Sample records for model building process

  1. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  2. Toward a General Research Process for Using Dubin's Theory Building Model

    ERIC Educational Resources Information Center

    Holton, Elwood F.; Lowe, Janis S.

    2007-01-01

    Dubin developed a widely used methodology for theory building, which describes the components of the theory building process. Unfortunately, he does not define a research process for implementing his theory building model. This article proposes a seven-step general research process for implementing Dubin's theory building model. An example of a…

  3. How to build a course in mathematical-biological modeling: content and processes for knowledge and skill.

    PubMed

    Hoskinson, Anne-Marie

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical-biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity to build both content and process learning of mathematical models, the modeling process, and the cooperative process. There was little guidance from the literature on how to build such a course. Here, I describe the iterative process of developing such a course, beginning with objectives and choosing content and process competencies to fulfill the objectives. I include some inductive heuristics for instructors seeking guidance in planning and developing their own courses, and I illustrate with a description of one instructional model cycle. Students completing this class reported gains in learning of modeling content, the modeling process, and cooperative skills. Student content and process mastery increased, as assessed on several objective-driven metrics in many types of assessments.

  4. How to Build a Course in Mathematical–Biological Modeling: Content and Processes for Knowledge and Skill

    PubMed Central

    2010-01-01

    Biological problems in the twenty-first century are complex and require mathematical insight, often resulting in mathematical models of biological systems. Building mathematical–biological models requires cooperation among biologists and mathematicians, and mastery of building models. A new course in mathematical modeling presented the opportunity to build both content and process learning of mathematical models, the modeling process, and the cooperative process. There was little guidance from the literature on how to build such a course. Here, I describe the iterative process of developing such a course, beginning with objectives and choosing content and process competencies to fulfill the objectives. I include some inductive heuristics for instructors seeking guidance in planning and developing their own courses, and I illustrate with a description of one instructional model cycle. Students completing this class reported gains in learning of modeling content, the modeling process, and cooperative skills. Student content and process mastery increased, as assessed on several objective-driven metrics in many types of assessments. PMID:20810966

  5. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation

    DTIC Science & Technology

    2012-08-01

    Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a

  6. Simulating The Technological Movements Of The Equipment Used For Manufacturing Prosthetic Devices Using 3D Models

    NASA Astrophysics Data System (ADS)

    Chicea, Anca-Lucia

    2015-09-01

    The paper presents the process of building geometric and kinematic models of a technological equipment used in the process of manufacturing devices. First, the process of building the model for a six axes industrial robot is presented. In the second part of the paper, the process of building the model for a five-axis CNC milling machining center is also shown. Both models can be used for accurate cutting processes simulation of complex parts, such as prosthetic devices.

  7. Building Thermal Models

    NASA Technical Reports Server (NTRS)

    Peabody, Hume L.

    2017-01-01

    This presentation is meant to be an overview of the model building process It is based on typical techniques (Monte Carlo Ray Tracing for radiation exchange, Lumped Parameter, Finite Difference for thermal solution) used by the aerospace industry This is not intended to be a "How to Use ThermalDesktop" course. It is intended to be a "How to Build Thermal Models" course and the techniques will be demonstrated using the capabilities of ThermalDesktop (TD). Other codes may or may not have similar capabilities. The General Model Building Process can be broken into four top level steps: 1. Build Model; 2. Check Model; 3. Execute Model; 4. Verify Results.

  8. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, James T.; Maile, Tobias; Rose, Cody

    Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage inmore » the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive benchmark during operation. Developing BIM based criteria to support the semi-automated process should result in significant reliable improvements and time savings in the development of BEMs. In order to define successful BIMS, CAD export of IFC based BIMs for BEM must adhere to a standard Model View Definition (MVD) for simulation as provided by the concept design BIM MVD (buildingSMART, 2011). In order to ensure wide scale adoption, companies would also need to develop their own material libraries to support automated activities and undertake a pilot project to improve understanding of modeling conventions and design tool features and limitations.« less

  9. Translating building information modeling to building energy modeling using model view definition.

    PubMed

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  10. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    PubMed Central

    Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954

  11. Assessment of Life Cycle Information Exchanges (LCie): Understanding the Value-Added Benefit of a COBie Process

    DTIC Science & Technology

    2013-10-01

    exchange (COBie), Building Information Modeling ( BIM ), value-added analysis, business processes, project management 16. SECURITY CLASSIFICATION OF: 17...equipment. The innovative aspect of Building In- formation Modeling ( BIM ) is that it creates a computable building descrip- tion. The ability to use a...interoperability. In order for the building information to be interoperable, it must also con- form to a common data model , or schema, that defines the class

  12. Application of snakes and dynamic programming optimisation technique in modeling of buildings in informal settlement areas

    NASA Astrophysics Data System (ADS)

    Rüther, Heinz; Martine, Hagai M.; Mtalo, E. G.

    This paper presents a novel approach to semiautomatic building extraction in informal settlement areas from aerial photographs. The proposed approach uses a strategy of delineating buildings by optimising their approximate building contour position. Approximate building contours are derived automatically by locating elevation blobs in digital surface models. Building extraction is then effected by means of the snakes algorithm and the dynamic programming optimisation technique. With dynamic programming, the building contour optimisation problem is realized through a discrete multistage process and solved by the "time-delayed" algorithm, as developed in this work. The proposed building extraction approach is a semiautomatic process, with user-controlled operations linking fully automated subprocesses. Inputs into the proposed building extraction system are ortho-images and digital surface models, the latter being generated through image matching techniques. Buildings are modeled as "lumps" or elevation blobs in digital surface models, which are derived by altimetric thresholding of digital surface models. Initial windows for building extraction are provided by projecting the elevation blobs centre points onto an ortho-image. In the next step, approximate building contours are extracted from the ortho-image by region growing constrained by edges. Approximate building contours thus derived are inputs into the dynamic programming optimisation process in which final building contours are established. The proposed system is tested on two study areas: Marconi Beam in Cape Town, South Africa, and Manzese in Dar es Salaam, Tanzania. Sixty percent of buildings in the study areas have been extracted and verified and it is concluded that the proposed approach contributes meaningfully to the extraction of buildings in moderately complex and crowded informal settlement areas.

  13. Predicting indoor pollutant concentrations, and applications to air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, David M.

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less

  14. TLS for generating multi-LOD of 3D building model

    NASA Astrophysics Data System (ADS)

    Akmalia, R.; Setan, H.; Majid, Z.; Suwardhi, D.; Chong, A.

    2014-02-01

    The popularity of Terrestrial Laser Scanners (TLS) to capture three dimensional (3D) objects has been used widely for various applications. Development in 3D models has also led people to visualize the environment in 3D. Visualization of objects in a city environment in 3D can be useful for many applications. However, different applications require different kind of 3D models. Since a building is an important object, CityGML has defined a standard for 3D building models at four different levels of detail (LOD). In this research, the advantages of TLS for capturing buildings and the modelling process of the point cloud can be explored. TLS will be used to capture all the building details to generate multi-LOD. This task, in previous works, involves usually the integration of several sensors. However, in this research, point cloud from TLS will be processed to generate the LOD3 model. LOD2 and LOD1 will then be generalized from the resulting LOD3 model. Result from this research is a guiding process to generate the multi-LOD of 3D building starting from LOD3 using TLS. Lastly, the visualization for multi-LOD model will also be shown.

  15. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  16. Introducing Molecular Life Science Students to Model Building Using Computer Simulations

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Kettenis, Dik; Sessink, Olivier; Hartog, Rob; Bisseling, Ton; Janssen, Fred

    2006-01-01

    Computer simulations can facilitate the building of models of natural phenomena in research, such as in the molecular life sciences. In order to introduce molecular life science students to the use of computer simulations for model building, a digital case was developed in which students build a model of a pattern formation process in…

  17. Emerging Challenges and Opportunities in Building Information Modeling for the US Army Installation Management Command

    DTIC Science & Technology

    2012-07-01

    Information Modeling ( BIM ) is the process of generating and managing building data during a facility’s entire life cycle. New BIM standards for...cycle Building Information Modeling ( BIM ) as a new standard for building information data repositories can serve as the foun- dation for automation and... Building Information Modeling ( BIM ) is defined as “a digital representa- tion of physical and functional

  18. [Building Process and Architectural Planning Characteristics of Daehan Hospital Main Building].

    PubMed

    Lee, Geauchul

    2016-04-01

    This paper explores the introduction process of Daehan Hospital from Japan as the modern medical facility in Korea, and the architectural planning characteristics as a medical facility through the detailed building process of Daehan Hospital main building. The most noticeable characteristic of Daehan Hospital is that it was designed and constructed not by Korean engineers but by Japanese engineers. Therefore, Daehan Hospital was influenced by Japanese early modern medical facility, and Japanese engineers modeled Daehan Hospital main building on Tokyo Medical School main building which was constructed in 1876 as the first national medical school and hospital. The architectural type of Tokyo Medical School main building was a typical school architecture in early Japanese modern period which had a middle corridor and a pseudo Western-style tower, but Tokyo Medical School main building became the model of a medical facility as the symbol of the medical department in Tokyo Imperial University. This was the introduction and transplantation process of Japanese modern 'model' like as other modern systems and technologies during the Korean modern transition period. However, unlike Tokyo Medical School main building, Daehan Hospital main building was constructed not as a wooden building but as a masonry building. Comparing with the function of Daehan Hospital main building, its architectural form and construction costs was excessive scale, which was because Japanese Resident-General of Korea had the intention of ostentation that Japanese modernity was superior to Korean Empire.

  19. Development and validation of a building design waste reduction model.

    PubMed

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Methodology of Interactive Parametric Modelling of Construction Site Facilities in BIM Environment

    NASA Astrophysics Data System (ADS)

    Kozlovská, Mária; Čabala, Jozef; Struková, Zuzana

    2014-11-01

    Information technology is becoming a strong tool in different industries, including construction. The recent trend of buildings designing is leading up to creation of the most comprehensive virtual building model (Building Information Model) in order to solve all the problems relating to the project as early as in the designing phase. Building information modelling is a new way of approaching to the design of building projects documentation. Currently, the building site layout as a part of the building design documents has a very little support in the BIM environment. Recently, the research of designing the construction process conditions has centred on improvement of general practice in planning and on new approaches to construction site layout planning. The state of art in field of designing the construction process conditions indicated an unexplored problem related to connection of knowledge system with construction site facilities (CSF) layout through interactive modelling. The goal of the paper is to present the methodology for execution of 3D construction site facility allocation model (3D CSF-IAM), based on principles of parametric and interactive modelling.

