Sample records for model building based

  1. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  2. PLACE-BASED GREEN BUILDING: INTEGRATING LOCAL ENVIRONMENTAL AND PLANNING ANALYSIS INTO GREEN BUILDING GUIDELINES

    EPA Science Inventory

    This project will develop a model for place-based green building guidelines based on an analysis of local environmental, social, and land use conditions. The ultimate goal of this project is to develop a methodology and model for placing green buildings within their local cont...

  3. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach

    PubMed Central

    Kneifel, Joshua; Webb, David

    2016-01-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the experimental data collected from the NZERTF. PMID:27956756

  4. Predicting Energy Performance of a Net-Zero Energy Building: A Statistical Approach.

    PubMed

    Kneifel, Joshua; Webb, David

    2016-09-01

    Performance-based building requirements have become more prevalent because it gives freedom in building design while still maintaining or exceeding the energy performance required by prescriptive-based requirements. In order to determine if building designs reach target energy efficiency improvements, it is necessary to estimate the energy performance of a building using predictive models and different weather conditions. Physics-based whole building energy simulation modeling is the most common approach. However, these physics-based models include underlying assumptions and require significant amounts of information in order to specify the input parameter values. An alternative approach to test the performance of a building is to develop a statistically derived predictive regression model using post-occupancy data that can accurately predict energy consumption and production based on a few common weather-based factors, thus requiring less information than simulation models. A regression model based on measured data should be able to predict energy performance of a building for a given day as long as the weather conditions are similar to those during the data collection time frame. This article uses data from the National Institute of Standards and Technology (NIST) Net-Zero Energy Residential Test Facility (NZERTF) to develop and validate a regression model to predict the energy performance of the NZERTF using two weather variables aggregated to the daily level, applies the model to estimate the energy performance of hypothetical NZERTFs located in different cities in the Mixed-Humid climate zone, and compares these estimates to the results from already existing EnergyPlus whole building energy simulations. This regression model exhibits agreement with EnergyPlus predictive trends in energy production and net consumption, but differs greatly in energy consumption. The model can be used as a framework for alternative and more complex models based on the experimental data collected from the NZERTF.

  5. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data

    PubMed Central

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-01-01

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. PMID:28335486

  6. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.

    PubMed

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-03-19

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.

  7. Translating building information modeling to building energy modeling using model view definition.

    PubMed

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  8. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    PubMed Central

    Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954

  9. Stochastic and Geometric Reasoning for Indoor Building Models with Electric Installations - Bridging the Gap Between GIS and Bim

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Haunert, J.-H.; Plümer, L.

    2017-10-01

    3D city and building models according to CityGML encode the geometry, represent the structure and model semantically relevant building parts such as doors, windows and balconies. Building information models support the building design, construction and the facility management. In contrast to CityGML, they include also objects which cannot be observed from the outside. The three dimensional indoor models characterize a missing link between both worlds. Their derivation, however, is expensive. The semantic automatic interpretation of 3D point clouds of indoor environments is a methodically demanding task. The data acquisition is costly and difficult. The laser scanners and image-based methods require the access to every room. Based on an approach which does not require an additional geometry acquisition of building indoors, we propose an attempt for filling the gaps between 3D building models and building information models. Based on sparse observations such as the building footprint and room areas, 3D indoor models are generated using combinatorial and stochastic reasoning. The derived models are expanded by a-priori not observable structures such as electric installation. Gaussian mixtures, linear and bi-linear constraints are used to represent the background knowledge and structural regularities. The derivation of hypothesised models is performed by stochastic reasoning using graphical models, Gauss-Markov models and MAP-estimators.

  10. The implementation of assessment model based on character building to improve students’ discipline and achievement

    NASA Astrophysics Data System (ADS)

    Rusijono; Khotimah, K.

    2018-01-01

    The purpose of this research was to investigate the effect of implementing the assessment model based on character building to improve discipline and student’s achievement. Assessment model based on character building includes three components, which are the behaviour of students, the efforts, and student’s achievement. This assessment model based on the character building is implemented in science philosophy and educational assessment courses, in Graduate Program of Educational Technology Department, Educational Faculty, Universitas Negeri Surabaya. This research used control group pre-test and post-test design. Data collection method used in this research were observation and test. The observation was used to collect the data about the disciplines of the student in the instructional process, while the test was used to collect the data about student’s achievement. Moreover, the study applied t-test to the analysis of data. The result of this research showed that assessment model based on character building improved discipline and student’s achievement.

  11. Integrating Building Information Modeling and Green Building Certification: The BIM-LEED Application Model Development

    ERIC Educational Resources Information Center

    Wu, Wei

    2010-01-01

    Building information modeling (BIM) and green building are currently two major trends in the architecture, engineering and construction (AEC) industry. This research recognizes the market demand for better solutions to achieve green building certification such as LEED in the United States. It proposes a new strategy based on the integration of BIM…

  12. Research on BIM-based building information value chain reengineering

    NASA Astrophysics Data System (ADS)

    Hui, Zhao; Weishuang, Xie

    2017-04-01

    The achievement of value and value-added factor to the building engineering information is accomplished through a chain-flow, that is, building the information value chain. Based on the deconstruction of the information chain on the construction information in the traditional information mode, this paper clarifies the value characteristics and requirements of each stage of the construction project. In order to achieve building information value-added, the paper deconstructs the traditional building information value chain, reengineer the information value chain model on the basis of the theory and techniques of BIM, to build value-added management model and analyse the value of the model.

  13. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    NASA Astrophysics Data System (ADS)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the associated BIM elements and update their corresponding thermal properties in the gbXML schema. By reflecting the as-is building condition in the BIM-based energy modeling process, this method bridges over the gap between the architectural information in the as-designed BIM and the as-is building condition for accurate energy performance analysis. The performance of each method was validated on ten case studies from interiors and exteriors of existing residential and instructional buildings in IL and VA. The extensive experimental results show the promise of the proposed methods in addressing the fundamental challenges of (1) visual sensing : scaling 2D visual assessments to real-world building environments and localizing energy problems; (2) analytics: subjective and qualitative assessments; and (3) BIM-based building energy analysis : a lack of procedures for reflecting the as-is building condition in the energy modeling process. Beyond the technical contributions, the domain expert surveys conducted in this dissertation show that the proposed methods have potential to improve the quality of thermographic inspection processes and complement the current building energy analysis tools.

  14. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority over related methods.

  15. Multi-Level Building Reconstruction for Automatic Enhancement of High Resolution Dsms

    NASA Astrophysics Data System (ADS)

    Arefi, H.; Reinartz, P.

    2012-07-01

    In this article a multi-level approach is proposed for reconstruction-based improvement of high resolution Digital Surface Models (DSMs). The concept of Levels of Detail (LOD) defined by CityGML standard has been considered as basis for abstraction levels of building roof structures. Here, the LOD1 and LOD2 which are related to prismatic and parametric roof shapes are reconstructed. Besides proposing a new approach for automatic LOD1 and LOD2 generation from high resolution DSMs, the algorithm contains two generalization levels namely horizontal and vertical. Both generalization levels are applied to prismatic model of buildings. The horizontal generalization allows controlling the approximation level of building footprints which is similar to cartographic generalization concept of the urban maps. In vertical generalization, the prismatic model is formed using an individual building height and continuous to included all flat structures locating in different height levels. The concept of LOD1 generation is based on approximation of the building footprints into rectangular or non-rectangular polygons. For a rectangular building containing one main orientation a method based on Minimum Bounding Rectangle (MBR) in employed. In contrast, a Combined Minimum Bounding Rectangle (CMBR) approach is proposed for regularization of non-rectilinear polygons, i.e. buildings without perpendicular edge directions. Both MBRand CMBR-based approaches are iteratively employed on building segments to reduce the original building footprints to a minimum number of nodes with maximum similarity to original shapes. A model driven approach based on the analysis of the 3D points of DSMs in a 2D projection plane is proposed for LOD2 generation. Accordingly, a building block is divided into smaller parts according to the direction and number of existing ridge lines. The 3D model is derived for each building part and finally, a complete parametric model is formed by merging all the 3D models of the individual parts and adjusting the nodes after the merging step. In order to provide an enhanced DSM, a surface model is provided for each building by interpolation of the internal points of the generated models. All interpolated models are situated on a Digital Terrain Model (DTM) of corresponding area to shape the enhanced DSM. Proposed DSM enhancement approach has been tested on a dataset from Munich central area. The original DSM is created using robust stereo matching of Worldview-2 stereo images. A quantitative assessment of the new DSM by comparing the heights of the ridges and eaves shows a standard deviation of better than 50cm.

  16. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  17. Implementation of the ANNs ensembles in macro-BIM cost estimates of buildings' floor structural frames

    NASA Astrophysics Data System (ADS)

    Juszczyk, Michał

    2018-04-01

    This paper reports some results of the studies on the use of artificial intelligence tools for the purposes of cost estimation based on building information models. A problem of the cost estimates based on the building information models on a macro level supported by the ensembles of artificial neural networks is concisely discussed. In the course of the research a regression model has been built for the purposes of cost estimation of buildings' floor structural frames, as higher level elements. Building information models are supposed to serve as a repository of data used for the purposes of cost estimation. The core of the model is the ensemble of neural networks. The developed model allows the prediction of cost estimates with satisfactory accuracy.

  18. Hybrid Modeling Based on Scsg-Br and Orthophoto

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, Y.; Yue, T.; Li, X.; Huang, W.; He, C.; Wu, Z.

    2018-05-01

    With the development of digital city, digital applications are more and more widespread, while the urban buildings are more complex. Therefore, establishing an effective data model is the key to express urban building models accurately. In addition, the combination of 3D building model and remote sensing data become a trend to build digital city there are a large amount of data resulting in data redundancy. In order to solve the limitation of single modelling of constructive solid geometry (CSG), this paper presents a mixed modelling method based on SCSG-BR for urban buildings representation. On one hand, the improved CSG method, which is called as "Spatial CSG (SCSG)" representation method, is used to represent the exterior shape of urban buildings. On the other hand, the boundary representation (BR) method represents the topological relationship between geometric elements of urban building, in which the textures is considered as the attribute data of the wall and the roof of urban building. What's more, the method combined file database and relational database is used to manage the data of three-dimensional building model, which can decrease the complex processes in texture mapping. During the data processing, the least-squares algorithm with constraints is used to orthogonalize the building polygons and adjust the polygons topology to ensure the accuracy of the modelling data. Finally, this paper matches the urban building model with the corresponding orthophoto. This paper selects data of Denver, Colorado, USA to establish urban building realistic model. The results show that the SCSG-BR method can represent the topological relations of building more precisely. The organization and management of urban building model data reduce the redundancy of data and improve modelling speed. The combination of orthophoto and urban building model further strengthens the application in view analysis and spatial query, which enhance the scope of digital city applications.

  19. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects. PMID:27873931

  20. Development of building energy asset rating using stock modelling in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goel, Supriya; Makhmalbaf, Atefe

    2016-01-29

    The US Building Energy Asset Score helps building stakeholders quickly gain insight into the efficiency of building systems (envelope, electrical and mechanical systems). A robust, easy-to-understand 10-point scoring system was developed to facilitate an unbiased comparison of similar building types across the country. The Asset Score does not rely on a database or specific building baselines to establish a rating. Rather, distributions of energy use intensity (EUI) for various building use types were constructed using Latin hypercube sampling and converted to a series of stepped linear scales to score buildings. A score is calculated based on the modelled source EUImore » after adjusting for climate. A web-based scoring tool, which incorporates an analytical engine and a simulation engine, was developed to standardize energy modelling and reduce implementation cost. This paper discusses the methodology used to perform several hundred thousand building simulation runs and develop the scoring scales.« less

  1. Accuracy Assessment of a Complex Building 3d Model Reconstructed from Images Acquired with a Low-Cost Uas

    NASA Astrophysics Data System (ADS)

    Oniga, E.; Chirilă, C.; Stătescu, F.

    2017-02-01

    Nowadays, Unmanned Aerial Systems (UASs) are a wide used technique for acquisition in order to create buildings 3D models, providing the acquisition of a high number of images at very high resolution or video sequences, in a very short time. Since low-cost UASs are preferred, the accuracy of a building 3D model created using this platforms must be evaluated. To achieve results, the dean's office building from the Faculty of "Hydrotechnical Engineering, Geodesy and Environmental Engineering" of Iasi, Romania, has been chosen, which is a complex shape building with the roof formed of two hyperbolic paraboloids. Seven points were placed on the ground around the building, three of them being used as GCPs, while the remaining four as Check points (CPs) for accuracy assessment. Additionally, the coordinates of 10 natural CPs representing the building characteristic points were measured with a Leica TCR 405 total station. The building 3D model was created as a point cloud which was automatically generated based on digital images acquired with the low-cost UASs, using the image matching algorithm and different software like 3DF Zephyr, Visual SfM, PhotoModeler Scanner and Drone2Map for ArcGIS. Except for the PhotoModeler Scanner software, the interior and exterior orientation parameters were determined simultaneously by solving a self-calibrating bundle adjustment. Based on the UAS point clouds, automatically generated by using the above mentioned software and GNSS data respectively, the parameters of the east side hyperbolic paraboloid were calculated using the least squares method and a statistical blunder detection. Then, in order to assess the accuracy of the building 3D model, several comparisons were made for the facades and the roof with reference data, considered with minimum errors: TLS mesh for the facades and GNSS mesh for the roof. Finally, the front facade of the building was created in 3D based on its characteristic points using the PhotoModeler Scanner software, resulting a CAD (Computer Aided Design) model. The results showed the high potential of using low-cost UASs for building 3D model creation and if the building 3D model is created based on its characteristic points the accuracy is significantly improved.

  2. Gray-Box Approach for Thermal Modelling of Buildings for Applications in District Heating and Cooling Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saurav, Kumar; Chandan, Vikas

    District-heating-and-cooling (DHC) systems are a proven energy solution that has been deployed for many years in a growing number of urban areas worldwide. They comprise a variety of technologies that seek to develop synergies between the production and supply of heat, cooling, domestic hot water and electricity. Although the benefits of DHC systems are significant and have been widely acclaimed, yet the full potential of modern DHC systems remains largely untapped. There are several opportunities for development of energy efficient DHC systems, which will enable the effective exploitation of alternative renewable resources, waste heat recovery, etc., in order to increasemore » the overall efficiency and facilitate the transition towards the next generation of DHC systems. This motivated the need for modelling these complex systems. Large-scale modelling of DHC-networks is challenging, as it has several components such as buildings, pipes, valves, heating source, etc., interacting with each other. In this paper, we focus on building modelling. In particular, we present a gray-box methodology for thermal modelling of buildings. Gray-box modelling is a hybrid of data driven and physics based models where, coefficients of the equations from physics based models are learned using data. This approach allows us to capture the dynamics of the buildings more effectively as compared to pure data driven approach. Additionally, this approach results in a simpler models as compared to pure physics based models. We first develop the individual components of the building such as temperature evolution, flow controller, etc. These individual models are then integrated in to the complete gray-box model for the building. The model is validated using data collected from one of the buildings at Lule{\\aa}, a city on the coast of northern Sweden.« less

  3. Building Facade Modeling Under Line Feature Constraint Based on Close-Range Images

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Sheng, Y. H.

    2018-04-01

    To solve existing problems in modeling facade of building merely with point feature based on close-range images , a new method for modeling building facade under line feature constraint is proposed in this paper. Firstly, Camera parameters and sparse spatial point clouds data were restored using the SFM , and 3D dense point clouds were generated with MVS; Secondly, the line features were detected based on the gradient direction , those detected line features were fit considering directions and lengths , then line features were matched under multiple types of constraints and extracted from multi-image sequence. At last, final facade mesh of a building was triangulated with point cloud and line features. The experiment shows that this method can effectively reconstruct the geometric facade of buildings using the advantages of combining point and line features of the close - range image sequence, especially in restoring the contour information of the facade of buildings.

  4. Performance evaluation of an agent-based occupancy simulation model

    DOE PAGES

    Luo, Xuan; Lam, Khee Poh; Chen, Yixing; ...

    2017-01-17

    Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less

  5. Performance evaluation of an agent-based occupancy simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xuan; Lam, Khee Poh; Chen, Yixing

    Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less

  6. Enhancements to AERMOD’s Building Downwash Algorithms based on Wind Tunnel and Embedded-LES Modeling

    EPA Science Inventory

    This presentation presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD’s building pre-processor to better represent elongated buildings in oblique wind...

  7. Teaching Model Building to High School Students: Theory and Reality.

    ERIC Educational Resources Information Center

    Roberts, Nancy; Barclay, Tim

    1988-01-01

    Builds on a National Science Foundation (NSF) microcomputer based laboratory project to introduce system dynamics into the precollege setting. Focuses on providing students with powerful and investigatory theory building tools. Discusses developed hardware, software, and curriculum materials used to introduce model building and simulations into…

  8. Effectiveness of Training Model Capacity Building for Entrepreneurship Women Based Empowerment Community

    ERIC Educational Resources Information Center

    Idawati; Mahmud, Alimuddin; Dirawan, Gufran Darma

    2016-01-01

    The purpose of this research was to determine the effectiveness of a training model for capacity building of women entrepreneurship community-based. Research type approach Research and Development Model, which refers to the model of development research that developed by Romiszowki (1996) combined with a model of development Sugiono (2011) it was…

  9. Beyond the Central Dogma: Model-Based Learning of How Genes Determine Phenotypes

    ERIC Educational Resources Information Center

    Reinagel, Adam; Speth, Elena Bray

    2016-01-01

    In an introductory biology course, we implemented a learner-centered, model-based pedagogy that frequently engaged students in building conceptual models to explain how genes determine phenotypes. Model-building tasks were incorporated within case studies and aimed at eliciting students' understanding of 1) the origin of variation in a population…

  10. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  11. Research on precise modeling of buildings based on multi-source data fusion of air to ground

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Niu, Lubiao; Yang, Shasha; Li, Lixue; Zhang, Xitong

    2016-03-01

    Aims at the accuracy problem of precise modeling of buildings, a test research was conducted based on multi-source data for buildings of the same test area , including top data of air-borne LiDAR, aerial orthophotos, and façade data of vehicle-borne LiDAR. After accurately extracted the top and bottom outlines of building clusters, a series of qualitative and quantitative analysis was carried out for the 2D interval between outlines. Research results provide a reliable accuracy support for precise modeling of buildings of air ground multi-source data fusion, on the same time, discussed some solution for key technical problems.

  12. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate the indoor condition regardless of the contribution of internal and external loads. To deploy the methodology to another portfolio of buildings, simulated LEED NC office buildings are selected. The advantage of this approach is to isolate energy performance due to inherent building characteristics and location, rather than operational and maintenance factors that can contribute to significant variation in building energy use. A framework for detailed building energy databases with annual energy end-uses is developed to select variables and omit outliers. The results show that the high performance office buildings are internally-load dominated with existence of three different clusters of low-intensity, medium-intensity, and high-intensity energy use pattern for the reviewed office buildings. Low-intensity cluster buildings benefit from small building area, while the medium- and high-intensity clusters have a similar range of floor areas and different energy use intensities. Half of the energy use in the low-intensity buildings is associated with the internal loads, such as lighting and plug loads, indicating that there are opportunities to save energy by using lighting or plug load management systems. A comparison between the frameworks developed for the campus buildings and LEED NC office buildings indicates these two frameworks are complementary to each other. Availability of the information has yielded to two different procedures, suggesting future studies for a portfolio of buildings such as city benchmarking and disclosure ordinance should collect and disclose minimal required inputs suggested by this study with the minimum level of monthly energy consumption granularity. This dissertation developed automated methods using the OpenStudio API (Application Programing Interface) to create energy models based on the building class. ASHRAE Guideline 14 defines well-accepted criteria to measure accuracy of energy simulations; however, there is no well-accepted methodology to quantify the model complexity without the influence of the energy modeler judgment about the model complexity. This study developed a novel method using two weighting factors, including weighting factors based on (1) computational time and (2) easiness of on-site data collection, to measure complexity of the energy models. Therefore, this dissertation enables measurement of both model complexity and accuracy as well as assessment of the inherent tradeoffs between energy simulation model complexity and accuracy. The results of this methodology suggest for most of the internal load contributors such as operation schedules the on-site data collection adds more complexity to the model compared to the computational time. Overall, this study provided specific data on tradeoffs between accuracy and model complexity that points to critical inputs for different building classes, rather than an increase in the volume and detail of model inputs as the current research and consulting practice indicates. (Abstract shortened by UMI.).

  13. Building Thermal Models

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.

    2017-01-01

    This presentation is meant to be an overview of the model building process It is based on typical techniques (Monte Carlo Ray Tracing for radiation exchange, Lumped Parameter, Finite Difference for thermal solution) used by the aerospace industry This is not intended to be a "How to Use ThermalDesktop" course. It is intended to be a "How to Build Thermal Models" course and the techniques will be demonstrated using the capabilities of ThermalDesktop (TD). Other codes may or may not have similar capabilities. The General Model Building Process can be broken into four top level steps: 1. Build Model; 2. Check Model; 3. Execute Model; 4. Verify Results.

  14. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  15. A Framework for Text Mining in Scientometric Study: A Case Study in Biomedicine Publications

    NASA Astrophysics Data System (ADS)

    Silalahi, V. M. M.; Hardiyati, R.; Nadhiroh, I. M.; Handayani, T.; Rahmaida, R.; Amelia, M.

    2018-04-01

    The data of Indonesians research publications in the domain of biomedicine has been collected to be text mined for the purpose of a scientometric study. The goal is to build a predictive model that provides a classification of research publications on the potency for downstreaming. The model is based on the drug development processes adapted from the literatures. An effort is described to build the conceptual model and the development of a corpus on the research publications in the domain of Indonesian biomedicine. Then an investigation is conducted relating to the problems associated with building a corpus and validating the model. Based on our experience, a framework is proposed to manage the scientometric study based on text mining. Our method shows the effectiveness of conducting a scientometric study based on text mining in order to get a valid classification model. This valid model is mainly supported by the iterative and close interactions with the domain experts starting from identifying the issues, building a conceptual model, to the labelling, validation and results interpretation.

  16. Regression Tree-Based Methodology for Customizing Building Energy Benchmarks to Individual Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kaskhedikar, Apoorva Prakash

    According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI pertinent to the building type. The ability to identify and rank the important variables is of great importance in practical implementation of the benchmarking tools which rely on query-based building and HVAC variable filters specified by the user.

  17. Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments

    ERIC Educational Resources Information Center

    Amershi, Saleema; Conati, Cristina

    2009-01-01

    In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…

  18. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model

    PubMed Central

    Kuepfer, L; Niederalt, C; Wendl, T; Schlender, J‐F; Willmann, S; Lippert, J; Block, M; Eissing, T

    2016-01-01

    The aim of this tutorial is to introduce the fundamental concepts of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling with a special focus on their practical implementation in a typical PBPK model building workflow. To illustrate basic steps in PBPK model building, a PBPK model for ciprofloxacin will be constructed and coupled to a pharmacodynamic model to simulate the antibacterial activity of ciprofloxacin treatment. PMID:27653238

  19. Equation-based languages – A new paradigm for building energy modeling, simulation and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.

    Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less

  20. Equation-based languages – A new paradigm for building energy modeling, simulation and optimization

    DOE PAGES

    Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.

    2016-04-01

    Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less

  1. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  2. Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane

    2015-05-01

    The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less

  3. Little by Little Does the Trick: Design and Construction of a Discrete Event Agent-Based Simulation Framework

    DTIC Science & Technology

    2007-12-01

    model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality. 15. NUMBER OF...and a Behavioral model. Finally, we build a small agent-based model using the component architecture to demonstrate the library’s functionality...prototypes an architectural design which is generalizable, reusable, and extensible. We have created an initial set of model elements that demonstrate

  4. Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsu; Cox, Sam J.; Cho, Heejin

    With increased use of variable refrigerant flow (VRF) systems in the U.S. building sector, interests in capability and rationality of various building energy modeling tools to simulate VRF systems are rising. This paper presents the detailed procedures for model calibration of a VRF system with a dedicated outdoor air system (DOAS) by comparing to detailed measured data from an occupancy emulated small office building. The building energy model is first developed based on as-built drawings, and building and system characteristics available. The whole building energy modeling tool used for the study is U.S. DOE’s EnergyPlus version 8.1. The initial modelmore » is, then, calibrated with the hourly measured data from the target building and VRF-DOAS system. In a detailed calibration procedures of the VRF-DOAS, the original EnergyPlus source code is modified to enable the modeling of the specific VRF-DOAS installed in the building. After a proper calibration during cooling and heating seasons, the VRF-DOAS model can reasonably predict the performance of the actual VRF-DOAS system based on the criteria from ASHRAE Guideline 14-2014. The calibration results show that hourly CV-RMSE and NMBE would be 15.7% and 3.8%, respectively, which is deemed to be calibrated. As a result, the whole-building energy usage after calibration of the VRF-DOAS model is 1.9% (78.8 kWh) lower than that of the measurements during comparison period.« less

  5. A model for the sustainable selection of building envelope assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huedo, Patricia, E-mail: huedo@uji.es; Mulet, Elena, E-mail: emulet@uji.es; López-Mesa, Belinda, E-mail: belinda@unizar.es

    2016-02-15

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate themore » impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.« less

  6. Distribution Locational Real-Time Pricing Based Smart Building Control and Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jun; Dai, Xiaoxiao; Zhang, Yingchen

    This paper proposes an real-virtual parallel computing scheme for smart building operations aiming at augmenting overall social welfare. The University of Denver's campus power grid and Ritchie fitness center is used for demonstrating the proposed approach. An artificial virtual system is built in parallel to the real physical system to evaluate the overall social cost of the building operation based on the social science based working productivity model, numerical experiment based building energy consumption model and the power system based real-time pricing mechanism. Through interactive feedback exchanged between the real and virtual system, enlarged social welfare, including monetary cost reductionmore » and energy saving, as well as working productivity improvements, can be achieved.« less

  7. Method development of damage detection in asymmetric buildings

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results obtained from a number of different damage scenarios confirm the feasibility of the proposed vibration based damage detection method for three dimensional asymmetric buildings.

  8. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  9. Developing a Conceptual Architecture for a Generalized Agent-based Modeling Environment (GAME)

    DTIC Science & Technology

    2008-03-01

    4. REPAST (Java, Python , C#, Open Source) ........28 5. MASON: Multi-Agent Modeling Language (Swarm Extension... Python , C#, Open Source) Repast (Recursive Porous Agent Simulation Toolkit) was designed for building agent-based models and simulations in the...Repast makes it easy for inexperienced users to build models by including a built-in simple model and provide interfaces through which menus and Python

  10. Model-Based Building Detection from Low-Cost Optical Sensors Onboard Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Karantzalos, K.; Koutsourakis, P.; Kalisperakis, I.; Grammatikopoulos, L.

    2015-08-01

    The automated and cost-effective building detection in ultra high spatial resolution is of major importance for various engineering and smart city applications. To this end, in this paper, a model-based building detection technique has been developed able to extract and reconstruct buildings from UAV aerial imagery and low-cost imaging sensors. In particular, the developed approach through advanced structure from motion, bundle adjustment and dense image matching computes a DSM and a true orthomosaic from the numerous GoPro images which are characterised by important geometric distortions and fish-eye effect. An unsupervised multi-region, graphcut segmentation and a rule-based classification is responsible for delivering the initial multi-class classification map. The DTM is then calculated based on inpaininting and mathematical morphology process. A data fusion process between the detected building from the DSM/DTM and the classification map feeds a grammar-based building reconstruction and scene building are extracted and reconstructed. Preliminary experimental results appear quite promising with the quantitative evaluation indicating detection rates at object level of 88% regarding the correctness and above 75% regarding the detection completeness.

  11. Towards a Semantically-Enabled Control Strategy for Building Simulations: Integration of Semantic Technologies and Model Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.

    State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less

  12. Infiltration modeling guidelines for commercial building energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less

  13. Development of a Knowledge-Based System Approach for Decision Making in Construction Projects

    DTIC Science & Technology

    1992-05-01

    a generic model for an administrative facility and medical facility with predefined fixed building systems based on Air Force criteria and past...MAINTENANCE HANGAR (MEDIUM BAY) CORROSION CONTROL HANGAR (HIGH BAY) FUEL SYSTEM MAINTENANCE HANGAR (MEDIUM BAY) MEDICAL MODEL 82 Table 5-1--continued...BUILDING SUPPORT MEDICAL LOGISTICS MEDICAL TOTAL 85 Table 5-2--continued MISSILE ASSEMBLY AND MAINTENANCE BUILDING TOTAL MISSILE LOADING AND UNLOADING

  14. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, James T.; Maile, Tobias; Rose, Cody

    Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage inmore » the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive benchmark during operation. Developing BIM based criteria to support the semi-automated process should result in significant reliable improvements and time savings in the development of BEMs. In order to define successful BIMS, CAD export of IFC based BIMs for BEM must adhere to a standard Model View Definition (MVD) for simulation as provided by the concept design BIM MVD (buildingSMART, 2011). In order to ensure wide scale adoption, companies would also need to develop their own material libraries to support automated activities and undertake a pilot project to improve understanding of modeling conventions and design tool features and limitations.« less

  15. Rise and Shock: Optimal Defibrillator Placement in a High-rise Building.

    PubMed

    Chan, Timothy C Y

    2017-01-01

    Out-of-hospital cardiac arrests (OHCA) in high-rise buildings experience lower survival and longer delays until paramedic arrival. Use of publicly accessible automated external defibrillators (AED) can improve survival, but "vertical" placement has not been studied. We aim to determine whether elevator-based or lobby-based AED placement results in shorter vertical distance travelled ("response distance") to OHCAs in a high-rise building. We developed a model of a single-elevator, n-floor high-rise building. We calculated and compared the average distance from AED to floor of arrest for the two AED locations. We modeled OHCA occurrences using floor-specific Poisson processes, the risk of OHCA on the ground floor (λ 1 ) and the risk on any above-ground floor (λ). The elevator was modeled with an override function enabling direct travel to the target floor. The elevator location upon override was modeled as a discrete uniform random variable. Calculations used the laws of probability. Elevator-based AED placement had shorter average response distance if the number of floors (n) in the building exceeded three quarters of the ratio of ground-floor OHCA risk to above-ground floor risk (λ 1 /λ) plus one half (n ≥ 3λ 1 /4λ + 0.5). Otherwise, a lobby-based AED had shorter average response distance. If OHCA risk on each floor was equal, an elevator-based AED had shorter average response distance. Elevator-based AEDs travel less vertical distance to OHCAs in tall buildings or those with uniform vertical risk, while lobby-based AEDs travel less vertical distance in buildings with substantial lobby, underground, and nearby street-level traffic and OHCA risk.

  16. Scott Horowitz | NREL

    Science.gov Websites

    area, which includes work on whole building energy modeling, cost-based optimization, model accuracy optimization tool used to provide support for the Building America program's teams and energy efficiency goals Colorado graduate student exploring enhancements to building optimization in terms of robustness and speed

  17. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    NASA Astrophysics Data System (ADS)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  18. Review of Development Survey of Phase Change Material Models in Building Applications

    PubMed Central

    Akeiber, Hussein J.; Wahid, Mazlan A.; Hussen, Hasanen M.; Mohammad, Abdulrahman Th.

    2014-01-01

    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data. PMID:25313367

  19. Village Building Identification Based on Ensemble Convolutional Neural Networks

    PubMed Central

    Guo, Zhiling; Chen, Qi; Xu, Yongwei; Shibasaki, Ryosuke; Shao, Xiaowei

    2017-01-01

    In this study, we present the Ensemble Convolutional Neural Network (ECNN), an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify village buildings from open high-resolution remote sensing (HRRS) images. First, to optimize and mine the capability of CNN for village mapping and to ensure compatibility with our classification targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of rigorous analyses and evaluations. Second, rather than directly implementing building identification by using these models, we exploited most of their advantages by ensembling their feature extractor parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-level classification frame to implement object identification. The proposed method can serve as a viable tool for village building identification with high accuracy and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos, prove that the proposed ECNN model significantly outperforms existing methods, improving overall accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86. PMID:29084154

  20. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  1. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  2. Learning Oriented Region-based Convolutional Neural Networks for Building Detection in Satellite Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gong, W.; Hu, Y.; Chen, Y.; Ding, Y.

    2017-05-01

    The automated building detection in aerial images is a fundamental problem encountered in aerial and satellite images analysis. Recently, thanks to the advances in feature descriptions, Region-based CNN model (R-CNN) for object detection is receiving an increasing attention. Despite the excellent performance in object detection, it is problematic to directly leverage the features of R-CNN model for building detection in single aerial image. As we know, the single aerial image is in vertical view and the buildings possess significant directional feature. However, in R-CNN model, direction of the building is ignored and the detection results are represented by horizontal rectangles. For this reason, the detection results with horizontal rectangle cannot describe the building precisely. To address this problem, in this paper, we proposed a novel model with a key feature related to orientation, namely, Oriented R-CNN (OR-CNN). Our contributions are mainly in the following two aspects: 1) Introducing a new oriented layer network for detecting the rotation angle of building on the basis of the successful VGG-net R-CNN model; 2) the oriented rectangle is proposed to leverage the powerful R-CNN for remote-sensing building detection. In experiments, we establish a complete and bran-new data set for training our oriented R-CNN model and comprehensively evaluate the proposed method on a publicly available building detection data set. We demonstrate State-of-the-art results compared with the previous baseline methods.

  3. Seismic response evaluation of base-isolated reinforced concrete buildings under bidirectional excitation

    NASA Astrophysics Data System (ADS)

    Bhagat, Satish; Wijeyewickrema, Anil C.

    2017-04-01

    This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.

  4. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Bourassa, Norm; Rainer, Leo

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  5. Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Evan; Bourassa, Norm; Rainer, Leo

    2016-04-22

    A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.

  6. FloorspaceJS - A New, Open Source, Web-Based Geometry Editor for Building Energy Modeling (BEM): Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macumber, Daniel L; Horowitz, Scott G; Schott, Marjorie

    Across most industries, desktop applications are being rapidly migrated to web applications for a variety of reasons. Web applications are inherently cross platform, mobile, and easier to distribute than desktop applications. Fueling this trend are a wide range of free, open source libraries and frameworks that make it incredibly easy to develop powerful web applications. The building energy modeling community is just beginning to pick up on these larger trends, with a small but growing number of building energy modeling applications starting on or moving to the web. This paper presents a new, open source, web based geometry editor formore » Building Energy Modeling (BEM). The editor is written completely in JavaScript and runs in a modern web browser. The editor works on a custom JSON file format and is designed to be integrated into a variety of web and desktop applications. The web based editor is available to use as a standalone web application at: https://nrel.github.io/openstudio-geometry-editor/. An example integration is demonstrated with the OpenStudio desktop application. Finally, the editor can be easily integrated with a wide range of possible building energy modeling web applications.« less

  7. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  8. Hybrid Model-Based and Data-Driven Fault Detection and Diagnostics for Commercial Buildings: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Stephen; Heaney, Michael; Jin, Xin

    Commercial buildings often experience faults that produce undesirable behavior in building systems. Building faults waste energy, decrease occupants' comfort, and increase operating costs. Automated fault detection and diagnosis (FDD) tools for buildings help building owners discover and identify the root causes of faults in building systems, equipment, and controls. Proper implementation of FDD has the potential to simultaneously improve comfort, reduce energy use, and narrow the gap between actual and optimal building performance. However, conventional rule-based FDD requires expensive instrumentation and valuable engineering labor, which limit deployment opportunities. This paper presents a hybrid, automated FDD approach that combines building energymore » models and statistical learning tools to detect and diagnose faults noninvasively, using minimal sensors, with little customization. We compare and contrast the performance of several hybrid FDD algorithms for a small security building. Our results indicate that the algorithms can detect and diagnose several common faults, but more work is required to reduce false positive rates and improve diagnosis accuracy.« less

  9. Tall Buildings Initiative

    Science.gov Websites

    Design Task 7 - Guidelines on Modeling and Acceptance Values Task 8 - Input Ground Motions for Tall - Performance-Based Seismic Design Guidelines for Tall Buildings Task 12 - Quantification of seismic performance published Report No. 2017/06 titled: "Guidelines for Performance-Based Seismic Design of Tall Buildings

  10. Multicriteria decision model for retrofitting existing buildings

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, B.

    2003-04-01

    In this paper a model to decide which buildings from an urban area should be retrofitted is presented. The model has been cast into existing ones by choosing the decision rule, criterion weighting and decision support system types most suitable for the spatial problem of reducing earthquake risk in urban areas, considering existing spatial multiatributive and multiobjective decision methods and especially collaborative issues. Due to the participative character of the group decision problem "retrofitting existing buildings" the decision making model is based on interactivity. Buildings have been modeled following the criteria of spatial decision support systems. This includes identifying the corresponding spatial elements of buildings according to the information needs of actors from different sphaeres like architects, construction engineers and economists. The decision model aims to facilitate collaboration between this actors. The way of setting priorities interactivelly will be shown, by detailing the two phases: judgemental and computational, in this case site analysis, collection and evaluation of the unmodified data and converting survey data to information with computational methods using additional expert support. Buildings have been divided into spatial elements which are characteristic for the survey, present typical damages in case of an earthquake and are decisive for a better seismic behaviour in case of retrofitting. The paper describes the architectural and engineering characteristics as well as the structural damage for constuctions of different building ages on the example of building types in Bucharest, Romania in compressible and interdependent charts, based on field observation, reports from the 1977 earthquake and detailed studies made by the author together with a local engineer for the EERI Web Housing Encyclopedia. On this base criteria for setting priorities flow into the expert information contained in the system.

  11. A simplified building airflow model for agent concentration prediction.

    PubMed

    Jacques, David R; Smith, David A

    2010-11-01

    A simplified building airflow model is presented that can be used to predict the spread of a contaminant agent from a chemical or biological attack. If the dominant means of agent transport throughout the building is an air-handling system operating at steady-state, a linear time-invariant (LTI) model can be constructed to predict the concentration in any room of the building as a result of either an internal or external release. While the model does not capture weather-driven and other temperature-driven effects, it is suitable for concentration predictions under average daily conditions. The model is easily constructed using information that should be accessible to a building manager, supplemented with assumptions based on building codes and standard air-handling system design practices. The results of the model are compared with a popular multi-zone model for a simple building and are demonstrated for building examples containing one or more air-handling systems. The model can be used for rapid concentration prediction to support low-cost placement strategies for chemical and biological detection sensors.

  12. Toward a Computational Model of Tutoring.

    ERIC Educational Resources Information Center

    Woolf, Beverly Park

    1992-01-01

    Discusses the integration of instructional science and computer science. Topics addressed include motivation for building knowledge-based systems; instructional design issues, including cognitive models, representing student intentions, and student models and error diagnosis; representing tutoring knowledge; building a tutoring system, including…

  13. Voluminator 2.0 - Speeding up the Approximation of the Volume of Defective 3d Building Models

    NASA Astrophysics Data System (ADS)

    Sindram, M.; Machl, T.; Steuer, H.; Pültz, M.; Kolbe, T. H.

    2016-06-01

    Semantic 3D city models are increasingly used as a data source in planning and analyzing processes of cities. They represent a virtual copy of the reality and are a common information base and source of information for examining urban questions. A significant advantage of virtual city models is that important indicators such as the volume of buildings, topological relationships between objects and other geometric as well as thematic information can be derived. Knowledge about the exact building volume is an essential base for estimating the building energy demand. In order to determine the volume of buildings with conventional algorithms and tools, the buildings may not contain any topological and geometrical errors. The reality, however, shows that city models very often contain errors such as missing surfaces, duplicated faces and misclosures. To overcome these errors (Steuer et al., 2015) have presented a robust method for approximating the volume of building models. For this purpose, a bounding box of the building is divided into a regular grid of voxels and it is determined which voxels are inside the building. The regular arrangement of the voxels leads to a high number of topological tests and prevents the application of this method using very high resolutions. In this paper we present an extension of the algorithm using an octree approach limiting the subdivision of space to regions around surfaces of the building models and to regions where, in the case of defective models, the topological tests are inconclusive. We show that the computation time can be significantly reduced, while preserving the robustness against geometrical and topological errors.

  14. A Modelica-based Model Library for Building Energy and Control Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael

    2009-04-07

    This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less

  15. Simulation of earthquake caused building damages for the development of fast reconnaissance techniques

    NASA Astrophysics Data System (ADS)

    Schweier, C.; Markus, M.; Steinle, E.

