created using the Explicit Planetary Isentropic_Coordinate (EPIC) general circulation model (Dowling et al 1998, 2006) that includes full hydrological cycle for multiple condensible species (Palotai and dowling 2008, Palotai et al 2016). This builds off of work presented by our group last year at DPS. The simulations were run under various conditions again in order to test what parameters led to stable simulations. These results help describe which physical parameters can lead to stable high speed jets and how water and ammonia behave within these features. Reference: [1] T. Dowling, A. Fischer, P. Gierasch, J. Harrington, R. Lebeau, and C. Santori. The explicit planetary isentropic-coordinate (epic) atmospheric model. Icarus, 1998. [2] T. E. Dowling, M. E. Bradley, E. Colon, J. Kramer, R. P. LeBeau, G. C. H. Lee, T. I. Mattox, R. Morales-Juberias, C. J. Palotai, V. k. Parimi, and A. P. Showman. The epic atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus, 182:259-273, may 2006.[3] C. Palotai and T. E. Dowling. Addition of water and ammonia cloud microphysics to the epic model. Icarus, 2008.[4] C. J. Palotai, R. P. Le Beau, R. Shankar, A. Flom, J. Lashley, and T. McCabe. A cloud microphysics model for the gas giant planets. In AAS/Division for Planetary Sciences Meeting Abstracts, 2016.
SP_Ace: Stellar Parameters And Chemical abundances Estimator
NASA Astrophysics Data System (ADS)
Boeche, C.; Grebel, E. K.
2018-05-01
SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.
NASA Astrophysics Data System (ADS)
Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.
2018-03-01
Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular phases of their pulsations. We identified convective inhomogeneities as the main driver behind potential biases. To obtain a complete view on the effects when determining stellar parameters with 1D models, multidimensional Cepheid atmosphere models are necessary for variables of longer period than investigated here.
Atmospheric circulations required for thick high-altitude clouds and featureless transit spectra
NASA Astrophysics Data System (ADS)
Wang, H.; Wordsworth, R. D.
2017-12-01
The transmission spectra of exoplanet GJ 1214b and GJ 436b are featureless as measured by current instruments. According to the measured density of these planets, we have reason to believe these planets have atmospheres, and the spectroscopy features of the atmospheres are unexpectedly not shown in the transit spectra. An explanation is high-altitude clouds or hazes are optically thick enough to make the transit spectra flat in the current observed wavelength range. We analyze the atmospheric circulations and vertical mixing that are crucial for the possible existence of the thick high-altitude clouds. We perform a series of GCM simulations with different atmospheric compositions and planetary parameters to reveal the conditions that are required for showing featureless spectra, and study the dynamical processes. We also study the role of cloud particles with different sizes, compositions and spectral characteristics with a radiative transfer model and cloud physics models. Varying the compositions and sizes of the cloud particles results in different requirements for the atmospheric circulations.
A stochastic atmospheric model for remote sensing applications
NASA Technical Reports Server (NTRS)
Turner, R. E.
1983-01-01
There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.
MODTRAN Radiance Modeling of Multi-Angle Worldview-2 Imagery
2013-09-01
this thesis, multi-angle CHRIS data has been used to validate canopy BRDF models generated using PROSPECT and SAILH radiative transfer models (D’Urso...67 1. MODTRAN Modeling using BRDF Algorithms .............................67 2. MODTRAN Modeling of Hyperspectral Data...associated with BRDF , and (2) develop software- 2 based atmospheric models , using parameters similar to those found in the imagery, for comparison to
Fundamental parameters of BE UMa revised
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Borisov, N. V.; Pozdnyakova, S. A.; Bikmaev, I. F.; Vlasyuk, V. V.; Sakhibullin, N. A.; Spiridonova, O. I.
2008-07-01
We have determined a complete set of parameters for the young pre-cataclysmic variable BE UMa from a comprehensive photometric and spectroscopic analysis using model atmospheres. Our precise photometry and spectroscopy were acquired with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory and the 1.5-m Russian-Turkish telescope at a wide range of orbital phases, including times of primary eclipses.We performed a detailed identification of emission lines of ten elements. At phases of minimum brightness, the spectra reveal absorption lines and molecular bands formed in the secondary’s atmosphere, whose effective temperature was determined to be T {/eff (2)} = 4750 ± 150 K. We have studied the radial-velocity curves of the cool star using lines of various elements. All the curves exhibit the previously predicted distortions due to reflection effects in the close binary. The derived component-mass ratio is q = 0.43 ± 0.09, and the component masses are M 1 = 0.59 ± 0.07 M ⊙ and M 2 = 0.25 ± 0.08 M ⊙. We analyzed the light curves using model atmospheres for irradiated stars; all the parameters of BE UMa were refined. We demonstrate the validity of our modeling of the binary’s spectra at phases of brightness maximum, which provides a good description of the observed intensities of most lines of heavy elements. The abundances of helium and several light elements (C, N, O, Ne, Mg) in the atmosphere of the cool star are probably higher than the solar values. We conclude that the physical characteristics of the primary are in good agreement with evolutionary tracks for planetary-nebula nuclei, and that the secondary is overluminous by a factor of 30 compared to main-sequence stars of the same mass.
NASA Astrophysics Data System (ADS)
Kulkarni, M. N.; Kamra, A. K.
2012-11-01
A theoretical model is developed for calculating the vertical distribution of atmospheric electric potential in exchange layer of maritime clean atmosphere. The transport of space charge in electrode layer acts as a convective generator in this model and plays a major role in determining potential distribution in vertical. Eddy diffusion is the main mechanism responsible for the distribution of space charge in vertical. Our results show that potential at a particular level increases with increase in the strength of eddy diffusion under similar conditions. A method is suggested to estimate columnar resistance, the ionospheric potential and the vertical atmospheric electric potential distribution in exchange layer from measurements of total air-earth current density and surface electric field made over oceans. The results are validated and found to be in very good agreement with the previous aircraft measurements. Different parameters involved in the proposed methodology can be determined either theoretically, as in the present work, or experimentally using the near surface atmospheric electrical measurements or using some other surface-based measurement technique such as LIDAR. A graphical relationship between the atmospheric eddy diffusion coefficient and height of exchange layer obtained from atmospheric electrical approach, is reported.
Role of the ionosphere for the atmospheric evolution of planets.
Yamauchi, Masatoshi; Wahlund, Jan-Erik
2007-10-01
We have synthesized current understanding, mainly observations, with regard to ion escape mechanisms to space from the ionosphere and exosphere of Titan and Earth-type planets, with the intent to provide an improved input for models of atmospheric evolution on early Earth and Earth-type planets and exoplanets. We focus on the role of the ionosphere and its non-linear response to solar parameters, all of which have been underestimated in current models of ancient atmospheric escape (4 billion years ago). Factors that have been overlooked include the following: (1) Much larger variation of O(+) outflow than H(+) outflow from the terrestrial ionosphere, depending on solar and geomagnetic activities (an important consideration when attempting to determine the oxidized state of the atmosphere of early Earth); (2) magnetization of the ionopause, which keeps ionospheric ions from escaping and controls many other escape processes; (3) extra ionization by, for example, the critical ionization velocity mechanism, which expands the ionosphere to greater altitudes than current models predict; and (4) the large escape of cold ions from the dense, expanded ionosphere of Titan. Here we offer, as a guideline for quantitative simulations, a qualitative diagnosis of increases or decreases of non-thermal escape related to the ionosphere for magnetized and unmagnetized planets in response to changes in solar parameters (i.e., solar EUV/FUV flux, solar wind dynamic pressure, and interplanetary magnetic field).
Modeling long-term carbon residue in the ocean-atmosphere system following large CO2 emissions
NASA Astrophysics Data System (ADS)
Towles, N. J.; Olson, P.; Gnanadesikan, A.
2013-12-01
We use the LOSCAR carbon cycle model (Zeebe et al., 2009; Zeebe, 2012) to calculate the residual carbon in the ocean and atmosphere following large CO2 emissions. We consider the system response to CO2 emissions ranging from 100 to 20000 PgC, and emission durations from 100 yr to 100 kyr, subject to a wide range of system parameters such as the strengths of silicate weathering and the oceanic biological carbon pump. We define the carbon gain factor as the ratio of residual carbon in the ocean-atmosphere to the total emitted carbon. For moderate sized emissions shorter than about 50 kyr, we find that the carbon gain factor grows during the emission and peaks at about 1.7, primarily due to the erosion of carbonate marine sediments. In contrast, for longer emissions, the carbon gain factor peaks at a smaller value, and for very large emissions (more than 5000 PgC), the gain factor decreases with emission size due to carbonate sediment exhaustion. This gain factor is sensitive to model parameters such as low latitude efficiency of the biological pump. The timescale for removal of the residual carbon (reducing the carbon gain factor to zero) depends strongly on the assumed sensitivity of silicate weathering to atmospheric pCO2, and ranges from less than one million years to several million years.
The 12-foot pressure wind tunnel restoration project model support systems
NASA Technical Reports Server (NTRS)
Sasaki, Glen E.
1992-01-01
The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.; Foster, James L.
2010-01-01
A radiative transfer model for estimating snow water equivalent (SWE, mm) from satellite-observed brightness temperature (K) at 19 and 37 GHz (respectively, T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)) over partially forested area is presented, as an extension of a previously published model, by considering scattering of radiation within the canopy. For the specific case of dense vegetation covering fractional area f, the model can be written as, SWE = alpha{ A. delta (T(sub B(sub, sat)) + B - C. f}/(l f), where delta T(sub B(sub, sat)), is the difference of T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)), alpha(mm/K) is the slope of SWE vs. brightness temperature difference at 19 and 37 GHz that would be obtained by ignoring the presence of atmosphere, delta(T(sub B)sub g)), for a homogeneous snow cover (which varies with grain size). The parameters A, B, and C, are determined primarily by atmospheric characteristics, and for a likely range of atmospheric conditions appear to be in the range of, respectively, 1.15-1.63, 0.69-2.84 K and 0.59-2.39 K. Ignoring atmospheric correction would introduce bias towards underestimation of SWE (and also, snow cover area and snow depth). Increasing cloud liquid water path (L) has the effect of increasing A, and ignoring this variation of A with L would have the impact of biasing the estimate of SWE (and snow extent). Such biasing is further exacerbated with increasing f, because of the appearance of term (l-f) in the denominator. The impact of ignoring the intercept parameters (B and C) would be noticeable at low values of SWE (appearing as a bias towards underestimation of SWE), which has been determined to be about 6 mm for average environmental conditions. The uncertainty in estimating SWE due to variations in the atmospheric characteristics is likely to be less than 15%, but could be up to 25% for non-vegetated snow-covered areas. Better estimates of SWE (and snow extent) would be obtained by adjusting the parameters of the above model to regional differences in the atmospheric characteristics. The biases in determining SWE arising due to variations in atmospheric conditions and due to changes in fractional forest cover are not independent, since they interact as {A/(l-f)}. The present calculations also show that improvement in determining snow cover area from the microwave data is likely to occur when these data are corrected for atmospheric effects, as demonstrated by a specific case study.
Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band 25°-55°N
NASA Astrophysics Data System (ADS)
Magurno, Davide; Maestri, Tiziano; Grassi, Davide; Piccioni, Giuseppe; Sindoni, Giuseppe
2017-09-01
Two years of data from the M-channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS), on board the European Space Agency mission Venus Express operating around the planet Venus, are analysed. Nocturnal data from a nadir viewpoint in the latitude band 25°N-55°N are selected for their configuration advantages and maximisation of the scene homogeneity. A reference model, and radiance spectrum, is defined based on average accepted values of the Venus main atmospheric and cloud parameters found in the literature. Extensive radiative transfer simulations are performed to provide a synthetic database of more than 10 000 VIRTIS radiances representing the natural variability of the system parameters (atmospheric temperature profile, cloud H2Osbnd H2SO4 solution concentration and vertical distribution, particle size distribution density and modal radius). A simulated-observed fitting algorithm of spectral radiances in window channels, based on a weighting procedure accounting for the latitudinal observed radiance variations, is used to derive the best atmosphere-cloud configuration for each observation. Results show that the reference Venus model does not adequately reproduce the observed VIRTIS spectra. In particular, the model accounting for a constant sulphuric acid concentration along the vertical extent of the clouds is never selected as a best fit. The 75%/96% and 84%/96% concentrations (the first values refer to the upper cloud layers and the second values to the lower ones) are the most commonly retrieved models representing more than 85% of the retrieved cases for any latitudinal band considered. It is shown that the assumption of stratified concentration of aqueous sulphuric acid allows to adequately fit the observed radiance, in particular the peak at 1.74 μm and around 4 μm. The analysis of the results concerning the microphysics suggests larger radii for the upper cloud layers in conjunction with a large reduction of their number density with respect to the reference standard. Considerable variation of the particle concentration in the Venus' atmosphere is retrieved for altitudes between 60 and 70 km. The retrieved models also suggest that lower cloud layers have smaller particle radii and larger number density than expected from the reference model. Latitudinal variations of microphysical and chemical parameters are also analysed.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-04-06
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-01-01
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
Adjoint-Based Climate Model Tuning: Application to the Planet Simulator
NASA Astrophysics Data System (ADS)
Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef
2018-01-01
The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.
NASA Technical Reports Server (NTRS)
Santanello, Joseph
2011-01-01
NASA's Land Information System (LIS; lis.gsfc.nasa.gov) is a flexible land surface modeling and data assimilation framework developed over the past decade with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. LIS features a high performance and flexible design, and operates on an ensemble of land surface models for extension over user-specified regional or global domains. The extensible interfaces of LIS allow the incorporation of new domains, land surface models (LSMs), land surface parameters, meteorological inputs, data assimilation and optimization algorithms. In addition, LIS has also been demonstrated for parameter estimation and uncertainty estimation, and has been coupled to the Weather Research and Forecasting (WRF) mesoscale model. A visiting fellowship is currently underway to implement JULES into LIS and to undertake some fundamental science on the feedbacks between the land surface and the atmosphere. An overview of the LIS system, features, and sample results will be presented in an effort to engage the community in the potential advantages of LIS-JULES for a range of applications. Ongoing efforts to develop a framework for diagnosing land-atmosphere coupling will also be presented using the suite of LSM and PBL schemes available in LIS and WRF along with observations from the U. S .. Southern Great Plains. This methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.
NASA Astrophysics Data System (ADS)
Mueller, R. W.; Beyer, H. G.; Cros, S.; Dagestad, K. F.; Dumortier, D.; Ineichen, P.; Hammer, A.; Heinemann, D.; Kuhlemann, R.; Olseth, J. A.; Piernavieja, G.; Reise, C.; Schroedter, M.; Skartveit, A.; Wald, L.
1-University of Oldenburg, 2-University of Appl. Sciences Magdeburg, 3-Ecole des Mines de Paris, 4-University of Bergen, 5-Ecole Nationale des Travaux Publics de l'Etat, 6-University of Geneva, 7-Instituto Tecnologico de Canarias, 8-Fraunhofer Institute for Solar Energy Systems, 9-German Aerospace Center Geostationary satellites such as Meteosat provide cloud information with a high spatial and temporal resolution. Such satellites are therefore not only useful for weather fore- casting, but also for the estimation of solar irradiance since the knowledge of the light reflected by clouds is the basis for the calculation of the transmitted light. Additionally an the knowledge of atmospheric parameters involved in scattering and absorption of the sunlight is necessary for an accurate calculation of the solar irradiance. An accurate estimation of the downward solar irradiance is not only of particular im- portance for the assessment of the radiative forcing of the climate system, but also necessary for an efficient planning and operation of solar energy systems. Currently, most of the operational calculation schemes for solar irradiance are semi- empirical. They use cloud information from the current Meteosat satellite and clima- tologies of atmospheric parameters e.g. turbidity (aerosols and water vapor). The Me- teosat Second Generation satellites (MSG, to be launched in 2002) will provide not only a higher spatial and temporal resolution, but also the potential for the retrieval of atmospheric parameters such as ozone, water vapor and with restrictions aerosols. With this more detailed knowledge about atmospheric parameters it is evident to set up a new calculation scheme based on radiative transfer models using the retrieved atmospheric parameters as input. Unfortunately the possibility of deriving aerosol in- formation from MSG data is limited. As a cosequence the use of data from additional satellite instruments ( e.g. GOME/ATSR-2) is neeeded. Within this presentation a new type of the solar irradiance calculation scheme is de- scribed. It is based on the integrated use of a radiative transfer model (RTM), whereas the information of the atmospheric parameters retrieved from satellites (MSG and GOME/ATSR-2) will be used as input for the RTM. First comparisons between calcu- lated and measured solar irradiance are presented. The improvements linked with the usage of the new calculation scheme are discussed, taking into account the benefits and limitations of the new method and the MSG satellite.
Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.
Atmospheric monitoring and model applications at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Keilhauer, Bianca
2015-03-01
The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.
A framework for the probabilistic analysis of meteotsunamis
Geist, Eric L.; ten Brink, Uri S.; Gove, Matthew D.
2014-01-01
A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.
Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1
NASA Technical Reports Server (NTRS)
Giampapa, M. S. (Editor); Golub, L. (Editor)
1981-01-01
Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.