  1. Innovative model of business process reengineering at machine building enterprises

    NASA Astrophysics Data System (ADS)

    Nekrasov, R. Yu; Tempel, Yu A.; Tempel, O. A.

    2017-10-01

    The paper provides consideration of business process reengineering viewed as amanagerial innovation accepted by present day machine building enterprises, as well as waysto improve its procedure. A developed innovative model of reengineering measures isdescribed and is based on the process approach and other principles of company management.

  2. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    PubMed

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  3. Hybrid Modeling Based on Scsg-Br and Orthophoto

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Huang, Y.; Yue, T.; Li, X.; Huang, W.; He, C.; Wu, Z.

    2018-05-01

    With the development of digital city, digital applications are more and more widespread, while the urban buildings are more complex. Therefore, establishing an effective data model is the key to express urban building models accurately. In addition, the combination of 3D building model and remote sensing data become a trend to build digital city there are a large amount of data resulting in data redundancy. In order to solve the limitation of single modelling of constructive solid geometry (CSG), this paper presents a mixed modelling method based on SCSG-BR for urban buildings representation. On one hand, the improved CSG method, which is called as "Spatial CSG (SCSG)" representation method, is used to represent the exterior shape of urban buildings. On the other hand, the boundary representation (BR) method represents the topological relationship between geometric elements of urban building, in which the textures is considered as the attribute data of the wall and the roof of urban building. What's more, the method combined file database and relational database is used to manage the data of three-dimensional building model, which can decrease the complex processes in texture mapping. During the data processing, the least-squares algorithm with constraints is used to orthogonalize the building polygons and adjust the polygons topology to ensure the accuracy of the modelling data. Finally, this paper matches the urban building model with the corresponding orthophoto. This paper selects data of Denver, Colorado, USA to establish urban building realistic model. The results show that the SCSG-BR method can represent the topological relations of building more precisely. The organization and management of urban building model data reduce the redundancy of data and improve modelling speed. The combination of orthophoto and urban building model further strengthens the application in view analysis and spatial query, which enhance the scope of digital city applications.

  4. Using Wikis for Learning and Knowledge Building: Results of an Experimental Study

    ERIC Educational Resources Information Center

    Kimmerle, Joachim; Moskaliuk, Johannes; Cress, Ulrike

    2011-01-01

    Computer-supported learning and knowledge building play an increasing role in online collaboration. This paper outlines some theories concerning the interplay between individual processes of learning and collaborative processes of knowledge building. In particular, it describes the co-evolution model that attempts to examine processes of learning…

  5. Mobile Laser Scanning for Indoor Modelling

    NASA Astrophysics Data System (ADS)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  6. Multi-Criteria Approach in Multifunctional Building Design Process

    NASA Astrophysics Data System (ADS)

    Gerigk, Mateusz

    2017-10-01

    The paper presents new approach in multifunctional building design process. Publication defines problems related to the design of complex multifunctional buildings. Currently, contemporary urban areas are characterized by very intensive use of space. Today, buildings are being built bigger and contain more diverse functions to meet the needs of a large number of users in one capacity. The trends show the need for recognition of design objects in an organized structure, which must meet current design criteria. The design process in terms of the complex system is a theoretical model, which is the basis for optimization solutions for the entire life cycle of the building. From the concept phase through exploitation phase to disposal phase multipurpose spaces should guarantee aesthetics, functionality, system efficiency, system safety and environmental protection in the best possible way. The result of the analysis of the design process is presented as a theoretical model of the multifunctional structure. Recognition of multi-criteria model in the form of Cartesian product allows to create a holistic representation of the designed building in the form of a graph model. The proposed network is the theoretical base that can be used in the design process of complex engineering systems. The systematic multi-criteria approach makes possible to maintain control over the entire design process and to provide the best possible performance. With respect to current design requirements, there are no established design rules for multifunctional buildings in relation to their operating phase. Enrichment of the basic criteria with functional flexibility criterion makes it possible to extend the exploitation phase which brings advantages on many levels.

  7. Building Capacity in Community-Based Participatory Research Partnerships Through a Focus on Process and Multiculturalism.

    PubMed

    Corbie-Smith, Giselle; Bryant, Angela R; Walker, Deborah J; Blumenthal, Connie; Council, Barbara; Courtney, Dana; Adimora, Ada

    2015-01-01

    In health research, investigators and funders are emphasizing the importance of collaboration between communities and academic institutions to achieve health equity. Although the principles underlying community-academic partnered research have been well-articulated, the processes by which partnerships integrate these principles when working across cultural differences are not as well described. We present how Project GRACE (Growing, Reaching, Advocating for Change and Empowerment) integrated participatory research principles with the process of building individual and partnership capacity. We worked with Vigorous Interventions In Ongoing Natural Settings (VISIONS) Inc., a process consultant and training organization, to develop a capacity building model. We present the conceptual framework and multicultural process of change (MPOC) that was used to build individual and partnership capacity to address health disparities. The process and capacity building model provides a common language, approach, and toolset to understand differences and the dynamics of inequity. These tools can be used by other partnerships in the conduct of research to achieve health equity.

  8. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data

    PubMed Central

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-01-01

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. PMID:28335486

  9. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.

    PubMed

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-03-19

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.

  10. Building Cognition: The Construction of Computational Representations for Scientific Discovery.

    PubMed

    Chandrasekharan, Sanjay; Nersessian, Nancy J

    2015-11-01

    Novel computational representations, such as simulation models of complex systems and video games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries emerge in science and engineering. The cognitive roles played by such computational representations in discovery are not well understood. We present a theoretical analysis of the cognitive roles such representations play, based on an ethnographic study of the building of computational models in a systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in cognitive processes. However, DC analyses by and large have not examined scientific discovery, and they mostly focus on memory offloading, particularly how the use of existing external representations changes the nature of cognitive tasks. In contrast, we study discovery processes and argue that discoveries emerge from the processes of building the computational representation. The building process integrates manipulations in imagination and in the representation, creating a coupled cognitive system of model and modeler, where the model is incorporated into the modeler's imagination. This account extends DC significantly, and we present some of the theoretical and application implications of this extended account. Copyright © 2014 Cognitive Science Society, Inc.

  11. A methodological framework to support the initiation, design and institutionalization of participatory modeling processes in water resources management

    NASA Astrophysics Data System (ADS)

    Halbe, Johannes; Pahl-Wostl, Claudia; Adamowski, Jan

    2018-01-01

    Multiple barriers constrain the widespread application of participatory methods in water management, including the more technical focus of most water agencies, additional cost and time requirements for stakeholder involvement, as well as institutional structures that impede collaborative management. This paper presents a stepwise methodological framework that addresses the challenges of context-sensitive initiation, design and institutionalization of participatory modeling processes. The methodological framework consists of five successive stages: (1) problem framing and stakeholder analysis, (2) process design, (3) individual modeling, (4) group model building, and (5) institutionalized participatory modeling. The Management and Transition Framework is used for problem diagnosis (Stage One), context-sensitive process design (Stage Two) and analysis of requirements for the institutionalization of participatory water management (Stage Five). Conceptual modeling is used to initiate participatory modeling processes (Stage Three) and ensure a high compatibility with quantitative modeling approaches (Stage Four). This paper describes the proposed participatory model building (PMB) framework and provides a case study of its application in Québec, Canada. The results of the Québec study demonstrate the applicability of the PMB framework for initiating and designing participatory model building processes and analyzing barriers towards institutionalization.

  12. Digital Learning Material for Model Building in Molecular Biology

    ERIC Educational Resources Information Center

    Aegerter-Wilmsen, Tinri; Janssen, Fred; Hartog, Rob; Bisseling, Ton

    2005-01-01

    Building models to describe processes forms an essential part of molecular biology research. However, in molecular biology curricula little attention is generally being paid to the development of this skill. In order to provide students the opportunity to improve their model building skills, we decided to develop a number of digital cases about…

  13. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  14. Autotune Calibrates Models to Building Use Data

    ScienceCinema

    None

    2018-01-16

    Models of existing buildings are currently unreliable unless calibrated manually by a skilled professional. Autotune, as the name implies, automates this process by calibrating the model of an existing building to measured data, and is now available as open source software. This enables private businesses to incorporate Autotune into their products so that their customers can more effectively estimate cost savings of reduced energy consumption measures in existing buildings.

  15. Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Bassier, M.; Vergauwen, M.; Van Genechten, B.

    2017-08-01

    Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.

  16. Building Construction Progress Monitoring Using Unmanned Aerial System (uas), Low-Cost Photogrammetry, and Geographic Information System (gis)

    NASA Astrophysics Data System (ADS)

    Bognot, J. R.; Candido, C. G.; Blanco, A. C.; Montelibano, J. R. Y.

    2018-05-01

    Monitoring the progress of building's construction is critical in construction management. However, measuring the building construction's progress are still manual, time consuming, error prone, and impose tedious process of analysis leading to delays, additional costings and effort. The main goal of this research is to develop a methodology for building construction progress monitoring based on 3D as-built model of the building from unmanned aerial system (UAS) images, 4D as-planned model (with construction schedule integrated) and, GIS analysis. Monitoring was done by capturing videos of the building with a camera-equipped UAS. Still images were extracted, filtered, bundle-adjusted, and 3D as-built model was generated using open source photogrammetric software. The as-planned model was generated from digitized CAD drawings using GIS. The 3D as-built model was aligned with the 4D as-planned model of building formed from extrusion of building elements, and integration of the construction's planned schedule. The construction progress is visualized via color-coding the building elements in the 3D model. The developed methodology was conducted and applied from the data obtained from an actual construction site. Accuracy in detecting `built' or `not built' building elements ranges from 82-84 % and precision of 50-72 %. Quantified progress in terms of the number of building elements are 21.31% (November 2016), 26.84 % (January 2017) and 44.19 % (March 2017). The results can be used as an input for progress monitoring performance of construction projects and improving related decision-making process.