    2004-04-01

    Catastrophic events like strong earthquakes can cause big losses in life and economic values. An increase in the efficiency of reconnaissance techniques could help to reduce the losses in life as many victims die after and not during the event. A basic prerequisite to improve the rescue teams' work is an improved planning of the measures. This can only be done on the basis of reliable and detailed information about the actual situation in the affected regions. Therefore, a bundle of projects at Karlsruhe university aim at the development of a tool for fast information retrieval after strong earthquakes. The focus is on urban areas as the most losses occur there. In this paper the approach for a damage analysis of buildings will be presented. It consists of an automatic methodology to model buildings in three dimensions, a comparison of pre- and post-event models to detect changes and a subsequent classification of the changes into damage types. The process is based on information extraction from airborne laserscanning data, i.e. digital surface models (DSM) acquired through scanning of an area with pulsed laser light. To date, there are no laserscanning derived DSMs available to the authors that were taken of areas that suffered damages from earthquakes. Therefore, it was necessary to simulate such data for the development of the damage detection methodology. In this paper two different methodologies used for simulating the data will be presented. The first method is to create CAD models of undamaged buildings based on their construction plans and alter them artificially in such a way as if they had suffered serious damage. Then, a laserscanning data set is simulated based on these models which can be compared with real laserscanning data acquired of the buildings (in intact state). The other approach is to use measurements of actual damaged buildings and simulate their intact state. It is possible to model the geometrical structure of these damaged buildings based on digital photography taken after the event by evaluating the images with photogrammetrical methods. The intact state of the buildings is simulated based on on-site investigations, and finally laserscanning data are simulated for both states.

  16. Transformation through Expeditionary Change Using Online Learning and Competence-Building Technologies

    ERIC Educational Resources Information Center

    Norris, Donald M.; Lefrere, Paul

    2011-01-01

    This paper presents a patterns-based model of the evolution of learning and competence-building technologies, grounded in examples of current practice. The model imagines five simple stages in how institutions use "expeditionary change" to innovate more nimbly. It builds upon three assertions. First, the pervasiveness of web-based…

  17. Development and application of EEAST: a life cycle based model for use of harvested rainwater and composting toilets in buildings.

    PubMed

    Devkota, J; Schlachter, H; Anand, C; Phillips, R; Apul, Defne

    2013-11-30

    Harvested rainwater systems and composting toilets are expected to be an important part of sustainable solutions in buildings. Yet, to this date, a model evaluating their economic and environmental impact has been missing. To address this need, a life cycle based model, EEAST was developed. EEAST was designed to compare the business as usual (BAU) case of using potable water for toilet flushing and irrigation to alternative scenarios of rainwater harvesting and composting toilet based technologies. In EEAST, building characteristics, occupancy, and precipitation are used to size the harvested rainwater and composting toilet systems. Then, life cycle costing and life cycle assessment methods are used to estimate cost, energy, and greenhouse gas (GHG) emission payback periods (PPs) for five alternative scenarios. The scenarios modeled include use of harvested rainwater for toilet flushing, for irrigation, or both; and use of composting toilets with or without harvested rainwater use for irrigation. A sample simulation using EEAST showed that for the office building modeled, the cost PPs were greater than energy PPs which in turn were greater than GHG emission PPs. This was primarily due to energy and emission intensive nature of the centralized water and wastewater infrastructure. The sample simulation also suggested that the composting toilets may have the best performance in all criteria. However, EEAST does not explicitly model solids management and as such may give composting toilets an unfair advantage compared to flush based toilets. EEAST results were found to be very sensitive to cost values used in the model. With the availability of EEAST, life cycle cost, energy, and GHG emissions can now be performed fairly easily by building designers and researchers. Future work is recommended to further improve EEAST and evaluate it for different types of buildings and climates so as to better understand when composting toilets and harvested rainwater systems outperform the BAU case in building design. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. USING THE ECLPSS SOFTWARE ENVIRONMENT TO BUILD A SPATIALLY EXPLICIT COMPONENT-BASED MODEL OF OZONE EFFECTS ON FOREST ECOSYSTEMS. (R827958)

    EPA Science Inventory

    We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...

  19. Energy simulation and optimization for a small commercial building through Modelica

    NASA Astrophysics Data System (ADS)

    Rivas, Bryan

    Small commercial buildings make up the majority of buildings in the United States. Energy consumed by these buildings is expected to drastically increase in the next few decades, with a large percentage of the energy consumed attributed to cooling systems. This work presents the simulation and optimization of a thermostat schedule to minimize energy consumption in a small commercial building test bed during the cooling season. The simulation occurs through the use of the multi-engineering domain Dymola environment based on the Modelica open source programming language and is optimized with the Java based optimization program GenOpt. The simulation uses both physically based modeling utilizing heat transfer principles for the building and regression analysis for energy consumption. GenOpt is dynamically coupled to Dymola through various interface files. There are very few studies that have coupled GenOpt to a building simulation program and even fewer studies have used Dymola for building simulation as extensively as the work presented here. The work presented proves Dymola as a viable alternative to other building simulation programs such as EnergyPlus and MatLab. The model developed is used to simulate the energy consumption of a test bed, a commissioned real world small commercial building, while maintaining indoor thermal comfort. Potential applications include smart or intelligent building systems, predictive simulation of small commercial buildings, and building diagnostics.

  20. Identification Approach to Alleviate Effects of Unmeasured Heat Gains for MIMO Building Thermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jie; Kim, Donghun; Braun, James E.

    It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances,more » and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.« less

  1. Automatic building information model query generation

    DOE PAGES

    Jiang, Yufei; Yu, Nan; Ming, Jiang; ...

    2015-12-01

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approachmore » to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. In conclusion, by demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.« less

  2. Automatic building information model query generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yufei; Yu, Nan; Ming, Jiang

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approachmore » to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. In conclusion, by demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.« less

  3. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  4. Building damage assessment from PolSAR data using texture parameters of statistical model

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Liu, Xiuguo; Chen, Qihao; Yang, Shuai

    2018-04-01

    Accurate building damage assessment is essential in providing decision support for disaster relief and reconstruction. Polarimetric synthetic aperture radar (PolSAR) has become one of the most effective means of building damage assessment, due to its all-day/all-weather ability and richer backscatter information of targets. However, intact buildings that are not parallel to the SAR flight pass (termed oriented buildings) and collapsed buildings share similar scattering mechanisms, both of which are dominated by volume scattering. This characteristic always leads to misjudgments between assessments of collapsed buildings and oriented buildings from PolSAR data. Because the collapsed buildings and the intact buildings (whether oriented or parallel buildings) have different textures, a novel building damage assessment method is proposed in this study to address this problem by introducing texture parameters of statistical models. First, the logarithms of the estimated texture parameters of different statistical models are taken as a new texture feature to describe the collapse of the buildings. Second, the collapsed buildings and intact buildings are distinguished using an appropriate threshold. Then, the building blocks are classified into three levels based on the building block collapse rate. Moreover, this paper also discusses the capability for performing damage assessment using texture parameters from different statistical models or using different estimators. The RADARSAT-2 and ALOS-1 PolSAR images are used to present and analyze the performance of the proposed method. The results show that using the texture parameters avoids the problem of confusing collapsed and oriented buildings and improves the assessment accuracy. The results assessed by using the K/G0 distribution texture parameters estimated based on the second moment obtain the highest extraction accuracies. For the RADARSAT-2 and ALOS-1 data, the overall accuracy (OA) for these three types of buildings is 73.39% and 68.45%, respectively.

  5. A Wireless Platform for Energy Efficient Building Control Retrofits

    DTIC Science & Technology

    2012-08-01

    University of Illinois at Urbana Champaign UTRC United Technologies Research Center VFD variable frequency drive WSN wireless sensor network ...demonstration area. .............................................................. 16 Table 4. Cost model for wireless sensor network ...buildings with MPC-based whole-building optimal control and (2) reduction in first costs achievable with a wireless sensor network (WSN)-based

  6. BIM and IoT: A Synopsis from GIS Perspective

    NASA Astrophysics Data System (ADS)

    Isikdag, U.

    2015-10-01

    Internet-of-Things (IoT) focuses on enabling communication between all devices, things that are existent in real life or that are virtual. Building Information Models (BIMs) and Building Information Modelling is a hype that has been the buzzword of the construction industry for last 15 years. BIMs emerged as a result of a push by the software companies, to tackle the problems of inefficient information exchange between different software and to enable true interoperability. In BIM approach most up-to-date an accurate models of a building are stored in shared central databases during the design and the construction of a project and at post-construction stages. GIS based city monitoring / city management applications require the fusion of information acquired from multiple resources, BIMs, City Models and Sensors. This paper focuses on providing a method for facilitating the GIS based fusion of information residing in digital building "Models" and information acquired from the city objects i.e. "Things". Once this information fusion is accomplished, many fields ranging from Emergency Response, Urban Surveillance, Urban Monitoring to Smart Buildings will have potential benefits.

  7. [Extraction of buildings three-dimensional information from high-resolution satellite imagery based on Barista software].

    PubMed

    Zhang, Pei-feng; Hu, Yuan-man; He, Hong-shi

    2010-05-01

    The demand for accurate and up-to-date spatial information of urban buildings is becoming more and more important for urban planning, environmental protection, and other vocations. Today's commercial high-resolution satellite imagery offers the potential to extract the three-dimensional information of urban buildings. This paper extracted the three-dimensional information of urban buildings from QuickBird imagery, and validated the precision of the extraction based on Barista software. It was shown that the extraction of three-dimensional information of the buildings from high-resolution satellite imagery based on Barista software had the advantages of low professional level demand, powerful universality, simple operation, and high precision. One pixel level of point positioning and height determination accuracy could be achieved if the digital elevation model (DEM) and sensor orientation model had higher precision and the off-Nadir View Angle was relatively perfect.

  8. Knowledge-based model building of proteins: concepts and examples.

    PubMed Central

    Bajorath, J.; Stenkamp, R.; Aruffo, A.

    1993-01-01

    We describe how to build protein models from structural templates. Methods to identify structural similarities between proteins in cases of significant, moderate to low, or virtually absent sequence similarity are discussed. The detection and evaluation of structural relationships is emphasized as a central aspect of protein modeling, distinct from the more technical aspects of model building. Computational techniques to generate and complement comparative protein models are also reviewed. Two examples, P-selectin and gp39, are presented to illustrate the derivation of protein model structures and their use in experimental studies. PMID:7505680

  9. A Disability and Health Institutional Research Capacity Building and Infrastructure Model Evaluation: A Tribal College-Based Case Study

    ERIC Educational Resources Information Center

    Moore, Corey L.; Manyibe, Edward O.; Sanders, Perry; Aref, Fariborz; Washington, Andre L.; Robertson, Cherjuan Y.

    2017-01-01

    Purpose: The purpose of this multimethod study was to evaluate the institutional research capacity building and infrastructure model (IRCBIM), an emerging innovative and integrated approach designed to build, strengthen, and sustain adequate disability and health research capacity (i.e., research infrastructure and investigators' research skills)…

  10. Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics.

    PubMed

    Benedek, C; Descombes, X; Zerubia, J

    2012-01-01

    In this paper, we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: 1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low-level change information between the time layers and object-level building description to recognize and separate changed and unaltered buildings. 2) To answer the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature-based modules. 3) To simultaneously ensure the convergence, optimality, and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel nonuniform stochastic object birth process which generates relevant objects with higher probability based on low-level image features.

  11. A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples.

    PubMed

    Sahoo, B K; Sapra, B K; Gaware, J J; Kanse, S D; Mayya, Y S

    2011-06-01

    In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on ²²⁶Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Automatic computation for optimum height planning of apartment buildings to improve solar access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Yoon-Bok; Kim, Yong-Yee; Seok, Ho-Tae

    2011-01-15

    The objective of this study is to suggest a mathematical model and an optimal algorithm for determining the height of apartment buildings to satisfy the solar rights of survey buildings or survey housing units. The objective is also to develop an automatic computation model for the optimum height of apartment buildings and then to clarify the performance and expected effects. To accomplish the objective of this study, the following procedures were followed: (1) The necessity of the height planning of obstruction buildings to satisfy the solar rights of survey buildings or survey housing units is demonstrated by analyzing through amore » literature review the recent trend of disputes related to solar rights and to examining the social requirements in terms of solar rights. In addition, the necessity of the automatic computation system for height planning of apartment buildings is demonstrated and a suitable analysis method for this system is chosen by investigating the characteristics of analysis methods for solar rights assessment. (2) A case study on the process of height planning of apartment buildings will be briefly described and the problems occurring in this process will then be examined carefully. (3) To develop an automatic computation model for height planning of apartment buildings, geometrical elements forming apartment buildings are defined by analyzing the geometrical characteristics of apartment buildings. In addition, design factors and regulations required in height planning of apartment buildings are investigated. Based on this knowledge, the methodology and mathematical algorithm to adjust the height of apartment buildings by automatic computation are suggested and probable problems and the ways to resolve these problems are discussed. Finally, the methodology and algorithm for the optimization are suggested. (4) Based on the suggested methodology and mathematical algorithm, the automatic computation model for optimum height of apartment buildings is developed and the developed system is verified through the application of some cases. The effects of the suggested model are then demonstrated quantitatively and qualitatively. (author)« less

  13. Large-scale building scenes reconstruction from close-range images based on line and plane feature

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Zhang, Jianqing

    2007-11-01

    Automatic generate 3D models of buildings and other man-made structures from images has become a topic of increasing importance, those models may be in applications such as virtual reality, entertainment industry and urban planning. In this paper we address the main problems and available solution for the generation of 3D models from terrestrial images. We first generate a coarse planar model of the principal scene planes and then reconstruct windows to refine the building models. There are several points of novelty: first we reconstruct the coarse wire frame model use the line segments matching with epipolar geometry constraint; Secondly, we detect the position of all windows in the image and reconstruct the windows by established corner points correspondences between images, then add the windows to the coarse model to refine the building models. The strategy is illustrated on image triple of college building.

  14. Response of high-rise and base-isolated buildings to a hypothetical M w 7.0 blind thrust earthquake

    USGS Publications Warehouse

    Heaton, T.H.; Hall, J.F.; Wald, D.J.; Halling, M.W.

    1995-01-01

    High-rise flexible-frame buildings are commonly considered to be resistant to shaking from the largest earthquakes. In addition, base isolation has become increasingly popular for critical buildings that should still function after an earthquake. How will these two types of buildings perform if a large earthquake occurs beneath a metropolitan area? To answer this question, we simulated the near-source ground motions of a Mw 7.0 thrust earthquake and then mathematically modeled the response of a 20-story steel-frame building and a 3-story base-isolated building. The synthesized ground motions were characterized by large displacement pulses (up to 2 meters) and large ground velocities. These ground motions caused large deformation and possible collapse of the frame building, and they required exceptional measures in the design of the base-isolated building if it was to remain functional.

  15. Agent-based modeling: a new approach for theory building in social psychology.

    PubMed

    Smith, Eliot R; Conrey, Frederica R

    2007-02-01

    Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.

  16. A regression-based approach to estimating retrofit savings using the Building Performance Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Travis; Sohn, Michael D.

    Retrofitting building systems is known to provide cost-effective energy savings. This article addresses how the Building Performance Database is used to help identify potential savings. Currently, prioritizing retrofits and computing their expected energy savings and cost/benefits can be a complicated, costly, and an uncertain effort. Prioritizing retrofits for a portfolio of buildings can be even more difficult if the owner must determine different investment strategies for each of the buildings. Meanwhile, we are seeing greater availability of data on building energy use, characteristics, and equipment. These data provide opportunities for the development of algorithms that link building characteristics and retrofitsmore » empirically. In this paper we explore the potential of using such data for predicting the expected energy savings from equipment retrofits for a large number of buildings. We show that building data with statistical algorithms can provide savings estimates when detailed energy audits and physics-based simulations are not cost- or time-feasible. We develop a multivariate linear regression model with numerical predictors (e.g., operating hours, occupant density) and categorical indicator variables (e.g., climate zone, heating system type) to predict energy use intensity. The model quantifies the contribution of building characteristics and systems to energy use, and we use it to infer the expected savings when modifying particular equipment. We verify the model using residual analysis and cross-validation. We demonstrate the retrofit analysis by providing a probabilistic estimate of energy savings for several hypothetical building retrofits. We discuss the ways understanding the risk associated with retrofit investments can inform decision making. The contributions of this work are the development of a statistical model for estimating energy savings, its application to a large empirical building dataset, and a discussion of its use in informing building retrofit decisions.« less

  17. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulationmore » research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, the building electrical cost can be reduced by using less mechanical cooling. (3) Larger base chiller and active thermal storage capacities have the potential of shifting more cooling loads to off-peak hours and thus higher savings can be achieved. (4) Optimal combined thermal storage control with a thermal comfort penalty included in the objective function can improve the thermal comfort levels of building occupants when compared to the non-optimized base case. Lab testing conducted in the Larson HVAC Laboratory during Phase 2 showed that the EnergyPlus-based simulation was a surprisingly accurate prediction of the experiment. Therefore, actual savings of building energy costs can be expected by applying optimal controls from simulation results.« less

  18. A comprehensive study on urban true orthorectification

    USGS Publications Warehouse

    Zhou, G.; Chen, W.; Kelmelis, J.A.; Zhang, Dongxiao

    2005-01-01

    To provide some advanced technical bases (algorithms and procedures) and experience needed for national large-scale digital orthophoto generation and revision of the Standards for National Large-Scale City Digital Orthophoto in the National Digital Orthophoto Program (NDOP), this paper presents a comprehensive study on theories, algorithms, and methods of large-scale urban orthoimage generation. The procedures of orthorectification for digital terrain model (DTM)-based and digital building model (DBM)-based orthoimage generation and their mergence for true orthoimage generation are discussed in detail. A method of compensating for building occlusions using photogrammetric geometry is developed. The data structure needed to model urban buildings for accurately generating urban orthoimages is presented. Shadow detection and removal, the optimization of seamline for automatic mosaic, and the radiometric balance of neighbor images are discussed. Street visibility analysis, including the relationship between flight height, building height, street width, and relative location of the street to the imaging center, is analyzed for complete true orthoimage generation. The experimental results demonstrated that our method can effectively and correctly orthorectify the displacements caused by terrain and buildings in urban large-scale aerial images. ?? 2005 IEEE.

  19. The Methodology of Interactive Parametric Modelling of Construction Site Facilities in BIM Environment

    NASA Astrophysics Data System (ADS)

    Kozlovská, Mária; Čabala, Jozef; Struková, Zuzana

    2014-11-01

    Information technology is becoming a strong tool in different industries, including construction. The recent trend of buildings designing is leading up to creation of the most comprehensive virtual building model (Building Information Model) in order to solve all the problems relating to the project as early as in the designing phase. Building information modelling is a new way of approaching to the design of building projects documentation. Currently, the building site layout as a part of the building design documents has a very little support in the BIM environment. Recently, the research of designing the construction process conditions has centred on improvement of general practice in planning and on new approaches to construction site layout planning. The state of art in field of designing the construction process conditions indicated an unexplored problem related to connection of knowledge system with construction site facilities (CSF) layout through interactive modelling. The goal of the paper is to present the methodology for execution of 3D construction site facility allocation model (3D CSF-IAM), based on principles of parametric and interactive modelling.

  20. Review of the "AS-BUILT BIM" Approaches

    NASA Astrophysics Data System (ADS)

    Hichri, N.; Stefani, C.; De Luca, L.; Veron, P.

    2013-02-01

    Today, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain.

  1. Probabilistic seismic vulnerability and risk assessment of stone masonry structures

    NASA Astrophysics Data System (ADS)

    Abo El Ezz, Ahmad

    Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.

  2. Designing an activity-based costing model for a non-admitted prisoner healthcare setting.

    PubMed

    Cai, Xiao; Moore, Elizabeth; McNamara, Martin

    2013-09-01

    To design and deliver an activity-based costing model within a non-admitted prisoner healthcare setting. Key phases from the NSW Health clinical redesign methodology were utilised: diagnostic, solution design and implementation. The diagnostic phase utilised a range of strategies to identify issues requiring attention in the development of the costing model. The solution design phase conceptualised distinct 'building blocks' of activity and cost based on the speciality of clinicians providing care. These building blocks enabled the classification of activity and comparisons of costs between similar facilities. The implementation phase validated the model. The project generated an activity-based costing model based on actual activity performed, gained acceptability among clinicians and managers, and provided the basis for ongoing efficiency and benchmarking efforts.

  3. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  4. Buildings Lean Maintenance Implementation Model

    NASA Astrophysics Data System (ADS)

    Abreu, Antonio; Calado, João; Requeijo, José

    2016-11-01

    Nowadays, companies in global markets have to achieve high levels of performance and competitiveness to stay "alive".Within this assumption, the building maintenance cannot be done in a casual and improvised way due to the costs related. Starting with some discussion about lean management and building maintenance, this paper introduces a model to support the Lean Building Maintenance (LBM) approach. Finally based on a real case study from a Portuguese company, the benefits, challenges and difficulties are presented and discussed.

  5. Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings

    ERIC Educational Resources Information Center

    Martinez, Luis A.

    2009-01-01

    In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…

  6. Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling

    NASA Astrophysics Data System (ADS)

    Monbureau, E. M.; Heist, D. K.; Perry, S. G.; Brouwer, L. H.; Foroutan, H.; Tang, W.

    2018-04-01

    Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this study is to improve AERMOD's ability to accurately model important and complex building downwash scenarios by incorporating knowledge gained from a recently completed series of wind tunnel studies and complementary large eddy simulations of flow and dispersion around simple structures for a variety of building dimensions, stack locations, stack heights, and wind angles. This study presents three modifications to the building downwash algorithm in AERMOD that improve the physical basis and internal consistency of the model, and one modification to AERMOD's building pre-processor to better represent elongated buildings in oblique winds. These modifications are demonstrated to improve the ability of AERMOD to model observed ground-level concentrations in the vicinity of a building for the variety of conditions examined in the wind tunnel and numerical studies.

  7. The role of building models in the evaluation of heat-related risks

    NASA Astrophysics Data System (ADS)

    Buchin, Oliver; Jänicke, Britta; Meier, Fred; Scherer, Dieter; Ziegler, Felix

    2016-04-01

    Hazard-risk relationships in epidemiological studies are generally based on the outdoor climate, despite the fact that most of humans' lifetime is spent indoors. By coupling indoor and outdoor climates with a building model, the risk concept developed can still be based on the outdoor conditions but also includes exposure to the indoor climate. The influence of non-linear building physics and the impact of air conditioning on heat-related risks can be assessed in a plausible manner using this risk concept. For proof of concept, the proposed risk concept is compared to a traditional risk analysis. As an example, daily and city-wide mortality data of the age group 65 and older in Berlin, Germany, for the years 2001-2010 are used. Four building models with differing complexity are applied in a time-series regression analysis. This study shows that indoor hazard better explains the variability in the risk data compared to outdoor hazard, depending on the kind of building model. Simplified parameter models include the main non-linear effects and are proposed for the time-series analysis. The concept shows that the definitions of heat events, lag days, and acclimatization in a traditional hazard-risk relationship are influenced by the characteristics of the prevailing building stock.

  8. What do we gain from simplicity versus complexity in species distribution models?

    USGS Publications Warehouse

    Merow, Cory; Smith, Matthew J.; Edwards, Thomas C.; Guisan, Antoine; McMahon, Sean M.; Normand, Signe; Thuiller, Wilfried; Wuest, Rafael O.; Zimmermann, Niklaus E.; Elith, Jane

    2014-01-01

    Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence–environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence–environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building ‘under fit’ models, having insufficient flexibility to describe observed occurrence–environment relationships, we risk misunderstanding the factors shaping species distributions. By building ‘over fit’ models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.

  9. Earthquake insurance pricing: a risk-based approach.

    PubMed

    Lin, Jeng-Hsiang

    2018-04-01

    Flat earthquake premiums are 'uniformly' set for a variety of buildings in many countries, neglecting the fact that the risk of damage to buildings by earthquakes is based on a wide range of factors. How these factors influence the insurance premiums is worth being studied further. Proposed herein is a risk-based approach to estimate the earthquake insurance rates of buildings. Examples of application of the approach to buildings located in Taipei city of Taiwan were examined. Then, the earthquake insurance rates for the buildings investigated were calculated and tabulated. To fulfil insurance rating, the buildings were classified into 15 model building types according to their construction materials and building height. Seismic design levels were also considered in insurance rating in response to the effect of seismic zone and construction years of buildings. This paper may be of interest to insurers, actuaries, and private and public sectors of insurance. © 2018 The Author(s). Disasters © Overseas Development Institute, 2018.

  10. Coordination between Understanding Historic Buildings and BIM Modelling: A 3D-Output Oriented and typological Data Capture Method

    NASA Astrophysics Data System (ADS)

    Li, K.; Li, S. J.; Liu, Y.; Wang, W.; Wu, C.

    2015-08-01

    At the present, in trend of shifting the old 2D-output oriented survey to a new 3D-output oriented survey based on BIM technology, the corresponding working methods and workflow for data capture, process, representation, etc. have to be changed.Based on case study of two buildings in the Summer Palace of Beijing, and Jiayuguan Pass at the west end of the Great Wall (both World Heritage sites), this paper puts forward a "structure-and-type method" by means of typological method used in archaeology, Revit family system, and the tectonic logic of building to realize a good coordination between understanding of historic buildings and BIM modelling.

  11. An integrated environmental and health performance quantification model for pre-occupancy phase of buildings in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaodong, E-mail: eastdawn@tsinghua.edu.cn; Su, Shu, E-mail: sushuqh@163.com; Zhang, Zhihui, E-mail: zhzhg@tsinghua.edu.cn

    To comprehensively pre-evaluate the damages to both the environment and human health due to construction activities in China, this paper presents an integrated building environmental and health performance (EHP) assessment model based on the Building Environmental Performance Analysis System (BEPAS) and the Building Health Impact Analysis System (BHIAS) models and offers a new inventory data estimation method. The new model follows the life cycle assessment (LCA) framework and the inventory analysis step involves bill of quantity (BOQ) data collection, consumption data formation, and environmental profile transformation. The consumption data are derived from engineering drawings and quotas to conduct the assessmentmore » before construction for pre-evaluation. The new model classifies building impacts into three safeguard areas: ecosystems, natural resources and human health. Thus, this model considers environmental impacts as well as damage to human wellbeing. The monetization approach, distance-to-target method and panel method are considered as optional weighting approaches. Finally, nine residential buildings of different structural types are taken as case studies to test the operability of the integrated model through application. The results indicate that the new model can effectively pre-evaluate building EHP and the structure type significantly affects the performance of residential buildings.« less

  12. Model-based tomographic reconstruction

    DOEpatents

    Chambers, David H; Lehman, Sean K; Goodman, Dennis M

    2012-06-26

    A model-based approach to estimating wall positions for a building is developed and tested using simulated data. It borrows two techniques from geophysical inversion problems, layer stripping and stacking, and combines them with a model-based estimation algorithm that minimizes the mean-square error between the predicted signal and the data. The technique is designed to process multiple looks from an ultra wideband radar array. The processed signal is time-gated and each section processed to detect the presence of a wall and estimate its position, thickness, and material parameters. The floor plan of a building is determined by moving the array around the outside of the building. In this paper we describe how the stacking and layer stripping algorithms are combined and show the results from a simple numerical example of three parallel walls.

  13. a Method for the Seamlines Network Automatic Selection Based on Building Vector

    NASA Astrophysics Data System (ADS)

    Li, P.; Dong, Y.; Hu, Y.; Li, X.; Tan, P.

    2018-04-01

    In order to improve the efficiency of large scale orthophoto production of city, this paper presents a method for automatic selection of seamlines network in large scale orthophoto based on the buildings' vector. Firstly, a simple model of the building is built by combining building's vector, height and DEM, and the imaging area of the building on single DOM is obtained. Then, the initial Voronoi network of the measurement area is automatically generated based on the positions of the bottom of all images. Finally, the final seamlines network is obtained by optimizing all nodes and seamlines in the network automatically based on the imaging areas of the buildings. The experimental results show that the proposed method can not only get around the building seamlines network quickly, but also remain the Voronoi network' characteristics of projection distortion minimum theory, which can solve the problem of automatic selection of orthophoto seamlines network in image mosaicking effectively.

  14. Analysis of 3d Building Models Accuracy Based on the Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.; Pilarska, M.; Charyton, J.; Bakuła, K.

    2018-05-01

    Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term "3D building models" can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.

  15. Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim

    NASA Astrophysics Data System (ADS)

    Becker, S.; Peter, M.; Fritsch, D.

    2015-03-01

    The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.

  16. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  17. A financing model to solve financial barriers for implementing green building projects.

    PubMed

    Lee, Sanghyo; Lee, Baekrae; Kim, Juhyung; Kim, Jaejun

    2013-01-01

    Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER). In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs) for green buildings must be obtained.

  18. A Financing Model to Solve Financial Barriers for Implementing Green Building Projects

    PubMed Central

    Lee, Baekrae; Kim, Juhyung; Kim, Jaejun

    2013-01-01

    Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER). In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs) for green buildings must be obtained. PMID:24376379

  19. Review of Methods for Buildings Energy Performance Modelling

    NASA Astrophysics Data System (ADS)

    Krstić, Hrvoje; Teni, Mihaela

    2017-10-01

    Research presented in this paper gives a brief review of methods used for buildings energy performance modelling. This paper gives also a comprehensive review of the advantages and disadvantages of available methods as well as the input parameters used for modelling buildings energy performance. European Directive EPBD obliges the implementation of energy certification procedure which gives an insight on buildings energy performance via exiting energy certificate databases. Some of the methods for buildings energy performance modelling mentioned in this paper are developed by employing data sets of buildings which have already undergone an energy certification procedure. Such database is used in this paper where the majority of buildings in the database have already gone under some form of partial retrofitting - replacement of windows or installation of thermal insulation but still have poor energy performance. The case study presented in this paper utilizes energy certificates database obtained from residential units in Croatia (over 400 buildings) in order to determine the dependence between buildings energy performance and variables from database by using statistical dependencies tests. Building energy performance in database is presented with building energy efficiency rate (from A+ to G) which is based on specific annual energy needs for heating for referential climatic data [kWh/(m2a)]. Independent variables in database are surfaces and volume of the conditioned part of the building, building shape factor, energy used for heating, CO2 emission, building age and year of reconstruction. Research results presented in this paper give an insight in possibilities of methods used for buildings energy performance modelling. Further on it gives an analysis of dependencies between buildings energy performance as a dependent variable and independent variables from the database. Presented results could be used for development of new building energy performance predictive model.

  20. SIMULATION-BASED WEATHER NORMALIZATION APPROACH TO STUDY THE IMPACT OF WEATHER ON ENERGY USE OF BUILDINGS IN THE U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Wang, Na

    Weather normalization is a crucial task in several applications related to building energy conservation such as retrofit measurements and energy rating. This paper documents preliminary results found from an effort to determine a set of weather adjustment coefficients that can be used to smooth out impacts of weather on energy use of buildings in 1020 weather location sites available in the U.S. The U.S. Department of Energy (DOE) commercial reference building models are adopted as hypothetical models with standard operations to deliver consistency in modeling. The correlation between building envelop design, HVAC system design and properties for different building typesmore » and the change in heating and cooling energy consumption caused by variations in weather is examined.« less

  1. BIM-Based Timber Structures Refurbishment of the Immovable Heritage Listed Buildings

    NASA Astrophysics Data System (ADS)

    Henek, Vladan; Venkrbec, Václav

    2017-12-01

    The use of Building information model (BIM) design tools is no longer an exception, but a common issue. When designing new buildings or complex renovations using BIM, the benefits have already been repeatedly published. The essence of BIM is to create a multidimensional geometric model of a planned building electronically on a computer, supplemented with the necessary information in advance of the construction process. Refurbishment is a specific process that combines both - new structures and demolished structures, or structures that need to be dismantled, repaired, and then returned to the original position. Often it can be historically valuable part of the building. BIM-based repairs and refurbishments of the constructions, especially complicated repairs of the structures of roof trusses of immovable heritage listed buildings, have not yet been credibly presented. However, the use of BIM tools may be advantageous in this area, because user can quickly response to the necessary changes that may be needed during refurbishments, but also in connection with the quick assessment and cost estimation of any unexpected additional works. The paper deals with the use of BIM in the field of repairs and refurbishment of the buildings in general. The emphasis on monumentally protected elements was priority. Advantage of the proposal research is demonstrated on case study of the refurbishment of the immovable heritage listed truss roof. According to this study, this construction was realized in the Czech Republic. Case study consists of 3D modelled truss parts and the connected technological workflow base. The project work was carried out in one common model environment.

  2. Unofficial Road Building in the Brazilian Amazon: Dilemmas and Models for Road Governance

    NASA Technical Reports Server (NTRS)

    Perz, Stephen G.; Overdevest, Christine; Caldas, Marcellus M.; Walker, Robert T.; Arima, Eugenio Y.

    2007-01-01

    Unofficial roads form dense networks in landscapes, generating a litany of negative ecological outcomes, but unofficial roads in frontier areas are also instrumental in local livelihoods and community development. This trade-off poses dilemmas for the governance of unofficial roads. Unofficial road building in frontier areas of the Brazilian Amazon illustrates the challenges of 'road governance.' Both state-based and community based governance models exhibit important liabilities for governing unofficial roads. Whereas state-based governance has experienced difficulties in adapting to specific local contexts and interacting effectively with local interest groups, community-based governance has a mixed record owing to social inequalities and conflicts among local interest groups. A state-community hybrid model may offer more effective governance of unofficial road building by combining the oversight capacity of the state with locally grounded community management via participatory decision-making.

  3. Indoor 3D Route Modeling Based On Estate Spatial Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.

    2014-04-01

    Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.

  4. A Model for Strengthening Collaborative Research Capacity: Illustrations From the Atlanta Clinical Translational Science Institute.

    PubMed

    Rodgers, Kirsten C; Akintobi, Tabia; Thompson, Winifred Wilkins; Evans, Donoria; Escoffery, Cam; Kegler, Michelle C

    2014-06-01

    Community-engaged research is effective in addressing health disparities but may present challenges for both academic institutions and community partners. Therefore, the need to build capacity for conducting collaborative research exists. The purpose of this study is to present a model for building research capacity in academic-community partnerships. The Building Collaborative Research Capacity Model was developed as part of the Community Engagement Research Program (CERP) of the Atlanta Clinical and Translational Science Institute (ACTSI). Six domains of collaborative research capacity were identified and used to develop a model. Inputs, activities, outputs, and outcomes of building collaborative research capacity are described. To test this model, a competitive request for applications was widely distributed and four community-based organizations were funded to participate in a 2-year program with the aim of conducting a pilot study and submitting a research proposal for funding to National Institutes of Health or another major funding agency. During the first year, the community-based organization partners were trained on conducting collaborative research and matched with an academic partner from an ACTSI institution. Three of the academic-community partnerships submitted pilot study results and two submitted a grant proposal to a national agency. The Building Collaborative Research Capacity Model is an innovative approach to strengthening academic-community partnerships. This model will help build needed research capacity, serve as a framework for academicians and community partners, and lead to sustainable partnerships that improve community health. © 2013 Society for Public Health Education.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Joyce Jihyun; Yin, Rongxin; Kiliccote, Sila

    Open Automated Demand Response (OpenADR), an XML-based information exchange model, is used to facilitate continuous price-responsive operation and demand response participation for large commercial buildings in New York who are subject to the default day-ahead hourly pricing. We summarize the existing demand response programs in New York and discuss OpenADR communication, prioritization of demand response signals, and control methods. Building energy simulation models are developed and field tests are conducted to evaluate continuous energy management and demand response capabilities of two commercial buildings in New York City. Preliminary results reveal that providing machine-readable prices to commercial buildings can facilitate bothmore » demand response participation and continuous energy cost savings. Hence, efforts should be made to develop more sophisticated algorithms for building control systems to minimize customer's utility bill based on price and reliability information from the electricity grid.« less

  6. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE PAGES

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...

    2017-06-12

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  7. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  8. The Significance of Temperature Based Approach Over the Energy Based Approaches in the Buildings Thermal Assessment

    NASA Astrophysics Data System (ADS)

    Albatayneh, Aiman; Alterman, Dariusz; Page, Adrian; Moghtaderi, Behdad

    2017-05-01

    The design of low energy buildings requires accurate thermal simulation software to assess the heating and cooling loads. Such designs should sustain thermal comfort for occupants and promote less energy usage over the life time of any building. One of the house energy rating used in Australia is AccuRate, star rating tool to assess and compare the thermal performance of various buildings where the heating and cooling loads are calculated based on fixed operational temperatures between 20 °C to 25 °C to sustain thermal comfort for the occupants. However, these fixed settings for the time and temperatures considerably increase the heating and cooling loads. On the other hand the adaptive thermal model applies a broader range of weather conditions, interacts with the occupants and promotes low energy solutions to maintain thermal comfort. This can be achieved by natural ventilation (opening window/doors), suitable clothes, shading and low energy heating/cooling solutions for the occupied spaces (rooms). These activities will save significant amount of operating energy what can to be taken into account to predict energy consumption for a building. Most of the buildings thermal assessment tools depend on energy-based approaches to predict the thermal performance of any building e.g. AccuRate in Australia. This approach encourages the use of energy to maintain thermal comfort. This paper describes the advantages of a temperature-based approach to assess the building's thermal performance (using an adaptive thermal comfort model) over energy based approach (AccuRate Software used in Australia). The temperature-based approach was validated and compared with the energy-based approach using four full scale housing test modules located in Newcastle, Australia (Cavity Brick (CB), Insulated Cavity Brick (InsCB), Insulated Brick Veneer (InsBV) and Insulated Reverse Brick Veneer (InsRBV)) subjected to a range of seasonal conditions in a moderate climate. The time required for heating and/or cooling using the adaptive thermal comfort approach and AccuRate predictions were estimated. Significant savings (of about 50 %) in energy consumption in minimising the time required for heating and cooling were achieved by using the adaptive thermal comfort model.

  9. Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction

    NASA Astrophysics Data System (ADS)

    Juhásová Šenitková, Ingrid; Šál, Jiří

    2017-12-01

    Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.

  10. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication. The available solutions for location tagging are mostly based on proximity sensors and the information are bound to sensor references. In the proposed solution of this paper, the sensors simply play a role similar to annotations in Semantic Web world. Hence the sensors data in ontology sense bridges the gap between sensed information and building model. Combining these two and applying the proper inference rules, the building visitors will be able to reach their destinations with instant support of their communication devices such as hand helds, wearable computers, mobiles, etc. In a typical scenario of this kind, user's profile will be delivered to the smart building (via building ad-hoc services) and the appropriate route for user will be calculated and delivered to user's end-device. The calculated route is calculated by considering all constraints and requirements of the end user. So for example if the user is using a wheelchair, the calculated route should not contain stairs or narrow corridors that the wheelchair does not pass through. Then user starts to navigate through building by following the instructions of the end-device which are in turn generated from the calculated route. During the navigation process, the end-device should also interact with the smart building to sense the locations by reading the surrounding tags. So for example when a visually impaired person arrives at an unknown space, the tags will be sensed and the relevant information will be delivered to user in the proper way of communication. For example the building model can be used to generate a voice message for a blind person about a space and tell him/her that "the space has 3 doors, and the door on the left should be chosen which needs to be pushed to open". In this paper we will mainly focus on automatic generation of semantic building information models (Semantic BIM) and delivery of results to the end user. Combining the building information model with the environment and user constraints using Semantic Web technologies will make many scenarios conceivable. The generated IFC ontology that is base on the commonly accepted IFC (Industry Foundation Classes) standard can be used as the basis of information sharing between buildings, people, and applications. The proposed solution is aiming to facilitate the building navigation in an intuitive and extendable way that is easy to use by end-users and at the same time easy to maintain and manage by building administrators.

  11. Automated Decomposition of Model-based Learning Problems

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Millar, Bill

    1996-01-01

    A new generation of sensor rich, massively distributed autonomous systems is being developed that has the potential for unprecedented performance, such as smart buildings, reconfigurable factories, adaptive traffic systems and remote earth ecosystem monitoring. To achieve high performance these massive systems will need to accurately model themselves and their environment from sensor information. Accomplishing this on a grand scale requires automating the art of large-scale modeling. This paper presents a formalization of [\\em decompositional model-based learning (DML)], a method developed by observing a modeler's expertise at decomposing large scale model estimation tasks. The method exploits a striking analogy between learning and consistency-based diagnosis. Moriarty, an implementation of DML, has been applied to thermal modeling of a smart building, demonstrating a significant improvement in learning rate.

  12. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  13. Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Piette, Mary Ann

    2017-08-07

    Buildings in cities consume 30–70% of total primary energy, and improving building energy efficiency is one of the key strategies towards sustainable urbanization. Urban building energy models (UBEM) can support city managers to evaluate and prioritize energy conservation measures (ECMs) for investment and the design of incentive and rebate programs. This paper presents the retrofit analysis feature of City Building Energy Saver (CityBES) to automatically generate and simulate UBEM using EnergyPlus based on cities’ building datasets and user-selected ECMs. CityBES is a new open web-based tool to support city-scale building energy efficiency strategic plans and programs. The technical details ofmore » using CityBES for UBEM generation and simulation are introduced, including the workflow, key assumptions, and major databases. Also presented is a case study that analyzes the potential retrofit energy use and energy cost savings of five individual ECMs and two measure packages for 940 office and retail buildings in six city districts in northeast San Francisco, United States. The results show that: (1) all five measures together can save 23–38% of site energy per building; (2) replacing lighting with light-emitting diode lamps and adding air economizers to existing heating, ventilation and air-conditioning (HVAC) systems are most cost-effective with an average payback of 2.0 and 4.3 years, respectively; and (3) it is not economical to upgrade HVAC systems or replace windows in San Francisco due to the city's mild climate and minimal cooling and heating loads. Furthermore, the CityBES retrofit analysis feature does not require users to have deep knowledge of building systems or technologies for the generation and simulation of building energy models, which helps overcome major technical barriers for city managers and their consultants to adopt UBEM.« less

  14. Scan-To Output Validation: Towards a Standardized Geometric Quality Assessment of Building Information Models Based on Point Clouds

    NASA Astrophysics Data System (ADS)

    Bonduel, M.; Bassier, M.; Vergauwen, M.; Pauwels, P.; Klein, R.

