DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnowitt, R.; Nath, P.
A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) {times} U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field.
Basic Life Functions Instructional Program Model. Field Copy.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison. Div. for Handicapped Children.
Presented is a model, designed by the Wisconsin Department of Public Instruction, for development of an instructional program in basic living skills for trainable mentally retarded children (2- to 20-years-old). The model identifies the following instructional goals: to communicate ideas, to understand one's self and interact with others, to…
An IDEA for Short Term Outbreak Projection: Nearcasting Using the Basic Reproduction Number
Fisman, David N.; Hauck, Tanya S.; Tuite, Ashleigh R.; Greer, Amy L.
2013-01-01
Background Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth. Methodology The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R0, along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts). Principal Findings Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R0 is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1th serial interval using data from the ith serial interval within an average of 20% of actual incidence. Conclusions and Significance This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists. PMID:24391797
An IDEA for short term outbreak projection: nearcasting using the basic reproduction number.
Fisman, David N; Hauck, Tanya S; Tuite, Ashleigh R; Greer, Amy L
2013-01-01
Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth. The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R0, along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts). Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R0 is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1(th) serial interval using data from the i(th) serial interval within an average of 20% of actual incidence. This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists.
Possible Content Areas for Implementation of the Basic Life Functions Instructional Program Model.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison. Div. for Handicapped Children.
Identified are curricular items intended to develop skills pertinent to the 12 broad instructional objectives of the Basic Life Functions Instructional Program Model, a program for trainable mentally retarded children. The 12 instructional objectives are: communicating ideas, self-understanding, interacting with others, traveling, adapting to and…
Investigating Complexity Using Excel and Visual Basic.
ERIC Educational Resources Information Center
Zetie, K. P.
2001-01-01
Shows how some of the simple ideas in complexity can be investigated using a spreadsheet and a macro written in Visual Basic. Shows how the sandpile model of Bak, Chao, and Wiesenfeld can be simulated and animated. The model produces results that cannot easily be predicted from its properties. (Author/MM)
NASA Astrophysics Data System (ADS)
Cannizzo, John K.
2017-01-01
We utilize the time dependent accretion disk model described by Ichikawa & Osaki (1992) to explore two basic ideas for the outbursts in the SU UMa systems, Osaki's Thermal-Tidal Model, and the basic accretion disk limit cycle model. We explore a range in possible input parameters and model assumptions to delineate under what conditions each model may be preferred.
Integration of Basic Skills into Social Studies Content.
ERIC Educational Resources Information Center
Lunstrum, John P.; Irvin, Judith L.
1981-01-01
A basic skills model is presented which stresses the skills of writing, reading, study, and research for elementary school pupils. The model focuses on lesson background, the purpose of the reading, independent reading, follow-up discussion, developing related skills, and extending and applying ideas. A lesson about the 1910 British expedition to…
Is Sustainability Achievable? Exploring the Limits of Sustainability with Model Systems
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and non-intuitive relationships amongst different dimensions of sustainability, particularly the systemwide implications of human actions. This basic un...
ERIC Educational Resources Information Center
Wilson, Mark; Allen, Diane D.; Li, Jun Corser
2006-01-01
This paper compares the approach and resultant outcomes of item response models (IRMs) and classical test theory (CTT). First, it reviews basic ideas of CTT, and compares them to the ideas about using IRMs introduced in an earlier paper. It then applies a comparison scheme based on the AERA/APA/NCME "Standards for Educational and…
A Study of Confined Diffusion Flames
1990-09-04
Introduction ............................................................................................... 1 11. Numerical Methods and the Model ...numbers but kept the basic idea of the flame sheet model . This paper describes a time-dependent, axisymmetric, compressible nu- merical model which is...June 5, 1990. first uses of the diffusion flame model , we simulate a Burke-Schumann flame and remove the restrictious individually. We present results
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Methods and Strategies: Much Ado about Nothing
ERIC Educational Resources Information Center
Smith, P. Sean; Plumley, Courtney L.; Hayes, Meredith L.
2017-01-01
This column provides ideas and techniques to enhance your science teaching. This month's issue discusses how children think about the small-particle model of matter. What Richard Feynman referred to as the "atomic hypothesis" is perhaps more familiar to us as the small-particle model of matter. In its most basic form, the model states…
Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications
ERIC Educational Resources Information Center
Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.
2007-01-01
Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…
A Neo-Kohlbergian Approach to Morality Research.
ERIC Educational Resources Information Center
Rest, James R.; Narvaez, Darcia; Thoma, Stephen J.; Bebeau, Muriel J.
2000-01-01
Proposes a model of moral judgment that builds on Lawrence Kohlberg's core assumptions. Addresses the concerns that have surfaced related to Kohlberg's work in moral judgment. Presents an overview of this model using Kohlberg's basic starting points, ideas from cognitive science, and developments in moral philosophy. (CMK)
Stabilizing a Bicycle: A Modeling Project
ERIC Educational Resources Information Center
Pennings, Timothy J.; Williams, Blair R.
2010-01-01
This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…
ERIC Educational Resources Information Center
Barrow, Gordon M.
1970-01-01
Presents the basic ideas of modern spectroscopy. Both the angular momenta and wave-nature approaches to the determination of energy level patterns for atomic and molecular systems are discussed. The interpretation of spectra, based on atomic and molecular models, is considered. (LC)
Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium.
Davies, Neil; Field, Dawn; Gavaghan, David; Holbrook, Sally J; Planes, Serge; Troyer, Matthias; Bonsall, Michael; Claudet, Joachim; Roderick, George; Schmitt, Russell J; Zettler, Linda Amaral; Berteaux, Véronique; Bossin, Hervé C; Cabasse, Charlotte; Collin, Antoine; Deck, John; Dell, Tony; Dunne, Jennifer; Gates, Ruth; Harfoot, Mike; Hench, James L; Hopuare, Marania; Kirch, Patrick; Kotoulas, Georgios; Kosenkov, Alex; Kusenko, Alex; Leichter, James J; Lenihan, Hunter; Magoulas, Antonios; Martinez, Neo; Meyer, Chris; Stoll, Benoit; Swalla, Billie; Tartakovsky, Daniel M; Murphy, Hinano Teavai; Turyshev, Slava; Valdvinos, Fernanda; Williams, Rich; Wood, Spencer
2016-01-01
Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions.
ERIC Educational Resources Information Center
Tynjälä, Päivi; Virtanen, Anne; Klemola, Ulla; Kostiainen, Emma; Rasku-Puttonen, Helena
2016-01-01
The purpose of the study was to examine how social competence and other generic skills can be developed in teacher education using a pedagogical model called Integrative Pedagogy. This model is based on the idea of integrating the four basic components of expertise: Theoretical knowledge, practical knowledge, self-regulative knowledge, and…
Secondary Students' Understanding of Basic Ideas of Special Relativity
ERIC Educational Resources Information Center
Dimitriadi, Kyriaki; Halkia, Krystallia
2012-01-01
A major topic that has marked "modern physics" is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the…
Big Questions: The Ultimate Building Blocks of Matter
Lincoln, Don
2018-01-16
The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.
Dissemination Models: Dynamic Ways to Get the Message Out.
ERIC Educational Resources Information Center
Niemi, John A.
In response to the need of Adult Basic Education (ABE) practitioners for means of disseminating information concerning new ideas and practices in their field (particularly the results of "309 Projects" funded under Title III of the Amendments to the Elementary and Secondary Education Act of 1966), The Iowa Model was developed in which the…
Methods for Maximizing the Learning Process: A Theoretical and Experimental Analysis.
ERIC Educational Resources Information Center
Atkinson, Richard C.
This research deals with optimizing the instructional process. The approach adopted was to limit consideration to simple learning tasks for which adequate mathematical models could be developed. Optimal or suitable suboptimal instructional strategies were developed for the models. The basic idea was to solve for strategies that either maximize the…
A Brief Introduction to Evidence-Centered Design. CSE Report 632
ERIC Educational Resources Information Center
Mislevy, Robert J.; Almond, Russell G.; Lukas, Janice F.
2004-01-01
Evidence-centered assessment design (ECD) is an approach to constructing educational assessments in terms of evidentiary arguments. This paper provides an introduction to the basic ideas of ECD, including some of the terminology and models that have been developed to implement the approach. In particular, it presents the high-level models of …
A Computer Model of Simple Forms of Learning.
ERIC Educational Resources Information Center
Jones, Thomas L.
A basic unsolved problem in science is that of understanding learning, the process by which people and machines use their experience in a situation to guide future action in similar situations. The ideas of Piaget, Pavlov, Hull, and other learning theorists, as well as previous heuristic programing models of human intelligence, stimulated this…
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
NASA Astrophysics Data System (ADS)
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
Basic Operational Robotics Instructional System
NASA Technical Reports Server (NTRS)
Todd, Brian Keith; Fischer, James; Falgout, Jane; Schweers, John
2013-01-01
The Basic Operational Robotics Instructional System (BORIS) is a six-degree-of-freedom rotational robotic manipulator system simulation used for training of fundamental robotics concepts, with in-line shoulder, offset elbow, and offset wrist. BORIS is used to provide generic robotics training to aerospace professionals including flight crews, flight controllers, and robotics instructors. It uses forward kinematic and inverse kinematic algorithms to simulate joint and end-effector motion, combined with a multibody dynamics model, moving-object contact model, and X-Windows based graphical user interfaces, coordinated in the Trick Simulation modeling environment. The motivation for development of BORIS was the need for a generic system for basic robotics training. Before BORIS, introductory robotics training was done with either the SRMS (Shuttle Remote Manipulator System) or SSRMS (Space Station Remote Manipulator System) simulations. The unique construction of each of these systems required some specialized training that distracted students from the ideas and goals of the basic robotics instruction.
2007-12-14
society.” Sigmund Freud (1927, p.7) -The basic idea that will be developed in this essay is that a symbolic equation is unconsciously made between acts...and criminology literature, this model has weak logical, theoretical, and empirical foundations. -The enemy that we see, according to Freud , is
Basic Skills Resource Center: Teaching Reading Comprehension to Adults in Basic Skills Courses
1985-08-01
paper trash out to be burned 4. A hockey coach telling his players to keep shooting at the goalie . What skill, or skills, did you use to answer the...With this exercise the learner is introduced to the idea of INFERENCE. The learner’s mind must INFER the rest of the idea in order to pull the four...to pull the ideas of the paragraph together. (Lesson 3 will teach learners how to construct an "umbrella" idea to act as a topic sentence for readings
Detection of abrupt changes in dynamic systems
NASA Technical Reports Server (NTRS)
Willsky, A. S.
1984-01-01
Some of the basic ideas associated with the detection of abrupt changes in dynamic systems are presented. Multiple filter-based techniques and residual-based method and the multiple model and generalized likelihood ratio methods are considered. Issues such as the effect of unknown onset time on algorithm complexity and structure and robustness to model uncertainty are discussed.
PROGRAPH Diagrams--A New Old System for Teaching Functional Modelling
ERIC Educational Resources Information Center
Siller, Hans-Stefan
2009-01-01
This paper shows the basic concept of Functional Modelling in mathematics education which has become more and more important in recent years. Hence it is necessary to think about suitable graphical methods to explain the fundamental idea of a function and its influence on values and other functions. PROGRAPH diagrams are a potentially good way to…
On a Quantum Model of Brain Activities
NASA Astrophysics Data System (ADS)
Fichtner, K.-H.; Fichtner, L.; Freudenberg, W.; Ohya, M.
2010-01-01
One of the main activities of the brain is the recognition of signals. A first attempt to explain the process of recognition in terms of quantum statistics was given in [6]. Subsequently, details of the mathematical model were presented in a (still incomplete) series of papers (cf. [7, 2, 5, 10]). In the present note we want to give a general view of the principal ideas of this approach. We will introduce the basic spaces and justify the choice of spaces and operations. Further, we bring the model face to face with basic postulates any statistical model of the recognition process should fulfill. These postulates are in accordance with the opinion widely accepted in psychology and neurology.
Attitudes, Administrative Styles, and Outcomes.
ERIC Educational Resources Information Center
Laughlin, J. Stanley
1984-01-01
The literature on administrative style is reviewed. Attention is directed to four basic concepts of administrative style: (1) the structured, classical, traditional model; (2) the participatory or employee-involved operation; (3) a more behavioral scientific style; and (4) the situational or environmental style. These ideas are more fully…
Mathematical modeling of the aerodynamic characteristics in flight dynamics
NASA Technical Reports Server (NTRS)
Tobak, M.; Chapman, G. T.; Schiff, L. B.
1984-01-01
Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.
ERIC Educational Resources Information Center
Wang, Lijuan; McArdle, John J.
2008-01-01
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Robic, Srebrenka
2010-01-01
To fully understand the roles proteins play in cellular processes, students need to grasp complex ideas about protein structure, folding, and stability. Our current understanding of these topics is based on mathematical models and experimental data. However, protein structure, folding, and stability are often introduced as descriptive, qualitative phenomena in undergraduate classes. In the process of learning about these topics, students often form incorrect ideas. For example, by learning about protein folding in the context of protein synthesis, students may come to an incorrect conclusion that once synthesized on the ribosome, a protein spends its entire cellular life time in its fully folded native confirmation. This is clearly not true; proteins are dynamic structures that undergo both local fluctuations and global unfolding events. To prevent and address such misconceptions, basic concepts of protein science can be introduced in the context of simple mathematical models and hands-on explorations of publicly available data sets. Ten common misconceptions about proteins are presented, along with suggestions for using equations, models, sequence, structure, and thermodynamic data to help students gain a deeper understanding of basic concepts relating to protein structure, folding, and stability.
Special Education Law: Illustrative Basics and Nuances of Key IDEA Components
ERIC Educational Resources Information Center
Zirkel, Perry A.
2015-01-01
Intended as professional development for both new and experienced special educators, this article provides both the basic requirements and nuanced issues for foundational, successive, and overlapping key components under the Individuals With Disabilities Education Act (IDEA): (a) child find, (b) eligibility, and (c) free appropriate public…
Reinforcing Basic Skills Through Social Studies. Grades 4-7.
ERIC Educational Resources Information Center
Lewis, Teresa Marie
Arranged into seven parts, this document provides a variety of games and activities, bulletin board ideas, overhead transparencies, student handouts, and learning station ideas to help reinforce basic social studies skills in the intermediate grades. In part 1, students learn about timelines, first constructing their own life timeline, then a…
Scientific cousins: the relationship between Charles Darwin and Francis Galton.
Fancher, Raymond E
2009-01-01
This article traces the personal as well as the intellectual and scientific relationship between Charles Darwin and his younger half-cousin Francis Galton. Although they had been on friendly terms as young men, and Darwin had in some ways been a role model for Galton, the two did not share major scientific interests until after the publication of Darwin's On the Origin of Species in 1859. That work precipitated a religious and philosophical crisis in Galton, which he gradually resolved after conceiving and developing the basic ideas of "hereditary genius" and eugenics. More mathematically inclined than Darwin, he subsequently contributed to the Darwinian evolutionary discussion, and to the future science of psychology, by proposing the basic concept of the nature-nurture dichotomy, the conceptual and statistical foundations for behavior genetics, and the idea for intelligence testing. 2009 APA, all rights reserved
Horneyan developmental psychoanalytic theory and its application to the treatment of the young.
Paul, H A
1984-01-01
The early work of Dr. Karen Horney has been reviewed, including her ideas concerning neurotogenesis, the formation of basic anxiety, basic conflict as a result of disordered attachment, and various conflict solutions. In addition, her pioneering ideas regarding the real self and self-realization have been mentioned. It has been shown that the application of her ideas in clinical work with the young results in a rational approach to suffering children and their families.
ERIC Educational Resources Information Center
Romance, Nancy R.; Vitale, Michael R.
2011-01-01
The purpose of this cross-sectional study was to investigate the effects of a multi-year implementation of the Science IDEAS model on (a) the Iowa Tests of Basic Skills (ITBS) achievement growth in Reading Comprehension and Science of grade 3-5 students receiving the model, and (b) the transfer effects of the model as measured by ITBS Reading…
Effects of Problem Scope and Creativity Instructions on Idea Generation and Selection
ERIC Educational Resources Information Center
Rietzschel, Eric F.; Nijstad, Bernard A.; Stroebe, Wolfgang
2014-01-01
The basic assumption of brainstorming is that increased quantity of ideas results in increased generation as well as selection of creative ideas. Although previous research suggests that idea quantity correlates strongly with the number of good ideas generated, quantity has been found to be unrelated to the quality of selected ideas. This article…
Evaluation, Use, and Refinement of Knowledge Representations through Acquisition Modeling
ERIC Educational Resources Information Center
Pearl, Lisa
2017-01-01
Generative approaches to language have long recognized the natural link between theories of knowledge representation and theories of knowledge acquisition. The basic idea is that the knowledge representations provided by Universal Grammar enable children to acquire language as reliably as they do because these representations highlight the…
The Power of Protocols: An Educator's Guide to Better Practice. The Series on School Reform.
ERIC Educational Resources Information Center
McDonald, Joseph P.; Mohr, Nancy; Dichter, Alan; McDonald, Elizabeth C.
This book describes nearly 30 protocols or "scripts" for conducting meetings, conversations, and other learning experiences among educators. Chapter 1, "The Basic Ideas," explains the basic ideas underlying the rest of the book, discussing why educators should educate themselves and making the case for exploring student work as…
Model-based Executive Control through Reactive Planning for Autonomous Rovers
NASA Technical Reports Server (NTRS)
Finzi, Alberto; Ingrand, Felix; Muscettola, Nicola
2004-01-01
This paper reports on the design and implementation of a real-time executive for a mobile rover that uses a model-based, declarative approach. The control system is based on the Intelligent Distributed Execution Architecture (IDEA), an approach to planning and execution that provides a unified representational and computational framework for an autonomous agent. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting agents, each with the same fundamental structure. We show that planning and real-time response are compatible if the executive minimizes the size of the planning problem. We detail the implementation of this approach on an exploration rover (Gromit an RWI ATRV Junior at NASA Ames) presenting different IDEA controllers of the same domain and comparing them with more classical approaches. We demonstrate that the approach is scalable to complex coordination of functional modules needed for autonomous navigation and exploration.
Information compression in the context model
NASA Technical Reports Server (NTRS)
Gebhardt, Joerg; Kruse, Rudolf; Nauck, Detlef
1992-01-01
The Context Model provides a formal framework for the representation, interpretation, and analysis of vague and uncertain data. The clear semantics of the underlying concepts make it feasible to compare well-known approaches to the modeling of imperfect knowledge like that given in Bayes Theory, Shafer's Evidence Theory, the Transferable Belief Model, and Possibility Theory. In this paper we present the basic ideas of the Context Model and show its applicability as an alternative foundation of Possibility Theory and the epistemic view of fuzzy sets.
Maximum Likelihood Item Easiness Models for Test Theory Without an Answer Key
Batchelder, William H.
2014-01-01
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce two extensions to the basic model in order to account for item rating easiness/difficulty. The first extension is a multiplicative model and the second is an additive model. We show how the multiplicative model is related to the Rasch model. We describe several maximum-likelihood estimation procedures for the models and discuss issues of model fit and identifiability. We describe how the CCT models could be used to give alternative consensus-based measures of reliability. We demonstrate the utility of both the basic and extended models on a set of essay rating data and give ideas for future research. PMID:29795812
Modeling abundance using hierarchical distance sampling
Royle, Andy; Kery, Marc
2016-01-01
In this chapter, we provide an introduction to classical distance sampling ideas for point and line transect data, and for continuous and binned distance data. We introduce the conditional and the full likelihood, and we discuss Bayesian analysis of these models in BUGS using the idea of data augmentation, which we discussed in Chapter 7. We then extend the basic ideas to the problem of hierarchical distance sampling (HDS), where we have multiple point or transect sample units in space (or possibly in time). The benefit of HDS in practice is that it allows us to directly model spatial variation in population size among these sample units. This is a preeminent concern of most field studies that use distance sampling methods, but it is not a problem that has received much attention in the literature. We show how to analyze HDS models in both the unmarked package and in the BUGS language for point and line transects, and for continuous and binned distance data. We provide a case study of HDS applied to a survey of the island scrub-jay on Santa Cruz Island, California.
Spiral Growth in Plants: Models and Simulations
ERIC Educational Resources Information Center
Allen, Bradford D.
2004-01-01
The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…
ERIC Educational Resources Information Center
Meyer, Rochelle Wilson
1978-01-01
The author uses mathematical models that involve only algebra and a few basic ideas in discrete probability to describe the frequency of conception in large human societies. A number of calculations which can be done by students as exercises are given. (MN)
Multimodal Career Development: "BASIC IDEAS" for Wholistic Career Education.
ERIC Educational Resources Information Center
Southern, Stephen
This paper presents a comprehensive model for career development over the lifespan. The approach, based on the multimodal behavioral therapy of Arnold Lazarus, takes into account 10 modalities and factors that should be considered when addressing the career education needs of whole persons. These modalities and factors, represented by the acronym…
Computer Applications Course Goals, Outlines, and Objectives.
ERIC Educational Resources Information Center
Law, Debbie; Morgan, Michele
This document contains a curriculum model that is designed to provide high school computer teachers with practical ideas for a 1-year computer applications course combining 3 quarters of instruction in keyboarding and 1 quarter of basic instruction in databases and spreadsheets. The document begins with a rationale and a 10-item list of…
Higher Order Skills, Job Design, and Incentives: An Analysis and Proposal.
ERIC Educational Resources Information Center
Hannaway, Jane
1992-01-01
The current imbalance between teaching basic skills and higher order skills can be addressed by redesigning teaching into two specialized areas. Using the principal-agent model and applying ideas from organization theory, the advantages of restructuring teaching to increase emphasis on problem-solving and higher order skills are discussed. (SLD)
ERIC Educational Resources Information Center
Krapp, Andreas
2002-01-01
Presents a collection of theoretical concepts and models that can be used to describe and explore structural and dynamic aspects of interest development from an ontogenic research perspective. Outlines basic ideas of an educational-psychological conceptualization of interest that is based on a dynamic theory of personality. (SLD)
A Real-Time Rover Executive based On Model-Based Reactive Planning
NASA Technical Reports Server (NTRS)
Bias, M. Bernardine; Lemai, Solange; Muscettola, Nicola; Korsmeyer, David (Technical Monitor)
2003-01-01
This paper reports on the experimental verification of the ability of IDEA (Intelligent Distributed Execution Architecture) effectively operate at multiple levels of abstraction in an autonomous control system. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting control agents, each organized around the same fundamental structure. Two IDEA agents, a system-level agent and a mission-level agent, are designed and implemented to autonomously control the K9 rover in real-time. The system is evaluated in the scenario where the rover must acquire images from a specified set of locations. The IDEA agents are responsible for enabling the rover to achieve its goals while monitoring the execution and safety of the rover and recovering from dangerous states when necessary. Experiments carried out both in simulation and on the physical rover, produced highly promising results.
Applying circular economy innovation theory in business process modeling and analysis
NASA Astrophysics Data System (ADS)
Popa, V.; Popa, L.
2017-08-01
The overall aim of this paper is to develop a new conceptual framework for business process modeling and analysis using circular economy innovative theory as a source for business knowledge management. The last part of the paper presents an author’s proposed basic structure for a new business models applying circular economy innovation theories. For people working on new innovative business models in the field of the circular economy this paper provides new ideas for clustering their concepts.
Is sustainability achievable? Exploring the limits of sustainability with model systems.
Shastri, Yogendra; Diwekar, Urmila; Cabezas, Heriberto; Williamson, James
2008-09-01
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic understanding further includes a sense of the time scale of possible future events and the limits of what is and is not likely to be possible. With this understanding, systematic approaches can then be used to develop policy guidelines for the system. This article presents an illustration of these ideas by analyzing an integrated ecological-economic-social model, which comprises various ecological (natural) and domesticated compartments representing species along with a macroeconomic price setting model. The stable and qualitatively realistic model is used to analyze different relevant scenarios. Apart from highlighting complex relationships within the system, it identifies potentially unsustainable future developments such as increased human per capita consumption rates. Dynamic optimization is then used to develop time-dependent policy guidelines for the unsustainable scenarios using objective functions that aim to minimize fluctuations in the system's Fisher information. The results can help to identify effective policy parameters and highlight the tradeoff between natural and domesticated compartments while managing such integrated systems. The results should also qualitatively guide further investigations in the area of system level studies and policy development.
Towards the XML schema measurement based on mapping between XML and OO domain
NASA Astrophysics Data System (ADS)
Rakić, Gordana; Budimac, Zoran; Heričko, Marjan; Pušnik, Maja
2017-07-01
Measuring quality of IT solutions is a priority in software engineering. Although numerous metrics for measuring object-oriented code already exist, measuring quality of UML models or XML Schemas is still developing. One of the research questions in the overall research leaded by ideas described in this paper is whether we can apply already defined object-oriented design metrics on XML schemas based on predefined mappings. In this paper, basic ideas for mentioned mapping are presented. This mapping is prerequisite for setting the future approach to XML schema quality measuring with object-oriented metrics.
An Elementary Introduction to Solar Dynamo Theory
NASA Astrophysics Data System (ADS)
Choudhuri, Arnab Rai
2007-07-01
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
ERIC Educational Resources Information Center
Kind, Vanessa; Kind, Per Morten
2011-01-01
Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by…
The New Millennium and an Education That Captures the Basic Spirit of Science.
ERIC Educational Resources Information Center
Bybee, Rodger W.
This document discusses reflections of the old and new millennium on education that capture the basic spirit of science. The explanation includes basic scientific ideas in physical sciences, earth systems, solar system and space; living systems; basic scientific thinking; the basic distinction between science and technology; basic connections…
Fishbone Diagrams: Organize Reading Content with a "Bare Bones" Strategy
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2010-01-01
Fishbone diagrams, also known as Ishikawa diagrams or cause-and-effect diagrams, are one of the many problem-solving tools created by Dr. Kaoru Ishikawa, a University of Tokyo professor. Part of the brilliance of Ishikawa's idea resides in the simplicity and practicality of the diagram's basic model--a fish's skeleton. This article describes how…
An alternative approach to the Boltzmann distribution through the chemical potential
NASA Astrophysics Data System (ADS)
D'Anna, Michele; Job, Georg
2016-05-01
The Boltzmann distribution is one of the most significant results of classical physics. Despite its importance and its wide range of application, at high school level it is mostly presented without any derivation or link to some basic ideas. In this contribution we present an approach based on the chemical potential that allows to derive it directly from the basic idea of thermodynamical equilibrium.
Modeling Self-Heating Effects in Nanoscale Devices
NASA Astrophysics Data System (ADS)
Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.
2017-08-01
Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.
Anticipatory dynamics of biological systems: from molecular quantum states to evolution
NASA Astrophysics Data System (ADS)
Igamberdiev, Abir U.
2015-08-01
Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1988-01-01
The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.
ERIC Educational Resources Information Center
Holyoke JUNTOS Adult Basic Education Collaborative, MA.
This booklet outlines approaches to adult basic education Spanish literacy. It includes the following: explanatory note for English (non-Spanish) readers; general goals of a Spanish language literacy (SLL) program in Holyoke, Massachusetts; checklists; learning objectives for reading and writing; SLL lesson plan guide; outline for SLL curriculum…
Zou, Ping; Luo, Pei-Gao
2010-05-01
Chemistry is an important group of basic courses, while genetics is one of the important major-basic courses in curriculum of many majors in agricultural institutes or universities. In order to establish the linkage between the major course and the basic course, the ability of application of the chemical knowledge previously learned in understanding genetic knowledge in genetics teaching is worthy of discussion for genetics teachers. In this paper, the authors advocate to apply some chemical knowledge previously learned to understand genetic knowledge in genetics teaching with infiltrative model, which could help students learn and understand genetic knowledge more deeply. Analysis of the intrinsic logistic relationship among the knowledge of different courses and construction of the integral knowledge network are useful for students to improve their analytic, comprehensive and logistic abilities. By this way, we could explore a new teaching model to develop the talents with new ideas and comprehensive competence in agricultural fields.
The dynamics of coastal models
Hearn, Clifford J.
2008-01-01
Coastal basins are defined as estuaries, lagoons, and embayments. This book deals with the science of coastal basins using simple models, many of which are presented in either analytical form or Microsoft Excel or MATLAB. The book introduces simple hydrodynamics and its applications, from the use of simple box and one-dimensional models to flow over coral reefs. The book also emphasizes models as a scientific tool in our understanding of coasts, and introduces the value of the most modern flexible mesh combined wave-current models. Examples from shallow basins around the world illustrate the wonders of the scientific method and the power of simple dynamics. This book is ideal for use as an advanced textbook for graduate students and as an introduction to the topic for researchers, especially those from other fields of science needing a basic understanding of the basic ideas of the dynamics of coastal basins.
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
2002-07-25
Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth
A Physical Model to Help Explain Evaporation
ERIC Educational Resources Information Center
Branca, M.; Soletta, I.
2014-01-01
One of the basic ideas when studying science is that matter is composed of particles (atoms or molecules) and these are in a constant state of agitation. In the solid or liquid state the molecules are attracted to each other, while in the gaseous state they have sufficient energy to overcome the forces of cohesion and can move away from one…
Building a Relationship between Elements of Product Form Features and Vocabulary Assessment Models
ERIC Educational Resources Information Center
Lo, Chi-Hung
2016-01-01
Based on the characteristic feature parameterization and the superiority evaluation method (SEM) in extension engineering, a product-shape design method was proposed in this study. The first step of this method is to decompose the basic feature components of a product. After that, the morphological chart method is used to segregate the ideas so as…
Schools of Quality: An Introduction to Total Quality Management in Education.