  17. United Space Alliance LLC Parachute Refurbishment Facility Model

    NASA Technical Reports Server (NTRS)

    Esser, Valerie; Pessaro, Martha; Young, Angela

    2007-01-01

    The Parachute Refurbishment Facility Model was created to reflect the flow of hardware through the facility using anticipated start and delivery times from a project level IV schedule. Distributions for task times were built using historical build data for SFOC work and new data generated for CLV/ARES task times. The model currently processes 633 line items from 14 SFOC builds for flight readiness, 16 SFOC builds returning from flight for defoul, wash, and dry operations, 12 builds for CLV manufacturing operations, and 1 ARES 1X build. Modeling the planned workflow through the PRF is providing a reliable way to predict the capability of the facility as well as the manpower resource need. Creating a real world process allows for real world problems to be identified and potential workarounds to be implemented in a safe, simulated world before taking it to the next step, implementation in the real world.

  18. Experiments in concept modeling for radiographic image reports.

    PubMed Central

    Bell, D S; Pattison-Gordon, E; Greenes, R A

    1994-01-01

    OBJECTIVE: Development of methods for building concept models to support structured data entry and image retrieval in chest radiography. DESIGN: An organizing model for chest-radiographic reporting was built by analyzing manually a set of natural-language chest-radiograph reports. During model building, clinician-informaticians judged alternative conceptual structures according to four criteria: content of clinically relevant detail, provision for semantic constraints, provision for canonical forms, and simplicity. The organizing model was applied in representing three sample reports in their entirety. To explore the potential for automatic model discovery, the representation of one sample report was compared with the noun phrases derived from the same report by the CLARIT natural-language processing system. RESULTS: The organizing model for chest-radiographic reporting consists of 62 concept types and 17 relations, arranged in an inheritance network. The broadest types in the model include finding, anatomic locus, procedure, attribute, and status. Diagnoses are modeled as a subtype of finding. Representing three sample reports in their entirety added 79 narrower concept types. Some CLARIT noun phrases suggested valid associations among subtypes of finding, status, and anatomic locus. CONCLUSIONS: A manual modeling process utilizing explicitly stated criteria for making modeling decisions produced an organizing model that showed consistency in early testing. A combination of top-down and bottom-up modeling was required. Natural-language processing may inform model building, but algorithms that would replace manual modeling were not discovered. Further progress in modeling will require methods for objective model evaluation and tools for formalizing the model-building process. PMID:7719807

  19. Institutional Approaches to Innovation and Change: A Review of the Esman Model of Institution Building.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    The definitional and conceptual structure of the Esman model of institution building is described in great detail, emphasizing its philosophic and process assumptions and its latent dynamics. The author systematically critiques the Esman model in terms of its (1) specificity to the universe of institution building, (2) generalizability across…

  20. Modelling of Rail Vehicles and Track for Calculation of Ground-Vibration Transmission Into Buildings

    NASA Astrophysics Data System (ADS)

    Hunt, H. E. M.

    1996-05-01

    A methodology for the calculation of vibration transmission from railways into buildings is presented. The method permits existing models of railway vehicles and track to be incorporated and it has application to any model of vibration transmission through the ground. Special attention is paid to the relative phasing between adjacent axle-force inputs to the rail, so that vibration transmission may be calculated as a random process. The vehicle-track model is used in conjunction with a building model of infinite length. The tracking and building are infinite and parallel to each other and forces applied are statistically stationary in space so that vibration levels at any two points along the building are the same. The methodology is two-dimensional for the purpose of application of random process theory, but fully three-dimensional for calculation of vibration transmission from the track and through the ground into the foundations of the building. The computational efficiency of the method will interest engineers faced with the task of reducing vibration levels in buildings. It is possible to assess the relative merits of using rail pads, under-sleeper pads, ballast mats, floating-slab track or base isolation for particular applications.

  1. 10 CFR 436.31 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... systems, building load simulation models, statistical regression analysis, or some combination of these..., excluding any cogeneration process for other than a federally owned building or buildings or other federally...

  2. Working Papers in Dialogue Modeling, Volume 2.

    ERIC Educational Resources Information Center

    Mann, William C.; And Others

    The technical working papers that comprise the two volumes of this document are related to the problem of creating a valid process model of human communication in dialogue. In Volume 2, the first paper concerns study methodology, and raises such issues as the choice between system-building and process-building, and the advantages of studying cases…

  3. Construction of a Model Solar Building. A Learning Experience for Coastal and Oceanic Awareness Studies, No. 318. [Project COAST].

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Coll. of Education.

    This activity is designed for secondary school students. The process of constructing a model solar building includes consideration of many fundamental scientific principles, such as the nature of heat, light, electricity, and energy conversion technology. When the model solar building is completed, there are numerous possibilities for the use of…

  4. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  5. The study of thermal processes in control systems of heat consumption of buildings

    NASA Astrophysics Data System (ADS)

    Tsynaeva, E.; A, Tsynaeva

    2017-11-01

    The article discusses the main thermal processes in the automated control systems for heat consumption (ACSHC) of buildings, schematic diagrams of these systems, mathematical models used for description of thermal processes in ACSHC. Conducted verification represented by mathematical models. It was found that the efficiency of the operation of ACSHC depend from the external and internal factors. Numerical study of dynamic modes of operation of ACSHC.

  6. Modeling hospital surgical delivery process design using system simulation: optimizing patient flow and bed capacity as an illustration.

    PubMed

    Kumar, Sameer

    2011-01-01

    It is increasingly recognized that hospital operation is an intricate system with limited resources and many interacting sources of both positive and negative feedback. The purpose of this study is to design a surgical delivery process in a county hospital in the U.S where patient flow through a surgical ward is optimized. The system simulation modeling is used to address questions of capacity planning, throughput management and interacting resources which constitute the constantly changing complexity that characterizes designing a contemporary surgical delivery process in a hospital. The steps in building a system simulation model is demonstrated using an example of building a county hospital in a small city in the US. It is used to illustrate a modular system simulation modeling of patient surgery process flows. The system simulation model development will enable planners and designers how they can build in overall efficiencies in a healthcare facility through optimal bed capacity for peak patient flow of emergency and routine patients.

  7. Building Development Monitoring in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death Dynamics.

    PubMed

    Benedek, C; Descombes, X; Zerubia, J

    2012-01-01

    In this paper, we introduce a new probabilistic method which integrates building extraction with change detection in remotely sensed image pairs. A global optimization process attempts to find the optimal configuration of buildings, considering the observed data, prior knowledge, and interactions between the neighboring building parts. We present methodological contributions in three key issues: 1) We implement a novel object-change modeling approach based on Multitemporal Marked Point Processes, which simultaneously exploits low-level change information between the time layers and object-level building description to recognize and separate changed and unaltered buildings. 2) To answer the challenges of data heterogeneity in aerial and satellite image repositories, we construct a flexible hierarchical framework which can create various building appearance models from different elementary feature-based modules. 3) To simultaneously ensure the convergence, optimality, and computation complexity constraints raised by the increased data quantity, we adopt the quick Multiple Birth and Death optimization technique for change detection purposes, and propose a novel nonuniform stochastic object birth process which generates relevant objects with higher probability based on low-level image features.

  8. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  9. Building a competent health manager at district level: a grounded theory study from Eastern Uganda.

    PubMed

    Tetui, Moses; Hurtig, Anna-Karin; Ekirpa-Kiracho, Elizabeth; Kiwanuka, Suzanne N; Coe, Anna-Britt

    2016-11-21

    Health systems in low-income countries are often characterized by poor health outcomes. While many reasons have been advanced to explain the persistently poor outcomes, management of the system has been found to play a key role. According to a WHO framework, the management of health systems is central to its ability to deliver needed health services. In this study, we examined how district managers in a rural setting in Uganda perceived existing approaches to strengthening management so as to provide a pragmatic and synergistic model for improving management capacity building. Twenty-two interviews were conducted with district level administrative and political managers, district level health managers and health facility managers to understand their perceptions and definitions of management and capacity building. Kathy Charmaz's constructive approach to grounded theory informed the data analysis process. An interative, dynamic and complex model with three sub-process of building a competent health manager was developed. A competent manager was understood as one who knew his/her roles, was well informed and was empowered to execute management functions. Professionalizing health managers which was viewed as the foundation, the use of engaging learning approaches as the inside contents and having a supportive work environment the frame of the model were the sub-processes involved in the model. The sub-processes were interconnected although the respondents agreed that having a supportive work environment was more time and effort intensive relative to the other two sub-processes. The model developed in our study makes four central contributions to enhance the WHO framework and the existing literature. First, it emphasizes management capacity building as an iterative, dynamic and complex process rather than a set of characteristics of competent managers. Second, our model suggests the need for professionalization of health managers at different levels of the health system. Third, our model underscores the benefits that could be accrued from the use of engaging learning approaches through prolonged and sustained processes that act in synergy. Lastly, our model postulates that different resource investments and a varied range of stakeholders could be required at each of the sub-processes.

  10. Current State of the Art Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2017-08-01

    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.

  11. Model-based tomographic reconstruction

    DOEpatents

    Chambers, David H; Lehman, Sean K; Goodman, Dennis M

    2012-06-26

    A model-based approach to estimating wall positions for a building is developed and tested using simulated data. It borrows two techniques from geophysical inversion problems, layer stripping and stacking, and combines them with a model-based estimation algorithm that minimizes the mean-square error between the predicted signal and the data. The technique is designed to process multiple looks from an ultra wideband radar array. The processed signal is time-gated and each section processed to detect the presence of a wall and estimate its position, thickness, and material parameters. The floor plan of a building is determined by moving the array around the outside of the building. In this paper we describe how the stacking and layer stripping algorithms are combined and show the results from a simple numerical example of three parallel walls.

  12. Search and Coherence-Building in Intuition and Insight Problem Solving.

    PubMed

    Öllinger, Michael; von Müller, Albrecht

    2017-01-01

    Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.

  13. Search and Coherence-Building in Intuition and Insight Problem Solving

    PubMed Central

    Öllinger, Michael; von Müller, Albrecht

    2017-01-01

    Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes. PMID:28611702

  14. Demonstration of reduced-order urban scale building energy models

    DOE PAGES

    Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...