    2017-11-01

    The use of Building Information Modeling (BIM) for existing buildings based on point clouds is increasing. Standardized geometric quality assessment of the BIMs is needed to make them more reliable and thus reusable for future users. First, available literature on the subject is studied. Next, an initial proposal for a standardized geometric quality assessment is presented. Finally, this method is tested and evaluated with a case study. The number of specifications on BIM relating to existing buildings is limited. The Levels of Accuracy (LOA) specification of the USIBD provides definitions and suggestions regarding geometric model accuracy, but lacks a standardized assessment method. A deviation analysis is found to be dependent on (1) the used mathematical model, (2) the density of the point clouds and (3) the order of comparison. Results of the analysis can be graphical and numerical. An analysis on macro (building) and micro (BIM object) scale is necessary. On macro scale, the complete model is compared to the original point cloud and vice versa to get an overview of the general model quality. The graphical results show occluded zones and non-modeled objects respectively. Colored point clouds are derived from this analysis and integrated in the BIM. On micro scale, the relevant surface parts are extracted per BIM object and compared to the complete point cloud. Occluded zones are extracted based on a maximum deviation. What remains is classified according to the LOA specification. The numerical results are integrated in the BIM with the use of object parameters.

  15. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    NASA Astrophysics Data System (ADS)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  16. Modelica buildings library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  17. Modelica buildings library

    DOE PAGES

    Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; ...

    2013-03-13

    This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less

  18. Fast response modeling of a two building urban street canyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardyjak, E. R.; Brown, M. J.

    2002-01-01

    QWIC-URB is a fast response model designed to generate high resolution, 3-dimensional wind fields around buildings. The wind fields are produced using a mass consistent diagnostic wind model based on the work of Roeckle (1990, 1998) and Kaplan & Dinar (1996). QWIC-URB has been used for producing wind fields around single buildings with various incident wind angles (Pardyjak and Brown 2001). Recently, the model has been expanded to consider two-building, 3D canyon flow. That is, two rectangular parallelepipeds of height H, crosswind width W, and length L separated by a distance S. The purpose of this work is to continuemore » to evaluate the Roeckle (1990) model and develop improvements. In this paper, the model is compared to the twin high-rise building data set of Ohba et al. (1993, hereafter OSL93). Although the model qualitatively predicts the flow field fairly well for simple canyon flow, it over predicts the strength of vortex circulation and fails to reproduce the upstream rotor.« less

  19. Designing an Earthquake-Resistant Building

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.

    2016-01-01

    How do cross-bracing, geometry, and base isolation help buildings withstand earthquakes? These important structural design features involve fundamental geometry that elementary school students can readily model and understand. The problem activity, Designing an Earthquake-Resistant Building, was undertaken by several classes of sixth- grade…

  20. A Learning Framework for Control-Oriented Modeling of Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.

    Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and bigmore » data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.« less

  1. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction.

    PubMed

    Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan

    2017-01-24

    In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed 'occlusions of random textures model' are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.

  2. First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery

    NASA Astrophysics Data System (ADS)

    Obrock, L. S.; Gülch, E.

    2018-05-01

    The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.

  3. Leveraging Modeling Approaches: Reaction Networks and Rules

    PubMed Central

    Blinov, Michael L.; Moraru, Ion I.

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349

  4. Leveraging modeling approaches: reaction networks and rules.

    PubMed

    Blinov, Michael L; Moraru, Ion I

    2012-01-01

    We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.

  5. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  6. The Development of Character Education Model Based on Strengthening Social Capital for Students of State Islamic University (UIN) Sunan Kalijaga

    ERIC Educational Resources Information Center

    Sumarni, Sri M.; Dardiri, Achmad; Zuchdi, Darmiyati

    2015-01-01

    The purpose of the study is to find out the concept of character education model that is appropriate for students to build character of students of UIN Sunan Kalijaga and also to find out the teaching materials design of character education based on social capital to build character of students of UIN Sunan Kalijaga. This research is motivated by…

  7. Seismic fragility assessment of low-rise stone masonry buildings

    NASA Astrophysics Data System (ADS)

    Abo-El-Ezz, Ahmad; Nollet, Marie-José; Nastev, Miroslav

    2013-03-01

    Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads. Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers. This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada. The old historic center of Quebec City has been selected as a typical study area. The standard fragility analysis combines the inelastic spectral displacement, a structure-dependent earthquake intensity measure, and the building damage state correlated to the induced building displacement. The proposed procedure consists of a three-step development process: (1) mechanics-based capacity model, (2) displacement-based damage model and (3) seismic demand model. The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings. Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER. Hazus shows the highest probability of the occurrence of no to slight damage, whereas the highest probability of extensive and complete damage is predicted with ELER. This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.

  8. Building Construction Progress Monitoring Using Unmanned Aerial System (uas), Low-Cost Photogrammetry, and Geographic Information System (gis)

    NASA Astrophysics Data System (ADS)

    Bognot, J. R.; Candido, C. G.; Blanco, A. C.; Montelibano, J. R. Y.

    2018-05-01

    Monitoring the progress of building's construction is critical in construction management. However, measuring the building construction's progress are still manual, time consuming, error prone, and impose tedious process of analysis leading to delays, additional costings and effort. The main goal of this research is to develop a methodology for building construction progress monitoring based on 3D as-built model of the building from unmanned aerial system (UAS) images, 4D as-planned model (with construction schedule integrated) and, GIS analysis. Monitoring was done by capturing videos of the building with a camera-equipped UAS. Still images were extracted, filtered, bundle-adjusted, and 3D as-built model was generated using open source photogrammetric software. The as-planned model was generated from digitized CAD drawings using GIS. The 3D as-built model was aligned with the 4D as-planned model of building formed from extrusion of building elements, and integration of the construction's planned schedule. The construction progress is visualized via color-coding the building elements in the 3D model. The developed methodology was conducted and applied from the data obtained from an actual construction site. Accuracy in detecting `built' or `not built' building elements ranges from 82-84 % and precision of 50-72 %. Quantified progress in terms of the number of building elements are 21.31% (November 2016), 26.84 % (January 2017) and 44.19 % (March 2017). The results can be used as an input for progress monitoring performance of construction projects and improving related decision-making process.

  9. The Role of Model Building in Problem Solving and Conceptual Change

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Jonassen, David; Teo, Timothy

    2011-01-01

    This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…

  10. The Knowledge Building Paradigm: A Model of Learning for Net Generation Students

    ERIC Educational Resources Information Center

    Philip, Donald

    2005-01-01

    In this article Donald Philip describes Knowledge Building, a pedagogy based on the way research organizations function. The global economy, Philip argues, is driving a shift from older, industrial models to the model of the business as a learning organization. The cognitive patterns of today's Net Generation students, formed by lifetime exposure…

  11. Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it

    2012-04-15

    The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less

  12. BIPV: a real-time building performance study for a roof-integrated facility

    NASA Astrophysics Data System (ADS)

    Aaditya, Gayathri; Mani, Monto

    2018-03-01

    Building integrated photovoltaic system (BIPV) is a photovoltaic (PV) integration that generates energy and serves as a building envelope. A building element (e.g. roof and wall) is based on its functional performance, which could include structure, durability, maintenance, weathering, thermal insulation, acoustics, and so on. The present paper discusses the suitability of PV as a building element in terms of thermal performance based on a case study of a 5.25 kWp roof-integrated BIPV system in tropical regions. Performance of PV has been compared with conventional construction materials and various scenarios have been simulated to understand the impact on occupant comfort levels. In the current case study, PV as a roofing material has been shown to cause significant thermal discomfort to the occupants. The study has been based on real-time data monitoring supported by computer-based building simulation model.

  13. Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, Nathaniel; Qin, Yining; Fridley, David

    Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developedmore » an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In addition to prospective analysis for standards and certification, urban form modeling can also be useful in calculating or verifying ex post facto, bottom-up carbon emissions inventories. Emissions inventories provide a benchmark for evaluating future outcomes and scenarios as well as an empirical basis for valuing low-carbon technologies. By highlighting the embodied energy and emissions of building materials, the LCA approach can also be used to identify the most intensive aspects of industrial production and the supply chain. The agent based modeling aspect of the model can be useful for understanding how policy incentives can impact individual behavior and the aggregate effects thereof. The most useful elaboration of the urban form assessment model would be to further generalize it for comparative analysis. Scenario analysis could be used for benchmarking and identification of policy priorities. If the model is to be used for inventories, it is important to disaggregate the energy use data for more accurate emissions modeling. Depending on the policy integration of the model, it may be useful to incorporate occupancy data for per-capita results. On the question of density and efficiency, it may also be useful to integrate a more explicit spatial scaling mechanism for modeling neighborhood and city-level energy use and emissions, i.e. to account for scaling effects in public infrastructure and transportation.« less

  14. Moving alcohol prevention research forward-Part II: new directions grounded in community-based system dynamics modeling.

    PubMed

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.

  15. Successful Strategies: Building a School-to-Careers System.

    ERIC Educational Resources Information Center

    Thiers, Naomi, Ed.

    The following papers are included: "Building a Broad-Based Partnership" (Randy Wallace); "Creating a Partnership Agreement" (M. Amos Clifford, Robyn Flores); "Forming True Partnerships with Employers" (Lee W. Sloan); "Choosing a Model for Your School-to-Careers System" (Patty Williamson); "Case Study: Career Academy Model" (Shirley Earlise…

  16. Building a Better Campus: An Update on Building Codes.

    ERIC Educational Resources Information Center

    Madden, Michael J.

    2002-01-01

    Discusses the implications for higher education institutions in terms of facility planning, design, construction, and renovation of the move from regionally-developed model-building codes to two international sets of codes. Also addresses the new performance-based design option within the codes. (EV)

  17. Do Performance-Based Codes Support Universal Design in Architecture?

    PubMed

    Grangaard, Sidse; Frandsen, Anne Kathrine

    2016-01-01

    The research project 'An analysis of the accessibility requirements' studies how Danish architectural firms experience the accessibility requirements of the Danish Building Regulations and it examines their opinions on how future regulative models can support innovative and inclusive design - Universal Design (UD). The empirical material consists of input from six workshops to which all 700 Danish Architectural firms were invited, as well as eight group interviews. The analysis shows that the current prescriptive requirements are criticized for being too homogenous and possibilities for differentiation and zoning are required. Therefore, a majority of professionals are interested in a performance-based model because they think that such a model will support 'accessibility zoning', achieving flexibility because of different levels of accessibility in a building due to its performance. The common understanding of accessibility and UD is directly related to buildings like hospitals and care centers. When the objective is both innovative and inclusive architecture, the request of a performance-based model should be followed up by a knowledge enhancement effort in the building sector. Bloom's taxonomy of educational objectives is suggested as a tool for such a boost. The research project has been financed by the Danish Transport and Construction Agency.

  18. Building Protection Against External Ionizing Fallout Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, Michael B.; Homann, Steven G.

    A nuclear explosion has the potential to injure or kill tens to hundreds of thousands of people through exposure to fallout (external gamma) radiation. Existing buildings can protect their occupants (reducing external radiation exposures) by placing material and distance between fallout particles and indoor individuals. This protection is not well captured in current fallout risk assessment models and so the US Department of Defense is implementing the Regional Shelter Analysis methodology to improve the ability of the Hazard Prediction and Assessment Capability (HPAC) model to account for building protection. This report supports the HPAC improvement effort by identifying a setmore » of building attributes (next page) that, when collectively specified, are sufficient to calculate reasonably accurate, i.e., within a factor of 2, fallout shelter quality estimates for many individual buildings. The set of building attributes were determined by first identifying the key physics controlling building protection from fallout radiation and then assessing which building attributes are relevant to the identified physics. This approach was evaluated by developing a screening model (PFscreen) based on the identified physics and comparing the screening model results against the set of existing independent experimental, theoretical, and modeled building protection estimates. In the interests of transparency, we have developed a benchmark dataset containing (a) most of the relevant primary experimental data published by prior generations of fallout protection scientists as well as (b) the screening model results.« less

  19. Roof Type Selection Based on Patch-Based Classification Using Deep Learning for High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P.

    2017-05-01

    3D building reconstruction from remote sensing image data from satellites is still an active research topic and very valuable for 3D city modelling. The roof model is the most important component to reconstruct the Level of Details 2 (LoD2) for a building in 3D modelling. While the general solution for roof modelling relies on the detailed cues (such as lines, corners and planes) extracted from a Digital Surface Model (DSM), the correct detection of the roof type and its modelling can fail due to low quality of the DSM generated by dense stereo matching. To reduce dependencies of roof modelling on DSMs, the pansharpened satellite images as a rich resource of information are used in addition. In this paper, two strategies are employed for roof type classification. In the first one, building roof types are classified in a state-of-the-art supervised pre-trained convolutional neural network (CNN) framework. In the second strategy, deep features from deep layers of different pre-trained CNN model are extracted and then an RBF kernel using SVM is employed to classify the building roof type. Based on roof complexity of the scene, a roof library including seven types of roofs is defined. A new semi-automatic method is proposed to generate training and test patches of each roof type in the library. Using the pre-trained CNN model does not only decrease the computation time for training significantly but also increases the classification accuracy.

  20. Energy efficient model based algorithm for control of building HVAC systems.

    PubMed

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS

    NASA Astrophysics Data System (ADS)

    Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun

    2015-12-01

    Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.

  2. First Prismatic Building Model Reconstruction from Tomosar Point Clouds

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Shahzad, M.; Zhu, X.

    2016-06-01

    This paper demonstrates for the first time the potential of explicitly modelling the individual roof surfaces to reconstruct 3-D prismatic building models using spaceborne tomographic synthetic aperture radar (TomoSAR) point clouds. The proposed approach is modular and works as follows: it first extracts the buildings via DSM generation and cutting-off the ground terrain. The DSM is smoothed using BM3D denoising method proposed in (Dabov et al., 2007) and a gradient map of the smoothed DSM is generated based on height jumps. Watershed segmentation is then adopted to oversegment the DSM into different regions. Subsequently, height and polygon complexity constrained merging is employed to refine (i.e., to reduce) the retrieved number of roof segments. Coarse outline of each roof segment is then reconstructed and later refined using quadtree based regularization plus zig-zag line simplification scheme. Finally, height is associated to each refined roof segment to obtain the 3-D prismatic model of the building. The proposed approach is illustrated and validated over a large building (convention center) in the city of Las Vegas using TomoSAR point clouds generated from a stack of 25 images using Tomo-GENESIS software developed at DLR.

  3. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    PubMed Central

    Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin

    2016-01-01

    A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410

  4. Impact of external conditions on energy consumption in industrial halls

    NASA Astrophysics Data System (ADS)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  5. Building America Top Innovations 2012: Building Science-Based Climate Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-01-01

    This Building America Top Innovations profile describes the Building America-developed climate zone map, which serves as a consistent framework for energy-efficiency requirements in the national model energy code starting with the 2004 IECC Supplement and the ASHRAE 90.1 2004 edition. The map also provides a critical foundation for climate-specific guidance in the widely disseminated EEBA Builder Guides and Building America Best Practice Guides.

  6. Research and implementation on 3D modeling of geological body

    NASA Astrophysics Data System (ADS)

    Niu, Lijuan; Li, Ligong; Zhu, Renyi; Huang, Man

    2017-10-01

    This study based on GIS thinking explores the combination of the mixed spatial data model and GIS model to build three-dimensional(3d) model of geological bodies in the Arc Engine platform, describes the interface and method used in the construction of 3d geological body in Arc Engine component platform in detail, and puts forward an indirect method which constructs a set of geological grid layers through Rigging interpolation by the borehole data and then converts it into the geological layers of TIN, which improves the defect in building the geological layers of TIN directly and makes it better to complete the simulation of the real geological layer. This study makes a useful attempt to build 3d model of the geological body based on the GIS, and provides a certain reference value for simulating geological bodies in 3d and constructing the digital system of underground space.

  7. New lumped-mass-stick model based on modal characteristics of structures: development and application to a nuclear containment building

    NASA Astrophysics Data System (ADS)

    Roh, Hwasung; Lee, Huseok; Lee, Jong Seh

    2013-06-01

    In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of fl oor response spectra at certain elevations are also in good agreement.

  8. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less

  9. Establishing a National 3d Geo-Data Model for Building Data Compliant to Citygml: Case of Turkey

    NASA Astrophysics Data System (ADS)

    Ates Aydar, S.; Stoter, J.; Ledoux, H.; Demir Ozbek, E.; Yomralioglu, T.

    2016-06-01

    This paper presents the generation of the 3D national building geo-data model of Turkey, which is compatible with the international OGC CityGML Encoding Standard. We prepare an ADE named CityGML-TRKBIS.BI that is produced by extending existing thematic modules of CityGML according to TRKBIS needs. All thematic data groups in TRKBIS geo-data model have been remodelled in order to generate the national large scale 3D geo-data model for Turkey. Specific attention has been paid to data groups that have different class structure according to related CityGML data themes such as building data model. Current 2D geo-information model for building data theme of Turkey (TRKBIS.BI) was established based on INSPIRE specifications for building (Core 2D and Extended 2D profiles), ISO/TC 211 standards and OGC web services. New version of TRKBIS.BI which is established according to semantic and geometric rules of CityGML will represent 2D-2.5D and 3D objects. After a short overview on generic approach, this paper describes extending CityGML building data theme according to TRKBIS.BI through several steps. First, building models of both standards were compared according to their data structure, classes and attributes. Second, CityGML building model was extended with respect to TRKBIS needs and CityGML-TRKBIS Building ADE was established in UML. This study provides new insights into 3D applications in Turkey. The generated 3D geo-data model for building thematic class will be used as a common exchange format that meets 2D, 2.5D and 3D implementation needs at national level.

  10. Novel high-fidelity realistic explosion damage simulation for urban environments

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  11. Innovative model of business process reengineering at machine building enterprises

    NASA Astrophysics Data System (ADS)

    Nekrasov, R. Yu; Tempel, Yu A.; Tempel, O. A.

    2017-10-01

    The paper provides consideration of business process reengineering viewed as amanagerial innovation accepted by present day machine building enterprises, as well as waysto improve its procedure. A developed innovative model of reengineering measures isdescribed and is based on the process approach and other principles of company management.

  12. Integrated Survey Procedures for the Virtual Reading and Fruition of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Scandurra, S.; Pulcrano, M.; Cirillo, V.; Campi, M.; di Luggo, A.; Zerlenga, O.

    2018-05-01

    This paper presents the developments of research related to the integration of digital survey methodologies with reference to image-based and range-based technologies. Starting from the processing of point clouds, the data were processed for both the geometric interpretation of the space as well as production of three-dimensional models that describe the constitutive and morphological relationships. The subject of the study was the church of San Carlo all'Arena in Naples (Italy), with a HBIM model being produced that is semantically consistent with the real building. Starting from the data acquired, a visualization system was created for the virtual exploration of the building.

  13. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less

  14. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less

  15. Modeling urban building energy use: A review of modeling approaches and procedures

    DOE PAGES

    Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...

    2017-11-13

    With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less

  16. RCrane: semi-automated RNA model building.

    PubMed

    Keating, Kevin S; Pyle, Anna Marie

    2012-08-01

    RNA crystals typically diffract to much lower resolutions than protein crystals. This low-resolution diffraction results in unclear density maps, which cause considerable difficulties during the model-building process. These difficulties are exacerbated by the lack of computational tools for RNA modeling. Here, RCrane, a tool for the partially automated building of RNA into electron-density maps of low or intermediate resolution, is presented. This tool works within Coot, a common program for macromolecular model building. RCrane helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RCrane then allows the crystallographer to review the newly built structure and select alternative backbone conformations where desired. This tool can also be used to automatically correct the backbone structure of previously built nucleotides. These automated corrections can fix incorrect sugar puckers, steric clashes and other structural problems.

  17. Place-Conscious Capacity-Building: A Systemic Model for the Revitalisation and Renewal of Rural Schools and Communities through University-Based Regional Stewardship

    ERIC Educational Resources Information Center

    Johnson, Jerry; Thompson, Aaron; Naugle, Kim

    2009-01-01

    This paper sets forth a model of regional stewardship developed and implemented at a post-compulsory institution serving rural communities in central Appalachia, a region that is among the most impoverished in the United States. The model, termed place-conscious capacity-building, emphasises culturally-responsive methodologies and the strategic…

  18. Integration of Models of Building Interiors with Cadastral Data

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Karabin, Marcin

    2017-12-01

    Demands for applications which use models of building interiors is growing and highly diversified. Those models are applied at the stage of designing and construction of a building, in applications which support real estate management, in navigation and marketing systems and, finally, in crisis management and security systems. They are created on the basis of different data: architectural and construction plans, both, in the analogue form, as well as CAD files, BIM data files, by means of laser scanning (TLS) and conventional surveys. In this context the issue of searching solutions which would integrate the existing models and lead to elimination of data redundancy is becoming more important. The authors analysed the possible input- of cadastral data (legal extent of premises) at the stage of the creation and updating different models of building's interiors. The paper focuses on one issue - the way of describing the geometry of premises basing on the most popular source data, i.e. architectural and construction plans. However, the described rules may be considered as universal and also may be applied in practice concerned may be used during the process of creation and updating indoor models based on BIM dataset or laser scanning clouds

  19. Providing pressure inputs to multizone building models

    DOE PAGES

    Herring, Steven J.; Batchelor, Simon; Bieringer, Paul E.; ...

    2016-02-13

    A study to assess how the fidelity of wind pressure inputs and indoor model complexity affect the predicted air change rate for a study building is presented. The purpose of the work is to support the development of a combined indoor-outdoor hazard prediction tool, which links the CONTAM multizone building simulation tool with outdoor dispersion models. The study building, representing a large office block of a simple rectangular geometry under natural ventilation, was based on a real building used in the Joint Urban 2003 experiment. A total of 1600 indoor model flow simulations were made, driven by 100 meteorological conditionsmore » which provided a wide range of building surface pressures. These pressures were applied at four levels of resolution to four different building configurations with varying numbers of internal zones and indoor and outdoor flow paths. Analysis of the results suggests that surface pressures and flow paths across the envelope should be specified at a resolution consistent with the dimensions of the smallest volume of interest, to ensure that appropriate outputs are obtained.« less

  20. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, Saman; Ghaffarian, Salar

    2014-11-01

    This paper proposes an improved FastICA model named as Purposive FastICA (PFICA) with initializing by a simple color space transformation and a novel masking approach to automatically detect buildings from high resolution Google Earth imagery. ICA and FastICA algorithms are defined as Blind Source Separation (BSS) techniques for unmixing source signals using the reference data sets. In order to overcome the limitations of the ICA and FastICA algorithms and make them purposeful, we developed a novel method involving three main steps: 1-Improving the FastICA algorithm using Moore-Penrose pseudo inverse matrix model, 2-Automated seeding of the PFICA algorithm based on LUV color space and proposed simple rules to split image into three regions; shadow + vegetation, baresoil + roads and buildings, respectively, 3-Masking out the final building detection results from PFICA outputs utilizing the K-means clustering algorithm with two number of clusters and conducting simple morphological operations to remove noises. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.6% and 85.5% overall pixel-based and object-based precision performances, respectively.

  1. Automatic building of a web-like structure based on thermoplastic adhesive.

    PubMed

    Leach, Derek; Wang, Liyu; Reusser, Dorothea; Iida, Fumiya

    2014-09-01

    Animals build structures to extend their control over certain aspects of the environment; e.g., orb-weaver spiders build webs to capture prey, etc. Inspired by this behaviour of animals, we attempt to develop robotics technology that allows a robot to automatically builds structures to help it accomplish certain tasks. In this paper we show automatic building of a web-like structure with a robot arm based on thermoplastic adhesive (TPA) material. The material properties of TPA, such as elasticity, adhesiveness, and low melting temperature, make it possible for a robot to form threads across an open space by an extrusion-drawing process and then combine several of these threads into a web-like structure. The problems addressed here are discovering which parameters determine the thickness of a thread and determining how web-like structures may be used for certain tasks. We first present a model for the extrusion and the drawing of TPA threads which also includes the temperature-dependent material properties. The model verification result shows that the increasing relative surface area of the TPA thread as it is drawn thinner increases the heat loss of the thread, and that by controlling how quickly the thread is drawn, a range of diameters can be achieved from 0.2-0.75 mm. We then present a method based on a generalized nonlinear finite element truss model. The model was validated and could predict the deformation of various web-like structures when payloads are added. At the end, we demonstrate automatic building of a web-like structure for payload bearing.

  2. Architectural Heritage Visualization Using Interactive Technologies

    NASA Astrophysics Data System (ADS)

    Albourae, A. T.; Armenakis, C.; Kyan, M.

    2017-08-01

    With the increased exposure to tourists, historical monuments are at an ever-growing risk of disappearing. Building Information Modelling (BIM) offers a process of digitally documenting of all the features that are made or incorporated into the building over its life-span, thus affords unique opportunities for information preservation. BIM of historical buildings are called Historical Building Information Models (HBIM). This involves documenting a building in detail throughout its history. Geomatics professionals have the potential to play a major role in this area as they are often the first professionals involved on construction development sites for many Architectural, Engineering, and Construction (AEC) projects. In this work, we discuss how to establish an architectural database of a heritage site, digitally reconstruct, preserve and then interact with it through an immersive environment that leverages BIM for exploring historic buildings. The reconstructed heritage site under investigation was constructed in the early 15th century. In our proposed approach, the site selection was based on many factors such as architectural value, size, and accessibility. The 3D model is extracted from the original collected and integrated data (Image-based, range-based, CAD modelling, and land survey methods), after which the elements of the 3D objects are identified by creating a database using the BIM software platform (Autodesk Revit). The use of modern and widely accessible game engine technology (Unity3D) is explored, allowing the user to fully embed and interact with the scene using handheld devices. The details of implementing an integrated pipeline between HBIM, GIS and augmented and virtual reality (AVR) tools and the findings of the work are presented.

  3. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    PubMed Central

    Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan

    2017-01-01

    In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images. PMID:28125018

  4. Contam airflow models of three large buildings: Model descriptions and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Douglas R.; Price, Phillip N.

    2009-09-30

    Airflow and pollutant transport models are useful for several reasons, including protection from or response to biological terrorism. In recent years they have been used for deciding how many biological agent samplers are needed in a given building to detect the release of an agent; to figure out where those samplers should be located; to predict the number of people at risk in the event of a release of a given size and location; to devise response strategies in the event of a release; to determine optimal trade-offs between sampler characteristics (such as detection limit and response time); and somore » on. For some of these purposes it is necessary to model a specific building of interest: if you are trying to determine optimal sampling locations, you must have a model of your building and not some different building. But for many purposes generic or 'prototypical' building models would suffice. For example, for determining trade-offs between sampler characteristics, results from one building will carry over other, similar buildings. Prototypical building models are also useful for comparing or testing different algorithms or computational pproaches: different researchers can use the same models, thus allowing direct comparison of results in a way that is not otherwise possible. This document discusses prototypical building models developed by the Airflow and Pollutant Transport Group at Lawrence Berkeley National Laboratory. The models are implemented in the Contam v2.4c modeling program, available from the National Institutes for Standards and Technology. We present Contam airflow models of three virtual buildings: a convention center, an airport terminal, and a multi-story office building. All of the models are based to some extent on specific real buildings. Our goal is to produce models that are realistic, in terms of approximate magnitudes, directions, and speeds of airflow and pollutant transport. The three models vary substantially in detail. The airport model is the simplest; the onvention center model is more detailed; and the large office building model is quite complicated. We give several simplified floor plans in this document, to explain basic features of the buildings. The actual models are somewhat more complicated; for instance, spaces that are represented as rectangles in this document sometimes have more complicated shapes in the models. (However, note that the shape of a zone is irrelevant in Contam). Consult the Contam models themselves for detailed floor plans. Each building model is provided with three ventilation conditions, representing mechanical systems in which 20%, 50%, or 80% of the building air is recirculated and the rest is provided from outdoors. Please see the section on 'Use of the models' for important information about issues to consider if you wish to modify the models to provide no mechanical ventilation or eliminate provision of outdoor air.« less

  5. LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.

  6. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    NASA Astrophysics Data System (ADS)

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  7. Designing an Agent-Based Model Using Group Model Building: Application to Food Insecurity Patterns in a U.S. Midwestern Metropolitan City.

    PubMed

    Koh, Keumseok; Reno, Rebecca; Hyder, Ayaz

    2018-04-01

    Recent advances in computing resources have increased interest in systems modeling and population health. While group model building (GMB) has been effectively applied in developing system dynamics models (SD), few studies have used GMB for developing an agent-based model (ABM). This article explores the use of a GMB approach to develop an ABM focused on food insecurity. In our GMB workshops, we modified a set of the standard GMB scripts to develop and validate an ABM in collaboration with local experts and stakeholders. Based on this experience, we learned that GMB is a useful collaborative modeling platform for modelers and community experts to address local population health issues. We also provide suggestions for increasing the use of the GMB approach to develop rigorous, useful, and validated ABMs.

  8. Simulation-based coefficients for adjusting climate impact on energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Makhmalbaf, Atefe; Srivastava, Viraj

    This paper presents a new technique for and the results of normalizing building energy consumption to enable a fair comparison among various types of buildings located near different weather stations across the U.S. The method was developed for the U.S. Building Energy Asset Score, a whole-building energy efficiency rating system focusing on building envelope, mechanical systems, and lighting systems. The Asset Score is calculated based on simulated energy use under standard operating conditions. Existing weather normalization methods such as those based on heating and cooling degrees days are not robust enough to adjust all climatic factors such as humidity andmore » solar radiation. In this work, over 1000 sets of climate coefficients were developed to separately adjust building heating, cooling, and fan energy use at each weather station in the United States. This paper also presents a robust, standardized weather station mapping based on climate similarity rather than choosing the closest weather station. This proposed simulated-based climate adjustment was validated through testing on several hundreds of thousands of modeled buildings. Results indicated the developed climate coefficients can isolate and adjust for the impacts of local climate for asset rating.« less

  9. Application of BIM technology in green scientific research office building

    NASA Astrophysics Data System (ADS)

    Ni, Xin; Sun, Jianhua; Wang, Bo

    2017-05-01

    BIM technology as a kind of information technology, has been along with the advancement of building industrialization application in domestic building industry gradually. Based on reasonable construction BIM model, using BIM technology platform, through collaborative design tools can effectively improve the design efficiency and design quality. Vanda northwest engineering design and research institute co., LTD., the scientific research office building project in combination with the practical situation of engineering using BIM technology, formed in the BIM model combined with related information according to the energy energy model (BEM) and the application of BIM technology in construction management stage made exploration, and the direct experience and the achievements gained by the architectural design part made a summary.

  10. Modelling of Rail Vehicles and Track for Calculation of Ground-Vibration Transmission Into Buildings

    NASA Astrophysics Data System (ADS)

    Hunt, H. E. M.

    1996-05-01

    A methodology for the calculation of vibration transmission from railways into buildings is presented. The method permits existing models of railway vehicles and track to be incorporated and it has application to any model of vibration transmission through the ground. Special attention is paid to the relative phasing between adjacent axle-force inputs to the rail, so that vibration transmission may be calculated as a random process. The vehicle-track model is used in conjunction with a building model of infinite length. The tracking and building are infinite and parallel to each other and forces applied are statistically stationary in space so that vibration levels at any two points along the building are the same. The methodology is two-dimensional for the purpose of application of random process theory, but fully three-dimensional for calculation of vibration transmission from the track and through the ground into the foundations of the building. The computational efficiency of the method will interest engineers faced with the task of reducing vibration levels in buildings. It is possible to assess the relative merits of using rail pads, under-sleeper pads, ballast mats, floating-slab track or base isolation for particular applications.

  11. Software-engineering challenges of building and deploying reusable problem solvers.

    PubMed

    O'Connor, Martin J; Nyulas, Csongor; Tu, Samson; Buckeridge, David L; Okhmatovskaia, Anna; Musen, Mark A

    2009-11-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task-method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach.

  12. Software-engineering challenges of building and deploying reusable problem solvers

    PubMed Central

    O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.

    2012-01-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031

  13. Hybrid Automatic Building Interpretation System

    NASA Astrophysics Data System (ADS)

    Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.

    2011-09-01

    HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.

  14. Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyol, Bora A.; Haack, Jereme N.; Carpenter, Brandon J.

    Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.

  15. Building Program Verifiers from Compilers and Theorem Provers

    DTIC Science & Technology

    2015-05-14

    Checking with SMT UFO • LLVM-based front-end (partially reused in SeaHorn) • Combines Abstract Interpretation with Interpolation-Based Model Checking • (no...assertions Counter-examples are long Hard to determine (from main) what is relevant Assertion Main 35 Building Verifiers from Comp and SMT Gurfinkel, 2015

  16. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less

  17. Single-image-based Modelling Architecture from a Historical Photograph

    NASA Astrophysics Data System (ADS)

    Dzwierzynska, Jolanta

    2017-10-01

    Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.

  18. Software for Building Models of 3D Objects via the Internet

    NASA Technical Reports Server (NTRS)

    Schramer, Tim; Jensen, Jeff

    2003-01-01

    The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.

  19. USING TIME VARIANT VOLTAGE TO CALCULATE ENERGY CONSUMPTION AND POWER USE OF BUILDING SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Augenbroe , Godfried

    2015-12-09

    Buildings are the main consumers of electricity across the world. However, in the research and studies related to building performance assessment, the focus has been on evaluating the energy efficiency of buildings whereas the instantaneous power efficiency has been overlooked as an important aspect of total energy consumption. As a result, we never developed adequate models that capture both thermal and electrical characteristics (e.g., voltage) of building systems to assess the impact of variations in the power system and emerging technologies of the smart grid on buildings energy and power performance and vice versa. This paper argues that the powermore » performance of buildings as a function of electrical parameters should be evaluated in addition to systems’ mechanical and thermal behavior. The main advantage of capturing electrical behavior of building load is to better understand instantaneous power consumption and more importantly to control it. Voltage is one of the electrical parameters that can be used to describe load. Hence, voltage dependent power models are constructed in this work and they are coupled with existing thermal energy models. Lack of models that describe electrical behavior of systems also adds to the uncertainty of energy consumption calculations carried out in building energy simulation tools such as EnergyPlus, a common building energy modeling and simulation tool. To integrate voltage-dependent power models with thermal models, the thermal cycle (operation mode) of each system was fed into the voltage-based electrical model. Energy consumption of systems used in this study were simulated using EnergyPlus. Simulated results were then compared with estimated and measured power data. The mean square error (MSE) between simulated, estimated, and measured values were calculated. Results indicate that estimated power has lower MSE when compared with measured data than simulated results. Results discussed in this paper will illustrate the significance of enhancing building energy models with electrical characteristics. This would support different studies such as those related to modernization of the power system that require micro scale building-grid interaction, evaluating building energy efficiency with power efficiency considerations, and also design and control decisions that rely on accuracy of building energy simulation results.« less

  20. Use of Machine Learning Algorithms to Propose a New Methodology to Conduct, Critique and Validate Urban Scale Building Energy Modeling

    NASA Astrophysics Data System (ADS)

    Pathak, Maharshi

    City administrators and real-estate developers have been setting up rather aggressive energy efficiency targets. This, in turn, has led the building science research groups across the globe to focus on urban scale building performance studies and level of abstraction associated with the simulations of the same. The increasing maturity of the stakeholders towards energy efficiency and creating comfortable working environment has led researchers to develop methodologies and tools for addressing the policy driven interventions whether it's urban level energy systems, buildings' operational optimization or retrofit guidelines. Typically, these large-scale simulations are carried out by grouping buildings based on their design similarities i.e. standardization of the buildings. Such an approach does not necessarily lead to potential working inputs which can make decision-making effective. To address this, a novel approach is proposed in the present study. The principle objective of this study is to propose, to define and evaluate the methodology to utilize machine learning algorithms in defining representative building archetypes for the Stock-level Building Energy Modeling (SBEM) which are based on operational parameter database. The study uses "Phoenix- climate" based CBECS-2012 survey microdata for analysis and validation. Using the database, parameter correlations are studied to understand the relation between input parameters and the energy performance. Contrary to precedence, the study establishes that the energy performance is better explained by the non-linear models. The non-linear behavior is explained by advanced learning algorithms. Based on these algorithms, the buildings at study are grouped into meaningful clusters. The cluster "mediod" (statistically the centroid, meaning building that can be represented as the centroid of the cluster) are established statistically to identify the level of abstraction that is acceptable for the whole building energy simulations and post that the retrofit decision-making. Further, the methodology is validated by conducting Monte-Carlo simulations on 13 key input simulation parameters. The sensitivity analysis of these 13 parameters is utilized to identify the optimum retrofits. From the sample analysis, the envelope parameters are found to be more sensitive towards the EUI of the building and thus retrofit packages should also be directed to maximize the energy usage reduction.

  1. 3D Reconstruction of Irregular Buildings and Buddha Statues

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  2. Jeddah Historical Building Information Modelling "JHBIM" - Object Library

    NASA Astrophysics Data System (ADS)

    Baik, A.; Alitany, A.; Boehm, J.; Robson, S.

    2014-05-01

    The theory of using Building Information Modelling "BIM" has been used in several Heritage places in the worldwide, in the case of conserving, documenting, managing, and creating full engineering drawings and information. However, one of the most serious issues that facing many experts in order to use the Historical Building Information Modelling "HBIM", is creating the complicated architectural elements of these Historical buildings. In fact, many of these outstanding architectural elements have been designed and created in the site to fit the exact location. Similarly, this issue has been faced the experts in Old Jeddah in order to use the BIM method for Old Jeddah historical Building. Moreover, The Saudi Arabian City has a long history as it contains large number of historic houses and buildings that were built since the 16th century. Furthermore, the BIM model of the historical building in Old Jeddah always take a lot of time, due to the unique of Hijazi architectural elements and no such elements library, which have been took a lot of time to be modelled. This paper will focus on building the Hijazi architectural elements library based on laser scanner and image survey data. This solution will reduce the time to complete the HBIM model and offering in depth and rich digital architectural elements library to be used in any heritage projects in Al-Balad district, Jeddah City.

  3. Grand Junction Projects Office Remedial Action Project Building 2 public dose evaluation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.

    1996-05-01

    Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. Themore » DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.« less

  4. Organism-level models: When mechanisms and statistics fail us

    NASA Astrophysics Data System (ADS)

    Phillips, M. H.; Meyer, J.; Smith, W. P.; Rockhill, J. K.

    2014-03-01

    Purpose: To describe the unique characteristics of models that represent the entire course of radiation therapy at the organism level and to highlight the uses to which such models can be put. Methods: At the level of an organism, traditional model-building runs into severe difficulties. We do not have sufficient knowledge to devise a complete biochemistry-based model. Statistical model-building fails due to the vast number of variables and the inability to control many of them in any meaningful way. Finally, building surrogate models, such as animal-based models, can result in excluding some of the most critical variables. Bayesian probabilistic models (Bayesian networks) provide a useful alternative that have the advantages of being mathematically rigorous, incorporating the knowledge that we do have, and being practical. Results: Bayesian networks representing radiation therapy pathways for prostate cancer and head & neck cancer were used to highlight the important aspects of such models and some techniques of model-building. A more specific model representing the treatment of occult lymph nodes in head & neck cancer were provided as an example of how such a model can inform clinical decisions. A model of the possible role of PET imaging in brain cancer was used to illustrate the means by which clinical trials can be modelled in order to come up with a trial design that will have meaningful outcomes. Conclusions: Probabilistic models are currently the most useful approach to representing the entire therapy outcome process.

  5. Does integration matter? A holistic model for building community resilience in Pakistan.

    PubMed

    Kanta Kafle, Shesh

    2017-01-01

    This paper analyses an integrated communitybased risk reduction model adopted by the Pakistan Red Crescent. The paper analyses the model's constructs and definitions, and provides a conceptual framework and a set of practical recommendations for building community resilience. The study uses the process of outcome-based resilience index to assess the effectiveness of the approach. The results indicate that the integrated programming approach is an effective way to build community resilience as it offers a number of tangible and longlasting benefits, including effective and efficient service delivery, local ownership, sustainability of results, and improved local resilience with respect to the shock and stress associated with disaster. The paper also outlines a set of recommendations for the effective and efficient use of the model for building community resilience in Pakistan.