ERIC Educational Resources Information Center
Bonstingl, John Jay
This book offers an introduction to the basic ideas of Total Quality Management (TQM) in education. Chapter 1 contrasts the American model of the bell-shaped curve with the Japanese concept of "kaizen," which is personal dedication to mutual improvement and the heart of TQM philosophy. Chapter 2 provides an overview of the history of the TQ…
Unity of Command and Interdiction
1994-07-01
8217RobWt F. Fuftff Idea, Cancept, Doctrine: Basic Thinking i The United States Air Force. vol. 1 1O7-IMO W( Maxwell AFB, Ala.: Air University Press, 1989...Futrell, Ideas, Concepts, Doctrine: Basic Thinking in the United States Air Force, vol. 2, 1961-1984 ( Maxwell AFB, Ala.: Air University Press, 1989...in Vietnam and Why. Maxwell AFB, Ala: Air University Press, 1991. Warden, Col John A. HI. The Air Campaign - Planning For Combat. Washington, D.C
Basic stages in the development of the theory of Ramjet Engines (RJE)
NASA Technical Reports Server (NTRS)
Merkulov, I. A.
1977-01-01
Basic periods in the history of the development of ramjet engine theory are cited. The periods include the first experimental tests as well as the development of basic ideas and theoretical development of the cosmic ramjet engine.
Reflexion on linear regression trip production modelling method for ensuring good model quality
NASA Astrophysics Data System (ADS)
Suprayitno, Hitapriya; Ratnasari, Vita
2017-11-01
Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.
Scientific Self-Defense: Transforming Dewey's Idea of Technological Transparency
ERIC Educational Resources Information Center
Waddington, David I.
2010-01-01
In this essay, David Waddington provides a basic outline of John Dewey's often-overlooked views on technology education and explores how these ideas could be updated productively for use in contemporary contexts. Some of the shortcomings of Dewey's ideas are also examined--his faith in the scientific method may have been excessive, and some…
Narrative ideas for consulting with communities and organizations: ripples from the gatherings.
Freedman, Jill; Combs, Gene
2009-09-01
This paper reviews Michael White's early work with communities and extends ideas and practices from that work into the realm of consulting with organizations. We draw on Michael's writing and the records of two specific projects, as well as the recollections of team members in those projects, to describe how ideas and practices that were originally developed in working with individuals and families came to be applied in community settings. Specifically, we show how the central intention of the work is to use narrative ideas and practices in ways that allow communities to articulate, appreciate, document, utilize, and share their own knowledges of life and skills of living. We discuss the basic narrative ideas of stories, double listening, telling and retelling, making documents, and linking lives through shared purposes. For these projects, the teams developed structures that made it possible to use the basic idea with whole communities. We show how this work with communities has offered inspiration and ideas for our work in consulting to organizations. Finally, we describe and illustrate a particular way of working with organizations that carries the spirit of Michael's community work into situations requiring shorter blocks of time and more limited commitments than the original community contexts.
A pocket model for aluminum agglomeration in composite propellants
NASA Technical Reports Server (NTRS)
Cohen, N. S.
1981-01-01
This paper presents a model for the purpose of estimating the fraction of aluminum powder that will form agglomerates at the surface of deflagrating composite propellants. The basic idea is that the fraction agglomerated depends upon the amount of aluminum that melts within effective binder pocket volumes framed by oxidizer particles. The effective pocket depends upon the ability of ammonium perchlorate modals to encapsulate the aluminum and provide a local temperature sufficient to ignite the aluminum. Model results are discussed in the light of data showing effects of propellant formulation variables and pressure.
A study of alternative schemes for extrapolation of secular variation at observatories
Alldredge, L.R.
1976-01-01
The geomagnetic secular variation is not well known. This limits the useful life of geomagnetic models. The secular variation is usually assumed to be linear with time. It is found that attenative schemes that employ quasiperiodic variations from internal and external sources can improve the extrapolation of secular variation at high-quality observatories. Although the schemes discussed are not yet fully applicable in worldwide model making, they do suggest some basic ideas that may be developed into useful tools in future model work. ?? 1976.
Suthers, M
2000-10-01
Neuro Linguistic Programming (NLP) as a model of human behaviour is presented. Its basic tenets and the factors that give rise to the physiological and emotional response to an external event are described. A number of psychotherapeutic interventions are also described, along with the influence of NLP on sporting and academic success. Finally, an exploration of these ideas for the purpose of contributing to personal well-being is given.
Individual Differences in Attention.
1980-09-01
allocatable mental resouce has received con- siderable attention in experimental psychology, but little effort has been made to formally apply the concept...presentation will be In four sections. The first contains a dis- cussion of the concept of attentional resources as it has been developed by experimental ...reports experimental results which pertain to this model. A closing Attention 3 section deals with further implications of the basic ideas. THE RESOURCE
Top-down predictions in the cognitive brain
Kveraga, Kestutis; Ghuman, Avniel S.; Bar, Moshe
2007-01-01
The human brain is not a passive organ simply waiting to be activated by external stimuli. Instead, it is proposed tat the brain continuously employs memory of past experiences to interpret sensory information and predict the immediately relevant future. This review concentrates on visual recognition as the model system for developing and testing ideas about the role and mechanisms of top-down predictions in the brain. We cover relevant behavioral, computational and neural aspects. These ideas are then extended to other domains. The basic elements of this proposal include analogical mapping, associative representations and the generation of predictions. Connections to a host of cognitive processes will be made and implications to several mental disorders will be proposed. PMID:17923222
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Bilingual Education.
Presented is an overview of some specific schemes that have been used successfully by teachers throughout New York State to strengthen basic mathematics skills. Components offer ideas that have been successful with primary, intermediate, and secondary students. The contents of this Spanish language edition are identical to the English language and…
ERIC Educational Resources Information Center
Immerzeel, George; Wiederanders, Don
1974-01-01
Four ideas are presented, each a variation of the tic-tac-toe game. Recognizing three addends is the goal of the primary level game; experiences with basic facts and fractions are objectives for upper levels. Each worksheet includes objectives, directions, and comments. (LS)
AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*
Bruch, Elizabeth; Atwell, Jon
2014-01-01
Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351
Study on the tumor-induced angiogenesis using mathematical models.
Suzuki, Takashi; Minerva, Dhisa; Nishiyama, Koichi; Koshikawa, Naohiko; Chaplain, Mark Andrew Joseph
2018-01-01
We studied angiogenesis using mathematical models describing the dynamics of tip cells. We reviewed the basic ideas of angiogenesis models and its numerical simulation technique to produce realistic computer graphics images of sprouting angiogenesis. We examined the classical model of Anderson-Chaplain using fundamental concepts of mass transport and chemical reaction with ECM degradation included. We then constructed two types of numerical schemes, model-faithful and model-driven ones, where new techniques of numerical simulation are introduced, such as transient probability, particle velocity, and Boolean variables. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen
2016-01-01
Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit’s promise in improving students’ understanding of the targeted ideas. PMID:27909024
A Study of Green's Function Methods Applied to Space Radiation Protection
NASA Technical Reports Server (NTRS)
Heinbockel, John H.
2001-01-01
The purpose of this research was to study the propagation of galactic ions through various materials. Galactic light ions result from the break up of heavy ion particles and their propagation through materials is modeled using the one-dimensional Boltzmann equation. When ions enter materials there can occur (i) the interaction of ions with orbital electrons which causes ionization within the material and (ii) ions collide with atoms causing production of secondary particles which penetrate deeper within the material. These processes are modeled by a continuum model. The basic idea is to place a control volume within the material and examine the change in ion flux across this control volume. In this way on can derive the basic equations for the transport of light and heavy ions in matter. Green's function perturbation methods can then be employed to solve the resulting equations using energy dependent nuclear cross sections.
Basic Education: Reflections on Participatory Curriculum Development and Planning.
ERIC Educational Resources Information Center
Sachsenmeier, Peter, Ed.; And Others
Basic education as the first stage of lifelong education is emerging as a significant alternative to traditional education, especially for rural populations in Third World countries. Basic education is a set of interrelated ideas: community orientation of education, integration of formal, nonformal, and informal learning into lifelong learning,…
ERIC Educational Resources Information Center
Rice, Diana C.; Kaya, Sibel
2012-01-01
This study investigated the relations among preservice elementary teachers' ideas about evolution, their understanding of basic science concepts and college science coursework. Forty-two percent of 240 participants did not accept the theory of human evolution, but held inconsistent ideas about related topics, such as co-existence of humans and…
Rebels With a Cause: Myles Horton and Paulo Friere
ERIC Educational Resources Information Center
Conti, Gary J.
1977-01-01
Discusses the ideas and educational philosophies of two radical leaders of adult basic education. Both were learner-centered and humanistic and both viewed adult basic education as a method of social reform. (DC)
ROLE OF CONTROLLABILITY FOR LONG TERM SUSTAINABILITY
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often nonlinear and nonintuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic unde...
Bayesian models: A statistical primer for ecologists
Hobbs, N. Thompson; Hooten, Mevin B.
2015-01-01
Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models
Modeling Off-Nominal Behavior in SysML
NASA Technical Reports Server (NTRS)
Day, John; Donahue, Kenny; Ingham, Mitch; Kadesch, Alex; Kennedy, Kit; Post, Ethan
2012-01-01
Fault Management is an essential part of the system engineering process that is limited in its effectiveness by the ad hoc nature of the applied approaches and methods. Providing a rigorous way to develop and describe off-nominal behavior is a necessary step in the improvement of fault management, and as a result, will enable safe, reliable and available systems even as system complexity increases... The basic concepts described in this paper provide a foundation to build a larger set of necessary concepts and relationships for precise modeling of off-nominal behavior, and a basis for incorporating these ideas into the overall systems engineering process.. The simple FMEA example provided applies the modeling patterns we have developed and illustrates how the information in the model can be used to reason about the system and derive typical fault management artifacts.. A key insight from the FMEA work was the utility of defining failure modes as the "inverse of intent", and deriving this from the behavior models.. Additional work is planned to extend these ideas and capabilities to other types of relevant information and additional products.
Performance evaluation of Olympic weightlifters.
Garhammer, J
1979-01-01
The comparison of weights lifted by athletes in different bodyweight categories is a continuing problem for the sport of olympic weightlifting. An objective mechanical evaluation procedure was developed using basic ideas from a model proposed by Ranta in 1975. This procedure was based on more realistic assumptions than the original model and considered both vertical and horizontal bar movements. Utilization of data obtained from film of national caliber lifters indicated that the proposed method was workable, and that the evaluative indices ranked lifters in reasonable order relative to other comparative techniques.
ERIC Educational Resources Information Center
Kahriman-Ozturk, Deniz; Olgan, Refika; Guler, Tulin
2012-01-01
The purpose of this study is to describe ideas of preschool children about sustainable development. Basic qualitative research was utilized and 36 preschool children enrolled in four different preschools in Ankara were included in the study. Semi-structured interviews were used to obtain data related to ideas of preschool children on three pillars…
The Form of Thinking for Basic Writers.
ERIC Educational Resources Information Center
Hartnett, Carolyn G.
To do academic work, basic writers must know how to use the forms that express mature thinking. Accustomed to the demands of speech, basic writers often rely on unspecified context to relate ideas, thus failing to establish the connections evident in well-developed thought. While able to use certain cohesive ties such as repetitions,…
Controllability of complex networks for sustainable system dynamics
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often non-linear and non-intuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic un...
1981-03-01
systems, sub- systems, equipment, weapons, tactics, missions, etc. Concepts and Principles - Fundamental truths, ideas, opinions and thoughts formed from...verification, etc. Grasping the meaning of concepts and principles , i.e., understanding the basic principles of infrared and radar detection. Understanding...concepts, principles , procedures, etc.). Analysis A demonstration of a learned process of breaking down material (i.e., data, other information) into
Chimaera simulation of complex states of flowing matter
2016-01-01
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro–meso–micro levels through suitable ‘mutations’ of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698031
Objective Setting Materials. No. 158.
ERIC Educational Resources Information Center
Goddu, Roland
Basic concepts of management by objectives are presented for the school principal interested in turning the idea of educational innovation into the fact of educational innovation. The difference between objectives (ideas) and outcomes (events, products, achievements) is discussed, and methods for developing, writing, and evaluating objectives are…
The Octet Rules: A Dating Game for Atoms
ERIC Educational Resources Information Center
Welborn, Jennifer
2004-01-01
To develop student interest in the periodic table, the author developed a simple, but fun, role-playing activity. This play is used after students have learned the basic structure of atoms and the general layout of the periodic table. It also comes after students have learned the basics of ionic and covalent bonding. The basic idea of bonding is…
Strategies for Success: An Administrator's Guide to Writing.
ERIC Educational Resources Information Center
Yerkes, Diane; Morgan, Sharon
This booklet offers practical ideas, specific examples, and realistic solutions to the most common writing problems that administrators face. The booklet's four chapters are: (1) Writing Basics (ideas on organization, reasons to write, writers' responsibilities, getting personal, and writing for a particular occasion); (2) Getting Started (getting…
Interventions and Strategies in Counseling and Psychotherapy.
ERIC Educational Resources Information Center
Watts, Richard E., Ed.; Carlson, Jon, Ed.
This book acknowledges the contributions of Alfred Adler and illustrates the many ways in which Adlerian ideas underpin and influence contemporary therapeutic approaches. It brings together today's leading thinkers to address the practice of counseling and psychotherapy from a social-cognitive perspective. Contributors apply the basic ideas of…
Exploring Classroom Hydroponics. Growing Ideas.
ERIC Educational Resources Information Center
National Gardening Association, Burlington, VT.
Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…
ERIC Educational Resources Information Center
Pantin, Gerard
This publication summarizes the evolution of the basic ideas and philosophies of a community development organization called Servol in Trinidad and recounts how over nine years these ideas coalesced into a unified approach. The document describes how the earliest projects--a welding institute, a clinic, a nursery school, and recreational…
A survey of functional programming language principles
NASA Technical Reports Server (NTRS)
Holloway, C. M.
1986-01-01
Research in the area of functional programming languages has intensified in the 8 years since John Backus' Turing Award Lecture on the topic was published. The purpose of this paper is to present a survey of the ideas of functional programming languages. The paper assumes the reader is comfortable with mathematics and has knowledge of the basic principles of traditional programming languages, but does not assume any prior knowledge of the ideas of functional languages. A simple functional language is defined and used to illustrate the basic ideas. Topics discussed include the reasons for developing functional languages, methods of expressing concurrency, the algebra of functional programming languages, program transformation techniques, and implementations of functional languages. Existing functional languages are also mentioned. The paper concludes with the author's opinions as to the future of functional languages. An annotated bibliography on the subject is also included.
Dynamical foundations of the neural circuit for bayesian decision making.
Morita, Kenji
2009-07-01
On the basis of accumulating behavioral and neural evidences, it has recently been proposed that the brain neural circuits of humans and animals are equipped with several specific properties, which ensure that perceptual decision making implemented by the circuits can be nearly optimal in terms of Bayesian inference. Here, I introduce the basic ideas of such a proposal and discuss its implications from the standpoint of biophysical modeling developed in the framework of dynamical systems.
Chimaera simulation of complex states of flowing matter.
Succi, S
2016-11-13
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro-meso-micro levels through suitable 'mutations' of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Fluidic Spacetime and Representation of Fields in the Tri-Space Model of the Universe
NASA Astrophysics Data System (ADS)
Meholic, Gregory V.
2009-03-01
The Tri-Space Model of the universe (see Meholic, 1998 and 2004) is based upon the premise that the governing mathematics of special relativity describe a symmetrical continuum that supports not just one, but three, independent spacetimes each with a unique set of physical laws founded on the velocity v to light speed c ratio. These realms are subluminal space (where v/c<1), luminal spacetime (where v/c = 1), and superluminal space (where v/c>1) together comprising the `tri-space' universe. Although real, measurable mass can exist in both the sub- and superluminal spaces, the adjacent luminal spacetime shared by the two spaces is the realm in which all electromagnetic and gravitational fields exist. Determining the true nature of spacetime, and hence the true nature of the fundamental forces, has been the driving objective for ideas such as string theory and quantum mechanics. The Tri-Space approach, however, merges the basic premises of these ideas with the philosophy that the three spatial realms, especially luminal spacetime, can be represented as a quasi-fluidic continuum whose behavior can be approximated through modified classical fluid-dynamic analogies with flow field structure and fluid properties. If the fluid-like properties of spacetime can be sufficiently defined, then a graphical representation of the fundamental structure and characterization of the basic forces in nature can be developed.
Teaching Children to Identify the Main Idea of Expository Texts.
ERIC Educational Resources Information Center
Williams, Joanna P.
1986-01-01
When 11-year-old learning disabled students who were two years behind in reading participated in an instructional program emphasizing comprehension of main ideas using basic categorization and classification skills, there was a significant and substantial improvement in reading comprehension and ability to write sentences containing the main idea…
NASA Astrophysics Data System (ADS)
Luo, Y.; Nissen-Meyer, T.; Morency, C.; Tromp, J.
2008-12-01
Seismic imaging in the exploration industry is often based upon ray-theoretical migration techniques (e.g., Kirchhoff) or other ideas which neglect some fraction of the seismic wavefield (e.g., wavefield continuation for acoustic-wave first arrivals) in the inversion process. In a companion paper we discuss the possibility of solving the full physical forward problem (i.e., including visco- and poroelastic, anisotropic media) using the spectral-element method. With such a tool at hand, we can readily apply the adjoint method to tomographic inversions, i.e., iteratively improving an initial 3D background model to fit the data. In the context of this inversion process, we draw connections between kernels in adjoint tomography and basic imaging principles in migration. We show that the images obtained by migration are nothing but particular kinds of adjoint kernels (mainly density kernels). Migration is basically a first step in the iterative inversion process of adjoint tomography. We apply the approach to basic 2D problems involving layered structures, overthrusting faults, topography, salt domes, and poroelastic regions.
NASA Astrophysics Data System (ADS)
Lachieze-Rey, Marc
This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.
[Hazard function and life table: an introduction to the failure time analysis].
Matsushita, K; Inaba, H
1987-04-01
Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.
A thermodynamic and theoretical view for enzyme regulation.
Zhao, Qinyi
2015-01-01
Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.
NASA Astrophysics Data System (ADS)
Gangui, Alejandro; Iglesias, María; Quinteros, Cynthia
2011-06-01
Recent studies have shown that not only primary school students but also their future teachers reach science courses with pre-constructed and consistent models of the world surrounding them. These ideas include many misconceptions which turn out to be robust and hence make difficult an appropriate teaching-learning process. We have designed some tools (and show here results with a questionnaire) that proved helpful in putting in evidence some of the most frequently used alternative models on a few basic astronomical notions. We have tested this questionnaire with preservice elementary teachers from various normal schools in Buenos Aires and made a first analysis of the results. The collection of data recovered so far shows that some non-scientific conceptions are indeed part of the prospective teachers' (scientific) background and, therefore, that the issue deserves special attention during their formal training.
NASA Technical Reports Server (NTRS)
Katow, S. M.
1979-01-01
The computer analysis of the 34-m HA-DEC antenna by the IDEAS program provided the rms distortions of the surface panels support points for full gravity loadings in the three directions of the basic coordinate system of the computer model. The rms distortions for the gravity vector not in line with any of the three basic directions were solved and contour plotted starting from three surface panels setting declination angle. By inspections of the plots, it was concluded that the setting or rigging angle of -15 degrees declination minimized the rms distortions for sky coverage of plus or minus 22 declination angles to 10 degrees of ground mask.
Thinking as the control of imagination: a conceptual framework for goal-directed systems.
Pezzulo, Giovanni; Castelfranchi, Cristiano
2009-07-01
This paper offers a conceptual framework which (re)integrates goal-directed control, motivational processes, and executive functions, and suggests a developmental pathway from situated action to higher level cognition. We first illustrate a basic computational (control-theoretic) model of goal-directed action that makes use of internal modeling. We then show that by adding the problem of selection among multiple action alternatives motivation enters the scene, and that the basic mechanisms of executive functions such as inhibition, the monitoring of progresses, and working memory, are required for this system to work. Further, we elaborate on the idea that the off-line re-enactment of anticipatory mechanisms used for action control gives rise to (embodied) mental simulations, and propose that thinking consists essentially in controlling mental simulations rather than directly controlling behavior and perceptions. We conclude by sketching an evolutionary perspective of this process, proposing that anticipation leveraged cognition, and by highlighting specific predictions of our model.
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
Theoretical Models and Operational Frameworks in Public Health Ethics
Petrini, Carlo
2010-01-01
The article is divided into three sections: (i) an overview of the main ethical models in public health (theoretical foundations); (ii) a summary of several published frameworks for public health ethics (practical frameworks); and (iii) a few general remarks. Rather than maintaining the superiority of one position over the others, the main aim of the article is to summarize the basic approaches proposed thus far concerning the development of public health ethics by describing and comparing the various ideas in the literature. With this in mind, an extensive list of references is provided. PMID:20195441
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1981-01-01
Research centered on basic topics in the modeling and feedback control of nonlinear dynamical systems is reported. Of special interest were the following topics: (1) the role of series descriptions, especially insofar as they relate to questions of scheduling, in the control of gas turbine engines; (2) the use of algebraic tensor theory as a technique for parameterizing such descriptions; (3) the relationship between tensor methodology and other parts of the nonlinear literature; (4) the improvement of interactive methods for parameter selection within a tensor viewpoint; and (5) study of feedback gain representation as a counterpart to these modeling and parameterization ideas.
A TEACHER'S GUIDE FOR ADULT BASIC EDUCATION.
ERIC Educational Resources Information Center
BROWN, ANTRONETTE
COMPILED AS AN IDEA AND INFORMATION GUIDE FOR TEACHERS OF ADULT BASIC EDUCATION, THIS DOCUMENT INCLUDES DETAILED TEACHING OBJECTIVES, METHODS, AND MATERIALS (FILMS, FILMSTRIPS, BOOKS, TRANSPARENCIES). THE COURSE INCLUDES (1) READING AND COMMUNICATION SKILLS--PHONICS, VOCABULARY, REFERENCE, AND SO ON, (2) SOCIAL STUDIES--GOVERNMENT, GEOGRAPHY,…
NoteCards: A Multimedia Idea Processing Environment.
ERIC Educational Resources Information Center
Halasz, Frank G.
1986-01-01
Notecards is a computer environment designed to help people work with ideas by providing a set of tools for a variety of specific activities, which can range from sketching on the back of an envelope to formally representing knowledge. The basic framework of this hypermedia system is a semantic network of electronic notecards connected by…
The ADA and IDEA Basics: Inclusion of Children with Disabilities
ERIC Educational Resources Information Center
Motwani, Mona
2007-01-01
This article discusses the American with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA). The ADA is a federal civil rights law that was passed in 1990 with the aim of securing equal rights for persons with disabilities in the employment, housing, government, transportation, and public accommodation contexts. It…
The Chinese Idea of Universities and the Beida Reform
ERIC Educational Resources Information Center
Yang, Gan
2004-01-01
"As far as all the universities in today?s Chinese societies are concerned, the fundamental problem of universities operated by Chinese is that basically there can be no mention of cultural self-confidence or cultural consciousness; or in other words, they have far from established a Chinese idea of university." The fundamental mission…
ERIC Educational Resources Information Center
Duke, Roger; Graham, Alan
2007-01-01
In this article, the authors describe how a Java applet can help to build learners' intuitions about basic ideas of algebra. "Matchbox Algebra" is a Java applet the authors have designed to enable learners to grasp a key idea in learning algebra: that the letter "x" may be thought of as representing an as-yet-unknown number. They describe the…
Between Private and Public: Recognition, Revolution and Political Renewal
ERIC Educational Resources Information Center
Stillwaggon, James
2011-01-01
This paper deals with some issues underlying the role of education in the preparation of students for democratic participation. Throughout, I maintain two basic ideas: first, that a political action undertaken to obtain practical ends reflects a set of privately held values whose recognition is therefore essential to any idea of the political;…
A Child's Right to Be Entertained
ERIC Educational Resources Information Center
Leidman, Mary Beth
2006-01-01
The purpose of this discussion is to explore the idea that children, like adults, have certain rights that include the basic right to be entertained. A hypothesis was developed supporting the idea that there exists affective value for a child if he or she has the opportunity to occasionally sit and watch media which contains no particular…
Suppose We Took Groups Seriously...
ERIC Educational Resources Information Center
Leavitt, Harold J.
The idea of using groups, rather than individuals, as the basic building blocks for an organization is suggested in this paper. Although this idea is not new in theory, it is new in practice. To design an organization from scratch around groups appears to violate the American value of individualism. Groups, however, have advantages over…
The "Next Generation Science Standards": A Focus on Physical Science
ERIC Educational Resources Information Center
Krajcik, Joe
2013-01-01
What should all students know about the physical sciences? Why should all students have a basic understanding of these ideas? An amazing number of new scientific breakthroughs have occurred in the last 20 years that impact daily lives. This article focuses on the "Next Generation Science Standards" (NGSS) disciplinary core ideas in…
A New Framework for Cumulus Parametrization - A CPT in action
NASA Astrophysics Data System (ADS)
Jakob, C.; Peters, K.; Protat, A.; Kumar, V.
2016-12-01
The representation of convection in climate model remains a major Achilles Heel in our pursuit of better predictions of global and regional climate. The basic principle underpinning the parametrisation of tropical convection in global weather and climate models is that there exist discernible interactions between the resolved model scale and the parametrised cumulus scale. Furthermore, there must be at least some predictive power in the larger scales for the statistical behaviour on small scales for us to be able to formally close the parametrised equations. The presentation will discuss a new framework for cumulus parametrisation based on the idea of separating the prediction of cloud area from that of velocity. This idea is put into practice by combining an existing multi-scale stochastic cloud model with observations to arrive at the prediction of the area fraction for deep precipitating convection. Using mid-tropospheric humidity and vertical motion as predictors, the model is shown to reproduce the observed behaviour of both mean and variability of deep convective area fraction well. The framework allows for the inclusion of convective organisation and can - in principle - be made resolution-aware or resolution-independent. When combined with simple assumptions about cloud-base vertical motion the model can be used as a closure assumption in any existing cumulus parametrisation. Results of applying this idea in the the ECHAM model indicate significant improvements in the simulation of tropical variability, including but not limited to the MJO. This presentation will highlight how the close collaboration of the observational, theoretical and model development community in the spirit of the climate process teams can lead to significant progress in long-standing issues in climate modelling while preserving the freedom of individual groups in pursuing their specific implementation of an agreed framework.
Automatic item generation implemented for measuring artistic judgment aptitude.
Bezruczko, Nikolaus
2014-01-01
Automatic item generation (AIG) is a broad class of methods that are being developed to address psychometric issues arising from internet and computer-based testing. In general, issues emphasize efficiency, validity, and diagnostic usefulness of large scale mental testing. Rapid prominence of AIG methods and their implicit perspective on mental testing is bringing painful scrutiny to many sacred psychometric assumptions. This report reviews basic AIG ideas, then presents conceptual foundations, image model development, and operational application to artistic judgment aptitude testing.
The Well-being Conception of Health and the Conflation Problem.
de Campos, Thana C
2016-04-01
Human rights advocates often use inflated and thus underspecified terminologies when addressing the content of their claims. One example of such loose terminology is the term 'well-being', as currently employed in connection with a definition for the right to health. What I call the 'well-being conception of health' conflates the distinct ideas of basic and non-basic health needs, as well as those of individual autonomy and freedom. I call this the conflation problem. This paper argues for the need of an understanding of the right to health, nuanced enough to capture not only these distinct ideas, but also their moral relevance for the common good.
EDUCATIONAL TECHNOLOGY, PREPARATION AND USE IN ADULT BASIC EDUCATION PROGRAMS.
ERIC Educational Resources Information Center
IVERSON, MAURICE T.; AND OTHERS
AUDIOVISUAL MATERIALS, WHEN COMBINED WITH CONSIDERATION OF THE WAYS PEOPLE LEARN, CAN OFFER NEW WAYS OF EXPRESSING IDEAS, PRESENTING INFORMATION, AND MAKING INSTRUCTION CHALLENGING AND EFFICIENT. THIS PUBLICATION, DIRECTED AT TEACHERS OF ADULT BASIC EDUCATION AND THEIR ADMINISTRATORS, ILLUSTRATES APPLICATIONS OF INSTRUCTIONAL TECHNOLOGY TO ADULT…
Basic Stuff--Ideas for Implementation.
ERIC Educational Resources Information Center
Fox, Connie
Use of the American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD) "Basic Stuff" (1981) series (which includes six texts explaining each concept and three texts illustrating their use in the elementary, middle, and secondary schools) is recommended for physical education teacher preparation programs. A study was undertaken…
NASA Astrophysics Data System (ADS)
Bérczi, Sz.; Hegyi, S.; Hudoba, Gy.; Hargitai, H.; Kokiny, A.; Drommer, B.; Gucsik, A.; Pintér, A.; Kovács, Zs.
Several teachers and students had the possibility to visit International Space Camp in the vicinity of the MSFC NASA in Huntsville Alabama USA where they learned the success of simulators in space science education To apply these results in universities and colleges in Hungary we began a unified complex modelling in planetary geology robotics electronics and complex environmental analysis by constructing an experimental space probe model system First a university experimental lander HUNVEYOR Hungarian UNiversity surVEYOR then a rover named HUSAR Hungarian University Surface Analyser Rover has been built For Hunveyor the idea and example was the historical Surveyor program of NASA in the 1960-ies for the Husar the idea and example was the Pathfinder s rover Sojouner rover The first step was the construction of the lander a year later the rover followed The main goals are 1 to build the lander structure and basic electronics from cheap everyday PC compatible elements 2 to construct basic experiments and their instruments 3 to use the system as a space activity simulator 4 this simulator contains lander with on board computer for works on a test planetary surface and a terrestrial control computer 5 to harmonize the assemblage of the electronic system and instruments in various levels of autonomy from the power and communication circuits 6 to use the complex system in education for in situ understanding complex planetary environmental problems 7 to build various planetary environments for application of the
Using Scientific and Industrial Films in Teaching Technical Communication.
ERIC Educational Resources Information Center
Veeder, Gerry
A film course especially designed for technical communication students can illustrate basic film concepts and techniques while showing how film effectively communicates ideas in an industrial and scientific communication system. After a basic introduction to film terms, the study of actual scientific and industrial films demonstrates the following…
Aircraft: United States Air Force Child Care Program Activity Guide.