    2017-09-08

    The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less

  15. Demonstration of reduced-order urban scale building energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew

    The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less

  16. Theories, models and frameworks used in capacity building interventions relevant to public health: a systematic review.

    PubMed

    Bergeron, Kim; Abdi, Samiya; DeCorby, Kara; Mensah, Gloria; Rempel, Benjamin; Manson, Heather

    2017-11-28

    There is limited research on capacity building interventions that include theoretical foundations. The purpose of this systematic review is to identify underlying theories, models and frameworks used to support capacity building interventions relevant to public health practice. The aim is to inform and improve capacity building practices and services offered by public health organizations. Four search strategies were used: 1) electronic database searching; 2) reference lists of included papers; 3) key informant consultation; and 4) grey literature searching. Inclusion and exclusion criteria are outlined with included papers focusing on capacity building, learning plans, professional development plans in combination with tools, resources, processes, procedures, steps, model, framework, guideline, described in a public health or healthcare setting, or non-government, government, or community organizations as they relate to healthcare, and explicitly or implicitly mention a theory, model and/or framework that grounds the type of capacity building approach developed. Quality assessment were performed on all included articles. Data analysis included a process for synthesizing, analyzing and presenting descriptive summaries, categorizing theoretical foundations according to which theory, model and/or framework was used and whether or not the theory, model or framework was implied or explicitly identified. Nineteen articles were included in this review. A total of 28 theories, models and frameworks were identified. Of this number, two theories (Diffusion of Innovations and Transformational Learning), two models (Ecological and Interactive Systems Framework for Dissemination and Implementation) and one framework (Bloom's Taxonomy of Learning) were identified as the most frequently cited. This review identifies specific theories, models and frameworks to support capacity building interventions relevant to public health organizations. It provides public health practitioners with a menu of potentially usable theories, models and frameworks to support capacity building efforts. The findings also support the need for the use of theories, models or frameworks to be intentional, explicitly identified, referenced and for it to be clearly outlined how they were applied to the capacity building intervention.

  17. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    PubMed

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  18. Building a scholar in writing (BSW): A model for developing students' critical writing skills.

    PubMed

    Bailey, Annette; Zanchetta, Margareth; Velasco, Divine; Pon, Gordon; Hassan, Aafreen

    2015-11-01

    Several authors have highlighted the importance of writing in developing reflective thinking skills, transforming knowledge, communicating expressions, and filling knowledge gaps. However, difficulties with higher order processing and critical analysis affect students' ability to write critical and thoughtful essays. The Building a Scholar in Writing (BSW) model is a 6-step process of increasing intricacies in critical writing development. Development of critical writing is proposed to occur in a processed manner that transitions from presenting simple ideas (just bones) in writing, to connecting ideas (connecting bones), to formulating a thesis and connecting key components (constructing a skeleton), to supporting ideas with evidence (adding muscle), to building creativity and originality (adding essential organs), and finally, developing strong, integrated, critical arguments (adding brain). This process symbolically represents the building of a scholar. The idea of building a scholar equates to progressively giving life and meaning to a piece of writing with unique scholarly characteristics. This progression involves a transformation in awareness, thinking, and understanding, as well as advancement in students' level of critical appraisal skills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. NaturAnalogs for the Unsaturated Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturatedmore » Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.« less

  20. The Use of Modelling for Theory Building in Qualitative Analysis

    ERIC Educational Resources Information Center

    Briggs, Ann R. J.

    2007-01-01

    The purpose of this article is to exemplify and enhance the place of modelling as a qualitative process in educational research. Modelling is widely used in quantitative research as a tool for analysis, theory building and prediction. Statistical data lend themselves to graphical representation of values, interrelationships and operational…

  1. Automatic computation for optimum height planning of apartment buildings to improve solar access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Yoon-Bok; Kim, Yong-Yee; Seok, Ho-Tae

    2011-01-15

    The objective of this study is to suggest a mathematical model and an optimal algorithm for determining the height of apartment buildings to satisfy the solar rights of survey buildings or survey housing units. The objective is also to develop an automatic computation model for the optimum height of apartment buildings and then to clarify the performance and expected effects. To accomplish the objective of this study, the following procedures were followed: (1) The necessity of the height planning of obstruction buildings to satisfy the solar rights of survey buildings or survey housing units is demonstrated by analyzing through amore » literature review the recent trend of disputes related to solar rights and to examining the social requirements in terms of solar rights. In addition, the necessity of the automatic computation system for height planning of apartment buildings is demonstrated and a suitable analysis method for this system is chosen by investigating the characteristics of analysis methods for solar rights assessment. (2) A case study on the process of height planning of apartment buildings will be briefly described and the problems occurring in this process will then be examined carefully. (3) To develop an automatic computation model for height planning of apartment buildings, geometrical elements forming apartment buildings are defined by analyzing the geometrical characteristics of apartment buildings. In addition, design factors and regulations required in height planning of apartment buildings are investigated. Based on this knowledge, the methodology and mathematical algorithm to adjust the height of apartment buildings by automatic computation are suggested and probable problems and the ways to resolve these problems are discussed. Finally, the methodology and algorithm for the optimization are suggested. (4) Based on the suggested methodology and mathematical algorithm, the automatic computation model for optimum height of apartment buildings is developed and the developed system is verified through the application of some cases. The effects of the suggested model are then demonstrated quantitatively and qualitatively. (author)« less

  2. Building trust and diversity in patient-centered oncology clinical trials: An integrated model.

    PubMed

    Hurd, Thelma C; Kaplan, Charles D; Cook, Elise D; Chilton, Janice A; Lytton, Jay S; Hawk, Ernest T; Jones, Lovell A

    2017-04-01

    Trust is the cornerstone of clinical trial recruitment and retention. Efforts to decrease barriers and increase clinical trial participation among diverse populations have yielded modest results. There is an urgent need to better understand the complex interactions between trust and clinical trial participation. The process of trust-building has been a focus of intense research in the business community. Yet, little has been published about trust in oncology clinical trials or the process of building trust in clinical trials. Both clinical trials and business share common dimensions. Business strategies for building trust may be transferable to the clinical trial setting. This study was conducted to understand and utilize contemporary thinking about building trust to develop an Integrated Model of Trust that incorporates both clinical and business perspectives. A key word-directed literature search of the PubMed, Medline, Cochrane, and Google Search databases for entries dated between 1 January 1985 and 1 September 2015 was conducted to obtain information from which to develop an Integrated Model of Trust. Successful trial participation requires both participants and clinical trial team members to build distinctly different types of interpersonal trust to effect recruitment and retention. They are built under conditions of significant emotional stress and time constraints among people who do not know each other and have never worked together before. Swift Trust and Traditional Trust are sequentially built during the clinical trial process. Swift trust operates during the recruitment and very early active treatment phases of the clinical trial process. Traditional trust is built over time and operates during the active treatment and surveillance stages of clinical trials. The Psychological Contract frames the participants' and clinical trial team members' interpersonal trust relationship. The "terms" of interpersonal trust are negotiated through the psychological contract. Contract renegotiation occurs in response to cyclical changes within the trust relationship throughout trial participation. The Integrated Model of Trust offers a novel framework to interrogate the process by which diverse populations and clinical trial teams build trust. To our knowledge, this is the first model of trust-building in clinical trials that frames trust development through integrated clinical and business perspectives. By focusing on the process, rather than outcomes of trust-building diverse trial participants, clinical trials teams, participants, and cancer centers may be able to better understand, measure, and manage their trust relationships in real time. Ultimately, this may foster increased recruitment and retention of diverse populations to clinical trials.

  3. Noah Pflaum | NREL

    Science.gov Websites

    | 303-384-7527 Noah joined NREL in 2017 after having worked as a consulting building energy analyst. His to smooth the integration of building energy modeling into the building design process. Noah applies a variety of analytical techniques to solve problems associated with building performance as they

  4. Landlab: A numerical modeling framework for evolving Earth surfaces from mountains to the coast

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Adams, J. M.; Tucker, G. E.; Hobley, D. E. J.; Hutton, E.; Istanbulluoglu, E.; Nudurupati, S. S.

    2016-02-01

    Landlab is an open-source, user-friendly, component-based modeling framework for exploring the evolution of Earth's surface. Landlab itself is not a model. Instead, it is a computational framework that facilitates the development of numerical models of coupled earth surface processes. The Landlab Python library includes a gridding engine and process components, along with support functions for tasks such as reading in DEM data and input variables, setting boundary conditions, and plotting and outputting data. Each user of Landlab builds his or her own unique model. The first step in building a Landlab model is generally initializing a grid, either regular (raster) or irregular (e.g. delaunay or radial), and process components. This initialization process involves reading in relevant parameter values and data. The process components act on the grid to alter grid properties over time. For example, a component exists that can track the growth, death, and succession of vegetation over time. There are also several components that evolve surface elevation, through processes such as fluvial sediment transport and linear diffusion, among others. Users can also build their own process components, taking advantage of existing functions in Landlab such as those that identify grid connectivity and calculate gradients and flux divergence. The general nature of the framework makes it applicable to diverse environments - from bedrock rivers to a pile of sand - and processes acting over a range of spatial and temporal scales. In this poster we illustrate how a user builds a model using Landlab and propose a number of ways in which Landlab can be applied in coastal environments - from dune migration to channelization of barrier islands. We seek input from the coastal community as to how the process component library can be expanded to explore the diverse phenomena that act to shape coastal environments.