Characterization of the High-Albedo NEA 3691 Bede
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.;
2016-01-01
Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter. Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011). Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv˜0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.
Characterization of the high-albedo NEA 3691 Bede
NASA Astrophysics Data System (ADS)
Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Rozitis, Benjamin; Jefferson, Jeffrey D.; Nelson, Tyler W.; Dotson, Jessie L.; Ryan, Erin L.; Howell, Ellen S.; Fernandez, Yanga R.; Lovell, Amy J.; Woodward, Charles E.; Harker, David Emerson
2016-10-01
Characterization of NEAs provides important inputs to models for atmospheric entry, risk assessment and mitigation. Diameter is a key parameter because diameter translates to kinetic energy in atmospheric entry. Diameters can be derived from the absolute magnitude, H(PA=0deg), and from thermal modeling of observed IR fluxes. For both methods, the albedo (pv) is important - high pv surfaces have cooler temperatures, larger diameters for a given Hmag, and shallower phase curves (larger slope parameter G). Thermal model parameters are coupled, however, so that a higher thermal inertia also results in a cooler surface temperature. Multiple parameters contribute to constraining the diameter.Observations made at multiple observing geometries can contribute to understanding the relationships between and potentially breaking some of the degeneracies between parameters. We present data and analyses on NEA 3691 Bede with the aim of best constraining the diameter and pv from a combination of thermal modeling and light curve analyses. We employ our UKIRT+Michelle mid-IR photometric observations of 3691 Bede's thermal emission at 2 phase angles (27&43 deg 2015-03-19 & 04-13), in addition to WISE data (33deg 2010-05-27, Mainzer+2011).Observing geometries differ by solar phase angles and by moderate changes in heliocentric distance (e.g., further distances produce somewhat cooler surface temperatures). With the NEATM model and for a constant IR beaming parameter (eta=constant), there is a family of solutions for (diameter, pv, G, eta) where G is the slope parameter from the H-G Relation. NEATM models employing Pravec+2012's choice of G=0.43, produce D=1.8 km and pv≈0.4, given that G=0.43 is assumed from studies of main belt asteroids (Warner+2009). We present an analysis of the light curve of 3691 Bede to constrain G from observations. We also investigate fitting thermophysical models (TPM, Rozitis+11) to constrain the coupled parameters of thermal inertia (Gamma) and surface roughness, which in turn affect diameter and pv. Surface composition can be related to pv. This study focuses on understanding and characterizing the dependency of parameters with the aim of constraining diameter, pv and thermal inertia for 3691 Bede.
The direct effect of aerosols on solar radiation over the broader Mediterranean basin
NASA Astrophysics Data System (ADS)
Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.
2011-11-01
For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, by using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are Supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 Wm-2). Though planetary cooling is found over most of the region, up to -7 Wm-2, large positive DRETOA values (up to +25 Wm-2) are found over North Africa, indicating a strong planetary warming, as well as over the Alps (+0.5 Wm-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 Wm-2) and to decrease SSR (DREsurf = -16.5 Wm-2 and DREnetsurf -13.5 Wm-2) inducing thus significant atmospheric warming and surface radiative cooling. The calculated seasonal and monthly DREs are even larger, reaching -25.4 Wm-2 (for DREsurf). Sensitivity tests show that regional DREs are most sensitive to ωaer and secondarily to AOD, showing a quasi-linear dependence to these aerosol parameters.
Kitayama, Kyo; Ohse, Kenji; Shima, Nagayoshi; Kawatsu, Kencho; Tsukada, Hirofumi
2016-11-01
The decreasing trend of the atmospheric 137 Cs concentration in two cities in Fukushima prefecture was analyzed by a regression model to clarify the relation between the parameter of the decrease in the model and the trend and to compare the trend with that after the Chernobyl accident. The 137 Cs particle concentration measurements were conducted in urban Fukushima and rural Date sites from September 2012 to June 2015. The 137 Cs particle concentrations were separated in two groups: particles of more than 1.1 μm aerodynamic diameters (coarse particles) and particles with aerodynamic diameter lower than 1.1 μm (fine particles). The averages of the measured concentrations were 0.1 mBq m -3 in Fukushima and Date sites. The measured concentrations were applied in the regression model which decomposed them into two components: trend and seasonal variation. The trend concentration included the parameters for the constant and the exponential decrease. The parameter for the constant was slightly different between the Fukushima and Date sites. The parameter for the exponential decrease was similar for all the cases, and much higher than the value of the physical radioactive decay except for the concentration in the fine particles at the Date site. The annual decreasing rates of the 137 Cs concentration evaluated by the trend concentration ranged from 44 to 53% y -1 with average and standard deviation of 49 ± 8% y -1 for all the cases in 2013. In the other years, the decreasing rates also varied slightly for all cases. These indicated that the decreasing trend of the 137 Cs concentration was nearly unchanged for the location and ground contamination level in the three years after the accident. The 137 Cs activity per aerosol particle mass also decreased with the same trend as the 137 Cs concentration in the atmosphere. The results indicated that the decreasing trend of the atmospheric 137 Cs concentration was related with the reduction of the 137 Cs concentration in resuspended particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change
NASA Astrophysics Data System (ADS)
Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.
2011-12-01
The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.
NASA Astrophysics Data System (ADS)
Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.
2015-12-01
Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while discharge is more affected by parameters from the whole upstream drainage area. Understanding model output variance behavior will have a direct impact on the design and performance of the ensemble-based data assimilation platform, for which uncertainties are also modeled by variances. It will help to select more objectively RRM parameters to correct.
Continental-scale river flow in climate models
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Caliri, Guilherme
1994-01-01
The hydrologic cycle is a major part of the global climate system. There is an atmospheric flux of water from the ocean surface to the continents. The cycle is closed by return flow in rivers. In this paper a river routing model is developed to use with grid box climate models for the whole earth. The routing model needs an algorithm for the river mass flow and a river direction file, which has been compiled for 4 deg x 5 deg and 2 deg x 2.5 deg resolutions. River basins are defined by the direction files. The river flow leaving each grid box depends on river and lake mass, downstream distance, and an effective flow speed that depends on topography. As input the routing model uses monthly land source runoff from a 5-yr simulation of the NASA/GISS atmospheric climate model (Hansen et al.). The land source runoff from the 4 deg x 5 deg resolution model is quartered onto a 2 deg x 2.5 deg grid, and the effect of grid resolution is examined. Monthly flow at the mouth of the world's major rivers is compared with observations, and a global error function for river flow is used to evaluate the routing model and its sensitivity to physical parameters. Three basinwide parameters are introduced: the river length weighted by source runoff, the turnover rate, and the basinwide speed. Although the values of these parameters depend on the resolution at which the rivers are defined, the values should converge as the grid resolution becomes finer. When the routing scheme described here is coupled with a climate model's source runoff, it provides the basis for closing the hydrologic cycle in coupled atmosphere-ocean models by realistically allowing water to return to the ocean at the correct location and with the proper magnitude and timing.
THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER 'SUPER-EARTHS'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Alex R.; Burrows, Adam S., E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu
2012-09-10
We present new calculations of transit spectra of super-Earths that allow for atmospheres with arbitrary proportions of common molecular species and haze. We test this method with generic spectra, reproducing the expected systematics and absorption features, then apply it to the nearby super-Earth GJ 1214b, which has produced conflicting observational data, leaving the questions of a hydrogen-rich versus hydrogen-poor atmosphere and the water content of the atmosphere ambiguous. We present representative transit spectra for a range of classes of atmosphere models for GJ 1214b. Our analysis supports a hydrogen-rich atmosphere with a cloud or haze layer, although a hydrogen-poor modelmore » with {approx}<10% water is not ruled out. Several classes of models are ruled out, however, including hydrogen-rich atmospheres with no haze, hydrogen-rich atmospheres with a haze of {approx}0.01 {mu}m tholin particles, and hydrogen-poor atmospheres with major sources of absorption other than water. We propose an observational test to distinguish hydrogen-rich from hydrogen-poor atmospheres. Finally, we provide a library of theoretical transit spectra for super-Earths with a broad range of parameters to facilitate future comparison with anticipated data.« less
NASA Astrophysics Data System (ADS)
Matvienko, G. G.; Belan, B. D.; Panchenko, M. V.; Romanovskii, O. A.; Sakerin, S. M.; Kabanov, D. M.; Turchinovich, S. A.; Turchinovich, Yu. S.; Eremina, T. A.; Kozlov, V. S.; Terpugova, S. A.; Pol'kin, V. V.; Yausheva, E. P.; Chernov, D. G.; Zuravleva, T. B.; Bedareva, T. V.; Odintsov, S. L.; Burlakov, V. D.; Arshinov, M. Yu.; Ivlev, G. A.; Savkin, D. E.; Fofonov, A. V.; Gladkikh, V. A.; Kamardin, A. P.; Belan, D. B.; Grishaev, M. V.; Belov, V. V.; Afonin, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Samoilova, S. V.; Antokhin, P. N.; Arshinova, V. G.; Davydov, D. K.; Kozlov, A. V.; Pestunov, D. A.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.; Belan, S. B.; Shmargunov, V. P.; Rostov, A. P.; Tikhomirova, O. V.; Shefer, N. A.; Safatov, A. S.; Kozlov, A. S.; Malyshkin, S. B.; Maksimova, T. A.
2014-11-01
The main aim of the work was complex experimental measurements of microphysical, chemical, and optical parameters of aerosol particles in the surface air layer and free atmosphere. From the measurement data, the entire set of aerosol optical parameters was retrieved, required for radiation calculations. Three measurement runs were carried out in 2013 within the experiment: in spring, when the aerosol generation maximum is observed, in summer (July), when the altitude of the atmospheric boundary layer is the highest, and in the late summer - early autumn, when the second nucleation period is recorded. The following instruments were used in the experiment: diffusion aerosol spectrometers (DAS), GRIMM photoelectric counters, angle-scattering nephelometers, aethalometer, SP-9/6 sun photometer, RE 318 Sun-Sky radiometer (AERONET), MS-53 pyrheliometer, MS-802 pyranometer, ASP aureole photometer, SSP scanning photometer, TU-134 Optik flying laboratory, Siberian lidar station, stationary multiwave lidar complex LOZA-M, spectrophotometric complex for measuring total ozone and NO2, multivariable instrument for measuring atmospheric parameters, METEO-2 USM, 2.4 AEHP-2.4m station for satellite data receive. Results of numerical calculations of solar down-fluxes on the Earth's surface were compared with the values measured in clear air in the summer periods in 2010—2012 in a background region of Siberian boreal zone. It was shown that the relative differences between model and experimental values of direct and total radiation do not exceed 1% and 3%, respectively, with accounting for instrumental errors and measurement error of atmospheric parameters. Thus, independent data on optical, meteorological, and microphysical atmospheric parameters allow mutual intercalibration and supplement and, hence, provide for qualitatively new data, which can explain physical nature of processes that form the vertical structure of the aerosol filed.
a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images
NASA Astrophysics Data System (ADS)
Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei
2018-04-01
Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.
Numerical model of the circulation and dispersion in the east Adriatic coastal waters
NASA Astrophysics Data System (ADS)
Beg Paklar, Gordana; Dzoic, Tomislav; Koracin, Darko; Matijevic, Slavica; Grbec, Branka; Ivatek-Sahdan, Stjepan
2017-04-01
The Regional Ocean Modeling System (ROMS) was implemented to reproduce physical properties of the area around submarine outlet Stobrec in the middle Adriatic coastal area. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and dynamics of the surrounding area imposed at the open boundaries. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Simulated fields from the Adriatic and shelf scale models were used to prescribe the initial and open boundary conditions for fine resolution coastal domain. Model results were compared with available CTD measurements and discussed in the light of the climatological circulation and thermohaline properties of the middle Adriatic coastal area. Variability in the circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the open boundaries. Basic features of the coastal circulation are well reproduced by the ROMS model, as well as temperatures and salinities which are within corresponding seasonal intervals, although with lower stratification than measured ones. In order to reproduce dispersion of the passive tracer the ROMS model was coupled with Lagrangian dispersion model. Multiyear monitoring of the physical, chemical and biological parameters around the sewage outlet was used to assess the quality of the dispersion model results. Among measured parameters, redox potential of the surface sediment layer was selected to be compared with model results as its negative values are direct consequence of increased organic matter input that can be attributed to the sewage system inflow.
Comparative Modelling of the Spectra of Cool Giants
NASA Technical Reports Server (NTRS)
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2015-01-01
We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Wang, Hailong; Zhang, Rudong
2014-06-02
Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) inmore » the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.« less
Atmospheric correction for remote sensing image based on multi-spectral information
NASA Astrophysics Data System (ADS)
Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen
2018-03-01
The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.
Probing Into the Atmosphere of the Young Exoplanet K2-25b
NASA Astrophysics Data System (ADS)
Chia Thao, Pa; Mann, Andrew
2018-01-01
Planets are most transformative during their early life, yet there remains little research on this developmental stage. In order to construct a more accurate picture of the diversity and evolution of planetary atmospheres, we present Spitzer infrared photometry of five transits both in 3.6 μm and 4.5 μm bands of the young exoplanet, K2-25b (650-800 Myr). To correct for the intra-pixel photometric response, we interpolated high-resolution sensitivity maps. Light curves were then created using a transit model and an MCMC framework to find the planet parameters in each wavelength. In comparison to atmospheric theoretical models, we find K2-25b unlikely to have a solar-metallicity atmosphere. However, observed through a full transmission spectrum, K2-25b is consistent with either a high-metallicity atmosphere or a cloudy/hazy layer. Further HST data would provide significantly more detail on the structure of the atmosphere. In a future project, we plan to apply this same method to a younger planet, K2-33b (11 Myr), to determine if cloudy/hazy atmospheres are primordial.
Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi
2017-06-12
Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.
[Atmospheric correction of HJ-1 CCD data for water imagery based on dark object model].
Zhou, Li-Guo; Ma, Wei-Chun; Gu, Wan-Hua; Huai, Hong-Yan
2011-08-01
The CCD multi-band data of HJ-1A has great potential in inland water quality monitoring, but the precision of atmospheric correction is a premise and necessary procedure for its application. In this paper, a method based on dark pixel for water-leaving radiance retrieving is proposed. Beside the Rayleigh scattering, the aerosol scattering is important to atmospheric correction, the water quality of inland lakes always are case II water and the value of water leaving radiance is not zero. So the synchronous MODIS shortwave infrared data was used to obtain the aerosol parameters, and in virtue of the characteristic that aerosol scattering is relative stabilized in 560 nm, the water-leaving radiance for each visible and near infrared band were retrieved and normalized, accordingly the remotely sensed reflectance of water was computed. The results show that the atmospheric correction method based on the imagery itself is more effective for the retrieval of water parameters for HJ-1A CCD data.
Mars Pathfinder Atmospheric Entry Navigation Operations
NASA Technical Reports Server (NTRS)
Braun, R. D.; Spencer, D. A.; Kallemeyn, P. H.; Vaughan, R. M.
1997-01-01
On July 4, 1997, after traveling close to 500 million km, the Pathfinder spacecraft successfully completed entry, descent, and landing, coming to rest on the surface of Mars just 27 km from its target point. In the present paper, the atmospheric entry and approach navigation activities required in support of this mission are discussed. In particular, the flight software parameter update and landing site prediction analyses performed by the Pathfinder operations navigation team are described. A suite of simulation tools developed during Pathfinder's design cycle, but extendible to Pathfinder operations, are also presented. Data regarding the accuracy of the primary parachute deployment algorithm is extracted from the Pathfinder flight data, demonstrating that this algorithm performed as predicted. The increased probability of mission success through the software parameter update process is discussed. This paper also demonstrates the importance of modeling atmospheric flight uncertainties in the estimation of an accurate landing site. With these atmospheric effects included, the final landed ellipse prediction differs from the post-flight determined landing site by less then 0.5 km in downtrack.
NASA Astrophysics Data System (ADS)
Bowling, Timothy; Calais, Eric; Haase, Jennifer S.
2013-03-01
The exhaust plume of the Space Shuttle during its ascent triggers acoustic waves which propagate through the atmosphere and induce electron density changes at ionospheric heights which changes can be measured using ground-based Global Positioning System (GPS) phase data. Here, we use a network of GPS stations to study the acoustic wave generated by the STS-125 Space Shuttle launch on May 11, 2009. We detect the resulting changes in ionospheric electron density, with characteristics that are typical of acoustic waves triggered by explosions at or near the Earth's surface or in the atmosphere. We successfully reproduce the amplitude and timing of the observed signal using a ray-tracing model with a moving source whose amplitude is directly scaled by a physical model of the shuttle exhaust energy, acoustic propagation in a dispersive atmosphere and a simplified two-fluid model of collisions between neutral gas and free electrons in the ionosphere. The close match between observed and model waveforms validates the modelling approach. This raises the possibility of using ground-based GPS networks to estimate the acoustic energy release of explosive sources near the Earth's surface or in atmosphere, and to constrain some atmospheric acoustic parameters.