ERIC Educational Resources Information Center
Boggs, Juanita; Brant, Linda
General information about United States' aircraft is provided in this program activity guide for teachers and caregivers in Air Force preschools and day care centers. The guide includes basic information for teachers and caregivers, basic understandings, suggested teaching methods and group activities, vocabulary, ideas for interest centers, and…
Money Matters for the Young Learner
ERIC Educational Resources Information Center
Hill, Andrew T.
2010-01-01
Children's economic reasoning follows a developmental sequence in which their ideas about money and other basic economic concepts are forming. Even children in the early primary grades can learn some basic economics and retain understanding of economic concepts if they are taught in developmentally appropriate ways. Given how important economic…
Grants4Targets - an innovative approach to translate ideas from basic research into novel drugs.
Lessl, Monika; Schoepe, Stefanie; Sommer, Anette; Schneider, Martin; Asadullah, Khusru
2011-04-01
Collaborations between industry and academia are steadily gaining importance. To combine expertises Bayer Healthcare has set up a novel open innovation approach called Grants4Targets. Ideas on novel drug targets can easily be submitted to http://www.grants4targets.com. After a review process, grants are provided to perform focused experiments to further validate the proposed targets. In addition to financial support specific know-how on target validation and drug discovery is provided. Experienced scientists are nominated as project partners and, depending on the project, tools or specific models are provided. Around 280 applications have been received and 41 projects granted. According to our experience, this type of bridging fund combined with joint efforts provides a valuable tool to foster drug discovery collaborations. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Scriven, Michael
2011-01-01
In this paper, the author talks about Faster Forward Fund (3F). The basic idea of 3F is to provide support for three approaches within the evaluation field that are not the main foci of AEA activities, or of any other organization as far as is known: (1) to develop ideas that show promise for significantly accelerating the theory or practice of…
Marx and Education. Routledge Key Ideas in Education
ERIC Educational Resources Information Center
Anyon, Jean
2011-01-01
There was only one Karl Marx, but there have been a multitude of Marxisms. This concise, introductory book by internationally renowned scholar Jean Anyon centers on the ideas of Marx that have been used in education studies as a guide to theory, analysis, research, and practice. "Marx and Education" begins with a brief overview of basic Marxist…
Chapter 6: Equality and Justice for All? Examining Race in Education Scholarship
ERIC Educational Resources Information Center
Brayboy, Bryan McKinley Jones; Castagno, Angelina E.; Maughan, Emma
2007-01-01
This article focuses on the basic idea that having equality and justice for all in schooling cannot be achieved in the current climate where students are viewed solely as individuals. In fact, given the educational debt and achievement gaps, the ideas of equality and justice are necessarily contradictory. Achieving justice, in light of the…
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Bilingual Education.
Presented is an overview of some specific schemes that have been used successfully by teachers throughout New York State to strengthen basic mathematics skills. Components offer ideas that have been successful with primary, intermediate, and secondary students. The contents of this Italian language edition are identical to the English language and…
Mix, Stir, Blend...A Pantry of Cooking Activities and Ideas for Elementary K-6.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Education, Oklahoma City.
Contained in this multi-curriculum guide are recipes, activities, and ideas for teaching elementary students about nutrition, foods, cooking, utensils, table setting, and cooking safety. The recipes involve the basic four food groups and may be reproduced to provide students with their own cookbooks. Recipes are divided between primary and…
The Fourth R: A Visual Arts Curriculum Handbook.
ERIC Educational Resources Information Center
Hastings, Kathryn Kusche
This handbook contains ideas for basic visual arts production in grades K through 6, and gives suggestions for using the ideas in art and interdisciplinary lessons. The book is organized into 5 sections. The Introduction provides a Table of Activities that serves as a reference to the art elements addressed by specific activities. Section 2,…
ERIC Educational Resources Information Center
Thomson, Alastair
2011-01-01
Political leaders like to put forward guiding ideas or themes which pull their individual decisions into a broader narrative. For John Major it was Back to Basics, for Tony Blair it was the Third Way and for David Cameron it is the Big Society. While Mr. Blair relied on Lord Giddens to add intellectual weight to his idea, Mr. Cameron's legacy idea…
Students' Conceptions of Basic Ideas of the Second Law of Thermodynamics.
ERIC Educational Resources Information Center
Duit, Reinders; Kesidou, Sofia
The focus of this study was to portray the ideas that students with four years experience in learning physics developed in regard to the second law of thermodynamics. Data were obtained through 34 clinical interviews with grade 10 students. An analysis of student arguments revealed deeply rooted difficulties in using concepts that were learned in…
ERIC Educational Resources Information Center
Weisgerber, Leo
1972-01-01
Discussion of two basic conceptions: Wilhelm von Humboldt's idea of language as energeia'' existing within and without man, and Noam Chomsky's idea of language generated by the speaker according to an innate apparatus. Revised version of lectures presented at the University of Bonn, West Germany in August 1971. (RS)
The Impact of Film. How Ideas Are Communicated Through Cinema and Television.
ERIC Educational Resources Information Center
Madsen, Roy Paul
The forms and concepts of cinema and television are examined in order to shed light upon the techniques of communicating ideas and achieving psychological effects on film. Part I of the book focuses upon basic cinematic and television concepts, including matters such as the language and grammar of cinematography, the syntax of editing, the…
ERIC Educational Resources Information Center
Ormond, Christine
2012-01-01
Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…
Making Dollars by Making Sense: Linking Rural Education and Development in Appalachia.
ERIC Educational Resources Information Center
Sher, Jonathan P.
The idea that education is connected to economic development and that the economy can be strengthened by strengthening education has become a cornerstone of the 1980s educational reform movement. The basic idea linking education and the economy is not new. Americans have invested in education with the expectation that it would yield substantial…
An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry
NASA Astrophysics Data System (ADS)
Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul
2013-12-01
The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.
Economic model for QoS guarantee on the Internet
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wei, Jiaolong
2001-09-01
This paper describes a QoS guarantee architecture suited for best-effort environments, based on ideas from microeconomics and non-cooperative game theory. First, an analytic model is developed for the study of the resource allocation in the Internet. Then we show that with a simple pricing mechanism (from network implementation and users' points-of-view), we were able to provide QoS guarantee at per flow level without resource allocation or complicated scheduling mechanisms or maintaining per flow state in the core network. Unlike the previous work on this area, we extend the basic model to support inelastic applications which require minimum bandwidth guarantees for a given time period by introducing derivative market.
Concept confusion and concept discernment in basic magnetism using analogical reasoning
NASA Astrophysics Data System (ADS)
Lemmer, Miriam; Nicodimus Morabe, Olebogeng
2017-07-01
Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the consequences of this use in the teaching of magnetism with special reference to misconceptions. We begin by identifying concept confusion and associated misconceptions in magnetism due to in-service physics teachers’ spontaneous analogical reasoning. Two analogy-based experiments that can be used to convert such concept confusion to discernment are then described. These experiments focus on understanding basic principles about sources and interactions of magnetic fields and implement the constructivist learning processes of discrimination and generalization. Lastly, recommendations towards reinforcement of conceptual understanding of basic magnetism in its relation to electricity are proposed.
A role for low-order system dynamics models in urban health policy making.
Newell, Barry; Siri, José
2016-10-01
Cities are complex adaptive systems whose responses to policy initiatives emerge from feedback interactions between their parts. Urban policy makers must routinely deal with both detail and dynamic complexity, coupled with high levels of diversity, uncertainty and contingency. In such circumstances, it is difficult to generate reliable predictions of health-policy outcomes. In this paper we explore the potential for low-order system dynamics (LOSD) models to make a contribution towards meeting this challenge. By definition, LOSD models have few state variables (≤5), illustrate the non-linear effects caused by feedback and accumulation, and focus on endogenous dynamics generated within well-defined boundaries. We suggest that experience with LOSD models can help practitioners to develop an understanding of basic principles of system dynamics, giving them the ability to 'see with new eyes'. Because efforts to build a set of LOSD models can help a transdisciplinary group to develop a shared, coherent view of the problems that they seek to tackle, such models can also become the foundations of 'powerful ideas'. Powerful ideas are conceptual metaphors that provide the members of a policy-making group with the a priori shared context required for effective communication, the co-production of knowledge, and the collaborative development of effective public health policies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sustainability assessment through analogical models: The approach of aerobic living-organism
NASA Astrophysics Data System (ADS)
Dassisti, Michele
2014-10-01
The most part of scientific discoveries of human being borrow ideas and inspiration from nature. This point gives the rationale of the sustainability assessment approach presented here and based on the aerobic living organism (ALO) already developed by the author, which funds on the basic assumption that it is reasonable and effective to refer to the analogy between an system organized by human (say, manufacturing system, enterprise, etc.) for several decision-making scopes. The critical review of the ALO conceptual model already developed is here discussed through an example of an Italian small enterprise manufacturing metal components for civil furniture to assess its feasibility for sustainability appraisal.
NASA Astrophysics Data System (ADS)
Hoffmann, Achim; Mahidadia, Ashesh
The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, H.
There are deep similarities between Whitehead's idea of the process by which nature unfolds and the ideas of quantum theory. Whitehead says that the world is made of ''actual occasions'', each of which arises from potentialities created by prior actual occasions. These actual occasions are happenings modeled on experiential events, each of which comes into being and then perishes, only to be replaced by a successor. It is these experience-like happenings that are the basic realities of nature, according to Whitehead, not the persisting physical particles that Newtonian physics took be the basic entities. Similarly, Heisenberg says that what ismore » really happening in a quantum process is the emergence of an actual from potentialities created by prior actualities. In the orthodox Copenhagen interpretation of quantum theory the actual things to which the theory refer are increments in ''our knowledge''. These increments are experiential events. The particles of classical physics lose their fundamental status: they dissolve into diffuse clouds of possibilities. At each stage of the unfolding of nature the complete cloud of possibilities acts like the potentiality for the occurrence of a next increment in knowledge, whose occurrence can radically change the cloud of possibilities/potentialities for the still-later increments in knowledge. The fundamental difference between these ideas about nature and the classical ideas that reigned from the time of Newton until this century concerns the status of the experiential aspects of nature. These are things such as thoughts, ideas, feelings, and sensations. They are distinguished from the physical aspects of nature, which are described in terms of quantities explicitly located in tiny regions of space and time. According to the ideas of classical physics the physical world is made up exclusively of things of this latter type, and the unfolding of the physical world is determined by causal connections involving only these things. Thus experiential-type things could be considered to influence the flow of physical events only insofar as they themselves were completely determined by physical things. In other words, experiential-type qualities. insofar as they could affect the flow of physical events, could--within the framework of classical physics--not be free: they must be completely determined by the physical aspects of nature that are, by themselves,sufficient to determine the flow of physical events.« less
Ling, Gilbert
2006-01-01
Project 2061 was founded by the American Association for the Advancement of Science (AAAS) to improve secondary school science education. An in-depth study of ten 9 to 12th grade biology textbooks led to the verdict that none conveyed "Big Ideas" that would give coherence and meaning to the profusion of lavishly illustrated isolated details. However, neither the Project report itself nor the Benchmark books put out earlier by the Project carries what deserves the designation of "Big Ideas." Worse, in the two earliest-published Benchmark books, the basic unit of all life forms--the living cell--is described as a soup enclosed by a cell membrane, that determines what can enter or leave the cell. This is astonishing since extensive experimental evidence has unequivocally disproved this idea 60 years ago. A "new" version of the membrane theory brought in to replace the discredited (sieve) version is the pump model--currently taught as established truth in all high-school and college biology textbooks--was also unequivocally disproved 40 years ago. This comment is written partly in response to Bechmark's gracious open invitation for ideas to improve the books and through them, to improve US secondary school science education.
Stand Up and Write: Completing the Freshman Communications Course.
ERIC Educational Resources Information Center
Goldstein, Richard M.; Nelson, Charles W.
Members of the English and speech faculty at Michigan Technological University combined and coordinated their ideas to find a way to introduce the basics of oral communication into the composition course. The course itself is structured according to the quarter system, in which basic composition is taught in the first term, research methods and…
Business plan basics for the nurse.
Crawford, Pam
2013-01-01
In conclusion, no nurse should shy away from understanding the finances of the health care world. We must all embrace the need to understand the costs of care. As we gain this basic understanding, we can excel in demonstrating ideas to improve health care in the most efficient manner, a winning combination in today's financially focused world!
Capitalizing on Basic Brain Processes in Developmental Algebra--Part 3
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
In Part Three, the author reviews the basic ideas presented in Parts One and Two while arguing why the traditional equation-solving developmental algebra curricula is not a good choice for implementing neural response strategies presented in the first two parts. He continues by showing that the developmental algebra student audience is simply…
National Diffusion/Adoption Network: A First Year Formative Look. Final Report.
ERIC Educational Resources Information Center
Magi Educational Services, Inc., Port Chester, NY.
A basic function of the Diffusion/Adoption Network is to assist interested school districts in becoming aware of successfully demonstrated, innovative educational ideas, products, and programs; and in aquiring, through training, the competencies necessary to adopt or adapt a proven educational program. There are five basic components of the…
Economics: An Analysis of Unintended Consequences. Volume 1: Introduction to Microeconomics.
ERIC Educational Resources Information Center
Schenk, Robert E.
This curriculum guide introduces high school students to the basic principles of microeconomics. Chapter 1 provides a basic definition of economics, while chapter 2 introduces a number of important economic concepts and ideas and examines reasons for unintended or unexpected consequences of decision-making. Chapter 3 considers how individual…
A Community Television Production Experience.
ERIC Educational Resources Information Center
Colorado State Univ., Ft. Collins. Dept. of Technical Journalism.
The major goal of the Basic Video Production Workshop program of the Denver Community Video Center was to communicate basic production skills, through the use of extensive hands-on experience, to people with little or no training in the use of visual media. The ideas and exercises presented in this manual focus on the design and completion of…
More Students Master "Basics" on Writing NAEP
ERIC Educational Resources Information Center
Manzo, Kathleen Kennedy
2008-01-01
At a time when many teenagers are consumed by such activities as text-messaging, blogging, and social networking, more middle and high school students than in the past have mastered the formal "basic" writing skills needed to express ideas or share information, national assessment results released last week show. But just small proportions--33…
Introduction to Probability, Part 1 - Basic Concepts. Student Text. Revised Edition.
ERIC Educational Resources Information Center
Blakeslee, David W.; And Others
This book is designed to introduce the reader to some fundamental ideas about probability. The mathematical theory of probability plays an increasingly important role in science, government, industry, business, and economics. An understanding of the basic concepts of probability is essential for the study of statistical methods that are widely…
The Boyer Commission Report on Evaluation of Teaching: Implications in the Basic Course.
ERIC Educational Resources Information Center
Hugenberg, Lawrence W.
In his book "Scholarship Assessed" and in a speech summarizing the book, Ernest Boyer, President of the Carnegie Foundation for the Advancement of Teaching, considers faculty evaluation issues. Applying Boyer's ideas to the basic communication course allows the integration of new insights and perspectives into the daily operations of the…
Chapter 1 Basic Skills Improvement Program. An Information Booklet for Parents.
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton.
This information booklet for parents answers some of the questions parents often ask about their children's participation in basic skills improvement programs. It suggests ways in which parents can support and reinforce the school's role and offers suggestions for parent involvement and ideas for at-home activities to support skill development.…
ERIC Educational Resources Information Center
Marzo, Giuseppe
2011-01-01
In response to Bloom and Webinger (2011), this article examines the basic idea that the Bloom and Webinger article promotes: the integration of global financial crisis (GFC) topics within accounting courses, the way in which this idea can be implemented, and the way a class can be stimulated in order to encourage higher participation in both the…
ERIC Educational Resources Information Center
Patrick, John J.; Keller, Clair W.
Studying ideas from the Federalist papers provides high school students with an opportunity to examine the first principles of U.S. civic culture. By increasing their knowledge and appreciation of the basic ideas in the Federalist papers, students develop civic literacy that is likely to enhance their participation in a free society. This volume…
Concept Confusion and Concept Discernment in Basic Magnetism Using Analogical Reasoning
ERIC Educational Resources Information Center
Lemmer, Miriam; Morabe, Olebogeng Nicodimus
2017-01-01
Analogical reasoning is central to all learning, whether in daily life situations, in the classroom or while doing research. Although analogies can aid the learning process of making sense of phenomena and understanding new ideas in terms of known ideas, these should be used with care. This article reports a study of the use of analogies and the…
ERIC Educational Resources Information Center
Herrmann-Abell, Cari F.; Koppal, Mary; Roseman, Jo Ellen
2016-01-01
Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better…
The Legal Ethical Backbone of Conscientious Refusal.
Munthe, Christian; Nielsen, Morten Ebbe Juul
2017-01-01
This article analyzes the idea of a legal right to conscientious refusal for healthcare professionals from a basic legal ethical standpoint, using refusal to perform tasks related to legal abortion (in cases of voluntary employment) as a case in point. The idea of a legal right to conscientious refusal is distinguished from ideas regarding moral rights or reasons related to conscientious refusal, and none of the latter are found to support the notion of a legal right. Reasons for allowing some sort of room for conscientious refusal for healthcare professionals based on the importance of cultural identity and the fostering of a critical atmosphere might provide some support, if no countervailing factors apply. One such factor is that a legal right to healthcare professionals' conscientious refusal must comply with basic legal ethical tenets regarding the rule of law and equal treatment, and this requirement is found to create serious problems for those wishing to defend the idea under consideration. We conclude that the notion of a legal right to conscientious refusal for any profession is either fundamentally incompatible with elementary legal ethical requirements, or implausible because it undermines the functioning of a related professional sector (healthcare) or even of society as a whole.
NASA Astrophysics Data System (ADS)
Kind, Vanessa; Morten Kind, Per
2011-10-01
Around 150 pre-service science teachers (PSTs) participated in a study comparing academic and personal characteristics with their misconceptions about basic chemical ideas taught to 11-16-year-olds, such as particle theory, change of state, conservation of mass, chemical bonding, mole calculations, and combustion reactions. Data, collected by questionnaire, indicate that despite all PSTs being regarded technically as 'academically well-qualified' for science teaching, biology and physics specialists have more extensive misconceptions than chemists. Two personal characteristics, PSTs' preferences for teaching as a subject 'specialist' or as a 'generalist' teaching all sciences and their self-confidence for working in these two domains, were assessed by responses to Likert-scale statements. Proportionately more biologists tend to be 'super-confident' generalists, while more physicists were specialists anxious about outside specialism teaching. No statistically significant relationships between personal characteristics and misconceptions were found, suggesting that chemistry may be being taught by confident PSTs with poor understandings of basic ideas. Furthermore, these data suggest that attending to PSTs' personal characteristics alongside other components of a teacher's professional knowledge base may contribute to creating more effective science teachers. The paper presents a novel way of considering PSTs' qualities for teaching that offers potential for further research and initial teacher training course development.
A random distribution reacting mixing layer model
NASA Technical Reports Server (NTRS)
Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.
1994-01-01
A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.
On tensegrity in cell mechanics.
Volokh, K Y
2011-09-01
All models are wrong, but some are useful. This famous saying mirrors the situation in cell mechanics as well. It looks like no particular model of the cell deformability can be unconditionally preferred over others and different models reveal different aspects of the mechanical behavior of living cells. The purpose of the present work is to discuss the so-called tensegrity models of the cell cytoskeleton. It seems that the role of the cytoskeleton in the overall mechanical response of the cell was not appreciated until Donald Ingber put a strong emphasis on it. It was fortunate that Ingber linked the cytoskeletal structure to the fascinating art of tensegrity architecture. This link sparked interest and argument among biologists, physicists, mathematicians, and engineers. At some point the enthusiasm regarding tensegrity perhaps became overwhelming and as a reaction to that some skepticism built up. To demystify Ingber's ideas the present work aims at pinpointing the meaning of tensegrity and its role in our understanding of the importance of the cytoskeleton for the cell deformability and motility. It should be noted also that this paper emphasizes basic ideas rather than carefully follows the chronology of the development of tensegrity models. The latter can be found in the comprehensive review by Dimitrije Stamenovic (2006) to which the present work is complementary.
Trans-African Hydro-Meteorological Observatory
NASA Astrophysics Data System (ADS)
van de Giesen, N.; Andreini, M.; Selker, J.
2009-04-01
Our computing capacity to model hydrological processes is such that we can readily model every hectare of the globe's surface in real time. Satellites provide us with important state observations that allow us to calibrate our models and estimate model errors. Still, ground observations will remain necessary to obtain data that can not readily be observed from space. Hydro-Meteorological data availability is particularly scarce in Africa. This presentation launches a simple idea by which Africa can leapfrog into a new era of closely knit environmental observation networks. The basic idea is the design of a robust measurement station, based on the smart use of new sensors without moving parts. For example, instead of using a Eu 5000 long-wave pyrgeometer, a factory calibrated IR microwave oven sensor is used that costs less than Eu 10. In total, each station should cost Eu 200 or less. Every 30 km, one station will be installed, being equivalent to 20,000 stations for all of sub-Saharan Africa. The roll-out will follow the XO project ("100 computer") and focus on high schools. The stations will be accompanied by an educational package that allows high school children to learn about their environment, measurements, electronics, and mathematical modeling. Total program costs lie around MEu 18.
The ontogeny of an idea: John Bowlby and contemporaries on mother-child separation.
van der Horst, Frank C P; van der Veer, Renée
2010-02-01
In this contribution, the authors situate the development of Bowlby's attachment theory against the background of the social, cultural, and scientific developments in interbellum Britain. It is shown that fairly early in his life Bowlby adopted one fundamental idea-that an infant primarily needs a warm and loving mother, and that separations from the mother are potentially damaging-and never substantially changed that basic notion in later years. Bowlby's first and foremost goal-and his lifelong undertaking-was to convince certain others (e.g., orthodox psychoanalysts, psychiatrists, clinicians, and medical doctors) of the importance of this idea by theorizing and gathering empirical evidence. Bowlby's view of mother love deprivation as the main source of maladjusted behavior was at variance with the views of many practitioners and theorists, but it was by no means fully novel and original. The authors show that Bowlby took inspiration from various persons and groups in British society with whom he shared basically similar views.
Towards physics of neural processes and behavior
Latash, Mark L.
2016-01-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. PMID:27497717
Secondary Students' Understanding of Basic Ideas of Special Relativity
NASA Astrophysics Data System (ADS)
Dimitriadi, Kyriaki; Halkia, Krystallia
2012-11-01
A major topic that has marked 'modern physics' is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the two axioms of the theory (the principle of relativity and the invariance of the speed of light) and their consequences (the relativity of simultaneity, time dilation and length contraction). Based on an analysis of physics college textbooks, on a review of the relevant bibliography and on a pilot study, a teaching and learning sequence consisting of five sessions was developed. To collect the data, experimental interviews (the so-called teaching experiment) were used. The teaching experiment may be viewed as a Piagetian clinical interview that is deliberately employed as a teaching and learning situation. The sample consisted of 40 10th grade students (aged 15-16). The data were collected by taping and transcribing the 'interviews', as well as from two open-ended questionnaires filled out by each student, one before and the other after the sessions. Methods of qualitative content analysis were applied. The results show that upper secondary education students are able to cope with the basic ideas of the TSR, but there are some difficulties caused by the following student conceptions: (a) there is an absolute frame of reference, (b) objects have fixed properties and (c) the way events happen is independent of what the observers perceive.
James Clerk Maxwell, a precursor of system identification and control science
NASA Astrophysics Data System (ADS)
Bittanti, Sergio
2015-12-01
One hundred and fifty years ago James Clerk Maxwell published his celebrated paper 'Dynamical theory of electromagnetic field', where the interaction between electricity and magnetism eventually found an explanation. However, Maxwell was also a precursor of model identification and control ideas. Indeed, with the paper 'On Governors' of 1869, he introduced the concept of feedback control system; and moreover, with his essay on Saturn's rings of 1856 he set the basic principle of system identification. This paper is a tutorial exposition having the aim to enlighten these latter aspects of Maxwell's work.
Gestalt Theory Rearranged: Back to Wertheimer
Guberman, Shelia
2017-01-01
Wertheimer's seminal paper of 1923 was of gerat influence in psychology and other sciences. Wertheimer also emphasized the weaknesses of the newborn Gestalt theory: too many basic laws, and the ambiguity of definitions. At the same time, the paper contained potential solutions to these problems, in the form of a number of very important ideas, some of which were presented implicitly: perception through imitation, communicative nature of linear drawings and writings, transfer from the visual domain to motor domain, linguistic interpretation of the Gestalt. In this paper it will be shown that based on these ideas the Gestalt theory can be rearranged so that the main notions can be well defined, and the general principle of Gestalt perception, which overarches all known laws and unifies different Gestalt phenomena (the imitation principle) can be introduced. The presented model of Gestalt perception is supported by fundamental neurophysiological data—the mirror neurons phenomenon and simulation theory. PMID:29075220
Gestalt Theory Rearranged: Back to Wertheimer.
Guberman, Shelia
2017-01-01
Wertheimer's seminal paper of 1923 was of gerat influence in psychology and other sciences. Wertheimer also emphasized the weaknesses of the newborn Gestalt theory: too many basic laws, and the ambiguity of definitions. At the same time, the paper contained potential solutions to these problems, in the form of a number of very important ideas, some of which were presented implicitly: perception through imitation, communicative nature of linear drawings and writings, transfer from the visual domain to motor domain, linguistic interpretation of the Gestalt. In this paper it will be shown that based on these ideas the Gestalt theory can be rearranged so that the main notions can be well defined, and the general principle of Gestalt perception, which overarches all known laws and unifies different Gestalt phenomena (the imitation principle) can be introduced. The presented model of Gestalt perception is supported by fundamental neurophysiological data-the mirror neurons phenomenon and simulation theory.
Leadership for the 1970’s. Field Grade Officer Leadership
1974-08-01
which are done or displayed most frequently. As in Figure 1, five lists are presented. This figure is basically a description of perceived leadership...Figure 3 are basically expectations or lists of desired behavior. On the left of the figure are listed the behaviors which superiors and subordinates...The basic idea of this concept is that if an individual feels that, for example, his superior should always be easy to understand but, in fact
ERIC Educational Resources Information Center
Fisher, Carol J.
1978-01-01
Presents ideas and activities for teaching basic skills including vocabulary building, learning science from the microclimates, using tape recorders to teach reading, and using monsters to teach metrics. (JMB)
Understanding Mathematics and Logic Using BASIC Computer Games.
ERIC Educational Resources Information Center
Ahl, David H.
This combination teacher's guide and student workbook serves as a companion volume to 101 BASIC Computer Games (EM 011 681). It presents ideas, exercises and supplemental projects which will aid the teaching and learning of a wide variety of academic subjects in grades 7 through 12, although the emphasis is upon mathematics and logic. In addition,…
Optimizing Picture Activities for the Language Classroom: Picture Line-Up Activities.
ERIC Educational Resources Information Center
Schmidt, Ken
1995-01-01
The use of picture line-up activities, classroom exercises in which students must place a series of pictures in correct order, is discussed. The advantages of use of a picture series instead of simple pairs are examined, a basic activity is described, and ideas for implementation, adaptation, and follow-up are outlined. The basic activity uses…
It's Not Your Grandmother's Genetics Anymore!
ERIC Educational Resources Information Center
Smith, Mike U.
2014-01-01
Genetics is perhaps the most rapidly growing field of science today. Recent findings such as those of the Human Genome Project have led to new understandings of basic genetic phenomena and even to increased confusion about some basic genetic ideas, such as the nature of the gene. These developments directly influence how we should teach genetics.…
Simultaneous Co-Clustering and Classification in Customers Insight
NASA Astrophysics Data System (ADS)
Anggistia, M.; Saefuddin, A.; Sartono, B.
2017-04-01
Building predictive model based on the heterogeneous dataset may yield many problems, such as less precise in parameter and prediction accuracy. Such problem can be solved by segmenting the data into relatively homogeneous groups and then build a predictive model for each cluster. The advantage of using this strategy usually gives result in simpler models, more interpretable, and more actionable without any loss in accuracy and reliability. This work concerns on marketing data set which recorded a customer behaviour across products. There are some variables describing customer and product as attributes. The basic idea of this approach is to combine co-clustering and classification simultaneously. The objective of this research is to analyse the customer across product characteristics, so the marketing strategy implemented precisely.
ERIC Educational Resources Information Center
Norton, Robert F.
Major writing style differences between Korean and U.S. essayists are examined in order to determine: (1) the types of relationships expressed in a specific essay; (2) the sequence in which related ideas are expressed; and (3) the distance between two ideas that comprise each relationship. Eighteen basic types of relationships were examined in…
ERIC Educational Resources Information Center
Criado, Ana Maria; Garcia-Carmona, Antonio
2010-01-01
Student teachers were tested before and after a teaching unit on electrostatic interactions in an attempt to consider their intuitive ideas and concept development. A study was made of students' explanations of basic interactions: those between two charged bodies, and those between a charged body and a neutral body. Two indicators of the cognitive…
Thanks-a-Latte, Seniors: The Library Hosts an Election Day Event
ERIC Educational Resources Information Center
Repp, Anne
2009-01-01
This article presents the Louisa County High School Library's annual Thanks-a-Latte Day, an event that introduces the American political process to LCHS seniors in a real way. Thanks-a-Latte Day was born from an idea found in a "School Library Journal" article by Charli O'Dell published in 1999. Her basic idea was to promote the school library by…
Inflation in the standard cosmological model
NASA Astrophysics Data System (ADS)
Uzan, Jean-Philippe
2015-12-01
The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"
Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction
Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario
2005-01-01
Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524
The Jupiter ONERA Electron (JOE) and Jupiter ONERA Proton (JOP) specification models
NASA Astrophysics Data System (ADS)
Bourdarie, S.; Sicard-Piet, A.