  5. Application of BIM Technology in Building Water Supply and Drainage Design

    NASA Astrophysics Data System (ADS)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yixing; Zhang, Jianshun; Pelken, Michael

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation toolsmore » as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus on evaluating thermal performance, air quality and lighting environmental quality because of their strong interaction with the energy performance of buildings. The VDS software framework contains four major functions: 1) Design coordination: It enables users to define tasks using the Input-Process-Output flow approach, which specifies the anticipated activities (i.e., the process), required input and output information, and anticipated interactions with other tasks. It also allows task scheduling to define the work flow, and sharing of the design data and information via the internet. 2) Modeling and simulation: It enables users to perform building simulations to predict the energy consumption and IEQ conditions at any of the design stages by using EnergyPlus and a combined heat, air, moisture and pollutant simulation (CHAMPS) model. A method for co-simulation was developed to allow the use of both models at the same time step for the combined energy and indoor air quality analysis. 3) Results visualization: It enables users to display a 3-D geometric design of the building by reading BIM (building information model) file generated by design software such as SketchUp, and the predicted results of heat, air, moisture, pollutant and light distributions in the building. 4) Performance evaluation: It enables the users to compare the performance of a proposed building design against a reference building that is defined for the same type of buildings under the same climate condition, and predicts the percent of improvements over the minimum requirements specified in ASHRAE Standard 55-2010, 62.1-2010 and 90.1-2010. An approach was developed to estimate the potential impact of a design factor on the whole building performance, and hence can assist the user to identify areas that have most pay back for investment. The VDS software was developed by using C++ with the conventional Model, View and Control (MVC) software architecture. The software has been verified by using a simple 3-zone case building. The application of the VDS concepts and framework for building design and performance analysis has been illustrated by using a medium-sized, five story office building that received LEED Platinum Certification from USGBC.« less

  7. BIM integration in education: A case study of the construction technology project Bolt Tower Dolni Vitkovice

    NASA Astrophysics Data System (ADS)

    Venkrbec, Vaclav; Bittnerova, Lucie

    2017-12-01

    Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.

  8. Hybrid processing of laser scanning data

    NASA Astrophysics Data System (ADS)

    Badenko, Vladimir; Zotov, Dmitry; Fedotov, Alexander

    2018-03-01

    In this article the analysis of gaps in processing of raw laser scanning data and results of bridging the gaps discovered on the base of usage of laser scanning data for historic building information modeling is presented. The results of the development of a unified hybrid technology for the processing, storage, access and visualization of combined laser scanning and photography data about historical buildings are analyzed. The first result of the technology application for the historical building of St. Petersburg Polytechnic University shows reliability of the proposed approaches.

  9. Global optimization framework for solar building design

    NASA Astrophysics Data System (ADS)

    Silva, N.; Alves, N.; Pascoal-Faria, P.

    2017-07-01

    The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.

  10. Development and Testing of Building Energy Model Using Non-Linear Auto Regression Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Arida, Maya Ahmad

    In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.

  11. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    NASA Astrophysics Data System (ADS)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate the indoor condition regardless of the contribution of internal and external loads. To deploy the methodology to another portfolio of buildings, simulated LEED NC office buildings are selected. The advantage of this approach is to isolate energy performance due to inherent building characteristics and location, rather than operational and maintenance factors that can contribute to significant variation in building energy use. A framework for detailed building energy databases with annual energy end-uses is developed to select variables and omit outliers. The results show that the high performance office buildings are internally-load dominated with existence of three different clusters of low-intensity, medium-intensity, and high-intensity energy use pattern for the reviewed office buildings. Low-intensity cluster buildings benefit from small building area, while the medium- and high-intensity clusters have a similar range of floor areas and different energy use intensities. Half of the energy use in the low-intensity buildings is associated with the internal loads, such as lighting and plug loads, indicating that there are opportunities to save energy by using lighting or plug load management systems. A comparison between the frameworks developed for the campus buildings and LEED NC office buildings indicates these two frameworks are complementary to each other. Availability of the information has yielded to two different procedures, suggesting future studies for a portfolio of buildings such as city benchmarking and disclosure ordinance should collect and disclose minimal required inputs suggested by this study with the minimum level of monthly energy consumption granularity. This dissertation developed automated methods using the OpenStudio API (Application Programing Interface) to create energy models based on the building class. ASHRAE Guideline 14 defines well-accepted criteria to measure accuracy of energy simulations; however, there is no well-accepted methodology to quantify the model complexity without the influence of the energy modeler judgment about the model complexity. This study developed a novel method using two weighting factors, including weighting factors based on (1) computational time and (2) easiness of on-site data collection, to measure complexity of the energy models. Therefore, this dissertation enables measurement of both model complexity and accuracy as well as assessment of the inherent tradeoffs between energy simulation model complexity and accuracy. The results of this methodology suggest for most of the internal load contributors such as operation schedules the on-site data collection adds more complexity to the model compared to the computational time. Overall, this study provided specific data on tradeoffs between accuracy and model complexity that points to critical inputs for different building classes, rather than an increase in the volume and detail of model inputs as the current research and consulting practice indicates. (Abstract shortened by UMI.).

  12. Development of an Empirically Based Learning Performances Framework for Third-Grade Students' Model-Based Explanations about Plant Processes

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2016-01-01

    To develop scientific literacy, elementary students should engage in knowledge building of core concepts through scientific practice (Duschl, Schweingruber, & Schouse, 2007). A core scientific practice is engagement in scientific modeling to build conceptual understanding about discipline-specific concepts. Yet scientific modeling remains…

  13. Understanding the uncertainty associated with particle-bound pollutant build-up and wash-off: A critical review.

    PubMed

    Wijesiri, Buddhi; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha

    2016-09-15

    Accurate prediction of stormwater quality is essential for developing effective pollution mitigation strategies. The use of models incorporating simplified mathematical replications of pollutant processes is the common practice for determining stormwater quality. However, an inherent process uncertainty arises due to the intrinsic variability associated with pollutant processes, which has neither been comprehensively understood, nor well accounted for in uncertainty assessment of stormwater quality modelling. This review provides the context for defining and quantifying the uncertainty associated with pollutant build-up and wash-off on urban impervious surfaces based on the hypothesis that particle size is predominant in influencing process variability. Critical analysis of published research literature brings scientific evidence together in order to establish the fact that particle size changes with time, and different sized particles exhibit distinct behaviour during build-up and wash-off, resulting in process variability. Analysis of the different adsorption behaviour of particles confirmed that the variations in pollutant load and composition are influenced by particle size. Particle behaviour and variations in pollutant load and composition are related due to the strong affinity of pollutants such as heavy metals and hydrocarbons for specific particle size ranges. As such, the temporal variation in particle size is identified as the key to establishing a basis for assessing build-up and wash-off process uncertainty. Therefore, accounting for pollutant build-up and wash-off process variability, which is influenced by particle size, would facilitate the assessment of the uncertainty associated with modelling outcomes. Furthermore, the review identified fundamental knowledge gaps where further research is needed in relation to: (1) the aggregation of particles suspended in the atmosphere during build-up; (2) particle re-suspension during wash-off; (3) pollutant re-adsorption by different particle size fractions; and (4) development of evidence-based techniques for assessing uncertainty; and (5) methods for translating the knowledge acquired from the investigation of process mechanisms at small scale into catchment scale for stormwater quality modelling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Institutional Transformation 2.5 Building Module Help Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Daniel

    The Institutional Transformation (IX) building module is a software tool developed at Sandia National Laboratories to evaluate energy conservation measures (ECMs) on hundreds of DOE-2 building energy models simultaneously. In IX, ECMs can be designed through parameterizing DOE-2 building models and doing further processing via visual basic for applications subroutines. IX provides the functionality to handle multiple building models for different years, which enables incrementally changing a site of hundreds of buildings over time. It also enables evaluation of the effects of changing climate, comparisons between data and modeling results, and energy use of centralized utility buildings (CUBs). IX consistsmore » of a Microsoft Excel(r) user interface, Microsoft Access(r) database, and Microsoft Excel(r) CUB build utility whose functionalities are described in detail in this report. In addition to descriptions of the user interfaces, descriptions of every ECM already designed in IX is included. SAND2016-8983 IX 2.5 Help Manual« less

  15. EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi; Wilensky, Uri

    2018-04-01

    Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.

  16. Building a Foreign Military Sales Construction Delivery Strategy Decision Support System

    DTIC Science & Technology

    1991-09-01

    DSS, formulates it into a computer model and produces solutions using information and expert heuristics. Using the Expert Systeic Process to Build a DSS...computer model . There are five stages in the development of an expert system. They are: 1) Identify and characterize the important aspects of the problem...and Steven A. Hidreth. U.S. Security Assistance: The Political Process. Massachusetts: Heath and Company, 1985. 19. Guirguis , Amir A., Program

  17. Post Occupancy Evaluation of Educational Buildings and Equipment.

    ERIC Educational Resources Information Center

    Watson, Chris

    1997-01-01

    Details the post occupancy evaluation (POE) process for public buildings. POEs are used to improve design and optimize educational building and equipment use. The evaluation participants, the method used, the results and recommendations, model schools, and classroom alterations using POE are described. (9 references.) (RE)

  18. Integrated Survey Procedures for the Virtual Reading and Fruition of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Scandurra, S.; Pulcrano, M.; Cirillo, V.; Campi, M.; di Luggo, A.; Zerlenga, O.

    2018-05-01

    This paper presents the developments of research related to the integration of digital survey methodologies with reference to image-based and range-based technologies. Starting from the processing of point clouds, the data were processed for both the geometric interpretation of the space as well as production of three-dimensional models that describe the constitutive and morphological relationships. The subject of the study was the church of San Carlo all'Arena in Naples (Italy), with a HBIM model being produced that is semantically consistent with the real building. Starting from the data acquired, a visualization system was created for the virtual exploration of the building.

  19. Modelling Technology for Building Fire Scene with Virtual Geographic Environment

    NASA Astrophysics Data System (ADS)

    Song, Y.; Zhao, L.; Wei, M.; Zhang, H.; Liu, W.

    2017-09-01

    Building fire is a risky activity that can lead to disaster and massive destruction. The management and disposal of building fire has always attracted much interest from researchers. Integrated Virtual Geographic Environment (VGE) is a good choice for building fire safety management and emergency decisions, in which a more real and rich fire process can be computed and obtained dynamically, and the results of fire simulations and analyses can be much more accurate as well. To modelling building fire scene with VGE, the application requirements and modelling objective of building fire scene were analysed in this paper. Then, the four core elements of modelling building fire scene (the building space environment, the fire event, the indoor Fire Extinguishing System (FES) and the indoor crowd) were implemented, and the relationship between the elements was discussed also. Finally, with the theory and framework of VGE, the technology of building fire scene system with VGE was designed within the data environment, the model environment, the expression environment, and the collaborative environment as well. The functions and key techniques in each environment are also analysed, which may provide a reference for further development and other research on VGE.