Zhai, Peng-Wang; Hu, Yongxiang; Trepte, Charles R; Lucker, Patricia L
2009-02-16
A vector radiative transfer model has been developed for coupled atmosphere and ocean systems based on the Successive Order of Scattering (SOS) Method. The emphasis of this study is to make the model easy-to-use and computationally efficient. This model provides the full Stokes vector at arbitrary locations which can be conveniently specified by users. The model is capable of tracking and labeling different sources of the photons that are measured, e.g. water leaving radiances and reflected sky lights. This model also has the capability to separate florescence from multi-scattered sunlight. The delta - fit technique has been adopted to reduce computational time associated with the strongly forward-peaked scattering phase matrices. The exponential - linear approximation has been used to reduce the number of discretized vertical layers while maintaining the accuracy. This model is developed to serve the remote sensing community in harvesting physical parameters from multi-platform, multi-sensor measurements that target different components of the atmosphere-oceanic system.
Research of autonomous celestial navigation based on new measurement model of stellar refraction
NASA Astrophysics Data System (ADS)
Yu, Cong; Tian, Hong; Zhang, Hui; Xu, Bo
2014-09-01
Autonomous celestial navigation based on stellar refraction has attracted widespread attention for its high accuracy and full autonomy.In this navigation method, establishment of accurate stellar refraction measurement model is the fundament and key issue to achieve high accuracy navigation. However, the existing measurement models are limited due to the uncertainty of atmospheric parameters. Temperature, pressure and other factors which affect the stellar refraction within the height of earth's stratosphere are researched, and the varying model of atmosphere with altitude is derived on the basis of standard atmospheric data. Furthermore, a novel measurement model of stellar refraction in a continuous range of altitudes from 20 km to 50 km is produced by modifying the fixed altitude (25 km) measurement model, and equation of state with the orbit perturbations is established, then a simulation is performed using the improved Extended Kalman Filter. The results show that the new model improves the navigation accuracy, which has a certain practical application value.
NASA Astrophysics Data System (ADS)
Smalikho, Igor; Banakh, Viktor
2018-04-01
Feasibilities of determination of the wind turbulence parameters from data measured by the Stream Line coherent Doppler lidar under different atmospheric conditions have been studied experimentally. It has been found that the spatial structure of the turbulence is described well by the von Karman model in the layer of intensive mixing. From the lidar measurements at night under stable conditions the estimation of the outer scale of turbulence with the use of the von Karman model is not possible.
Atmospheric refraction correction for Ka-band blind pointing on the DSS-13 beam waveguide antenna
NASA Technical Reports Server (NTRS)
Perez-Borroto, I. M.; Alvarez, L. S.
1992-01-01
An analysis of the atmospheric refraction corrections at the DSS-13 34-m diameter beam waveguide (BWG) antenna for the period Jul. - Dec. 1990 is presented. The current Deep Space Network (DSN) atmospheric refraction model and its sensitivity with respect to sensor accuracy are reviewed. Refraction corrections based on actual atmospheric parameters are compared with the DSS-13 station default corrections for the six-month period. Average blind-pointing improvement during the worst month would have amounted to 5 mdeg at 10 deg elevation using actual surface weather values. This would have resulted in an average gain improvement of 1.1 dB.
Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Haiyan; Tang, Lei
2018-01-01
A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.
Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Pant, V.; Prakash, K. R.
2016-02-01
Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Jinmei; Arritt, R.W.
The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation,more » many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.« less
A Parameter Study for Modeling Mg ii h and k Emission during Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubio da Costa, Fatima; Kleint, Lucia, E-mail: frubio@stanford.edu
2017-06-20
Solar flares show highly unusual spectra in which the thermodynamic conditions of the solar atmosphere are encoded. Current models are unable to fully reproduce the spectroscopic flare observations, especially the single-peaked spectral profiles of the Mg ii h and k lines. We aim to understand the formation of the chromospheric and optically thick Mg ii h and k lines in flares through radiative transfer calculations. We take a flare atmosphere obtained from a simulation with the radiative hydrodynamic code RADYN as input for a radiative transfer modeling with the RH code. By iteratively changing this model atmosphere and varying thermodynamicmore » parameters such as temperature, electron density, and velocity, we study their effects on the emergent intensity spectra. We reproduce the typical single-peaked Mg ii h and k flare spectral shape and approximate the intensity ratios to the subordinate Mg ii lines by increasing either densities, temperatures, or velocities at the line core formation height range. Additionally, by combining unresolved upflows and downflows up to ∼250 km s{sup −1} within one resolution element, we reproduce the widely broadened line wings. While we cannot unambiguously determine which mechanism dominates in flares, future modeling efforts should investigate unresolved components, additional heat dissipation, larger velocities, and higher densities and combine the analysis of multiple spectral lines.« less
NASA Astrophysics Data System (ADS)
Roten, D.; Hogue, S.; Spell, P.; Marland, E.; Marland, G.
2017-12-01
There is an increasing role for high resolution, CO2 emissions inventories across multiple arenas. The breadth of the applicability of high-resolution data is apparent from their use in atmospheric CO2 modeling, their potential for validation of space-based atmospheric CO2 remote-sensing, and the development of climate change policy. This work focuses on increasing our understanding of the uncertainty in these inventories and the implications on their downstream use. The industrial point sources of emissions (power generating stations, cement manufacturing plants, paper mills, etc.) used in the creation of these inventories often have robust emissions characteristics, beyond just their geographic location. Physical parameters of the emission sources such as number of exhaust stacks, stack heights, stack diameters, exhaust temperatures, and exhaust velocities, as well as temporal variability and climatic influences can be important in characterizing emissions. Emissions from large point sources can behave much differently than emissions from areal sources such as automobiles. For many applications geographic location is not an adequate characterization of emissions. This work demonstrates the sensitivities of atmospheric models to the physical parameters of large point sources and provides a methodology for quantifying parameter impacts at multiple locations across the United States. The sensitivities highlight the importance of location and timing and help to highlight potential aspects that can guide efforts to reduce uncertainty in emissions inventories and increase the utility of the models.
NASA Technical Reports Server (NTRS)
Hinson, D. P.
1983-01-01
The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.
Range estimation of passive infrared targets through the atmosphere
NASA Astrophysics Data System (ADS)
Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon
2013-04-01
Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.
Radiative Forcing by Contrails
NASA Technical Reports Server (NTRS)
Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.
1999-01-01
A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.
HELIOS-R: An Ultrafast, Open-Source Retrieval Code For Exoplanetary Atmosphere Characterization
NASA Astrophysics Data System (ADS)
LAVIE, Baptiste
2015-12-01
Atmospheric retrieval is a growing, new approach in the theory of exoplanet atmosphere characterization. Unlike self-consistent modeling it allows us to fully explore the parameter space, as well as the degeneracies between the parameters using a Bayesian framework. We present HELIOS-R, a very fast retrieving code written in Python and optimized for GPU computation. Once it is ready, HELIOS-R will be the first open-source atmospheric retrieval code accessible to the exoplanet community. As the new generation of direct imaging instruments (SPHERE, GPI) have started to gather data, the first version of HELIOS-R focuses on emission spectra. We use a 1D two-stream forward model for computing fluxes and couple it to an analytical temperature-pressure profile that is constructed to be in radiative equilibrium. We use our ultra-fast opacity calculator HELIOS-K (also open-source) to compute the opacities of CO2, H2O, CO and CH4 from the HITEMP database. We test both opacity sampling (which is typically used by other workers) and the method of k-distributions. Using this setup, we compute a grid of synthetic spectra and temperature-pressure profiles, which is then explored using a nested sampling algorithm. By focusing on model selection (Occam’s razor) through the explicit computation of the Bayesian evidence, nested sampling allows us to deal with current sparse data as well as upcoming high-resolution observations. Once the best model is selected, HELIOS-R provides posterior distributions of the parameters. As a test for our code we studied HR8799 system and compared our results with the previous analysis of Lee, Heng & Irwin (2013), which used the proprietary NEMESIS retrieval code. HELIOS-R and HELIOS-K are part of the set of open-source community codes we named the Exoclimes Simulation Platform (www.exoclime.org).
Late Coupled Evolution of Venus' Atmosphere and the Effects of Meteoritic Impacts
NASA Astrophysics Data System (ADS)
Gillmann, C.; Tackley, P. J.; Golabek, G.
2013-12-01
We investigate what mechanisms and events could have led to the divergent evolution of Venus and Earth. We propose develop our investigation of the post-magma-ocean history of the atmosphere and surface conditions on Venus through a coupled model of mantle/atmosphere evolution by including meteoritic impacts in our previous work. Our main focuses are mechanisms that deplete or replenish the atmosphere: volcanic degassing, atmospheric escape and impacts. Atmospheric escape modeling involves two different aspects. During the first few hundreds of million years, hydrodynamic escape is dominant. A significant portion of the early atmosphere can be thus removed. For later evolution, on the other hand, non-thermal escape becomes the main process as observed by the ASPERA instrument and modeled in various recent numerical studies. The atmosphere is replenished by volcanic degassing, using an adapted version of the StagYY mantle dynamics model (Armann and Tackley, 2012) and including episodic lithospheric overturn. The evolving surface temperature is calculated from CO2 and water in the atmosphere with a gray radiative-convective atmosphere model. This surface temperature in turn acts as a boundary condition for the mantle dynamics model and has an influence on the convection, volcanism and subsequent degassing. We take into account the effects of meteorites in our simulations by adapting each relevant part of the model. They can bring volatiles as well as erode the atmosphere. Mantle dynamics are modified since the impact itself can also bring large amounts of energy to the mantle. A 2D distribution of the thermal anomaly due to the impact is used and can lead to melting. Volatile evolution due to impacts (especially the large ones) is heavily debated so we test a broad range of impactor parameters (size, velocity, timing) and test different assumptions related to impact erosion going from large eroding power (Ahrens 1993) to recent parameterization (Shuvalov, 2009, 2010). We obtain a Venus-like behavior for the solid planet and atmospheric evolution leading to present-day conditions. Without any impact, CO2 pressure seems unlikely to vary much over the history of the planet, only slightly increasing due to degassing. A late build-up of the atmosphere with several resurfacing events seems unlikely. On the other hand, water pressure is strongly sensitive to volcanic activity and varies rapidly leading to variations in surface temperatures of up to 200K, which have been identified to have an effect on volcanic activity. We observe a clear correlation between low temperature and mobile lid regime. Impacts can strongly change this picture. While small (less than kilometer scale) meteorites have a negligible effect, medium ones are able to bring volatiles to the planet and generate melt both at the impact and later on, due to volcanic events they triggered due to the changes they make to mantle dynamics. A significant amount of volatiles (compared to present-day atmosphere) can be released on a short timescale, which can increase the surface temperature by tens of Kelvin. Larger impactors (~100 km) have even stronger effects as they can blow upwards of 10% of the atmosphere away, depending on the parameters. Removing more than 80% of the atmosphere on the impact is clearly feasible. In these cases, later degassing is also massive, which mitigates the volatile sink.
A methodology for reduced order modeling and calibration of the upper atmosphere
NASA Astrophysics Data System (ADS)
Mehta, Piyush M.; Linares, Richard
2017-10-01
Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.
Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide
NASA Technical Reports Server (NTRS)
Justus, C. G.; James, Bonnie F.; Johnson, Dale L.
1996-01-01
This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.
Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs
NASA Technical Reports Server (NTRS)
Gully-Santiago, Michael A.; Marley, Mark S.
2017-01-01
In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
The web system for operative description of air quality in the city
NASA Astrophysics Data System (ADS)
Barth, A. A.; Starchenko, A. V.; Fazliev, A. Z.
2009-04-01
Development and implementation of information-computational system (ICS) is described. The system is oriented on the collective usage of the calculation's facilities in order to determine the air quality on the basis of photochemical model. The ICS has been implemented on the basis of the middleware of ATMOS web-portal [1, 2]. The data and calculation layer of this ICS includes: Mathematical model of pollution transport based on transport differential equations. The model describes propagation, scattering and chemical transformation of the pollutants in the atmosphere [3]. The model may use averaged data value for city or forecast results obtained with help of the Chaser model.[4] Atmospheric boundary layer model (ABLM) [3] is used for operative numerical prediction of the meteorological parameters. These are such parameters as speed and direction of the wind, humidity and temperature of the air, which are necessary for the transport impurity model to operate. The model may use data assimilation of meteorological measurements data (including land based observations and the results of remote sensing of vertical structure of the atmosphere) or the weather forecast results obtained with help of the Semi-Lagrange model [5]. Applications for manipulation of data: An application for downloading parameters of atmospheric surface layer and remote sensing of vertical structure of the atmosphere from the web sites (http://meteo.infospace.ru and http://weather.uwyo.edu); An application for uploading these data into the ICS database; An application for transformation of the uploaded data into the internal data format of the system. At present this ICS is a part of "Climate" web site located in ATMOS portal [5]. The database is based on the data schemes providing the calculation in ICS workflow. The applications manipulated with the data are working in automatic regime. The workflow oriented on computation of physical parameters contains: The application for the calculation of geostrophic wind components on the base of Eckman equations; The applications for solution of the equations derived from ABL and transport of impurity models. The application for representation of calculation results in tabular and graphical forms. "Cyberia" cluster [6] located in Tomsk State University is used for computation of the impurity transport equations. References: Gordov E.P., V. N. Lykosov, and A. Z. Fazliev, Web portal on environmental sciences "ATMOS"// Advances in Geoscience, 2006, v. 8, p. 33-38. ATMOS web-portal http://atmos.iao.ru/middleware/ Belikov D.A., Starchenko A.V. Numerical investigation of secondary air pollutions formation near industrial center // Computational technologies. 2005. V. 10. Special issue. Proceedings of the International Conference and the School of Young Scientists "Computational and informational technologies for environmental sciences" (CITES 2005). Tomsk, 13-23 March 2005. Part 2. P. 99-105 Sudo, K., Takahashi M., Kurokawa J., Akimoto H. CHASER: A global chemical model of the troposphere. Model description, J. Geophys. Res., 2002, Vol.107(D17), P. 4339. Tolstykh M.A., Fadeev R.Y. Semi-Lagrangian variable-resolution weather prediction model and its further development // Computational technologies. 2006. V. 11. Special issue. P. 176-184 ATMOS web-portal http://climate.atmos.math.tsu.ru/ Tomsk state university, Interregional computational center http://skif.tsu.ru
Particulate matter in the Venus atmosphere
NASA Technical Reports Server (NTRS)
Ragent, B.; Esposito, L. W.; Tomasko, M. G.; Marov, M. IA.; Shari, V. P.
1985-01-01
The paper presents a summary of the data currently available (June 1984) describing the planet-enshrouding particulate matter in the Venus atmosphere. A description and discussion of the state of knowledge of the Venus clouds and hazes precedes the tables and plots. The tabular material includes a precis of upper haze and cloud-top properties, parameters for model-size distributions for particles and particulate layers, and columnar masses and mass loadings.
Research on the peculiarity of optical parameters of atmospheric aerosol in Guangzhou coastal areas
NASA Astrophysics Data System (ADS)
Li, Shasha; Li, Xuebin; Zhang, Wenzhong; Bai, Shiwei; Liu, Qing; Zhu, Wenyue; Weng, Ningquan
2018-02-01
The long-term measurement of atmospheric aerosol is constructed via such equipment as visibility meter, optical particle counter, solar radiometer, automatic weather station, aerosol laser radar and aerosol scattering absorption coefficient measurer and so on during the year of 2010 and 2017 in the coastal areas of Guangzhou, China to study the optical parameter characteristics of atmospheric aerosol and establish the aerosol optical parameter mode in such areas. The effects of temperature and humidity on aerosol concentration, extinction and absorption coefficient are analyzed and the statistical characteristics of atmospheric temperature and humidity, visibility, extinction profiles and other parameters in different months are tallied, preliminarily establishing the atmospheric aerosol optical parameter pattern in Guangzhou coastal areas.
NASA Astrophysics Data System (ADS)
Srinath, Srikar; Poyneer, Lisa A.; Rudy, Alexander R.; Ammons, S. M.
2014-08-01
The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.
NASA Astrophysics Data System (ADS)
Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin
2017-12-01
Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson-Sellers, A.
Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology andmore » (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.« less
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.
Probabilistic projections of 21st century climate change over Northern Eurasia
NASA Astrophysics Data System (ADS)
Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang
2013-12-01
We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.
NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)
1989-01-01
Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.
Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...
2015-04-10
We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less
Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us
Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at amore » mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.« less
Treatment of atomic and molecular line blanketing by opacity sampling
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Krupp, B. M.
1976-01-01
A sampling technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is subjected to several tests. In this opacity sampling (OS) technique, the global opacity is sampled at only a selected set of frequencies, and at each of these frequencies the total monochromatic opacity is obtained by summing the contribution of every relevant atomic and molecular line. In accord with previous results, we find that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 100 frequency points are adequate for many purposes. The effects of atomic and molecular lines are separately studied. A test model computed using the OS method agrees very well with a model having identical atmospheric parameters, but computed with the giant line (opacity distribution function) method.
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Gao, Meng; Yin, Liting; Ning, Jicai
2018-07-01
Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.
NASA Astrophysics Data System (ADS)
Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh
2018-05-01
Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.
Consideration of probability of bacterial growth for Jovian planets and their satellites
NASA Technical Reports Server (NTRS)
Taylor, D. M.; Berkman, R. M.; Divine, N.