  6. An agent-based stochastic Occupancy Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  7. An agent-based stochastic Occupancy Simulator

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen; Luo, Xuan

    2017-06-01

    Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less

  8. Semiautomated model building for RNA crystallography using a directed rotameric approach.

    PubMed

    Keating, Kevin S; Pyle, Anna Marie

    2010-05-04

    Structured RNA molecules play essential roles in a variety of cellular processes; however, crystallographic studies of such RNA molecules present a large number of challenges. One notable complication arises from the low resolutions typical of RNA crystallography, which results in electron density maps that are imprecise and difficult to interpret. This problem is exacerbated by the lack of computational tools for RNA modeling, as many of the techniques commonly used in protein crystallography have no equivalents for RNA structure. This leads to difficulty and errors in the model building process, particularly in modeling of the RNA backbone, which is highly error prone due to the large number of variable torsion angles per nucleotide. To address this, we have developed a method for accurately building the RNA backbone into maps of intermediate or low resolution. This method is semiautomated, as it requires a crystallographer to first locate phosphates and bases in the electron density map. After this initial trace of the molecule, however, an accurate backbone structure can be built without further user intervention. To accomplish this, backbone conformers are first predicted using RNA pseudotorsions and the base-phosphate perpendicular distance. Detailed backbone coordinates are then calculated to conform both to the predicted conformer and to the previously located phosphates and bases. This technique is shown to produce accurate backbone structure even when starting from imprecise phosphate and base coordinates. A program implementing this methodology is currently available, and a plugin for the Coot model building program is under development.

  9. Can You Build It? Using Manipulatives to Assess Student Understanding of Food-Web Concepts

    ERIC Educational Resources Information Center

    Grumbine, Richard

    2012-01-01

    This article outlines an exercise that assesses student knowledge of food-web and energy-flow concepts. Students work in teams and use manipulatives to build food-web models based on criteria assigned by the instructor. The models are then peer reviewed according to guidelines supplied by the instructor.

  10. Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling

    EPA Science Inventory

    Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this stu...

  11. Building a Model PE Curriculum: Education Reform in Action

    ERIC Educational Resources Information Center

    Moore, John

    2012-01-01

    The blueprint to build a model physical education (PE) curriculum begins by establishing a sound curricular foundation based on a lesson plan template that incorporates clear and concise program goals, the alignment of lessons to state or national content standards, and the collection, analysis and use of objective assessment data that informs…

  12. Pedestrian mobile mapping system for indoor environments based on MEMS IMU and range camera

    NASA Astrophysics Data System (ADS)

    Haala, N.; Fritsch, D.; Peter, M.; Khosravani, A. M.

    2011-12-01

    This paper describes an approach for the modeling of building interiors based on a mobile device, which integrates modules for pedestrian navigation and low-cost 3D data collection. Personal navigation is realized by a foot mounted low cost MEMS IMU, while 3D data capture for subsequent indoor modeling uses a low cost range camera, which was originally developed for gaming applications. Both steps, navigation and modeling, are supported by additional information as provided from the automatic interpretation of evacuation plans. Such emergency plans are compulsory for public buildings in a number of countries. They consist of an approximate floor plan, the current position and escape routes. Additionally, semantic information like stairs, elevators or the floor number is available. After the user has captured an image of such a floor plan, this information is made explicit again by an automatic raster-to-vector-conversion. The resulting coarse indoor model then provides constraints at stairs or building walls, which restrict the potential movement of the user. This information is then used to support pedestrian navigation by eliminating drift effects of the used low-cost sensor system. The approximate indoor building model additionally provides a priori information during subsequent indoor modeling. Within this process, the low cost range camera Kinect is used for the collection of multiple 3D point clouds, which are aligned by a suitable matching step and then further analyzed to refine the coarse building model.

  13. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  14. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning.

    PubMed

    Ergun, Bahadir; Sahin, Cumhur; Baz, Ibrahim; Ustuntas, Taner

    2010-06-01

    Terrestrial laser scanning is a popular methodology that is used frequently in the process of documenting historical buildings and cultural heritage. The historical peninsula region sprawls over an area of approximately 1,500 ha and is one of the main aggregate areas of the historical buildings in Istanbul. In this study, terrestrial laser scanning and close range photogrammetry techniques are integrated into each other to create a 3D city model of this part of Istanbul, including some of the buildings that represent the most brilliant areas of Byzantine and Ottoman Empires. Several terrestrial laser scanners with their different specifications were used to solve various geometric scanning problems for distinct areas of the subject city. Photogrammetric method was used for the documentation of the façades of these historical buildings for architectural purposes. This study differentiates itself from the similar ones by its application process that focuses on the geometry, the building texture, and density of the study area. Nowadays, the largest-scale studies among 3D modeling studies, in terms of the methodology of measurement, are urban modeling studies. Because of this large scale, the application of 3D urban modeling studies is executed in a gradual way. In this study, a modeling method based on the façades of the streets was used. In addition, the complimentary elements for the process of modeling were combined in several ways. A street model was presented as a sample, as being the subject of the applied study. In our application of 3D modeling, the modeling based on close range photogrammetry and the data of combined calibration with the data of terrestrial laser scanner were used in a compatible way. The final work was formed with the pedestal data for 3D visualization.

  15. A 3D model retrieval approach based on Bayesian networks lightfield descriptor

    NASA Astrophysics Data System (ADS)

    Xiao, Qinhan; Li, Yanjun

    2009-12-01

    A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.

  16. Grassroot Soccer Resiliency Pilot Program: Building Resiliency through Sport-Based Education in Zambia and South Africa

    ERIC Educational Resources Information Center

    Peacock-Villada, Paola; DeCelles, Jeff; Banda, Peter S.

    2007-01-01

    Grassroot Soccer (GRS), a U.S.-based nonprofit organization, designed a curriculum and sport-based teaching model to build resiliency, targeting boys and girls in Lusaka, Zambia, and Johannesburg, South Africa, where most children are reminded daily of the devastation caused by AIDS and where many face chronic and acute hardship. Collaborating…

  17. Building Models for the Relationship between Attitudes toward Suicide and Suicidal Behavior: Based on Data from General Population Surveys in Sweden, Norway, and Russia

    ERIC Educational Resources Information Center

    Renberg, Ellinor Salander; Hjelmeland, Heidi; Koposov, Roman

    2008-01-01

    Our aim was to build a model delineating the relationship between attitudes toward suicide and suicidal behavior and to assess equivalence by applying the model on data from different countries. Representative samples from the general population were approached in Sweden, Norway, and Russia with the Attitudes Toward Suicide (ATTS) questionnaire.…

  18. Predicted carbonation of existing concrete building based on the Indonesian tropical micro-climate

    NASA Astrophysics Data System (ADS)

    Hilmy, M.; Prabowo, H.

    2018-03-01

    This paper is aimed to predict the carbonation progress based on the previous mathematical model. It shortly explains the nature of carbonation including the processes and effects. Environmental humidity and temperature of the existing concrete building are measured and compared to data from local Meteorological, Climatological, and Geophysical Agency. The data gained are expressed in the form of annual hygrothermal values which will use as the input parameter in carbonation model. The physical properties of the observed building such as its location, dimensions, and structural material used are quantified. These data then utilized as an important input parameter for carbonation coefficients. The relationships between relative humidity and the rate of carbonation established. The results can provide a basis for repair and maintenance of existing concrete buildings and the sake of service life analysis of them.

  19. A Hybrid 3D Indoor Space Model

    NASA Astrophysics Data System (ADS)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  20. An estimation framework for building information modeling (BIM)-based demolition waste by type.

    PubMed

    Kim, Young-Chan; Hong, Won-Hwa; Park, Jae-Woo; Cha, Gi-Wook

    2017-12-01

    Most existing studies on demolition waste (DW) quantification do not have an official standard to estimate the amount and type of DW. Therefore, there are limitations in the existing literature for estimating DW with a consistent classification system. Building information modeling (BIM) is a technology that can generate and manage all the information required during the life cycle of a building, from design to demolition. Nevertheless, there has been a lack of research regarding its application to the demolition stage of a building. For an effective waste management plan, the estimation of the type and volume of DW should begin from the building design stage. However, the lack of tools hinders an early estimation. This study proposes a BIM-based framework that estimates DW in the early design stages, to achieve an effective and streamlined planning, processing, and management. Specifically, the input of construction materials in the Korean construction classification system and those in the BIM library were matched. Based on this matching integration, the estimates of DW by type were calculated by applying the weight/unit volume factors and the rates of DW volume change. To verify the framework, its operation was demonstrated by means of an actual BIM modeling and by comparing its results with those available in the literature. This study is expected to contribute not only to the estimation of DW at the building level, but also to the automated estimation of DW at the district level.

  1. Stigmergic construction and topochemical information shape ant nest architecture

    PubMed Central

    Khuong, Anaïs; Gautrais, Jacques; Perna, Andrea; Sbaï, Chaker; Combe, Maud; Kuntz, Pascale; Jost, Christian; Theraulaz, Guy

    2016-01-01

    The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture. PMID:26787857

  2. Stigmergic construction and topochemical information shape ant nest architecture.

    PubMed

    Khuong, Anaïs; Gautrais, Jacques; Perna, Andrea; Sbaï, Chaker; Combe, Maud; Kuntz, Pascale; Jost, Christian; Theraulaz, Guy

    2016-02-02

    The nests of social insects are not only impressive because of their sheer complexity but also because they are built from individuals whose work is not centrally coordinated. A key question is how groups of insects coordinate their building actions. Here, we use a combination of experimental and modeling approaches to investigate nest construction in the ant Lasius niger. We quantify the construction dynamics and the 3D structures built by ants. Then, we characterize individual behaviors and the interactions of ants with the structures they build. We show that two main interactions are involved in the coordination of building actions: (i) a stigmergic-based interaction that controls the amplification of depositions at some locations and is attributable to a pheromone added by ants to the building material; and (ii) a template-based interaction in which ants use their body size as a cue to control the height at which they start to build a roof from existing pillars. We then develop a 3D stochastic model based on these individual behaviors to analyze the effect of pheromone presence and strength on construction dynamics. We show that the model can quantitatively reproduce key features of construction dynamics, including a large-scale pattern of regularly spaced pillars, the formation and merging of caps over the pillars, and the remodeling of built structures. Finally, our model suggests that the lifetime of the pheromone is a highly influential parameter that controls the growth and form of nest architecture.

  3. Net-zero Building Cluster Simulations and On-line Energy Forecasting for Adaptive and Real-Time Control and Decisions

    NASA Astrophysics Data System (ADS)

    Li, Xiwang

    Buildings consume about 41.1% of primary energy and 74% of the electricity in the U.S. Moreover, it is estimated by the National Energy Technology Laboratory that more than 1/4 of the 713 GW of U.S. electricity demand in 2010 could be dispatchable if only buildings could respond to that dispatch through advanced building energy control and operation strategies and smart grid infrastructure. In this study, it is envisioned that neighboring buildings will have the tendency to form a cluster, an open cyber-physical system to exploit the economic opportunities provided by a smart grid, distributed power generation, and storage devices. Through optimized demand management, these building clusters will then reduce overall primary energy consumption and peak time electricity consumption, and be more resilient to power disruptions. Therefore, this project seeks to develop a Net-zero building cluster simulation testbed and high fidelity energy forecasting models for adaptive and real-time control and decision making strategy development that can be used in a Net-zero building cluster. The following research activities are summarized in this thesis: 1) Development of a building cluster emulator for building cluster control and operation strategy assessment. 2) Development of a novel building energy forecasting methodology using active system identification and data fusion techniques. In this methodology, a systematic approach for building energy system characteristic evaluation, system excitation and model adaptation is included. The developed methodology is compared with other literature-reported building energy forecasting methods; 3) Development of the high fidelity on-line building cluster energy forecasting models, which includes energy forecasting models for buildings, PV panels, batteries and ice tank thermal storage systems 4) Small scale real building validation study to verify the performance of the developed building energy forecasting methodology. The outcomes of this thesis can be used for building cluster energy forecasting model development and model based control and operation optimization. The thesis concludes with a summary of the key outcomes of this research, as well as a list of recommendations for future work.

  4. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0 to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  5. Building mental models by dissecting physical models.

    PubMed

    Srivastava, Anveshna

    2016-01-01

    When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to ensure focused learning; models that are too constrained require less supervision, but can be constructed mechanically, with little to no conceptual engagement. We propose "model-dissection" as an alternative to "model-building," whereby instructors could make efficient use of supervisory resources, while simultaneously promoting focused learning. We report empirical results from a study conducted with biology undergraduate students, where we demonstrate that asking them to "dissect" out specific conceptual structures from an already built 3D physical model leads to a significant improvement in performance than asking them to build the 3D model from simpler components. Using questionnaires to measure understanding both before and after model-based interventions for two cohorts of students, we find that both the "builders" and the "dissectors" improve in the post-test, but it is the latter group who show statistically significant improvement. These results, in addition to the intrinsic time-efficiency of "model dissection," suggest that it could be a valuable pedagogical tool. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Hybrid 3D reconstruction and image-based rendering techniques for reality modeling

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Wolfart, Erik; Bovisio, Emanuele; Biotti, Ester; Goncalves, Joao G. M.

    2000-12-01

    This paper presents a component approach that combines in a seamless way the strong features of laser range acquisition with the visual quality of purely photographic approaches. The relevant components of the system are: (i) Panoramic images for distant background scenery where parallax is insignificant; (ii) Photogrammetry for background buildings and (iii) High detailed laser based models for the primary environment, structure of exteriors of buildings and interiors of rooms. These techniques have a wide range of applications in visualization, virtual reality, cost effective as-built analysis of architectural and industrial environments, building facilities management, real-estate, E-commerce, remote inspection of hazardous environments, TV production and many others.

  7. Thermal environment analysis and energy conservation research of rural residence in cold regions of China based on BIM platform

    NASA Astrophysics Data System (ADS)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Xin, L. S.; Tan, Y. T.

    2017-06-01

    In order to study the issue of rural residential energy consumption in cold regions of China, modeled an architecture prototype based on BIM platform according to the affecting factors of rural residential thermal environment, and imported the virtual model which contains building information into energy analysis tools and chose the appropriate building orientation. By analyzing the energy consumption of the residential buildings with different enclosure structure forms, we designed the optimal energy-saving residence form. There is a certain application value of this method for researching the energy consumption and energy-saving design for the rural residence in cold regions of China.

  8. Methodology for estimating human perception to tremors in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  9. Introduction of Building Information Modeling (BIM) Technologies in Construction

    NASA Astrophysics Data System (ADS)

    Milyutina, M. A.

    2018-05-01

    The issues of introduction of building information modeling (BIM) in construction industry are considered in this work. The advantages of this approach and perspectives of the transition to new design technologies, construction process management, and operation in the near future are stated. The importance of development of pilot projects that should identify the ways and means of verification of the regulatory and technical base, as well as economic indicators in the transition to Building Information Technologies in the construction, is noted.

  10. Web-based remote sensing of building energy performance

    NASA Astrophysics Data System (ADS)

    Martin, William; Nassiopoulos, Alexandre; Le Cam, Vincent; Kuate, Raphaël; Bourquin, Frédéric

    2013-04-01

    The present paper describes the design and the deployment of an instrumentation system enabling the energy monitoring of a building in a smart-grid context. The system is based on a network of wireless low power IPv6 sensors. Ambient temperature and electrical power for heating are measured. The management, storage, visualisation and treatment of the data is done through a web-based application that can be deployed as an online web service. The same web-based framework enables the acquisition of distant measured data such as those coming from a nearby weather station. On-site sensor and weather station data are then adequately treated based on inverse identification methods. The algorithms aim at determining the parameters of a numerical model suitable for a short-time horizon prediction of indoor climate. The model is based on standard multi-zone modelling assumptions and takes into account solar, airflow and conductive transfers. It was specially designed to render accurately inertia effects that are used in a demand-response strategy. All the hardware or software technologies that are used in the system are open and low cost so that they comply with the constraints of on-site deployment in buildings. The measured data as well as the model predictions can be accessed ubiquously through the web. This feature enables to consider a wide range of energy management applications at the disctrict, city or national level. The entire system has been deployed and tested in an experimental office building in Angers, France. It demonstrates the potential of ICT technologies to enable remotely controlled monitoring and surveillance in real time.

  11. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    PubMed

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  12. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    PubMed

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  13. A Real-Time Recording Model of Key Indicators for Energy Consumption and Carbon Emissions of Sustainable Buildings

    PubMed Central

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-01-01

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability. PMID:24831109

  14. A real-time recording model of key indicators for energy consumption and carbon emissions of sustainable buildings.

    PubMed

    Wu, Weiwei; Yang, Huanjia; Chew, David; Hou, Yanhong; Li, Qiming

    2014-05-14

    Buildings' sustainability is one of the crucial parts for achieving urban sustainability. Applied to buildings, life-cycle assessment encompasses the analysis and assessment of the environmental effects of building materials, components and assemblies throughout the entire life of the building construction, use and demolition. Estimate of carbon emissions is essential and crucial for an accurate and reasonable life-cycle assessment. Addressing the need for more research into integrating analysis of real-time and automatic recording of key indicators for a more accurate calculation and comparison, this paper aims to design a real-time recording model of these crucial indicators concerning the calculation and estimation of energy use and carbon emissions of buildings based on a Radio Frequency Identification (RFID)-based system. The architecture of the RFID-based carbon emission recording/tracking system, which contains four functional layers including data record layer, data collection/update layer, data aggregation layer and data sharing/backup layer, is presented. Each of these layers is formed by RFID or network devices and sub-systems that operate at a specific level. In the end, a proof-of-concept system is developed to illustrate the implementation of the proposed architecture and demonstrate the feasibility of the design. This study would provide the technical solution for real-time recording system of building carbon emissions and thus is of great significance and importance to improve urban sustainability.

  15. Impact of input data uncertainty on environmental exposure assessment models: A case study for electromagnetic field modelling from mobile phone base stations.

    PubMed

    Beekhuizen, Johan; Heuvelink, Gerard B M; Huss, Anke; Bürgi, Alfred; Kromhout, Hans; Vermeulen, Roel

    2014-11-01

    With the increased availability of spatial data and computing power, spatial prediction approaches have become a standard tool for exposure assessment in environmental epidemiology. However, such models are largely dependent on accurate input data. Uncertainties in the input data can therefore have a large effect on model predictions, but are rarely quantified. With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of radio-frequency electromagnetic fields (RF-EMF) from mobile phone base stations at 252 receptor sites in Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure distribution) between modelled values and RF-EMF measurements performed at the receptor sites. The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of 1.5. Uncertainty in receptor site height, building damping and building height contributed most to model output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites were the most important sources of uncertainty, followed by building damping, antenna- and site location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model performance. We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF environmental exposure model, thereby identifying the most important sources of uncertainty and estimating the total uncertainty stemming from potential errors in the input data. This approach can be used to optimize the model and better interpret model output. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    NASA Astrophysics Data System (ADS)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  17. Developing a Physiologically-Based Pharmacokinetic Model Knowledgebase in Support of Provisional Model Construction - poster

    EPA Science Inventory

    Building new physiologically based pharmacokinetic (PBPK) models requires a lot data, such as the chemical-specific parameters and in vivo pharmacokinetic data. Previously-developed, well-parameterized, and thoroughly-vetted models can be great resource for supporting the constr...

  18. Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Goel, Supriya; Gorrissen, Willy J.

    2013-06-24

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation enginemore » (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a building’s system efficiencies, and how well it is correlated to a building’s actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings’ [known] energy use pattern. This comparison examined the end use breakdowns and more detailed time series data. Third, ASHRAE 90.1 prototype buildings were also used as an industry standard modeling approach to test the accuracy level of the asset score tool. Our analysis showed that the asset score tool, which uses simplified building simulation, could provide results comparable to a more detailed energy model. The buildings’ as-built efficiency can be reflected in the energy asset score. An analysis between the modeled energy use through the asset score tool and the actual energy use from the utility bills can further inform building owners about the effectiveness of their building’s operation and maintenance.« less

  19. Building Interoperable FHIR-Based Vocabulary Mapping Services: A Case Study of OHDSI Vocabularies and Mappings.

    PubMed

    Jiang, Guoqian; Kiefer, Richard; Prud'hommeaux, Eric; Solbrig, Harold R

    2017-01-01

    The OHDSI Common Data Model (CDM) is a deep information model, in which its vocabulary component plays a critical role in enabling consistent coding and query of clinical data. The objective of the study is to create methods and tools to expose the OHDSI vocabularies and mappings as the vocabulary mapping services using two HL7 FHIR core terminology resources ConceptMap and ValueSet. We discuss the benefits and challenges in building the FHIR-based terminology services.

  20. Market-oriented Programming Using Small-world Networks for Controlling Building Environments

    NASA Astrophysics Data System (ADS)

    Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa

    The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.

  1. Critical Issues and Key Points from the Survey to the Creation of the Historical Building Information Model: the Case of Santo Stefano Basilica

    NASA Astrophysics Data System (ADS)

    Castagnetti, C.; Dubbini, M.; Ricci, P. C.; Rivola, R.; Giannini, M.; Capra, A.

    2017-05-01

    The new era of designing in architecture and civil engineering applications lies in the Building Information Modeling (BIM) approach, based on a 3D geometric model including a 3D database. This is easier for new constructions whereas, when dealing with existing buildings, the creation of the BIM is based on the accurate knowledge of the as-built construction. Such a condition is allowed by a 3D survey, often carried out with laser scanning technology or modern photogrammetry, which are able to guarantee an adequate points cloud in terms of resolution and completeness by balancing both time consuming and costs with respect to the request of final accuracy. The BIM approach for existing buildings and even more for historical buildings is not yet a well known and deeply discussed process. There are still several choices to be addressed in the process from the survey to the model and critical issues to be discussed in the modeling step, particularly when dealing with unconventional elements such as deformed geometries or historical elements. The paper describes a comprehensive workflow that goes through the survey and the modeling, allowing to focus on critical issues and key points to obtain a reliable BIM of an existing monument. The case study employed to illustrate the workflow is the Basilica of St. Stefano in Bologna (Italy), a large monumental complex with great religious, historical and architectural assets.

  2. EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi; Wilensky, Uri

    2018-04-01

    Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.

  3. Estimation of the Relationship Between Remotely Sensed Anthropogenic Heat Discharge and Building Energy Use

    NASA Technical Reports Server (NTRS)

    Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

    2012-01-01

    This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.

  4. MLS Multipath Studies. Phase 3. Volume I. Overview and Propagation Model Validation/Refinement Studies.

    DTIC Science & Technology

    1979-04-25

    Airport (Bedford, MA ) and Ft. Devens, MA. (2) validation of the models for building reflections based on elevation field measurements at JFK airport and...angles. 2-60 III. BUILDING REFLECTIONS A. Van Measurements at John F. Kennedy (JFK) International Airport, New York Figure 3-1 shows a map of JFK airport with

  5. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    EPA Science Inventory

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  6. [Design of a communicative model from a social perspective oriented toward physical activity].

    PubMed

    Prieto-Rodríguez, Adriana; Moreno-Angarita, Marisol; Cardozo-Vásquez, Yency S

    2006-12-01

    A communication model was designed and put into practice, in the form of a Network throughout three regions in Colombia; Bogotá, Antioquia and Quindío. Based on a macro-intentional model, this network was aimed at strengthening understanding around the subject of physical activity among those people affected by the issue, from a multidimensional perspective. The test population was defined and working groups were formed around three strategies: social production, transmission and democratization, during a three-month period. RESULTS Messages were developed based around the ideas of the community producers themselves; the initial concepts were widened to include the body, self care, physical activity and health. Communication models related to health, aimed at developing personal skills including the ability to communicate and build shared experience, can be assimilated and incorporated into broadcasts on health issues. This model serves as a communication strategy which strengthens the building of shared broadcasts on health issues. This kind of focus requires the development of local activity and capacity-building within the community.

  7. An Object-Relational Ifc Storage Model Based on Oracle Database

    NASA Astrophysics Data System (ADS)

    Li, Hang; Liu, Hua; Liu, Yong; Wang, Yuan

    2016-06-01

    With the building models are getting increasingly complicated, the levels of collaboration across professionals attract more attention in the architecture, engineering and construction (AEC) industry. In order to adapt the change, buildingSMART developed Industry Foundation Classes (IFC) to facilitate the interoperability between software platforms. However, IFC data are currently shared in the form of text file, which is defective. In this paper, considering the object-based inheritance hierarchy of IFC and the storage features of different database management systems (DBMS), we propose a novel object-relational storage model that uses Oracle database to store IFC data. Firstly, establish the mapping rules between data types in IFC specification and Oracle database. Secondly, design the IFC database according to the relationships among IFC entities. Thirdly, parse the IFC file and extract IFC data. And lastly, store IFC data into corresponding tables in IFC database. In experiment, three different building models are selected to demonstrate the effectiveness of our storage model. The comparison of experimental statistics proves that IFC data are lossless during data exchange.

  8. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    PubMed

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  9. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    NASA Astrophysics Data System (ADS)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.

  10. Data-driven modeling, control and tools for cyber-physical energy systems

    NASA Astrophysics Data System (ADS)

    Behl, Madhur

    Energy systems are experiencing a gradual but substantial change in moving away from being non-interactive and manually-controlled systems to utilizing tight integration of both cyber (computation, communications, and control) and physical representations guided by first principles based models, at all scales and levels. Furthermore, peak power reduction programs like demand response (DR) are becoming increasingly important as the volatility on the grid continues to increase due to regulation, integration of renewables and extreme weather conditions. In order to shield themselves from the risk of price volatility, end-user electricity consumers must monitor electricity prices and be flexible in the ways they choose to use electricity. This requires the use of control-oriented predictive models of an energy system's dynamics and energy consumption. Such models are needed for understanding and improving the overall energy efficiency and operating costs. However, learning dynamical models using grey/white box approaches is very cost and time prohibitive since it often requires significant financial investments in retrofitting the system with several sensors and hiring domain experts for building the model. We present the use of data-driven methods for making model capture easy and efficient for cyber-physical energy systems. We develop Model-IQ, a methodology for analysis of uncertainty propagation for building inverse modeling and controls. Given a grey-box model structure and real input data from a temporary set of sensors, Model-IQ evaluates the effect of the uncertainty propagation from sensor data to model accuracy and to closed-loop control performance. We also developed a statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor placement and density for accurate data collection for model training and control. Using a real building test-bed, we show how performing an uncertainty analysis can reveal trends about inverse model accuracy and control performance, which can be used to make informed decisions about sensor requirements and data accuracy. We also present DR-Advisor, a data-driven demand response recommender system for the building's facilities manager which provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. We develop a model based control with regression trees algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based demand response methods for a large DoE commercial reference building and leads to a significant amount of load curtailment (of 380kW) and over $45,000 in savings which is 37.9% of the summer energy bill for the building. The performance of DR-Advisor is also evaluated for 8 buildings on Penn's campus; where it achieves 92.8% to 98.9% prediction accuracy. We also compare DR-Advisor with other data driven methods and rank 2nd on ASHRAE's benchmarking data-set for energy prediction.

  11. A seismic optimization procedure for reinforced concrete framed buildings based on eigenfrequency optimization

    NASA Astrophysics Data System (ADS)

    Arroyo, Orlando; Gutiérrez, Sergio

    2017-07-01

    Several seismic optimization methods have been proposed to improve the performance of reinforced concrete framed (RCF) buildings; however, they have not been widely adopted among practising engineers because they require complex nonlinear models and are computationally expensive. This article presents a procedure to improve the seismic performance of RCF buildings based on eigenfrequency optimization, which is effective, simple to implement and efficient. The method is used to optimize a 10-storey regular building, and its effectiveness is demonstrated by nonlinear time history analyses, which show important reductions in storey drifts and lateral displacements compared to a non-optimized building. A second example for an irregular six-storey building demonstrates that the method provides benefits to a wide range of RCF structures and supports the applicability of the proposed method.

  12. Research of Ancient Architectures in Jin-Fen Area Based on GIS&BIM Technology

    NASA Astrophysics Data System (ADS)

    Jia, Jing; Zheng, Qiuhong; Gao, Huiying; Sun, Hai

    2017-05-01

    The number of well-preserved ancient buildings located in Shanxi Province, enjoying the absolute maximum proportion of ancient architectures in China, is about 18418, among which, 9053 buildings have the structural style of wood frame. The value of the application of BIM (Building Information Modeling) and GIS (Geographic Information System) is gradually probed and testified in the corresponding fields of ancient architecture’s spatial distribution information management, routine maintenance and special conservation & restoration, the evaluation and simulation of related disasters, such as earthquake. The research objects are ancient architectures in JIN-FEN area, which were first investigated by Sicheng LIANG and recorded in his work of “Chinese ancient architectures survey report”. The research objects, i.e. the ancient architectures in Jin-Fen area include those in Sicheng LIANG’s investigation, and further adjustments were made through authors’ on-site investigation and literature searching & collection. During this research process, the spatial distributing Geodatabase of research objects is established utilizing GIS. The BIM components library for ancient buildings is formed combining on-site investigation data and precedent classic works, such as “Yingzao Fashi”, a treatise on architectural methods in Song Dynasty, “Yongle Encyclopedia” and “Gongcheng Zuofa Zeli”, case collections of engineering practice, by the Ministry of Construction of Qing Dynasty. A building of Guangsheng temple in Hongtong county is selected as an example to elaborate the BIM model construction process based on the BIM components library for ancient buildings. Based on the foregoing work results of spatial distribution data, attribute data of features, 3D graphic information and parametric building information model, the information management system for ancient architectures in Jin-Fen Area, utilizing GIS&BIM technology, could be constructed to support the further research of seismic disaster analysis and seismic performance simulation.

  13. Quantitative risk assessment of landslides triggered by earthquakes and rainfall based on direct costs of urban buildings

    NASA Astrophysics Data System (ADS)

    Vega, Johnny Alexander; Hidalgo, Cesar Augusto

    2016-11-01

    This paper outlines a framework for risk assessment of landslides triggered by earthquakes and rainfall in urban buildings in the city of Medellín - Colombia, applying a model that uses a geographic information system (GIS). We applied a computer model that includes topographic, geological, geotechnical and hydrological features of the study area to assess landslide hazards using the Newmark's pseudo-static method, together with a probabilistic approach based on the first order and second moment method (FOSM). The physical vulnerability assessment of buildings was conducted using structural fragility indexes, as well as the definition of damage level of buildings via decision trees and using Medellin's cadastral inventory data. The probability of occurrence of a landslide was calculated assuming that an earthquake produces horizontal ground acceleration (Ah) and considering the uncertainty of the geotechnical parameters and the soil saturation conditions of the ground. The probability of occurrence was multiplied by the structural fragility index values and by the replacement value of structures. The model implemented aims to quantify the risk caused by this kind of disaster in an area of the city of Medellín based on different values of Ah and an analysis of the damage costs of this disaster to buildings under different scenarios and structural conditions. Currently, 62% of ;Valle de Aburra; where the study area is located is under very low condition of landslide hazard and 38% is under low condition. If all buildings in the study area fulfilled the requirements of the Colombian building code, the costs of a landslide would be reduced 63% compared with the current condition. An earthquake with a return period of 475 years was used in this analysis according to the seismic microzonation study in 2002.

  14. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an officemore » building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.« less

  15. Design of AN Intelligent Individual Evacuation Model for High Rise Building Fires Based on Neural Network Within the Scope of 3d GIS

    NASA Astrophysics Data System (ADS)

    Atila, U.; Karas, I. R.; Turan, M. K.; Rahman, A. A.

    2013-09-01

    One of the most dangerous disaster threatening the high rise and complex buildings of today's world including thousands of occupants inside is fire with no doubt. When we consider high population and the complexity of such buildings it is clear to see that performing a rapid and safe evacuation seems hard and human being does not have good memories in case of such disasters like world trade center 9/11. Therefore, it is very important to design knowledge based realtime interactive evacuation methods instead of classical strategies which lack of flexibility. This paper presents a 3D-GIS implementation which simulates the behaviour of an intelligent indoor pedestrian navigation model proposed for a self -evacuation of a person in case of fire. The model is based on Multilayer Perceptron (MLP) which is one of the most preferred artificial neural network architecture in classification and prediction problems. A sample fire scenario following through predefined instructions has been performed on 3D model of the Corporation Complex in Putrajaya (Malaysia) and the intelligent evacuation process has been realized within a proposed 3D-GIS based simulation.

  16. Prediction of indoor radon/thoron concentration in a model room from exhalation rates of building materials for different ventilation rates

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Sharma, Navjeet; Sarin, Amit

    2018-05-01

    Studies have confirmed that elevated levels of radon/thoron in the human-environments can substantially increase the risk of lung cancer in general population. The building materials are the second largest contributors to indoor radon/thoron after soil and bedrock beneath dwellings. In present investigation, the exhalation rates of radon/thoron from different building materials samples have been analysed using active technique. Radon/thoron concentrations in a model room have been predicted based on the exhalation rates from walls, floor and roof. The indoor concentrations show significant variations depending upon the ventilation rate and type of building materials used.

  17. Developing Historic Building Information Modelling Guidelines and Procedures for Architectural Heritage in Ireland

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.

    2017-08-01

    Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.

  18. Research on conflict detection algorithm in 3D visualization environment of urban rail transit line

    NASA Astrophysics Data System (ADS)

    Wang, Li; Xiong, Jing; You, Kuokuo

    2017-03-01

    In this paper, a method of collision detection is introduced, and the theory of three-dimensional modeling of underground buildings and urban rail lines is realized by rapidly extracting the buildings that are in conflict with the track area in the 3D visualization environment. According to the characteristics of the buildings, CSG and B-rep are used to model the buildings based on CSG and B-rep. On the basis of studying the modeling characteristics, this paper proposes to use the AABB level bounding volume method to detect the first conflict and improve the detection efficiency, and then use the triangular rapid intersection detection algorithm to detect the conflict, and finally determine whether the building collides with the track area. Through the algorithm of this paper, we can quickly extract buildings colliding with the influence area of the track line, so as to help the line design, choose the best route and calculate the cost of land acquisition in the three-dimensional visualization environment.

  19. Comparision of photogrammetric point clouds with BIM building elements for construction progress monitoring

    NASA Astrophysics Data System (ADS)

    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.

    2014-08-01

    For construction progress monitoring a planned state of the construction at a certain time (as-planed) has to be compared to the actual state (as-built). The as-planed state is derived from a building information model (BIM), which contains the geometry of the building and the construction schedule. In this paper we introduce an approach for the generation of an as-built point cloud by photogrammetry. It is regarded that that images on a construction cannot be taken from everywhere it seems to be necessary. Because of this we use a combination of structure from motion process together with control points to create a scaled point cloud in a consistent coordinate system. Subsequently this point cloud is used for an as-built - as-planed comparison. For that voxels of an octree are marked as occupied, free or unknown by raycasting based on the triangulated points and the camera positions. This allows to identify not existing building parts. For the verification of the existence of building parts a second test based on the points in front and behind the as-planed model planes is performed. The proposed procedure is tested based on an inner city construction site under real conditions.

  20. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Hong, Tianzhen

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less

  1. Impacts of building geometry modeling methods on the simulation results of urban building energy models

    DOE PAGES

    Chen, Yixing; Hong, Tianzhen

    2018-02-20

    We present that urban-scale building energy modeling (UBEM)—using building modeling to understand how a group of buildings will perform together—is attracting increasing attention in the energy modeling field. Unlike modeling a single building, which will use detailed information, UBEM generally uses existing building stock data consisting of high-level building information. This study evaluated the impacts of three zoning methods and the use of floor multipliers on the simulated energy use of 940 office and retail buildings in three climate zones using City Building Energy Saver. The first zoning method, OneZone, creates one thermal zone per floor using the target building'smore » footprint. The second zoning method, AutoZone, splits the building's footprint into perimeter and core zones. A novel, pixel-based automatic zoning algorithm is developed for the AutoZone method. The third zoning method, Prototype, uses the U.S. Department of Energy's reference building prototype shapes. Results show that simulated source energy use of buildings with the floor multiplier are marginally higher by up to 2.6% than those modeling each floor explicitly, which take two to three times longer to run. Compared with the AutoZone method, the OneZone method results in decreased thermal loads and less equipment capacities: 15.2% smaller fan capacity, 11.1% smaller cooling capacity, 11.0% smaller heating capacity, 16.9% less heating loads, and 7.5% less cooling loads. Source energy use differences range from -7.6% to 5.1%. When comparing the Prototype method with the AutoZone method, source energy use differences range from -12.1% to 19.0%, and larger ranges of differences are found for the thermal loads and equipment capacities. This study demonstrated that zoning methods have a significant impact on the simulated energy use of UBEM. Finally, one recommendation resulting from this study is to use the AutoZone method with floor multiplier to obtain accurate results while balancing the simulation run time for UBEM.« less

  2. Critical review of the building downwash algorithms in AERMOD.

    PubMed

    Petersen, Ron L; Guerra, Sergio A; Bova, Anthony S

    2017-08-01

    The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures. This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.

  3. Analysis of In-Canyon Flow Characterisitcs in step-up street canyons

    NASA Astrophysics Data System (ADS)

    PARK, S.; Kim, J.; Choi, W.; Pardyjak, E.

    2017-12-01

    Flow characteristics in strep-up street canyons were investigated focusing on in-canyon region. To see the effects of the building geometry, two building height ratios [ratio of the upwind (Hu) to downwind building heights (Hd) = 0.33, 0.6] were considered and eight building length ratios [ratio of the cross-wind building length (L) to street-canyon width (S) from 0.5 to 4 with the increment of 0.5] were systematically changed. For the model validation, the simulated results were compared with the wind- tunnel data measured for Hu/Hd = 0.33, 0.6 and L/S = 1, 2, 3, and 4. In the CFD model simulations, the corner vortices at the downwind side near the ground level and the recirculation zones above the downwind buildings had the relatively small extents, compared with those in the wind-tunnel experiments. However, the CFD model reproduced the main flow features such as the street-canyon vortices, circulations above the building roof, and the positions of the stagnation points on the downwind building walls in the wind-tunnel experiments reasonably well. By further analyzing the three-dimensional flow structures based on the numerical results simulated in the step-up street canyons, we schematically suggested the flow characteristics with different building-height and building-length ratios.

  4. Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations

    NASA Astrophysics Data System (ADS)

    Perry, S. G.; Heist, D. K.; Brouwer, L. H.; Monbureau, E. M.; Brixey, L. A.

    2016-10-01

    This paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of developing improved algorithms within dispersion models. The paper also examines the current AERMOD/PRIME modeling capabilities compared to wind tunnel observations. Differences in the amount of plume material entrained in the wake region downwind of a building for various source locations and source heights are illustrated with vertical and lateral concentration profiles. These profiles were parameterized using the Gaussian equation and show the influence of building/source configurations on those parameters. When the building is oriented at 45° to the approach flow, for example, the effective plume height descends more rapidly than it does for a perpendicular building, enhancing the resulting surface concentrations in the wake region. Buildings at angles to the wind cause a cross-wind shift in the location of the plume resulting from a lateral mean flow established in the building wake. These and other effects that are not well represented in many dispersion models are important considerations when developing improved algorithms to estimate the location and magnitude of concentrations downwind of elongated buildings.

  5. Results of the Housing Building Condition Evaluation Survey at the University of Georgia.

    ERIC Educational Resources Information Center

    Casey, John M.

    A complete campus building condition evaluation survey was conducted at the University of Georgia in 1989 and results for the housing department were analyzed. The survey design was based on a model developed by Harlan Bareither at the University of Illinois that separates building deficiencies into seven general headings. Data were collected at…

  6. Improving vulnerability models: lessons learned from a comparison between flood and earthquake assessments

    NASA Astrophysics Data System (ADS)

    de Ruiter, Marleen; Ward, Philip; Daniell, James; Aerts, Jeroen

    2017-04-01

    In a cross-discipline study, an extensive literature review has been conducted to increase the understanding of vulnerability indicators used in both earthquake- and flood vulnerability assessments, and to provide insights into potential improvements of earthquake and flood vulnerability assessments. It identifies and compares indicators used to quantitatively assess earthquake and flood vulnerability, and discusses their respective differences and similarities. Indicators have been categorized into Physical- and Social categories, and further subdivided into (when possible) measurable and comparable indicators. Physical vulnerability indicators have been differentiated to exposed assets such as buildings and infrastructure. Social indicators are grouped in subcategories such as demographics, economics and awareness. Next, two different vulnerability model types have been described that use these indicators: index- and curve-based vulnerability models. A selection of these models (e.g. HAZUS) have been described, and compared on several characteristics such as temporal- and spatial aspects. It appears that earthquake vulnerability methods are traditionally strongly developed towards physical attributes at an object scale and used in vulnerability curve models, whereas flood vulnerability studies focus more on indicators applied to aggregated land-use scales. Flood risk studies could be improved using approaches from earthquake studies, such as incorporating more detailed lifeline and building indicators, and developing object-based vulnerability curve assessments of physical vulnerability, for example by defining building material based flood vulnerability curves. Related to this, is the incorporation of time of the day based building occupation patterns (at 2am most people will be at home while at 2pm most people will be in the office). Earthquake assessments could learn from flood studies when it comes to the refined selection of social vulnerability indicators. Based on the lessons obtained in this study, we recommend future studies to further explore cross-hazard studies.