  20. Agent-based modeling: a new approach for theory building in social psychology.

    PubMed

    Smith, Eliot R; Conrey, Frederica R

    2007-02-01

    Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.

  1. Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology?

    PubMed

    Osman, Reham B; Alharbi, Nawal; Wismeijer, Daniel

    The aim of this study was to evaluate the effect of the build orientation/build angle on the dimensional accuracy of full-coverage dental restorations manufactured using digital light-processing technology (DLP-AM). A full dental crown was digitally designed and 3D-printed using DLP-AM. Nine build angles were used: 90, 120, 135, 150, 180, 210, 225, 240, and 270 degrees. The specimens were digitally scanned using a high-resolution optical surface scanner (IScan D104i, Imetric). Dimensional accuracy was evaluated using the digital subtraction technique. The 3D digital files of the scanned printed crowns (test model) were exported in standard tessellation language (STL) format and superimposed on the STL file of the designed crown [reference model] using Geomagic Studio 2014 (3D Systems). The root mean square estimate (RMSE) values were evaluated, and the deviation patterns on the color maps were further assessed. The build angle influenced the dimensional accuracy of 3D-printed restorations. The lowest RMSE was recorded for the 135-degree and 210-degree build angles. However, the overall deviation pattern on the color map was more favorable with the 135-degree build angle in contrast with the 210-degree build angle where the deviation was observed around the critical marginal area. Within the limitations of this study, the recommended build angle using the current DLP system was 135 degrees. Among the selected build angles, it offers the highest dimensional accuracy and the most favorable deviation pattern. It also offers a self-supporting crown geometry throughout the building process.

  2. Model-Based Building Detection from Low-Cost Optical Sensors Onboard Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Karantzalos, K.; Koutsourakis, P.; Kalisperakis, I.; Grammatikopoulos, L.

    2015-08-01

    The automated and cost-effective building detection in ultra high spatial resolution is of major importance for various engineering and smart city applications. To this end, in this paper, a model-based building detection technique has been developed able to extract and reconstruct buildings from UAV aerial imagery and low-cost imaging sensors. In particular, the developed approach through advanced structure from motion, bundle adjustment and dense image matching computes a DSM and a true orthomosaic from the numerous GoPro images which are characterised by important geometric distortions and fish-eye effect. An unsupervised multi-region, graphcut segmentation and a rule-based classification is responsible for delivering the initial multi-class classification map. The DTM is then calculated based on inpaininting and mathematical morphology process. A data fusion process between the detected building from the DSM/DTM and the classification map feeds a grammar-based building reconstruction and scene building are extracted and reconstructed. Preliminary experimental results appear quite promising with the quantitative evaluation indicating detection rates at object level of 88% regarding the correctness and above 75% regarding the detection completeness.

  3. Review of retrofit strategies decision system in historic perspective

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M. D.

    2004-06-01

    Urban development is a process. In structuring and developing its phases different actors are implied, who act under different, sometimes opposite, dynamic conditions and within different reference systems. This paper aims to explore the contribution of participatism to disaster mitigation, when this concerns earthquake impact on urban settlements, through the support provided to multi-criteria decision in matters of retrofit. The research broadness in field of decision making on one side and the lack of a specific model for the retrofit of existing buildings on another side led to an extensive review of the state of the art in related models to address the issue. Core idea in the selection of existing models has been the preoccupation for collaborative issues, in other words, the consideration for the different actors implied in the planning process. The historic perspective on participative planning models is made from the view of two generations of citizen implication. The first approaches focus on the participation of the building owner/inhabitant in the planning process of building construction. As current strategies building rehabilitation and selection from alternative retrofit strategies are presented. New developments include innovative models using the internet or spatial databases. The investigated participation approaches show, that participation and communication as a more comprehensive term are an old topic in the field politics-democratisation-urbanism. In all cases it can be talked of "successful learning processes", of the improvement of the level of the professional debate. More than 30 years history of participation marked a transition in understanding the concept: from participation, based on a central decision process leading to a solution controlled and steered by the political-administrative system, to communication, characterised by simultaneous decision processes taking place outside politics and administration in co-operative procedures.

  4. Facilities Management of Existing School Buildings: Two Models.

    ERIC Educational Resources Information Center

    Building Technology, Inc., Silver Spring, MD.

    While all school districts are responsible for the management of their existing buildings, they often approach the task in different ways. This document presents two models that offer ways a school district administration, regardless of size, may introduce activities into its ongoing management process that will lead to improvements in earthquake…

  5. Building Regression Models: The Importance of Graphics.

    ERIC Educational Resources Information Center

    Dunn, Richard

    1989-01-01

    Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)

  6. Geometric Model of Induction Heating Process of Iron-Based Sintered Materials

    NASA Astrophysics Data System (ADS)

    Semagina, Yu V.; Egorova, M. A.

    2018-03-01

    The article studies the issue of building multivariable dependences based on the experimental data. A constructive method for solving the issue is presented in the form of equations of (n-1) – surface compartments of the extended Euclidean space E+n. The dimension of space is taken to be equal to the sum of the number of parameters and factors of the model of the system being studied. The basis for building multivariable dependencies is the generalized approach to n-space used for the surface compartments of 3D space. The surface is designed on the basis of the kinematic method, moving one geometric object along a certain trajectory. The proposed approach simplifies the process aimed at building the multifactorial empirical dependencies which describe the process being investigated.

  7. Application of the Life Cycle Analysis and the Building Information Modelling Software in the Architectural Climate Change-Oriented Design Process

    NASA Astrophysics Data System (ADS)

    Gradziński, Piotr

    2017-10-01

    Whereas World’s climate is changing (inter alia, under the influence of architecture activity), the author attempts to reorientations design practice primarily in a direction the use and adapt to the climatic conditions. Architectural Design using in early stages of the architectural Design Process of the building, among other Life Cycle Analysis (LCA) and digital analytical tools BIM (Building Information Modelling) defines the overriding requirements which the designer/architect should meet. The first part, the text characterized the architecture activity influences (by consumption, pollution, waste, etc.) and the use of building materials (embodied energy, embodied carbon, Global Warming Potential, etc.) within the meaning of the direct negative environmental impact. The second part, the paper presents the revision of the methods and analytical techniques prevent negative influences. Firstly, showing the study of the building by using the Life Cycle Analysis of the structure (e.g. materials) and functioning (e.g. energy consumptions) of the architectural object (stages: before use, use, after use). Secondly, the use of digital analytical tools for determining the benefits of running multi-faceted simulations in terms of environmental factors (exposure to light, shade, wind) directly affecting shaping the form of the building. The conclusion, author’s research results highlight the fact that indicates the possibility of building design using the above-mentioned elements (LCA, BIM) causes correction, early designs decisions in the design process of architectural form, minimizing the impact on nature, environment. The work refers directly to the architectural-environmental dimensions, orienting the design process of buildings in respect of widely comprehended climatic changes.

  8. Using group model building to understand factors that influence childhood obesity in an urban environment.

    PubMed

    Nelson, David A; Simenz, Christopher J; OʼConnor, Sarah P; Greer, Yvonne D; Bachrach, Ann L; Shields, Tony; Fuller, Brett A; Horrigan, Katie; Pritchard, Kathleen; Springer, Judy B; Meurer, John R

    2015-01-01

    Despite increased attention, conventional views of obesity are based upon individual behaviors, and children and parents living with obesity are assumed to be the primary problem solvers. Instead of focusing exclusively on individual reduction behaviors for childhood obesity, greater focus should be placed on better understanding existing community systems and their effects on obesity. The Milwaukee Childhood Obesity Prevention Project is a community-based coalition established to develop policy and environmental change strategies to impact childhood obesity in Milwaukee, Wisconsin. The coalition conducted a Group Model Building exercise to better understand root causes of childhood obesity in its community. Group Model Building is a process by which a group systematically engages in model construction to better understand the systems that are in place. It helps participants make their mental models explicit through a careful and consistent process to test assumptions. This process has 3 main components: (1) assembling a team of participants; (2) conducting a behavior-over-time graphs exercise; and (3) drawing the causal loop diagram exercise. The behavior-over-time graph portion produced 61 graphs in 10 categories. The causal loop diagram yielded 5 major themes and 7 subthemes. Factors that influence childhood obesity are varied, and it is important to recognize that no single solution exists. The perspectives from this exercise provided a means to create a process for dialogue and commitment by stakeholders and partnerships to build capacity for change within the community.

  9. 10 CFR 434.517 - HVAC systems and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... simulation, except that excess capacity provided to meet process loads need not be modeled unless the process... Reference Buildings. The zones in the simulation shall correspond to the zones provided by the controls in... simulation. Table 517.4.1—HVAC System Description for Prototype and Reference Buildings 1,2 HVAC component...

  10. Collaborating in the context of co-location: a grounded theory study.

    PubMed

    Wener, Pamela; Woodgate, Roberta L

    2016-03-10

    Most individuals with mental health concerns seek care from their primary care provider, who may lack comfort, knowledge, and time to provide care. Interprofessional collaboration between providers improves access to primary mental health services and increases primary care providers' comfort offering these services. Building and sustaining interprofessional relationships is foundational to collaborative practice in primary care settings. However, little is known about the relationship building process within these collaborative relationships. The purpose of this grounded theory study was to gain a theoretical understanding of the interprofessional collaborative relationship-building process to guide health care providers and leaders as they integrate mental health services into primary care settings. Forty primary and mental health care providers completed a demographic questionnaire and participated in either an individual or group interview. Interviews were audio-recorded and transcribed verbatim. Transcripts were reviewed several times and then individually coded. Codes were reviewed and similar codes were collapsed to form categories using using constant comparison. All codes and categories were discussed amongst the researchers and the final categories and core category was agreed upon using constant comparison and consensus. A four-stage developmental interprofessional collaborative relationship-building model explained the emergent core category of Collaboration in the Context of Co-location. The four stages included 1) Looking for Help, 2) Initiating Co-location, 3) Fitting-in, and 4) Growing Reciprocity. A patient-focus and communication strategies were essential processes throughout the interprofessional collaborative relationship-building process. Building interprofessional collaborative relationships amongst health care providers are essential to delivering mental health services in primary care settings. This developmental model describes the process of how these relationships are co-created and supported by the health care region. Furthermore, the model emphasizes that all providers must develop and sustain a patient-focus and communication strategies that are flexible. Applying this model, health care providers can guide the creation and sustainability of primary care interprofessional collaborative relationships. Moreover, this model may guide health care leaders and policy makers as they initiate interprofessional collaborative practice in other health care settings.