1974-01-01
Environmental parameters affecting growth of bacteria are compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth are identified for Jupiter and Saturn. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) are found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if: (1) the surface is entirely or partially liquid; (2) volcanism is present; or (3) access to internal heat sources is significant.
Data analysis and theoretical studies for atmospheric Explorer C, D and E
NASA Technical Reports Server (NTRS)
Dalgarno, A.
1983-01-01
The research concentrated on construction of a comprehensive model of the chemistry of the ionosphere. It proceeded by comparing detailed predictions of the atmospheric parameters observed by the instrumentation on board the Atmospheric Explorer Satellites with the measured values and modifying the chemistry to bring about consistency. Full account was taken of laboratory measurements of the processes identified as important. The research programs were made available to the AE team members. Regularly updated tables of recommended values of photoionization cross sections and electron impact excitation and ionization cross sections were provided. The research did indeed lead to a chemistry model in which the main pathways are quantitatively secure. The accuracy was sufficient that remaining differences are small.
NASA Astrophysics Data System (ADS)
Xie, Xiaoping; Gao, Wei; Gao, Zhiqiang
2008-08-01
Photosynthetically active radiation (PAR) is an essential parameter in vegetation growth model and soil carbon sequestration models. A method is presented with which instantaneous PAR can be calculated with high accuracy from Moderate Resolution Imaging Spectroradiometer (MODIS) atmosphere and land products. The method is based on a simplification of the general radiative transfer equation, which considers five major processes of attenuation of solar radiation: Rayleigh scattering, absorption by ozone and water vapor, aerosol scattering, multiply reflectance between surface and atmosphere. Comparing 108 retrieveled results to filed measured PAR in Yucheng station of Chinese Ecosystem Research Network (CERN) in 2006, and the r-square of 0.855 indicates that the computed results can interpret actual PAR well.
ADRPM-VII applied to the long-range acoustic detection problem
NASA Technical Reports Server (NTRS)
Shalis, Edward; Koenig, Gerald
1990-01-01
An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.
NASA Astrophysics Data System (ADS)
Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary
2017-05-01
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.
Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2015-12-15
Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.
Zhao, M.; Golaz, J.-C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.-H.; Chen, X.; Donner, L. J.; Dunne, J. P.; Dunne, Krista A.; Durachta, J.; Fan, S.-M.; Freidenreich, S. M.; Garner, S. T.; Ginoux, P.; Harris, L. M.; Horowitz, L. W.; Krasting, J. P.; Langenhorst, A. R.; Liang, Z.; Lin, P.; Lin, S.-J.; Malyshev, S. L.; Mason, E.; Milly, Paul C.D.; Ming, Y.; Naik, V.; Paulot, F.; Paynter, D.; Phillipps, P.; Radhakrishnan, A.; Ramaswamy, V.; Robinson, T.; Schwarzkopf, D.; Seman, C. J.; Shevliakova, E.; Shen, Z.; Shin, H.; Silvers, L.; Wilson, J. R.; Winton, M.; Wittenberg, A. T.; Wyman, B.; Xiang, B.
2018-01-01
In Part 2 of this two‐part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
Zhao, Ming; Golaz, J. -C.; Held, I. M.; ...
2018-02-19
Here, in Part 2 of this two–part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken tomore » tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.« less
NASA Astrophysics Data System (ADS)
Zhao, M.; Golaz, J.-C.; Held, I. M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.-H.; Chen, X.; Donner, L. J.; Dunne, J. P.; Dunne, K.; Durachta, J.; Fan, S.-M.; Freidenreich, S. M.; Garner, S. T.; Ginoux, P.; Harris, L. M.; Horowitz, L. W.; Krasting, J. P.; Langenhorst, A. R.; Liang, Z.; Lin, P.; Lin, S.-J.; Malyshev, S. L.; Mason, E.; Milly, P. C. D.; Ming, Y.; Naik, V.; Paulot, F.; Paynter, D.; Phillipps, P.; Radhakrishnan, A.; Ramaswamy, V.; Robinson, T.; Schwarzkopf, D.; Seman, C. J.; Shevliakova, E.; Shen, Z.; Shin, H.; Silvers, L. G.; Wilson, J. R.; Winton, M.; Wittenberg, A. T.; Wyman, B.; Xiang, B.
2018-03-01
In Part 2 of this two-part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken to tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ming; Golaz, J. -C.; Held, I. M.
Here, in Part 2 of this two–part paper, documentation is provided of key aspects of a version of the AM4.0/LM4.0 atmosphere/land model that will serve as a base for a new set of climate and Earth system models (CM4 and ESM4) under development at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The quality of the simulation in AMIP (Atmospheric Model Intercomparison Project) mode has been provided in Part 1. Part 2 provides documentation of key components and some sensitivities to choices of model formulation and values of parameters, highlighting the convection parameterization and orographic gravity wave drag. The approach taken tomore » tune the model's clouds to observations is a particular focal point. Care is taken to describe the extent to which aerosol effective forcing and Cess sensitivity have been tuned through the model development process, both of which are relevant to the ability of the model to simulate the evolution of temperatures over the last century when coupled to an ocean model.« less
Calibration of two complex ecosystem models with different likelihood functions
NASA Astrophysics Data System (ADS)
Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán
2014-05-01
The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model goodness metric on calibration. The different likelihoods are different functions of RMSE (root mean squared error) weighted by measurement uncertainty: exponential / linear / quadratic / linear normalized by correlation. As a first calibration step sensitivity analysis was performed in order to select the influential parameters which have strong effect on the output data. In the second calibration step only the sensitive parameters were calibrated (optimal values and confidence intervals were calculated). In case of PaSim more parameters were found responsible for the 95% of the output data variance than is case of BBGC MuSo. Analysis of the results of the optimized models revealed that the exponential likelihood estimation proved to be the most robust (best model simulation with optimized parameter, highest confidence interval increase). The cross-validation of the model simulations can help in constraining the highly uncertain greenhouse gas budget of grasslands.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.
2008-01-01
Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.
NASA Astrophysics Data System (ADS)
He, Changyong; Wu, Suqin; Wang, Xiaoming; Hu, Andong; Wang, Qianxin; Zhang, Kefei
2017-06-01
The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models - GTm-III, GWMT-IV, and GTmN - using different data sources in 2014 - the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.
NASA Astrophysics Data System (ADS)
Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.
2017-12-01
The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.
A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments
NASA Astrophysics Data System (ADS)
Quigley, Patricia Allison
Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made available for testing such that global calculations of the algorithm were tuned to accept information for a single temporal and spatial point and for one month of averaged data. The points were from each of four atmospherically distinct regions to include the Amazon Rainforest, Sahara Desert, Indian Ocean and Mt. Everest. The same design was used for all of the regions. Least squares multiple regression analysis of the results of the modified algorithm identified those parameters and parameter interactions that most significantly affected the output products. It was found that Cosine solar zenith angle was the strongest influence on the output data in all four regions. The interaction of Cosine Solar Zenith Angle and Cloud Fraction had the strongest influence on the output data in the Amazon, Sahara Desert and Mt. Everest Regions, while the interaction of Cloud Fraction and Cloudy Shortwave Radiance most significantly affected output data in the Indian Ocean region. Second order response models were built using the resulting regression coefficients. A Monte Carlo simulation of each model extended the probability distribution beyond the initial design trials to quantify variability in the modeled output data.
NASA Astrophysics Data System (ADS)
Li, Jiming; Lv, Qiaoyi; Jian, Bida; Zhang, Min; Zhao, Chuanfeng; Fu, Qiang; Kawamoto, Kazuaki; Zhang, Hua
2018-05-01
Studies have shown that changes in cloud cover are responsible for the rapid climate warming over the Tibetan Plateau (TP) in the past 3 decades. To simulate the total cloud cover, atmospheric models have to reasonably represent the characteristics of vertical overlap between cloud layers. Until now, however, this subject has received little attention due to the limited availability of observations, especially over the TP. Based on the above information, the main aim of this study is to examine the properties of cloud overlaps over the TP region and to build an empirical relationship between cloud overlap properties and large-scale atmospheric dynamics using 4 years (2007-2010) of data from the CloudSat cloud product and collocated ERA-Interim reanalysis data. To do this, the cloud overlap parameter α, which is an inverse exponential function of the cloud layer separation D and decorrelation length scale L, is calculated using CloudSat and is discussed. The parameters α and L are both widely used to characterize the transition from the maximum to random overlap assumption with increasing layer separations. For those non-adjacent layers without clear sky between them (that is, contiguous cloud layers), it is found that the overlap parameter α is sensitive to the unique thermodynamic and dynamic environment over the TP, i.e., the unstable atmospheric stratification and corresponding weak wind shear, which leads to maximum overlap (that is, greater α values). This finding agrees well with the previous studies. Finally, we parameterize the decorrelation length scale L as a function of the wind shear and atmospheric stability based on a multiple linear regression. Compared with previous parameterizations, this new scheme can improve the simulation of total cloud cover over the TP when the separations between cloud layers are greater than 1 km. This study thus suggests that the effects of both wind shear and atmospheric stability on cloud overlap should be taken into account in the parameterization of decorrelation length scale L in order to further improve the calculation of the radiative budget and the prediction of climate change over the TP in the atmospheric models.
NASA Technical Reports Server (NTRS)
Allison, D. E.
1984-01-01
A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.
Distributed parameterization of complex terrain
NASA Astrophysics Data System (ADS)
Band, Lawrence E.
1991-03-01
This paper addresses the incorporation of high resolution topography, soils and vegetation information into the simulation of land surface processes in atmospheric circulation models (ACM). Recent work has concentrated on detailed representation of one-dimensional exchange processes, implicitly assuming surface homogeneity over the atmospheric grid cell. Two approaches that could be taken to incorporate heterogeneity are the integration of a surface model over distributed, discrete portions of the landscape, or over a distribution function of the model parameters. However, the computational burden and parameter intensive nature of current land surface models in ACM limits the number of independent model runs and parameterizations that are feasible to accomplish for operational purposes. Therefore, simplications in the representation of the vertical exchange processes may be necessary to incorporate the effects of landscape variability and horizontal divergence of energy and water. The strategy is then to trade off the detail and rigor of point exchange calculations for the ability to repeat those calculations over extensive, complex terrain. It is clear the parameterization process for this approach must be automated such that large spatial databases collected from remotely sensed images, digital terrain models and digital maps can be efficiently summarized and transformed into the appropriate parameter sets. Ideally, the landscape should be partitioned into surface units that maximize between unit variance while minimizing within unit variance, although it is recognized that some level of surface heterogeneity will be retained at all scales. Therefore, the geographic data processing necessary to automate the distributed parameterization should be able to estimate or predict parameter distributional information within each surface unit.
Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
Atmospheric heating of meteorites: Results from nuclear track studies
NASA Technical Reports Server (NTRS)
Jha, R.
1984-01-01
A quantitative model to estimate the degree of annealing of nuclear tracks in mineral grains subjected to a variable temperature history was proposed. This model is applied to study the track annealing records in different meteorites resulting from their atmospheric heating. Scale lengths were measured of complete and partial track annealing, delta X sub 1 and delta X sub 2, respectively. In mineral grain close to fusion crust in about a dozen meteorites. Values of delta X sub 1 and delta X sub 2 depend on extent and duration of heating during atmospheric transit and hence on meteorite entry parameters. To estimate track annealing, the temperature history during atmospheric heating at different distances from the crusted surface of the meteorite is obtained by solving heat conduction equation in conjunction with meteorite entry model, and use of the annealing model to evaluate the degree of annealing of tracks. It is shown that the measured values of delta X sub 1 and delta X sub 2 in three of the meteorites studied are consistent with values using preatmospheric mass, entry velocity and entry angle of these meteorites.
Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis
NASA Astrophysics Data System (ADS)
Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer
2016-04-01
Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.
Consideration of probability of bacterial growth for Jovian planets and their satellites
NASA Technical Reports Server (NTRS)
Taylor, D. M.; Berkman, R. M.; Divine, N.
1975-01-01
Environmental parameters affecting growth of bacteria (e.g., moisture, temperature, pH, and chemical composition) were compared with current atmospheric models for Jupiter and Saturn, and with the available physical data for their satellites. Different zones of relative probability of growth were identified for Jupiter and Saturn, with the highest in pressure regions of 1-10 million N/sq m (10 to 100 atmospheres) and 3-30 million N/sq m (30 to 300 atmospheres), respectively. Of the more than two dozen satellites, only the largest (Io, Europa, Ganymede, Callisto, and Titan) were found to be interesting biologically. Titan's atmosphere may produce a substantial greenhouse effect providing increased surface temperatures. Models predicting a dense atmosphere are compatible with microbial growth for a range of pressures at Titan's surface. For Titan's surface the probability of growth would be enhanced if (1) the surface is entirely or partially liquid (water), (2) volcanism (in an ice-water-steam system) is present, or (3) access to internal heat sources is significant.
Utilization of Global Reference Atmosphere Model (GRAM) for shuttle entry
NASA Technical Reports Server (NTRS)
Joosten, Kent
1987-01-01
At high latitudes, dispersions in values of density for the middle atmosphere from the Global Reference Atmosphere Model (GRAM) are observed to be large, particularly in the winter. Trajectories have been run from 28.5 deg to 98 deg. The critical part of the atmosphere for reentry is 250,000 to 270,000 ft. 250,000 ft is the altitude where the shuttle trajectory levels out. For ascending passes the critical region occurs near the equator. For descending entries the critical region is in northern latitudes. The computed trajectory is input to the GRAM, which computes means and deviations of atmospheric parameters at each point along the trajectory. There is little latitude dispersion for the ascending passes; the strongest source of deviations is seasonal; however, very wide seasonal and latitudinal deviations are exhibited for the descending passes at all orbital inclinations. For shuttle operations the problem is control to maintain the correct entry corridor and avoid either aerodynamic skipping or excessive heat loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latour, M.; Fontaine, G.; Brassard, P.
2011-06-01
We first present our new grids of model atmospheres and spectra for hot subdwarf O (sdO) stars: standard non-LTE (NLTE) H+He models with no metals, NLTE line-blanketed models with C+N+O, and NLTE line-blanketed models with C+N+O+Fe. Using hydrogen and helium lines in the optical range, we make detailed comparisons between theoretical spectra of different grids in order to characterize the line-blanketing effects of metals. We find these effects to be dependent on both the effective temperature and the surface gravity. Moreover, we find that the helium abundance also influences in an important way the effects of line blanketing on themore » resulting spectra. We further find that the addition of Fe (solar abundance) leads only to incremental effects on the atmospheric structure as compared with the case where the metallicity is defined by C+N+O (solar abundances). We use our grids to perform fits on a 9 A resolution, high signal-to-noise ratio ({approx}300 blueward of 5000 A) optical spectrum of SDSS J160043.6+074802.9, the only known pulsating sdO star. Our best and most reliable result is based on the fit achieved with NLTE synthetic spectra that include C, N, O, and Fe in solar abundances, leading to the following parameters: T{sub eff} = 68,500 {+-} 1770 K, log g = 6.09 {+-} 0.07, and log N(He)/N(H) = -0.64 {+-} 0.05 (formal fitting errors only). This combination of parameters, particularly the comparatively high helium abundance, implies that line-blanketing effects due to metals are not very large in the atmosphere of this sdO star.« less
The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars
NASA Technical Reports Server (NTRS)
Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael
1996-01-01
Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.
NASA Astrophysics Data System (ADS)
Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo
2016-04-01
The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less
NASA Astrophysics Data System (ADS)
Grein, M.; Roth-Nebelsick, A.; Konrad, W.
2006-12-01
A mechanistic model (Konrad &Roth-Nebelsick a, in prep.) was applied for the reconstruction of atmospheric carbon dioxide using stomatal densities and photosynthesis parameters of extant and fossil Fagaceae. The model is based on an approach which couples diffusion and the biochemical process of photosynthesis. Atmospheric CO2 is calculated on the basis of stomatal diffusion and photosynthesis parameters of the considered taxa. The considered species include the castanoid Castanea sativa, two quercoids Quercus petraea and Quercus rhenana and an intermediate species Eotrigonobalanus furcinervis. In the case of Quercus petraea literature data were used. Stomatal data of Eotrigonobalanus furcinervis, Quercus rhenana and Castanea sativa were determined by the authors. Data of the extant Castanea sativa were collected by applying a peeling method and by counting of stomatal densities on the digitalized images of the peels. Additionally, isotope data of leaf samples of Castanea sativa were determined to estimate the ratio of intercellular to ambient carbon dioxide. The CO2 values calculated by the model (on the basis of stomatal data and measured or estimated biochemical parameters) are in good agreement with literature data, with the exception of the Late Eocene. The results thus demonstrate that the applied approach is principally suitable for reconstructing palaeoatmospheric CO2.