  7. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    NASA Astrophysics Data System (ADS)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24/28% HVAC energy savings in the winter/summer while also reducing thermal unacceptability; however, it is shown that the source of energy being saved must be considered in each case, as local heating options end up replacing cheaper, more carbon-friendly gas heating with expensive, emissions-heavy plug load electricity. The dissertation concludes with a summary of key outcomes and suggests how HABIT may be further developed in the future.

  8. Efficient workflows for 3D building full-color model reconstruction using LIDAR long-range laser and image-based modeling techniques

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong

    2005-01-01

    Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and reasonably low dimension error ratio. Again proving the applicability of the algorithm.

  9. Simple nonlinear modelling of earthquake response in torsionally coupled R/C structures: A preliminary study

    NASA Astrophysics Data System (ADS)

    Saiidi, M.

    1982-07-01

    The equivalent of a single degree of freedom (SDOF) nonlinear model, the Q-model-13, was examined. The study intended to: (1) determine the seismic response of a torsionally coupled building based on the multidegree of freedom (MDOF) and (SDOF) nonlinear models; and (2) develop a simple SDOF nonlinear model to calculate displacement history of structures with eccentric centers of mass and stiffness. It is shown that planar models are able to yield qualitative estimates of the response of the building. The model is used to estimate the response of a hypothetical six-story frame wall reinforced concrete building with torsional coupling, using two different earthquake intensities. It is shown that the Q-Model-13 can lead to a satisfactory estimate of the response of the structure in both cases.

  10. The benefit of 3D laser scanning technology in the generation and calibration of FEM models for health assessment of concrete structures.

    PubMed

    Yang, Hao; Xu, Xiangyang; Neumann, Ingo

    2014-11-19

    Terrestrial laser scanning technology (TLS) is a new technique for quickly getting three-dimensional information. In this paper we research the health assessment of concrete structures with a Finite Element Method (FEM) model based on TLS. The goal focuses on the benefits of 3D TLS in the generation and calibration of FEM models, in order to build a convenient, efficient and intelligent model which can be widely used for the detection and assessment of bridges, buildings, subways and other objects. After comparing the finite element simulation with surface-based measurement data from TLS, the FEM model is determined to be acceptable with an error of less than 5%. The benefit of TLS lies mainly in the possibility of a surface-based validation of results predicted by the FEM model.

  11. Building Interactive Simulations in Web Pages without Programming.

    PubMed

    Mailen Kootsey, J; McAuley, Grant; Bernal, Julie

    2005-01-01

    A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.

  12. Mobile Modelling for Crowdsourcing Building Interior Data

    NASA Astrophysics Data System (ADS)

    Rosser, J.; Morley, J.; Jackson, M.

    2012-06-01

    Indoor spatial data forms an important foundation to many ubiquitous computing applications. It gives context to users operating location-based applications, provides an important source of documentation of buildings and can be of value to computer systems where an understanding of environment is required. Unlike external geographic spaces, no centralised body or agency is charged with collecting or maintaining such information. Widespread deployment of mobile devices provides a potential tool that would allow rapid model capture and update by a building's users. Here we introduce some of the issues involved in volunteering building interior data and outline a simple mobile tool for capture of indoor models. The nature of indoor data is inherently private; however in-depth analysis of this issue and legal considerations are not discussed in detail here.

  13. Russian Apartment Building Thermal Response Models for Retrofit Selection and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Dirks, James A.; Reilly, Raymond W.

    2000-08-21

    The Enterprise Housing Divestiture Project (EHDP) aims to identify cost-effective energy efficiency and conservation measures for Russian apartment buildings and to implement these measures in the entire stock of buildings undergoing divestiture in six cities. Short-term measurements of infiltration and exterior wall heat-loss coefficient were made in the cities of Cheropovets, Orenburg, Petrozavodsk, Ryazan, and Vladimir. Long-term monitoring equipment was installed in six or more buildings in the aforementioned and in the city of Volxhov. The results of these measurements will be used to calibrate models used to select optimal retrofit packages and to verify energy savings. The retrofit categoriesmore » representing the largest technical potential in these buildings are envelope, heat recovery, and heating/hot water system improvements. This paper describes efforts to establish a useful thermal model calibration process. The model structures and analytical methods for obtaining building parameters from time series weather, energy use, and thermal response data are developed. Our experience applying these methods to two, nominally identical 5-story apartment buildings in the city of Ryazan is presented. Building envelope UA?s inferred from measured whole-building thermal response data are compared with UA?s based on window and wall U-values (the latter obtained by ASTM in-situ measurements of 20 wall sections in various Ryazan panel buildings) as well. The UA's obtained by these completely independent measurements differ by less than 10%.« less

  14. Freedom To Fly: 101 Activities for Building Self-Worth.

    ERIC Educational Resources Information Center

    Brewer, Chris

    A sense of self-worth and trust in oneself provides the will to survive, the desire to create, the ability to learn, and the courage to reach out and connect with another human being. This guide provides a self-worth building model based on the acronym SELF: (1) Sensing; (2) Expressing; (3) Learning; and (4) Forming. The self-worth model focuses…

  15. A Social Partnership Model to Promote Educators' Development in Mauritius through Formal and Informal Capacity-Building Initiatives

    ERIC Educational Resources Information Center

    Santally, Mohammad Issack; Cooshna-Naik, Dorothy; Conruyt, Noel; Wing, Caroline Koa

    2015-01-01

    This paper describes a social partnership model based on the living lab concept to promote the professional development of educators through formal and informal capacity-building initiatives. The aim is to have a broader impact on society through community outreach educational initiatives. A Living Lab is an environment for user-centered…

  16. Expanding Options. A Model to Attract Secondary Students into Nontraditional Vocational Programs. For Emphasis in: Building Trades, Electronics, Health Services, Machine Shop, Welding.

    ERIC Educational Resources Information Center

    Good, James D.; DeVore, Mary Ann

    This model has been designed for use by Missouri secondary schools in attracting females and males into nontraditional occupational programs. The research-based strategies are intended for implementation in the following areas: attracting females into building trades, electronics, machine shop, and welding; and males into secondary health…

  17. Mathematical modeling of the heat transfer for determining the depth of thawing basin buildings with long service life

    NASA Astrophysics Data System (ADS)

    Sirditov, Ivan; Stepanov, Sergei

    2017-11-01

    In this paper, a numerical study of the problem of determining a thawing basin in the permafrost soil for buildings with a long service life is carried out using two methods, with the formulas of set of rules 25.13330.2012 "Soil bases and foundations on permafrost soils" and using a mathematical model.

  18. Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.

    2000-01-01

    This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.

  19. Procedural Modeling for Rapid-Prototyping of Multiple Building Phases

    NASA Astrophysics Data System (ADS)

    Saldana, M.; Johanson, C.

    2013-02-01

    RomeLab is a multidisciplinary working group at UCLA that uses the city of Rome as a laboratory for the exploration of research approaches and dissemination practices centered on the intersection of space and time in antiquity. In this paper we present a multiplatform workflow for the rapid-prototyping of historical cityscapes through the use of geographic information systems, procedural modeling, and interactive game development. Our workflow begins by aggregating archaeological data in a GIS database. Next, 3D building models are generated from the ArcMap shapefiles in Esri CityEngine using procedural modeling techniques. A GIS-based terrain model is also adjusted in CityEngine to fit the building elevations. Finally, the terrain and city models are combined in Unity, a game engine which we used to produce web-based interactive environments which are linked to the GIS data using keyhole markup language (KML). The goal of our workflow is to demonstrate that knowledge generated within a first-person virtual world experience can inform the evaluation of data derived from textual and archaeological sources, and vice versa.

  20. Potential of 3D City Models to assess flood vulnerability

    NASA Astrophysics Data System (ADS)

    Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi

    2016-04-01

    Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of affected building area and estimated loss for a selection of inundation scenarios.

  1. Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction

    NASA Astrophysics Data System (ADS)

    Nguyen, Xuan Bao; Komatsuzaki, Toshihiko; Iwata, Yoshio; Asanuma, Haruhiko

    2018-02-01

    In this paper, a magnetorheological elastomer (MRE) based isolator was investigated to mitigate excessive vibrations in structures during seismic events. The primary objectives of this research are to propose a numerical model that expresses viscoelastic behaviors of the MRE and predict operation process of the MRE-based isolator for future design of isolator systems for various technical applications. Despite the simplicity in parameter definition in comparison to the conventional models, the proposed model works efficiently in a wide range of frequencies and amplitudes. The model consists of the following components: viscoelasticity of host MRE, magnetic field-induced property, nominal viscosity as well as high stiffness in low excitation frequency that are modeled in analogy with a standard linear solid model (Zener model), a stiffness variable spring, and a smooth Coulomb friction, respectively. Furthermore, a semi-active fuzzy controller was designed to enhance the performance of the isolator in suppressing structural vibrations. The control strategy was built to determine the command applied current. The controller is completely adequate for handling the nonlinearity of the isolator and works independently with the building structure. The efficiency of the MRE-based isolator was evaluated by the responses of the scaled building under seismic excitation. Numerical and experimental results show that the isolator accompanied with a fuzzy controller remarkably reduces the relative displacement and absolute acceleration of the scaled building compared to passive-off and passive-on cases.

  2. Integration of Infrared Thermography and Photogrammetric Surveying of Built Landscape

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Rosina, E.; L'Erario, A.; Dìaz-Vilariño, L.

    2017-05-01

    The thermal analysis of buildings represents a key-step for reduction of energy consumption, also in the case of Cultural Heritage. Here the complexity of the constructions and the adopted materials might require special analysis and tailored solutions. Infrared Thermography (IRT) is an important non-destructive investigation technique that may aid in the thermal analysis of buildings. The paper reports the application of IRT on a listed building, belonging to the Cultural Heritage and to a residential one, as a demonstration that IRT is a suitable and convenient tool for analysing the existing buildings. The purposes of the analysis are the assessment of the damages and energy efficiency of the building envelope. Since in many cases the complex geometry of historic constructions may involve the thermal analysis, the integration of IRT and accurate 3D models were developed during the latest years. Here authors propose a solution based on the up-to-date photogrammetric solutions for purely image-based 3D modelling, including automatic image orientation/sensor calibration using Structure-from-Motion and dense matching. Thus, an almost fully automatic pipeline for the generation of accurate 3D models showing the temperatures on a building skin in a realistic manner is described, where the only manual task is given by the measurement of a few common points for co-registration of RGB and IR photogrammetric projects.

  3. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  4. Integration of Jeddah Historical BIM and 3D GIS for Documentation and Restoration of Historical Monument

    NASA Astrophysics Data System (ADS)

    Baik, A.; Yaagoubi, R.; Boehm, J.

    2015-08-01

    This work outlines a new approach for the integration of 3D Building Information Modelling and the 3D Geographic Information System (GIS) to provide semantically rich models, and to get the benefits from both systems to help document and analyse cultural heritage sites. Our proposed framework is based on the Jeddah Historical Building Information Modelling process (JHBIM). This JHBIM consists of a Hijazi Architectural Objects Library (HAOL) that supports higher level of details (LoD) while decreasing the time of modelling. The Hijazi Architectural Objects Library has been modelled based on the Islamic historical manuscripts and Hijazi architectural pattern books. Moreover, the HAOL is implemented using BIM software called Autodesk Revit. However, it is known that this BIM environment still has some limitations with the non-standard architectural objects. Hence, we propose to integrate the developed 3D JHBIM with 3D GIS for more advanced analysis. To do so, the JHBIM database is exported and semantically enriched with non-architectural information that is necessary for restoration and preservation of historical monuments. After that, this database is integrated with the 3D Model in the 3D GIS solution. At the end of this paper, we'll illustrate our proposed framework by applying it to a Historical Building called Nasif Historical House in Jeddah. First of all, this building is scanned by the use of a Terrestrial Laser Scanner (TLS) and Close Range Photogrammetry. Then, the 3D JHBIM based on the HOAL is designed on Revit Platform. Finally, this model is integrated to a 3D GIS solution through Autodesk InfraWorks. The shown analysis presented in this research highlights the importance of such integration especially for operational decisions and sharing the historical knowledge about Jeddah Historical City. Furthermore, one of the historical buildings in Old Jeddah, Nasif Historical House, was chosen as a test case for the project.

  5. Examining the impact of lahars on buildings using numerical modelling

    NASA Astrophysics Data System (ADS)

    Mead, Stuart R.; Magill, Christina; Lemiale, Vincent; Thouret, Jean-Claude; Prakash, Mahesh

    2017-05-01

    Lahars are volcanic flows containing a mixture of fluid and sediment which have the potential to cause significant damage to buildings, critical infrastructure and human life. The extent of this damage is controlled by properties of the lahar, location of elements at risk and susceptibility of these elements to the lahar. Here we focus on understanding lahar-induced building damage. Quantification of building damage can be difficult due to the complexity of lahar behaviour (hazard), varying number and type of buildings exposed to the lahar (exposure) and the uncertain susceptibility of buildings to lahar impacts (vulnerability). In this paper, we quantify and examine the importance of lahar hazard, exposure and vulnerability in determining building damage with reference to a case study in the city of Arequipa, Peru. Numerical modelling is used to investigate lahar properties that are important in determining the inundation area and forces applied to buildings. Building vulnerability is quantified through the development of critical depth-pressure curves based on the ultimate bending moment of masonry structures. In the case study area, results suggest that building strength plays a minor role in determining overall building losses in comparison to the effects of building exposure and hydraulic characteristics of the lahar.

  6. Application of BIM Technology in Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Zhanglin, Guo; Si, Gao; Jun-e, Liu

    2017-08-01

    The development of fabricated buildings has become the main trend of the developm ent of modern construction industry in China. As the main tool of building information, BIM (b uilding information modeling) has greatly promoted the development of construction industry. Based on the review of the papers about the fabricated buildings and BIM technology in recent years, this paper analyzes the advantages of fabricated buildings and BIM technology, then exp lores the application of BIM technology in fabricated buildings. It aims to realize the rationaliz ation and scientification of project lifecycle management in fabricated construction project, and finally form a coherent information platform in the fabricated building.

  7. BIM based virtual environment for fire emergency evacuation.

    PubMed

    Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.

  8. New approach to analyzing soil-building systems

    USGS Publications Warehouse

    Safak, E.

    1998-01-01

    A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.A new method of analyzing seismic response of soil-building systems is introduced. The method is based on the discrete-time formulation of wave propagation in layered media for vertically propagating plane shear waves. Buildings are modeled as an extension of the layered soil media by assuming that each story in the building is another layer. The seismic response is expressed in terms of wave travel times between the layers, and the wave reflection and transmission coefficients at layer interfaces. The calculation of the response is reduced to a pair of simple finite-difference equations for each layer, which are solved recursively starting from the bedrock. Compared with commonly used vibration formulation, the wave propagation formulation provides several advantages, including the ability to incorporate soil layers, simplicity of the calculations, improved accuracy in modeling the mass and damping, and better tools for system identification and damage detection.

  9. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  10. End-use energy consumption estimates for US commercial buildings, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L.

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment.more » Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.« less

  11. Adapting to Local Context: Findings from the Youthbuild Evaluation Implementation Study

    ERIC Educational Resources Information Center

    Wiegand, Andrew; Manno, Michelle; Leshnick, Sengsouvanh; Treskon, Louisa; Geckeler, Christian; Lewis-Charp, Heather; Sinicrope, Castle; Clark, Mika; Nicholson, Brandon

    2015-01-01

    YouthBuild is intended to help high school dropouts, ages 16 to 24, who face an array of impediments to their educational and employment success as they progress into adulthood. Stemming from one program launched in the late 1970s, today over 270 YouthBuild programs operate nationwide. YouthBuild is a principles-based model that values a…

  12. Using experimental data to reduce the single-building sigma of fragility curves: case study of the BRD tower in Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Perrault, Matthieu; Gueguen, Philippe; Aldea, Alexandru; Demetriu, Sorin

    2013-12-01

    The lack of knowledge concerning modelling existing buildings leads to signifiant variability in fragility curves for single or grouped existing buildings. This study aims to investigate the uncertainties of fragility curves, with special consideration of the single-building sigma. Experimental data and simplified models are applied to the BRD tower in Bucharest, Romania, a RC building with permanent instrumentation. A three-step methodology is applied: (1) adjustment of a linear MDOF model for experimental modal analysis using a Timoshenko beam model and based on Anderson's criteria, (2) computation of the structure's response to a large set of accelerograms simulated by SIMQKE software, considering twelve ground motion parameters as intensity measurements (IM), and (3) construction of the fragility curves by comparing numerical interstory drift with the threshold criteria provided by the Hazus methodology for the slight damage state. By introducing experimental data into the model, uncertainty is reduced to 0.02 considering S d ( f 1) as seismic intensity IM and uncertainty related to the model is assessed at 0.03. These values must be compared with the total uncertainty value of around 0.7 provided by the Hazus methodology.

  13. Semi-automatic building extraction in informal settlements from high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Mayunga, Selassie David

    The extraction of man-made features from digital remotely sensed images is considered as an important step underpinning management of human settlements in any country. Man-made features and buildings in particular are required for varieties of applications such as urban planning, creation of geographical information systems (GIS) databases and Urban City models. The traditional man-made feature extraction methods are very expensive in terms of equipment, labour intensive, need well-trained personnel and cannot cope with changing environments, particularly in dense urban settlement areas. This research presents an approach for extracting buildings in dense informal settlement areas using high-resolution satellite imagery. The proposed system uses a novel strategy of extracting building by measuring a single point at the approximate centre of the building. The fine measurement of the building outlines is then effected using a modified snake model. The original snake model on which this framework is based, incorporates an external constraint energy term which is tailored to preserving the convergence properties of the snake model; its use to unstructured objects will negatively affect their actual shapes. The external constrained energy term was removed from the original snake model formulation, thereby, giving ability to cope with high variability of building shapes in informal settlement areas. The proposed building extraction system was tested on two areas, which have different situations. The first area was Tungi in Dar Es Salaam, Tanzania where three sites were tested. This area is characterized by informal settlements, which are illegally formulated within the city boundaries. The second area was Oromocto in New Brunswick, Canada where two sites were tested. Oromocto area is mostly flat and the buildings are constructed using similar materials. Qualitative and quantitative measures were employed to evaluate the accuracy of the results as well as the performance of the system. The qualitative and quantitative measures were based on visual inspection and by comparing the measured coordinates to the reference data respectively. In the course of this process, a mean area coverage of 98% was achieved for Dar Es Salaam test sites, which globally indicated that the extracted building polygons were close to the ground truth data. Furthermore, the proposed system saved time to extract a single building by 32%. Although the extracted building polygons are within the perimeter of ground truth data, visually some of the extracted building polygons were somewhat distorted. This implies that interactive post-editing process is necessary for cartographic representation.

  14. What should be considered if you decide to build your own mathematical model for predicting the development of bacterial resistance? Recommendations based on a systematic review of the literature

    PubMed Central

    Arepeva, Maria; Kolbin, Alexey; Kurylev, Alexey; Balykina, Julia; Sidorenko, Sergey

    2015-01-01

    Acquired bacterial resistance is one of the causes of mortality and morbidity from infectious diseases. Mathematical modeling allows us to predict the spread of resistance and to some extent to control its dynamics. The purpose of this review was to examine existing mathematical models in order to understand the pros and cons of currently used approaches and to build our own model. During the analysis, seven articles on mathematical approaches to studying resistance that satisfied the inclusion/exclusion criteria were selected. All models were classified according to the approach used to study resistance in the presence of an antibiotic and were analyzed in terms of our research. Some models require modifications due to the specifics of the research. The plan for further work on model building is as follows: modify some models, according to our research, check all obtained models against our data, and select the optimal model or models with the best quality of prediction. After that we would be able to build a model for the development of resistance using the obtained results. PMID:25972847

  15. Performance of Single Friction Pendulum bearing for isolated buildings subjected to seismic actions in Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen, N. V.; Nguyen, C. H.; Hoang, H. P.; Huong, K. T.

    2018-04-01

    Using structural control technology in earthquake resistant design of buildings in Vietnam is very limited. In this paper, a performance evaluation of using Single Friction Pendulum (SFP) bearing for seismically isolated buildings with earthquake conditions in Vietnam is presented. A two-dimensional (2-D) model of the 5-storey building subjected to earthquakes is analyzed in time domain. Accordingly, the model is analyzed for 2 cases: with and without SFP bearing. The ground acceleration data is selected and scaled to suit the design acceleration in Hanoi followed by the Standard TCVN 9386:2012. It is shown that the seismically isolated buildings gets the performance objectives while achieving an 91% reduction in the base shear, a significant decrease in the inter-story drift and absolute acceleration of each story.

  16. Full-scale Dynamic Testing of Soft-Story Retrofitted and Un-Retrofitted Woodframe Buildings

    Treesearch

    John W. van de Lindt; George T. Abell; Pouria Bahmani; Mikhail Gershfeld; Xiaoyun Shao; Weichiang Pang; Michael D. Symans; Ershad Ziaei; Steven E. Pryor; Douglas Rammer; Jingjing Tian

    2013-01-01

    The existence of thousands of soft-story woodframe buildings in California has been recognized as a disaster preparedness problem with concerted mitigation efforts underway in many cities throughout the state. The vast majority of those efforts are based on numerical modeling, often with half-century old data in which assumptions have to be made based on best...

  17. Building SWPBIS Capacity in Rural Schools through Building-Based Coaching: Early Findings from a District-Based Model

    ERIC Educational Resources Information Center

    Cavanaugh, Brian; Swan, Meaghan

    2015-01-01

    School-wide Positive Behavioral Interventions and Supports (SWPBIS) is a widely used framework for supporting student social and academic behavior. Implementation science indicates that one effective way to implement and scale-up practices, such as SWPBIS, is through coaching; thus, there is a need for efficient, cost-effective methods to develop…

  18. Long-period building response to earthquakes in the San Francisco Bay Area

    USGS Publications Warehouse

    Olsen, A.H.; Aagaard, Brad T.; Heaton, T.H.

    2008-01-01

    This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David

    Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from sitemore » energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.« less

  20. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    NASA Astrophysics Data System (ADS)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  1. Direct-coupled microcomputer-based building emulator for building energy management and control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, H.N.

    1999-07-01

    In this paper, the development and implementation of a direct-coupled building emulator for a building energy management and control system (EMCS) is presented. The building emulator consists of a microcomputer and a computer model of an air-conditioning system implemented in a modular dynamic simulation software package for direct-coupling to an EMCS, without using analog-to-digital and digital-to-analog converters. The building emulator can be used to simulate in real time the behavior of the air-conditioning system under a given operating environment and subject to a given usage pattern. Software modules for data communication, graphical display, dynamic data exchange, and synchronization of simulationmore » outputs with real time have been developed to achieve direct digital data transfer between the building emulator and a commercial EMCS. Based on the tests conducted, the validity of the building emulator has been established and the proportional-plus-integral control function of the EMCS assessed.« less

  2. Photovoltaic electricity generation: Value for residential and commercial sectors

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Ujjwal

    The photovoltaic (PV) industry in the US has seen an upsurge in recent years, and PV holds great promise as a renewable technology with no greenhouse gas emissions with its use. We aim to assess the value of PV based electricity for users in the residential and commercial sectors focusing on the financial impacts it has, which may not be greatly recognized. Specifically, we pursue two goals. First, the emerging 'renewable portfolio standard (RPS)' adopted in several states in the country has been a driving force for large scale PV deployment, but financial incentives offered to PV in different RPS states differ considerably. We use life cycle cost model to estimate the cost of PV based electricity for thirty-two RPS states in the country. Results indicate that the levelized cost of PV electricity is high (40 to 60 Cents/kWh). When the contribution of the financial incentives (along with the cost of energy saved) is taken into account, the cost of PV based electricity is negative in some RPS states such as California, New Jersey, New York, while for most of the RPS states the cost of PV electricity continues to remain high. In addition, the states with negative or low cost of PV electricity have been driving the PV diffusion in the residential sector. Therefore, a need to adjust the financial incentive structure in different RPS states is recommended for homogenous development of the residential PV market in the country. Second, we assess the value of the PV in reducing the highest peak load demand in commercial buildings and hence the high value demand charge. The Time-of-Use (TOU) based electricity tariff is widely used by electric utilities in the commercial sector. Energy and peak load are two important facets of the TOU tariff regime. Tools are well established to estimate the energy contribution from a PV system (installed in a commercial building), but not power output on a short time interval. A joint conditional probability model has been developed that enables estimation of the PV contribution towards the peak load reduction for a given high building load. Results indicate a significant cost saving (15% to 40%) with application of the model. This will encourage commercial entities (building owners) to adopt PV as a distributed energy source. The tool would be useful for energy modelers and green building architects as it will enable them to estimate cost savings due to PV deployment in commercial buildings. Moreover, the model tested for three different commercial buildings indicates that school buildings show the best promise for PV deployment followed, respectively, by office buildings and manufacturing facilities. This will help PV incentive programs in the country to use resources effectively to enhance the diffusion of PV in the commercial sector.

  3. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies conceptually and practically integrate urban spatial and energy planning approaches. The combined modelling approach that will be developed based on the described sectorial models holds the potential to represent hybrid energy systems coupling distributed generation of electricity with thermal conversion systems.

  4. Courthouse Prototype Building

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malhotra, Mini; New, Joshua Ryan; Im, Piljae

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, andmore » jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses represent a majority of courthouse buildings. However, collectively they comprise a small fraction of total courthouse floor area in the US. Spaces and operation of courthouse also varies depending on the court type (federal court vs state court; district, appellate, versus Supreme Court) and jurisdiction (general jurisdiction, general jurisdiction trial, or special courts). Based on the statistics on courthouses, general jurisdiction trial court is considered for the prototype model. The model is assumed to be a 4-courtroom, small, 72,000 sqft three-story building including a ground level/ basement.« less

  5. Mobile Building Energy Audit and Modeling Tools: Cooperative Research and Development Final Report, CRADA Number CRD-11-00441

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brackney, L.

    Broadly accessible, low cost, accurate, and easy-to-use energy auditing tools remain out of reach for managers of the aging U.S. building population (over 80% of U.S. commercial buildings are more than 10 years old*). concept3D and NREL's commercial buildings group will work to translate and extend NREL's existing spreadsheet-based energy auditing tool for a browser-friendly and mobile-computing platform. NREL will also work with concept3D to further develop a prototype geometry capture and materials inference tool operable on a smart phone/pad platform. These tools will be developed to interoperate with NREL's Building Component Library and OpenStudio energy modeling platforms, and willmore » be marketed by concept3D to commercial developers, academic institutions and governmental agencies. concept3D is NREL's lead developer and subcontractor of the Building Component Library.« less

  6. Research utilization in the building industry: decision model and preliminary assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, R.L.; Johnson, D.R.; Smith, S.A.

    1985-10-01

    The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formatingmore » information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.« less

  7. Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Bassier, M.; Vergauwen, M.; Van Genechten, B.

    2017-08-01

    Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.

  8. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  9. Building-to-Grid Integration through Commercial Building Portfolios Participating in Energy and Frequency Regulation Markets

    NASA Astrophysics Data System (ADS)

    Pavlak, Gregory S.

    Building energy use is a significant contributing factor to growing worldwide energy demands. In pursuit of a sustainable energy future, commercial building operations must be intelligently integrated with the electric system to increase efficiency and enable renewable generation. Toward this end, a model-based methodology was developed to estimate the capability of commercial buildings to participate in frequency regulation ancillary service markets. This methodology was integrated into a supervisory model predictive controller to optimize building operation in consideration of energy prices, demand charges, and ancillary service revenue. The supervisory control problem was extended to building portfolios to evaluate opportunities for synergistic effect among multiple, centrally-optimized buildings. Simulation studies performed showed that the multi-market optimization was able to determine appropriate opportunities for buildings to provide frequency regulation. Total savings were increased by up to thirteen percentage points, depending on the simulation case. Furthermore, optimizing buildings as a portfolio achieved up to seven additional percentage points of savings, depending on the case. Enhanced energy and cost savings opportunities were observed by taking the novel perspective of optimizing building portfolios in multiple grid markets, motivating future pursuits of advanced control paradigms that enable a more intelligent electric grid.

  10. Dynamic model of production enterprises based on accounting registers and its identification

    NASA Astrophysics Data System (ADS)

    Sirazetdinov, R. T.; Samodurov, A. V.; Yenikeev, I. A.; Markov, D. S.

    2016-06-01

    The report focuses on the mathematical modeling of economic entities based on accounting registers. Developed the dynamic model of financial and economic activity of the enterprise as a system of differential equations. Created algorithms for identification of parameters of the dynamic model. Constructed and identified the model of Russian machine-building enterprises.

  11. Evaluation of an urban vegetative canopy scheme and impact on plume dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A; Williams, Michael D; Zajic, Dragan

    2009-01-01

    The Quick Urban and Industrial Complex (QUIC) atmospheric dispersion modeling system attempts to fill an important gap between the fast, but nonbuilding-aware Gaussian plume models and the building-aware but slow computational fluid dynamics (CFD) models. While Gaussian models have the ability to give answers quickly to emergency responders, they are unlikely to be able to adequately account for the effects of the building-induced complex flow patterns on the near-source dispersion of contaminants. QUIC uses a diagnostic massconsistent empirical wind model called QUIC-URB that is based on the methodology of Rockle (1990), (see also Kaplan and Dinar 1996). In this approach,more » the recirculation zones that form around and between buildings are inserted into the flow using empirical parameterizations and then the wind field is forced to be mass consistent. Although not as accurate as CFD codes, this approach is several orders of magnitude faster and accounts for the bulk effects of buildings.« less

  12. Damage estimation of subterranean building constructions due to groundwater inundation - the GIS-based model approach GRUWAD

    NASA Astrophysics Data System (ADS)

    Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.

    2012-09-01

    The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.

  13. Building community resilience to disasters through a community-based intervention: CART applications.

    PubMed

    Pfefferbaum, Rose L; Pfefferbaum, Betty; Van Horn, Richard L; Neas, Barbara R; Houston, J Brian

    2013-01-01

    The Communities Advancing Resilience Toolkit (CART)* is a community-driven, publicly available, theory-based, and evidence-informed community intervention designed to build community resilience to disasters and other adversities. Based on principles of participatory action research, CART applications contribute to community resilience by encouraging and supporting community participation and cooperation, communication, self-awareness, and critical reflection. The primary value of CART lies in its ability to stimulate analysis, collaboration, skill building, resource sharing, and purposeful action. In addition to generating community assessment data, CART can be used as a vehicle for delivering other interventions and creating sustainable capacity within communities. Two models for CART implementation are described.

  14. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings

    PubMed Central

    Bao, Yihai; Main, Joseph A.; Noh, Sam-Young

    2017-01-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness. PMID:28890599

  15. Localized Segment Based Processing for Automatic Building Extraction from LiDAR Data

    NASA Astrophysics Data System (ADS)

    Parida, G.; Rajan, K. S.

    2017-05-01

    The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.

  16. Nonlinear damping based semi-active building isolation system

    NASA Astrophysics Data System (ADS)

    Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka

    2018-06-01

    Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.

  17. Research Capacity Building: A Historically Black College/University-Based Case Study of a Peer-to-Peer Mentor Research Team Model

    ERIC Educational Resources Information Center

    Moore, Corey L.; Manyibe, Edward O.; Aref, Fariborz; Washington, Andre L.

    2017-01-01

    Purpose: To evaluate a peer-to-peer mentor research team model (PPMRTM) in building investigators' research skills (i.e., research methods and grant writing) at a historically Black college/university (HBCU) in the United States. Method: Three different theories (i.e., planned change, critical mass, and self-efficacy), contemporary study findings,…

  18. A Hybrid Backward-Forward Iterative Model for Improving Capacity Building of Earth Observations for Sustainable Societal Application

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Iqbal, N.; Lee, H.; Muhammad, A.

    2015-12-01

    When it comes to building durable capacity for implementing state of the art technology and earth observation (EO) data for improved decision making, it has been long recognized that a unidirectional approach (from research to application) often does not work. Co-design of capacity building effort has recently been recommended as a better alternative. This approach is a two-way street where scientists and stakeholders engage intimately along the entire chain of actions from design of research experiments to packaging of decision making tools and each party provides an equal amount of input. Scientists execute research experiments based on boundary conditions and outputs that are defined as tangible by stakeholders for decision making. On the other hand, decision making tools are packaged by stakeholders with scientists ensuring the application-specific science is relevant. In this talk, we will overview one such iterative capacity building approach that we have implemented for gravimetry-based satellite (GRACE) EO data for improved groundwater management in Pakistan. We call our approach a hybrid approach where the initial step is a forward model involving a conventional short-term (3 day) capacity building workshop in the stakeholder environment addressing a very large audience. In this forward model, the net is cast wide to 'shortlist' a set of highly motivated stakeholder agency staffs who are then engaged more directly in 1-1 training. In the next step (the backward model), these short listed staffs are then brought back in the research environment of the scientists (supply) for 1-1 and long-term (6 months) intense brainstorming, training, and design of decision making tools. The advantage of this backward model is that it allows for a much better understanding for scientists of the ground conditions and hurdles of making a EO-based scientific innovation work for a specific decision making problem that is otherwise fundamentally impossible in conventional training workshops. We demonstrate here our experience of implementing this hybrid model for capacity building for groundwater management for Pakistan Council for Research on Water Resources (PCRWR) with the ultimate goal of empowering naitonal agencies in their ability to monitor groundwater storage changes independently from satellites.

  19. Building Community-Engaged Health Research and Discovery Infrastructure on the South Side of Chicago: Science in Service to Community Priorities

    PubMed Central

    Lindau, Stacy Tessler; Makelarski, Jennifer A.; Chin, Marshall H.; Desautels, Shane; Johnson, Daniel; Johnson, Waldo E.; Miller, Doriane; Peters, Susan; Robinson, Connie; Schneider, John; Thicklin, Florence; Watson, Natalie P.; Wolfe, Marcus; Whitaker, Eric

    2011-01-01

    Objective To describe the roles community members can and should play in, and an asset-based strategy used by Chicago’s South Side Health and Vitality Studies for, building sustainable, large-scale community health research infrastructure. The Studies are a family of research efforts aiming to produce actionable knowledge to inform health policy, programming, and investments for the region. Methods Community and university collaborators, using a consensus-based approach, developed shared theoretical perspectives, guiding principles, and a model for collaboration in 2008, which were used to inform an asset-based operational strategy. Ongoing community engagement and relationship-building support the infrastructure and research activities of the Studies. Results Key steps in the asset-based strategy include: 1) continuous community engagement and relationship building, 2) identifying community priorities, 3) identifying community assets, 4) leveraging assets, 5) conducting research, 6) sharing knowledge and 7) informing action. Examples of community member roles, and how these are informed by the Studies’ guiding principles, are provided. Conclusions Community and university collaborators, with shared vision and principles, can effectively work together to plan innovative, large-scale community-based research that serves community needs and priorities. Sustainable, effective models are needed to realize NIH’s mandate for meaningful translation of biomedical discovery into improved population health. PMID:21236295

  20. Software Tools For Building Decision-support Models For Flood Emergency Situations

    NASA Astrophysics Data System (ADS)

    Garrote, L.; Molina, M.; Ruiz, J. M.; Mosquera, J. C.

    The SAIDA decision-support system was developed by the Spanish Ministry of the Environment to provide assistance to decision-makers during flood situations. SAIDA has been tentatively implemented in two test basins: Jucar and Guadalhorce, and the Ministry is currently planning to have it implemented in all major Spanish basins in a few years' time. During the development cycle of SAIDA, the need for providing as- sistance to end-users in model definition and calibration was clearly identified. System developers usually emphasise abstraction and generality with the goal of providing a versatile software environment. End users, on the other hand, require concretion and specificity to adapt the general model to their local basins. As decision-support models become more complex, the gap between model developers and users gets wider: Who takes care of model definition, calibration and validation?. Initially, model developers perform these tasks, but the scope is usually limited to a few small test basins. Before the model enters operational stage, end users must get involved in model construction and calibration, in order to gain confidence in the model recommendations. However, getting the users involved in these activities is a difficult task. The goal of this re- search is to develop representation techniques for simulation and management models in order to define, develop and validate a mechanism, supported by a software envi- ronment, oriented to provide assistance to the end-user in building decision models for the prediction and management of river floods in real time. The system is based on three main building blocks: A library of simulators of the physical system, an editor to assist the user in building simulation models, and a machine learning method to calibrate decision models based on the simulation models provided by the user.

  1. Intelligent demand side management of residential building energy systems

    NASA Astrophysics Data System (ADS)

    Sinha, Maruti N.

    Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.

  2. Improving stability of prediction models based on correlated omics data by using network approaches.

    PubMed

    Tissier, Renaud; Houwing-Duistermaat, Jeanine; Rodríguez-Girondo, Mar

    2018-01-01

    Building prediction models based on complex omics datasets such as transcriptomics, proteomics, metabolomics remains a challenge in bioinformatics and biostatistics. Regularized regression techniques are typically used to deal with the high dimensionality of these datasets. However, due to the presence of correlation in the datasets, it is difficult to select the best model and application of these methods yields unstable results. We propose a novel strategy for model selection where the obtained models also perform well in terms of overall predictability. Several three step approaches are considered, where the steps are 1) network construction, 2) clustering to empirically derive modules or pathways, and 3) building a prediction model incorporating the information on the modules. For the first step, we use weighted correlation networks and Gaussian graphical modelling. Identification of groups of features is performed by hierarchical clustering. The grouping information is included in the prediction model by using group-based variable selection or group-specific penalization. We compare the performance of our new approaches with standard regularized regression via simulations. Based on these results we provide recommendations for selecting a strategy for building a prediction model given the specific goal of the analysis and the sizes of the datasets. Finally we illustrate the advantages of our approach by application of the methodology to two problems, namely prediction of body mass index in the DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome study (DILGOM) and prediction of response of each breast cancer cell line to treatment with specific drugs using a breast cancer cell lines pharmacogenomics dataset.

  3. Building Virtuality into University-Based Human Resources Policy in China's Universities

    ERIC Educational Resources Information Center

    Guoliang, Zhang

    2005-01-01

    On the basis of discussing the notion of virtual human resources and its structure, this paper analyzes the necessity of building up virtual university teaching staff and proposes a model for the structural makeup of virtual university teaching staff.

  4. Building Trades.

    ERIC Educational Resources Information Center

    Gudzak, Raymond

    This curriculum guide provides materials for a competency-based course in building trades at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

  5. Geometric Model of Induction Heating Process of Iron-Based Sintered Materials

    NASA Astrophysics Data System (ADS)

    Semagina, Yu V.; Egorova, M. A.

    2018-03-01

    The article studies the issue of building multivariable dependences based on the experimental data. A constructive method for solving the issue is presented in the form of equations of (n-1) – surface compartments of the extended Euclidean space E+n. The dimension of space is taken to be equal to the sum of the number of parameters and factors of the model of the system being studied. The basis for building multivariable dependencies is the generalized approach to n-space used for the surface compartments of 3D space. The surface is designed on the basis of the kinematic method, moving one geometric object along a certain trajectory. The proposed approach simplifies the process aimed at building the multifactorial empirical dependencies which describe the process being investigated.

  6. An innovative time-cost-quality tradeoff modeling of building construction project based on resource allocation.

    PubMed

    Hu, Wenfa; He, Xinhua

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated.

  7. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was determined that the addition of a PV array is not feasible from a purely economic viewpoint. Several avenues for expansion of this research are presented in Chapter 5.

  8. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  9. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  10. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  11. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Michael J.; Niemeyer, Jackie M.

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levelsmore » of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.« less

  12. Using HAZUS-MH for modelling past coastal flooding events in Japan

    NASA Astrophysics Data System (ADS)

    Robinson, T.; Charvet, I.; Gunasekera, R.

    2012-04-01

    In regions at risk from natural hazards, the ability to pre-determine the vulnerability and exposure of buildings (residential, commercial, industrial and government) from multiple hazard scenarios, allows policy makers and businesses to put forward appropriate policies, planning and intervention methods to mitigate the financial impact. For this purpose, a number of catastrophe models have been developed to provide the decision makers with quantitative risk assessments based on science and engineering knowledge. One of the most sophisticated open source models currently available is HAZUS-MH. The software is a powerful tool for analysing potential losses from floods, hurricane winds, and earthquakes. It was initially designed by FEMA to work with US datasets and has proven to be a great resource for disaster management at both national and local level in order to plan and increase the awareness of the recovery process after a natural disaster. Methodologies have been introduced to export the HAZUS-MH model for global applications. However, currently the international community have been slow to act on this technology breakthrough. The applications of this project will focus on adapting the HAZUS-HM model to provide a reliable vulnerability assessment of Japan's building stock from tsunami flooding. A review of the different methodologies will be carried out and presented as guidance on the best practice. The numerical assessment reports will be compared to real scenarios based on field observations, financial bulletins and government reports. A sensitivity analysis will be carried out on the generation of bespoke datasets based on the quality and density of the available regional data. These results will be compared against results using proxy US datasets. In addition, the significance of regional building standards and practices will be incorporated into the model through the development of new damage functions. The level of confidence and sensitivity (building stock, vulnerability functions) of the results will be used in order to quantify the ability of the tool (and user) to accurately predict building damage and financial loss.