  11. A Learning Framework for Control-Oriented Modeling of Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Herrero, Javier; Chandan, Vikas; Siegel, Charles M.

    Buildings consume a significant amount of energy worldwide. Several building optimization and control use cases require models of energy consumption which are control oriented, have high predictive capability, imposes minimal data pre-processing requirements, and have the ability to be adapted continuously to account for changing conditions as new data becomes available. Data driven modeling techniques, that have been investigated so far, while promising in the context of buildings, have been unable to simultaneously satisfy all the requirements mentioned above. In this context, deep learning techniques such as Recurrent Neural Networks (RNNs) hold promise, empowered by advanced computational capabilities and bigmore » data opportunities. In this paper, we propose a deep learning based methodology for the development of control oriented models for building energy management and test in on data from a real building. Results show that the proposed methodology outperforms other data driven modeling techniques significantly. We perform a detailed analysis of the proposed methodology along dimensions such as topology, sensitivity, and downsampling. Lastly, we conclude by envisioning a building analytics suite empowered by the proposed deep framework, that can drive several use cases related to building energy management.« less

  12. Optimizing Energy Consumption in Building Designs Using Building Information Model (BIM)

    NASA Astrophysics Data System (ADS)

    Egwunatum, Samuel; Joseph-Akwara, Esther; Akaigwe, Richard

    2016-09-01

    Given the ability of a Building Information Model (BIM) to serve as a multi-disciplinary data repository, this paper seeks to explore and exploit the sustainability value of Building Information Modelling/models in delivering buildings that require less energy for their operation, emit less CO2 and at the same time provide a comfortable living environment for their occupants. This objective was achieved by a critical and extensive review of the literature covering: (1) building energy consumption, (2) building energy performance and analysis, and (3) building information modeling and energy assessment. The literature cited in this paper showed that linking an energy analysis tool with a BIM model helped project design teams to predict and create optimized energy consumption. To validate this finding, an in-depth analysis was carried out on a completed BIM integrated construction project using the Arboleda Project in the Dominican Republic. The findings showed that the BIM-based energy analysis helped the design team achieve the world's first 103% positive energy building. From the research findings, the paper concludes that linking an energy analysis tool with a BIM model helps to expedite the energy analysis process, provide more detailed and accurate results as well as deliver energy-efficient buildings. The study further recommends that the adoption of a level 2 BIM and the integration of BIM in energy optimization analyse should be made compulsory for all projects irrespective of the method of procurement (government-funded or otherwise) or its size.

  13. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    NASA Astrophysics Data System (ADS)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  14. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  15. Geospatial database for heritage building conservation

    NASA Astrophysics Data System (ADS)

    Basir, W. N. F. W. A.; Setan, H.; Majid, Z.; Chong, A.

    2014-02-01

    Heritage buildings are icons from the past that exist in present time. Through heritage architecture, we can learn about economic issues and social activities of the past. Nowadays, heritage buildings are under threat from natural disaster, uncertain weather, pollution and others. In order to preserve this heritage for the future generation, recording and documenting of heritage buildings are required. With the development of information system and data collection technique, it is possible to create a 3D digital model. This 3D information plays an important role in recording and documenting heritage buildings. 3D modeling and virtual reality techniques have demonstrated the ability to visualize the real world in 3D. It can provide a better platform for communication and understanding of heritage building. Combining 3D modelling with technology of Geographic Information System (GIS) will create a database that can make various analyses about spatial data in the form of a 3D model. Objectives of this research are to determine the reliability of Terrestrial Laser Scanning (TLS) technique for data acquisition of heritage building and to develop a geospatial database for heritage building conservation purposes. The result from data acquisition will become a guideline for 3D model development. This 3D model will be exported to the GIS format in order to develop a database for heritage building conservation. In this database, requirements for heritage building conservation process are included. Through this research, a proper database for storing and documenting of the heritage building conservation data will be developed.

  16. A case study on the historical peninsula of Istanbul based on three-dimensional modeling by using photogrammetry and terrestrial laser scanning.

    PubMed

    Ergun, Bahadir; Sahin, Cumhur; Baz, Ibrahim; Ustuntas, Taner

    2010-06-01

    Terrestrial laser scanning is a popular methodology that is used frequently in the process of documenting historical buildings and cultural heritage. The historical peninsula region sprawls over an area of approximately 1,500 ha and is one of the main aggregate areas of the historical buildings in Istanbul. In this study, terrestrial laser scanning and close range photogrammetry techniques are integrated into each other to create a 3D city model of this part of Istanbul, including some of the buildings that represent the most brilliant areas of Byzantine and Ottoman Empires. Several terrestrial laser scanners with their different specifications were used to solve various geometric scanning problems for distinct areas of the subject city. Photogrammetric method was used for the documentation of the façades of these historical buildings for architectural purposes. This study differentiates itself from the similar ones by its application process that focuses on the geometry, the building texture, and density of the study area. Nowadays, the largest-scale studies among 3D modeling studies, in terms of the methodology of measurement, are urban modeling studies. Because of this large scale, the application of 3D urban modeling studies is executed in a gradual way. In this study, a modeling method based on the façades of the streets was used. In addition, the complimentary elements for the process of modeling were combined in several ways. A street model was presented as a sample, as being the subject of the applied study. In our application of 3D modeling, the modeling based on close range photogrammetry and the data of combined calibration with the data of terrestrial laser scanner were used in a compatible way. The final work was formed with the pedestal data for 3D visualization.

  17. Proposal for constructing an advanced software tool for planetary atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Sims, Michael H.; Podolak, Esther; Mckay, Christopher P.; Thompson, David E.

    1990-01-01

    Scientific model building can be a time intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing and using models. The proposed tool will include an interactive intelligent graphical interface and a high level, domain specific, modeling language. As a testbed for this research, we propose development of a software prototype in the domain of planetary atmospheric modeling.

  18. RCrane: semi-automated RNA model building.

    PubMed

    Keating, Kevin S; Pyle, Anna Marie

    2012-08-01

    RNA crystals typically diffract to much lower resolutions than protein crystals. This low-resolution diffraction results in unclear density maps, which cause considerable difficulties during the model-building process. These difficulties are exacerbated by the lack of computational tools for RNA modeling. Here, RCrane, a tool for the partially automated building of RNA into electron-density maps of low or intermediate resolution, is presented. This tool works within Coot, a common program for macromolecular model building. RCrane helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RCrane then allows the crystallographer to review the newly built structure and select alternative backbone conformations where desired. This tool can also be used to automatically correct the backbone structure of previously built nucleotides. These automated corrections can fix incorrect sugar puckers, steric clashes and other structural problems.

  19. Landlab: an Open-Source Python Library for Modeling Earth Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Adams, J. M.; Hobley, D. E. J.; Hutton, E.; Nudurupati, S. S.; Istanbulluoglu, E.; Tucker, G. E.

    2016-12-01

    Landlab is an open-source Python modeling library that enables users to easily build unique models to explore earth surface dynamics. The Landlab library provides a number of tools and functionalities that are common to many earth surface models, thus eliminating the need for a user to recode fundamental model elements each time she explores a new problem. For example, Landlab provides a gridding engine so that a user can build a uniform or nonuniform grid in one line of code. The library has tools for setting boundary conditions, adding data to a grid, and performing basic operations on the data, such as calculating gradients and curvature. The library also includes a number of process components, which are numerical implementations of physical processes. To create a model, a user creates a grid and couples together process components that act on grid variables. The current library has components for modeling a diverse range of processes, from overland flow generation to bedrock river incision, from soil wetting and drying to vegetation growth, succession and death. The code is freely available for download (https://github.com/landlab/landlab) or can be installed as a Python package. Landlab models can also be built and run on Hydroshare (www.hydroshare.org), an online collaborative environment for sharing hydrologic data, models, and code. Tutorials illustrating a wide range of Landlab capabilities such as building a grid, setting boundary conditions, reading in data, plotting, using components and building models are also available (https://github.com/landlab/tutorials). The code is also comprehensively documented both online and natively in Python. In this presentation, we illustrate the diverse capabilities of Landlab. We highlight existing functionality by illustrating outcomes from a range of models built with Landlab - including applications that explore landscape evolution and ecohydrology. Finally, we describe the range of resources available for new users.

  20. Knotworking and the Visibilization of Learning in Building Design

    ERIC Educational Resources Information Center

    Kerosuo, Hannele; Mäki, Tarja; Korpela, Jenni

    2015-01-01

    Purpose: This paper aims to study the visibilization of learning in the context of developing a new collaborative practice, knotworking, in building design. The case under study describes the process of learning from the initiation of knotworking to its experimentation. The implementation of new building information modeling tools acted as an…

  1. Integration of Point Clouds Dataset from Different Sensors

    NASA Astrophysics Data System (ADS)

    Abdullah, C. K. A. F. Che Ku; Baharuddin, N. Z. S.; Ariff, M. F. M.; Majid, Z.; Lau, C. L.; Yusoff, A. R.; Idris, K. M.; Aspuri, A.

    2017-02-01

    Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).

  2. Predictive model for CO2 generation and decay in building envelopes

    NASA Astrophysics Data System (ADS)

    Aglan, Heshmat A.

    2003-01-01

    Understanding carbon dioxide generation and decay patterns in buildings with high occupancy levels is useful to identify their indoor air quality, air change rates, percent fresh air makeup, occupancy pattern, and how a variable air volume system to off-set undesirable CO2 level can be modulated. A mathematical model governing the generation and decay of CO2 in building envelopes with forced ventilation due to high occupancy is developed. The model has been verified experimentally in a newly constructed energy efficient healthy house. It was shown that the model accurately predicts the CO2 concentration at any time during the generation and decay processes.