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
NASA Astrophysics Data System (ADS)
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
On the distortions in calculated GW parameters during slanted atmospheric soundings
NASA Astrophysics Data System (ADS)
de la Torre, Alejandro; Alexander, Peter; Schmidt, Torsten; Llamedo, Pablo; Hierro, Rodrigo
2018-03-01
The significant distortions introduced in the measured atmospheric gravity wavelengths by soundings other than those in vertical and horizontal directions, are discussed as a function of the elevation angle of the sounding path and the gravity wave aspect ratio. Under- or overestimation of real vertical wavelengths during the measurement process depends on the value of these two parameters. The consequences of these distortions on the calculation of the energy and the vertical flux of horizontal momentum are analyzed and discussed in the context of two experimental limb satellite setups: GPS-LEO radio occultations and TIMED/SABER ((Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics)) measurements. Possible discrepancies previously found between the momentum flux calculated from satellite temperature profiles, on site and from model simulations, may to a certain degree be attributed to these distortions. A recalculation of previous momentum flux climatologies based on these considerations seems to be a difficult goal.
Description and availability of the SMARTS spectral model for photovoltaic applications
NASA Astrophysics Data System (ADS)
Myers, Daryl R.; Gueymard, Christian A.
2004-11-01
Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.
Exoplanet modelling with the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Boutle, Ian; Lines, Stefan; Mayne, Nathan; Lee, Graham; Helling, Christiane; Drummond, Ben; Manners, James; Goyal, Jayesh; Lambert, Hugo; Acreman, David; Earnshaw, Paul; Amundsen, David; Baraffe, Isabelle
2017-04-01
This talk will present an overview of work being done to adapt the Unified Model, one of the most sophisticated weather and climate models of this planet, into a flexible planet simulator for use in the study of any exoplanet. We will focus on two current projects: Clouds in hot Jupiter atmospheres - recent HST observations have revealed a continuum in atmospheric composition from cloudy to clear skies. The presence of clouds is inferred from a grey opacity in the near-IR that mutes key absorption features in the transmission spectra. Unlike the L-T Brown Dwarf sequence, this transition does not correlate well with equilibrium temperature, suggesting that a cloud formation scheme more comprehensive than simply considering the condensation temperature needed for homogenous cloud growth, is required. In our work, we conduct 3D simulations of cloud nucleation, growth, advection, evaporation and gravitational settling in the atmospheres of HD209458b and HD189733 using the kinetic and mixed-grain cloud formation code DIHRT, coupled to the Unified Model. We explore cloud composition, vertical structure and particle sizes, as well as highlighting the importance of the strong atmospheric dynamics seen in tidally locked hot Jupiters on the evolution and distribution of the cloud. Climate of Proxima B - we present results of simulations of the climate of the newly discovered planet Proxima Centauri B, examining the responses of both an `Earth-like' atmosphere and simplified nitrogen and trace carbon dioxide atmosphere to the radiation likely received. Overall, our results are in agreement with previous studies in suggesting Proxima Centauri B may well have surface temperatures conducive to the presence of liquid water. Moreover, we have expanded the parameter regime over which the planet may support liquid water to higher values of eccentricity and lower incident fluxes, guided by observational constraints. This increased parameter space arises because of the low sensitivity of the planet to changes in stellar flux, a consequence of the stellar spectrum and orbital configuration. Finally, we have produced high resolution planetary emission and reflectance spectra, and highlight signatures of gases vital to the evolution of life on Earth (oxygen, ozone and carbon dioxide).
NASA Technical Reports Server (NTRS)
Petty, Grant W.
1990-01-01
A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.
NASA Astrophysics Data System (ADS)
Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.
2016-02-01
The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December-February) in the MARJ.
Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?
2016-01-01
Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na+ would outcompete Cs+ by 1.8–2.1-fold; i.e., with Cs+ in 2-fold excess of Na+ the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res.2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na+ over Cs+. There is an ∼25% preferential occupancy of Li+ over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4–P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation–anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the development of next-generation nucleic acid computational models. PMID:27479701
A non-grey analytical model for irradiated atmospheres. I. Derivation
NASA Astrophysics Data System (ADS)
Parmentier, Vivien; Guillot, Tristan
2014-02-01
Context. Semi-grey atmospheric models (with one opacity for the visible and one opacity for the infrared) are useful for understanding the global structure of irradiated atmospheres, their dynamics, and the interior structure and evolution of planets, brown dwarfs, and stars. When compared to direct numerical radiative transfer calculations for irradiated exoplanets, however, these models systematically overestimate the temperatures at low optical depths, independently of the opacity parameters. Aims: We investigate why semi-grey models fail at low optical depths and provide a more accurate approximation to the atmospheric structure by accounting for the variable opacity in the infrared. Methods: Using the Eddington approximation, we derive an analytical model to account for lines and/or bands in the infrared. Four parameters (instead of two for the semi-grey models) are used: a visible opacity (κv), two infrared opacities, (κ1 and κ2), and β (the fraction of the energy in the beam with opacities κ1). We consider that the atmosphere receives an incident irradiation in the visible with an effective temperature Tirr and at an angle μ∗, and that it is heated from below with an effective temperature Tint. Results: Our non-grey, irradiated line model is found to provide a range of temperatures that is consistent with that obtained by numerical calculations. We find that if the stellar flux is absorbed at optical depth larger than τlim = (κR/κ1κ2)(κRκP/3)1/2, it is mainly transported by the channel of lowest opacity whereas if it is absorbed at τ ≳ τlim it is mainly transported by the channel of highest opacity, independently of the spectral width of those channels. For low values of β (expected when lines are dominant), we find that the non-grey effects significantly cool the upper atmosphere. However, for β ≳ 1/2 (appropriate in the presence of bands with a wavelength-dependence smaller than or comparable to the width of the Planck function), we find that the temperature structure is affected down to infrared optical depths unity and deeper as a result of the so-called blanketing effect. Conclusions: The expressions that we derive can be used to provide a proper functional form for algorithms that invert the atmospheric properties from spectral information. Because a full atmospheric structure can be calculated directly, these expressions should be useful for simulations of the dynamics of these atmospheres and of the thermal evolution of the planets. Finally, they should be used to test full radiative transfer models and to improve their convergence. A FORTRAN implementation of the analytical model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A133 Warning, no authors found for 2014A&A...562A.130.
NASA Astrophysics Data System (ADS)
Liu, Huilong; Lü, Yanfei; Zhang, Jing; Xia, Jing; Pu, Xiaoyun; Dong, Yuan; Li, Shutao; Fu, Xihong; Zhang, Angfeng; Wang, Changjia; Tan, Yong; Zhang, Xihe
2015-01-01
This paper studies the propagation properties of controllable hollow flat-topped beams (CHFBs) in turbulent atmosphere based on ABCD matrix, sets up a propagation model and obtains an analytical expression for the propagation. With the help of numerical simulation, the propagation properties of CHFBs in different parameters are studied. Results indicate that in turbulent atmosphere, with the increase of propagation distance, the darkness of CHFBs gradually annihilate, and eventually evolve into Gaussian beams. Compared with the propagation properties in free space, the turbulent atmosphere enhances the diffraction effect of CHFBs and reduces the propagation distance for CHFBs to evolve into Gaussian beams. In strong turbulence atmospheric propagation, Airy disk phenomenon will disappear. The study on the propagation properties of CHFBs in turbulence atmosphere by using ABCD matrix is simple and convenient. This method can also be applied to study the propagation properties of other hollow laser beams in turbulent atmosphere.
Constraining sterile neutrinos with AMANDA and IceCube atmospheric neutrino data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, Arman; Peres, O.L.G.; Halzen, Francis, E-mail: aesmaili@ifi.unicamp.br, E-mail: halzen@icecube.wisc.edu, E-mail: orlando@ifi.unicamp.br
2012-11-01
We demonstrate that atmospheric neutrino data accumulated with the AMANDA and the partially deployed IceCube experiments constrain the allowed parameter space for a hypothesized fourth sterile neutrino beyond the reach of a combined analysis of all other experiments, for Δm{sup 2}{sub 41}∼<1 eV{sup 2}. Although the IceCube data wins the statistics in the analysis, the advantage of a combined analysis of AMANDA and IceCube data is the partial remedy of yet unknown instrumental systematic uncertainties. We also illustrate the sensitivity of the completed IceCube detector, that is now taking data, to the parameter space of 3+1 model.
The calculation of theoretical chromospheric models and the interpretation of the solar spectrum
NASA Technical Reports Server (NTRS)
Avrett, Eugene H.
1994-01-01
Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for nonradiative heating, and for solar activity in general.
NASA Technical Reports Server (NTRS)
Avrett, Eugene H.
1993-01-01
Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Kurucz on the detailed synthesis of the solar spectrum based on opacity data for over 58 million atomic and molecular lines. Our goals are to determine models of the various features observed on the Sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for non-radiative heating, and for solar activity in general.
An Open-Source Bayesian Atmospheric Radiative Transfer (BART) Code, with Application to WASP-12b
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Rojo, Patricio; Loredo, Thomas J.; Bowman, M. Oliver; Foster, Andrew S. D.; Stemm, Madison M.; Lust, Nate B.
2015-01-01
Atmospheric retrievals for solar-system planets typically fit, either with a minimizer or by eye, a synthetic spectrum to high-resolution (Δλ/λ ~ 1000-100,000) data with S/N > 100 per point. In contrast, exoplanet data often have S/N ~ 10 per point, and may have just a few points representing bandpasses larger than 1 um. To derive atmospheric constraints and robust parameter uncertainty estimates from such data requires a Bayesian approach. To date there are few investigators with the relevant codes, none of which are publicly available. We are therefore pleased to announce the open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART uses a Bayesian phase-space explorer to drive a radiative-transfer model through the parameter phase space, producing the most robust estimates available for the thermal profile and chemical abundances in the atmosphere. We present an overview of the code and an initial application to Spitzer eclipse data for WASP-12b. We invite the community to use and improve BART via the open-source development site GitHub.com. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
An Open-Source Bayesian Atmospheric Radiative Transfer (BART) Code, and Application to WASP-12b
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Rojo, Patricio M.; Loredo, Thomas J.; Bowman, Matthew O.; Foster, Andrew S.; Stemm, Madison M.; Lust, Nate B.
2014-11-01
Atmospheric retrievals for solar-system planets typically fit, either with a minimizer or by eye, a synthetic spectrum to high-resolution (Δλ/λ ~ 1000-100,000) data with S/N > 100 per point. In contrast, exoplanet data often have S/N ~ 10 per point, and may have just a few points representing bandpasses larger than 1 um. To derive atmospheric constraints and robust parameter uncertainty estimates from such data requires a Bayesian approach. To date there are few investigators with the relevant codes, none of which are publicly available. We are therefore pleased to announce the open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART uses a Bayesian phase-space explorer to drive a radiative-transfer model through the parameter phase space, producing the most robust estimates available for the thermal profile and chemical abundances in the atmosphere. We present an overview of the code and an initial application to Spitzer eclipse data for WASP-12b. We invite the community to use and improve BART via the open-source development site GitHub.com. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Dimensional analysis of acoustically propagated signals
NASA Technical Reports Server (NTRS)
Hansen, Scott D.; Thomson, Dennis W.
1993-01-01
Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.
NASA Astrophysics Data System (ADS)
Perroud, Marjorie; Goyette, StéPhane
2012-06-01
In the companion to the present paper, the one-dimensional k-ɛ lake model SIMSTRAT is coupled to a single-column atmospheric model, nicknamed FIZC, and an application of the coupled model to the deep Lake Geneva, Switzerland, is described. In this paper, the response of Lake Geneva to global warming caused by an increase in atmospheric carbon dioxide concentration (i.e., 2 × CO2) is investigated. Coupling the models allowed for feedbacks between the lake surface and the atmosphere and produced changes in atmospheric moisture and cloud cover that further modified the downward radiation fluxes. The time evolution of atmospheric variables as well as those of the lake's thermal profile could be reproduced realistically by devising a set of adjustable parameters. In a "control" 1 × CO2 climate experiment, the coupled FIZC-SIMSTRAT model demonstrated genuine skills in reproducing epilimnetic and hypolimnetic temperatures, with annual mean errors and standard deviations of 0.25°C ± 0.25°C and 0.3°C ± 0.15°C, respectively. Doubling the CO2 concentration induced an atmospheric warming that impacted the lake's thermal structure, increasing the stability of the water column and extending the stratified period by 3 weeks. Epilimnetic temperatures were seen to increase by 2.6°C to 4.2°C, while hypolimnion temperatures increased by 2.2°C. Climate change modified components of the surface energy budget through changes mainly in air temperature, moisture, and cloud cover. During summer, reduced cloud cover resulted in an increase in the annual net solar radiation budget. A larger water vapor deficit at the air-water interface induced a cooling effect in the lake.
Remote Sensing of Surface Propagation Parameters: Application of Imagery Simulation Model Results.
1982-10-31
total at * 10.6um, while that for water vapor continuum ab- sorption is 75%. While visible radiance data may * xi be useful in predicting visible range...data. In a subsequent study undertaken to investigate the relative wavelength depen- dent effects of atmospheric particulates and water vapor con...humidity dependent variations in non- 2-2 aerosol atmospheric transmission due to molecular absorption by water vapor, and (5) radiative transfer
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Burns, Lee; Merry, Carl; Harrington, Brian
2008-01-01
Atmospheric parameters are essential in assessing the flight performance of aerospace vehicles. The effects of the Earth's atmosphere on aerospace vehicles influence various aspects of the vehicle during ascent ranging from its flight trajectory to the structural dynamics and aerodynamic heatmg on the vehicle. Atmospheric databases charactenzing the wind and thermodynamic environments, known as Range Reference Atmospheres (RRA), have been developed at space launch ranges by a governmental interagency working group for use by aerospace vehicle programs. The National Aeronantics and Space Administration's (NASA) Space Shuttle Program (SSP), which launches from Kennedy Space Center, utilizes atmosphenc statistics derived from the Cape Canaveral Air Force Station Range Reference Atmosphere (CCAFS RRA) database to evaluate environmental constraints on various aspects of the vehlcle during ascent.
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
Carbon stars in the X-shooter Spectral Library. II. Comparison with models
NASA Astrophysics Data System (ADS)
Gonneau, A.; Lançon, A.; Trager, S. C.; Aringer, B.; Nowotny, W.; Peletier, R. F.; Prugniel, P.; Chen, Y.-P.; Lyubenova, M.
2017-05-01
In a previous paper, we assembled a collection of medium-resolution spectra of 35 carbon stars, covering optical and near-infrared wavelengths from 400 to 2400 nm. The sample includes stars from the Milky Way and the Magellanic Clouds, with a variety of (J-Ks) colors and pulsation properties. In the present paper, we compare these observations to a new set of high-resolution synthetic spectra, based on hydrostatic model atmospheres. We find that the broad-band colors and the molecular-band strengths measured by spectrophotometric indices match those of the models when (J-Ks) is bluer than about 1.6, while the redder stars require either additional reddening or dust emission or both. Using a grid of models to fit the full observed spectra, we estimate the most likely atmospheric parameters Teff, log (g), [Fe/H] and C/O. These parameters derived independently in the optical and near-infrared are generally consistent when (J-Ks) < 1.6. The temperatures found based on either wavelength range are typically within ±100 K of each other, and log (g) and [Fe/H] are consistent with the values expected for this sample. The reddest stars ((J-Ks) > 1.6) are divided into two families, characterized by the presence or absence of an absorption feature at 1.53 μm, generally associated with HCN and C2H2. Stars from the first family begin to be more affected by circumstellar extinction. The parameters found using optical or near-infrared wavelengths are still compatible with each other, but the error bars become larger. In stars showing the 1.53 μm feature, which are all large-amplitude variables, the effects of pulsation are strong and the spectra are poorly matched with hydrostatic models. For these, atmospheric parameters could not be derived reliably, and dynamical models are needed for proper interpretation. Based on observations collected at the European Southern Observatory, Paranal, Chile, Prog. ID 084.B-0869(A/B), 085.B-0751(A/B), 189.B-0925(A/B/C/D).