2008-09-01
The use of recent improvement in the understanding of the Jovian radiation belt structure has allowed to develop a more accurate engineering model of the Jovian electron and proton radiation belts. The basic idea was to combine the results of the Salammbô code when available (for proton and electron species) with the Divine and Garret model 1983 and/or with GIRE. The advantage of such an approach was that the resulting model is global in term of spatial and energy coverage, is optimised inside Europa orbit (the Divine and Garret model is not accurate inside Io orbit due to poor in-situ data there - note that inside Io is the region where ionizing radiation fluxes are maximum) and take advantage of the two models. The resulting JOE-JOP models will be presented, pro and cons will be listed and commented. Finally future plans to upgrade these models will be given.
NASA Technical Reports Server (NTRS)
Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.
1971-01-01
High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.
NASA Technical Reports Server (NTRS)
Maekawa, S.; Lin, Y. K.
1977-01-01
The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface.
Knight, Zelda Gillian
2017-09-01
Just as Freud used stages of psychosexual development to ground his model of psychoanalysis, it is possible to do the same with Erik Erikson's stages of development with regards to a model of psychodynamic psychotherapy. This paper proposes an eight-stage model of psychodynamic psychotherapy linked to Erik Erikson's eight stages of psychosocial development. Various suggestions are offered. One such suggestion is that as each of Erikson's developmental stages is triggered by a crisis, in therapy it is triggered by the client's search. The resolution of the search often leads to the development of another search, which implies that the therapy process comprises a series of searches. This idea of a series of searches and resolutions leads to the understanding that identity is developmental and therapy is a space in which a new sense of identity may emerge. The notion of hope is linked to Erikson's stage of Basic Trust and the proposed model of therapy views hope and trust as essential for the therapy process. Two clinical vignettes are offered to illustrate these ideas. Psychotherapy can be approached as an eight-stage process and linked to Erikson's eight stages model of development. Psychotherapy may be viewed as a series of searches and thus as a developmental stage resolution process, which leads to the understanding that identity is ongoing throughout the life span. Copyright © 2017 John Wiley & Sons, Ltd.
Gravity. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
All kids are familiar with the basic idea of gravity--it's why things fall to the ground. Gravity uses exciting visuals and clear, colorful graphics to take students beyond the basics to explain that gravity is really a force of attraction between objects. They'll discover that all objects--no matter how large or small--have gravitational force,…
ERIC Educational Resources Information Center
Niss, James F.; And Others
Part of the Master Curriculum Guide Project, the document presents strategies for teaching economic concepts as related to basic business and consumer education in secondary schools. The objective is to provide detailed classroom lessons illustrating ways economic ideas can be taught at differing levels of difficulty. The 18 lessons are…
ERIC Educational Resources Information Center
Pfnister, Allan O.
The idea of the college as a residential and instructional entity preparing students for advanced study by establishing basic knowledge in the liberal arts has a long history in Europe and the United States. The German term "Bildung" describes this function well, with its suggestions of "knowledge, culture, the power of expression,…
ERIC Educational Resources Information Center
Reggini, Horacio C.
The first article, "LOGO and von Neumann Ideas," deals with the creation of new procedures based on procedures defined and stored in memory as LOGO lists of lists. This representation, which enables LOGO procedures to construct, modify, and run other LOGO procedures, is compared with basic computer concepts first formulated by John von…
Keith Muckelroy: Methods, Ideas and Maritime Archaeology
NASA Astrophysics Data System (ADS)
Harpster, Matthew
2009-06-01
Between his graduation from the Department of Archaeology at Cambridge University in 1974 and his death in 1980, Keith Muckelroy’s work and ideology were crucial in promoting an alternative research methodology in maritime archaeology. Instead of a particularist or historiographic approach, methods prominent both then and now, Muckelroy’s methodology was grounded in the foundations of the prehistoric archaeology he learned under Grahame Clark and David Clarke at Cambridge, and the basic tenets of New Archaeology maturing in the United States during the 1970s. This paper, which elucidates Muckelroy’s methods and research, is neither a complete biography nor an exhaustive study of his ideas. Although unpublished letters, papers and notes were studied in archives at Cambridge University and the National Maritime Museum, there is still much more to be learned from many of his former colleagues and their memories—only a handful of those individuals were consulted during the creation of this work. Nevertheless, this paper was written in the hope that by understanding Muckelroy’s ideas, and placing them in the larger framework of the discipline of archaeology, maritime archaeologists who are attempting to pursue a variety of approaches may find inspirations, models and, perhaps, questions that still need to be answered.
Dimensional psychiatry: mental disorders as dysfunctions of basic learning mechanisms.
Heinz, Andreas; Schlagenhauf, Florian; Beck, Anne; Wackerhagen, Carolin
2016-08-01
It has been questioned that the more than 300 mental disorders currently listed in international disease classification systems all have a distinct neurobiological correlate. Here, we support the idea that basic dimensions of mental dysfunctions, such as alterations in reinforcement learning, can be identified, which interact with individual vulnerability and psychosocial stress factors and, thus, contribute to syndromes of distress across traditional nosological boundaries. We further suggest that computational modeling of learning behavior can help to identify specific alterations in reinforcement-based decision-making and their associated neurobiological correlates. For example, attribution of salience to drug-related cues associated with dopamine dysfunction in addiction can increase habitual decision-making via promotion of Pavlovian-to-instrumental transfer as indicated by computational modeling of the effect of Pavlovian-conditioned stimuli (here affectively positive or alcohol-related cues) on instrumental approach and avoidance behavior. In schizophrenia, reward prediction errors can be modeled computationally and associated with functional brain activation, thus revealing reduced encoding of such learning signals in the ventral striatum and compensatory activation in the frontal cortex. With respect to negative mood states, it has been shown that both reduced functional activation of the ventral striatum elicited by reward-predicting stimuli and stress-associated activation of the hypothalamic-pituitary-adrenal axis in interaction with reduced serotonin transporter availability and increased amygdala activation by aversive cues contribute to clinical depression; altogether these observations support the notion that basic learning mechanisms, such as Pavlovian and instrumental conditioning and Pavlovian-to-instrumental transfer, represent a basic dimension of mental disorders that can be mechanistically characterized using computational modeling and associated with specific clinical syndromes across established nosological boundaries. Instead of pursuing a narrow focus on single disorders defined by clinical tradition, we suggest that neurobiological research should focus on such basic dimensions, which can be studied in and compared among several mental disorders.
ERIC Educational Resources Information Center
Blond, J. P.; Boggett, D. M.
1980-01-01
Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)
This fact sheet provides practical information and guidance to auto refinish shops on proper ventilation of paint mixing rooms, including ventilation system basics and diagrams, risk reduction ideas, common mistakes, tips, and design considerations.
Towards physics of neural processes and behavior.
Latash, Mark L
2016-10-01
Behavior of biological systems is based on basic physical laws, common across inanimate and living systems, and currently unknown physical laws that are specific for living systems. Living systems are able to unite basic laws of physics into chains and clusters leading to new stable and pervasive relations among variables (new physical laws) involving new parameters and to modify these parameters in a purposeful way. Examples of such laws are presented starting from the tonic stretch reflex. Further, the idea of control with referent coordinates is formulated and merged with the idea of hierarchical control and the principle of abundance. The notion of controlled stability of behaviors is linked to the idea of structured variability, which is a common feature across living systems and actions. The explanatory and predictive power of this approach is illustrated with respect to the control of both intentional and unintentional movements, the phenomena of equifinality and its violations, preparation to quick actions, development of motor skills, changes with aging and neurological disorders, and perception. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yumin
2014-12-01
Microelectronics is a challenging course to many undergraduate students and is often described as very messy. Before taking this course, all the students have learned circuit analysis, where basically all the problems can be solved by applying Kirchhoff's laws. In addition, most engineering students have also learned engineering mechanics: statics and dynamics, where Newton's laws and related principles can be applied in solving all the problems. However, microelectronics is not as clean as these courses. There are hundreds of equations for different circuits, and it is impossible to remember which equation should be applied to which circuit. One of the common pitfalls in learning this course is over-focusing at the equation level and ignoring the ideas (Tao) behind it. Unfortunately, these ideas are not summarized and emphasized in most microelectronics textbooks, though they cover various electronic circuits comprehensively. Therefore, most undergraduate students feel at a loss when they start to learn this topic. This book tries to illustrate the major ideas and the basic analysis techniques, so that students can derive the right equations easily when facing an electronic circuit.
Designing for Motivation, Engagement and Wellbeing in Digital Experience
Peters, Dorian; Calvo, Rafael A.; Ryan, Richard M.
2018-01-01
Research in psychology has shown that both motivation and wellbeing are contingent on the satisfaction of certain psychological needs. Yet, despite a long-standing pursuit in human-computer interaction (HCI) for design strategies that foster sustained engagement, behavior change and wellbeing, the basic psychological needs shown to mediate these outcomes are rarely taken into account. This is possibly due to the lack of a clear model to explain these needs in the context of HCI. Herein we introduce such a model: Motivation, Engagement and Thriving in User Experience (METUX). The model provides a framework grounded in psychological research that can allow HCI researchers and practitioners to form actionable insights with respect to how technology designs support or undermine basic psychological needs, thereby increasing motivation and engagement, and ultimately, improving user wellbeing. We propose that in order to address wellbeing, psychological needs must be considered within five different spheres of analysis including: at the point of technology adoption, during interaction with the interface, as a result of engagement with technology-specific tasks, as part of the technology-supported behavior, and as part of an individual's life overall. These five spheres of experience sit within a sixth, society, which encompasses both direct and collateral effects of technology use as well as non-user experiences. We build this model based on existing evidence for basic psychological need satisfaction, including evidence within the context of the workplace, computer games, and health. We extend and hone these ideas to provide practical advice for designers along with real world examples of how to apply the model to design practice. PMID:29892246
Herrmann-Abell, Cari F; Koppal, Mary; Roseman, Jo Ellen
2016-01-01
Modern biology has become increasingly molecular in nature, requiring students to understand basic chemical concepts. Studies show, however, that many students fail to grasp ideas about atom rearrangement and conservation during chemical reactions or the application of these ideas to biological systems. To help provide students with a better foundation, we used research-based design principles and collaborated in the development of a curricular intervention that applies chemistry ideas to living and nonliving contexts. Six eighth grade teachers and their students participated in a test of the unit during the Spring of 2013. Two of the teachers had used an earlier version of the unit the previous spring. The other four teachers were randomly assigned either to implement the unit or to continue teaching the same content using existing materials. Pre- and posttests were administered, and the data were analyzed using Rasch modeling and hierarchical linear modeling. The results showed that, when controlling for pretest score, gender, language, and ethnicity, students who used the curricular intervention performed better on the posttest than the students using existing materials. Additionally, students who participated in the intervention held fewer misconceptions. These results demonstrate the unit's promise in improving students' understanding of the targeted ideas. © 2016 C. F. Herrmann-Abell et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
[Taxonomic theory for non-classical systematics].
Pavlinov, I Ia
2012-01-01
Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.
Basic mapping principles for visualizing cancer data using Geographic Information Systems (GIS).
Brewer, Cynthia A
2006-02-01
Maps and other data graphics may play a role in generating ideas and hypotheses at the beginning of a project. They are useful as part of analyses for evaluating model results and then at the end of a project when researchers present their results and conclusions to varied audiences, such as their local research group, decision makers, or a concerned public. Cancer researchers are gaining skill with geographic information system (GIS) mapping as one of their many tools and are broadening the symbolization approaches they use for investigating and illustrating their data. A single map is one of many possible representations of the data, so making multiple maps is often part of a complete mapping effort. Symbol types, color choices, and data classing each affect the information revealed by a map and are best tailored to the specific characteristics of data. Related data can be examined in series with coordinated classing and can also be compared using multivariate symbols that build on the basic rules of symbol design. Informative legend wording and setting suitable map projections are also basic to skilled mapmaking.
Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)
1988-01-01
The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.
Six indications of radical new physics in supernovae Ia
NASA Astrophysics Data System (ADS)
Clavelli, L.
2017-11-01
After more than 40 years since the basic standard model for supernovae Ia (SN Ia) was proposed, many astronomers are still hopeful that this phenomenon will ultimately be understood in terms of Newtonian gravity plus nuclear and particle physics as they existed in the 1930s. In spite of this fact, there are at least six nagging puzzles in supernovae physics that suggest some radical new physics input may be necessary. “Radical” in this context means a physics idea that did not exist in the 1930s and that is still not experimentally confirmed in 2017.
Cooperative vehicle routing problem: an opportunity for cost saving
NASA Astrophysics Data System (ADS)
Zibaei, Sedighe; Hafezalkotob, Ashkan; Ghashami, Seyed Sajad
2016-09-01
In this paper, a novel methodology is proposed to solve a cooperative multi-depot vehicle routing problem. We establish a mathematical model for multi-owner VRP in which each owner (i.e. player) manages single or multiple depots. The basic idea consists of offering an option that owners cooperatively manage the VRP to save their costs. We present cooperative game theory techniques for cost saving allocations which are obtained from various coalitions of owners. The methodology is illustrated with a numerical example in which different coalitions of the players are evaluated along with the results of cooperation and cost saving allocation methods.
Method of optimization onboard communication network
NASA Astrophysics Data System (ADS)
Platoshin, G. A.; Selvesuk, N. I.; Semenov, M. E.; Novikov, V. M.
2018-02-01
In this article the optimization levels of onboard communication network (OCN) are proposed. We defined the basic parameters, which are necessary for the evaluation and comparison of modern OCN, we identified also a set of initial data for possible modeling of the OCN. We also proposed a mathematical technique for implementing the OCN optimization procedure. This technique is based on the principles and ideas of binary programming. It is shown that the binary programming technique allows to obtain an inherently optimal solution for the avionics tasks. An example of the proposed approach implementation to the problem of devices assignment in OCN is considered.
Globally convergent techniques in nonlinear Newton-Krylov
NASA Technical Reports Server (NTRS)
Brown, Peter N.; Saad, Youcef
1989-01-01
Some convergence theory is presented for nonlinear Krylov subspace methods. The basic idea of these methods is to use variants of Newton's iteration in conjunction with a Krylov subspace method for solving the Jacobian linear systems. These methods are variants of inexact Newton methods where the approximate Newton direction is taken from a subspace of small dimensions. The main focus is to analyze these methods when they are combined with global strategies such as linesearch techniques and model trust region algorithms. Most of the convergence results are formulated for projection onto general subspaces rather than just Krylov subspaces.
Exemplarity in Mathematics Education: from a Romanticist Viewpoint to a Modern Hermeneutical One
NASA Astrophysics Data System (ADS)
Patronis, Tasos; Spanos, Dimitris
2013-08-01
This paper proposes a setting of exemplarity different from the already known one, which is basically a Romanticist philosophical setting. Our general aim is to describe and explore the nature of some exemplary themes and interpretive models in advanced mathematics teaching and learning. In order to do so, we move from Romanticism towards the viewpoint of Modern Hermeneutics, by applying ideas appearing mainly in Gadamer and Ricoeur. We use this new setting as a philosophical framework, to interpret some results from two didactical research studies that have already appeared on infinitesimals.
Problem Reframing: Intelligence Professionals’ Role in Design
2010-04-01
The idea of differences exists in intelligence analyst’s Don McDowell’s book Strategic Intelligence, when he explains that covering all events...Complexity, (New York, Basic Books , 2000), 7. 57 Gharajedaghi, 107. 20 intelligence community with an end result of increasing the potential for greater...Avoiding Error in Complex Situations, (New York: Basic Books , 1996), 164. 79 Ibid. 26 understanding the operational environment to planning the
NASA Astrophysics Data System (ADS)
Semenycheva, Alexandra V.; Chuvil'deev, Vladimir N.; Nokhrin, Aleksey V.
2018-05-01
The paper offers a model describing the process of grain boundary self-diffusion in metals with phase transitions in the solid state. The model is based on ideas and approaches found in the theory of non-equilibrium grain boundaries. The range of application of basic relations contained in this theory is shown to expand, as they can be used to calculate the parameters of grain boundary self-diffusion in high-temperature and low-temperature phases of metals with a phase transition. The model constructed is used to calculate grain boundary self-diffusion activation energy in titanium and zirconium and an explanation is provided as to their abnormally low values in the low-temperature phase. The values of grain boundary self-diffusion activation energy are in good agreement with the experiment.
A temperature correction method for expanding atmospheres
NASA Astrophysics Data System (ADS)
Hamann, W.-R.; Gräfener, G.
2003-11-01
Model atmospheres form the basis for the interpretation of stellar spectra. A major problem in those model calculations is to establish the temperature stratification from the condition of radiative equilibrium. Dealing with non-LTE models for spherically expanding atmospheres of Wolf-Rayet stars, we developed a new temperature correction method. Its basic idea dates back to 1955 when it was proposed by Unsöld for grey, static and plane-parallel atmospheres in LTE. The equations were later generalized to the non-grey case by Lucy. In the present paper we furthermore drop the Eddington approximation, proceed to spherical geometry and allow for expansion of the atmosphere. Finally the concept of an ``approximate lambda operator'' is employed to speed up the convergence. Tests for Wolf-Rayet type models demonstrate that the method works fine even in situations of strong non-LTE.
A two-dimensional model for the study of interpersonal attraction.
Montoya, R Matthew; Horton, Robert S
2014-02-01
We describe a model for understanding interpersonal attraction in which attraction can be understood as a product of the initial evaluations we make about others. The model posits that targets are evaluated on two basic dimensions, capacity and willingness, such that affective and behavioral attraction result from evaluations of (a) a target's capacity to facilitate the perceiver's goals/needs and (b) a target's potential willingness to facilitate those goals/needs. The plausibility of the two-dimensional model of attraction is evaluated vis-à-vis the extant literature on various attraction phenomena including the reciprocity of liking effect, pratfall effect, matching hypothesis, arousal effects, and similarity effect. We conclude that considerable evidence across a wide range of phenomena supports the idea that interpersonal attraction is principally determined by inferences about the target's capacity and willingness.
Probability sampling in legal cases: Kansas cellphone users
NASA Astrophysics Data System (ADS)
Kadane, Joseph B.
2012-10-01
Probability sampling is a standard statistical technique. This article introduces the basic ideas of probability sampling, and shows in detail how probability sampling was used in a particular legal case.
Schuler, Sidney Ruth; Bates, Lisa M; Islam, Md Khairul
2002-09-01
In 1997 a consortium of non-governmental organizations (NGOs) in Bangladesh began to implement health sector reform measures intended to expand access to and improve the quality of family planning and other basic health services. The new service delivery model entails higher costs for clients and requires that they take greater initiative. Clients have to travel further to get certain services, and they have to pay more for them than they did under the previous door-to-door family planning model. This paper is based on findings from a qualitative study looking at client and community reactions to the programme changes. It examines a number of barriers to access and constraints to cost recovery, including gender, class and ideas about entitlements, the role of government and obligations among people. The NGOs want to maximize cost recovery while making the basic services they offer accessible to most people. The findings suggest that this requires more than the establishment of an appropriate pricing structure. Attitudes related to charging and paying for services must also change, along with the institutional policies and practices that support them.
Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang
2015-12-01
Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.
Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule
NASA Astrophysics Data System (ADS)
Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.
2018-02-01
This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.
Twitching in Sensorimotor Development from Sleeping Rats to Robots
Marques, Hugo Gravato; Iida, Fumiya
2013-01-01
It is still not known how the “rudimentary” movements of fetuses and infants are transformed into the coordinated, flexible, and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: When twitches are mimicked in robot models of the musculoskeletal system, basic neural circuitry self-organizes. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain. PMID:23787051
Austerity and geometric structure of field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheyfets, A.
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for themore » source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories.« less
ERIC Educational Resources Information Center
Wilson, David B.
1981-01-01
Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)
More Experiments and Calculations.
ERIC Educational Resources Information Center
Siddons, J. C.
1984-01-01
Describes two experiments that illustrate basic ideas but would be difficult to carry out. Also presents activities and experiments on rainbow cups, electrical charges, electrophorus calculation, pulse electrometer, a skidding car, and on the Oersted effect. (JN)
78 FR 5421 - Proposed Information Collection; Comment Request; NOAA's Teacher at Sea Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... solicits information from interested educators: basic personal information, teaching experience and ideas... does not collect information from this universe of respondents for any other purpose. II. Method of...
Riddles of masculinity: gender, bisexuality, and thirdness.
Fogel, Gerald I
2006-01-01
Clinical examples are used to illuminate several riddles of masculinity-ambiguities, enigmas, and paradoxes in relation to gender, bisexuality, and thirdness-frequently seen in male patients. Basic psychoanalytic assumptions about male psychology are examined in the light of advances in female psychology, using ideas from feminist and gender studies as well as important and now widely accepted trends in contemporary psychoanalytic theory. By reexamining basic assumptions about heterosexual men, as has been done with ideas concerning women and homosexual men, complexity and nuance come to the fore to aid the clinician in treating the complex characterological pictures seen in men today. In a context of rapid historical and theoretical change, the use of persistent gender stereotypes and unnecessarily limiting theoretical formulations, though often unintended, may mask subtle countertransference and theoretical blind spots, and limit optimal clinical effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodnarczuk, M.
How does one assure that both quality and creativity are obtained in basic research environments QA theoreticians have attempted to develop workable definitions of quality, but in more reflective moments, these definitions often fail to capture the deeper essence of the idea of quality.'' This paper asserts that creativity (as a product of the human mind) is a concrete interface between perfunctory definitions of quality (conformance to specifications) and more philosophical speculations about the nature of quality- related ultimates'' like elegance or beauty. In addition, we describe the distinction between creative ideas and creative acts and highlight one of themore » major inhibitors of creativity, fear. Finally we show that highly creative people often have an irreverent attitude toward boundaries and established authority, and discuss how one can allow for this when designing a QA program in a basic research environment.« less
NASA Astrophysics Data System (ADS)
Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao
2018-04-01
With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.
A physical model for the acousto-ultrasonic method. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kiernan, Michael T.; Duke, John C., Jr.
1990-01-01
A basic physical explanation, a model, and comments on NDE application of the acousto-ultrasonic (AU) method for composite materials are presented. The basis of this work is a set of experiments where a sending and a receiving piezoelectric transducer were both oriented normal to the surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum plate. The purpose and basic idea is introduced. Also, general comments on the AU method are offered. A literature review is offered for areas pertinent, such as composite materials, wave propagation, ultrasonics, and the AU. Special emphasis is given to theory which is used later on and past experimental results that are important to the physical understanding of the AU method. The experimental set-up, procedure, and the ensuing analysis are described. The experimental results are presented in both a quantitative and qualitative manner. A physical understanding of experimental results based on elasticity solution is furnished. Modeling and applications of the AU method is discussed for composite material and general conclusions are stated. The physical model of the AU method for composite materials is offered, something which has been much needed and sorely lacking. This physical understanding is possible due to the extensive set of experimental measurements, also reported.
From Ideas to Efficacy: The ORBIT Model for Developing Behavioral Treatments for Chronic Diseases
Czajkowski, Susan M.; Powell, Lynda H.; Adler, Nancy; Naar-King, Sylvie; Reynolds, Kim D.; Hunter, Christine M.; Laraia, Barbara; Olster, Deborah H.; Perna, Frank M.; Peterson, Janey C.; Epel, Elissa; Boyington, Josephine E.; Charlson, Mary E.
2015-01-01
Objective Given the critical role of behavior in preventing and treating chronic diseases, it is important to accelerate the development of behavioral treatments that can improve chronic disease prevention and outcomes. Findings from basic behavioral and social science research hold great promise for addressing behaviorally-based clinical health problems, yet there is currently no established pathway for translating fundamental behavioral science discoveries into health-related treatments ready for Phase III efficacy testing. This article provides a systematic framework for guiding efforts to translate basic behavioral science findings into behavioral treatments for preventing and treating chronic illness. Methods The ORBIT model for behavioral treatment development is described as involving a flexible and progressive process, pre-specified clinically significant milestones for forward movement, and return to earlier stages for refinement and optimization. Results This article presents the background and rationale for the ORBIT model, a summary of key questions for each phase, a selection of study designs and methodologies well-suited to answering these questions, and pre-specified milestones for forward or backward movement across phases. Conclusions The ORBIT model provides a progressive, clinically-relevant approach to increasing the number of evidence-based behavioral treatments available to prevent and treat chronic diseases. PMID:25642841
Boxhoorn, Sara; Lopez, Eva; Schmidt, Catharina; Schulze, Diana; Hänig, Susann; Freitag, Christine M
2018-03-06
Attention problems are observed in attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Most neuropsychological studies that compared both disorders focused on complex executive functions (EF), but missed to contrast basic attention functions, as well as ASD- and ADHD subtypes. The present study compared EF as well as basic attention functioning of children with the combined subtype (ADHD-C), the predominantly inattentive subtype (ADHD-I), and autism spectrum disorder without ADHD (ASD-) with typically developing controls (TD). Basic attention functions and EF profiles were analysed by testing the comprehensive attention function model of van Zomeren and Brouwer using profile analysis. Additionally, neurocognitive impairments in ASD- and ADHD were regressed on dimensional measures of attention- and hyperactive-impulsive symptoms across and within groups. ADHD-C revealed a strong impairment across measures of EF compared to ASD- and TD. The ADHD-C profile furthermore showed disorder specific impairments in interference control, whereas the ASD- profile showed a disorder specific impairment in basic attention component divided attention. Attention- and hyperactive-impulsive symptom severity did not predict neurocognitive impairments across- or within groups. Study findings thus support disorder and subtype specific attention/EF profiles, which refute the idea of a continuum of ADHD-I, ADHD-C, and ASD with increasing neurocognitive impairments.
ERIC Educational Resources Information Center
Futuyma, Douglas J.
1985-01-01
Outlines principles of evolutionary theory, including such recent changes as punctuated equilibria. Indicates that the incompleteness of Darwin's theory has been replaced with a conceptual framework and empirical information. Controversial issues remain, but the basic ideas still stand strong. (DH)
ERIC Educational Resources Information Center
Funderburk, Charles
1978-01-01
Explains how the use of feature-length motion pictures, combined with interesting readings, can generate enthusiasm, discussion, and analysis of basic political ideas, concepts, and values. Reviews costs and identifies specific movies and readings on various political topics. (AV)
The IDEAS**2 computing environment
NASA Technical Reports Server (NTRS)
Racheli, Ugo
1990-01-01
This document presents block diagrams of the IDEAS**2 computing environment. IDEAS**2 is the computing environment selected for system engineering (design and analysis) by the Center for Space Construction (CSC) at the University of Colorado (UCB). It is intended to support integration and analysis of any engineering system and at any level of development, from Pre-Phase A conceptual studies to fully mature Phase C/D projects. The University of Colorado (through the Center for Space Construction) has joined the Structural Dynamics Research Corporation (SDRC) University Consortium which makes available unlimited software licenses for instructional purposes. In addition to providing the backbone for the implementation of the IDEAS**2 computing environment, I-DEAS can be used as a stand-alone product for undergraduate CAD/CAE instruction. Presently, SDRC is in the process of releasing I-DEAS level 5.0 which represents a substantial improvement in both the user interface and graphic processing capabilities. IDEAS**2 will be immediately useful for a number of current programs within CSC (such as DYCAM and the 'interruptability problem'). In the future, the following expansions of the basic IDEAS**2 program will be pursued, consistent with the overall objectives of the Center and of the College: upgrade I-DEAS and IDEAS**2 to level 5.0; create new analytical programs for applications not limited to orbital platforms; research the semantic organization of engineering databases; and create an 'interoperability' testbed.
Sleep and Development in Genetically Tractable Model Organisms
Kayser, Matthew S.; Biron, David
2016-01-01
Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. PMID:27183564
Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling
NASA Astrophysics Data System (ADS)
Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo
2017-06-01
Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.
Modeling of the illumination driven coma of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Bieler, André
2015-04-01
In this paper we present results modeling 67P/Churyumov-Gerasimenko's (C-G) neutral coma properties observed by the Rosetta ROSINA experiment with 3 different model approaches. The basic assumption for all models is the idea that the out-gassing properties of C-G are mainly illumination driven. With this assumption all models are capable of reproducing most features in the neutral coma signature as detected by the ROSINA-COPS instrument over several months. The models include the realistic shape model of the nucleus to calculate the illumination conditions over time which are used to define the boundary conditions for the hydrodynamic (BATS-R-US code) and the Direct Simulation Monte Carlo (AMPS code) simulations. The third model finally computes the projection of the total illumination on the comet surface towards the spacecraft. Our results indicate that at large heliocentric distances (3.5 to 2.8 AU) most gas coma structures observed by the in-situ instruments can be explained by uniformly distributed activity regions spread over the whole nucleus surface.
John Hughlings Jackson and the conceptual foundations of the neurosciences.
Greenblatt, S H
1999-01-01
Cerebral localization, including hierarchical organization of the nervous system, was the critical conceptual advance that made possible the development of modern neuroscience in the nineteenth century. Some of our most basic ideas about neural organization were contributed by Hughlings Jackson. In the early twentieth century, Charles Sherrington combined localization with the neurone theory to create the paradigm of neurophysiological integration. Because Sherrington was educated in the Jacksonian tradition of British neurology, Sherringtonian integration contains ideas that are derived from Jackson and from Herbert Spencer.
Basic Science of the Fundamentals and Dynamics of Social-Fringe Group Formation and Sustainment
2012-08-01
You’re not doing well, but you’re still free to consume. We’re all equal in the eyes of the market." - Stuart Hall 011 the 2011 London Riots Case 3...culture!to!another.!!!Overall,(it(focussed(on(the(persuasive(nature,( influence(and(propagation(of(compelling(ideas,(the(bases(for(group( receptiveness (and...recruitment&and&fringe&group&formation& o What!are!the!personality!and!social!characteristics!of!adherents!that! increase!their! receptiveness !to!fringe!ideas
NASA Astrophysics Data System (ADS)
Whelan, Colm T.
2018-04-01
A knowledge of atomic theory should be an essential part of every physicist's and chemist's toolkit. This book provides an introduction to the basic ideas that govern our understanding of microscopic matter, and the essential features of atomic structure and spectra are presented in a direct and easily accessible manner. Semi-classical ideas are reviewed and an introduction to the quantum mechanics of one and two electron systems and their interaction with external electromagnetic fields is featured. Multielectron atoms are also introduced, and the key methods for calculating their properties reviewed.