  13. Global optimization framework for solar building design

    NASA Astrophysics Data System (ADS)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  14. A cloud-based framework for large-scale traditional Chinese medical record retrieval.

    PubMed

    Liu, Lijun; Liu, Li; Fu, Xiaodong; Huang, Qingsong; Zhang, Xianwen; Zhang, Yin

    2018-01-01

    Electronic medical records are increasingly common in medical practice. The secondary use of medical records has become increasingly important. It relies on the ability to retrieve the complete information about desired patient populations. How to effectively and accurately retrieve relevant medical records from large- scale medical big data is becoming a big challenge. Therefore, we propose an efficient and robust framework based on cloud for large-scale Traditional Chinese Medical Records (TCMRs) retrieval. We propose a parallel index building method and build a distributed search cluster, the former is used to improve the performance of index building, and the latter is used to provide high concurrent online TCMRs retrieval. Then, a real-time multi-indexing model is proposed to ensure the latest relevant TCMRs are indexed and retrieved in real-time, and a semantics-based query expansion method and a multi- factor ranking model are proposed to improve retrieval quality. Third, we implement a template-based visualization method for displaying medical reports. The proposed parallel indexing method and distributed search cluster can improve the performance of index building and provide high concurrent online TCMRs retrieval. The multi-indexing model can ensure the latest relevant TCMRs are indexed and retrieved in real-time. The semantics expansion method and the multi-factor ranking model can enhance retrieval quality. The template-based visualization method can enhance the availability and universality, where the medical reports are displayed via friendly web interface. In conclusion, compared with the current medical record retrieval systems, our system provides some advantages that are useful in improving the secondary use of large-scale traditional Chinese medical records in cloud environment. The proposed system is more easily integrated with existing clinical systems and be used in various scenarios. Copyright © 2017. Published by Elsevier Inc.

  15. Testing a Web-Based, Trained-Peer Model to Build Capacity for Evidence-Based Practices in Community Mental Health Systems.

    PubMed

    German, Ramaris E; Adler, Abby; Frankel, Sarah A; Stirman, Shannon Wiltsey; Pinedo, Paola; Evans, Arthur C; Beck, Aaron T; Creed, Torrey A

    2018-03-01

    Use of expert-led workshops plus consultation has been established as an effective strategy for training community mental health (CMH) clinicians in evidence-based practices (EBPs). Because of high rates of staff turnover, this strategy inadequately addresses the need to maintain capacity to deliver EBPs. This study examined knowledge, competency, and retention outcomes of a two-phase model developed to build capacity for an EBP in CMH programs. In the first phase, an initial training cohort in each CMH program participated in in-person workshops followed by expert-led consultation (in-person, expert-led [IPEL] phase) (N=214 clinicians). After this cohort completed training, new staff members participated in Web-based training (in place of in-person workshops), followed by peer-led consultation with the initial cohort (Web-based, trained-peer [WBTP] phase) (N=148). Tests of noninferiority assessed whether WBTP was not inferior to IPEL at increasing clinician cognitive-behavioral therapy (CBT) competency, as measured by the Cognitive Therapy Rating Scale. WBTP was not inferior to IPEL at developing clinician competency. Hierarchical linear models showed no significant differences in CBT knowledge acquisition between the two phases. Survival analyses indicated that WBTP trainees were less likely than IPEL trainees to complete training. In terms of time required from experts, WBTP required 8% of the resources of IPEL. After an initial investment to build in-house CBT expertise, CMH programs were able to use a WBTP model to broaden their own capacity for high-fidelity CBT. IPEL followed by WBTP offers an effective alternative to build EBP capacity in CMH programs, rather than reliance on external experts.

  16. A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons.

    PubMed

    Ng, Wai-Yin; Chau, Chi-Kwan

    2014-01-15

    This study evaluated the effectiveness of different configurations for two building design elements, namely building permeability and setback, proposed for mitigating air pollutant exposure problems in isolated deep canyons by using an indirect exposure approach. The indirect approach predicted the exposures of three different population subgroups (i.e. pedestrians, shop vendors and residents) by multiplying the pollutant concentrations with the duration of exposure within a specific micro-environment. In this study, the pollutant concentrations for different configurations were predicted using a computational fluid dynamics model. The model was constructed based on the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model. Fifty-one canyon configurations with aspect ratios of 2, 4, 6 and different building permeability values (ratio of building spacing to the building façade length) or different types of building setback (recess of a high building from the road) were examined. The findings indicated that personal exposures of shop vendors were extremely high if they were present inside a canyon without any setback or separation between buildings and when the prevailing wind was perpendicular to the canyon axis. Building separation and building setbacks were effective in reducing personal air exposures in canyons with perpendicular wind, although their effectiveness varied with different configurations. Increasing the permeability value from 0 to 10% significantly lowered the personal exposures on the different population subgroups. Likewise, the personal exposures could also be reduced by the introduction of building setbacks despite their effects being strongly influenced by the aspect ratio of a canyon. Equivalent findings were observed if the reduction in the total development floor area (the total floor area permitted to be developed within a particular site area) was also considered. These findings were employed to formulate a hierarchy decision making model to guide the planning of deep canyons in high density urban cities. © 2013 Elsevier B.V. All rights reserved.

  17. Research on the Application of GRC Material in Exhibition Decoration Engineering

    NASA Astrophysics Data System (ADS)

    Cai, Yan

    2018-03-01

    Glass fiber reinforced cement (GRC) is a kind of new building material which is based on cement and take the alkali resistant glass fiber as reinforcing material. It is mainly used in building decoration project and it has many advantages like environmental protection, economical, practical modeling and others. This paper mainly studies the concrete application of GRC material in exhibition building decoration project.

  18. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  19. BIM integration in education: A case study of the construction technology project Bolt Tower Dolni Vitkovice

    NASA Astrophysics Data System (ADS)

    Venkrbec, Vaclav; Bittnerova, Lucie

    2017-12-01

    Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.

  20. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    PubMed

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  1. Neuronize: a tool for building realistic neuronal cell morphologies

    PubMed Central

    Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740

  2. Neuronize: a tool for building realistic neuronal cell morphologies.

    PubMed

    Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis; Defelipe, Javier; Benavides-Piccione, Ruth

    2013-01-01

    This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.

  3. Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors

    NASA Astrophysics Data System (ADS)

    Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Santos-Filho, Osvaldo A.; Esposito, Emilio X.; Hopfinger, Anton J.; Tseng, Yufeng J.

    2008-06-01

    In previous studies we have developed categorical QSAR models for predicting skin-sensitization potency based on 4D-fingerprint (4D-FP) descriptors and in vivo murine local lymph node assay (LLNA) measures. Only 4D-FP derived from the ground state (GMAX) structures of the molecules were used to build the QSAR models. In this study we have generated 4D-FP descriptors from the first excited state (EMAX) structures of the molecules. The GMAX, EMAX and the combined ground and excited state 4D-FP descriptors (GEMAX) were employed in building categorical QSAR models. Logistic regression (LR) and partial least square coupled logistic regression (PLS-CLR), found to be effective model building for the LLNA skin-sensitization measures in our previous studies, were used again in this study. This also permitted comparison of the prior ground state models to those involving first excited state 4D-FP descriptors. Three types of categorical QSAR models were constructed for each of the GMAX, EMAX and GEMAX datasets: a binary model (2-state), an ordinal model (3-state) and a binary-binary model (two-2-state). No significant differences exist among the LR 2-state model constructed for each of the three datasets. However, the PLS-CLR 3-state and 2-state models based on the EMAX and GEMAX datasets have higher predictivity than those constructed using only the GMAX dataset. These EMAX and GMAX categorical models are also more significant and predictive than corresponding models built in our previous QSAR studies of LLNA skin-sensitization measures.

  4. The Dario Bacas Goniobarimeter: Building a Balance Based on Properties of the Cycloid

    ERIC Educational Resources Information Center

    Pantin, Javier del Rey; de Zarate, Jose M. Ortiz

    2010-01-01

    In this article we describe and build a model of a historical weighing device proposed by the Spanish engineer Dario Bacas in the second half of the 19th century. The balance was named "goniobarimeter" by its inventor, and the weighing principle is based on a curious, and not very well known, property of the cycloid. The simplicity of the design…

  5. Earthquake Resilient Tall Reinforced Concrete Buildings at Near-Fault Sites Using Base Isolation and Rocking Core Walls

    NASA Astrophysics Data System (ADS)

    Calugaru, Vladimir

    This dissertation pursues three main objectives: (1) to investigate the seismic response of tall reinforced concrete core wall buildings, designed following current building codes, subjected to pulse type near-fault ground motion, with special focus on the relation between the characteristics of the ground motion and the higher-modes of response; (2) to determine the characteristics of a base isolation system that results in nominally elastic response of the superstructure of a tall reinforced concrete core wall building at the maximum considered earthquake level of shaking; and (3) to demonstrate that the seismic performance, cost, and constructability of a base-isolated tall reinforced concrete core wall building can be significantly improved by incorporating a rocking core-wall in the design. First, this dissertation investigates the seismic response of tall cantilever wall buildings subjected to pulse type ground motion, with special focus on the relation between the characteristics of ground motion and the higher-modes of response. Buildings 10, 20, and 40 stories high were designed such that inelastic deformation was concentrated at a single flexural plastic hinge at their base. Using nonlinear response history analysis, the buildings were subjected to near-fault seismic ground motions as well as simple close-form pulses, which represented distinct pulses within the ground motions. Euler-Bernoulli beam models with lumped mass and lumped plasticity were used to model the buildings. Next, this dissertation investigates numerically the seismic response of six seismically base-isolated (BI) 20-story reinforced concrete buildings and compares their response to that of a fixed-base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three-story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low-friction tension-resistant cross-linear bearings, lead-rubber bearings, and NFVDs. Finally, this dissertation investigates the seismic response of four 20-story buildings hypothetically located in the San Francisco Bay Area, 0.5 km from the San Andreas fault. One of the four studied buildings is fixed-base (FB), two are base-isolated (BI), and one uses a combination of base isolation and a rocking core wall (BIRW). Above the ground level, a reinforced concrete core wall provides the majority of the lateral force resistance in all four buildings. The FB and BI buildings satisfy requirements of ASCE 7-10. The BI and BIRW buildings use the same isolation system, which combines tension-resistant friction pendulum bearings and nonlinear fluid viscous dampers. The rocking core-wall includes post-tensioning steel, buckling-restrained devices, and at its base is encased in a steel shell to maximize confinement of the concrete core. The total amount of longitudinal steel in the wall of the BIRW building is 0.71 to 0.87 times that used in the BI buildings. Response history two-dimensional analysis is performed, including the vertical components of excitation, for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). While the FB building at MCE level of shaking develops inelastic deformations and shear stresses in the wall that may correspond to irreparable damage, the BI and the BIRW buildings experience nominally elastic response of the wall, with floor accelerations and shear forces which are 0.36 to 0.55 times those experienced by the FB building. The response of the four buildings to two historical and two simulated near-fault ground motions is also studied, demonstrating that the BIRW building has the largest deformation capacity at the onset of structural damage. (Abstract shortened by UMI.).

  6. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE PAGES

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    2017-11-26

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  7. Gradient boosting machine for modeling the energy consumption of commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touzani, Samir; Granderson, Jessica; Fernandes, Samuel

    Accurate savings estimations are important to promote energy efficiency projects and demonstrate their cost-effectiveness. The increasing presence of advanced metering infrastructure (AMI) in commercial buildings has resulted in a rising availability of high frequency interval data. These data can be used for a variety of energy efficiency applications such as demand response, fault detection and diagnosis, and heating, ventilation, and air conditioning (HVAC) optimization. This large amount of data has also opened the door to the use of advanced statistical learning models, which hold promise for providing accurate building baseline energy consumption predictions, and thus accurate saving estimations. The gradientmore » boosting machine is a powerful machine learning algorithm that is gaining considerable traction in a wide range of data driven applications, such as ecology, computer vision, and biology. In the present work an energy consumption baseline modeling method based on a gradient boosting machine was proposed. To assess the performance of this method, a recently published testing procedure was used on a large dataset of 410 commercial buildings. The model training periods were varied and several prediction accuracy metrics were used to evaluate the model's performance. The results show that using the gradient boosting machine model improved the R-squared prediction accuracy and the CV(RMSE) in more than 80 percent of the cases, when compared to an industry best practice model that is based on piecewise linear regression, and to a random forest algorithm.« less

  8. The Application of Typology Method in Historical Building Information Modelling (hbim) Taking the Information Surveying and Mapping of Jiayuguan Fortress Town as AN Example

    NASA Astrophysics Data System (ADS)

    Li, D. Y.; Li, K.; Wu, C.

    2017-08-01

    With the promotion of fine degree of the heritage building surveying and mapping, building information modelling technology(BIM) begins to be used in surveying and mapping, renovation, recording and research of heritage building, called historical building information modelling(HBIM). The hierarchical frameworks of parametric component library of BIM, belonging to the same type with the same parameters, has the same internal logic with archaeological typology which is more and more popular in the age identification of ancient buildings. Compared with the common materials, 2D drawings and photos, typology with HBIM has two advantages — (1) comprehensive building information both in collection and representation and (2) uniform and reasonable classification criteria This paper will take the information surveying and mapping of Jiayuguan Fortress Town as an example to introduce the field work method of information surveying and mapping based on HBIM technology and the construction of Revit family library.And then in order to prove the feasibility and advantage of HBIM technology used in typology method, this paper will identify the age of Guanghua gate tower, Rouyuan gate tower, Wenchang pavilion and the theater building of Jiayuguan Fortress Town with HBIM technology and typology method.

  9. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    PubMed Central

    Huang, Shiping; Hu, Mengyu; Cui, Nannan; Wang, Weifeng

    2018-01-01

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry. PMID:29673176

  10. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    PubMed

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  11. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    PubMed

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  12. GillesPy: A Python Package for Stochastic Model Building and Simulation

    PubMed Central

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2017-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888

  13. Reconstruction and simplification of urban scene models based on oblique images

    NASA Astrophysics Data System (ADS)

    Liu, J.; Guo, B.

    2014-08-01

    We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.

  14. Analysis on the restriction factors of the green building scale promotion based on DEMATEL

    NASA Astrophysics Data System (ADS)

    Wenxia, Hong; Zhenyao, Jiang; Zhao, Yang

    2017-03-01

    In order to promote the large-scale development of the green building in our country, DEMATEL method was used to classify influence factors of green building development into three parts, including green building market, green technology and macro economy. Through the DEMATEL model, the interaction mechanism of each part was analyzed. The mutual influence degree of each barrier factor that affects the green building promotion was quantitatively analysed and key factors for the development of green building in China were also finally determined. In addition, some implementation strategies of promoting green building scale development in our country were put forward. This research will show important reference value and practical value for making policies of the green building promotion.

  15. Project Management Life Cycle Models to Improve Management in High-rise Construction

    NASA Astrophysics Data System (ADS)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  16. The comparison of landslide ratio-based and general logistic regression landslide susceptibility models in the Chishan watershed after 2009 Typhoon Morakot

    NASA Astrophysics Data System (ADS)

    WU, Chunhung

    2015-04-01

    The research built the original logistic regression landslide susceptibility model (abbreviated as or-LRLSM) and landslide ratio-based ogistic regression landslide susceptibility model (abbreviated as lr-LRLSM), compared the performance and explained the error source of two models. The research assumes that the performance of the logistic regression model can be better if the distribution of landslide ratio and weighted value of each variable is similar. Landslide ratio is the ratio of landslide area to total area in the specific area and an useful index to evaluate the seriousness of landslide disaster in Taiwan. The research adopted the landside inventory induced by 2009 Typhoon Morakot in the Chishan watershed, which was the most serious disaster event in the last decade, in Taiwan. The research adopted the 20 m grid as the basic unit in building the LRLSM, and six variables, including elevation, slope, aspect, geological formation, accumulated rainfall, and bank erosion, were included in the two models. The six variables were divided as continuous variables, including elevation, slope, and accumulated rainfall, and categorical variables, including aspect, geological formation and bank erosion in building the or-LRLSM, while all variables, which were classified based on landslide ratio, were categorical variables in building the lr-LRLSM. Because the count of whole basic unit in the Chishan watershed was too much to calculate by using commercial software, the research took random sampling instead of the whole basic units. The research adopted equal proportions of landslide unit and not landslide unit in logistic regression analysis. The research took 10 times random sampling and selected the group with the best Cox & Snell R2 value and Nagelkerker R2 value as the database for the following analysis. Based on the best result from 10 random sampling groups, the or-LRLSM (lr-LRLSM) is significant at the 1% level with Cox & Snell R2 = 0.190 (0.196) and Nagelkerke R2 = 0.253 (0.260). The unit with the landslide susceptibility value > 0.5 (≦ 0.5) will be classified as a predicted landslide unit (not landslide unit). The AUC, i.e. the area under the relative operating characteristic curve, of or-LRLSM in the Chishan watershed is 0.72, while that of lr-LRLSM is 0.77. Furthermore, the average correct ratio of lr-LRLSM (73.3%) is better than that of or-LRLSM (68.3%). The research analyzed in detail the error sources from the two models. In continuous variables, using the landslide ratio-based classification in building the lr-LRLSM can let the distribution of weighted value more similar to distribution of landslide ratio in the range of continuous variable than that in building the or-LRLSM. In categorical variables, the meaning of using the landslide ratio-based classification in building the lr-LRLSM is to gather the parameters with approximate landslide ratio together. The mean correct ratio in continuous variables (categorical variables) by using the lr-LRLSM is better than that in or-LRLSM by 0.6 ~ 2.6% (1.7% ~ 6.0%). Building the landslide susceptibility model by using landslide ratio-based classification is practical and of better performance than that by using the original logistic regression.

  17. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    NASA Astrophysics Data System (ADS)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the exposure may provide different recommendations compared to an assessment based on only the outdoor air concentration.

  18. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for usemore » in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.« less

  19. Post Occupancy energy evaluation of Ronald Tutor Hall using eQUEST; Computer based simulation of existing building and comparison of data

    NASA Astrophysics Data System (ADS)

    Dulom, Duyum

    Buildings account for about 40 percent of total U.S. energy consumption. It is therefore important to shift our focus on important measures that can be taken to make buildings more energy efficient. With the rise in number of buildings day by day and the dwindling resources, retrofitting buildings is the key to an energy efficiency future. Post occupancy evaluation (POE) is an important tool and is ideal for the retrofitting process. POE would help to identify the problem areas in the building and enable researchers and designers to come up with solutions addressing the inefficient energy usage as well as the overall wellbeing of the users of the building. The post occupancy energy evaluation of Ronald Tutor Hall (RTH) located at the University of Southern California is one small step in that direction. RTH was chosen to study because; (a) relatively easy access to the building data (b) it was built in compliance with Title 24 2001 and (c) it was old enough to have post occupancy data. The energy modeling tool eQuest was used to simulate the RTH building using the background information of the building such as internal thermal comfort profile, occupancy profile, building envelope profile, internal heat gain profile, etc. The simulation results from eQuest were then compared with the actual building recorded data to verify that our simulated model was behaving similar to the actual building. Once we were able to make the simulated model behave like the actual building, changes were made to the model such as installation of occupancy sensor in the classroom & laboratories, changing the thermostat set points and introducing solar shade on northwest and southwest facade. The combined savings of the proposed interventions resulted in a 6% savings in the overall usage of energy.

  20. Statistical Techniques to Explore the Quality of Constraints in Constraint-Based Modeling Environments

    ERIC Educational Resources Information Center

    Gálvez, Jaime; Conejo, Ricardo; Guzmán, Eduardo

    2013-01-01

    One of the most popular student modeling approaches is Constraint-Based Modeling (CBM). It is an efficient approach that can be easily applied inside an Intelligent Tutoring System (ITS). Even with these characteristics, building new ITSs requires carefully designing the domain model to be taught because different sources of errors could affect…

  1. 76 FR 15870 - Airworthiness Directives; Airbus Model A310 Series Airplanes, and Airbus Model A300 B4-600, B4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ..., Docket Operations, M-30, West Building Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE... Building Ground Floor, Room W12-40, 1200 New Jersey Avenue, SE., Washington, DC, between 9 a.m. and 5 p.m... than estimated here. Based on these figures, we estimate the cost of the proposed AD on U.S. operators...

  2. Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory

    ERIC Educational Resources Information Center

    Skinner, Ellen A.; Chi, Una

    2012-01-01

    Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…

  3. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  4. Applying Critical Race Theory to Group Model Building Methods to Address Community Violence.

    PubMed

    Frerichs, Leah; Lich, Kristen Hassmiller; Funchess, Melanie; Burrell, Marcus; Cerulli, Catherine; Bedell, Precious; White, Ann Marie

    2016-01-01

    Group model building (GMB) is an approach to building qualitative and quantitative models with stakeholders to learn about the interrelationships among multilevel factors causing complex public health problems over time. Scant literature exists on adapting this method to address public health issues that involve racial dynamics. This study's objectives are to (1) introduce GMB methods, (2) present a framework for adapting GMB to enhance cultural responsiveness, and (3) describe outcomes of adapting GMB to incorporate differences in racial socialization during a community project seeking to understand key determinants of community violence transmission. An academic-community partnership planned a 1-day session with diverse stakeholders to explore the issue of violence using GMB. We documented key questions inspired by critical race theory (CRT) and adaptations to established GMB "scripts" (i.e., published facilitation instructions). The theory's emphasis on experiential knowledge led to a narrative-based facilitation guide from which participants created causal loop diagrams. These early diagrams depict how violence is transmitted and how communities respond, based on participants' lived experiences and mental models of causation that grew to include factors associated with race. Participants found these methods useful for advancing difficult discussion. The resulting diagrams can be tested and expanded in future research, and will form the foundation for collaborative identification of solutions to build community resilience. GMB is a promising strategy that community partnerships should consider when addressing complex health issues; our experience adapting methods based on CRT is promising in its acceptability and early system insights.

  5. UPMC's blueprint for BuILDing a high-value health care system.

    PubMed

    Keyser, Donna; Kogan, Jane; McGowan, Marion; Peele, Pamela; Holder, Diane; Shrank, William

    2018-03-30

    National-level demonstration projects and real-world studies continue to inform health care transformation efforts and catalyze implementation of value-based service delivery and payment models, though evidence generation and diffusion of learnings often occurs at a relatively slow pace. Rapid-cycle learning models, however, can help individual organizations to more quickly adapt health care innovations to meet the challenges and demands of a rapidly changing health care landscape. Integrated delivery and financing systems (IDFSs) offer a unique platform for rapid-cycle learning and innovation. Since both the provider and payer benefit from delivering care that enhances the patient experience, improves quality, and reduces cost, incentives are aligned to experiment with value-based models, enhance learning about what works and why, and contribute to solutions that can accelerate transformation. In this article, we describe how the UPMC Insurance Services Division, as part of a large IDFS, uses its Business, Innovation, Learning, and Dissemination (BuILD) model to prioritize, design, test, and refine health care innovations and accelerate learning. We provide examples of how the BuILD model offers an approach for quickly assessing the impact and value of health care transformation efforts. Lessons learned through the BuILD process will offer insights and guidance for a wide range of stakeholders whether an IDFS or independent payer-provider collaborators. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A WWW-Based Archive and Retrieval System for Multimedia

    NASA Technical Reports Server (NTRS)

    Hyon, J.; Sorensen, S.; Martin, M.; Kawasaki, K.; Takacs, M.

    1996-01-01

    This paper describes the Data Distribution Laboratory (DDL) and discusses issues involved in building multimedia CD-ROMs. It describes the modeling philosophy for cataloging multimedia products and the worldwide-web (WWW)-based multimedia archive and retrieval system (Webcat) built on that model.

  7. A School-Based Mental Health Consultation Curriculum.

    ERIC Educational Resources Information Center

    Sandoval, Jonathan; Davis, John M.

    1984-01-01

    Presents one position on consultation that integrates a theoretical model, a process model, and a curriculum for training school-based mental health consultants. Elements of the proposed curriculum include: ethics, relationship building, maintaining rapport, defining problems, gathering data, sharing information, generating and supporting…

  8. Pixel-based approach for building heights determination by SAR radargrammetry

    NASA Astrophysics Data System (ADS)

    Dubois, C.; Thiele, A.; Hinz, S.

    2013-10-01

    Numerous advances have been made recently in photogrammetry, laser scanning, and remote sensing for the creation of 3D city models. More and more cities are interested in getting 3D city models, be it for urban planning purposes or for supporting public utility companies. In areas often affected by natural disaster, rapid updating of the 3D information may also be useful for helping rescue forces. The high resolutions that can be achieved by the new spaceborne SAR sensor generation enables the analysis of city areas at building level and make those sensors attractive for the extraction of 3D information. Moreover, they present the advantage of weather and sunlight independency, which make them more practicable than optical data, in particular for tasks where rapid response is required. Furthermore, their short revisit time and the possibility of multi-sensor constellation enable providing several acquisitions within a few hours. This opens up the floor for new applications, especially radargrammetric applications, which consider acquisitions taken under different incidence angles. In this paper, we present a new approach for determining building heights, relying only on the radargrammetric analysis of building layover. By taking into account same-side acquisitions, we present the workflow of building height determination. Focus is set on some geometric considerations, pixel-based approach for disparity map calculation, and analysis of the building layover signature for different configurations in order to determine building height.

  9. Object-oriented regression for building predictive models with high dimensional omics data from translational studies.

    PubMed

    Zhao, Lue Ping; Bolouri, Hamid

    2016-04-01

    Maturing omics technologies enable researchers to generate high dimension omics data (HDOD) routinely in translational clinical studies. In the field of oncology, The Cancer Genome Atlas (TCGA) provided funding support to researchers to generate different types of omics data on a common set of biospecimens with accompanying clinical data and has made the data available for the research community to mine. One important application, and the focus of this manuscript, is to build predictive models for prognostic outcomes based on HDOD. To complement prevailing regression-based approaches, we propose to use an object-oriented regression (OOR) methodology to identify exemplars specified by HDOD patterns and to assess their associations with prognostic outcome. Through computing patient's similarities to these exemplars, the OOR-based predictive model produces a risk estimate using a patient's HDOD. The primary advantages of OOR are twofold: reducing the penalty of high dimensionality and retaining the interpretability to clinical practitioners. To illustrate its utility, we apply OOR to gene expression data from non-small cell lung cancer patients in TCGA and build a predictive model for prognostic survivorship among stage I patients, i.e., we stratify these patients by their prognostic survival risks beyond histological classifications. Identification of these high-risk patients helps oncologists to develop effective treatment protocols and post-treatment disease management plans. Using the TCGA data, the total sample is divided into training and validation data sets. After building up a predictive model in the training set, we compute risk scores from the predictive model, and validate associations of risk scores with prognostic outcome in the validation data (P-value=0.015). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Object-Oriented Regression for Building Predictive Models with High Dimensional Omics Data from Translational Studies

    PubMed Central

    Zhao, Lue Ping; Bolouri, Hamid

    2016-01-01

    Maturing omics technologies enable researchers to generate high dimension omics data (HDOD) routinely in translational clinical studies. In the field of oncology, The Cancer Genome Atlas (TCGA) provided funding support to researchers to generate different types of omics data on a common set of biospecimens with accompanying clinical data and to make the data available for the research community to mine. One important application, and the focus of this manuscript, is to build predictive models for prognostic outcomes based on HDOD. To complement prevailing regression-based approaches, we propose to use an object-oriented regression (OOR) methodology to identify exemplars specified by HDOD patterns and to assess their associations with prognostic outcome. Through computing patient’s similarities to these exemplars, the OOR-based predictive model produces a risk estimate using a patient’s HDOD. The primary advantages of OOR are twofold: reducing the penalty of high dimensionality and retaining the interpretability to clinical practitioners. To illustrate its utility, we apply OOR to gene expression data from non-small cell lung cancer patients in TCGA and build a predictive model for prognostic survivorship among stage I patients, i.e., we stratify these patients by their prognostic survival risks beyond histological classifications. Identification of these high-risk patients helps oncologists to develop effective treatment protocols and post-treatment disease management plans. Using the TCGA data, the total sample is divided into training and validation data sets. After building up a predictive model in the training set, we compute risk scores from the predictive model, and validate associations of risk scores with prognostic outcome in the validation data (p=0.015). PMID:26972839

  11. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  12. Association of airborne moisture-indicating microorganisms withbuilding-related symptoms and water damage in 100 U.S. office buildings:Analyses of the U.S. EPA BASE data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, Mark J.; Lei, Quanhong; Cozen, Myrna O.

    2003-10-01

    Metrics of culturable airborne microorganisms for either total organisms or suspected harmful subgroups have generally not been associated with symptoms among building occupants. However, the visible presence of moisture damage or mold in residences and other buildings has consistently been associated with respiratory symptoms and other health effects. This relationship is presumably caused by adverse but uncharacterized exposures to moisture-related microbiological growth. In order to assess this hypothesis, we studied relationships in U.S. office buildings between the prevalence of respiratory and irritant symptoms, the concentrations of airborne microorganisms that require moist surfaces on which to grow, and the presence ofmore » visible water damage. For these analyses we used data on buildings, indoor environments, and occupants collected from a representative sample of 100 U.S. office buildings in the U.S. Environmental Protection Agency's Building Assessment Survey and Evaluation (EPA BASE) study. We created 19 alternate metrics, using scales ranging from 3-10 units, that summarized the concentrations of airborne moisture-indicating microorganisms (AMIMOs) as indicators of moisture in buildings. Two were constructed to resemble a metric previously reported to be associated with lung function changes in building occupants; the others were based on another metric from the same group of Finnish researchers, concentration cutpoints from other studies, and professional judgment. We assessed three types of associations: between AMIMO metrics and symptoms in office workers, between evidence of water damage and symptoms, and between water damage and AMIMO metrics. We estimated (as odds ratios (ORs) with 95% confidence intervals) the unadjusted and adjusted associations between the 19 metrics and two types of weekly, work-related symptoms--lower respiratory and mucous membrane--using logistic regression models. Analyses used the original AMIMO metrics and were repeated with simplified dichotomized metrics. The multivariate models adjusted for other potential confounding variables associated with respondents, occupied spaces, buildings, or ventilation systems. Models excluded covariates for moisture-related risks hypothesized to increase AMIMO levels. We also estimated the association of water damage (using variables for specific locations in the study space or building, or summary variables) with the two symptom outcomes. Finally, using selected AMIMO metrics as outcomes, we constructed logistic regression models with observations at the building level to estimate unadjusted and adjusted associations of evident water damage with AMIMO metrics. All original AMIMO metrics showed little overall pattern of unadjusted or adjusted association with either symptom outcome. The 3-category metric resembling that previously used by others, which of all constructed metrics had the largest number of buildings in its top category, was not associated with symptoms in these buildings. However, most metrics with few buildings in their highest category showed increased risk for both symptoms in that category, especially metrics using cutpoints of >100 but <500 colony-forming units (CFU)/m{sup 3} for concentration of total culturable fungi. With AMIMO metrics dichotomized to compare the highest category with all lower categories combined, four metrics had unadjusted ORs between 1.4 and 1.6 for both symptom outcomes. The same four metrics had adjusted ORs of 1.7-2.1 for both symptom outcomes. In models of water damage and symptoms, several specific locations of past water damage had significant associations with outcomes, with ORs ranging from 1.4-1.6. In bivariate models of water damage and selected AMIMO metrics, a number of specific types of water damage and several summary variables for water damage were very strongly associated with AMIMO metrics (significant ORs ranging above 15). Multivariate modeling with the dichotomous AMIMO metrics was not possible due to limited numbers of observations.« less

  13. Culto: AN Ontology-Based Annotation Tool for Data Curation in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Garozzo, R.; Murabito, F.; Santagati, C.; Pino, C.; Spampinato, C.

    2017-08-01

    This paper proposes CulTO, a software tool relying on a computational ontology for Cultural Heritage domain modelling, with a specific focus on religious historical buildings, for supporting cultural heritage experts in their investigations. It is specifically thought to support annotation, automatic indexing, classification and curation of photographic data and text documents of historical buildings. CULTO also serves as a useful tool for Historical Building Information Modeling (H-BIM) by enabling semantic 3D data modeling and further enrichment with non-geometrical information of historical buildings through the inclusion of new concepts about historical documents, images, decay or deformation evidence as well as decorative elements into BIM platforms. CulTO is the result of a joint research effort between the Laboratory of Surveying and Architectural Photogrammetry "Luigi Andreozzi" and the PeRCeiVe Lab (Pattern Recognition and Computer Vision Lab) of the University of Catania,

  14. BIM Based Virtual Environment for Fire Emergency Evacuation

    PubMed Central

    Rezgui, Yacine; Ong, Hoang N.

    2014-01-01

    Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704

  15. Three dimensional Origami-based metamaterial

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan; High Performance Materials; Structures Labratory Team

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson's ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  16. Development, testing, and numerical modeling of a foam sandwich biocomposite

    NASA Astrophysics Data System (ADS)

    Chachra, Ricky

    This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.

  17. Simulation-based modeling of building complexes construction management

    NASA Astrophysics Data System (ADS)

    Shepelev, Aleksandr; Severova, Galina; Potashova, Irina

    2018-03-01

    The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.

  18. Multiple scattering of waves in random media: Application to the study of the city-site effect in Mexico City area.

    NASA Astrophysics Data System (ADS)

    Ishizawa, O. A.; Clouteau, D.

    2007-12-01

    Long-duration, amplifications and spatial response's variability of the seismic records registered in Mexico City during the September 1985 earthquake cannot only be explained by the soil velocity model. We will try to explain these phenomena by studying the extent of the effect of buildings' diffracted wave fields during an earthquake. The main question is whether the presence of a large number of buildings can significantly modify the seismic wave field. We are interested in the interaction between the incident wave field propagating in a stratified half- space and a large number of structures at the free surface, i.e., the coupled city-site effect. We study and characterize the seismic wave propagation regimes in a city using the theory of wave propagation in random media. In the coupled city-site system, the buildings are modeled as resonant scatterers uniformly distributed at the surface of a deterministic, horizontally layered elastic half-space representing the soil. Based on the mean-field and the field correlation equations, we build a theoretical model which takes into account the multiple scattering of seismic waves and allows us to describe the coupled city-site system behavior in a simple and rapid way. The results obtained for the configurationally averaged field quantities are validated by means of 3D results for the seismic response of a deterministic model. The numerical simulations of this model are computed with MISS3D code based on classical Soil-Structure Interaction techniques and on a variational coupling between Boundary Integral Equations for a layered soil and a modal Finite Element approach for the buildings. This work proposes a detailed numerical and a theoretical analysis of the city-site interaction (CSI) in Mexico City area. The principal parameters in the study of the CSI are the buildings resonant frequency distribution, the soil characteristics of the site, the urban density and position of the buildings in the city, as well as the type of incident wave. The main results of the theoretical and numerical models allow us to characterize the seismic movement in urban areas.

  19. Construction of technological artifacts and teaching strategies to promote flexible scientific understanding

    NASA Astrophysics Data System (ADS)

    Spitulnik, Michele Wisnudel

    Science education reforms advocate inquiry as a way to build explanations and make informed decisions. Based on this call this dissertation (1) defines flexible scientific understanding by elaborating on content, inquiry and epistemic understandings; (2) describes an inquiry based unit that integrates dynamic modeling software; (3) examines students' understandings as they construct models; and (4) identifies instructional strategies that support inquiry and model building. A curriculum unit was designed to engage students in inquiry by identifying problems and constructing models to represent, explain and predict phenomena. Ninth grade students in a public mid-western high school worked in teams of 2-3 to ask questions, find information and reflect on the purposes of models. Data sources including classroom video, observations, interviews, student models and handouts were used to formulate cases that examine how two groups construct understanding. A teacher case study identifies the teaching strategies that support understanding. Categories within content, inquiry and epistemic understandings were used to analyze student understandings and teaching supports. The findings demonstrate that students can build flexible understanding by constructing models. Students built: (1) content understanding by identifying key ideas and building relationships and explanations of phenomena; (2) inquiry understanding by defining problems, constructing models and developing positions; and (3) epistemic understanding by describing the purposes of models as generalizing phenomena, testing hypotheses and making predictions. However, students demonstrated difficulty in using evidence to defend scientific arguments. Strategies that support flexible understanding were also identified. Content supports include: setting expectations for explanations; using examples to illustrate explanations; modeling questions; and providing feedback that prompts detailed explanations. Supports for inquiry are setting expectations for data gathering; using examples that illustrate model building; modeling the development of an argument; and providing feedback to promote coherent models. Epistemic supports include: using examples to illustrate purposes and assumptions within models, and providing feedback as students evaluate their models. The dissertation demonstrates that teaching strategies impact student understanding but are challenging to implement. When strategies are not used, students do not necessarily construct desired outcomes such as, using evidence to support arguments.

  20. Agent based models for testing city evacuation strategies under a flood event as strategy to reduce flood risk

    NASA Astrophysics Data System (ADS)

    Medina, Neiler; Sanchez, Arlex; Nokolic, Igor; Vojinovic, Zoran

    2016-04-01

    This research explores the uses of Agent Based Models (ABM) and its potential to test large scale evacuation strategies in coastal cities at risk from flood events due to extreme hydro-meteorological events with the final purpose of disaster risk reduction by decreasing human's exposure to the hazard. The first part of the paper corresponds to the theory used to build the models such as: Complex adaptive systems (CAS) and the principles and uses of ABM in this field. The first section outlines the pros and cons of using AMB to test city evacuation strategies at medium and large scale. The second part of the paper focuses on the central theory used to build the ABM, specifically the psychological and behavioral model as well as the framework used in this research, specifically the PECS reference model is cover in this section. The last part of this section covers the main attributes or characteristics of human beings used to described the agents. The third part of the paper shows the methodology used to build and implement the ABM model using Repast-Symphony as an open source agent-based modelling and simulation platform. The preliminary results for the first implementation in a region of the island of Sint-Maarten a Dutch Caribbean island are presented and discussed in the fourth section of paper. The results obtained so far, are promising for a further development of the model and its implementation and testing in a full scale city

  1. Seismic Risk Reduction for Soft-Story Wood-Frame Buildings: Test Results and Retrofit Recommendations from the Nees-Soft Project

    Treesearch

    John W. van de Lindt; Pouria Bahmani; Mikhail Gershfeld; Gary Mochizuki; Xiaoyun Shao; Steven E. Pryor; Weichiang Pang; Michael D. Symans; Jingjing Tian; Ershad Ziaei; Elaina N. Jennings; Douglas Rammer

    2014-01-01

    There are thousands of soft-story wood-frame buildings in California which have been recognized as a disaster preparedness problem with concerted mitigation efforts underway in many cities throughout the state. The vast majority of those efforts are based on numerical modelling, often with half-century old data in which assumptions have to be made based on engineering...

  2. An overview of game-based learning in building services engineering education

    NASA Astrophysics Data System (ADS)

    Alanne, Kari

    2016-03-01

    To ensure proper competence development and short graduation times for engineering students, it is essential that the study motivation is encouraged by new learning methods. In game-based learning, the learner's engagement is increased and learning is made meaningful by applying game-like features such as competition and rewarding through virtual promotions or achievement badges. In this paper, the state of the art of game-based learning in building services engineering education at university level is reviewed and discussed. A systematic literature review indicates that educational games have been reported in the field of related disciplines, such as mechanical and civil engineering. The development of system-level educational games that realistically simulate work life in building services engineering is still in its infancy. Novel rewarding practices and more comprehensive approaches entailing the state-of-the-art information tools such as building information modelling, geographic information systems, building management systems and augmented reality are needed in the future.

  3. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  4. Assessing Graduate Attributes: Building a Criteria-Based Competency Model

    ERIC Educational Resources Information Center

    Ipperciel, Donald; ElAtia, Samira

    2014-01-01

    Graduate attributes (GAs) have become a necessary framework of reference for the 21st century competency-based model of higher education. However, the issue of evaluating and assessing GAs still remains unchartered territory. In this article, we present a criteria-based method of assessment that allows for an institution-wide comparison of the…

  5. Parametric Modelling (bim) for the Documentation of Vernacular Construction Methods: a Bim Model for the Commissariat Building, Ottawa, Canada

    NASA Astrophysics Data System (ADS)

    Fai, S.; Filippi, M.; Paliaga, S.

    2013-07-01

    Whether a house of worship or a simple farmhouse, the fabrication of a building reveals both the unspoken cultural aspirations of the builder and the inevitable exigencies of the construction process. In other-words, why buildings are made is intimately and inevitably associated with how buildings are made. Nowhere is this more evident than in vernacular architecture. At the Carleton Immersive Media Studio (CIMS) we are concerned that the de-population of Canada's rural areas, paucity of specialized tradespersons, and increasing complexity of building codes threaten the sustainability of this invaluable cultural resource. For current and future generations, the quantitative and qualitative values of traditional methods of construction are essential for an inclusive cultural memory. More practically, and equally pressing, an operational knowledge of these technologies is essential for the conservation of our built heritage. To address these concerns, CIMS has launched a number of research initiatives over the past five years that explore novel protocols for the documentation and dissemination of knowledge related to traditional methods of construction. Our current project, Cultural Diversity and Material Imagination in Canadian Architecture (CDMICA), made possible through funding from Canada's Social Sciences and Humanities Research Council (SSHRC), explores the potential of building information modelling (BIM) within the context of a web-based environment. In this paper, we discuss our work-to-date on the development of a web-based library of BIM details that is referenced to ''typical'' assemblies culled from 19C and early 20C construction manuals. The parametric potential of these ''typical'' details is further refined by evidence from the documentation of ''specific'' details studied during comprehensive surveys of extant heritage buildings. Here, we consider a BIM of the roof truss assembly of one of the oldest buildings in Canada's national capital - the Commissariat Building and current home to the Bytown Museum - as a case study within the CDMICA project.