IS THE POST-AGB STAR SAO 40039 MILDLY HYDROGEN-DEFICIENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, S. Sumangala; Pandey, Gajendra; Giridhar, Sunetra
2011-08-10
We have conducted an LTE abundance analysis for SAO 40039, a warm post-AGB star whose spectrum is known to show surprisingly strong He I lines for its effective temperature and has been suspected of being H-deficient and He-rich. High-resolution optical spectra are analyzed using a family of model atmospheres with different He/H ratios. Atmospheric parameters are estimated from the ionization equilibrium set by neutral and singly ionized species of Fe and Mg, the excitation of Fe I and Fe II lines, and the wings of the Paschen lines. On the assumption that the He I lines are of photospheric andmore » not chromospheric origin, a He/H ratio of approximately unity is found by imposing the condition that the adopted He/H ratio of the model atmosphere must equal the ratio derived from the observed He I triplet lines at 5876, 4471, and 4713 A, and singlet lines at 4922 and 5015 A. Using the model with the best-fitting atmospheric parameters for this He/H ratio, SAO 40039 is confirmed to exhibit mild dust-gas depletion, i.e., the star has an atmosphere deficient in elements of high condensation temperature. The star appears to be moderately metal-deficient with [Fe/H] = -0.4 dex. But the star's intrinsic metallicity as estimated from Na, S, and Zn, elements of a low condensation temperature, is [Fe/H]{sub o} {approx_equal} -0.2 ([Fe/H]{sub o} refers to the star's intrinsic metallicity). The star is enriched in N and perhaps O as well, changes reflecting the star's AGB past and the event that led to He enrichment.« less
NASA Astrophysics Data System (ADS)
Zidane, Shems
This study is based on data acquired with an airborne multi-altitude sensor on July 2004 during a nonstandard atmospheric event in the region of Saint-Jean-sur-Richelieu, Quebec. By non-standard atmospheric event we mean an aerosol atmosphere that does not obey the typical monotonic, scale height variation employed in virtually all atmospheric correction codes. The surfaces imaged during this field campaign included a diverse variety of targets : agricultural land, water bodies, urban areas and forests. The multi-altitude approach employed in this campaign allowed us to better understand the altitude dependent influence of the atmosphere over the array of ground targets and thus to better characterize the perturbation induced by a non-standard (smoke) plume. The transformation of the apparent radiance at 3 different altitudes into apparent reflectance and the insertion of the plume optics into an atmospheric correction model permitted an atmospheric correction of the apparent reflectance at the two higher altitudes. The results showed consistency with the apparent validation reflectances derived from the lowest altitude radiances. This approach effectively confirmed the accuracy of our non-standard atmospheric correction approach. This test was particularly relevant at the highest altitude of 3.17 km : the apparent reflectances at this altitude were above most of the plume and therefore represented a good test of our ability to adequately correct for the influence of the perturbation. Standard atmospheric disturbances are obviously taken into account in most atmospheric correction models, but these are based on monotonically decreasing aerosol variations with increasing altitude. When the atmospheric radiation is affected by a plume or a local, non-standard pollution event, one must adapt the existing models to the radiative transfer constraints of the local perturbation and to the reality of the measurable parameters available for ingestion into the model. The main inputs of this study were those normally used in an atmospheric correction : apparent at-sensor radiance and the aerosol optical depth (AOD) acquired using ground-based sunphotometry. The procedure we employed made use of a standard atmospheric correction code (CAM5S, for Canadian Modified 5S, which comes from the 5S radiative transfer model in the visible and near infrared) : however, we also used other parameters and data to adapt and correctly model the special atmospheric situation which affected the multi-altitude images acquired during the St. Jean field campaign. We then developed a modeling protocol for these atmospheric perturbations where auxiliary data was employed to complement our main data-set. This allowed for the development of a robust and simple methodology adapted to this atmospheric situation. The auxiliary data, i.e. meteorological data, LIDAR profiles, various satellite images and sun photometer retrievals of the scattering phase function, were sufficient to accurately model the observed plume in terms of a unusual, vertical distribution. This distribution was transformed into an aerosol optical depth profile that replaced the standard aerosol optical depth profile employed in the CAM5S atmospheric correction model. Based on this model, a comparison between the apparent ground reflectances obtained after atmospheric corrections and validation values of R*(0) obtained from the lowest altitude data showed that the error between the two was less than 0.01 rms. This correction was shown to be a significantly better estimation of the surface reflectance than that obtained using the atmospheric correction model. Significant differences were nevertheless observed in the non-standard solution : these were mainly caused by the difficulties brought about by the acquisition conditions, significant disparities attributable to inconsistencies in the co-sampling / co-registration of different targets from three different altitudes, and possibly modeling errors and / or calibration. There is accordingly room for improvement in our approach to dealing with such conditions. The modeling and forecasting of such a disturbance is explicitly described in this document: our goal in so doing is to permit the establishment of a better protocol for the acquisition of more suitable supporting data. The originality of this study stems from a new approach for incorporating a plume structure into an operational atmospheric correction model and then demonstrating that the approach was a significant improvement over an approach that ignored the perturbations in the vertical profile while employing the correct overall AOD. The profile model we employed was simple and robust but captured sufficient plume detail to achieve significant improvements in atmospheric correction accuracy. The overall process of addressing all the problems encountered in the analysis of our aerosol perturbation helped us to build an appropriate methodology for characterizing such events based on data availability, distributed freely and accessible to the scientific community. This makes our study adaptable and exportable to other types of non-standard atmospheric events. Keywords : non-standard atmospheric perturbation, multi-altitude apparent radiances, smoke plume, Gaussian plume modelization, radiance fit, AOD, CASI
Jílek, K; Slezáková, M; Fronka, A; Prokop, T; Neubauer, L
2017-11-01
During years 2010-12 an automated, on-line and wireless outdoor measurement station of atmospheric radon, gamma dose rate and meteorological parameters was realised at the National Radiation Protection Institute (NRPI) in Prague. At the turn of the year 2013 an expansion of the existing station was completed. Under the project funded by the Czech Technological Agency a new updated station was established, additionally equipped with modules for measurement of atmospheric radon/thoron short-lived decay products, radon in water and soil and radon exhalation rate from soil. After the introduction of the station updated key detection parameters and benefits, its use for atmospheric modelling and monitoring is demonstrated. There are summarised results from the 3-year measurement period in the NRPI outdoor area in Prague and from simultaneous annual measurement performed by another similar station located near uranium mud fields in DIAMO, state enterprise, Stráž pod Ralskem. Observed seasonal and diurnal variations of atmospheric radon concentrations and variability of the equilibrium factor, F, are illustrated and compared. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Meteorology and GNSS? What is the benefit?
NASA Astrophysics Data System (ADS)
Drummond, P.; Grünig, S.
2010-12-01
Due to the strong correlation between water vapor in the atmosphere and GNSS tropospheric propagation delays, we can estimate the Integrated Precipitable Water Vapor (IPWV) in the atmosphere through GNSS measurements. This parameter is crucial for meteorologists as the water content in the atmosphere is a key parameter in the weather models. The Total Electron Content (TEC) in the ionosphere has a huge impact on the ionospheric propagation delay in GNSS signals. By computing the ionospheric delay from GNSS measurements it is possible to predict the TEC which is an excellent indicator for ionospheric activity. The benefit is that we can estimate the influence on the RTK performance from TEC values. The atmospheric feature in the Trimble Atmosphere App (as well as in VRSNet software) allows computing both IPWV and TEC values from a CORS network. IPWV is computed using surface meteorological data such as temperature and pressure as well as radiosonde data. The results are shown in a table like form as well as in numerous graphical forms such as contour and surface plots, station and condition charts. The computed values can be animated in a movie over the last 24 hours.
The Atmospheric Infrared Sounder- An Overview
NASA Technical Reports Server (NTRS)
Larnbrigtsen, Bjorn; Fetzer, Eric; Lee, Sung-Yung; Irion, Fredrick; Hearty, Thomas; Gaiser, Steve; Pagano, Thomas; Aumann, Hartmut; Chahine, Moustafa
2004-01-01
The Atmospheric Infrared Sounder (AIRS) was launched in May 2002. Along with two companion microwave sensors, it forms the AIRS Sounding Suite. This system is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those available on current weather satellites. The data products are calibrated radiances from all three sensors and a number of derived geophysical parameters, including vertical temperature and humidity profiles, surface temperature, cloud fraction, cIoud top pressure, and profiles of ozone. These products are generated under cloudy as well as clear conditions. An ongoing calibration validation effort has confirmed that the system is very accurate and stable, and many of the geophysical parameters have been validated. AIRS is in some cases more accurate than any other source and can therefore be difficult to validate, but this offers interesting new research opportunities. The applications for the AIRS products range from numerical weather prediction to atmospheric research - where the AIRS water vapor products near the surface and in the mid to upper troposphere will make it possible to characterize and model phenomena that are key for short-term atmospheric processes, such as weather patterns, to long-term processes, such as interannual cycles (e.g., El Nino) and climate change.
Atmospheric Science Data Center
2017-01-13
... grid. Model inputs of cloud amounts and other atmospheric state parameters are also available in some of the data sets. Primary inputs to ... Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. SRB products are reformatted for the use of ...
Analysis of the Impact of Realistic Wind Size Parameter on the Delft3D Model
NASA Astrophysics Data System (ADS)
Washington, M. H.; Kumar, S.
2017-12-01
The wind size parameter, which is the distance from the center of the storm to the location of the maximum winds, is currently a constant in the Delft3D model. As a result, the Delft3D model's output prediction of the water levels during a storm surge are inaccurate compared to the observed data. To address these issues, an algorithm to calculate a realistic wind size parameter for a given hurricane was designed and implemented using the observed water-level data for Hurricane Matthew. A performance evaluation experiment was conducted to demonstrate the accuracy of the model's prediction of water levels using the realistic wind size input parameter compared to the default constant wind size parameter for Hurricane Matthew, with the water level data observed from October 4th, 2016 to October 9th, 2016 from National Oceanic and Atmospheric Administration (NOAA) as a baseline. The experimental results demonstrate that the Delft3D water level output for the realistic wind size parameter, compared to the default constant size parameter, matches more accurately with the NOAA reference water level data.
NASA Astrophysics Data System (ADS)
Vasilyev, Roman; Artamonov, Maksim; Beletsky, Aleksandr; Zherebtsov, Geliy; Medvedeva, Irina; Mikhalev, Aleksandr; Syrenova, Tatyana
2017-09-01
We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by devices installed nearby the interferometer.
Analysis of reflection effects in HS 2333+3927
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Yakin, D. G.; Borisov, N. V.; Bikmaev, I. F.
2012-11-01
The results of photometric and spectroscopic observations of the pre-cataclysmic variable HS 2333+3927, which is a HW Vir binary system, are analyzed. The parameters of the sdB subdwarf companion ( T eff = 37 500 ± 500 K, log g = 5.7 ± 0.05) and the chemical composition of its atmosphere are refined using a spectrum of the binary system obtained at minimum brightness. Reflection effects can fully explain the observed brightness variations of HS 2333+3927, changes in the HI and HeI line profiles, and distortions of the radial-velocity curve of the primary star. A new method for determining the component-mass ratios in HW Vir binaries, based on their radial-velocity curves and models of irradiated atmospheres, is proposed. The set of parameters obtained for the binary components corresponds to models of horizontal-branch sdB subdwarfs and main-sequence stars.
Retrieval of biophysical parameters with AVIRIS and ISM: The Landes Forest, south west France
NASA Technical Reports Server (NTRS)
Zagolski, F.; Gastellu-Etchegorry, J. P.; Mougin, E.; Giordano, G.; Marty, G.; Letoan, T.; Beaudoin, A.
1992-01-01
The first steps of an experiment for investigating the capability of airborne spectrometer data for retrieval of biophysical parameters of vegetation, especially water conditions are presented. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ISM data were acquired in the frame of the 1991 NASA/JPL and CNES campaigns on the Landes, South west France, a large and flat forest area with mainly maritime pines. In-situ measurements were completed at that time; i.e. reflectance spectra, atmospheric profiles, sampling for further laboratory analyses of elements concentrations (lignin, water, cellulose, nitrogen,...). All information was integrated in an already existing data base (age, LAI, DBH, understory cover,...). A methodology was designed for (1) obtaining geometrically and atmospherically corrected reflectance data, (2) registering all available information, and (3) analyzing these multi-source informations. Our objective is to conduct comparative studies with simulation reflectance models, and to improve these models, especially in the MIR.
NASA Astrophysics Data System (ADS)
Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.
2018-02-01
Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.
NASA Astrophysics Data System (ADS)
Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo
2017-11-01
In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.
Free oscillations in a climate model with ice-sheet dynamics
NASA Technical Reports Server (NTRS)
Kallen, E.; Crafoord, C.; Ghil, M.
1979-01-01
A study of stable periodic solutions to a simple nonlinear model of the ocean-atmosphere-ice system is presented. The model has two dependent variables: ocean-atmosphere temperature and latitudinal extent of the ice cover. No explicit dependence on latitude is considered in the model. Hence all variables depend only on time and the model consists of a coupled set of nonlinear ordinary differential equations. The globally averaged ocean-atmosphere temperature in the model is governed by the radiation balance. The reflectivity to incoming solar radiation, i.e., the planetary albedo, includes separate contributions from sea ice and from continental ice sheets. The major physical mechanisms active in the model are (1) albedo-temperature feedback, (2) continental ice-sheet dynamics and (3) precipitation-rate variations. The model has three-equilibrium solutions, two of which are linearly unstable, while one is linearly stable. For some choices of parameters, the stability picture changes and sustained, finite-amplitude oscillations obtain around the previously stable equilibrium solution. The physical interpretation of these oscillations points to the possibility of internal mechanisms playing a role in glaciation cycles.
Accurate abundance determinations in S stars
NASA Astrophysics Data System (ADS)
Neyskens, P.; Van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A.
2011-12-01
S-type stars are thought to be the first objects, during their evolution on the asymptotic giant branch (AGB), to experience s-process nucleosynthesis and third dredge-ups, and therefore to exhibit s-process signatures in their atmospheres. Until present, the modeling of these processes is subject to large uncertainties. Precise abundance determinations in S stars are of extreme importance for constraining e.g., the depth and the formation of the 13C pocket. In this paper a large grid of MARCS model atmospheres for S stars is used to derive precise abundances of key s-process elements and iron. A first estimation of the atmospheric parameters is obtained using a set of well-chosen photometric and spectroscopic indices for selecting the best model atmosphere of each S star. Abundances are derived from spectral line synthesis, using the selected model atmosphere. Special interest is paid to technetium, an element without stable isotopes. Its detection in stars is considered as the best possible signature that the star effectively populates the thermally-pulsing AGB (TP-AGB) phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The computed [Zr/Fe] overabundances are in good agreement with the AGB stellar evolution model predictions, while the Tc/Zr abundances are slightly over-predicted. This discrepancy can help to set stronger constraints on nucleosynthesis and mixing mechanisms in AGB stars.
Program listing for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program
NASA Technical Reports Server (NTRS)
Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.
1982-01-01
The program listing for the REEDM Computer Program is provided. A mathematical description of the atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model; vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud and meteorological layering techniques; user's instructions for the REEDM computer program; and worked example problems are contained in NASA CR-3646.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
Estimation of Physical Parameters of a Multilayered Multi-Scale Vegetated Surface
NASA Astrophysics Data System (ADS)
Hosni, I.; Bennaceur Farah, L.; Naceur, M. S.; Farah, I. R.
2016-06-01
Soil moisture is important to enable the growth of vegetation in the way that it also conditions the development of plant population. Additionally, its assessment is important in hydrology and agronomy, and is a warning parameter for desertification. Furthermore, the soil moisture content affects exchanges with the atmosphere via the energy balance at the soil surface; it is significant due to its impact on soil evaporation and transpiration. Therefore, it conditions the energy transfer between Earth and atmosphere. Many remote sensing methods were tested. For the soil moisture; the first methods relied on the optical domain (short wavelengths). Obviously, due to atmospheric effects and the presence of clouds and vegetation cover, this approach is doomed to fail in most cases. Therefore, the presence of vegetation canopy complicates the retrieval of soil moisture because the canopy contains moisture of its own. This paper presents a synergistic methodology of SAR and optical remote sensing data, and it's for simulation of statistical parameters of soil from C-band radar measurements. Vegetation coverage, which can be easily estimated from optical data, was combined in the backscattering model. The total backscattering was divided into the amount attributed to areas covered with vegetation and that attributed to areas of bare soil. Backscattering coefficients were simulated using the established backscattering model. A two-dimensional multiscale SPM model has been employed to investigate the problem of electromagnetic scattering from an underlying soil. The water cloud model (WCM) is used to account for the effect of vegetation water content on radar backscatter data, whereof to eliminate the impact of vegetation layer and isolate the contributions of vegetation scattering and absorption from the total backscattering coefficient.
Highlights in the study of exoplanet atmospheres
NASA Astrophysics Data System (ADS)
Burrows, Adam S.
2014-09-01
Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.
NASA Astrophysics Data System (ADS)
Salem, S.; Moslem, W. M.; Radi, A.
2017-05-01
Self-similar plasma expansion approach is used to solve a plasma model based on the losing phenomenon of Titan atmospheric composition. To this purpose, a set of hydrodynamic fluid equations describing a plasma consisting of two positive ions with different masses and isothermal electrons is used. With the aid of self-similar transformation, numerical solution of the fluid equations has been performed to examine the density, velocity, and potential profiles. The effects of different plasma parameters, i.e., density and temperature ratios, are studied on the expanding plasma profiles. The present investigation could be useful to recognize the ionized particles escaping from Titan atmosphere.
NASA Astrophysics Data System (ADS)
Macedonio, Giovanni; Costa, Antonio; Scollo, Simona; Neri, Augusto
2015-04-01
Uncertainty in the tephra fallout hazard assessment may depend on different meteorological datasets and eruptive source parameters used in the modelling. We present a statistical study to analyze this uncertainty in the case of a sub-Plinian eruption of Vesuvius of VEI = 4, column height of 18 km and total erupted mass of 5 × 1011 kg. The hazard assessment for tephra fallout is performed using the advection-diffusion model Hazmap. Firstly, we analyze statistically different meteorological datasets: i) from the daily atmospheric soundings of the stations located in Brindisi (Italy) between 1962 and 1976 and between 1996 and 2012, and in Pratica di Mare (Rome, Italy) between 1996 and 2012; ii) from numerical weather prediction models of the National Oceanic and Atmospheric Administration and of the European Centre for Medium-Range Weather Forecasts. Furthermore, we modify the total mass, the total grain-size distribution, the eruption column height, and the diffusion coefficient. Then, we quantify the impact that different datasets and model input parameters have on the probability maps. Results shows that the parameter that mostly affects the tephra fallout probability maps, keeping constant the total mass, is the particle terminal settling velocity, which is a function of the total grain-size distribution, particle density and shape. Differently, the evaluation of the hazard assessment weakly depends on the use of different meteorological datasets, column height and diffusion coefficient.