Software Deficiency Issues Confronting the Utilization of ’Non-von Neumann’ Architectures
1989-01-01
upon work done by Charles Babbage nearly 100 years before. Hence, the " Babbage " machine that was designed in the 1820’s and 1830’s is generally...functionality. For example, consider the world’s first computer designer, Charles Babbage , who primarily designed in the 1820’s what is considered to be the...primarily considered as direct descendants of ideas that were devised in the 1930’s, these ideas were basically rediscoveries of what Charles Babbage
The Origin of Mass and the Feebleness of Gravity
Wilczek, Frank
2017-12-09
BSA Distinguished Lecture presented by Frank Wilczek, co-winner of the 2004 Nobel Prize in Physics. Einstein's famous equation E=mc^2 asserts that energy and mass are different aspects of the same reality. The general public usually associates the equation with the idea that small amounts of mass can be converted into large amounts of energy, as in nuclear reactors and bombs. For physicists who study the basic nature of matter, however, the more important idea is just the opposite.
Computer aided fringe pattern analysis
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.
The paper reviews the basic laws of fringe pattern interpretation. The different techniques that are currently utilized are presented using a common frame of reference stressing the fact that these techniques are different variations of the same basic principle. Digital and analog techniques are discussed. Currently available hardware is presented and the relationships between hardware and the operations of pattern fringe processing are pointed out. Examples are given to illustrate the ideas discussed in the paper.
Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M
2018-06-01
The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.
A two-level structure for advanced space power system automation
NASA Technical Reports Server (NTRS)
Loparo, Kenneth A.; Chankong, Vira
1990-01-01
The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.
A protect solution for data security in mobile cloud storage
NASA Astrophysics Data System (ADS)
Yu, Xiaojun; Wen, Qiaoyan
2013-03-01
It is popular to access the cloud storage by mobile devices. However, this application suffer data security risk, especial the data leakage and privacy violate problem. This risk exists not only in cloud storage system, but also in mobile client platform. To reduce the security risk, this paper proposed a new security solution. It makes full use of the searchable encryption and trusted computing technology. Given the performance limit of the mobile devices, it proposes the trusted proxy based protection architecture. The design basic idea, deploy model and key flows are detailed. The analysis from the security and performance shows the advantage.
LiPISC: A Lightweight and Flexible Method for Privacy-Aware Intersection Set Computation
Huang, Shiyong; Ren, Yi; Choo, Kim-Kwang Raymond
2016-01-01
Privacy-aware intersection set computation (PISC) can be modeled as secure multi-party computation. The basic idea is to compute the intersection of input sets without leaking privacy. Furthermore, PISC should be sufficiently flexible to recommend approximate intersection items. In this paper, we reveal two previously unpublished attacks against PISC, which can be used to reveal and link one input set to another input set, resulting in privacy leakage. We coin these as Set Linkage Attack and Set Reveal Attack. We then present a lightweight and flexible PISC scheme (LiPISC) and prove its security (including against Set Linkage Attack and Set Reveal Attack). PMID:27326763
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
LiPISC: A Lightweight and Flexible Method for Privacy-Aware Intersection Set Computation.
Ren, Wei; Huang, Shiyong; Ren, Yi; Choo, Kim-Kwang Raymond
2016-01-01
Privacy-aware intersection set computation (PISC) can be modeled as secure multi-party computation. The basic idea is to compute the intersection of input sets without leaking privacy. Furthermore, PISC should be sufficiently flexible to recommend approximate intersection items. In this paper, we reveal two previously unpublished attacks against PISC, which can be used to reveal and link one input set to another input set, resulting in privacy leakage. We coin these as Set Linkage Attack and Set Reveal Attack. We then present a lightweight and flexible PISC scheme (LiPISC) and prove its security (including against Set Linkage Attack and Set Reveal Attack).
Coles, Peter
2005-01-20
The past 20 years have seen dramatic advances in cosmology, mostly driven by observations from new telescopes and detectors. These instruments have allowed astronomers to map out the large-scale structure of the Universe and probe the very early stages of its evolution. We seem to have established the basic parameters describing the behaviour of our expanding Universe, thereby putting cosmology on a firm empirical footing. But the emerging 'standard' model leaves many details of galaxy formation still to be worked out, and new ideas are emerging that challenge the theoretical framework on which the structure of the Big Bang is based. There is still a great deal left to explore in cosmology.
A unifying model for adsorption and nucleation of vapors on solid surfaces.
Laaksonen, Ari
2015-04-23
Vapor interaction with solid surfaces is traditionally described with adsorption isotherms in the undersaturated regime and with heterogeneous nucleation theory in the supersaturated regime. A class of adsorption isotherms is based on the idea of vapor molecule clustering around so-called active sites. However, as the isotherms do not account for the surface curvature effects of the clusters, they predict an infinitely thick adsorption layer at saturation and do not recognize the existence of the supersaturated regime. The classical heterogeneous nucleation theory also builds on the idea of cluster formation, but describes the interactions between the surface and the cluster with a single parameter, the contact angle, which provides limited information compared with adsorption isotherms. Here, a new model of vapor adsorption on nonporous solid surfaces is derived. The basic assumption is that adsorption proceeds via formation of molecular clusters, modeled as liquid caps. The equilibrium of the individual clusters with the vapor phase is described with the Frenkel-Halsey-Hill (FHH) adsorption theory modified with the Kelvin equation that corrects for the curvature effect on vapor pressure. The new model extends the FHH adsorption isotherm to be applicable both at submonolayer surface coverages and at supersaturated conditions. It shows good agreement with experimental adsorption data from 12 different adsorbent-adsorbate systems. The model predictions are also compared against heterogeneous nucleation data, and they show much better agreement than predictions of the classical heterogeneous nucleation theory.
Urine: Waste product or biologically active tissue?
2018-03-01
Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
The potential role of telocytes in Tissue Engineering and Regenerative Medicine.
Boos, Anja M; Weigand, Annika; Brodbeck, Rebekka; Beier, Justus P; Arkudas, Andreas; Horch, Raymund E
2016-07-01
Research and ideas for potential applications in the field of Tissue Engineering (TE) and Regenerative Medicine (RM) have been constantly increasing over recent years, basically driven by the fundamental human dream of repairing and regenerating lost tissue and organ functions. The basic idea of TE is to combine cells with putative stem cell properties with extracellular matrix components, growth factors and supporting matrices to achieve independently growing tissue. As a side effect, in the past years, more insights have been gained into cell-cell interaction and how to manipulate cell behavior. However, to date the ideal cell source has still to be found. Apart from commonly known various stem cell sources, telocytes (TC) have recently attracted increasing attention because they might play a potential role for TE and RM. It becomes increasingly evident that TC provide a regenerative potential and act in cellular communication through their network-forming telopodes. While TE in vitro experiments can be the first step, the key for elucidating their regenerative role will be the investigation of the interaction of TC with the surrounding tissue. For later clinical applications further steps have to include an upscaling process of vascularization of engineered tissue. Arteriovenous loop models to vascularize such constructs provide an ideal platform for preclinical testing of future therapeutic concepts in RM. The following review article should give an overview of what is known so far about the potential role of TC in TE and RM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Concept verification of three dimensional free motion simulator for space robot
NASA Technical Reports Server (NTRS)
Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett
1994-01-01
In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.
Clarification process: Resolution of decision-problem conditions
NASA Technical Reports Server (NTRS)
Dieterly, D. L.
1980-01-01
A model of a general process which occurs in both decisionmaking and problem-solving tasks is presented. It is called the clarification model and is highly dependent on information flow. The model addresses the possible constraints of individual indifferences and experience in achieving success in resolving decision-problem conditions. As indicated, the application of the clarification process model is only necessary for certain classes of the basic decision-problem condition. With less complex decision problem conditions, certain phases of the model may be omitted. The model may be applied across a wide range of decision problem conditions. The model consists of two major components: (1) the five-phase prescriptive sequence (based on previous approaches to both concepts) and (2) the information manipulation function (which draws upon current ideas in the areas of information processing, computer programming, memory, and thinking). The two components are linked together to provide a structure that assists in understanding the process of resolving problems and making decisions.
This web presentation answers basic questions about the relatively new scientific concept, emergy. It dispels some of the confusion surrounding this idea in a PowerPoint presentation. The presentation is written in common language and uses straightforward examples. Emergy indic...
ERIC Educational Resources Information Center
Pasachoff, Jay M.
1979-01-01
Discusses some of the basic theories in cosmology, such as Hubble's laws and the big-bang theories, and looks at some of the ideas of astronomers and scientists with respect to their evaluation of the future of the universe. (GA)
Microcomputers! Applications to Physics Teaching.
ERIC Educational Resources Information Center
Tinker, Robert F.; Stringer, Gene A.
1978-01-01
Reviews the use of computers in various aspects of physics teaching. Introduces some basic hardware and software concepts and jargon. Illustrates these ideas using four vastly different microcomputers, with prices, to help in choosing the right educational computer system. (GA)
ERIC Educational Resources Information Center
Classroom Computer Learning, 1984
1984-01-01
Presents five activities suitable for middle grades. These include listings for a car race (BASIC) and poetry (Pilot) programs, and activities on graphics without programing, new meanings (related to computers) of old words, and developing a list of historical events. (JN)
Allelic variants of hereditary prions: The bimodularity principle.
Tikhodeyev, Oleg N; Tarasov, Oleg V; Bondarev, Stanislav A
2017-01-02
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either "canonical" (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as "gene" and "allele" to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.
Patino, Robert
2009-03-01
Clinical and basic scientists at academic medical and biomedical research institutions often form ideas that could have both monetary and human health benefits if developed and applied to improvement of human wellbeing. However, such ideas lose much of their potential value in both regards if they are disclosed in traditional knowledge-sharing forums such as abstracts, posters, and oral presentations at research meetings. Learning the basics about intellectual property protection and obtaining professional guidance in the management of intellectual property from a knowledgeable technology management professional or intellectual property attorney can avoid such losses yet pose a minimal burden of confidentiality on the investigator. Knowing how to successfully navigate the early stages of intellectual property protection can greatly increase the likelihood that discoveries and knowledge will become available for the public good without diminishing the important mandate of disseminating knowledge through traditional knowledge-sharing forums.
Allelic variants of hereditary prions: The bimodularity principle
Tikhodeyev, Oleg N.; Tarasov, Oleg V.; Bondarev, Stanislav A.
2017-01-01
ABSTRACT Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either “canonical” (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as “gene” and “allele” to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor. PMID:28281926
Student Assistant for Learning from Text (SALT): a hypermedia reading aid.
MacArthur, C A; Haynes, J B
1995-03-01
Student Assistant for Learning from Text (SALT) is a software system for developing hypermedia versions of textbooks designed to help students with learning disabilities and other low-achieving students to compensate for their reading difficulties. In the present study, 10 students with learning disabilities (3 young women and 7 young men ages 15 to 17) in Grades 9 and 10 read passages from a science textbook using a basic computer version and an enhanced computer version. The basic version included the components found in the printed textbook (text, graphics, outline, and questions) and a notebook. The enhanced version added speech synthesis, an on-line glossary, links between questions and text, highlighting of main ideas, and supplementary explanations that summarized important ideas. Students received significantly higher comprehension scores using the enhanced version. Furthermore, students preferred the enhanced version and thought it helped them learn the material better.
Austerity and Geometric Structure of Field Theories
NASA Astrophysics Data System (ADS)
Kheyfets, Arkady
The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.
Nonlinear data assimilation using synchronization in a particle filter
NASA Astrophysics Data System (ADS)
Rodrigues-Pinheiro, Flavia; Van Leeuwen, Peter Jan
2017-04-01
Current data assimilation methods still face problems in strongly nonlinear cases. A promising solution is a particle filter, which provides a representation of the model probability density function by a discrete set of particles. However, the basic particle filter does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. A potential choice of proposal density might come from the synchronisation theory, in which one tries to synchronise the model with the true evolution of a system using one-way coupling via the observations. In practice, an extra term is added to the model equations that damps growth of instabilities on the synchronisation manifold. When only part of the system is observed synchronization can be achieved via a time embedding, similar to smoothers in data assimilation. In this work, two new ideas are tested. First, ensemble-based time embedding, similar to an ensemble smoother or 4DEnsVar is used on each particle, avoiding the need for tangent-linear models and adjoint calculations. Tests were performed using Lorenz96 model for 20, 100 and 1000-dimension systems. Results show state-averaged synchronisation errors smaller than observation errors even in partly observed systems, suggesting that the scheme is a promising tool to steer model states to the truth. Next, we combine these efficient particles using an extension of the Implicit Equal-Weights Particle Filter, a particle filter that ensures equal weights for all particles, avoiding filter degeneracy by construction. Promising results will be shown on low- and high-dimensional Lorenz96 models, and the pros and cons of these new ideas will be discussed.
Overview of artificial neural networks.
Zou, Jinming; Han, Yi; So, Sung-Sau
2008-01-01
The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.
NASA Astrophysics Data System (ADS)
Yidong, Xu; Ping, Wu; Jian, Chen; Jiansheng, Shen
2018-05-01
In view of the shortcomings of the current civil engineering management discipline, this paper investigates the necessity of the course design reform. Based on the analysis of basic occupation requirements of civil engineering management discipline, the basic ideas and implementation strategies of the integrated reform of curriculum design system are proposed, which can not only improve the students’ overall understanding of knowledge and skills, but also enhance the system of student learning.
Fundamental heat transfer research for gas turbine engines
NASA Technical Reports Server (NTRS)
Metzger, D. E. (Editor)
1980-01-01
Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.
Anderson, Christine A; Whall, Ann L
2013-10-01
Opinion leaders are informal leaders who have the ability to influence others' decisions about adopting new products, practices or ideas. In the healthcare setting, the importance of translating new research evidence into practice has led to interest in understanding how opinion leaders could be used to speed this process. Despite continued interest, gaps in understanding opinion leadership remain. Agent-based models are computer models that have proven to be useful for representing dynamic and contextual phenomena such as opinion leadership. The purpose of this paper is to describe the work conducted in preparation for the development of an agent-based model of nursing opinion leadership. The aim of this phase of the model development project was to clarify basic assumptions about opinions, the individual attributes of opinion leaders and characteristics of the context in which they are effective. The process used to clarify these assumptions was the construction of a preliminary nursing opinion leader model, derived from philosophical theories about belief formation. © 2013 John Wiley & Sons Ltd.
Bright Idea: Solar Energy Primer.
ERIC Educational Resources Information Center
Missouri State Dept. of Natural Resources, Jefferson City.
This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)
G. N. Lewis and the Chemical Bond.
ERIC Educational Resources Information Center
Pauling, Linus
1984-01-01
Discusses the contributions of G. N. Lewis to chemistry, focusing on his formulation of the basic principle of the chemical bond--the idea that the chemical bond consists of a pair of electrons held jointly by two atoms. (JN)
ERIC Educational Resources Information Center
Chokotho, N. C.; Leisten, J. A.
1981-01-01
Suggests a method for students to engage in research projects and orally present results in class. The basic idea is to have students work on individual projects around a central theme. Describes 20 projects centered around the halogenation of ketones. (Author/JN)
ERIC Educational Resources Information Center
McCreedy, Pete; Staley, Joyce
1980-01-01
Describes a lesson plan which was used successfully to teach the basics of investment to students in a fifth-grade social studies class on economics education. Projects included in the unit included selling stock, pre-sales preparation, selling, profits, and investment. (DB)
The enigma of energy: A philosophical inquiry
NASA Astrophysics Data System (ADS)
Todaro-Franceschi, Vidette
1998-06-01
A philosophical inquiry was undertaken to examine the enigma of energy in an attempt to clarify and further illuminate the basic ideas of energy. Beginning with the origin of the concept-Aristotle's conceptualization of energeia-and continuing through to the present day with an overview of the historical conceptual development of energy in Western science, an analysis and interpretation of the scientific and philosophic literature was performed. Literature regarding aspects of human sentience was also examined for underlying ideas of energy. And, finally, selected medical and nursing science theoretical frameworks were analyzed with the hope of further grasping the philosophical underpinnings related to the phenomenon of human energy. Certain ideas of energy became evident. Energy can be viewed as a process and this view works well within the physical science domain. When energy is viewed as a process it falls within the mechanistic tradition: things are viewed as particulate, and cause and effect related. However, energy can also be viewed as a phenomenon, a thing. As a phenomenon, energy is continually transforming and actualizing inherent potentials in a communal process. When energy is recognized as the sole phenomenon responsible for everything in existence, it becomes evident that all is essentially one. In addition, when energy is viewed in this manner it becomes increasingly difficult to deny the purposive character underlying all nature. It is argued that the mystery ultimately leads to something far beyond what we know exists. One of the intuitive feelings of this researcher was that there were at least two different ideas of energy in the sciences of medicine and nursing, which, while different, shared some common elements as well. An examination of Hippocrates', Nightingale's, Selye's, Levine's, and Rogers' ideas, as well as the basic tenets of alternative health care, revealed two distinct worldviews regarding human energy which are congruent with the ideas of energy as process and as a phenomenon. Both ideas, energy as process, and energy as a real entity, originated in Aristotle's work (384-322 BC) and both ways of viewing energy are still prevalent as we approach the 21 st century.
Tutorial: Physics and modeling of Hall thrusters
NASA Astrophysics Data System (ADS)
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Yu, Shih-Pin
2006-01-01
This paper emphasizes the application of numerical methods to explore the ideas related to shielding effectiveness from a statistical view. An empty rectangular box is examined using a hybrid modal/moment method. The basic computational method is presented followed by the results for single- and multiple observation points within the over-moded empty structure. The statistics of the field are obtained by using frequency stirring, borrowed from the ideas connected with reverberation chamber techniques, and extends the ideas of shielding effectiveness well into the multiple resonance regions. The study presented in this paper will address the average shielding effectiveness over a broad spatial sample within the enclosure as the frequency is varied.
Mathematical modeling in chronobiology.
Bordyugov, G; Westermark, P O; Korenčič, A; Bernard, S; Herzel, H
2013-01-01
Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light-dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell-cell coupling, and (3) optimization of chronotherapy.
The isotopic and chemical evolution of planets: Mars as a missing link
NASA Technical Reports Server (NTRS)
Depaolo, D. J.
1988-01-01
The study of planetary bodies has advanced to a stage where it is possible to contemplate general models for the chemical and physical evolution of planetary interiors, which might be referred to as UMPES (Unified Models of Planetary Evolution and Structure). UMPES would be able to predict the internal evolution and structure of a planet given certain input parameters such as mass, distance from the sun, and a time scale for accretion. Such models are highly dependent on natural observations because the basic material properties of planetary interiors, and the processes that take place during the evolution of planets are imperfectly understood. The idea of UMPES was particularly unrealistic when the only information available was from the earth. However, advances have been made in the understanding of the general aspects of planetary evolution now that there is geochemical and petrological data available for the moon and for meteorites.
REVIEWS OF TOPICAL PROBLEMS: Nonlinear dynamics of the brain: emotion and cognition
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Muezzinoglu, M. K.
2010-07-01
Experimental investigations of neural system functioning and brain activity are standardly based on the assumption that perceptions, emotions, and cognitive functions can be understood by analyzing steady-state neural processes and static tomographic snapshots. The new approaches discussed in this review are based on the analysis of transient processes and metastable states. Transient dynamics is characterized by two basic properties, structural stability and information sensitivity. The ideas and methods that we discuss provide an explanation for the occurrence of and successive transitions between metastable states observed in experiments, and offer new approaches to behavior analysis. Models of the emotional and cognitive functions of the brain are suggested. The mathematical object that represents the observed transient brain processes in the phase space of the model is a structurally stable heteroclinic channel. The possibility of using the suggested models to construct a quantitative theory of some emotional and cognitive functions is illustrated.
NASA Astrophysics Data System (ADS)
Witek, Maria A. G.; Kringelbach, Morten L.; Vuust, Peter
2015-06-01
The Quartet Theory of Human Emotion (QT) proposed by Koelsch et al. [1] adds to existing affective models, e.g. by directing more attention to emotional contagion, attachment-related and non-goal-directed emotions. Such an approach seems particularly appropriate to modelling musical emotions, and music is indeed a recurring example in the text, used to illustrate the distinct characteristics of the affect systems that are at the centre of the theory. Yet, it would seem important for any theory of emotion to account for basic functions such as prediction and anticipation, which are only briefly mentioned. Here we propose that QT, specifically its focus on emotional contagion, attachment-related and non-goal directed emotions, might help generate new ideas about a largely neglected source of emotion - rhythm - a musical property that relies fundamentally on the mechanism of prediction.
The evolution of social learning mechanisms and cultural phenomena in group foragers.
van der Post, Daniel J; Franz, Mathias; Laland, Kevin N
2017-02-10
Advanced cognitive abilities are widely thought to underpin cultural traditions and cumulative cultural change. In contrast, recent simulation models have found that basic social influences on learning suffice to support both cultural phenomena. In the present study we test the predictions of these models in the context of skill learning, in a model with stochastic demographics, variable group sizes, and evolved parameter values, exploring the cultural ramifications of three different social learning mechanisms. Our results show that that simple forms of social learning such as local enhancement, can generate traditional differences in the context of skill learning. In contrast, we find cumulative cultural change is supported by observational learning, but not local or stimulus enhancement, which supports the idea that advanced cognitive abilities are important for generating this cultural phenomenon in the context of skill learning. Our results help to explain the observation that animal cultures are widespread, but cumulative cultural change might be rare.
Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements
NASA Astrophysics Data System (ADS)
Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.
2011-09-01
Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.
Sleep and Development in Genetically Tractable Model Organisms.
Kayser, Matthew S; Biron, David
2016-05-01
Sleep is widely recognized as essential, but without a clear singular function. Inadequate sleep impairs cognition, metabolism, immune function, and many other processes. Work in genetic model systems has greatly expanded our understanding of basic sleep neurobiology as well as introduced new concepts for why we sleep. Among these is an idea with its roots in human work nearly 50 years old: sleep in early life is crucial for normal brain maturation. Nearly all known species that sleep do so more while immature, and this increased sleep coincides with a period of exuberant synaptogenesis and massive neural circuit remodeling. Adequate sleep also appears critical for normal neurodevelopmental progression. This article describes recent findings regarding molecular and circuit mechanisms of sleep, with a focus on development and the insights garnered from models amenable to detailed genetic analyses. Copyright © 2016 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Saldarriaga Vargas, Clarita
When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.
ERIC Educational Resources Information Center
May, Abigail
1998-01-01
Offers some key business principles with the hope of helping educational facilities managers improve their operations. Looks at customer service, disparate databases, technological concerns, the mission of facility management, how to improve the bottom line, staffing ideas, future planning, and management suggestions. Lists seven habits of…
Computers and the Multiplicity of Polynomial Roots.
ERIC Educational Resources Information Center
Wavrik, John J.
1982-01-01
Described are stages in the development of a computer program to solve a particular algebra problem and the nature of algebraic computation is presented. A program in BASIC is provided to give ideas to others for developing their own programs. (MP)
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…
NASA Technical Reports Server (NTRS)
Kushner, H. J.
1972-01-01
The field of stochastic stability is surveyed, with emphasis on the invariance theorems and their potential application to systems with randomly varying coefficients. Some of the basic ideas are reviewed, which underlie the stochastic Liapunov function approach to stochastic stability. The invariance theorems are discussed in detail.
Matthews, Thomas J; Whittaker, Robert J
2014-01-01
Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research. PMID:25360266
Agent-based models for latent liquidity and concave price impact
NASA Astrophysics Data System (ADS)
Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe
2014-04-01
We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011), 10.1103/PhysRevX.1.021006], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.
Matthews, Thomas J; Whittaker, Robert J
2014-06-01
Published in 2001, The Unified Neutral Theory of Biodiversity and Biogeography (UNTB) emphasizes the importance of stochastic processes in ecological community structure, and has challenged the traditional niche-based view of ecology. While neutral models have since been applied to a broad range of ecological and macroecological phenomena, the majority of research relating to neutral theory has focused exclusively on the species abundance distribution (SAD). Here, we synthesize the large body of work on neutral theory in the context of the species abundance distribution, with a particular focus on integrating ideas from neutral theory with traditional niche theory. First, we summarize the basic tenets of neutral theory; both in general and in the context of SADs. Second, we explore the issues associated with neutral theory and the SAD, such as complications with fitting and model comparison, the underlying assumptions of neutral models, and the difficultly of linking pattern to process. Third, we highlight the advances in understanding of SADs that have resulted from neutral theory and models. Finally, we focus consideration on recent developments aimed at unifying neutral- and niche-based approaches to ecology, with a particular emphasis on what this means for SAD theory, embracing, for instance, ideas of emergent neutrality and stochastic niche theory. We put forward the argument that the prospect of the unification of niche and neutral perspectives represents one of the most promising future avenues of neutral theory research.
Agent-based models for latent liquidity and concave price impact.
Mastromatteo, Iacopo; Tóth, Bence; Bouchaud, Jean-Philippe
2014-04-01
We revisit the "ɛ-intelligence" model of Tóth et al. [Phys. Rev. X 1, 021006 (2011)], which was proposed as a minimal framework to understand the square-root dependence of the impact of meta-orders on volume in financial markets. The basic idea is that most of the daily liquidity is "latent" and furthermore vanishes linearly around the current price, as a consequence of the diffusion of the price itself. However, the numerical implementation of Tóth et al. (2011) was criticized as being unrealistic, in particular because all the "intelligence" was conferred to market orders, while limit orders were passive and random. In this work, we study various alternative specifications of the model, for example, allowing limit orders to react to the order flow or changing the execution protocols. By and large, our study lends strong support to the idea that the square-root impact law is a very generic and robust property that requires very few ingredients to be valid. We also show that the transition from superdiffusion to subdiffusion reported in Tóth et al. (2011) is in fact a crossover but that the original model can be slightly altered in order to give rise to a genuine phase transition, which is of interest on its own. We finally propose a general theoretical framework to understand how a nonlinear impact may appear even in the limit where the bias in the order flow is vanishingly small.
Winter wheat: A model for the simulation of growth and yield in winter wheat
NASA Technical Reports Server (NTRS)
Baker, D. N.; Smika, D. E.; Black, A. L.; Willis, W. O.; Bauer, A. (Principal Investigator)
1981-01-01
The basic ideas and constructs for a general physical/physiological process level winter wheat simulation model are documented. It is a materials balance model which calculates daily increments of photosynthate production and respiratory losses in the crop canopy. The partitioning of the resulting dry matter to the active growing tissues in the plant each day, transpiration and the uptake of nitrogen from the soil profile are simulated. It incorporates the RHIZOS model which simulates, in two dimensions, the movement of water, roots, and soluble nutrients through the soil profile. It records the time of initiation of each of the plant organs. These phenological events are calculated from temperature functions with delays resulting from physiological stress. Stress is defined mathematically as an imbalance in the metabolite supply; demand ratio. Physiological stress is also the basis for the calculation of rates of tiller and floret abortion. Thus, tillering and head differentiation are modeled as the resulants of the two processes, morphogenesis and abortion, which may be occurring simulaneously.
Bazant, Zdenek P; Caner, Ferhun C
2013-11-26
Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.
The role of solitons in charge and energy transfer in 1D molecular chains
NASA Astrophysics Data System (ADS)
Ivić , Zoran
1998-03-01
The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.
[Origin and thought on the philosophical ideas of acupuncture in Chinese medicine].
Ren, Xiumei
2017-12-12
Acupuncture in Chinese medicine has been a treasure in Chinese traditional medicine for thousands of years. It is opposite to many basic theories in modern medicine in dynasties. Different from the cross compatibility and interactions among medical medicines, acupuncture in Chinese medicine has its own consolidation and inherent philosophical ideas. In view of this, how to discuss the philosophical ideas and its development of acupuncture in Chinese medicine becomes of great importance. It is crucial to clearly answer the three theoretical propositions in the development of acupuncture in Chinese medicine. Firstly, the differences in acupuncture should be identified between the ancient time and the modern time. The issues focus on the origin of Huangdi Neijing ( Yellow Emperor's Internal Medicine ) and its philosophical divergence. Secondly, the origin of acupuncture should be identified, whether it is from China or India. Thirdly, the differences in acupuncture should be identified between China and the west, focusing on the explanation and rectification of the interrelationship between the acupuncture in Chinese medicine and the western acupuncture. Hence, the basic features are discussed on the reality of acupuncture in Chinese medicine as well as its diversity. Finally, the proposition is extended on how to holistically grasp the philosophical foundation of acupuncture in Chinese medicine and its future trend.
Energy Spectral Behaviors of Communication Networks of Open-Source Communities
Yang, Jianmei; Yang, Huijie; Liao, Hao; Wang, Jiangtao; Zeng, Jinqun
2015-01-01
Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations. PMID:26047331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Raul; Carreras, Benjamin A; van Milligen, B. Ph.
An idea that the late Prof. Radu Balescu often pondered during his long and distinguished scientific career was the possibility of constructing simple stochastic or probabilistic models able to capture the basic features of the complex dynamics of turbulent transport in magnetically confined plasmas. In particular, the application of the continuous-time random walk (CTRW) concept to this task was one of his favorites. In the last few years prior to his death, we also became interested in applying (variations of the standard) CTRW to these problems. In our case, it was the natural way to move beyond the simple paradigmsmore » based on sandpile constructs that we had been previously studying. This common interest fueled an intense electronic correspondence between Prof. Balescu and us that started in 2004 and was only interrupted by his unexpected death in June 2006. In this paper, we pay tribute to his memory by reviewing some of these exciting concepts that interested him so much and by sketching the problems and ideas that we discussed so frequently during these two years. Regretfully, he will no longer be here to help us solve them.« less
Integrating occupancy models and structural equation models to understand species occurrence
Joseph, Maxwell B.; Preston, Daniel L.; Johnson, Pieter T. J.