  6. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    PubMed

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  7. Global Urban Mapping and Modeling for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Li, X.; Asrar, G.; Yu, S.; Smith, S.; Eom, J.; Imhoff, M. L.

    2016-12-01

    In the past several decades, the world has experienced fast urbanization, and this trend is expected to continue for decades to come. Urbanization, one of the major land cover and land use changes (LCLUC), is becoming increasingly important in global environmental changes, such as urban heat island (UHI) growth and vegetation phenology change. Better scientific insights and effective decision-making unarguably require reliable science-based information on spatiotemporal changes in urban extent and their environmental impacts. In this study, we developed a globally consistent 20-year urban map series to evaluate the time-reactive nature of global urbanization from the nighttime lights remote sensing data, and projected future urban expansion in the 21st century by employing an integrated modeling framework (Zhou et al. 2014, Zhou et al. 2015). We then evaluated the impacts of urbanization on building energy use and vegetation phenology that affect both ecosystem services and human health. We extended the modeling capability of building energy use in the Global Change Assessment Model (GCAM) with consideration of UHI effects by coupling the remote sensing based urbanization modeling and explored the impact of UHI on building energy use. We also investigated the impact of urbanization on vegetation phenology by using an improved phenology detection algorithm. The derived spatiotemporal information on historical and potential future urbanization and its implications in building energy use and vegetation phenology will be of great value in sustainable urban design and development for building energy use and human health (e.g., pollen allergy), especially when considered together with other factors such as climate variability and change. Zhou, Y., S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson & M. Imhoff (2014) A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sensing of Environment, 147, 173-185. Zhou, Y., S. J. Smith, K. Zhao, M. Imhoff, A. Thomson, B. Bond-Lamberty, G. R. Asrar, X. Zhang, C. He & C. D. Elvidge (2015) A global map of urban extent from nightlights. Environmental Research Letters, 10, 054011.

  8. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building.

    PubMed

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-07-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  9. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    PubMed Central

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-01-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement. PMID:27376303

  10. Energy retrofit of an office building by substitution of the generation system: performance evaluation via dynamic simulation versus current technical standards

    NASA Astrophysics Data System (ADS)

    Testi, D.; Schito, E.; Menchetti, E.; Grassi, W.

    2014-11-01

    Constructions built in Italy before 1945 (about 30% of the total built stock) feature low energy efficiency. Retrofit actions in this field can lead to valuable energetic and economic savings. In this work, we ran a dynamic simulation of a historical building of the University of Pisa during the heating season. We firstly evaluated the energy requirements of the building and the performance of the existing natural gas boiler, validated with past billings of natural gas. We also verified the energetic savings obtainable by the substitution of the boiler with an air-to-water electrically-driven modulating heat pump, simulated through a cycle-based model, evaluating the main economic metrics. The cycle-based model of the heat pump, validated with manufacturers' data available only at specified temperature and load conditions, can provide more accurate results than the simplified models adopted by current technical standards, thus increasing the effectiveness of energy audits.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Goncalo; Feng, Wei; Stadler, Michael

    The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercialmore » buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost« less

  12. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun

    2014-10-01

    Due to the fast development of the urban environment, the need for efficient maintenance and updating of 3D building models is ever increasing. Change detection is an essential step to spot the changed area for data (map/3D models) updating and urban monitoring. Traditional methods based on 2D images are no longer suitable for change detection in building scale, owing to the increased spectral variability of the building roofs and larger perspective distortion of the very high resolution (VHR) imagery. Change detection in 3D is increasingly being investigated using airborne laser scanning data or matched Digital Surface Models (DSM), but rare study has been conducted regarding to change detection on 3D city models with VHR images, which is more informative but meanwhile more complicated. This is due to the fact that the 3D models are abstracted geometric representation of the urban reality, while the VHR images record everything. In this paper, a novel method is proposed to detect changes directly on LOD (Level of Detail) 2 building models with VHR spaceborne stereo images from a different date, with particular focus on addressing the special characteristics of the 3D models. In the first step, the 3D building models are projected onto a raster grid, encoded with building object, terrain object, and planar faces. The DSM is extracted from the stereo imagery by hierarchical semi-global matching (SGM). In the second step, a multi-channel change indicator is extracted between the 3D models and stereo images, considering the inherent geometric consistency (IGC), height difference, and texture similarity for each planar face. Each channel of the indicator is then clustered with the Self-organizing Map (SOM), with "change", "non-change" and "uncertain change" status labeled through a voting strategy. The "uncertain changes" are then determined with a Markov Random Field (MRF) analysis considering the geometric relationship between faces. In the third step, buildings are extracted combining the multispectral images and the DSM by morphological operators, and the new buildings are determined by excluding the verified unchanged buildings from the second step. Both the synthetic experiment with Worldview-2 stereo imagery and the real experiment with IKONOS stereo imagery are carried out to demonstrate the effectiveness of the proposed method. It is shown that the proposed method can be applied as an effective way to monitoring the building changes, as well as updating 3D models from one epoch to the other.

  13. Energy savings and cost-benefit analysis of the new commercial building standard in China

    DOE PAGES

    Zhao, Shanguo; Feng, Wei; Zhang, Shicong; ...

    2015-10-07

    In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less

  14. Energy savings and cost-benefit analysis of the new commercial building standard in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shanguo; Feng, Wei; Zhang, Shicong

    In this study, a comprehensive comparison of the commercial building energy efficiency standard between the previous 2005 version and the new proposed version is conducted, including the energy efficiency analysis and cost-benefit analysis. To better understand the tech-economic performance of the new Chinese standard, energy models were set up based on a typical commercial office building in Chinese climate zones. The building energy standard in 2005 is used as the baseline for this analysis. Key building technologies measures are analyzed individually, including roof, wall, window, lighting and chiller and so on and finally whole building cost-benefit analysis was conducted. Resultsmore » show that the new commercial building energy standard demonstrates good cost-effective performance, with whole building payback period around 4 years.« less

  15. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study

    PubMed Central

    González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima

    2013-01-01

    Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851

  16. An HL7-FHIR-based Object Model for a Home-Centered Data Warehouse for Ambient Assisted Living Environments.

    PubMed

    Schwartze, Jonas; Jansen, Lars; Schrom, Harald; Wolf, Klaus-Hendrik; Haux, Reinhold; Marschollek, Michael

    2015-01-01

    Current AAL environments focus on assisting a single person with seperated technologies. There is no interoperability between sub-domains in home environments, like building energy management or housing industry services. BASIS (Building Automation by a Scalable and Intelligent System) aims to integrate all sensors and actuators into a single, efficient home bus. First step is to create a semtically enriched data warehouse object model. We choose FHIR and built an object model mainly based on the Observation, Device and Location resources with minor extensions needed by AAL-foreign sub domains. FHIR turned out to be very flexible and complete for other home related sub-domains. The object model is implemented in a separated software-partition storing all structural and procedural data of BASIS.

  17. Building Cognition: The Construction of Computational Representations for Scientific Discovery.

    PubMed

    Chandrasekharan, Sanjay; Nersessian, Nancy J

    2015-11-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. Copyright © 2014 Cognitive Science Society, Inc.

  18. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure.

    PubMed

    Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro

    2015-07-28

    In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.

  19. Building a semantic web-based metadata repository for facilitating detailed clinical modeling in cancer genome studies.

    PubMed

    Sharma, Deepak K; Solbrig, Harold R; Tao, Cui; Weng, Chunhua; Chute, Christopher G; Jiang, Guoqian

    2017-06-05

    Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable meaning when data are exchanged between heterogeneous computer systems. To better support clinical cancer data capturing and reporting, there is an emerging need to develop informatics solutions for standards-based clinical models in cancer study domains. The objective of the study is to develop and evaluate a cancer genome study metadata management system that serves as a key infrastructure in supporting clinical information modeling in cancer genome study domains. We leveraged a Semantic Web-based metadata repository enhanced with both ISO11179 metadata standard and Clinical Information Modeling Initiative (CIMI) Reference Model. We used the common data elements (CDEs) defined in The Cancer Genome Atlas (TCGA) data dictionary, and extracted the metadata of the CDEs using the NCI Cancer Data Standards Repository (caDSR) CDE dataset rendered in the Resource Description Framework (RDF). The ITEM/ITEM_GROUP pattern defined in the latest CIMI Reference Model is used to represent reusable model elements (mini-Archetypes). We produced a metadata repository with 38 clinical cancer genome study domains, comprising a rich collection of mini-Archetype pattern instances. We performed a case study of the domain "clinical pharmaceutical" in the TCGA data dictionary and demonstrated enriched data elements in the metadata repository are very useful in support of building detailed clinical models. Our informatics approach leveraging Semantic Web technologies provides an effective way to build a CIMI-compliant metadata repository that would facilitate the detailed clinical modeling to support use cases beyond TCGA in clinical cancer study domains.

  20. Cultural consensus modeling to measure transactional sex in Swaziland: Scale building and validation.

    PubMed

    Fielding-Miller, Rebecca; Dunkle, Kristin L; Cooper, Hannah L F; Windle, Michael; Hadley, Craig

    2016-01-01

    Transactional sex is associated with increased risk of HIV and gender based violence in southern Africa and around the world. However the typical quantitative operationalization, "the exchange of gifts or money for sex," can be at odds with a wide array of relationship types and motivations described in qualitative explorations. To build on the strengths of both qualitative and quantitative research streams, we used cultural consensus models to identify distinct models of transactional sex in Swaziland. The process allowed us to build and validate emic scales of transactional sex, while identifying key informants for qualitative interviews within each model to contextualize women's experiences and risk perceptions. We used logistic and multinomial logistic regression models to measure associations with condom use and social status outcomes. Fieldwork was conducted between November 2013 and December 2014 in the Hhohho and Manzini regions. We identified three distinct models of transactional sex in Swaziland based on 124 Swazi women's emic valuation of what they hoped to receive in exchange for sex with their partners. In a clinic-based survey (n = 406), consensus model scales were more sensitive to condom use than the etic definition. Model consonance had distinct effects on social status for the three different models. Transactional sex is better measured as an emic spectrum of expectations within a relationship, rather than an etic binary relationship type. Cultural consensus models allowed us to blend qualitative and quantitative approaches to create an emicly valid quantitative scale grounded in qualitative context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of human behavior on economizer efficacy and thermal comfort in southern California

    NASA Astrophysics Data System (ADS)

    Lanning, TIghe Glennon

    California has set a zero net-energy conservation goal for the residential sector that is to be achieved by 2020 (California Energy Commission 2011). To reduce energy consumption in the building sector, modern buildings should fundamentally incorporate sustainable performance standards, involving renewable systems, climate-specific strategies, and consideration of a variety of users. Building occupants must operate in concert with the buildings they inhabit in order to maximize the potential of the building, its systems, and their own comfort. In climates with significant diurnal temperature swings, environmental controls designed to capitalize on this should be considered to reduce cooling-related loads. One specific strategy is the air-side economizer, which uses daily outdoor temperature swings to reduce indoor temperature swings. Traditionally a similar effect could be achieved by using thermal mass to buffer indoor temperature swings through thermal lag. Economizers reduce the amount of thermal mass typically required by naturally ventilated buildings. Fans are used to force cool nighttime air deep into the building, allowing lower mass buildings to take advantage of nighttime cooling. Economizers connect to a thermostat, and when the outdoor temperature dips below a programmed set-point the economizer draws cool air from outside, flushing out the warmed interior air. This type of system can be simulated with reasonable accuracy by energy modeling programs; however, because the system is occupant-driven (as opposed to a truly passive mass-driven system) any unpredictable occupant behavior can reduce its effectiveness and create misleading simulation results. This unpredictably has helped prevent the spread of economizers in the residential market. This study investigated to what extent human behavior affected the performance of economizer-based HVAC systems, based on physical observations, environmental data collections, and energy simulations of a residential building in Los Angeles, California. Tangible measures for alleviating problems, such as user-friendly interface design and the incorporation of human behavior into energy models are recommended based on these observations.

  2. Formal Methods for Automated Diagnosis of Autosub 6000

    NASA Technical Reports Server (NTRS)

    Ernits, Juhan; Dearden, Richard; Pebody, Miles

    2009-01-01

    This is a progress report on applying formal methods in the context of building an automated diagnosis and recovery system for Autosub 6000, an Autonomous Underwater Vehicle (AUV). The diagnosis task involves building abstract models of the control system of the AUV. The diagnosis engine is based on Livingstone 2, a model-based diagnoser originally built for aerospace applications. Large parts of the diagnosis model can be built without concrete knowledge about each mission, but actual mission scripts and configuration parameters that carry important information for diagnosis are changed for every mission. Thus we use formal methods for generating the mission control part of the diagnosis model automatically from the mission script and perform a number of invariant checks to validate the configuration. After the diagnosis model is augmented with the generated mission control component model, it needs to be validated using verification techniques.

  3. Assessing high shares of renewable energies in district heating systems - a case study for the city of Herten

    NASA Astrophysics Data System (ADS)

    Aydemir, Ali; Popovski, Eftim; Bellstädt, Daniel; Fleiter, Tobias; Büchele, Richard

    2017-11-01

    Many earlier studies have assessed the DH generation mix without taking explicitly into account future changes in the building stock and heat demand. The approach of this study consists of three steps that combine stock modeling, energy demand forecasting, and simulation of different energy technologies. First, a detailed residential building stock model for Herten is constructed by using remote sensing together with a typology for the German building stock. Second, a bottom-up simulation model is used which calculates the thermal energy demand based on energy-related investments in buildings in order to forecast the thermal demand up to 2050. Third, solar thermal fields in combination with large-scale heat pumps are sized as an alternative to the current coal-fired CHPs. We finally assess cost of heat and CO2 reduction for these units for two scenarios which differ with regard to the DH expansion. It can be concluded that up to 2030 and 2050 a substantial reduction in buildings heat demand due to the improved building insulation is expected. The falling heat demand in the DH substantially reduces the economic feasibility of new RES generation capacity. This reduction might be compensated by continuously connecting apartment buildings to the DH network until 2050.

  4. Exploitation of Digital Surface Models Generated from WORLDVIEW-2 Data for SAR Simulation Techniques

    NASA Astrophysics Data System (ADS)

    Ilehag, R.; Auer, S.; d'Angelo, P.

    2017-05-01

    GeoRaySAR, an automated SAR simulator developed at DLR, identifies buildings in high resolution SAR data by utilizing geometric knowledge extracted from digital surface models (DSMs). Hitherto, the simulator has utilized DSMs generated from LiDAR data from airborne sensors with pre-filtered vegetation. Discarding the need for pre-optimized model input, DSMs generated from high resolution optical data (acquired with WorldView-2) are used for the extraction of building-related SAR image parts in this work. An automatic preprocessing of the DSMs has been developed for separating buildings from elevated vegetation (trees, bushes) and reducing the noise level. Based on that, automated simulations are triggered considering the properties of real SAR images. Locations in three cities, Munich, London and Istanbul, were chosen as study areas to determine advantages and limitations related to WorldView-2 DSMs as input for GeoRaySAR. Beyond, the impact of the quality of the DSM in terms of building extraction is evaluated as well as evaluation of building DSM, a DSM only containing buildings. The results indicate that building extents can be detected with DSMs from optical satellite data with various success, dependent on the quality of the DSM as well as on the SAR imaging perspective.

  5. Simulation-based Testing of Control Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozgur; Nutaro, James J.; Sanyal, Jibonananda

    It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulatormore » can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.« less

  6. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  7. An Innovative Time-Cost-Quality Tradeoff Modeling of Building Construction Project Based on Resource Allocation

    PubMed Central

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated. PMID:24672351

  8. Building a good initial model for full-waveform inversion using frequency shift filter

    NASA Astrophysics Data System (ADS)

    Wang, Guanchao; Wang, Shangxu; Yuan, Sanyi; Lian, Shijie

    2018-05-01

    Accurate initial model or available low-frequency data is an important factor in the success of full waveform inversion (FWI). The low-frequency helps determine the kinematical relevant components, low-wavenumber of the velocity model, which are in turn needed to avoid FWI trap in local minima or cycle-skipping. However, in the field, acquiring data that <5 Hz is a challenging and expensive task. We attempt to find the common point of low- and high-frequency signal, then utilize the high-frequency data to obtain the low-wavenumber velocity model. It is well known that the instantaneous amplitude envelope of a wavelet is invariant under frequency shift. This means that resolution is constant for a given frequency bandwidth, and independent of the actual values of the frequencies. Based on this property, we develop a frequency shift filter (FSF) to build the relationship between low- and high-frequency information with a constant frequency bandwidth. After that, we can use the high-frequency information to get a plausible recovery of the low-wavenumber velocity model. Numerical results using synthetic data from the Marmousi and layer model demonstrate that our proposed envelope misfit function based on the frequency shift filter can build an initial model with more accurate long-wavelength components, when low-frequency signals are absent in recorded data.

  9. Elaboration of technology organizational models of constructing high-rise buildings in plans of construction organization

    NASA Astrophysics Data System (ADS)

    Osipenkova, Irina; Simankina, Tatyana; Syrygina, Taisiia; Lukinov, Vitaliy

    2018-03-01

    This article represents features of the elaboration of technology organizational models of high-rise building construction in technology organizational documentation on the example of the plan of construction organization. Some examples of enhancing the effectiveness of high-rise building construction based on developments of several options of the organizational and technological plan are examined. Qualitative technology organizational documentation allows to increase the competitiveness of construction companies and provides prime cost of construction and assembly works reductions. Emphasis is placed on the necessity to comply with the principle of comprehensiveness of engineering, scientific and research works, development activities and scientific and technical support.

  10. Study on bamboo gluing performance numerical simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Z. R.; Sun, W. H.; Sui, X. M.; Zhang, X. F.

    2018-01-01

    Bamboo gluing timber is a green building materials, can be widely used as modern building beams and columns. The existing bamboo gluing timber is usually produced by bamboo columns or bamboo bundle rolled into by bamboo columns. The performance of new bamboo gluing timber is decided by bamboo adhesion character. Based on this, the cohesive damage model of bamboo gluing is created, experiment results are used to validate the model. The model proposed in the work is agreed on the experimental results. Different bamboo bonding length and bamboo gluing performance is analysed. The model is helpful to bamboo integrated timber application.

  11. Hierarchical analytical and simulation modelling of human-machine systems with interference

    NASA Astrophysics Data System (ADS)

    Braginsky, M. Ya; Tarakanov, D. V.; Tsapko, S. G.; Tsapko, I. V.; Baglaeva, E. A.

    2017-01-01

    The article considers the principles of building the analytical and simulation model of the human operator and the industrial control system hardware and software. E-networks as the extension of Petri nets are used as the mathematical apparatus. This approach allows simulating complex parallel distributed processes in human-machine systems. The structural and hierarchical approach is used as the building method for the mathematical model of the human operator. The upper level of the human operator is represented by the logical dynamic model of decision making based on E-networks. The lower level reflects psychophysiological characteristics of the human-operator.

  12. Assessment of energy and economic performance of office building models: a case study

    NASA Astrophysics Data System (ADS)

    Song, X. Y.; Ye, C. T.; Li, H. S.; Wang, X. L.; Ma, W. B.

    2016-08-01

    Energy consumption of building accounts for more than 37.3% of total energy consumption while the proportion of energy-saving buildings is just 5% in China. In this paper, in order to save potential energy, an office building in Southern China was selected as a test example for energy consumption characteristics. The base building model was developed by TRNSYS software and validated against the recorded data from the field work in six days out of August-September in 2013. Sensitivity analysis was conducted for energy performance of building envelope retrofitting; five envelope parameters were analyzed for assessing the thermal responses. Results indicated that the key sensitivity factors were obtained for the heat-transfer coefficient of exterior walls (U-wall), infiltration rate and shading coefficient (SC), of which the sum sensitivity factor was about 89.32%. In addition, the results were evaluated in terms of energy and economic analysis. The analysis of sensitivity validated against some important results of previous studies. On the other hand, the cost-effective method improved the efficiency of investment management in building energy.

  13. The HackensackUMC Value-Based Care Model: Building Essentials for Value-Based Purchasing.

    PubMed

    Douglas, Claudia; Aroh, Dianne; Colella, Joan; Quadri, Mohammed

    2016-01-01

    The Affordable Care Act, 2010, and the subsequent shift from a quantity-focus to a value-centric reimbursement model led our organization to create the HackensackUMC Value-Based Care Model to improve our process capability and performance to meet and sustain the triple aims of value-based purchasing: higher quality, lower cost, and consumer perception. This article describes the basics of our model and illustrates how we used it to reduce the costs of our patient sitter program.

  14. Seasonal frost effects on the dynamic behavior of a twenty-story office building

    USGS Publications Warehouse

    Yang, Z.; Dutta, U.; Xiong, F.; Biswas, N.; Benz, H.

    2008-01-01

    Studies have shown that seasonal frost can significantly affect the seismic behavior of a bridge foundation system in cold regions. However, little information could be found regarding seasonal frost effects on the dynamic behavior of buildings. Based on the analysis of building vibration data recorded by a permanent strong-motion instrumentation system, the objective of this paper is to show that seasonal frost can impact the building dynamic behavior and the magnitude of impact may be different for different structures. Ambient noise and seismic data recorded on a twenty-story steel-frame building have been analyzed to examine the building dynamic characteristics in relationship to the seasonal frost and other variables including ground shaking intensity. Subsequently, Finite Element modeling of the foundation-soil system and the building superstructure was conducted to verify the seasonal frost effects. The Finite Element modeling was later extended to a reinforced-concrete (RC) type building assumed to exist at a similar site as the steel-frame building. Results show that the seasonal frost has great impact on the foundation stiffness in the horizontal direction and a clear influence on the building dynamic behavior. If other conditions remain the same, the effects of seasonal frost on structural dynamic behavior may be much more prominent for RC-type buildings than for steel-frame buildings. ?? 2007 Elsevier B.V. All rights reserved.

  15. Building integrated semi-transparent photovoltaics: energy and daylighting performance

    NASA Astrophysics Data System (ADS)

    Kapsis, Konstantinos; Athienitis, Andreas K.

    2011-08-01

    This paper focuses on modeling and evaluation of semi-transparent photovoltaic technologies integrated into a coolingdominated office building façade by employing the concept of three-section façade. An energy simulation model is developed, using building simulation software, to investigate the effect of semi-transparent photovoltaic transmittance on the energy performance of an office in a typical office building in Montreal. The analysis is performed for five major façade orientations and two façade configurations. Using semi-transparent photovoltaic integrated into the office façade, electricity savings of up to 53.1% can be achieved compared to a typical office equipped with double glazing with Argon filling and a low emissivity coating, and lighting controlled based on occupancy and daylight levels.e.c

  16. Complex Rayleigh Waves Produced by Shallow Sedimentary Basins and their Potential Effects on Mid-Rise Buildings

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Castillo, J.; Massari, A.; Clayton, R. W.

    2017-12-01

    Earthquake-induced motions recorded by spatially dense seismic arrays in buildings located in the northern Los Angeles basin suggest the presence of complex, amplified surface wave effects on the seismic demand of mid-rise buildings. Several moderate earthquakes produced large-amplitude, seismic energy with slow shear-wave velocities that cannot be explained or accurately modeled by any published 3D seismic velocity models or by Vs30 values. Numerical experiments are conducted to determine if sedimentary basin features are responsible for these rarely modeled and poorly documented contributions to seismic demand computations. This is accomplished through a physics-based wave propagation examination of the effects of different sedimentary basin geometries on the nonlinear response of a mid-rise structural model based on an existing, instrumented building. Using two-dimensional finite-difference predictive modeling, we show that when an earthquake focal depth is near the vertical edge of an elongated and relatively shallow sedimentary basin, dramatically amplified and complex surface waves are generated as a result of the waveguide effect introduced by this velocity structure. In addition, for certain source-receiver distances and basin geometries, body waves convert to secondary Rayleigh waves that propagate both at the free-surface interface and along the depth interface of the basin that show up as multiple large-amplitude arrivals. This study is motivated by observations from the spatially dense, high-sample-rate acceleration data recorded by the Community Seismic Network, a community-hosted strong-motion network, currently consisting of hundreds of sensors located in the southern California area. The results provide quantitative insight into the causative relationship between a sedimentary basin shape and the generation of Rayleigh waves at depth, surface waves at the free surface, scattered seismic energy, and the sensitivity of building responses to each of these.

  17. Scenario based seismic hazard assessment and its application to the seismic verification of relevant buildings

    NASA Astrophysics Data System (ADS)

    Romanelli, Fabio; Vaccari, Franco; Altin, Giorgio; Panza, Giuliano

    2016-04-01

    The procedure we developed, and applied to a few relevant cases, leads to the seismic verification of a building by: a) use of a scenario based neodeterministic approach (NDSHA) for the calculation of the seismic input, and b) control of the numerical modeling of an existing building, using free vibration measurements of the real structure. The key point of this approach is the strict collaboration, from the seismic input definition to the monitoring of the response of the building in the calculation phase, of the seismologist and the civil engineer. The vibrometry study allows the engineer to adjust the computational model in the direction suggested by the experimental result of a physical measurement. Once the model has been calibrated by vibrometric analysis, one can select in the design spectrum the proper range of periods of interest for the structure. Then, the realistic values of spectral acceleration, which include the appropriate amplification obtained through the modeling of a "scenario" input to be applied to the final model, can be selected. Generally, but not necessarily, the "scenario" spectra lead to higher accelerations than those deduced by taking the spectra from the national codes (i.e. NTC 2008, for Italy). The task of the verifier engineer is to act so that the solution of the verification is conservative and realistic. We show some examples of the application of the procedure to some relevant (e.g. schools) buildings of the Trieste Province. The adoption of the scenario input has given in most of the cases an increase of critical elements that have to be taken into account in the design of reinforcements. However, the higher cost associated with the increase of elements to reinforce is reasonable, especially considering the important reduction of the risk level.

  18. Demand response-enabled model predictive HVAC load control in buildings using real-time electricity pricing

    NASA Astrophysics Data System (ADS)

    Avci, Mesut

    A practical cost and energy efficient model predictive control (MPC) strategy is proposed for HVAC load control under dynamic real-time electricity pricing. The MPC strategy is built based on a proposed model that jointly minimizes the total energy consumption and hence, cost of electricity for the user, and the deviation of the inside temperature from the consumer's preference. An algorithm that assigns temperature set-points (reference temperatures) to price ranges based on the consumer's discomfort tolerance index is developed. A practical parameter prediction model is also designed for mapping between the HVAC load and the inside temperature. The prediction model and the produced temperature set-points are integrated as inputs into the MPC controller, which is then used to generate signal actions for the AC unit. To investigate and demonstrate the effectiveness of the proposed approach, a simulation based experimental analysis is presented using real-life pricing data. An actual prototype for the proposed HVAC load control strategy is then built and a series of prototype experiments are conducted similar to the simulation studies. The experiments reveal that the MPC strategy can lead to significant reductions in overall energy consumption and cost savings for the consumer. Results suggest that by providing an efficient response strategy for the consumers, the proposed MPC strategy can enable the utility providers to adopt efficient demand management policies using real-time pricing. Finally, a cost-benefit analysis is performed to display the economic feasibility of implementing such a controller as part of a building energy management system, and the payback period is identified considering cost of prototype build and cost savings to help the adoption of this controller in the building HVAC control industry.

  19. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-06-01

    Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed

  20. An Assessment of Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100 Using NASA's MERRA and CMIP5 Simulations

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping

    2015-01-01

    Background: In the US, residential and commercial building infrastructure combined consumes about 40% of total energy usage and emits about 39% of total CO2 emission (DOE/EIA "Annual Energy Outlook 2013"). Building codes, as used by local and state enforcement entities are typically tied to the dominant climate within an enforcement jurisdiction classified according to various climate zones. These climate zones are based upon a 30-year average of local surface observations and are developed by DOE and ASHRAE. Establishing the current variability and potential changes to future building climate zones is very important for increasing the energy efficiency of buildings and reducing energy costs and emissions in the future. Objectives: This paper demonstrates the usefulness of using NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) atmospheric data assimilation to derive the DOE/ASHRAE building climate zone maps and then using MERRA to define the last 30 years of variability in climate zones for the Continental US. An atmospheric assimilation is a global atmospheric model optimized to satellite, atmospheric and surface in situ measurements. Using MERRA as a baseline, we then evaluate the latest Climate Model Inter-comparison Project (CMIP) climate model Version 5 runs to assess potential variability in future climate zones under various assumptions. Methods: We derive DOE/ASHRAE building climate zones using surface and temperature data products from MERRA. We assess these zones using the uncertainties derived by comparison to surface measurements. Using statistical tests, we evaluate variability of the climate zones in time and assess areas in the continental US for statistically significant trends by region. CMIP 5 produced a data base of over two dozen detailed climate model runs under various greenhouse gas forcing assumptions. We evaluate the variation in building climate zones for 3 different decades using an ensemble and quartile statistics to provide an assessment of potential building climate zone changes relative to the uncertainties demonstrated using MERRA. Findings and Conclusions: These results show that there is a statistically significant increase in the area covered by warmer climate zones and a tendency for a reduction of area in colder climate zones in some limited regions. The CMIP analysis shows that models vary from relatively little building climate zone change for the least sensitive and conservation assumptions to a warming of at most 3 zones for certain areas, particularly the north central US by the end of the 21st century.

  1. Model of Values-Based Management Process in Schools: A Mixed Design Study

    ERIC Educational Resources Information Center

    Dogan, Soner

    2016-01-01

    The aim of this paper is to evaluate the school administrators' values-based management behaviours according to the teachers' perceptions and opinions and, accordingly, to build a model of values-based management process in schools. The study was conducted using explanatory design which is inclusive of both quantitative and qualitative methods.…

  2. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  3. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.

    PubMed

    Saner, Dominik; Vadenbo, Carl; Steubing, Bernhard; Hellweg, Stefanie

    2014-07-01

    This paper presents a regionalized LCA-based multiobjective optimization model of building energy demand and supply for the case of a Swiss municipality for the minimization of greenhouse gas emissions and particulate matter formation. The results show that the environmental improvement potential is very large: in the optimal case, greenhouse gas emissions from energy supply could be reduced by more than 75% and particulate emissions by over 50% in the municipality. This scenario supposes a drastic shift of heat supply systems from a fossil fuel dominated portfolio to a portfolio consisting of mainly heat pump and woodchip incineration systems. In addition to a change in heat supply technologies, roofs, windows and walls would need to be refurbished in more than 65% of the municipality's buildings. The full potential of the environmental impact reductions will hardly be achieved in reality, particularly in the short term, for example, because of financial constraints and social acceptance, which were not taken into account in this study. Nevertheless, the results of the optimization model can help policy makers to identify the most effective measures for improvement at the decision making level, for example, at the building level for refurbishment and selection of heating systems or at the municipal level for designing district heating networks. Therefore, this work represents a starting point for designing effective incentives to reduce the environmental impact of buildings. While the results of the optimization model are specific to the municipality studied, the model could readily be adapted to other regions.

  4. Camera pose refinement by matching uncertain 3D building models with thermal infrared image sequences for high quality texture extraction

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, Dorota; Stilla, Uwe

    2017-10-01

    Thermal infrared (TIR) images are often used to picture damaged and weak spots in the insulation of the building hull, which is widely used in thermal inspections of buildings. Such inspection in large-scale areas can be carried out by combining TIR imagery and 3D building models. This combination can be achieved via texture mapping. Automation of texture mapping avoids time consuming imaging and manually analyzing each face independently. It also provides a spatial reference for façade structures extracted in the thermal textures. In order to capture all faces, including the roofs, façades, and façades in the inner courtyard, an oblique looking camera mounted on a flying platform is used. Direct geo-referencing is usually not sufficient for precise texture extraction. In addition, 3D building models have also uncertain geometry. In this paper, therefore, methodology for co-registration of uncertain 3D building models with airborne oblique view images is presented. For this purpose, a line-based model-to-image matching is developed, in which the uncertainties of the 3D building model, as well as of the image features are considered. Matched linear features are used for the refinement of the exterior orientation parameters of the camera in order to ensure optimal co-registration. Moreover, this study investigates whether line tracking through the image sequence supports the matching. The accuracy of the extraction and the quality of the textures are assessed. For this purpose, appropriate quality measures are developed. The tests showed good results on co-registration, particularly in cases where tracking between the neighboring frames had been applied.

  5. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Experimental shielding evaluation of the radiation protection provided by the structurally significant components of residential structures.

    PubMed

    Dickson, E D; Hamby, D M

    2014-03-01

    The human health and environmental effects following a postulated accidental release of radioactive material to the environment have been a public and regulatory concern since the early development of nuclear technology. These postulated releases have been researched extensively to better understand the potential risks for accident mitigation and emergency planning purposes. The objective of this investigation is to provide an updated technical basis for contemporary building shielding factors for the US housing stock. Building shielding factors quantify the protection from ionising radiation provided by a certain building type. Much of the current data used to determine the quality of shielding around nuclear facilities and urban environments is based on simplistic point-kernel calculations for 1950s era suburbia and is no longer applicable to the densely populated urban environments realised today. To analyse a building's radiation shielding properties, the ideal approach would be to subject a variety of building types to various radioactive sources and measure the radiation levels in and around the building. While this is not entirely practicable, this research analyses the shielding effectiveness of ten structurally significant US housing-stock models (walls and roofs) important for shielding against ionising radiation. The experimental data are used to benchmark computational models to calculate the shielding effectiveness of various building configurations under investigation from two types of realistic environmental source terms. Various combinations of these ten shielding models can be used to develop full-scale computational housing-unit models for building shielding factor calculations representing 69.6 million housing units (61.3%) in the United States. Results produced in this investigation provide a comparison between theory and experiment behind building shielding factor methodology.

  7. A Best Practices Model for Implementing Successful Electronic Disease Surveillance Systems: Insights from Peru and Around the Globe

    DTIC Science & Technology

    2013-06-03

    associated Program design: Kenya . and written project with improved I) Generic model should be adaptable documentation. diagnosis or treatment. to local...potential for and threats to development through an unsustainable and 3) Gaps in evaluation in area of building sustainable to performance -based...implementation in developing countries by building a framework that will identify key elements in this process and serve as guidance to implementers. This study

  8. Micro enterprise initiative in water sector and poverty reduction .

    PubMed

    Jose, T K

    2003-01-01

    The author reports on the Kerala model for water sector development, broadly adopted as a role model for poverty reduction and build up of social capital. It is a community based organisation with its focus on facilitating a stable income to the poor, and composed of a People's Plan Campaign, the Kudumbashree (women-based poverty eradication programme), with grassroot level neighbourhood groups, federated into an area development society. It promotes savings and credit channelling, capacity building and entrepreneurship development. Activities include awareness raising on water conservation and hygiene, utilization of student power, promotion of small, cheap and low technology projects that people can understand and undertake (small reservoirs, tanks, rainwater harvesting structures, water meters), as well as microenterprises, and training of women-based repair groups.

  9. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs

    USGS Publications Warehouse

    Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.

    2016-01-01

    Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.

  10. Means of escape provisions and evacuation simulation of public building in Malaysia and Singapore

    NASA Astrophysics Data System (ADS)

    Samad, Muna Hanim Abdul; Taib, Nooriati; Ying, Choo Siew

    2017-10-01

    The Uniform Building By-law 1984 of Malaysia is the legal document governing fire safety requirements in buildings. Its prescriptive nature has made the requirements out dated from the viewpoint of current performance based approach in most developed countries. The means of escape provisions is a critical requirement to safeguard occupants' safety in fire especially in public buildings. As stipulated in the UBBL 1984, the means of escape provisions includes sufficient escape routes, travel distance, protection of escape routes, etc. designated as means to allow occupants to escape within a safe period of time. This research aims at investigating the effectiveness of those provisions in public buildings during evacuation process involving massive crowd during emergencies. This research includes a scenario-based study on evacuation processes using two software i.e. PyroSim, a crowd modelling software to conduct smoke study and Pathfinder to stimulate evacuation model of building in Malaysia and Singapore as comparative study. The results show that the buildings used as case study were designed according to Malaysian UBBL 1984 and Singapore Firecode, 2013 respectively provide relative safe means of escape. The simulations of fire and smoke and coupled with simulation of evacuation have demonstrated that although there are adequate exits designated according to fire requirements, the impact of the geometry of atriums on the behavior of fire and smoke have significant effect on escape time especially for unfamiliar user of the premises.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Michael; Marnay, Chris; Azevedo, Ines Lima

    The increasing concern about climate change as well as the expected direct environmental economic impacts of global warming will put considerable constraints on the US building sector, which consumes roughly 48percent of the total primary energy, making it the biggest single source of CO2 emissions. It is obvious that the battle against climate change can only be won by considering innovative building approaches and consumer behaviors and bringing new, effective low carbon technologies to the building / consumer market. However, the limited time given to mitigate climate change is unforgiving to misled research and / or policy. This is themore » reason why Lawrence Berkeley National Lab is working on an open source long range Stochastic Lite Building Module (SLBM) to estimate the impact of different policies and consumer behavior on the market penetration of low carbon building technologies. SLBM is designed to be a fast running, user-friendly model that analysts can readily run and modify in its entirety through a visual interface. The tool is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies. It also incorporates consumer preferences and passive building systems as well as interactions between technologies (such as internal heat gains). Furthermore, everything is based on service demand, e.g. a certain temperature or luminous intensity, instead of energy intensities. The core objectives of this paper are to demonstrate the practical approach used, to start a discussion process between relevant stakeholders and to build collaborations.« less

  12. Optics and materials research for controlled radiant energy transfer in buildings

    NASA Astrophysics Data System (ADS)

    Goldner, R. B.

    1983-11-01

    The overall objective of the Tufts research program was to identify and attempt to solve some of the key materials problems associated with practical approaches for achieving controlled radiant energy transfer (CRET) through building windows and envelopes, so as to decrease heating and cooling loads in buildings. Major accomplishments included: the identification of electrochromic (EC)-based structures as the preferred structures for achieving CRET; the identification of modulated reflectivity as the preferred mode of operation for EC-based structures; demonstration of the feasibility of operating EC-materials in a modulated R(lambda) mode; and demonstration of the applicability of free electron model to colored polycrystalline WO3 films.

  13. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    NASA Astrophysics Data System (ADS)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-04-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  14. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    PubMed Central

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-01-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments. PMID:28387345

  15. Building environment analysis based on temperature and humidity for smart energy systems.

    PubMed

    Yun, Jaeseok; Won, Kwang-Ho

    2012-10-01

    In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

  16. Decision making based on analysis of benefit versus costs of preventive retrofit versus costs of repair after earthquake hazards

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.

    2012-04-01

    In this presentation interventions on seismically vulnerable early reinforced concrete skeleton buildings, from the interwar time, at different performance levels, from avoiding collapse up to assuring immediate post-earthquake functionality are considered. Between these two poles there are degrees of damage depending on the performance aim set. The costs of the retrofit and post-earthquake repair differ depending on the targeted performance. Not only an earthquake has impact on a heritage building, but also the retrofit measure, for example on its appearance or its functional layout. This way criteria of the structural engineer, the investor, the architect/conservator/urban planner and the owner/inhabitants from the neighbourhood are considered for taking a benefit-cost decision. Benefit-cost analysis based decision is an element in a risk management process. A solution must be found on how much change to accept for retrofit and how much repairable damage to take into account. There are two impact studies. Numerical simulation was run for the building typology considered for successive earthquakes, selected in a deterministic way (1977, 1986 and two for 1991 from Vrancea, Romania and respectively 1978 Thessaloniki, Greece), considering also the case when retrofit is done between two earthquakes. The typology of buildings itself was studied not only for Greece and Romania, but for numerous European countries, including Italy. The typology was compared to earlier reinforced concrete buildings, with Hennebique system, in order to see to which amount these can belong to structural heritage and to shape the criteria of the architect/conservator. Based on the typology study two model buildings were designed, and for one of these different retrofit measures (side walls, structural walls, steel braces, steel jacketing) were considered, while for the other one of these retrofit techniques (diagonal braces, which permits adding also active measures such as energy dissipaters) to different amount and location in the building was considered. Device computations, a civil engineering method for building economics (and which was, before statistics existed, also the method for computing the costs of general upgrade of buildings), were done for the retrofit and for the repair measures, being able to be applied for different countries, also ones where there is no database on existing projects in seismic retrofit. The building elements for which the device computations were done are named "retrofit elements" and they can be new elements, modified elements or replaced elements of the initial building. The addition of the devices is simple, as the row in project management was, but, for the sake of comparison, also complex project management computed in other works was compared for innovative measures such as FRP (with glass and fibre). The theoretical costs for model measures were compared to the way costs of real retrofit for this building type (with reinforced concrete jacketing and FRP) are computed in Greece. The theoretical proposed measures were generally compared to those applied in practice, in Romania and Italy as well. A further study will include these, as in Italy diagonal braces with dissipation had been used. The typology of braces is relevant also for the local seismic culture, maybe outgoing for another type of skeleton structures the distribution of which has been studied: the timber skeleton. A subtype of Romanian reinforced concrete skeleton buildings includes diagonal braces. In order to assess the costs of rebuilding or general upgrade without retrofit, architecture methods for building economics are considered based on floor surface. Diagrams have been built to see how the total costs vary as addition between the preventive retrofit and the post-earthquake repair, and tables to compare to the costs of rebuilding, outgoing from a the model of addition of day-lighting in atria of buildings. The moment when a repair measure has to be applied, function of the recurrence period of earthquakes, is similar to the depth of the atria. Depending on how strong the expected earthquake is, a more extensive retrofit is required in order to decrease repair costs. A further study would allow converting the device computations in floor surface costs, to be able not only to implement in an ICT environment by means of ontology and BIM, but also to convert to urban scale. For the latter studies of probabilistic application of structural mechanics models instead of observation based statistics can be considered. But first the socio-economic models of construction management games will be considered, both computer games and board hard-copy games, starting with SimCity which initially included the San Francisco 1906 earthquake, in order to see how the resources needed can be modeled. All criteria build the taxonomy of decision. Among them different ways to make the cost-benefit analysis exist, from weighted tree to pair-wise comparison. The taxonomy was modeled as a decision tree, which builds the basis for an ontology.