Watson, K.; Hummer-Miller, S.
1981-01-01
A method based solely on remote sensing data has been developed to estimate those meteorological effects which are required for thermal-inertia mapping. It assumes that the atmospheric fluxes are spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows the type of agreement which can be achieved. An analysis of the limitations of the method is also provided. ?? 1981.
NASA Astrophysics Data System (ADS)
Karpushin, P. A.; Popov, Yu B.; Popova, A. I.; Popova, K. Yu; Krasnenko, N. P.; Lavrinenko, A. V.
2017-11-01
In this paper, the probabilities of faultless operation of aerologic stations are analyzed, the hypothesis of normality of the empirical data required for using the Kalman filter algorithms is tested, and the spatial correlation functions of distributions of meteorological parameters are determined. The results of a statistical analysis of two-term (0, 12 GMT) radiosonde observations of the temperature and wind velocity components at some preset altitude ranges in the troposphere in 2001-2016 are presented. These data can be used in mathematical modeling of physical processes in the atmosphere.
Hyperfine Structure and Abundances of Heavy Elements in 68 Tauri (HD 27962)
NASA Astrophysics Data System (ADS)
Martinet, S.; Monier, R.
2017-12-01
HD 27962, also known as 68 Tauri, is a Chemically Peculiar Am star member of the Hyades Open Cluster in the local arm of the Galaxy. We have modeled the high resolution SOPHIE (R=75000) spectrum of 68 Tauri using updated model atmosphere and spectrum synthesis to derive chemical abundances in its atmosphere. In particular, we have studied the effect of the inclusion of Hyperfine Structure of various Baryum isotopes on the determination of the Baryum abundance in 68 Tauri. We have also derived new abundances using updated accurate atomic parameters retrieved from the NIST database.
Hourly global and diffuse radiation of Lagos, Nigeria-correlation with some atmospheric parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chendo, M.A.C.; Maduekwe, A.A.L.
1994-03-01
The influence of four climatic parameters on the hourly diffuse fraction in Lagos, Nigeria, has been studied. Using data for two years, new correlations were established. The standard error of the Liu and Jordan-type equation was reduced by 12.83% when solar elevation, ambient temperature, and relative humidity were used together as predictor variables for the entire data set. Ambient temperature and relative humidity proved to be very important variables for predicting the diffuse fraction of the solar radiation passing through the humid atmosphere of the coastal and tropic city of Lagos. Seasonal analysis carried out with the data showed improvementsmore » on the standard errors for the new seasonal correlations. In the case of the dry season, the improvement was 18.37%, whole for the wet season, this was 12.37%. Comparison with existing correlations showed that the performance of the one parameter model (namely K[sub t]), of Orgill and Hollands and Reindl, Beckman, and Duffie were very different from the Liu and Jordan-type model obtained for Lagos.« less
Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters
NASA Astrophysics Data System (ADS)
Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project
2017-10-01
A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.
2008-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
NASA Astrophysics Data System (ADS)
Zaliapin, I.; Ghil, M.; Thompson, S.
2007-12-01
We consider a Delay Differential Equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in the ENSO dynamics: delayed negative feedback and seasonal forcing. Descriptive and metric stability analyses of the model are performed in a complete 3D space of its physically relevant parameters. Existence of two regimes --- stable and unstable --- is reported. The domains of the regimes are separated by a sharp neutral curve in the parameter space. The detailed structure of the neutral curve become very complicated (possibly fractal), and individual trajectories within the unstable region become highly complex (possibly chaotic) as the atmosphere-ocean coupling increases. In the unstable regime, spontaneous transitions in the mean "temperature" (i.e., thermocline depth), period, and extreme annual values occur, for purely periodic, seasonal forcing. This indicates (via the continuous dependence theorem) the existence of numerous unstable solutions responsible for the complex dynamics of the system. In the stable regime, only periodic solutions are found. Our results illustrate the role of the distinct parameters of ENSO variability, such as strength of seasonal forcing vs. atmosphere ocean coupling and propagation period of oceanic waves across the Tropical Pacific. The model reproduces, among other phenomena, the Devil's bleachers (caused by period locking) documented in other ENSO models, such as nonlinear PDEs and GCMs, as well as in certain observations. We expect such behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.
NASA Astrophysics Data System (ADS)
Uździcka, Bogna; Stróżecki, Marcin; Urbaniak, Marek; Juszczak, Radosław
2017-07-01
The aim of this paper is to demonstrate that spectral vegetation indices are good indicators of parameters describing the intensity of CO2 exchange between crops and the atmosphere. Measurements were conducted over 2011-2013 on plots of an experimental arable station on winter wheat, winter rye, spring barley, and potatoes. CO2 fluxes were measured using the dynamic closed chamber system, while spectral vegetation indices were determined using SKYE multispectral sensors. Based on spectral data collected in 2011 and 2013, various models to estimate net ecosystem productivity and gross ecosystem productivity were developed. These models were then verified based on data collected in 2012. The R2 for the best model based on spectral data ranged from 0.71 to 0.83 and from 0.78 to 0.92, for net ecosystem productivity and gross ecosystem productivity, respectively. Such high R2 values indicate the utility of spectral vegetation indices in estimating CO2 fluxes of crops. The effects of the soil background turned out to be an important factor decreasing the accuracy of the tested models.
Atmospheric deposition maps for the Rocky Mountains
Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.
2003-01-01
Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.
NASA Astrophysics Data System (ADS)
Yi, H.; Gao, X.; Sorooshian, S.
2002-05-01
As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.
Application of Numerical Weather Models to Mitigating Atmospheric Artifacts in InSAR
NASA Astrophysics Data System (ADS)
Foster, J. H.; Kealy, J.; Businger, S.; Cherubini, T.; Brooks, B. A.; Albers, S. C.; Lu, Z.; Poland, M. P.; Chen, S.; Mass, C.
2011-12-01
A high-resolution weather "hindcasting" system to model the atmosphere at the time of SAR scene acquisitions has been established to investigate and mitigate the impact of atmospheric water vapor on InSAR deformation maps. Variations in the distributions of water vapor in the atmosphere between SAR acquisitions lead to artifacts in interferograms that can mask real ground motion signals. A database of regional numerical weather prediction model outputs generated by the University of Washington and U.C. Davis for times matching SAR acquisitions was used as "background" for higher resolution analyses of the atmosphere for Mount St Helens volcano in Washington, and Los Angeles in southern California. Using this background, we use LAPS to incrementally incorporate all other available meteorological data sets, including GPS, to explore the impact of additional observations on model accuracy. Our results suggest that, even with significant quantities of contemporaneously measured data, high-resolution atmospheric analyses are unable to model the timing and location of water vapor perturbations accurately enough to produce robust and reliable phase screens that can be directly subtracted from interferograms. Despite this, the analyses are able to reproduce the statistical character of the atmosphere with some confidence, suggesting that, in the absence of unusually dense in-situ measurements (such as is the case with GPS data for Los Angeles), weather analysis can play a valuable role in constraining the power-spectrum expected in an interferogram due to the troposphere. This could be used to provide objective weights to scenes during traditional stacking or to tune the filter parameters in time-series analyses.
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
NASA Astrophysics Data System (ADS)
Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles
2016-04-01
Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.
NASA Astrophysics Data System (ADS)
Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.
2009-04-01
The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.
A stochastic-dynamic model for global atmospheric mass field statistics
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.; Kalnay-Rivas, E.
1981-01-01
A model that yields the spatial correlation structure of atmospheric mass field forecast errors was developed. The model is governed by the potential vorticity equation forced by random noise. Expansion in spherical harmonics and correlation function was computed analytically using the expansion coefficients. The finite difference equivalent was solved using a fast Poisson solver and the correlation function was computed using stratified sampling of the individual realization of F(omega) and hence of phi(omega). A higher order equation for gamma was derived and solved directly in finite differences by two successive applications of the fast Poisson solver. The methods were compared for accuracy and efficiency and the third method was chosen as clearly superior. The results agree well with the latitude dependence of observed atmospheric correlation data. The value of the parameter c sub o which gives the best fit to the data is close to the value expected from dynamical considerations.
Sedimentation Efficiency of Condensation Clouds in Substellar Atmospheres
NASA Astrophysics Data System (ADS)
Gao, Peter; Marley, Mark S.; Ackerman, Andrew S.
2018-03-01
Condensation clouds in substellar atmospheres have been widely inferred from spectra and photometric variability. Up until now, their horizontally averaged vertical distribution and mean particle size have been largely characterized using models, one of which is the eddy diffusion–sedimentation model from Ackerman and Marley that relies on a sedimentation efficiency parameter, f sed, to determine the vertical extent of clouds in the atmosphere. However, the physical processes controlling the vertical structure of clouds in substellar atmospheres are not well understood. In this work, we derive trends in f sed across a large range of eddy diffusivities (K zz ), gravities, material properties, and cloud formation pathways by fitting cloud distributions calculated by a more detailed cloud microphysics model. We find that f sed is dependent on K zz , but not gravity, when K zz is held constant. f sed is most sensitive to the nucleation rate of cloud particles, as determined by material properties like surface energy and molecular weight. High surface energy materials form fewer, larger cloud particles, leading to large f sed (>1), and vice versa for materials with low surface energy. For cloud formation via heterogeneous nucleation, f sed is sensitive to the condensation nuclei flux and radius, connecting cloud formation in substellar atmospheres to the objects’ formation environments and other atmospheric aerosols. These insights could lead to improved cloud models that help us better understand substellar atmospheres. For example, we demonstrate that f sed could increase with increasing cloud base depth in an atmosphere, shedding light on the nature of the brown dwarf L/T transition.
Influence of the Atmospheric Model on Hanle Diagnostics
NASA Astrophysics Data System (ADS)
Ishikawa, Ryohko; Uitenbroek, Han; Goto, Motoshi; Iida, Yusuke; Tsuneta, Saku
2018-05-01
We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-α line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error ( e.g., {˜} 40 G instead of 50 G in field strength and {˜} 100° instead of 90° in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known ( e.g., the inversion error is much larger than 40% of the field strength; {>} 70 G instead of 50 G). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.
NASA Astrophysics Data System (ADS)
Elias, T.; Haeffelin, M.; Ramon, D.; Gomes, L.; Brunet, F.; Vrac, M.; Yiou, P.; Hello, G.; Petithomme, H.
2010-07-01
Fog prejudices major activities as transport and Earth observation, by critically reducing atmospheric visibility with no continuity in time and space. Fog is also an essential factor of air quality and climate as it modifies particle properties of the surface atmospheric layer. Complexity, diversity and the fine scale of processes make uncertain by current numerical weather prediction models, not only visibility diagnosis but also fog event prediction. Extensive measurements of atmospheric parameters are made on the SIRTA since 1997 to document physical processes over the atmospheric column, in the Paris suburb area, typical of an environment intermittently under oceanic influence and affected by urban and industrial pollution. The ParisFog field campaign hosted in SIRTA during 6-month in winter 2006-2007 resulted in the deployment of instrumentation specifically dedicated to study physical processes in the fog life cycle: thermodynamical, radiative, dynamical, microphysical processes. Analysis of the measurements provided a preliminary climatology of the episodes of reduced visibility, chronology of processes was delivered by examining time series of measured parameters and a closure study was performed on optical and microphysical properties of particles (aerosols to droplets) during the life cycle of a radiative fog, providing the relative contribution of several particle groups to extinction in clear-sky conditions, in haze and in fog. PreViBOSS is a 3-year project scheduled to start this year. The aim is to improve the short term prediction of changes in atmospheric visibility, at a local scale. It proposes an innovative approach: applying the Generalised Additive Model statistical method to the detailed and extended dataset acquired at SIRTA. This method offers the opportunity to explore non linear relationships between parameters, which are not yet integrated in current numerical models. Emphasis will be put on aerosols and their impact on the fog life cycle. Furthermore, the data set of ground-based measurements will be completed by spaceborne observation of visible and infra red radiance performed by the METEOSAT mission.
Multispectrum retrieval techniques applied to Venus deep atmosphere and surface problems
NASA Astrophysics Data System (ADS)
Kappel, David; Arnold, Gabriele; Haus, Rainer
The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express is continuously collecting nightside emission data (among others) from Venus. A radiative transfer model of Venus' atmosphere in conjunction with a suitable retrieval algorithm can be used to estimate atmospheric and surface parameters by fitting simulated spectra to the measured data. Because of the limited spectral resolution of VIRTIS-M-IR-spectra, that have been used so far, many different parameter sets can explain the same measurement equally well. As a common regulative measure, reasonable a priori knowledge of some parameters is applied to suppress solutions implausibly far from the expected range. It is beneficial to introduce a parallel coupled retrieval of several measurements. Since spa-tially and temporally contiguous measurements are not expected to originate from completely unrelated parameters, an assumed a priori correlation of the parameters during the retrieval can help to reduce arbitrary fluctuations of the solutions, to avoid subsidiary solutions, and to attenuate the interference of measurement noise by keeping the parameters close to a gen-eral trend. As an illustration, the resulting improvements for some swaths on the Northern hemisphere are presented. Some atmospheric features are still not very well constrained, for instance CO2 absorption under the extreme environmental conditions close to the surface. A broad band continuum due to far wing and collisional induced absorptions is commonly used to correct individual line absorption. Since the spectrally dependent continuum is constant for all measurements, the retrieval of parameters common to all spectra may be used to give some estimates of the continuum absorption. These estimates are necessary, for example, for the coupled parallel retrieval of a consistent local cloud modal composition, which in turn enables a refined surface emissivity retrieval. We gratefully acknowledge the support from the VIRTIS/Venus Express Team, from ASI, CNES, CNRS, and from the DFG funding the ongoing work.
Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters
NASA Astrophysics Data System (ADS)
Vincent, Frederic H.; Bejger, Michał; Różańska, Agata; Straub, Odele; Paumard, Thibaut; Fortin, Morgane; Madej, Jerzy; Majczyna, Agnieszka; Gourgoulhon, Eric; Haensel, Paweł; Zdunik, Leszek; Beldycki, Bartosz
2018-03-01
Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding the validity of the ATM24 code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubev, A.; Balashov, Y.; Mavrin, S.
Washout coefficient Λ is widely used as a parameter in washout models. These models describes overall HTO washout with rain by a first-order kinetic equation, while washout coefficient Λ depends on the type of rain event and rain intensity and empirical parameters a, b. The washout coefficient is a macroscopic parameter and we have considered in this paper its relationship with a microscopic rate K of HTO isotopic exchange in atmospheric humidity and drops of rainwater. We have shown that the empirical parameters a, b can be represented through the rain event characteristics using the relationships of molecular impact rate,more » rain intensity and specific rain water content while washout coefficient Λ can be represented through the exchange rate K, rain intensity, raindrop diameter and terminal raindrop velocity.« less
NASA Astrophysics Data System (ADS)
Yadav, Siddhita; Pandey, K. M.
2018-04-01
In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.
Composite hot subdwarf binaries - I. The spectroscopically confirmed sdB sample
NASA Astrophysics Data System (ADS)
Vos, Joris; Németh, Péter; Vučković, Maja; Østensen, Roy; Parsons, Steven
2018-01-01
Hot subdwarf-B (sdB) stars in long-period binaries are found to be on eccentric orbits, even though current binary-evolution theory predicts that these objects are circularized before the onset of Roche lobe overflow (RLOF). To increase our understanding of binary interaction processes during the RLOF phase, we started a long-term observing campaign to study wide sdB binaries. In this paper, we present a sample of composite binary sdBs, and the results of the spectral analysis of nine such systems. The grid search in stellar parameters (GSSP) code is used to derive atmospheric parameters for the cool companions. To cross-check our results and also to characterize the hot subdwarfs, we used the independent XTGRID code, which employs TLUSTY non-local thermodynamic equilibrium models to derive atmospheric parameters for the sdB component and PHOENIX synthetic spectra for the cool companions. The independent GSSP and XTGRID codes are found to show good agreement for three test systems that have atmospheric parameters available in the literature. Based on the rotational velocity of the companions, we make an estimate for the mass accreted during the RLOF phase and the minimum duration of that phase. We find that the mass transfer to the companion is minimal during the subdwarf formation.
NASA Astrophysics Data System (ADS)
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.
2014-01-01
Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.
NASA Astrophysics Data System (ADS)
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.
2014-06-01
Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.