2016-01-01
Understanding the drivers of species occurrence is a fundamental goal in basic and applied ecology. Occupancy models have emerged as a popular approach for inferring species occurrence because they account for problems associated with imperfect detection in field surveys. Current models, however, are limited because they assume covariates are independent (i.e., indirect effects do not occur). Here, we combined structural equation and occupancy models to investigate complex influences on species occurrence while accounting for imperfect detection. These two methods are inherently compatible because they both provide means to make inference on latent or unobserved quantities based on observed data. Our models evaluated the direct and indirect roles of cattle grazing, water chemistry, vegetation, nonnative fishes, and pond permanence on the occurrence of six pond-breeding amphibians, two of which are threatened: the California tiger salamander (Ambystoma californiense), and the California red-legged frog (Rana draytonii). While cattle had strong effects on pond vegetation and water chemistry, their overall effects on amphibian occurrence were small compared to the consistently negative effects of nonnative fish. Fish strongly reduced occurrence probabilities for four of five native amphibians, including both species of conservation concern. These results could help to identify drivers of amphibian declines and to prioritize strategies for amphibian conservation. More generally, this approach facilitates a more mechanistic representation of ideas about the causes of species distributions in space and time. As shown here, occupancy modeling and structural equation modeling are readily combined, and bring rich sets of techniques that may provide unique theoretical and applied insights into basic ecological questions. PMID:27197402
Artificial Intelligence in Speech Understanding: Two Applications at C.R.I.N.
ERIC Educational Resources Information Center
Carbonell, N.; And Others
1986-01-01
This article explains how techniques of artificial intelligence are applied to expert systems for acoustic-phonetic decoding, phonological interpretation, and multi-knowledge sources for man-machine dialogue implementation. The basic ideas are illustrated with short examples. (Author/JDH)
Exploring Chaos: A Case Study.
ERIC Educational Resources Information Center
Nemirovsky, Ricardo; Tinker, Robert
1993-01-01
Describes software, hardware, and devices that were designed to provide students with an environment to experiment with basic ideas of mechanics, including nonlinear dynamics. Examines the behavior of a Lorenzian water wheel by comparing experimental data with theoretical results obtained from computer-based sensors. (MDH)
Parrallel power for undersea application: The basic considerations
NASA Technical Reports Server (NTRS)
Kirkham, H.; Howe, B.
2001-01-01
Power systems for undersea observatories are required to deliver high power with good reliability. For the proposed NEPTUNE observatory, the authors have developed a power scheme that combines ideas from terrestial power systems and switching power supplies with experience from undersea cable systems.
ERIC Educational Resources Information Center
Perry, Mike; Kader, Gary
1998-01-01
Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)
Implementation of Knowledge Management in Organizations
ERIC Educational Resources Information Center
Winkler, Katrin; Mandl, Heinz
2007-01-01
In the context of learning implementation of new ideas e.g. knowledge management in organizations often is neglected. Concerning knowledge management measures we demonstrate its implementation in organizations. A theoretical framework was developed showing the necessary basic conditions for implementing knowledge management. Subsequently we…
Child Art and the Emergence of Learning Styles.
ERIC Educational Resources Information Center
Wieder, Charles G.
1998-01-01
Looks at individuality, in the sense of a personal expressive idiom or style, in children's art production. Shows that early stylistic differences manifest in children's art making correspond to basic cognitive/affective learning processes. Outlines implications for ideas about child development. (DSK)
ERIC Educational Resources Information Center
Thornburg, David; Beane, Pam
1983-01-01
Presents programs for creating animated characters (Atari), random sentences (Logo), and making a triangle (TRS-80 Level III Basic), and suggestions for creative writing and comparison shopping for computers/software. Also includes "Modems for Micros: Your Computer Can Talk on the Phone" (Bill Chalgren) on telecommunications capabilities of…
An Evaluation of Psychophysical Models of Auditory Change Perception
Micheyl, Christophe; Kaernbach, Christian; Demany, Laurent
2009-01-01
In many psychophysical experiments, the participant's task is to detect small changes along a given stimulus dimension, or to identify the direction (e.g., upward vs. downward) of such changes. The results of these experiments are traditionally analyzed using a constant-variance Gaussian (CVG) model or a high-threshold (HT) model. Here, the authors demonstrate that for changes along three basic sound dimensions (frequency, intensity, and amplitude-modulation rate), such models cannot account for the observed relationship between detection thresholds and direction-identification thresholds. It is shown that two alternative models can account for this relationship. One of them is based on the idea of sensory “quanta”; the other assumes that small changes are detected on the basis of Poisson processes with low means. The predictions of these two models are then compared against receiver operating characteristics (ROCs) for the detection of changes in sound intensity. It is concluded that human listeners' perception of small and unidimensional acoustic changes is better described by a discrete-state Poisson model than by the more commonly used CVG model or by the less favored HT and quantum models. PMID:18954215
A framework to enhance security of physically unclonable functions using chaotic circuits
NASA Astrophysics Data System (ADS)
Chen, Lanxiang
2018-05-01
As a new technique for authentication and key generation, physically unclonable function (PUF) has attracted considerable attentions, with extensive research results achieved already. To resist the popular machine learning modeling attacks, a framework to enhance the security of PUFs is proposed. The basic idea is to combine PUFs with a chaotic system of which the response is highly sensitive to initial conditions. For this framework, a specific construction which combines the common arbiter PUF circuit, a converter, and the Chua's circuit is given to implement a more secure PUF. Simulation experiments are presented to further validate the framework. Finally, some practical suggestions for the framework and specific construction are also discussed.
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
Lorenz, B; Persson, B N J
2012-06-06
We discuss the origin of static friction and show how it can be reduced towards kinetic friction by the appropriate design of the sliding system. The basic idea is to use elastically soft solids and apply the external forces in such a way that different parts of the contacting interface start to slip at different times during the (tangential) loading process. In addition, the local slip must be large enough in order to result in a strong drop in the static friction force. We illustrate the theoretical predictions with the results of a simple model experiment.
[The Academy of Ideas - second edition 2014].
2014-01-01
The Academy of Ideas is an initiative of the Italian Society of Nephrology, dedicated to young people who work in nephrology. The 2014 edition wants to foster innovative ideas at different levels of maturity along the research and innovation process, through two distinct sections meant for people who present basic or applied research ideas and for people who submit proofs of concepts transferable to products or services in a relatively short time period. The proposal aims to enhance grant application skills, giving to young researchers the opportunity of collaborating with multi-disciplinary groups of professionals; help young researchers to exploit ideas arising from clinical research and showing a Technology Readiness Level that allows immediate or close in time applicability; foster the understanding of the business perspective in the nephrology sector: giving to young scientists the opportunity to have in-hand experience on challenges related to bringing to the market research results; create a network of knowledge and collaboration among young researchers to facilitate the establishment of collaborative relationships and promote the creation of new projects and publications of high scientific impact.
NASA standard: Trend analysis techniques
NASA Technical Reports Server (NTRS)
1990-01-01
Descriptive and analytical techniques for NASA trend analysis applications are presented in this standard. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. This document should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend analysis is neither a precise term nor a circumscribed methodology: it generally connotes quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this document. The basic ideas needed for qualitative and quantitative assessment of trends along with relevant examples are presented.
An approach to simultaneous control of trajectory and interaction forces in dual-arm configurations
NASA Technical Reports Server (NTRS)
Yun, Xiaoping; Kumar, Vijay R.
1991-01-01
An approach to the control of constrained dynamic systems such as multiple arm systems, multifingered grippers, and walking vehicles is described. The basic philosophy is to utilize a minimal set of inputs to control the trajectory and the surplus input to control the constraint or interaction forces and moments in the closed chain. A dynamic control model for the closed chain is derived that is suitable for designing a controller in which the trajectory and the interaction forces and moments are explicitly controlled. Nonlinear feedback techniques derived from differential geometry are then applied to linearize and decouple the nonlinear model. These ideas are illustrated through a planar example in which two arms are used for cooperative manipulation. Results from a simulation are used to illustrate the efficacy of the method.
NASA Astrophysics Data System (ADS)
Maiti, Amitesh; McGrother, Simon
2004-01-01
Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.
The relationship between a deformation-based eddy parameterization and the LANS-α turbulence model
NASA Astrophysics Data System (ADS)
Bachman, Scott D.; Anstey, James A.; Zanna, Laure
2018-06-01
A recent class of ocean eddy parameterizations proposed by Porta Mana and Zanna (2014) and Anstey and Zanna (2017) modeled the large-scale flow as a non-Newtonian fluid whose subgridscale eddy stress is a nonlinear function of the deformation. This idea, while largely new to ocean modeling, has a history in turbulence modeling dating at least back to Rivlin (1957). The new class of parameterizations results in equations that resemble the Lagrangian-averaged Navier-Stokes-α model (LANS-α, e.g., Holm et al., 1998a). In this note we employ basic tensor mathematics to highlight the similarities between these turbulence models using component-free notation. We extend the Anstey and Zanna (2017) parameterization, which was originally presented in 2D, to 3D, and derive variants of this closure that arise when the full non-Newtonian stress tensor is used. Despite the mathematical similarities between the non-Newtonian and LANS-α models which might provide insight into numerical implementation, the input and dissipation of kinetic energy between these two turbulent models differ.
Deichmann, Ute
2012-01-01
For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.
What Does the Academic Publisher Actually Do?
ERIC Educational Resources Information Center
Mendel, David
1991-01-01
A frustrated author recounts his own experiences and those of others in dealing with publishers. He concludes that academic publishers prefer exchanging ideas and academic gossip with authors to the basics of business, letting the books sell themselves to a captive audience of academic libraries. (MSE)
Beyond the Virtues-Principles Debate.
ERIC Educational Resources Information Center
Keat, Marilyn S.
1992-01-01
Indicates basic ontological assumptions in the virtues-principles debate in moral philosophy, noting Aristotle's and Kant's fundamental ideas about morality and considering a hermeneutic synthesis of theories. The article discusses what acceptance of the synthesis might mean in the theory and practice of moral pedagogy, offering examples of…
SCREENING LIFE CYCLE ASSESSMENT OF GASOLINE ADDITIVES
The EPA's ORD is conducting a screening of Life Cycle Assessment (LCA) of selected automotive fuel (i.e., gasoline) systems. Although no specific guidelines exist on how to conduct such a streamlined approach, the basic idea is to use a mix of qualitative and quantitative generi...
ERIC Educational Resources Information Center
Hart, Vincent G.
1981-01-01
Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)
Health Instruction Packages: Consumer--Behavior/Emotions.
ERIC Educational Resources Information Center
Larkin, Vincent; And Others
Text, illustrations, and exercises are utilized in this set of three learning modules to instruct the general public in methods of exploring human psychology and personal interrelationships. The first module, "The Basic Idea behind Rational-Emotive Therapy" by Vincent Larkin, distinguishes between rational and irrational fears and…
Motivation: An Updated Analysis. IDEA Paper #59
ERIC Educational Resources Information Center
Svinicki, Marilla D.
2016-01-01
Because instructors are very concerned about how to motivate their students, this paper describes some of the most prominent and practically relevant contemporary theories of motivation, specifically expectancy value theory, goal orientation theory, and self-determination theory. After describing each theory and its basic components, suggestions…
Intergenerational Projects: Idea Book.
ERIC Educational Resources Information Center
Clay, Rebecca; Ventura-Merkel, Cathy; Eades-Goudy, Dianne; Dubich, Teresa
This book profiles 74 intergenerational programs in the United States. The programs range from basic tutoring projects to a sophisticated corporate-based day care center. Project selection was based on replicatable programs involving mutually beneficial exchanges. Grouped by subjects, profiles include programs targeting both young and old. Most…
Atmospheric Chemistry and Transport from Space Observations
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.
2002-01-01
This lecture will cover the basic ideas of space observations of chemical constituents, modern analysis techniques and results. I will show analysis using TOMS, UARS, SAGE, Terra. I will show some of the planned missions for the US that will launch in the next few years.
Symbiotic New Program Development through Marketing Research.
ERIC Educational Resources Information Center
Urban, David J.; And Others
1993-01-01
The applicability of marketing research to development of college programs in collaboration with other institutions or individuals is discussed. It is recommended that college administrators conduct ongoing environmental scanning to identify major opportunities for joint programs, forming research groups to screen basic ideas and explore program…
ERIC Educational Resources Information Center
Felber, Helmut
A product of the International Information Center for Terminology (Infoterm), this manual is designed to serve as a reference tool for practitioners active in terminology work and documentation. The manual explores the basic ideas of the Vienna School of Terminology and explains developments in the area of applied computer aided terminography…
Visual mining business service using pixel bar charts
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Casati, Fabio
2004-06-01
Basic bar charts have been commonly available, but they only show highly aggregated data. Finding the valuable information hidden in the data is essential to the success of business. We describe a new visualization technique called pixel bar charts, which are derived from regular bar charts. The basic idea of a pixel bar chart is to present all data values directly instead of aggregating them into a few data values. Pixel bar charts provide data distribution and exceptions besides aggregated data. The approach is to represent each data item (e.g. a business transaction) by a single pixel in the bar chart. The attribute of each data item is encoded into the pixel color and can be accessed and drilled down to the detail information as needed. Different color mappings are used to represent multiple attributes. This technique has been prototyped in three business service applications-Business Operation Analysis, Sales Analysis, and Service Level Agreement Analysis at Hewlett Packard Laboratories. Our applications show the wide applicability and usefulness of this new idea.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
Zheng, Xiu-Deng; Li, Cong; Yu, Jie-Ru; Wang, Shi-Chang; Fan, Song-Jia; Zhang, Bo-Yu; Tao, Yi
2017-05-07
The long-term coexistence of cooperation and defection is a common phenomenon in nature and human society. However, none of the theoretical models based on the Prisoner's Dilemma (PD) game can provide a concise theoretical model to explain what leads to the stable coexistence of cooperation and defection in the long-term even though some rules for promoting cooperation have been summarized (Nowak, 2006, Science 314, 1560-1563). Here, based on the concept of direct reciprocity, we develop an elementary model to show why stable coexistence of cooperation and defection in the PD game is possible. The basic idea behind our theoretical model is that all players in a PD game prefer a cooperator as an opponent, and our results show that considering strategies allowing opting out against defection provide a general and concise way of understanding the fundamental importance of direct reciprocity in driving the evolution of cooperation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bellazzini, Brando; Csáki, Csaba; Serra, Javi
2014-05-01
For the closing article in this volume on supersymmetry, we consider the alternative options to SUSY theories: we present an overview of composite Higgs models in light of the discovery of the Higgs boson. The small value of the physical Higgs mass suggests that the Higgs quartic is likely loop generated; thus models with tree-level quartics will generically be more tuned. We classify the various models (including bona fide composite Higgs, little Higgs, holographic composite Higgs, twin Higgs and dilatonic Higgs) based on their predictions for the Higgs potential, review the basic ingredients of each of them, and quantify the amount of tuning needed, which is not negligible in any model. We explain the main ideas for generating flavor structure and the main mechanisms for protecting against large flavor violating effects, and we present a summary of the various coset models that can result in realistic pseudo-Goldstone Higgses. We review the current experimental status of such models by discussing the electroweak precision, flavor, and direct search bounds, and we comment on the UV completions of such models and on ways to incorporate dark matter.
Parameterizations for ensemble Kalman inversion
NASA Astrophysics Data System (ADS)
Chada, Neil K.; Iglesias, Marco A.; Roininen, Lassi; Stuart, Andrew M.
2018-05-01
The use of ensemble methods to solve inverse problems is attractive because it is a derivative-free methodology which is also well-adapted to parallelization. In its basic iterative form the method produces an ensemble of solutions which lie in the linear span of the initial ensemble. Choice of the parameterization of the unknown field is thus a key component of the success of the method. We demonstrate how both geometric ideas and hierarchical ideas can be used to design effective parameterizations for a number of applied inverse problems arising in electrical impedance tomography, groundwater flow and source inversion. In particular we show how geometric ideas, including the level set method, can be used to reconstruct piecewise continuous fields, and we show how hierarchical methods can be used to learn key parameters in continuous fields, such as length-scales, resulting in improved reconstructions. Geometric and hierarchical ideas are combined in the level set method to find piecewise constant reconstructions with interfaces of unknown topology.
Digital Earth - Young generation's comprehension and ideas
NASA Astrophysics Data System (ADS)
Bandrova, T.; Konecny, M.
2014-02-01
The authors are experienced in working with children and students in the field of early warning and crises management and cartography. All these topics are closely connected to Digital Earth (DE) ideas. On the basis of a questionnaire, the young generation's comprehension of DE concept is clarified. Students from different age groups (from 19 to 36) from different countries and with different social, cultural, economical and political backgrounds are asked to provide definition of DE and describe their basic ideas about meaning, methodology and applications of the concept. The questions aim to discover the young generation's comprehension of DE ideas. They partially cover the newest trends of DE development like social, cultural and environmental issues as well as the styles of new communications (Google Earth, Facebook, LinkedIn, etc.). In order to assure the future development of the DE science, it is important to take into account the young generation's expectations. Some aspects of DE development are considered in the Conclusions.
The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.
Johnson, Brian; Flores Mosri, Daniela
2016-01-01
Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.
Shading Vita YZ substructures: influence on value and chroma, part I.
Devigus, A; Lombardi, G
2004-07-01
All-ceramic restorations should reproduce as well as possible the color of the natural teeth to create a restoration in accordance with the esthetic wishes and ideas of the patient. The basic color of zirconium oxide is white to ivory. The color can be partially adapted by veneering it with ceramic materials. However, it would be better if the substructure could already be adapted to the basic color shade of the neighboring teeth. In this study, the influence of differently shaded frameworks made of Y-TZP by Vita and 3M ESPE and by Enrico Steger (without, with 0.5 mm, or with 1.0 mm ceramic veneer with Base Dentin) on the brightness, saturation, and color shade (= value, chroma, and hue) was measured and assessed with the aid of a spectral photometer (EasyShade, Vita) in a clinical case in the mouth and on the model. By adaptation to the basic shade, the shading of substructures made of Y-TZP can help to reduce the necessary layer thickness of the veneer ceramic to achieve the desired color and should be performed in the future as a matter of routine. In this way, more substance can be conserved when restoring the teeth without having to accept an impairment of the esthetic result.
The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis
Johnson, Brian; Flores Mosri, Daniela
2016-01-01
Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160
Well-being and fairness in the distribution of scarce health resources.
Segev, Re'em
2005-06-01
Based on a general thesis regarding the proper resolution of interpersonal conflicts, this paper suggests a normative framework for the distribution of scarce health resources. The proposed thesis includes two basic ideas. First, individual well-being is the fundamental value. Second, interpersonal conflicts affecting well-being should be resolved in light of several conceptions of fairness, reflecting the independent value of persons and the moral significance of responsibility of individuals for the existence of interpersonal conflicts. These ideas are elaborated in several principles that are applied with respect to the distribution of scarce health resources.
Theory of the Trojan-Horse Method - From the Original Idea to Actual Applications
NASA Astrophysics Data System (ADS)
Typel, Stefan
2018-01-01
The origin and the main features of the Trojan-horse (TH) method are delineated starting with the original idea of Gerhard Baur. Basic theoretical considerations, general experimental conditions and possible problems are discussed. Significant steps in experimental studies towards the implementation of the TH method and the development of the theoretical description are presented. This lead to the successful application of the TH approach by Claudio Spitaleri and his group to determine low-energy cross section that are relevant for astrophysics. An outlook with possible developments in the future are given.
Approximation methods for stochastic petri nets
NASA Technical Reports Server (NTRS)
Jungnitz, Hauke Joerg
1992-01-01
Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay equivalence often fails to converge, while flow equivalent aggregation can lead to potentially bad results if a strong dependence of the mean completion time on the interarrival process exists.
ERIC Educational Resources Information Center
Trundle, Kathy Cabe; Sackes, Mesut
2010-01-01
It is important to help young children make connections between events in their lives and science concepts in preschool classrooms, so introducing basic meteorology ideas offer a great opportunity to make weather connections and awaken scientific curiosity (Spiropoulou, Kostopoulos, and Jacovides 1999). Therefore, this article presents a science…
Developing Literacy for the Workplace.
ERIC Educational Resources Information Center
Keeley, Meg
This paper presents a case and some ideas for integrating basic skills development with occupational training. Explaining why traditional instructional methods do not work in the workplace, the paper summarizes learning theories that support work force literacy programs. It explains how to identify the skills needed in the workplace, provides…
Data De-Identification: An Overview of Basic Terms
ERIC Educational Resources Information Center
Center for IDEA Early Childhood Data Systems (DaSy), 2014
2014-01-01
This 2014 document is intended to assist early intervention service programs and providers and preschool special education programs and agencies in maintaining compliance with privacy and confidentiality requirements under IDEA [Individuals with Disabilities Education Act] and FERPA [Family Educational Rights and Privacy Act]. It reviews the…
Nuclear Science Teaching Aids and Activities.
ERIC Educational Resources Information Center
Woodburn, John H.
This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…
Technology's Role in Security.
ERIC Educational Resources Information Center
Day, C. William
1999-01-01
Examines the use of technology to bolster the school security system, tips on selecting a security consultant, and several basic strategies to make buildings and grounds safer. Technological ideas discussed include the use of telephones in classrooms to expedite care in emergency situations, surveillance cameras to reduce crime, and metal…
Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers
ERIC Educational Resources Information Center
More, Michelle B.
2007-01-01
A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.
Biology Education in the United States: The Unfinished Century.
ERIC Educational Resources Information Center
Bybee, Rodger W.
2002-01-01
Adresses five themes basic to biology education: (1) increased recognition of advances in the science of learning; (2) implementation of scientific ideas and technological innovations; (3) incorporation of science- and technology-related issues; (4) elaboration of global perspectives; and (5) professional community and civil discourse. (MM)
NASA Astrophysics Data System (ADS)
Goncharov, German A.
1996-10-01
The genesis and historical background of the hydrogen bomb are described, with particular emphasis placed on the development of the physical ideas which led to the discovery of the basic principle of thermonuclear charge construction in the USA and USSR.
Request-Based Mediated Execution
ERIC Educational Resources Information Center
Sundresh, Sameer
2009-01-01
How do you dynamically customize the programming language available in a context within an existing system, without changing the underlying system? This dissertation introduces a language design approach that addresses this problem. The basic idea is to structure programs as systems of multiple interacting levels of abstraction, where all of the…
Multiplicative Thinking: Much More than Knowing Multiplication Facts and Procedures
ERIC Educational Resources Information Center
Hurst, Chris; Hurrell, Derek
2016-01-01
Multiplicative thinking is accepted as a "big idea" of mathematics that underpins important mathematical concepts such as fraction understanding, proportional reasoning, and algebraic thinking. It is characterised by understandings such as the multiplicative relationship between places in the number system, basic and extended number…
ERIC Educational Resources Information Center
Hill, Theodore P.; Morrison, Kent E.
2010-01-01
This paper surveys the fascinating mathematics of fair division, and provides a suite of examples using basic ideas from algebra, calculus, and probability which can be used to examine and test new and sometimes complex mathematical theories and claims involving fair division. Conversely, the classical cut-and-choose and moving-knife algorithms…
Improvising Your Teaching Skills
ERIC Educational Resources Information Center
Oleniczak, Jen
2016-01-01
Gallery teachers are constantly searching for new ideas to better reach and connect with their audience. Professional development sessions often focus on what we say to our communities, but how often do museum education departments offer trainings that focus on basic principles of human interaction like listening and communication? Improv…
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
NASA Astrophysics Data System (ADS)
Bompard, E.; Ma, Y. C.; Ragazzi, E.
2006-03-01
Competition has been introduced in the electricity markets with the goal of reducing prices and improving efficiency. The basic idea which stays behind this choice is that, in competitive markets, a greater quantity of the good is exchanged at a lower price, leading to higher market efficiency. Electricity markets are pretty different from other commodities mainly due to the physical constraints related to the network structure that may impact the market performance. The network structure of the system on which the economic transactions need to be undertaken poses strict physical and operational constraints. Strategic interactions among producers that game the market with the objective of maximizing their producer surplus must be taken into account when modeling competitive electricity markets. The physical constraints, specific of the electricity markets, provide additional opportunity of gaming to the market players. Game theory provides a tool to model such a context. This paper discussed the application of game theory to physical constrained electricity markets with the goal of providing tools for assessing the market performance and pinpointing the critical network constraints that may impact the market efficiency. The basic models of game theory specifically designed to represent the electricity markets will be presented. IEEE30 bus test system of the constrained electricity market will be discussed to show the network impacts on the market performances in presence of strategic bidding behavior of the producers.
NASA's Initiative to Develop Education through Astronomy (IDEA)
NASA Astrophysics Data System (ADS)
Bennett, Jeffrey O.; Morrow, Cherilynn A.
1994-04-01
We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.
NASA's initiative to develop education through astronomy (IDEA)
NASA Technical Reports Server (NTRS)
Bennett, Jeffrey O.; Morrow, Cherilynn A.
1994-01-01
We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.
Construction of fuzzy spaces and their applications to matrix models
NASA Astrophysics Data System (ADS)
Abe, Yasuhiro
Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.
Application of Local Discretization Methods in the NASA Finite-Volume General Circulation Model
NASA Technical Reports Server (NTRS)
Yeh, Kao-San; Lin, Shian-Jiann; Rood, Richard B.
2002-01-01
We present the basic ideas of the dynamics system of the finite-volume General Circulation Model developed at NASA Goddard Space Flight Center for climate simulations and other applications in meteorology. The dynamics of this model is designed with emphases on conservative and monotonic transport, where the property of Lagrangian conservation is used to maintain the physical consistency of the computational fluid for long-term simulations. As the model benefits from the noise-free solutions of monotonic finite-volume transport schemes, the property of Lagrangian conservation also partly compensates the accuracy of transport for the diffusion effects due to the treatment of monotonicity. By faithfully maintaining the fundamental laws of physics during the computation, this model is able to achieve sufficient accuracy for the global consistency of climate processes. Because the computing algorithms are based on local memory, this model has the advantage of efficiency in parallel computation with distributed memory. Further research is yet desirable to reduce the diffusion effects of monotonic transport for better accuracy, and to mitigate the limitation due to fast-moving gravity waves for better efficiency.
Developmental Changes in Learning: Computational Mechanisms and Social Influences
Bolenz, Florian; Reiter, Andrea M. F.; Eppinger, Ben
2017-01-01
Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development. PMID:29250006
NASA Astrophysics Data System (ADS)
Leier, André; Marquez-Lago, Tatiana T.; Burrage, Kevin
2008-05-01
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol. 2, 117(E) (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ-DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.
Nursing and justice as a basic human need.
Johnstone, Megan-Jane
2011-01-01
This paper explores the idea that justice is a basic human need akin to those famously depicted in Maslow's hierarchy of human needs and, as such, warrants recognition as a core element in representative ideas about nursing. Early nurse theorists positioned the principles and practice of nursing as having their origins in 'universal human needs'. The principle of deriving nursing care from human needs was thought to provide a guide not only for promoting health, but for preventing disease and illness. The nursing profession has had a longstanding commitment to social justice as a core professional value and ideal, obligating nurses to address the social conditions that undermine people's health. The idea of justice as a universal human need per se and its possible relationship to people's health outcomes has, however, not been considered. One reason for this is that justice in nursing discourse has more commonly been associated with law and ethics, and the legal and ethical responsibilities of nurses in relation to individualized patient care and, more recently, changing systems of care to improve health and health outcomes. Although this association is not incorrect, it is incomplete. A key aim of this paper is to redress this oversight and to encourage a broader conceptualization of justice as necessary for human survival, health and development, not merely as a professional value, or legal or ethical principle for guiding human conduct. © 2010 Blackwell Publishing Ltd.
Model-Unified Planning and Execution for Distributed Autonomous System Control
NASA Technical Reports Server (NTRS)
Aschwanden, Pascal; Baskaran, Vijay; Bernardini, Sara; Fry, Chuck; Moreno, Maria; Muscettola, Nicola; Plaunt, Chris; Rijsman, David; Tompkins, Paul
2006-01-01
The Intelligent Distributed Execution Architecture (IDEA) is a real-time architecture that exploits artificial intelligence planning as the core reasoning engine for interacting autonomous agents. Rather than enforcing separate deliberation and execution layers, IDEA unifies them under a single planning technology. Deliberative and reactive planners reason about and act according to a single representation of the past, present and future domain state. The domain state behaves the rules dictated by a declarative model of the subsystem to be controlled, internal processes of the IDEA controller, and interactions with other agents. We present IDEA concepts - modeling, the IDEA core architecture, the unification of deliberation and reaction under planning - and illustrate its use in a simple example. Finally, we present several real-world applications of IDEA, and compare IDEA to other high-level control approaches.
Science from the Pond up: Using Measurement to Introduce Inquiry
ERIC Educational Resources Information Center
Demir, Abdulkadir; Schmidt, Frank; Abell, Sandra K.
2010-01-01
The authors engaged nonscience majors enrolled in an integrated science course with a prototype activity designed to change their mindset from cookbook to inquiry science. This article describes the activity, the Warm Little Pond, which helped students develop essential understanding of basic statistics, significant figures, and the idea that…
ERIC Educational Resources Information Center
Fenstermacher, Gary D.; Soltis, Jonas F.
This book is designed to help teachers critically assess major ideas about what teaching is and should be. Using both classical and contemporary perspectives, three basic approaches to teaching are offered, and the strengths and weaknesses of each are explored. The "executive approach" views the teacher as an executor, using the best learning…
ERIC Educational Resources Information Center
Moore, Nathan T.; Deming, John C.
2010-01-01
The garlic problem presented in this article develops several themes related to dimensional analysis and also introduces students to a few basic statistical ideas. This garlic problem was used in a university preparatory chemistry class, designed for students with no chemistry background. However, this course is unique because one of the primary…
Teaching for Conceptual Change in Space Science
ERIC Educational Resources Information Center
Brunsell, Eric; Marcks, Jason
2007-01-01
Nearly 20 years after the release of The Harvard-Smithsonian Center for Astrophysics' video, "A Private Universe", much research has been done in relation to students' understanding of space-science concepts and how to effectively change these ideas. However, student difficulties with basic space-science concepts still persist. This article will…
Aircraft of Today. Aerospace Education I.