  17. Using group model building to understand factors that influence childhood obesity in an urban environment.

    PubMed

    Nelson, David A; Simenz, Christopher J; OʼConnor, Sarah P; Greer, Yvonne D; Bachrach, Ann L; Shields, Tony; Fuller, Brett A; Horrigan, Katie; Pritchard, Kathleen; Springer, Judy B; Meurer, John R

    2015-01-01

    Despite increased attention, conventional views of obesity are based upon individual behaviors, and children and parents living with obesity are assumed to be the primary problem solvers. Instead of focusing exclusively on individual reduction behaviors for childhood obesity, greater focus should be placed on better understanding existing community systems and their effects on obesity. The Milwaukee Childhood Obesity Prevention Project is a community-based coalition established to develop policy and environmental change strategies to impact childhood obesity in Milwaukee, Wisconsin. The coalition conducted a Group Model Building exercise to better understand root causes of childhood obesity in its community. Group Model Building is a process by which a group systematically engages in model construction to better understand the systems that are in place. It helps participants make their mental models explicit through a careful and consistent process to test assumptions. This process has 3 main components: (1) assembling a team of participants; (2) conducting a behavior-over-time graphs exercise; and (3) drawing the causal loop diagram exercise. The behavior-over-time graph portion produced 61 graphs in 10 categories. The causal loop diagram yielded 5 major themes and 7 subthemes. Factors that influence childhood obesity are varied, and it is important to recognize that no single solution exists. The perspectives from this exercise provided a means to create a process for dialogue and commitment by stakeholders and partnerships to build capacity for change within the community.

  18. Active buildings: modelling physical activity and movement in office buildings. An observational study protocol.

    PubMed

    Smith, Lee; Ucci, Marcella; Marmot, Alexi; Spinney, Richard; Laskowski, Marek; Sawyer, Alexia; Konstantatou, Marina; Hamer, Mark; Ambler, Gareth; Wardle, Jane; Fisher, Abigail

    2013-11-12

    Health benefits of regular participation in physical activity are well documented but population levels are low. Office layout, and in particular the number and location of office building destinations (eg, print and meeting rooms), may influence both walking time and characteristics of sitting time. No research to date has focused on the role that the layout of the indoor office environment plays in facilitating or inhibiting step counts and characteristics of sitting time. The primary aim of this study was to investigate associations between office layout and physical activity, as well as sitting time using objective measures. Active buildings is a unique collaboration between public health, built environment and computer science researchers. The study involves objective monitoring complemented by a larger questionnaire arm. UK office buildings will be selected based on a variety of features, including office floor area and number of occupants. Questionnaires will include items on standard demographics, well-being, physical activity behaviour and putative socioecological correlates of workplace physical activity. Based on survey responses, approximately 30 participants will be recruited from each building into the objective monitoring arm. Participants will wear accelerometers (to monitor physical activity and sitting inside and outside the office) and a novel tracking device will be placed in the office (to record participant location) for five consecutive days. Data will be analysed using regression analyses, as well as novel agent-based modelling techniques. The results of this study will be disseminated through peer-reviewed publications and scientific presentations. Ethical approval was obtained through the University College London Research Ethics Committee (Reference number 4400/001).

  19. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    NASA Astrophysics Data System (ADS)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  20. Combining Model-driven and Schema-based Program Synthesis

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Whittle, John

    2004-01-01

    We describe ongoing work which aims to extend the schema-based program synthesis paradigm with explicit models. In this context, schemas can be considered as model-to-model transformations. The combination of schemas with explicit models offers a number of advantages, namely, that building synthesis systems becomes much easier since the models can be used in verification and in adaptation of the synthesis systems. We illustrate our approach using an example from signal processing.

  1. Spatial Cognition Support for Exploring the Design Mechanics of Building Structures

    ERIC Educational Resources Information Center

    Rudy, Margit; Hauck, Richard

    2008-01-01

    A web-based tool for visualizing the simulated structural behavior of building models was developed to support the teaching of structural design to architecture and engineering students by activating their spatial cognition capabilities. The main didactic issues involved establishing a consistent and complete three-dimensional vocabulary (3D)…

  2. Building Your Program. Supported Education: A Promising Practice. Evidence-Based Practices KIT (Knowledge Informing Transformation)

    ERIC Educational Resources Information Center

    Unger, Karen V.

    2011-01-01

    "Building Your Program" is intended to help mental health authorities, agency administrators, and program leaders think through and develop Supported Education. The first part of this booklet gives you background information about the Supported Education model. Specific information about your role in implementing and sustaining Supported Education…

  3. Evaluating Deficiencies in Campus Facilities: The Institutional Research/Physical Plant Nexus.

    ERIC Educational Resources Information Center

    Casey, John M.

    The University of Georgia (UG) conducted a complete campus building condition evaluation survey in 1989 that identified the nature and magnitude of the capital renewal/deferred maintenance requirements for each campus building. The survey design was based on a model developed by Harlan Bareither at the University of Illinois. Data were collected…

  4. A Research Synthesis of the Evaluation Capacity Building Literature

    ERIC Educational Resources Information Center

    Labin, Susan N.; Duffy, Jennifer L.; Meyers, Duncan C.; Wandersman, Abraham; Lesesne, Catherine A.

    2012-01-01

    The continuously growing demand for program results has produced an increased need for evaluation capacity building (ECB). The "Integrative ECB Model" was developed to integrate concepts from existing ECB theory literature and to structure a synthesis of the empirical ECB literature. The study used a broad-based research synthesis method with…

  5. Learning Analytics for Communities of Inquiry

    ERIC Educational Resources Information Center

    Kovanovic, Vitomir; Gaševic, Dragan; Hatala, Marek

    2014-01-01

    This paper describes doctoral research that focuses on the development of a learning analytics framework for inquiry-based digital learning. Building on the Community of Inquiry model (CoI)--a foundation commonly used in the research and practice of digital learning and teaching--this research builds on the existing body of knowledge in two…

  6. Experiences of building a medical data acquisition system based on two-level modeling.

    PubMed

    Li, Bei; Li, Jianbin; Lan, Xiaoyun; An, Ying; Gao, Wuqiang; Jiang, Yuqiao

    2018-04-01

    Compared to traditional software development strategies, the two-level modeling approach is more flexible and applicable to build an information system in the medical domain. However, the standards of two-level modeling such as openEHR appear complex to medical professionals. This study aims to investigate, implement, and improve the two-level modeling approach, and discusses the experience of building a unified data acquisition system for four affiliated university hospitals based on this approach. After the investigation, we simplified the approach of archetype modeling and developed a medical data acquisition system where medical experts can define the metadata for their own specialties by using a visual easy-to-use tool. The medical data acquisition system for multiple centers, clinical specialties, and diseases has been developed, and integrates the functions of metadata modeling, form design, and data acquisition. To date, 93,353 data items and 6,017 categories for 285 specific diseases have been created by medical experts, and over 25,000 patients' information has been collected. OpenEHR is an advanced two-level modeling method for medical data, but its idea to separate domain knowledge and technical concern is not easy to realize. Moreover, it is difficult to reach an agreement on archetype definition. Therefore, we adopted simpler metadata modeling, and employed What-You-See-Is-What-You-Get (WYSIWYG) tools to further improve the usability of the system. Compared with the archetype definition, our approach lowers the difficulty. Nevertheless, to build such a system, every participant should have some knowledge in both medicine and information technology domains, as these interdisciplinary talents are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    PubMed

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  8. Systems analysis techniques for annual cycle thermal energy storage solar systems

    NASA Astrophysics Data System (ADS)

    Baylin, F.

    1980-07-01

    Community-scale annual cycle thermal energy storage solar systems are options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently used to examine the economic trade-off between collector field area and storage capacity. Programs directed toward developing other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  9. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  10. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  11. Selective classification and quantification model of C&D waste from material resources consumed in residential building construction.

    PubMed

    Mercader-Moyano, Pilar; Ramírez-de-Arellano-Agudo, Antonio

    2013-05-01

    The unfortunate economic situation involving Spain and the European Union is, among other factors, the result of intensive construction activity over recent years. The excessive consumption of natural resources, together with the impact caused by the uncontrolled dumping of untreated C&D waste in illegal landfills have caused environmental pollution and a deterioration of the landscape. The objective of this research was to generate a selective classification and quantification model of C&D waste based on the material resources consumed in the construction of residential buildings, either new or renovated, namely the Conventional Constructive Model (CCM). A practical example carried out on ten residential buildings in Seville, Spain, enabled the identification and quantification of the C&D waste generated in their construction and the origin of the waste, in terms of the building material from which it originated and its impact for every m(2) constructed. This model enables other researchers to establish comparisons between the various improvements proposed for the minimization of the environmental impact produced by building a CCM, new corrective measures to be proposed in future policies that regulate the production and management of C&D waste generated in construction from the design stage to the completion of the construction process, and the establishment of sustainable management for C&D waste and for the selection of materials for the construction on projected or renovated buildings.

  12. Will building new reservoirs always help increase the water supply reliability? - insight from a modeling-based global study

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Tian, F.; Yigzaw, W.; Hejazi, M. I.; Li, H. Y.; Turner, S. W. D.; Vernon, C. R.

    2017-12-01

    More and more reservoirs are being build or planned in order to help meet the increasing water demand all over the world. However, is building new reservoirs always helpful to water supply? To address this question, the river routing module of Global Change Assessment Model (GCAM) has been extended with a simple yet physical-based reservoir scheme accounting for irrigation, flood control and hydropower operations at each individual reservoir. The new GCAM river routing model has been applied over the global domain with the runoff inputs from the Variable Infiltration Capacity Model. The simulated streamflow is validated at 150 global river basins where the observed streamflow data are available. The model performance has been significantly improved at 77 basins and worsened at 35 basins. To facilitate the analysis of additional reservoir storage impacts at the basin level, a lumped version of GCAM reservoir model has been developed, representing a single lumped reservoir at each river basin which has the regulation capacity of all reservoir combined. A Sequent Peak Analysis is used to estimate how much additional reservoir storage is required to satisfy the current water demand. For basins with water deficit, the water supply reliability can be improved with additional storage. However, there is a threshold storage value at each basin beyond which the reliability stops increasing, suggesting that building new reservoirs will not help better relieve the water stress. Findings in the research can be helpful to the future planning and management of new reservoirs.

  13. BDW-1

    EPA Pesticide Factsheets

    This data set is associated with the results found in the journal article: Perry et al, 2016. Characterization of pollutant dispersion near elongated buildings based on wind tunnel simulations, Atmospheric Environment, 142, 286-295.The paper presents a wind tunnel study of the effects of elongated rectangular buildings on the dispersion of pollutants from nearby stacks. The study examines the influence of source location, building aspect ratio, and wind direction on pollutant dispersion with the goal of developing improved algorithms within dispersion models. The paper also examines the current AERMOD/PRIME modeling capabilities compared to wind tunnel observations. Differences in the amount of plume material entrained in the wake region downwind of a building for various source locations and source heights are illustrated with vertical and lateral concentration profiles. These profiles were parameterized using the Gaussian equation and show the influence of building/source configurations on those parameters. When the building is oriented at 4500b0 to the approach flow, for example, the effective plume height descends more rapidly than it does for a perpendicular building, enhancing the resulting surface concentrations in the wake region. Buildings at angles to the wind cause a cross-wind shift in the location of the plume resulting from a lateral mean flow established in the building wake. These and other effects that are not well represented in many dispersio

  14. Toward Building a New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  15. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    PubMed

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  16. Models of evaluating efficiency and risks on integration of cloud-base IT-services of the machine-building enterprise: a system approach

    NASA Astrophysics Data System (ADS)

    Razumnikov, S.; Kurmanbay, A.

    2016-04-01

    The present paper suggests a system approach to evaluation of the effectiveness and risks resulted from the integration of cloud-based services in a machine-building enterprise. This approach makes it possible to estimate a set of enterprise IT applications and choose the applications to be migrated to the cloud with regard to specific business requirements, a technological strategy and willingness to risk.

  17. Exploring the Characteristics and Diverse Sources of Students' Mental Models of Acids and Bases

    ERIC Educational Resources Information Center

    Lin, Jing-Wen; Chiu, Mei-Hung

    2007-01-01

    This study was part of a 6-year integrated project designed to build a databank of students' science conceptions in Taiwan. The main purpose of this study was to identify the characteristics of students' mental models regarding acids/bases, understand their changes in mental models, and explore sources that might influence students in constructing…

  18. Significance of Shear Wall in Multi-Storey Structure With Seismic Analysis

    NASA Astrophysics Data System (ADS)

    Bongilwar, Rajat; Harne, V. R.; Chopade, Aditya

    2018-03-01

    In past decades, shear walls are one of the most appropriate and important structural component in multi-storied building. Therefore, it would be very interesting to study the structural response and their systems in multi-storied structure. Shear walls contribute the stiffness and strength during earthquakes which are often neglected during design of structure and construction. This study shows the effect of shear walls which significantly affect the vulnerability of structures. In order to test this hypothesis, G+8 storey building was considered with and without shear walls and analyzed for various parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force. Significance of shear wall has been studied with the help of two models. First model is without shear wall i.e. bare frame and other another model is with shear wall considering opening also in it. For modeling and analysis of both the models, FEM based software ETABS 2016 were used. The analysis of all models was done using Equivalent static method. The comparison of results has been done based on same parameters like base shear, storey drift ratio, lateral displacement, bending moment and shear force.

  19. A fuzzy hill-climbing algorithm for the development of a compact associative classifier

    NASA Astrophysics Data System (ADS)

    Mitra, Soumyaroop; Lam, Sarah S.

    2012-02-01

    Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.

  20. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  1. A Web-GIS Procedure Based on Satellite Multi-Spectral and Airborne LIDAR Data to Map the Road blockage Due to seismic Damages of Built-Up Urban Areas

    NASA Astrophysics Data System (ADS)

    Costanzo, Antonio; Montuori, Antonio; Silva, Juan Pablo; Silvestri, Malvina; Musacchio, Massimo; Buongiorno, Maria Fabrizia; Stramondo, Salvatore

    2016-08-01

    In this work, a web-GIS procedure to map the risk of road blockage in urban environments through the combined use of space-borne and airborne remote sensing sensors is presented. The methodology concerns (1) the provision of a geo-database through the integration of space-borne multispectral images and airborne LiDAR data products; (2) the modeling of building vulnerability, based on the corresponding 3D geometry and construction time information; (3) the GIS-based mapping of road closure due to seismic- related building collapses based on the building characteristic height and the width of the road. Experimental results, gathered for the Cosenza urban area, allow demonstrating the benefits of both the proposed approach and the GIS-based integration of multi-platforms remote sensing sensors and techniques for seismic road assessment purposes.

  2. Automated main-chain model building by template matching and iterative fragment extension.

    PubMed

    Terwilliger, Thomas C

    2003-01-01

    An algorithm for the automated macromolecular model building of polypeptide backbones is described. The procedure is hierarchical. In the initial stages, many overlapping polypeptide fragments are built. In subsequent stages, the fragments are extended and then connected. Identification of the locations of helical and beta-strand regions is carried out by FFT-based template matching. Fragment libraries of helices and beta-strands from refined protein structures are then positioned at the potential locations of helices and strands and the longest segments that fit the electron-density map are chosen. The helices and strands are then extended using fragment libraries consisting of sequences three amino acids long derived from refined protein structures. The resulting segments of polypeptide chain are then connected by choosing those which overlap at two or more C(alpha) positions. The fully automated procedure has been implemented in RESOLVE and is capable of model building at resolutions as low as 3.5 A. The algorithm is useful for building a preliminary main-chain model that can serve as a basis for refinement and side-chain addition.

  3. Region-Based Building Rooftop Extraction and Change Detection

    NASA Astrophysics Data System (ADS)

    Tian, J.; Metzlaff, L.; d'Angelo, P.; Reinartz, P.

    2017-09-01

    Automatic extraction of building changes is important for many applications like disaster monitoring and city planning. Although a lot of research work is available based on 2D as well as 3D data, an improvement in accuracy and efficiency is still needed. The introducing of digital surface models (DSMs) to building change detection has strongly improved the resulting accuracy. In this paper, a post-classification approach is proposed for building change detection using satellite stereo imagery. Firstly, DSMs are generated from satellite stereo imagery and further refined by using a segmentation result obtained from the Sobel gradients of the panchromatic image. Besides the refined DSMs, the panchromatic image and the pansharpened multispectral image are used as input features for mean-shift segmentation. The DSM is used to calculate the nDSM, out of which the initial building candidate regions are extracted. The candidate mask is further refined by morphological filtering and by excluding shadow regions. Following this, all segments that overlap with a building candidate region are determined. A building oriented segments merging procedure is introduced to generate a final building rooftop mask. As the last step, object based change detection is performed by directly comparing the building rooftops extracted from the pre- and after-event imagery and by fusing the change indicators with the roof-top region map. A quantitative and qualitative assessment of the proposed approach is provided by using WorldView-2 satellite data from Istanbul, Turkey.

  4. A text-based data mining and toxicity prediction modeling system for a clinical decision support in radiation oncology: A preliminary study

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie

    2017-08-01

    The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.

  5. Leveraging OpenStudio's Application Programming Interfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, N.; Ball, B.; Goldwasser, D.

    2013-11-01

    OpenStudio development efforts have been focused on providing Application Programming Interfaces (APIs) where users are able to extend OpenStudio without the need to compile the open source libraries. This paper will discuss the basic purposes and functionalities of the core libraries that have been wrapped with APIs including the Building Model, Results Processing, Advanced Analysis, UncertaintyQuantification, and Data Interoperability through Translators. Several building energy modeling applications have been produced using OpenStudio's API and Software Development Kits (SDK) including the United States Department of Energy's Asset ScoreCalculator, a mobile-based audit tool, an energy design assistance reporting protocol, and a portfolio scalemore » incentive optimization analysismethodology. Each of these software applications will be discussed briefly and will describe how the APIs were leveraged for various uses including high-level modeling, data transformations from detailed building audits, error checking/quality assurance of models, and use of high-performance computing for mass simulations.« less

  6. From BIM to GIS at the Smithsonian Institution

    NASA Astrophysics Data System (ADS)

    Günther-Diringer, Detlef

    2018-05-01

    BIM-files (Building Information Models) are in modern architecture and building management a basic prerequisite for successful creation of construction engineering projects. At the facilities department of the Smithsonian Institution more than six hundred buildings were maintained. All facilities were digital available in an ESRI ArcGIS-environment with connection to the database information about single rooms with the usage and further maintenance information. These data are organization wide available by an intranet viewer, but only in a two-dimensional representation. Goal of the carried out project was the development of a workflow from available BIM-models to the given GIS-structure. The test-environment were the BIM-models of the buildings of the Smithsonian museums along the Washington Mall. Based on new software editions of Autodesk Revit, FME and ArcGIS Pro the workflow from BIM to the GIS-data structure of the Smithsonian was successfully developed and may be applied for the setup of the future 3D intranet viewer.

  7. Evaluation of the Revised Lagrangian Particle Model GRAL Against Wind-Tunnel and Field Observations in the Presence of Obstacles

    NASA Astrophysics Data System (ADS)

    Oettl, Dietmar

    2015-05-01

    A revised microscale flow field model has been implemented in the Lagrangian particle model Graz Lagrangian Model (GRAL) for computing flows around obstacles. It is based on the Reynolds-averaged Navier-Stokes equations in three dimensions and the widely used standard turbulence model. Here we focus on evaluating the model regarding computed concentrations by use of a comprehensive wind-tunnel experiment with numerous combinations of building geometries, stack positions, and locations. In addition, two field experiments carried out in Denmark and in the U.S were used to evaluate the model. Further, two different formulations of the standard deviation of wind component fluctuations have also been investigated, but no clear picture could be drawn in this respect. Overall the model is able to capture several of the main features of pollutant dispersion around obstacles, but at least one future model improvement was identified for stack releases within the recirculation zone of buildings. Regulatory applications are the bread-and-butter of most GRAL users nowadays, requiring fast and robust modelling algorithms. Thus, a few simplifications have been introduced to decrease the computational time required. Although predicted concentrations for the two field experiments were found to be in good agreement with observations, shortcomings were identified regarding the extent of computed recirculation zones for the idealized wind-tunnel building geometries, with approaching flows perpendicular to building faces.

  8. Stress Behaviour in Compression of Contact-Monolithic Joint of Self-Supporting Wall of Large Panel Multi-Storey Building

    NASA Astrophysics Data System (ADS)

    Derbentsev, I.; Karyakin, A. A.; Volodin, A.

    2017-11-01

    The article deals with the behaviour of a contact-monolithic joint of large-panel buildings under compression. It gives a detailed analysis and the descriptions of the stages of such joints failure based on the results of the tests and computational modelling. The article is of interest to specialists who deal with computational modelling or the research of large-panel multi-storey buildings. The text gives a valuable information on the values of their bearing capacity and flexibility, the eccentricity of load transfer from upper panel to lower, the value of thrust passed to a ceiling panel. Recommendations are given to estimate all the above-listed parameters.

  9. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    NASA Astrophysics Data System (ADS)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  10. Directions for model building from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.

    2017-08-01

    Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.

  11. Inheriting Curiosity: Leveraging MBSE to Build Mars2020

    NASA Technical Reports Server (NTRS)

    Fosse, Elyse; Harmon, Corey; Lefland, Mallory; Castillo, Robert; Devereaux, Ann

    2015-01-01

    The success of the Jet Propulsion Laboratory's (JPL) Martian mission Mars Science Laboratory (MSL) prompted NASA to challenge JPL to build a second rover, Mars2020. Mars2020 has chosen to infuse Model Based Systems Engineering (MBSE) in pursuit of aiding the design of the Flight System. This paper will derive the motivation for MBSE infusion and will explain the current state of the Mars2020 Flight System Model. Successes in MBSE adoption will be discussed, as will limitations to the methodology.

  12. A Model for the Growth of Network Service Providers

    DTIC Science & Technology

    2011-12-01

    Service Provider O-D Origin-Destination POP Point of Presence UCG Unilateral Connection Game xiv THIS PAGE INTENTIONALLY LEFT BLANK xv EXECUTIVE...xvi We make use of the Abilene dataset as input to the network provisioning model and assume that the NSP is new to the market and is building an...has to decide on the connections to build and the markets to serve in order to maximize its profits. The NSP makes these decisions based on the market

  13. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science Teaching (NARST) Zangori, L., & Forbes, C. T. (2015). Exploring 3rd-grade student model-based explanations about plant process interactions within the hydrosphere Portions of this paper are based on that work.

  14. Numerical simulation of residual stress in laser based additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Kalyan Panda, Bibhu; Sahoo, Seshadev

    2018-03-01

    Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.

  15. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Evolving RBF neural networks for adaptive soft-sensor design.

    PubMed

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  17. The impact of solar radiation on the heating and cooling of buildings

    NASA Astrophysics Data System (ADS)

    Witmer, Lucas

    This work focuses on the impact of solar energy on the heating and cooling of buildings. The sun can be the primary driver for building cooling loads as well as a significant source of heat in the winter. Methods are presented for the calculation of solar energy incident on tilted surfaces and the irradiance data source options. A key deficiency in current building energy modeling softwares is reviewed with a demonstration of the impact of calculating for shade on opaque surfaces. Several tools include methods for calculating shade incident on windows, while none do so automatically for opaque surfaces. The resulting calculations for fully irradiated wall surfaces underestimate building energy consumption in the winter and overestimate in the summer by significant margins. A method has been developed for processing and filtering solar irradiance data based on local shading. This method is used to compare situations where a model predictive control system can make poor decisions for building comfort control. An MPC system informed by poor quality solar data will negatively impact comfort in perimeter building zones during the cooling season. The direct component of irradiance is necessary for the calculation of irradiance on a tilted surface. Using graphical analysis and conditional probability distributions, this work demonstrates a proof of concept for estimating direct normal irradiance from a multi-pyranometer array by leveraging inter-surface relationships without directly inverting a sky model.

  18. Optimal Decision Model for Sustainable Hospital Building Renovation—A Case Study of a Vacant School Building Converting into a Community Public Hospital

    PubMed Central

    Juan, Yi-Kai; Cheng, Yu-Ching; Perng, Yeng-Horng; Castro-Lacouture, Daniel

    2016-01-01

    Much attention has been paid to hospitals environments since modern pandemics have emerged. The building sector is considered to be the largest world energy consumer, so many global organizations are attempting to create a sustainable environment in building construction by reducing energy consumption. Therefore, maintaining high standards of hygiene while reducing energy consumption has become a major task for hospitals. This study develops a decision model based on genetic algorithms and A* graph search algorithms to evaluate existing hospital environmental conditions and to recommend an optimal scheme of sustainable renovation strategies, considering trade-offs among minimal renovation cost, maximum quality improvement, and low environmental impact. Reusing vacant buildings is a global and sustainable trend. In Taiwan, for example, more and more school space will be unoccupied due to a rapidly declining birth rate. Integrating medical care with local community elder-care efforts becomes important because of the aging population. This research introduces a model that converts a simulated vacant school building into a community public hospital renovation project in order to validate the solutions made by hospital managers and suggested by the system. The result reveals that the system performs well and its solutions are more successful than the actions undertaken by decision-makers. This system can improve traditional hospital building condition assessment while making it more effective and efficient. PMID:27347986

  19. Optimal Decision Model for Sustainable Hospital Building Renovation-A Case Study of a Vacant School Building Converting into a Community Public Hospital.

    PubMed

    Juan, Yi-Kai; Cheng, Yu-Ching; Perng, Yeng-Horng; Castro-Lacouture, Daniel

    2016-06-24

    Much attention has been paid to hospitals environments since modern pandemics have emerged. The building sector is considered to be the largest world energy consumer, so many global organizations are attempting to create a sustainable environment in building construction by reducing energy consumption. Therefore, maintaining high standards of hygiene while reducing energy consumption has become a major task for hospitals. This study develops a decision model based on genetic algorithms and A* graph search algorithms to evaluate existing hospital environmental conditions and to recommend an optimal scheme of sustainable renovation strategies, considering trade-offs among minimal renovation cost, maximum quality improvement, and low environmental impact. Reusing vacant buildings is a global and sustainable trend. In Taiwan, for example, more and more school space will be unoccupied due to a rapidly declining birth rate. Integrating medical care with local community elder-care efforts becomes important because of the aging population. This research introduces a model that converts a simulated vacant school building into a community public hospital renovation project in order to validate the solutions made by hospital managers and suggested by the system. The result reveals that the system performs well and its solutions are more successful than the actions undertaken by decision-makers. This system can improve traditional hospital building condition assessment while making it more effective and efficient.

  20. Building a model for disease classification integration in oncology, an approach based on the national cancer institute thesaurus.

    PubMed

    Jouhet, Vianney; Mougin, Fleur; Bréchat, Bérénice; Thiessard, Frantz

    2017-02-07

    Identifying incident cancer cases within a population remains essential for scientific research in oncology. Data produced within electronic health records can be useful for this purpose. Due to the multiplicity of providers, heterogeneous terminologies such as ICD-10 and ICD-O-3 are used for oncology diagnosis recording purpose. To enable disease identification based on these diagnoses, there is a need for integrating disease classifications in oncology. Our aim was to build a model integrating concepts involved in two disease classifications, namely ICD-10 (diagnosis) and ICD-O-3 (topography and morphology), despite their structural heterogeneity. Based on the NCIt, a "derivative" model for linking diagnosis and topography-morphology combinations was defined and built. ICD-O-3 and ICD-10 codes were then used to instantiate classes of the "derivative" model. Links between terminologies obtained through the model were then compared to mappings provided by the Surveillance, Epidemiology, and End Results (SEER) program. The model integrated 42% of neoplasm ICD-10 codes (excluding metastasis), 98% of ICD-O-3 morphology codes (excluding metastasis) and 68% of ICD-O-3 topography codes. For every codes instantiating at least a class in the "derivative" model, comparison with SEER mappings reveals that all mappings were actually available in the model as a link between the corresponding codes. We have proposed a method to automatically build a model for integrating ICD-10 and ICD-O-3 based on the NCIt. The resulting "derivative" model is a machine understandable resource that enables an integrated view of these heterogeneous terminologies. The NCIt structure and the available relationships can help to bridge disease classifications taking into account their structural and granular heterogeneities. However, (i) inconsistencies exist within the NCIt leading to misclassifications in the "derivative" model, (ii) the "derivative" model only integrates a part of ICD-10 and ICD-O-3. The NCIt is not sufficient for integration purpose and further work based on other termino-ontological resources is needed in order to enrich the model and avoid identified inconsistencies.

  1. Reconstructing Buildings with Discontinuities and Roof Overhangs from Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Meissner, H.; Dahlke, D.

    2017-05-01

    This paper proposes a two-stage method for the reconstruction of city buildings with discontinuities and roof overhangs from oriented nadir and oblique aerial images. To model the structures the input data is transformed into a dense point cloud, segmented and filtered with a modified marching cubes algorithm to reduce the positional noise. Assuming a monolithic building the remaining vertices are initially projected onto a 2D grid and passed to RANSAC-based regression and topology analysis to geometrically determine finite wall, ground and roof planes. If this should fail due to the presence of discontinuities the regression will be repeated on a 3D level by traversing voxels within the regularly subdivided bounding box of the building point set. For each cube a planar piece of the current surface is approximated and expanded. The resulting segments get mutually intersected yielding both topological and geometrical nodes and edges. These entities will be eliminated if their distance-based affiliation to the defining point sets is violated leaving a consistent building hull including its structural breaks. To add the roof overhangs the computed polygonal meshes are projected onto the digital surface model derived from the point cloud. Their shapes are offset equally along the edge normals with subpixel accuracy by detecting the zero-crossings of the second-order directional derivative in the gradient direction of the height bitmap and translated back into world space to become a component of the building. As soon as the reconstructed objects are finished the aerial images are further used to generate a compact texture atlas for visualization purposes. An optimized atlas bitmap is generated that allows perspectivecorrect multi-source texture mapping without prior rectification involving a partially parallel placement algorithm. Moreover, the texture atlases undergo object-based image analysis (OBIA) to detect window areas which get reintegrated into the building models. To evaluate the performance of the proposed method a proof-of-concept test on sample structures obtained from real-world data of Heligoland/Germany has been conducted. It revealed good reconstruction accuracy in comparison to the cadastral map, a speed-up in texture atlas optimization and visually attractive render results.

  2. Seismic hazard, risk, and design for South America

    USGS Publications Warehouse

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best available science.

  3. simuwatt - A Tablet Based Electronic Auditing Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macumber, Daniel; Parker, Andrew; Lisell, Lars

    2014-05-08

    'simuwatt Energy Auditor' (TM) is a new tablet-based electronic auditing tool that is designed to dramatically reduce the time and cost to perform investment-grade audits and improve quality and consistency. The tool uses the U.S. Department of Energy's OpenStudio modeling platform and integrated Building Component Library to automate modeling and analysis. simuwatt's software-guided workflow helps users gather required data, and provides the data in a standard electronic format that is automatically converted to a baseline OpenStudio model for energy analysis. The baseline energy model is calibrated against actual monthly energy use to ASHRAE Standard 14 guidelines. Energy conservation measures frommore » the Building Component Library are then evaluated using OpenStudio's parametric analysis capability. Automated reporting creates audit documents that describe recommended packages of energy conservation measures. The development of this tool was partially funded by the U.S. Department of Defense's Environmental Security Technology Certification Program. As part of this program, the tool is being tested at 13 buildings on 5 Department of Defense sites across the United States. Results of the first simuwatt audit tool demonstration are presented in this paper.« less

  4. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure

    PubMed Central

    Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro

    2015-01-01

    In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978

  5. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  6. SATware: A Semantic Approach for Building Sentient Spaces

    NASA Astrophysics Data System (ADS)

    Massaguer, Daniel; Mehrotra, Sharad; Vaisenberg, Ronen; Venkatasubramanian, Nalini

    This chapter describes the architecture of a semantic-based middleware environment for building sensor-driven sentient spaces. The proposed middleware explicitly models sentient space semantics (i.e., entities, spaces, activities) and supports mechanisms to map sensor observations to the state of the sentient space. We argue how such a semantic approach provides a powerful programming environment for building sensor spaces. In addition, the approach provides natural ways to exploit semantics for variety of purposes including scheduling under resource constraints and sensor recalibration.

  7. Hybrid processing of laser scanning data

    NASA Astrophysics Data System (ADS)

    Badenko, Vladimir; Zotov, Dmitry; Fedotov, Alexander

    2018-03-01

    In this article the analysis of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the base of usage of laser scanning data for historic building information modeling is presented. The results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application for the historical building of St. Petersburg Polytechnic University shows reliability of the proposed approaches.

  8. Commercial Building Construction (Masonry). COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Keck, Robert

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; preface; a…

  9. Integrated Models of School-Based Prevention: Logic and Theory

    ERIC Educational Resources Information Center

    Domitrovich, Celene E.; Bradshaw, Catherine P.; Greenberg, Mark T.; Embry, Dennis; Poduska, Jeanne M.; Ialongo, Nicholas S.

    2010-01-01

    School-based prevention programs can positively impact a range of social, emotional, and behavioral outcomes. Yet the current climate of accountability pressures schools to restrict activities that are not perceived as part of the core curriculum. Building on models from public health and prevention science, we describe an integrated approach to…

  10. Building Trades. COM-LINK. Competency Based Vocational Curricula with Basic Skills and Academic Linkages.

    ERIC Educational Resources Information Center

    Gudzak, Raymond

    This competency-based module uses the Ocean County (New Jersey) Vocational-Technical Schools curriculum-infused model for infusing basic skills instruction into vocational education. The model demonstrates the relationship of vocational skills to communication, mathematics, and science. The document begins with a philosophy statement; a preface; a…

  11. A Methodology and Software Environment for Testing Process Model’s Sequential Predictions with Protocols

    DTIC Science & Technology

    1992-12-21

    in preparation). Foundations of artificial intelligence. Cambridge, MA: MIT Press. O’Reilly, R. C. (1991). X3DNet: An X- Based Neural Network ...2.2.3 Trace based protocol analysis 19 2.2A Summary of important data features 21 2.3 Tools related to process model testing 23 2.3.1 Tools for building...algorithm 57 3. Requirements for testing process models using trace based protocol 59 analysis 3.1 Definition of trace based protocol analysis (TBPA) 59

  12. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A.; Christensen, Dane T.

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less

  13. User-Preference-Driven Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Baker, Kyri A; Isley, Steven C

    This paper presents a user-preference-driven home energy management system (HEMS) for demand response (DR) with residential building loads and battery storage. The HEMS is based on a multi-objective model predictive control algorithm, where the objectives include energy cost, thermal comfort, and carbon emission. A multi-criterion decision making method originating from social science is used to quickly determine user preferences based on a brief survey and derive the weights of different objectives used in the optimization process. Besides the residential appliances used in the traditional DR programs, a home battery system is integrated into the HEMS to improve the flexibility andmore » reliability of the DR resources. Simulation studies have been performed on field data from a residential building stock data set. Appliance models and usage patterns were learned from the data to predict the DR resource availability. Results indicate the HEMS was able to provide a significant amount of load reduction with less than 20% prediction error in both heating and cooling cases.« less

  14. Thermal-to-visible face recognition using partial least squares.

    PubMed

    Hu, Shuowen; Choi, Jonghyun; Chan, Alex L; Schwartz, William Robson

    2015-03-01

    Although visible face recognition has been an active area of research for several decades, cross-modal face recognition has only been explored by the biometrics community relatively recently. Thermal-to-visible face recognition is one of the most difficult cross-modal face recognition challenges, because of the difference in phenomenology between the thermal and visible imaging modalities. We address the cross-modal recognition problem using a partial least squares (PLS) regression-based approach consisting of preprocessing, feature extraction, and PLS model building. The preprocessing and feature extraction stages are designed to reduce the modality gap between the thermal and visible facial signatures, and facilitate the subsequent one-vs-all PLS-based model building. We incorporate multi-modal information into the PLS model building stage to enhance cross-modal recognition. The performance of the proposed recognition algorithm is evaluated on three challenging datasets containing visible and thermal imagery acquired under different experimental scenarios: time-lapse, physical tasks, mental tasks, and subject-to-camera range. These scenarios represent difficult challenges relevant to real-world applications. We demonstrate that the proposed method performs robustly for the examined scenarios.

  15. Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong; Kim, Keunwoo

    2013-03-01

    The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less

  17. Validity of thermally-driven small-scale ventilated filling box models

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  18. Engaging the University in Building Communities of Practice for Aging in Place

    ERIC Educational Resources Information Center

    McDonald, Jessyna M.

    2011-01-01

    Based upon the principles of the Engaged University (Kellogg Commission 2001), The Institute of Gerontology (IOG) at the University of the District of Columbia developed a model for the scholarship of engagement by building communities of practice within the aging network which may support and enhance student learning outcomes and experiences. The…

  19. Hygrothermal Simulation: A Tool for Building Envelope Design Analysis

    Treesearch

    Samuel V. Glass; Anton TenWolde; Samuel L. Zelinka

    2013-01-01

    Is it possible to gauge the risk of moisture problems while designing the building envelope? This article provides a brief introduction to computer-based hygrothermal (heat and moisture) simulation, shows how simulation can be useful as a design tool, and points out a number of im-portant considerations regarding model inputs and limita-tions. Hygrothermal simulation...

  20. Use of Solid Waste (Foundry Slag) Mortar and Bamboo Reinforcement in Seismic Analysis for Single Storey Masonry Building

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Husain, A.; Ghani, F.; Alam, M. N.

    2013-11-01

    The conversion of large amount of solid waste (foundry slag) into alternate source of building material will contribute not only as a solution to growing waste problem, but also it will conserve the natural resources of other building material and thereby reduce the cost of construction. The present work makes an effort to safe and economic use of recycle mortar (1:6) as a supplementary material. Conventional and recycled twelve prisms were casted with varying percentage of solid waste (foundry slag) added (0, 10, 20, 30 %) replacing cement by weight and tested under compression testing machine. As the replacement is increasing, the strength is decreasing. 10 % replacement curve is very closed to 0 % whereas 20 % is farther and 30 % is farthest. 20 % replacement was chosen for dynamic testing as its strength is within permissible limit as per IS code. A 1:4 scale single storey brick model with half size brick was fabricated on shake table in the lab for dynamic testing using pure friction isolation system (coarse sand as friction material µ = 0.34). Pure friction isolation technique can be adopted economically in developing countries where low-rise building prevails due to their low cost. The superstructure was separated from the foundation at plinth level, so as to permit sliding of superstructure during severe earthquake. The observed values of acceleration and displacement responses compare fairly with the analytical values of the analytical model. It also concluded that 20 % replacement of cement by solid waste (foundry slag) could be safely adopted without endangering the safety of the masonry structures under seismic load.To have an idea that how much energy is dissipated through this isolation, the same model with fixed base was tested and results were compared with the isolated free sliding model and it has been observed that more than 60 % energy is dissipated through this pure friction isolation technique. In case of base isolation, no visible cracks were observed up to the table force of 4.25 kN (1,300 rpm), whereas for fixed base failure started at 800 rpm.To strengthen the fixed base model, bamboo reinforcement were used for economical point of view. Another model of same dimension with same mortar ratio was fabricated on the shake table with bamboo reinforcement as plinth band and lintel band. In addition another four round bamboo bars of 3 mm diameter were placed at each of the four corners of the model. The building model was tested and found very encouraging and surprising results. The model failure started at 1,600 rpm, which means that this model is surviving the double force in comparison with the non-bamboo reinforcement.

Top