Simulation and analysis of atmospheric transmission performance in airborne Terahertz communication
NASA Astrophysics Data System (ADS)
Pan, Chengsheng; Shi, Xin; Liu, Chengyang; Wang, Xue; Ding, Yuanming
2018-02-01
For the special meteorological condition of high altitude transmission; first the influence of atmospheric turbulence on the Terahertz wireless communication is analyzed, and the atmospheric constants model with increase in height is given. On this basis, the relationship between the flicker index and the high altitude horizon transmission distance of the Terahertz wave is analyzed by simulation. Then, through the analysis of high altitude path loss and noise, the high altitude wireless link model is built. Finally, the link loss budget is given according to the current Terahertz device parameters, and bit error rate (BER) performance of on-off keyed modulation (OOK) and pulse position modulation (PPM) in four Terahertz frequency bands is compared and analyzed. All these above provided theoretical reference for high-altitude Terahertz wireless communication transmission.
Radiative transfer in a polluted urban planetary boundary layer
NASA Technical Reports Server (NTRS)
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
The direct effect of aerosols on solar radiation over the broader Mediterranean basin
NASA Astrophysics Data System (ADS)
Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.
2012-08-01
For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 W m-2). Although a planetary cooling is found over most of the region, of up to -7 W m-2, large positive DRETOA values (up to +25 W m-2) are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 W m-2) and to decrease SSR (DREsurf = -16.5 W m-2 and DREnetsurf-13.5 W m-2) inducing thus significant atmospheric warming and surface radiative cooling. The calculated seasonal and monthly DREs are even larger, reaching -25.4 W m-2 (for DREsurf). Within the range of observed natural or anthropogenic variability of aerosol optical properties, AOD seems to be the main responsible parameter for modifications of regional aerosol radiative effects, which are found to be quasi-linearly dependent on AOD, ωaer and gaer.
Generation of Fine Scale Wind and Wave Climatologies
NASA Astrophysics Data System (ADS)
Vandenberghe, F. C.; Filipot, J.; Mouche, A.
2013-12-01
A tool to generate 'on demand' large databases of atmospheric parameters at high resolution has been developed for defense applications. The approach takes advantage of the zooming and relocation capabilities of the embedded domains that can be found in regional models like the community Weather Research and Forecast model (WRF). The WRF model is applied to dynamically downscale NNRP, CFSR and ERA40 global analyses and to generate long records, up to 30 years, of hourly gridded data over 200km2 domains at 3km grid increment. To insure accuracy, observational data from the NCAR ADP historical database are used in combination with the Four-Dimensional Data Assimilation (FDDA) techniques to constantly nudge the model analysis toward observations. The atmospheric model is coupled to secondary applications such as the NOAA's Wave Watch III model the Navy's APM Electromagnetic Propagation model, allowing the creation of high-resolution climatologies of surface winds, waves and electromagnetic propagation parameters. The system was applied at several coastal locations of the Mediterranean Sea where SAR wind and wave observations were available during the entire year of 2008. Statistical comparisons between the model output and SAR observations are presented. Issues related to the global input data, and the model drift, as well as the impact of the wind biases on wave simulations will be discussed.
Model studies of the solar limb shape variation with wavelenght within the PICARD project.
NASA Astrophysics Data System (ADS)
Melo, Stella M. L.; Thuillier, Gerard; Claudel, Jennyfer; Haberreiter, Margit; Mein, Nicole; Schmutz, Werner; Shapiro, Alexander; Sofia, Sabatino; Short, Christopher I.
Solar images in the visible wavelength range show that the disk centre is brighter than the limb region. This phenomenon, which is both known as "centre to limb variation (CLV)", or "limb darkening function", is know to depend on wavelength. Since the CLV is determined by the density and temperature stratification, as well as the chemical composition of the so-lar photosphere, its measurement is important to validate theoretical assumption made when building numerical models of the solar atmosphere. The definition of the solar diameter is nor-mally adopted as the separation between two inflection points at opposite ends of a line passing through the center of the solar disk. Therefore, in order to understand long term variability on the solar diameter, it is important to understand what drives the dependence of the position of the inflection point on wavelength. In this paper we use different available solar atmosphere models to study this dependence. The results presented here refer to quiet Sun conditions and encompass the visible and near infra-red spectral regions, which are the regions of interest for the PICARD Satellite Mission. In a first step we utilize the solar atmosphere parameters with a radiative transfer code. This allows for the study of the impact of different factors such as opacities, electron density and temperature from different models on the results. Then, we compare results obtained using each solar atmosphere model. Our results are compared with existent ground based measurements performed by the Pic du Midi telescope, the balloon board measurements with the Solar Disk Sextant experiment, and with the measurements by the Michelson Doppler Imager on board SoHO satellite. The model simulations show that the position of the inflection point is sensitive to the different parameters and model assumptions. Furthermore, our study shows, for the first time, that the position of the inflection point changes dramatically with and outside of Fraunhofer lines.
Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y
2014-09-15
Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bran, Sherin Hassan; Jose, Subin; Srivastava, Rohit
2018-03-01
The dynamical and optical properties of aerosols during an intense dust storm event over the Arabian Sea have been studied using Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) and space borne instruments such as MODIS, MISR, CALIPSO and CERES during the period 17 to 24 March, 2012. The model captures the spatio-temporal and vertical variations of meteorological and optical parameters, however an overestimation in simulated aerosol optical parameters are observed when compared to satellite retrievals. The correlation coefficients (R) between simulated and observed AOD from MODIS and MISR are found to be 0.54 and 0.32 respectively. Model simulated AOD on dusty days (20 and 21 March 2012) increased by 2-3 times compared to non-dusty days (17 and 24 March 2012) and the single scattering albedo (SSA) and the asymmetry parameter increased from 0.96 to 0.99 and from 0.56 to 0.66, respectively. The R between simulated shortwave (SW) radiation at top of the atmosphere (TOA) and TOA SW radiation obtained from CERES is found to be 0.43, however the model simulated SW radiation at the TOA showed an underestimation with respect to CERES. The shortwave aerosol radiative forcing (SWARF) during the event over surface and TOA are ∼ -19.3 and ∼ -14.2 Wm-2 respectively, which is about 2-5 times higher when compared to the respective forcing values during non-dust days. Estimated net radiative forcing was in the range of -13 to -21 Wm-2 at TOA and -12 to -20 Wm-2 at the surface. The heating rate during event days within the lower atmosphere near 850 hPa is found to 0.32 - 0.4 K day-1 and 0.18 - 0.22 K day-1 on dusty and non-dusty days, respectively. Results of this study may be useful for a better modeling of atmospheric aerosols and its optical and radiative properties over oceanic region.
NASA Astrophysics Data System (ADS)
Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.
2017-07-01
Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.
First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight
NASA Astrophysics Data System (ADS)
de Foy, Benjamin; Tong, Yindong; Yin, Xiufeng; Zhang, Wei; Kang, Shichang; Zhang, Qianggong; Zhang, Guoshuai; Wang, Xuejun; Schauer, James J.
2016-06-01
Hourly speciated measurements of atmospheric mercury made in a remote, high-altitude site in the Tibetan Plateau revealed the first field observations of the reduction of reactive mercury in the presence of sunlight in the atmosphere. Measurements were collected over four winter months on the shore of Nam Co Lake in the inland Tibetan Plateau. The data was analyzed to identify sources and atmospheric transformations of the speciated mercury compounds. The absence of local anthropogenic sources provided a unique opportunity to examine chemical transformations of mercury. An optimization algorithm was used to determine the parameters of a chemical box model that would match the measured reactive mercury concentrations. This required the presence of a photolytic reduction reaction previously observed in laboratory studies and in power plant plumes. In addition, the model estimated the role of vertical mixing in diluting reactive gaseous mercury during the day, and the role of bromine chemistry in oxidizing gaseous elemental mercury to produce reactive gaseous mercury. This work provides further evidence of the need to add the photolytic reduction reaction of oxidized mercury into atmospheric transport models in order to better simulate mercury deposition.
Atmosphere behavior in gas-closed mouse-algal systems: An experimental and modelling study
NASA Astrophysics Data System (ADS)
Averner, Maurice M.; Moore, Berrien; Bartholomew, Irene; Wharton, Robert
Concepts of biologically-based regenerative life support systems anticipate the use of photosynthetic organisms for air revitalization. However, mismatches in the rates of production and uptake of oxygen or carbon dioxide between the crew and the plants will lead to an accumulation or depletion of these gases beyond tolerable limits. One method for correcting these atmospheric changes is to use physicochemical devices. This would conflict with the constraint of minimal size and weight imposed upon the successful development of a competitive bioregenerative system. An alternate control strategy is based upon reducing the gas exchange mismatch by manipulation of those environmental parameters known to affect plant or algae gas exchange ratios. We have initiated a research program using a dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere. Our goal is to develop control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels. A mathematical model simulating the atmospheric behavior in these systems has been developed and an experimental gas-closed system has been constructed. These will be described and preliminary results will be presented.
NASA Astrophysics Data System (ADS)
Reichert, Andreas; Sussmann, Ralf; Rettinger, Markus
2014-05-01
Uncertainties in the knowledge of atmospheric radiative processes are among the main limiting factors for the accuracy of current climate models. Being the primary greenhouse gas in the Earth's atmosphere, water vapor is of crucial importance in atmospheric radiative transfer. However, water vapor absorption processes, especially the contribution attributed to the water vapor continuum, are currently not sufficiently well quantified. The aim of this study is therefore to obtain a more exact characterization of the water vapor radiative processes throughout the IR by means of a so-called radiative closure study at the Zugspitze/Schneefernerhaus observatory and thereby validate the radiative transfer codes used in current climate models. For that purpose, spectral radiance is measured at the Zugspitze summit observatory using an AERI-ER thermal emission radiometer (covering the far- and mid-infrared) and a solar absorption FTIR spectrometer (covering the near-infrared), respectively. These measurements are then compared to synthetic radiance spectra computed by means of the Line-By-Line Radiative Transfer Model (LBLRTM, Clough et al., 2005), a high resolution model widely used in the atmospheric science community. This line-by-line code provides the foundation of RRTM, a rapid radiation code (Mlawer et al., 1997) used in various weather forecast models or general circulation models like ECHAM. To be able to quantify errors in the description of water vapor radiative processes from spectral residuals, i.e. difference spectra between measured and calculated radiance, the atmospheric state used as an input to LBLRTM has to be constrained precisely. This input comprises water vapor columns, water vapor profiles, and temperature profiles measured by an LHATPRO microwave radiometer along with total column information on further trace gases (e.g. CO2 and O3) measured by the solar FTIR. We will present the setup of the Zugspitze radiative closure experiment. Due to its high-altitude location and the available permanent instrumentation, the Zugspitze observatory meets the necessary requirements to determine highly accurate water vapor continuum absorption parameters in the far- and mid-infrared spectral range from a more extensive set of closure measurements compared to previous campaign-based studies. Furthermore, we will present a novel radiometric calibration strategy for the solar FTIR spectral radiance measurements based on a combination of the Langley method and measurements of a high-temperature blackbody source that allows for the determination of continuum absorption parameters in the near-infrared spectral region, where previously no precise measurements under atmospheric conditions were available. This improved quantification of water vapor continuum absorption parameters allows us to further validate the current standard continuum model MT_CKD (Mlawer et al., 2012). Acknowledgements: Funding by KIT/IMK-IFU, the State Government of Bavaria as well as by the Deutsche Bundesstiftung Umwelt (DBU) is gratefully acknowledged. References: Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D: Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Radiat. Transfer, 91, 233-244, 2005. Mlawer, E. J., Taubman, J., Brown, P.D., Iacono, M.J, and Clough, S.A.: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16,663-16,682, 1997. Mlawer, E. J., Payne V. H., Moncet, J., Delamere, J. S., Alvarado, M. J. and Tobin, D.C.: Development and recent evaluation of the MT_CKD model of continuum absorption, Phil. Trans. R. Soc. A, 370, 2520-2556, 2012.
Uncertainties in the Modelled CO2 Threshold for Antarctic Glaciation
NASA Technical Reports Server (NTRS)
Gasson, E.; Lunt, D. J.; DeConto, R.; Goldner, A.; Heinemann, M.; Huber, M.; LeGrande, A. N.; Pollard, D.; Sagoo, N.; Siddall, M.;
2014-01-01
frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of approximately780 parts per million by volume is based on the study of DeConto and Pollard (2003) using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene-Oligocene transition approximately 34 million years. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from 7 different climate models with Eocene boundary conditions (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, and as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter.
NASA Technical Reports Server (NTRS)
Weng, Fuzhong
1992-01-01
A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.
VizieR Online Data Catalog: 3D correction in 5 photometric systems (Bonifacio+, 2018)
NASA Astrophysics Data System (ADS)
Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kucinskas, A.; Prakapavicius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.
2018-01-01
We have used the CIFIST grid of CO5BOLD models to investigate the effects of granulation on fluxes and colours of stars of spectral type F, G, and K. We publish tables with 3D corrections that can be applied to colours computed from any 1D model atmosphere. For Teff>=5000K, the corrections are smooth enough, as a function of atmospheric parameters, that it is possible to interpolate the corrections between grid points; thus the coarseness of the CIFIST grid should not be a major limitation. However at the cool end there are still far too few models to allow a reliable interpolation. (20 data files).
NASA Technical Reports Server (NTRS)
Bienkowski, G. K.
1983-01-01
A Monte Carlo program was developed for modeling the flow field around the space shuttle in the vicinity of the shuttle upper atmosphere mass spectrometer experiment. The operation of the EXTERNAL code is summarized. Issues associated with geometric modeling of the shuttle nose region and the modeling of intermolecular collisions including rotational energy exchange are discussed as well as a preliminary analysis of vibrational excitation and dissociation effects. The selection of trial runs is described and the parameters used for them is justified. The original version and the modified INTERNAL code for the entrance problem are reviewed. The code listing is included.
NASA Astrophysics Data System (ADS)
Sun, Guodong; Mu, Mu
2017-05-01
An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.
[Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].
Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie
2016-02-01
Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0.1 fluctuations with the local water vapor changes.
NASA Technical Reports Server (NTRS)
Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)
2000-01-01
Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements
NASA Astrophysics Data System (ADS)
Xie, Xin
Microphysics and convection parameterizations are two key components in a climate model to simulate realistic climatology and variability of cloud distribution and the cycles of energy and water. When a model has varying grid size or simulations have to be run with different resolutions, scale-aware parameterization is desirable so that we do not have to tune model parameters tailored to a particular grid size. The subgrid variability of cloud hydrometers is known to impact microphysics processes in climate models and is found to highly depend on spatial scale. A scale- aware liquid cloud subgrid variability parameterization is derived and implemented in the Community Earth System Model (CESM) in this study using long-term radar-based ground measurements from the Atmospheric Radiation Measurement (ARM) program. When used in the default CESM1 with the finite-volume dynamic core where a constant liquid inhomogeneity parameter was assumed, the newly developed parameterization reduces the cloud inhomogeneity in high latitudes and increases it in low latitudes. This is due to both the smaller grid size in high latitudes, and larger grid size in low latitudes in the longitude-latitude grid setting of CESM as well as the variation of the stability of the atmosphere. The single column model and general circulation model (GCM) sensitivity experiments show that the new parameterization increases the cloud liquid water path in polar regions and decreases it in low latitudes. Current CESM1 simulation suffers from the bias of both the pacific double ITCZ precipitation and weak Madden-Julian oscillation (MJO). Previous studies show that convective parameterization with multiple plumes may have the capability to alleviate such biases in a more uniform and physical way. A multiple-plume mass flux convective parameterization is used in Community Atmospheric Model (CAM) to investigate the sensitivity of MJO simulations. We show that MJO simulation is sensitive to entrainment rate specification. We found that shallow plumes can generate and sustain the MJO propagation in the model.
Arockia Bazil Raj, A; Arputha Vijaya Selvi, J; Durairaj, S
2015-02-01
Atmospheric parameters strongly affect the performance of free-space optical communication (FSOC) systems when the optical wave is propagating through the inhomogeneous turbulence transmission medium. Developing a model to get an accurate prediction of the atmospheric turbulence strength (C(n)(2)) according to meteorological parameters (weather data) becomes significant to understand the behavior of the FSOC channel during different seasons. The construction of a dedicated free-space optical link for the range of 0.5 km at an altitude of 15.25 m built at Thanjavur (Tamil Nadu) is described in this paper. The power level and beam centroid information of the received signal are measured continuously with weather data at the same time using an optoelectronic assembly and the developed weather station, respectively, and are recorded in a data-logging computer. Existing models that exhibit relatively fewer prediction errors are briefed and are selected for comparative analysis. Measured weather data (as input factors) and C(n)(2) (as a response factor) of size [177,147×4] are used for linear regression analysis and to design mathematical models more suitable in the test field. Along with the model formulation methodologies, we have presented the contributions of the input factors' individual and combined effects on the response surface and the coefficient of determination (R(2)) estimated using analysis of variance tools. An R(2) value of 98.93% is obtained using the new model, model equation V, from a confirmatory test conducted with a testing data set of size [2000×4]. In addition, the prediction accuracies of the selected and the new models are investigated during different seasons in a one-year period using the statistics of day, week-averaged, month-averaged, and seasonal-averaged diurnal Cn2 profiles, and are verified in terms of the sum of absolute error (SAE). A Cn2 prediction maximum average SAE of 2.3×10(-13) m(-2/3) is achieved using the new model in a longer range of dynamic meteorological parameters during the different local seasons.