ERIC Educational Resources Information Center
Savler, D. S.
This textbook gives a brief idea about the modern aircraft used in defense and for commercial purposes. Aerospace technology in its present form has developed along certain basic principles of aerodynamic forces. Different parts in an airplane have different functions to balance the aircraft in air, provide a thrust, and control the general…
Active Learning? Not with My Syllabus!
ERIC Educational Resources Information Center
Ernst, Michael D.
2012-01-01
We describe an approach to teaching probability that minimizes the amount of class time spent on the topic while also providing a meaningful (dice-rolling) activity to get students engaged. The activity, which has a surprising outcome, illustrates the basic ideas of informal probability and how probability is used in statistical inference.…
Probe into the Elements of Leisure Sports Practice
ERIC Educational Resources Information Center
Li, Kaixian; Gao, Qun
2008-01-01
This paper probes into the basic elements of leisure sports practice by referencing literature materials and logic analyses. Studies show that leisure sports practice consists of six elements, including leisure sports ideas, leisure sports environment, leisure sports time, leisure sports activity, leisure sports skill, and leisure sports state.…
Resources for Creative Preschool Teaching.
ERIC Educational Resources Information Center
Flemming, Bonnie, Ed.; And Others
A resource book intended as a teaching aid for preschool teachers, this compilation includes those ideas that have been used with success with children three through five years of age. The curriculum material is presented in outline format under the following headings: Subject of Interest; Basic Understandings; Additional Facts the Teacher Should…
Drawing out the Artist in Science Students
ERIC Educational Resources Information Center
Camacho, Al; Benenson, Gary; Rosas-Colin, Carmen Patricia
2012-01-01
Graphics are among the most important forms of communication in science and engineering. They are invaluable for both expressing understanding as well as generating new ideas. Unfortunately, many students do not think they can draw, and therefore fail to take advantage of this means of expression. However, with some basic instruction, nearly…
Add Yoga to Your Singing Warm-Ups
ERIC Educational Resources Information Center
Kuhn, Ivana Pinho
2006-01-01
Yoga has much to contribute to singing. The main physical disciplines of yoga are strength, flexibility, alignment, body awareness through breath control, and concentration. These basics also constitute the core of good singing. With instruction incorporated into the regular warm-up, one can introduce beginning yoga ideas into choir practice. Yoga…
Saussurian Linguistics Revisited: Can It Inform Our Interpretation of Mathematical Activity?.
ERIC Educational Resources Information Center
McNamara, O.
1995-01-01
Examines the basic notions of Ferdinand de Saussure and proposes that language is fundamental to the process of learning mathematics. Investigates possible mathematical perspectives upon Saussure's ideas and explores the contribution his work can offer to enhance and enrich the interpretive framework through which mathematical activity is observed…
Wilderness and well-being: Complexity, time, and psychological growth
Joar Vitterso
2002-01-01
This paper presents the argument for interdisciplinary wilderness research. The idea of interdisciplinarity is grounded in theories of emotion and psychological growth that are compatible with basic knowledge in other scientific disciplines, and in particular with concepts related to evolution. Considering humans as biological knowledge systems, designed by natural...
Rede und Gesinnung (Speech and Ways of Thinking)
ERIC Educational Resources Information Center
Kienzle, Bertram
1974-01-01
Analyzes some of the basic ideas in Georg Franklin's book "Versuch einer neuen Lehre von den vornehmsten Gegenstanden der deutschen Sprachlehre; nach den Regeln der Vernunftlehre in sechs Abhandlungen verfasst" (1778) and compares them to those of such modern linguists and philosophers a s Searle, Austin and Wunderlich. Concludes that…
ERIC Educational Resources Information Center
Clarken, Rodney H.
Metaphors are effective rhetorical devices to explain ideas, organize information, and illuminate understanding. Metaphor is a process of comparing and identifying one thing with another. Two basic principles of instruction are to go from the known to the unknown and to go from the concrete to the abstract. Metaphors do this by using concrete…
A Teacher's Spelling Manual for Seventh Grade.
ERIC Educational Resources Information Center
Datres, Kristine, Comp.; Heggenstaller, Barbara, Comp.
The spelling program described in this manual was designed with the idea that spelling study initiated in the elementary grades should continue through the middle school years. The manual first describes the program's objectives: to help students learn basic spelling rules, develop an interest in word lore and vocabulary improvement, and develop…
NASA Technical Reports Server (NTRS)
1981-01-01
The prospective NASA contractor is provided with information that describes the agency and its procurement practices. Products include ideas, manufacturing capabilities, fabricated components, construction, basic materials, and specialized services. NASA assistance in marketing these and other products is emphasized. Small and minority business enterprises are discussed. The agency's scientific and technical information activities are also discussed.
The Copernican Plan: Restructuring the American High School.
ERIC Educational Resources Information Center
Carroll, Joseph M.
A new perspective on the practical problems of changing secondary schools to enhance learning is called "the Copernican Plan" because its implementation would change the schools as completely as Copernicus's ideas changed the perception of our solar system. The plan proposes major restructuring of virtually all the basic systems within a…
Falsification and Demarcation in Astronomy and Cosmology
ERIC Educational Resources Information Center
Sovacool, Benjamin
2005-01-01
This work inaugurates a critical inquiry into whether the ideas of Karl Popper, a philosopher of science, are used by astronomers and astrophysicists, a practicing community of scientists. It examines four basic components of Karl Popper's philosophy falsification, prohibition, simplicity, and risk taking and the extent that these themes become…
What Does Culture Have to Do with Teaching Science?
ERIC Educational Resources Information Center
Madden, Lauren; Joshi, Arti
2013-01-01
In nearly every elementary school, plants are an important part of the science curriculum. Understanding basic ideas about plants prepares children to study more complicated scientific concepts including cell biology, genetics and heredity, complex ecosystem interactions, and evolution. It is especially important that teachers of children at the…
Tutoring ESL: A Handbook for Volunteers.
ERIC Educational Resources Information Center
Reck, Deborah L.; And Others
This handbook is designed for use by Tacoma Community House volunteer tutors of English as a Second Language (ESL) as a supplement to basic volunteer training. The handbook includes detailed information in areas briefly covered during training and specific instructional ideas and class activities. A section on getting started discusses the…
Propellers And Fans Based On The Moebius Strip
NASA Technical Reports Server (NTRS)
Seiner, John Milton; Gilinsky, Mikhail Markovich
1996-01-01
Moebius strip proposed as basis for optimally shaped airplane and boat propellers, fans, helicopter rotors, mixing screws, coffee grinders, and concrete mixers. Basic idea of optimal shaping of such device to increase working efficiency by increasing area for capture of still medium without increasing power needed for rotation.
High School Students' Learning and Perceptions of Phylogenetics of Flowering Plants
ERIC Educational Resources Information Center
Bokor, Julie R.; Landis, Jacob B.; Crippen, Kent J.
2014-01-01
Basic phylogenetics and associated "tree thinking" are often minimized or excluded in formal school curricula. Informal settings provide an opportunity to extend the K-12 school curriculum, introducing learners to new ideas, piquing interest in science, and fostering scientific literacy. Similarly, university researchers participating in…
ERIC Educational Resources Information Center
Pollak, Ruth S.
The "Ripples" series of educational television programs for children from 5 to 7 years old is described in this guide. The programs present basic ideas about man in relation to himself and his environment, leading the child into many subject areas and stimulating curiosity about himself and the wider world. The information presented in this guide…
ERIC Educational Resources Information Center
Pino, Nathan W.
2003-01-01
Offers ideas for developing distinct deviance, delinquency, and criminology curricula. Discusses how to reduce theoretical and content overlap, paper assignments, course readings, and departmental issues. Finds overlap and review of basic theories were helpful to students. Recommends deviance, criminology, and delinquency courses be theoretically…
Blue Bear Waltzes School of Genuine Music
ERIC Educational Resources Information Center
Denson, Ed
1974-01-01
The article describes an established operation combining the ideas of a trade school and a fine arts school, graduating technically proficient and creative musicians with basic business skills. The school provides community, the teacher is responsible for maintaining educational coherence, and the student is responsible for defining his needs. (AJ)
Postmodern Ethics for Active-Directive Counseling and Psychotherapy.
ERIC Educational Resources Information Center
Ellis, Albert
1997-01-01
Discusses how Rational Emotive Behavior Therapy (REBT) includes some basic postmodern ideas and can be practiced with important caveats and cautions that keep it open-ended, flexible, and relativist. Describes how REBT shows clients how their conscious and unconscious absolutistic philosophies lead to much of their dysfunctional feelings and…
Small School Design in Practice. Central Ideas -- Focus on The Catskill Area Project.
ERIC Educational Resources Information Center
Tremlett, Willard L.; And Others
Describing major features of the New York Catskill Area Project in Small School Design (CAPSSD) begun in 1957, this pamphlet addresses: (1) Basic Concepts in Small School Design (flexible scheduling, multiple classes, organizational interdependency, teacher versatility, student planning, technological communications, and interagency cooperation);…
Taking a Swat at Physics with a Ping-Pong Paddle.
ERIC Educational Resources Information Center
Graney, Chris M.
1994-01-01
A professor of physics discusses ideas on how to use physics to improve your ping-pong game. Describes how basic physics was used to analyze a simple ball-paddle collision problem and provide students with insight on the application of physics to a fun and real life situation. (ZWH)
Improved egg crack detection algorithm for modified pressure imaging system
USDA-ARS?s Scientific Manuscript database
Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...
75 Easy Physics Demonstrations. Teacher Book.
ERIC Educational Resources Information Center
Kardos, Thomas
This book is a collection of classroom demonstrations in physics designed to present basic scientific ideas on a concrete level. The topics covered include: physical change and properties of matter; energy waves and energy forms; absorption of heat; radiant energy; vacuum bottles; kinetic molecular theory; states of matter; pressure of air; work…
Robotics for Computer Scientists: What's the Big Idea?
ERIC Educational Resources Information Center
Touretzky, David S.
2013-01-01
Modern robots, like today's smartphones, are complex devices with intricate software systems. Introductory robot programming courses must evolve to reflect this reality, by teaching students to make use of the sophisticated tools their robots provide rather than reimplementing basic algorithms. This paper focuses on teaching with Tekkotsu, an open…
Unheard Voices: A Section 353 Special Project. Final Report.
ERIC Educational Resources Information Center
Strunk, Sandra J.
"Unheard Voices" was a project designed to provide adult educators with specific guidelines and ideas for integrating a creative writing component into an existing program of adult basic education, General Educational Development, or English as a second language. The project also collected and published student poetry and fiction in…
Humanistic-Cognitive Applications to Teaching and Learning: Theoretical-Philosophical Bases.
ERIC Educational Resources Information Center
Hamachek, Don E.
Humanistic psychology has emerged as a third force alternative to behaviorism and psychoanalysis. It offers a new orientation to psychology, one that incorporates basic existential ideas related to personal choice, freedom, and responsibility, and which also includes central phenomenological themes related to perceptions, personal meanings, and…
Freire (with Bakhtin) and the Dialogic Classroom Seminar
ERIC Educational Resources Information Center
Bowers, Rick
2005-01-01
This article on pedagogy in the classroom seminar combines the basic principles of dialogue and liberation as expressed especially by 20th-century thinkers Bakhtin and Freire. It argues for a pedagogy of educational growth and facilitation of ideas. Through learner-centered knowledge, dialogic interaction, open exploration, mutual respect, and…
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.
Evidence accumulation in decision making: unifying the "take the best" and the "rational" models.
Lee, Michael D; Cummins, Tarrant D R
2004-04-01
An evidence accumulation model of forced-choice decision making is proposed to unify the fast and frugal take the best (TTB) model and the alternative rational (RAT) model with which it is usually contrasted. The basic idea is to treat the TTB model as a sequential-sampling process that terminates as soon as any evidence in favor of a decision is found and the rational approach as a sequential-sampling process that terminates only when all available information has been assessed. The unified TTB and RAT models were tested in an experiment in which participants learned to make correct judgments for a set of real-world stimuli on the basis of feedback, and were then asked to make additional judgments without feedback for cases in which the TTB and the rational models made different predictions. The results show that, in both experiments, there was strong intraparticipant consistency in the use of either the TTB or the rational model but large interparticipant differences in which model was used. The unified model is shown to be able to capture the differences in decision making across participants in an interpretable way and is preferred by the minimum description length model selection criterion.
Geometrical model for DBMS: an experimental DBMS using IBM solid modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, D.E.D.L.
1985-01-01
This research presents a new model for data base management systems (DBMS). The new model, Geometrical DBMS, is based on using solid modelling technology in designing and implementing DBMS. The Geometrical DBMS is implemented using the IBM solid modelling Geometric Design Processor (GDP). Built basically on computer-graphics concepts, Geometrical DBMS is indeed a unique model. Traditionally, researchers start with one of the existent DBMS models and then put a graphical front end on it. In Geometrical DBMS, the graphical aspect of the model is not an alien concept tailored to the model but is, as a matter of fact, themore » atom around which the model is designed. The main idea in Geometrical DBMS is to allow the user and the system to refer to and manipulate data items as a solid object in 3D space, and representing a record as a group of logically related solid objects. In Geometical DBMS, hierarchical structure is used to present the data relations and the user sees the data as a group of arrays; yet, for the user and the system together, the data structure is a multidimensional tree.« less
Veritas filia temporis: The origins of the idea of scientific progress.
Špelda, Daniel
2016-10-01
The article provides insight into the epistemological and anthropological aspect of the origination of the idea of scientific progress. It focuses on the relationship between individual's limited lifetime and the immensity of nature. The basic assumption is that the idea of scientific progress offers a solution of the epistemological problem stemming from the finding that there is no (teleological) coincidence between human cognitive abilities and the extent of nature. In order to facilitate the understanding of the origin of the idea of scientific progress, I propose distinction between the descriptive and prescriptive concepts of progress. While the descriptive notion of progress expresses the cumulative character of scientific knowledge and the superiority of the present over preceding generations, the prescriptive concept pertains to progressivist epistemology directing scientific research at the future development of knowledge. This article claims that the prevalent concept in Antiquity was the descriptive concept of scientific progress. The prescriptive notion had developed only in ancient astronomy. Early modern science was faced with similar issues as ancient astronomy - mainly the empirical finding related to the inexhaustible character of nature. Consequently to the introduction of the idea of progress, the progress of sciences became a purpose in itself - hence becoming infinite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peryshkin, A. Yu., E-mail: alexb700@yandex.ru; Makarov, P. V., E-mail: bacardi@ispms.ru; Eremin, M. O., E-mail: bacardi@ispms.ru
An evolutionary approach proposed in [1, 2] combining the achievements of traditional macroscopic theory of solid mechanics and basic ideas of nonlinear dynamics is applied in a numerical simulation of present-day tectonic plates motion and seismic process in Central Asia. Relative values of strength parameters of rigid blocks with respect to the soft zones were characterized by the δ parameter that was varied in the numerical experiments within δ = 1.1–1.8 for different groups of the zonal-block divisibility. In general, the numerical simulations of tectonic block motion and accompanying seismic process in the model geomedium indicate that the numerical solutionsmore » of the solid mechanics equations characterize its deformation as a typical behavior of a nonlinear dynamic system under conditions of self-organized criticality.« less
Parasitic worms: how many really?
Strona, Giovanni; Fattorini, Simone
2014-04-01
Accumulation curves are useful tools to estimate species diversity. Here we argue that they can also be used in the study of global parasite species richness. Although this basic idea is not completely new, our approach differs from the previous ones as it treats each host species as an independent sample. We show that randomly resampling host-parasite records from the existing databases makes it possible to empirically model the relationship between the number of investigated host species, and the corresponding number of parasite species retrieved from those hosts. This method was tested on 21 inclusive lists of parasitic worms occurring on vertebrate hosts. All of the obtained models conform well to a power law curve. These curves were then used to estimate global parasite species richness. Results obtained with the new method suggest that current predictions are likely to severely overestimate parasite diversity. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Applying ecological and evolutionary theory to cancer: a long and winding road.
Thomas, Frédéric; Fisher, Daniel; Fort, Philippe; Marie, Jean-Pierre; Daoust, Simon; Roche, Benjamin; Grunau, Christoph; Cosseau, Céline; Mitta, Guillaume; Baghdiguian, Stephen; Rousset, François; Lassus, Patrice; Assenat, Eric; Grégoire, Damien; Missé, Dorothée; Lorz, Alexander; Billy, Frédérique; Vainchenker, William; Delhommeau, François; Koscielny, Serge; Itzykson, Raphael; Tang, Ruoping; Fava, Fanny; Ballesta, Annabelle; Lepoutre, Thomas; Krasinska, Liliana; Dulic, Vjekoslav; Raynaud, Peggy; Blache, Philippe; Quittau-Prevostel, Corinne; Vignal, Emmanuel; Trauchessec, Hélène; Perthame, Benoit; Clairambault, Jean; Volpert, Vitali; Solary, Eric; Hibner, Urszula; Hochberg, Michael E
2013-01-01
Since the mid 1970s, cancer has been described as a process of Darwinian evolution, with somatic cellular selection and evolution being the fundamental processes leading to malignancy and its many manifestations (neoangiogenesis, evasion of the immune system, metastasis, and resistance to therapies). Historically, little attention has been placed on applications of evolutionary biology to understanding and controlling neoplastic progression and to prevent therapeutic failures. This is now beginning to change, and there is a growing international interest in the interface between cancer and evolutionary biology. The objective of this introduction is first to describe the basic ideas and concepts linking evolutionary biology to cancer. We then present four major fronts where the evolutionary perspective is most developed, namely laboratory and clinical models, mathematical models, databases, and techniques and assays. Finally, we discuss several of the most promising challenges and future prospects in this interdisciplinary research direction in the war against cancer.
Of bugs and birds: Markov Chain Monte Carlo for hierarchical modeling in wildlife research
Link, W.A.; Cam, E.; Nichols, J.D.; Cooch, E.G.
2002-01-01
Markov chain Monte Carlo (MCMC) is a statistical innovation that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian analysis, or perhaps simply to its lack of familiarity among wildlife researchers. We introduce the basic ideas of MCMC and software BUGS (Bayesian inference using Gibbs sampling), stressing that a simple and satisfactory intuition for MCMC does not require extraordinary mathematical sophistication. We illustrate the use of MCMC with an analysis of the association between latent factors governing individual heterogeneity in breeding and survival rates of kittiwakes (Rissa tridactyla). We conclude with a discussion of the importance of individual heterogeneity for understanding population dynamics and designing management plans.
NASA standard: Trend analysis techniques
NASA Technical Reports Server (NTRS)
1988-01-01
This Standard presents descriptive and analytical techniques for NASA trend analysis applications. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. Use of this Standard is not mandatory; however, it should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend Analysis is neither a precise term nor a circumscribed methodology, but rather connotes, generally, quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this Standard. The document presents the basic ideas needed for qualitative and quantitative assessment of trends, together with relevant examples. A list of references provides additional sources of information.
The development of early pulsation theory, or, how Cepheids are like steam engines"
NASA Astrophysics Data System (ADS)
Stanley, Matthew
2011-05-01
The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A.S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. These theoretical models relied on highly speculative physics, but nonetheless returned very impressive results despite attacks from figures such as James Jeans. Surprisingly, the pulsation theory not only depended on developments in stellar physics, but also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.
Bažant, Zdeněk P.; Caner, Ferhun C.
2013-01-01
Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the −2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the −1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow. PMID:24218624
Efficient Management of Certificate Revocation Lists in Smart Grid Advanced Metering Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, Mumin; Akkaya, Kemal
Advanced Metering Infrastructure (AMI) forms a communication network for the collection of power data from smart meters in Smart Grid. As the communication within an AMI needs to be secure, key management becomes an issue due to overhead and limited resources. While using public-keys eliminate some of the overhead of key management, there is still challenges regarding certificates that store and certify the publickeys. In particular, distribution and storage of certificate revocation list (CRL) is major a challenge due to cost of distribution and storage in AMI networks which typically consist of wireless multi-hop networks. Motivated by the need ofmore » keeping the CRL distribution and storage cost effective and scalable, in this paper, we present a distributed CRL management model utilizing the idea of distributed hash trees (DHTs) from peer-to-peer (P2P) networks. The basic idea is to share the burden of storage of CRLs among all the smart meters by exploiting the meshing capability of the smart meters among each other. Thus, using DHTs not only reduces the space requirements for CRLs but also makes the CRL updates more convenient. We implemented this structure on ns-3 using IEEE 802.11s mesh standard as a model for AMI and demonstrated its superior performance with respect to traditional methods of CRL management through extensive simulations.« less
Rocha, M S
2015-09-01
In this review we focus on the idea of establishing connections between the mechanical properties of DNA-ligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in particular when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch DNA-ligand complexes and to obtain "force × extension" data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey of the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of DNA-ligand complexes to the physicochemical properties of the interaction. Such an approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present.
Larocque, Guy R.; Mailly, D.; Yue, T.-X.; Anand, M.; Peng, C.; Kazanci, C.; Etterson, M.; Goethals, P.; Jorgensen, S.E.; Schramski, J.R.; McIntire, E.J.B.; Marceau, D.J.; Chen, B.; Chen, G.Q.; Yang, Z.F.; Novotna, B.; Luckai, N.; Bhatti, Jagtar S.; Liu, J.; Munson, A.; Gordon, Andrew M.; Ascough, J.C.
2011-01-01
The eleven symposia organized for the 2009 conference of the International Society for Ecological Modelling (ISEM 2009) held in Quebec City, Canada, October 6–9, 2009, included facilitated discussion sessions following formal presentations. Each symposium focused on a specific subject, and all the subjects could be classified into three broad categories: theoretical development, population dynamics and ecosystem processes. Following discussions with the symposia organizers, which indicated that they all shared similar issues and concerns, the facilitated discussions were task-oriented around four basic questions: (1) key challenges in the research area, (2) generating and sharing new ideas, (3) improving collaboration and networking, and (4) increasing visibility to decision-makers, partners and clients. Common challenges that emerged from the symposia included the need for improved communication and collaboration among different academic disciplines, further progress in both theoretical and practical modelling approaches, and accentuation of technology transfer. Regarding the generation and sharing of new ideas, the main issue that emerged was the type of positive interactions that should be encouraged among potential collaborators. The usefulness of the Internet, particularly for the sharing of open-source software and conducting discussion forums, was highlighted for improving collaboration and networking. Several communication tools are available today, and it is important for modellers to use them more intensively. Visibility can be increased by publishing professional newsletters, maintaining informal contacts with the public, organizing educational sessions in primary and secondary schools, and developing simplified analytical frameworks and pilot studies. Specific issues raised in each symposium are also discussed.
Empirical evaluation of the market price of risk using the CIR model
NASA Astrophysics Data System (ADS)
Bernaschi, M.; Torosantucci, L.; Uboldi, A.
2007-03-01
We describe a simple but effective method for the estimation of the market price of risk. The basic idea is to compare the results obtained by following two different approaches in the application of the Cox-Ingersoll-Ross (CIR) model. In the first case, we apply the non-linear least squares method to cross sectional data (i.e., all rates of a single day). In the second case, we consider the short rate obtained by means of the first procedure as a proxy of the real market short rate. Starting from this new proxy, we evaluate the parameters of the CIR model by means of martingale estimation techniques. The estimate of the market price of risk is provided by comparing results obtained with these two techniques, since this approach makes possible to isolate the market price of risk and evaluate, under the Local Expectations Hypothesis, the risk premium given by the market for different maturities. As a test case, we apply the method to data of the European Fixed Income Market.
Equilibrium control of nonlinear verticum-type systems, applied to integrated pest control.
Molnár, S; Gámez, M; López, I; Cabello, T
2013-08-01
Linear verticum-type control and observation systems have been introduced for modelling certain industrial systems, consisting of subsystems, vertically connected by certain state variables. Recently the concept of verticum-type observation systems and the corresponding observability condition have been extended by the authors to the nonlinear case. In the present paper the general concept of a nonlinear verticum-type control system is introduced, and a sufficient condition for local controllability to equilibrium is obtained. In addition to a usual linearization, the basic idea is a decomposition of the control of the whole system into the control of the subsystems. Starting from the integrated pest control model of Rafikov and Limeira (2012) and Rafikov et al. (2012), a nonlinear verticum-type model has been set up an equilibrium control is obtained. Furthermore, a corresponding bioeconomical problem is solved minimizing the total cost of integrated pest control (combining chemical control with a biological one). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A unified framework for mesh refinement in random and physical space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Stinis, Panos
In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less
Unification of the general non-linear sigma model and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, J. de; Halpern, M.B.
1997-06-01
The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less
NASA Astrophysics Data System (ADS)
Nagai, Yukie; Asada, Minoru; Hosoda, Koh
This paper presents a developmental learning model for joint attention between a robot and a human caregiver. The basic idea of the proposed model comes from the insight of the cognitive developmental science that the development can help the task learning. The model consists of a learning mechanism based on evaluation and two kinds of developmental mechanisms: a robot's development and a caregiver's one. The former means that the sensing and the actuating capabilities of the robot change from immaturity to maturity. On the other hand, the latter is defined as a process that the caregiver changes the task from easy situation to difficult one. These two developments are triggered by the learning progress. The experimental results show that the proposed model can accelerate the learning of joint attention owing to the caregiver's development. Furthermore, it is observed that the robot's development can improve the final task performance by reducing the internal representation in the learned neural network. The mechanisms that bring these effects to the learning are analyzed in line with the cognitive developmental science.
Stochastic Geometry and Quantum Gravity: Some Rigorous Results
NASA Astrophysics Data System (ADS)
Zessin, H.
The aim of these lectures is a short introduction into some recent developments in stochastic geometry which have one of its origins in simplicial gravity theory (see Regge Nuovo Cimento 19: 558-571, 1961). The aim is to define and construct rigorously point processes on spaces of Euclidean simplices in such a way that the configurations of these simplices are simplicial complexes. The main interest then is concentrated on their curvature properties. We illustrate certain basic ideas from a mathematical point of view. An excellent representation of this area can be found in Schneider and Weil (Stochastic and Integral Geometry, Springer, Berlin, 2008. German edition: Stochastische Geometrie, Teubner, 2000). In Ambjørn et al. (Quantum Geometry Cambridge University Press, Cambridge, 1997) you find a beautiful account from the physical point of view. More recent developments in this direction can be found in Ambjørn et al. ("Quantum gravity as sum over spacetimes", Lect. Notes Phys. 807. Springer, Heidelberg, 2010). After an informal axiomatic introduction into the conceptual foundations of Regge's approach the first lecture recalls the concepts and notations used. It presents the fundamental zero-infinity law of stochastic geometry and the construction of cluster processes based on it. The second lecture presents the main mathematical object, i.e. Poisson-Delaunay surfaces possessing an intrinsic random metric structure. The third and fourth lectures discuss their ergodic behaviour and present the two-dimensional Regge model of pure simplicial quantum gravity. We terminate with the formulation of basic open problems. Proofs are given in detail only in a few cases. In general the main ideas are developed. Sufficiently complete references are given.
Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study
NASA Technical Reports Server (NTRS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-01-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.
Wind-based navigation of a hot-air balloon on Titan: a feasibility study
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-04-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.
NASA Astrophysics Data System (ADS)
Gabern, Frederic; Koon, Wang S.; Marsden, Jerrold E.; Ross, Shane D.
2005-11-01
The computation, starting from basic principles, of chemical reaction rates in realistic systems (with three or more degrees of freedom) has been a longstanding goal of the chemistry community. Our current work, which merges tube dynamics with Monte Carlo methods provides some key theoretical and computational tools for achieving this goal. We use basic tools of dynamical systems theory, merging the ideas of Koon et al. [W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos 10 (2000) 427-469.] and De Leon et al. [N. De Leon, M.A. Mehta, R.Q. Topper, Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory, J. Chem. Phys. 94 (1991) 8310-8328.], particularly the use of invariant manifold tubes that mediate the reaction, into a tool for the computation of lifetime distributions and rates of chemical reactions and scattering phenomena, even in systems that exhibit non-statistical behavior. Previously, the main problem with the application of tube dynamics has been with the computation of volumes in phase spaces of high dimension. The present work provides a starting point for overcoming this hurdle with some new ideas and implements them numerically. Specifically, an algorithm that uses tube dynamics to provide the initial bounding box for a Monte Carlo volume determination is used. The combination of a fine scale method for determining the phase space structure (invariant manifold theory) with statistical methods for volume computations (Monte Carlo) is the main contribution of this paper. The methodology is applied here to a three degree of freedom model problem and may be useful for higher degree of freedom systems as well.
Crack width monitoring of concrete structures based on smart film
NASA Astrophysics Data System (ADS)
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-04-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.
Coordinating an IPLS class with a biology curriculum: NEXUS/Physics
NASA Astrophysics Data System (ADS)
Redish, Edward
2014-03-01
A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.
Basic Religious Beliefs and Personality Traits
Rajaei, Ali Reza; Sarvarazemy, Ahmad
2012-01-01
Objective Spiritual beliefs can help people find meaning of life, and can also influence their feelings, behaviors and mental health. The present research studied the relationship between basic religious beliefs (Human, Existence and God) and five personality factors: neuroticism, extraversion, openness, agreeableness, conscientiousness. Method One hundred seventy eight students of Islamic Azad University in Torbat-jam were randomly selected and completed the basic religious beliefs and NEO Questionnaires. Results Data showed that basic religious beliefs have a significant negative correlation with neuroticism (r=-0.29),and a significant positive relationship with extraversion(r=0.28),openness(r=0.14),agreeableness (r=0.29),and conscientiousness (r=0.48). Also, the results of the regression analysis showed that basic religious beliefs can anticipate neuroticism, extraversion, agreeableness and conscientiousness, but they cannot anticipate the openness factor significantly. Conclusion The findings of this study demonstrate that basic religious beliefs have a positive relationship with good characteristics that help people resolve the challenges of their lives and identity crisis. Thus, the results of this study support the idea of Religious Cognitive–Emotional Theory that religiosity is correlated with positive personality traits. PMID:22952550
Drawing on student knowledge in human anatomy and physiology
NASA Astrophysics Data System (ADS)
Slominski, Tara Nicole
Prior to instruction, students may have developed alternative conceptions about the mechanics behind human physiology. To help students re-shape these ideas into correct reasoning, the faulty characteristics reinforcing the alternative conceptions need to made explicit. This study used student-generated drawings to expose alternative conceptions Human Anatomy and Physiology students had prior to instruction on neuron physiology. Specifically, we investigated how students thought about neuron communication across a synapse (n=355) and how neuron activity can be modified (n=311). When asked to depict basic communication between two neurons, at least 80% of students demonstrated incorrect ideas about synaptic transmission. When targeting spatial and temporal summation, only eleven students (3.5%) were able to accurately depict at least one form of summation. In response to both drawing questions, student drawings revealed multiple alternative conceptions that resulted in a deeper analysis and characterization of the wide variation of student ideas.
NASA Astrophysics Data System (ADS)
St John, Stuart A.
2012-01-01
The purpose of this work was to investigate ways in which everyday computers can be used in schools to fulfil several of the roles of more expensive, specialized laboratory equipment for teaching and learning purposes. The brief adopted was to keep things as straightforward as possible so that any school science department with a few basic tools can copy the ideas presented. The project has so far produced a simple, safe input device to enable use of a computer as an oscilloscope and the conversion of external speakers into a signal generator. They are not without their limitations, but the intention is that they may provide opportunities for hands-on learning in schools where budgets are very limited. Several teaching ideas are outlined, with pointers for further development. It is hoped that interest in the project may generate further application of the ideas to the teaching of high school physics.
''Math in a Can'': Teaching Mathematics and Engineering Design
ERIC Educational Resources Information Center
Narode, Ronald B.
2011-01-01
Using an apparently simple problem, ''Design a cylindrical can that will hold a liter of milk,'' this paper demonstrates how engineering design may facilitate the teaching of the following ideas to secondary students: linear and non-linear relationships; basic geometry of circles, rectangles, and cylinders; unit measures of area and volume;…
Legal Currency in Special Education Law
ERIC Educational Resources Information Center
Zirkel, Perry A.
2011-01-01
A review of some basic concepts in special education law will help principals better understand the complex laws and regulations implicated in common situations. This article cites a case scenario that illustrates various potential issues under IDEA 2004 and Section 504 of the Rehabilitation Act. Chris is in the 10th grade, and his parents have…
A Course in Biophysics: An Integration of Physics, Chemistry, and Biology
ERIC Educational Resources Information Center
Giancoli, Douglas C.
1971-01-01
Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)
Secondary School Students' Conceptual Understanding of Physical and Chemical Changes
ERIC Educational Resources Information Center
Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.
2016-01-01
In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…
Construction Morphology and the Parallel Architecture of Grammar
ERIC Educational Resources Information Center
Booij, Geert; Audring, Jenny
2017-01-01
This article presents a systematic exposition of how the basic ideas of Construction Grammar (CxG) (Goldberg, 2006) and the Parallel Architecture (PA) of grammar (Jackendoff, 2002]) provide the framework for a proper account of morphological phenomena, in particular word formation. This framework is referred to as Construction Morphology (CxM). As…
School Mathematics as a Creative Enterprise
ERIC Educational Resources Information Center
Sternberg, Robert J.
2017-01-01
In this article, I discuss how teaching of mathematics can develop and encourage creative thinking, not only in mathematics, but also in general. I begin by discussing creativity as a habit that teachers can help students develop. Then I briefly present the investment theory of creativity. The basic idea of the investment theory is that creative…
Naci para ensenarte (I Was Born to Teach You).
ERIC Educational Resources Information Center
Porto Vazquez, Jose; Silvera Ortega, Alfonso
This booklet uses cartoon characters to describe the process of creating textbooks, beginning with the idea in the mind of the author to the point when the book reaches the user. The basic processes in book publication are considered in an effort to foster the proper care of and interest in books. (VM)
Characteristics of the Essence of Volunteering in Psychology
ERIC Educational Resources Information Center
Shagurova, Angelina Alexandrovna; Ivanovna, Efremova Galina; Aleksandrovna, Bochkovskaya Irina; Denisenko, Sergey Ivanovich; Valerievich, Tarasov Mihail; Viktorovna, Nekrasova Marina; Potutkova, Svetlana Anatolievna
2016-01-01
The article discusses the basic ideas of volunteering; it analyzes the data of psychological studies on social activity and it highlights the importance of studying the motivational part of volunteering. The conclusion on structure and content of volunteering is made. Key focus is on the fact that volunteering is of particular importance in the…
Introduction--World-Class Basic Education
ERIC Educational Resources Information Center
Adams, Don
2012-01-01
Borrowing educational institutions and ideas from the past and from other contemporary education systems is a significant part of the educational history of many nations. Many of the current nations continue to probe the past for pleasure or insights, while some nations seek to erase much of their educational past. Further, an increasing number of…
"I Matter": An Interactive Exploration of Audience-Performer Connections
ERIC Educational Resources Information Center
Assaf, Nadra Majeed
2013-01-01
Communication is a basic human necessity which in all its various forms has one common goal: expressing and deciphering ideas. Historically, verbal language has been the primary tool in this field. Education in recent years has taken a move towards more global approaches to learning/teaching. Within this context, more innovative and inclusive…
ERIC Educational Resources Information Center
Kaestner, Rich
2012-01-01
Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…
Seat-of-the-Pants Parenting and Action Research
ERIC Educational Resources Information Center
Schader, Robin
2010-01-01
As a young parent, the author hoped to find ideas, like recipes, that she could immediately put to use. In reality, it is a handful of basic good parenting principles that are especially useful when raising children with exceptional abilities. The author highlights five important elements of parenting that have consistently popped up in her…
A new concept for exhaled breath analysis has emerged wherein groups, or even crowds of people are simultaneously sampled in enclosed environments to detect overall trends in their activities and recent exposures. The basic idea is to correlate the temporal profile of known breat...
Strategies for the 21st Century: Integrating Technology into the ABLE Environment.
ERIC Educational Resources Information Center
Mingle, Mary E. H.
Integrating technology into the Adult Basic Literacy Education (ABLE) classroom can be very helpful to students and teachers, but it requires a shift in the teacher's role. The idea of "delivering" instruction--teacher-centered classes or tutor-directed lessons--should be replaced with student-centered, self-paced learning. Although the first…
USDA-ARS?s Scientific Manuscript database
Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...
The Twin Twin Paradox: Exploring Student Approaches to Understanding Relativistic Concepts
ERIC Educational Resources Information Center
Cormier, Sebastien; Steinberg, Richard
2010-01-01
A great deal has long been known about student difficulties connecting real-world experiences with what they are learning in their physics classes, making learning basic ideas of classical physics challenging. Understanding these difficulties has led to the development of many instructional approaches that have been shown to help students make…
Arctic-Nesting Shorebirds: Curriculum for Grades K-12. [Teacher's Guide.
ERIC Educational Resources Information Center
Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.
This teaching guide focuses on Arctic-nesting shorebirds. The format of each section consists of background information, student activities, observation and research ideas, and key words. Basic information on how to use this curriculum and seven sections devoted to different aspects of Arctic-nesting shorebird life are provided. Sections cover…
ERIC Educational Resources Information Center
McMurtry, John
1997-01-01
Criticizes some of the basic principles expounded in John Locke's "Second Treatise on Government." Argues that Locke's ideas on private property, capital investment, and social good are inherently contradictory. Asserts that the market theory of property inevitably leads to endemic economic exploitation and oppression. (MJP)
ERIC Educational Resources Information Center
Saglam, Murat
2010-01-01
This study aims to explore problem-based learning (PBL) in conjunction with students' confidence in the basic ideas of electromagnetism and their motivational orientations and learning strategies. The 78 first-year geology and geophysics students followed a three-week PBL instruction in electromagnetism. The students' confidence was assessed…
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Kennedy Space Center, FL. John F. Kennedy Space Center.
This book is designed as a resource for teachers and parents concerned with early childhood education. It is hoped that the ideas and activities presented herein will serve in the creation of a space science and mathematics curriculum that is both child-centered and exciting. The basic philosophy for this curriculum is that of Piaget. This…
On Cognitive Constraints and Learning Progressions: The Case of "Structure of Matter"
ERIC Educational Resources Information Center
Talanquer, Vicente
2009-01-01
Based on the analysis of available research on students' alternative conceptions about the particulate nature of matter, we identified basic implicit assumptions that seem to constrain students' ideas and reasoning on this topic at various learning stages. Although many of these assumptions are interrelated, some of them seem to change or…
The Language of Maps. Pathway in Geography Series, Title No. 1.
ERIC Educational Resources Information Center
Gersmehl, Philip J.
This book of instructional materials is intended to support the teaching and learning of themes, concepts and skills in geography at all levels of instruction. Divided into five parts, part 1 of this Teacher's manual, "Communicating Basic Spatial Ideas," offers the following: (1) "Introduction"; (2) "Location"; (3) "Distance"; (4) "Direction"; (5)…
Let's Get Higher Scores on These New Assessments
ERIC Educational Resources Information Center
Shanahan, Timothy
2015-01-01
This column explains three ways that teachers can improve reading test performance. Basically, the idea is that instead of teaching students to respond to particular question types as is typical of test preparation despite the ineffectiveness of this practice, it is better to teach students to read the test passages more effectively. Three…
Conduct Disorders: Are Boot Camps Effective?
ERIC Educational Resources Information Center
Jeter, LaVaughn V.
2010-01-01
Youth diagnosed with "conduct disorder" are often placed in programs using forced compliance and coercive control. One type of intervention used to treat conduct disorder is the boot camp. The basic idea is that disruptive behaviors can be corrected by strict behavioral regulation and an emphasis on skills training (Weis & Toolis 2009; Weis,…
Trees: A Book of Resource Ideas for the Teacher
ERIC Educational Resources Information Center
Smit, Nel, Comp.; And Others
The objective of this book is to provide background information and possible teaching approaches to enable teachers to tackle the study of trees confidently. The book should help students to: (1) gain awareness, sensitivity, and basic understanding of trees and their interactions with the plants and animals in their environment; (2) cultivate…
Superintendent's Advisory Committee on School Finance. Final Report.
ERIC Educational Resources Information Center
Illinois State Office of the Superintendent of Public Instruction, Springfield. Advisory Committee on School Finance.
This report concentrates on the equity problem in Illinois public school finance. Central to this report is the thesis that there are three basic strategies for attacking the equity problem: make adjustments in the existing "foundation level" grant-in-aid system, abandon the "foundation" idea for a grant-in-aid system, and…
New Training Technologies. Studies on Technical and Vocational Education 2.
ERIC Educational Resources Information Center
Herremans, Albert
This book is the second in a series aiming to promote international exchange of ideas, experiences, and studies relating to technical and vocational education. Information provided is designed to help educators and trainers plan for an intelligent use of new training technologies (NTTs) to improve the access to basic and advanced lifelong learning…
International Meeting on Business Start-up (Lille, France, November 26-28, 1992).
ERIC Educational Resources Information Center
Melis, Africa, Ed.; Peigne, Florence, Ed.
1992-01-01
An international meeting explored work on business start-up undertaken jointly by CEDEFOP (European Centre for the Development of Vocational Training) and France's Agence Nationale pour la creation d'entreprise. One opening presentation (Melis) addressed the basic idea underlying the research: to identify and highlight the role of training and…
Conceptual Ideas of Masters' Professional Training in International Relations in Great Britain
ERIC Educational Resources Information Center
Tretko, Vitalii
2014-01-01
The conceptual positions of professional training of Masters in International Relations in Great Britain have been studied. On the basis of literary and documentary sources the basic concepts laid into contemporary theories of constructivism and cognitivism, theory of development and self-realisation of creative personality on the basis of…
Career Education for Elementary Grades.
ERIC Educational Resources Information Center
Dianna, Michael A.
Information and activities are provided to help elementary school teachers develop a career education "environment" for children. Ten basic premises of career education are outlined, and the key ideas and terms that emerge from the premises are defined. The eight goals of career education are set forth to provide the teacher with a base from which…
The Formation Experiment in the Age of Hypermedia and Distance Learning
ERIC Educational Resources Information Center
Giest, Hartmut
2004-01-01
Searching for an adequate method to investigate human development (especially the development of theoretical thinking) Vygotsky and his collaborators developed the causal genetic method. The basic idea of this method consists in the investigation of psychic functions and structures by their formation under controlled conditions (for instance via a…
YRE Basics: History, Methods, Concerns, Future.
ERIC Educational Resources Information Center
Glines, Don
The idea of year-round education (YRE) is not a new one. As early as 1912 there are records of YRE programs implemented in communities. As a result of the increasing enrollment in schools and the overcrowding many classrooms are experiencing, YRE has become an attractive alternative to the traditional 9-month schedule. Air conditioning costs and…
The American Adolescent: Facing a "Vortex of New Risks."
ERIC Educational Resources Information Center
NAMTA Journal, 1993
1993-01-01
Excerpts from the Carnegie Council on Adolescent Development's report "Turning Points: Preparing American Youth for the 21st Century," issued in 1989, indicate the need to develop a more adolescent-centered approach to education in the middle grades that is very similar to the basic ideas of the Montessori method. (MDM)
Education: An Exchange of Ideas among Three Humanistic Psychologists.
ERIC Educational Resources Information Center
Ryan, Ellen R.; And Others
1992-01-01
Presents fantasized version of discussion among Carl Rogers, Victor Frankl, and Abraham Maslow led by Delbert Obertueffer. All statements in dialog are either direct quotes from their writings or phrases that express their basic philosophy. The hope is that by reviewing the writings of these great leaders, aspects to be applied to education today…
Research Methods in Health, Physical Education, and Recreation. Third Revised Edition.
ERIC Educational Resources Information Center
Hubbard, Alfred W., Ed.
This book presents new ideas and approaches in research techniques in the areas of health, physical education, and recreation. Part 1, the introduction, includes two articles, which are "Why This Research?" by Arthur H. Steinhaus and "Overview of Research: Basic Principles" by Benjamin H. Massey. Part 2, discusses preparations and includes the…
34 CFR 200.6 - Inclusion of all students.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Inclusion of all students. 200.6 Section 200.6... Basic Programs Operated by Local Educational Agencies Standards and Assessments § 200.6 Inclusion of all...— (A) For each student with a disability, as defined under section 602(3) of the IDEA, appropriate...
Development of a Structured Undergraduate Research Experience: Framework and Implications
ERIC Educational Resources Information Center
Brown, Anne M.; Lewis, Stephanie N.; Bevan, David R.
2016-01-01
Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.…
Teaching Markov Chain Monte Carlo: Revealing the Basic Ideas behind the Algorithm
ERIC Educational Resources Information Center
Stewart, Wayne; Stewart, Sepideh
2014-01-01
For many scientists, researchers and students Markov chain Monte Carlo (MCMC) simulation is an important and necessary tool to perform Bayesian analyses. The simulation is often presented as a mathematical algorithm and then translated into an appropriate computer program. However, this can result in overlooking the fundamental and deeper…
Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy
ERIC Educational Resources Information Center
Huggins, Elisha
2013-01-01
In the popular press, diagrams showing the evolution of the universe begin with a great jump in size labeled "inflation." Can we explain the basic ideas behind inflation to our students who have taken our introductory physics course? Probably not. In our standard introductory physics courses, even those with special relativity, something…
"Play" across the Life Cycle: From Initiative to Integrity to Transcendence
ERIC Educational Resources Information Center
Jones, Elizabeth
2011-01-01
In this autobiographical journey through life-span developmental theory, the author reflects on her life as a player, embedding it in the context of Erik Erikson and Joan Erikson's stages of human development. The author builds on these basic ideas--theory, storytelling, play, and development--and defines them as simply as possible.
Triangles: Shapes in Math, Science and Nature.
ERIC Educational Resources Information Center
Ross, Catherine Sheldrick
This book examines everything having to do with the triangle. It begins with a basic definition of the triangle and continues with discussions on tetrahedrons, triangular prisms, and pyramid shapes. Some ideas addressed include how triangles are used to measure heights and distances, the importance of triangles to builders, Alexander Graham Bell's…
Wilderness as Sacred Space. Eighth in the Monograph Series.
ERIC Educational Resources Information Center
Graber, Linda H.
This study examines the basic ideas of the wilderness ethic and analyzes their role in giving form and definition to human encounters with nature. There are four chapters in the study. Chapter I "Sacred Space and Geopiety" uses concepts derived from phenomenology of religion to consider the wilderness ethic as a belief system and…
Television Production: A Classroom Approach. Instructor Edition.
ERIC Educational Resources Information Center
Kyker, Keith; Curchy, Christopher
This text serves as a guide covering basic aspects of television production leading to complete production of video yearbooks and news shows. Each lesson is divided into eight sections: (1) objectives; (2) vocabulary; (3) lesson text, which encourages production related ideas on practical application as well as theory; (4) review questions; (5)…
Teaching Mathematical Induction: An Alternative Approach.
ERIC Educational Resources Information Center
Allen, Lucas G.
2001-01-01
Describes experience using a new approach to teaching induction that was developed by the Mathematical Methods in High School Project. The basic idea behind the new approach is to use induction to prove that two formulas, one in recursive form and the other in a closed or explicit form, will always agree for whole numbers. (KHR)
A STRUCTURAL COURSE FOR VOCATIONAL ENGLISH.
ERIC Educational Resources Information Center
ERICKSON, JOHN
A COURSE, COMPLETE WITH DETAILED LESSON PLANS AND PRACTICE DRILLS, HAS BEEN DEVELOPED AT SAN DIEGO STATE COLLEGE, TO PROVIDE THE ADULT SPANISH-SPEAKING STUDENT WITH A BASIC FOUNDATION IN AMERICAN-ENGLISH GRAMMATICAL STRUCTURE, AS WELL AS AN AMPLE DAILY AND PROFESSIONAL VOCABULARY. THE IDEA OF TRANSLATING CONCEPTS AND VOCABULARY IS USED TO TEACH…
The Working Experience. Teacher's Manual.
ERIC Educational Resources Information Center
Smith, Jeanne H.; Ringel, Harry
A teacher's manual is presented for "The Working Experience," a series of three texts for English-as-a-Second-Language (ESL) students. The series builds on oral skills to develop reading and writing ability while still expanding oral English-language proficiency. Because one of the basic principles underlying the series is the idea that students…
Make More Time for Laughter in a Preschool Setting.
ERIC Educational Resources Information Center
Hamlin, Barbara B.
Based on the idea that laughter and humor are basic components of a healthy childhood, this practicum paper emphasizes the concern that preschool programs have become too academic and are creating stress for children. Similarly, adults in preschool settings, pressured by parents and public school academic expectations, have become too serious in…
ERIC Educational Resources Information Center
Murphy, P. Karen; Firetto, Carla M.; Wei, Liwei; Li, Mengyi; Croninger, Rachel M. V.
2016-01-01
Many American students struggle to perform even basic comprehension of text, such as locating information, determining the main idea, or supporting details of a story. Even more students are inadequately prepared to complete more complex tasks, such as critically or analytically interpreting information in text or making reasoned decisions from…
Technology Education. A Curriculum Guide. VOC ED 226.
ERIC Educational Resources Information Center
Thode, Brad
This curriculum guide provides ideas for implementing technology education in grades 7-12. It assumes a basic understanding of the four clusters of manufacturing, construction, communications, and power/transportation and is meant to supplement and reorganize this approach with up-to-date information and activities. One way to present a variety of…
Idea Bank: Duct Tape Note Twister
ERIC Educational Resources Information Center
McHenry, Molly
2008-01-01
In this article, the author relates how she observed a middle school math teacher deliver a miserable class. She realized that she did the same thing to her music students. To engage her students, she developed "Note Twister," a music reading game using duct tape to form musical notes and the basic premise behind the game,…
Budgeting: The Basics and Beyond. Learn at Home.
ERIC Educational Resources Information Center
Prochaska-Cue, Kathy; Sugden, Marilyn
Designed as an at-home course to help users develop a realistic budget plan and set up a workable record-keeping system, these course materials provide practical tips, ideas, and suggestions for budgeting. The course begins with a nine-step budgeting process which emphasizes communicating among family members, considering personal or family…
"And the Beat Goes Ona... Building Artificial Hearts in the Classroom.
ERIC Educational Resources Information Center
Brock, David L.
2000-01-01
Among the many ideas and theories in anatomy and physiology, one particular topic provides all the potential benefits of learning about the human body: the circulatory system, specifically the heart. Describes a distinctive way to study circulation and the heart that allows students to explore the basic principles of vertebrate anatomy and…
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.
Ideas and Activities for Recycling Education for Grades K-12.
ERIC Educational Resources Information Center
Ayers, Jerry B., Ed.; Olberding, April H., Ed.
In June 1997, Tennessee Technological University's Center for Manufacturing Research conducted a one-week program on plastics recycling for science teachers. The purpose of the program was to increase the teachers' basic knowledge about the importance of recycling plastics and to better prepare the teachers for teaching recycling in the classroom.…
ERIC Educational Resources Information Center
Afdal, Hilde W.
2017-01-01
This article questions what kind of actors become involved and analyzes what forms of knowledge are activated, when discourses such as "research-based" and "profession-oriented" become basic preconditions in national curriculum change processes in Norway. A "mapping" is conducted, comprised of actors and ideas, played…
Whole Language: Beliefs and Practices, K-8. Aspects of Learning Series.
ERIC Educational Resources Information Center
Manning, Gary, Ed.; Manning, Maryann, Ed.
This 25-chapter anthology includes the ideas of many of the leading authorities on whole language and contains chapters on the meaning of whole language, the skills movement, reading and writing development, and teacher autonomy. Chapters are: "Whole Language: What's New?" (Bess Altwerger and others); "Language Arts Basics: Advocacy…
Bypassing An Open-Circuit Power Cell
NASA Technical Reports Server (NTRS)
Wannemacher, Harry E.
1994-01-01
Collection of bypass circuits enables battery consisting series string of cells to continue to function when one of its cells fails in open-circuit (high-resistance) condition. Basic idea simply to shunt current around defective cell to prevent open circuit from turning off battery altogether. Bypass circuits dissipate little power and are nearly immune to false activation.
Integrating Reading, Writing, and Thinking Skills into the Music Class.
ERIC Educational Resources Information Center
Duke, Charles R.
Music education is uniquely suited to reinforce several basic skills that are part of the overall reading and writing processes of students. These skills include freedom of expression and the fluency of ideas, identifying a composer's purpose and message, and reasoning and comprehension. Musicians should develop the habit of using journals for…
ERIC Educational Resources Information Center
Abate, Marie A.; Meyer-Stout, Paula J.; Stamatakis, Mary K.; Gannett, Peter M.; Dunsworth, Teresa S.; Nardi, Anne H.
2000-01-01
Describes development and evaluation of eight computerized problem-based learning (PBL) cases in medicinal chemistry and pharmaceutics concepts. Case versions either incorporated concept maps emphasizing key ideas or did not. Student performance on quizzes did not differ between the different case versions and was similar to that of students who…
Secret Codes, Remainder Arithmetic, and Matrices.
ERIC Educational Resources Information Center
Peck, Lyman C.
This pamphlet is designed for use as enrichment material for able junior and senior high school students who are interested in mathematics. No more than a clear understanding of basic arithmetic is expected. Students are introduced to ideas from number theory and modern algebra by learning mathematical ways of coding and decoding secret messages.…
Textbooks as a Possible Influence on Unscientific Ideas about Evolution
ERIC Educational Resources Information Center
Tshuma, Tholani; Sanders, Martie
2015-01-01
While school textbooks are assumed to be written for and used by students, it is widely acknowledged that they also serve a vital support function for teachers, particularly in times of curriculum change. A basic assumption is that biology textbooks are scientifically accurate. Furthermore, because of the negative impact of…
ERIC Educational Resources Information Center
Jarque, Maria-Josep
2005-01-01
This document illustrates that mental functioning and communication in Catalan Sign Language (LSC) are conceptual through metaphorical projection of bodily experiences. The data in this document show how concepts are grasped, put on student's heads, exchanged, manipulated, and so on, constituting instantiations of the basic metaphors: ideas are…
The poverty of embodied cognition.
Goldinger, Stephen D; Papesh, Megan H; Barnhart, Anthony S; Hansen, Whitney A; Hout, Michael C
2016-08-01
In recent years, there has been rapidly growing interest in embodied cognition, a multifaceted theoretical proposition that (1) cognitive processes are influenced by the body, (2) cognition exists in the service of action, (3) cognition is situated in the environment, and (4) cognition may occur without internal representations. Many proponents view embodied cognition as the next great paradigm shift for cognitive science. In this article, we critically examine the core ideas from embodied cognition, taking a "thought exercise" approach. We first note that the basic principles from embodiment theory are either unacceptably vague (e.g., the premise that perception is influenced by the body) or they offer nothing new (e.g., cognition evolved to optimize survival, emotions affect cognition, perception-action couplings are important). We next suggest that, for the vast majority of classic findings in cognitive science, embodied cognition offers no scientifically valuable insight. In most cases, the theory has no logical connections to the phenomena, other than some trivially true ideas. Beyond classic laboratory findings, embodiment theory is also unable to adequately address the basic experiences of cognitive life.
The Poverty of Embodied Cognition
Goldinger, Stephen D.; Papesh, Megan H.; Barnhart, Anthony S.; Hansen, Whitney A.; Hout, Michael C.
2016-01-01
In recent years, there has been rapidly growing interest in Embodied Cognition, a multifaceted theoretical proposition that (1) cognitive processes are influenced by the body, (2) cognition exists in the service of action, (3) cognition is situated in the environment, and (4) cognition may occur without internal representations. Many proponents view embodied cognition as the next great paradigm shift for cognitive science. In this article, we critically examine the core ideas from embodied cognition, taking a “thought exercise” approach. We first note that the basic principles from embodiment theory are either unacceptably vague (e.g., the premise that perception is influenced by the body) or they offer nothing new (e.g., cognition evolved to optimize survival, emotions affect cognition, perception-action couplings are important). We next suggest that, for the vast majority of classic findings in cognitive science, embodied cognition offers no scientifically valuable insight. In most cases, the theory has no logical connections to the phenomena, other than some trivially true ideas. Beyond classic laboratory findings, embodiment theory is also unable to adequately address the basic experiences of cognitive life. PMID:27282990
Contemporary concepts of dissociation.
Avdibegović, Esmina
2012-10-01
The concept of dissociation was developed in the late 19th century by Pierre Janet for conditions of "double consciousness" in hypnosis, hysteria, spirit possession and mediumship. He defined dissociation as a deficit in the capacity of integration of two or more different "systems of ideas and functions that constitute personality", and suggested that it can be related to a genetic component, to severe illness and fatigue, and particularly to experiencing adverse, potentially traumatizing events. By the late 20th century, various and often contradictory concepts of dissociation were suggested, which were either insufficient or exceedingly including when compared to the original idea. Currently, dissociation is used to describe a wide range of normal and abnormal phenomena as a process in which behaviour, thoughts and emotions can become separated one from another. A complete presentation of mechanisms involved in dissociation is still unknown. Scientific research on basic processes of dissociation is derived mainly from studies of hypnosis and post-traumatic stress disorder. Given the controversies in modern concepts of dissociation, some researchers and theorists suggest return to the original understanding of dissociation as a basic premise for the further development of the concept of dissociation.
[Research on basic questions of intellectual property rights of acupuncture and moxibustion].
Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin
2011-12-01
Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.
Basic principles of Hasse diagram technique in chemistry.
Brüggemann, Rainer; Voigt, Kristina
2008-11-01
Principles of partial order applied to ranking are explained. The Hasse diagram technique (HDT) is the application of partial order theory based on a data matrix. In this paper, HDT is introduced in a stepwise procedure, and some elementary theorems are exemplified. The focus is to show how the multivariate character of a data matrix is realized by HDT and in which cases one should apply other mathematical or statistical methods. Many simple examples illustrate the basic theoretical ideas. Finally, it is shown that HDT is a useful alternative for the evaluation of antifouling agents, which was originally performed by amoeba diagrams.
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.
2007-04-01
This paper describes a novel capability for modeling known idea propagation transformations and predicting responses to new ideas from geopolitical groups. Ideas are captured using semantic words that are text based and bear cognitive definitions. We demonstrate a unique algorithm for converting these into analytical predictive equations. Using the illustrative idea of "proposing a gasoline price increase of 1 per gallon from 2" and its changing perceived impact throughout 5 demographic groups, we identify 13 cost of living Diplomatic, Information, Military, and Economic (DIME) features common across all 5 demographic groups. This enables the modeling and monitoring of Political, Military, Economic, Social, Information, and Infrastructure (PMESII) effects of each group to this idea and how their "perception" of this proposal changes. Our algorithm and results are summarized in this paper.
Utilizing Direct Numerical Simulations of Transition and Turbulence in Design Optimization
NASA Technical Reports Server (NTRS)
Rai, Man M.
2015-01-01
Design optimization methods that use the Reynolds-averaged Navier-Stokes equations with the associated turbulence and transition models, or other model-based forms of the governing equations, may result in aerodynamic designs with actual performance levels that are noticeably different from the expected values because of the complexity of modeling turbulence/transition accurately in certain flows. Flow phenomena such as wake-blade interaction and trailing edge vortex shedding in turbines and compressors (examples of such flows) may require a computational approach that is free of transition/turbulence models, such as direct numerical simulations (DNS), for the underlying physics to be computed accurately. Here we explore the possibility of utilizing DNS data in designing a turbine blade section. The ultimate objective is to substantially reduce differences between predicted performance metrics and those obtained in reality. The redesign of a typical low-pressure turbine blade section with the goal of reducing total pressure loss in the row is provided as an example. The basic ideas presented here are of course just as applicable elsewhere in aerodynamic shape optimization as long as the computational costs are not excessive.