  3. Does integration matter? A holistic model for building community resilience in Pakistan.

    PubMed

    Kanta Kafle, Shesh

    2017-01-01

    This paper analyses an integrated communitybased risk reduction model adopted by the Pakistan Red Crescent. The paper analyses the model's constructs and definitions, and provides a conceptual framework and a set of practical recommendations for building community resilience. The study uses the process of outcome-based resilience index to assess the effectiveness of the approach. The results indicate that the integrated programming approach is an effective way to build community resilience as it offers a number of tangible and longlasting benefits, including effective and efficient service delivery, local ownership, sustainability of results, and improved local resilience with respect to the shock and stress associated with disaster. The paper also outlines a set of recommendations for the effective and efficient use of the model for building community resilience in Pakistan.

  4. Introduction of Building Information Modeling (BIM) Technologies in Construction

    NASA Astrophysics Data System (ADS)

    Milyutina, M. A.

    2018-05-01

    The issues of introduction of building information modeling (BIM) in construction industry are considered in this work. The advantages of this approach and perspectives of the transition to new design technologies, construction process management, and operation in the near future are stated. The importance of development of pilot projects that should identify the ways and means of verification of the regulatory and technical base, as well as economic indicators in the transition to Building Information Technologies in the construction, is noted.

  5. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  6. The Advantages of Parametric Modeling for the Reconstruction of Historic Buildings. The Example of the in War Destroyed Church of ST. Catherine (katharinenkirche) in Nuremberg

    NASA Astrophysics Data System (ADS)

    Ludwig, M.; Herbst, G.; Rieke-Zapp, D.; Rosenbauer, R.; Rutishauser, S.; Zellweger, A.

    2013-02-01

    Consecrated in 1297 as the monastery church of the four years earlier founded St. Catherine's monastery, the Gothic Church of St. Catherine was largely destroyed in a devastating bombing raid on January 2nd 1945. To counteract the process of disintegration, the departments of geo-information and lower monument protection authority of the City of Nuremburg decided to getting done a three dimensional building model of the Church of St. Catherine's. A heterogeneous set of data was used for preparation of a parametric architectural model. In effect the modeling of historic buildings can profit from the so called BIM method (Building Information Modeling), as the necessary structuring of the basic data renders it into very sustainable information. The resulting model is perfectly suited to deliver a vivid impression of the interior and exterior of this former mendicant orders' church to present observers.

  7. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects. PMID:27873931

  8. A Computational Workflow for the Automated Generation of Models of Genetic Designs.

    PubMed

    Misirli, Göksel; Nguyen, Tramy; McLaughlin, James Alastair; Vaidyanathan, Prashant; Jones, Timothy S; Densmore, Douglas; Myers, Chris; Wipat, Anil

    2018-06-05

    Computational models are essential to engineer predictable biological systems and to scale up this process for complex systems. Computational modeling often requires expert knowledge and data to build models. Clearly, manual creation of models is not scalable for large designs. Despite several automated model construction approaches, computational methodologies to bridge knowledge in design repositories and the process of creating computational models have still not been established. This paper describes a workflow for automatic generation of computational models of genetic circuits from data stored in design repositories using existing standards. This workflow leverages the software tool SBOLDesigner to build structural models that are then enriched by the Virtual Parts Repository API using Systems Biology Open Language (SBOL) data fetched from the SynBioHub design repository. The iBioSim software tool is then utilized to convert this SBOL description into a computational model encoded using the Systems Biology Markup Language (SBML). Finally, this SBML model can be simulated using a variety of methods. This workflow provides synthetic biologists with easy to use tools to create predictable biological systems, hiding away the complexity of building computational models. This approach can further be incorporated into other computational workflows for design automation.

  9. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  10. Assessing Students' Sentiments towards the Use of a Building Information Modelling (BIM) Learning Platform in a Construction Project Management Course

    ERIC Educational Resources Information Center

    Suwal, Sunil; Singh, Vishal

    2018-01-01

    Building Information Modelling (BIM) tools and processes are increasingly adopted and implemented in the construction industry. Consequently, BIM education is considered increasingly important in Architecture, Engineering and Construction (AEC) education. While most of the research and literature on BIM education in engineering studies has focused…

  11. Building Futurism into the Institution's Strategic Planning and Human Resource Development Model.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    A process for building futurism into the institution's strategic planning and human resource development model is described. It is an attempt to assist faculty and staff to understand the future and the formulation and revision of professional goals in relation to an image of the future. A conceptual framework about the changing nature of human…

  12. Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim

    NASA Astrophysics Data System (ADS)

    Becker, S.; Peter, M.; Fritsch, D.

    2015-03-01

    The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.

  13. Intelligent Controls for Net-Zero Energy Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haorong; Cho, Yong; Peng, Dongming

    2011-10-30

    The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision supportmore » tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.« less

  14. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  15. The implementation of assessment model based on character building to improve students’ discipline and achievement

    NASA Astrophysics Data System (ADS)

    Rusijono; Khotimah, K.

    2018-01-01

    The purpose of this research was to investigate the effect of implementing the assessment model based on character building to improve discipline and student’s achievement. Assessment model based on character building includes three components, which are the behaviour of students, the efforts, and student’s achievement. This assessment model based on the character building is implemented in science philosophy and educational assessment courses, in Graduate Program of Educational Technology Department, Educational Faculty, Universitas Negeri Surabaya. This research used control group pre-test and post-test design. Data collection method used in this research were observation and test. The observation was used to collect the data about the disciplines of the student in the instructional process, while the test was used to collect the data about student’s achievement. Moreover, the study applied t-test to the analysis of data. The result of this research showed that assessment model based on character building improved discipline and student’s achievement.

  16. 3D Reconstruction of Irregular Buildings and Buddha Statues

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  17. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  18. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  19. Vision-based building energy diagnostics and retrofit analysis using 3D thermography and building information modeling

    NASA Astrophysics Data System (ADS)

    Ham, Youngjib

    The emerging energy crisis in the building sector and the legislative measures on improving energy efficiency are steering the construction industry towards adopting new energy efficient design concepts and construction methods that decrease the overall energy loads. However, the problems of energy efficiency are not only limited to the design and construction of new buildings. Today, a significant amount of input energy in existing buildings is still being wasted during the operational phase. One primary source of the energy waste is attributed to unnecessary heat flows through building envelopes during hot and cold seasons. This inefficiency increases the operational frequency of heating and cooling systems to keep the desired thermal comfort of building occupants, and ultimately results in excessive energy use. Improving thermal performance of building envelopes can reduce the energy consumption required for space conditioning and in turn provide building occupants with an optimal thermal comfort at a lower energy cost. In this sense, energy diagnostics and retrofit analysis for existing building envelopes are key enablers for improving energy efficiency. Since proper retrofit decisions of existing buildings directly translate into energy cost saving in the future, building practitioners are increasingly interested in methods for reliable identification of potential performance problems so that they can take timely corrective actions. However, sensing what and where energy problems are emerging or are likely to emerge and then analyzing how the problems influence the energy consumption are not trivial tasks. The overarching goal of this dissertation focuses on understanding the gaps in knowledge in methods for building energy diagnostics and retrofit analysis, and filling these gaps by devising a new method for multi-modal visual sensing and analytics using thermography and Building Information Modeling (BIM). First, to address the challenges in scaling and localization issues of 2D thermal image-based inspection, a new computer vision-based method is presented for automated 3D spatio-thermal modeling of building environments from images and localizing the thermal images into the 3D reconstructed scenes, which helps better characterize the as-is condition of existing buildings in 3D. By using these models, auditors can conduct virtual walk-through in buildings and explore the as-is condition of building geometry and the associated thermal conditions in 3D. Second, to address the challenges in qualitative and subjective interpretation of visual data, a new model-based method is presented to convert the 3D thermal profiles of building environments into their associated energy performance metrics. More specifically, the Energy Performance Augmented Reality (EPAR) models are formed which integrate the actual 3D spatio-thermal models ('as-is') with energy performance benchmarks ('as-designed') in 3D. In the EPAR models, the presence and location of potential energy problems in building environments are inferred based on performance deviations. The as-is thermal resistances of the building assemblies are also calculated at the level of mesh vertex in 3D. Then, based on the historical weather data reflecting energy load for space conditioning, the amount of heat transfer that can be saved by improving the as-is thermal resistances of the defective areas to the recommended level is calculated, and the equivalent energy cost for this saving is estimated. The outcome provides building practitioners with unique information that can facilitate energy efficient retrofit decision-makings. This is a major departure from offhand calculations that are based on historical cost data of industry best practices. Finally, to improve the reliability of BIM-based energy performance modeling and analysis for existing buildings, a new model-based automated method is presented to map actual thermal resistance measurements at the level of 3D vertexes to the associated BIM elements and update their corresponding thermal properties in the gbXML schema. By reflecting the as-is building condition in the BIM-based energy modeling process, this method bridges over the gap between the architectural information in the as-designed BIM and the as-is building condition for accurate energy performance analysis. The performance of each method was validated on ten case studies from interiors and exteriors of existing residential and instructional buildings in IL and VA. The extensive experimental results show the promise of the proposed methods in addressing the fundamental challenges of (1) visual sensing : scaling 2D visual assessments to real-world building environments and localizing energy problems; (2) analytics: subjective and qualitative assessments; and (3) BIM-based building energy analysis : a lack of procedures for reflecting the as-is building condition in the energy modeling process. Beyond the technical contributions, the domain expert surveys conducted in this dissertation show that the proposed methods have potential to improve the quality of thermographic inspection processes and complement the current building energy analysis tools.

  20. Reorienting health services in the Northern Territory of Australia: a conceptual model for building health promotion capacity in the workforce.

    PubMed

    Judd, Jenni; Keleher, Helen

    2013-06-01

    Reorienting work practices to include health promotion and prevention is complex and requires specific strategies and interventions. This paper presents original research that used 'real-world' practice to demonstrate that knowledge gathered from practice is relevant for the development of practice-based evidence. The paper shows how practitioners can inform and influence improvements in health promotion practice. Practitioner-informed evidence necessarily incorporates qualitative research to capture the richness of their reflective experiences. Using a participatory action research (PAR) approach, the research question asked 'what are the core dimensions of building health promotion capacity in a primary health care workforce in a real-world setting?' PAR is a method in which the researcher operates in full collaboration with members of the organisation being studied for the purposes of achieving some kind of change, in this case to increase the amount of health promotion and prevention practice within this community health setting. The PAR process involved six reflection and action cycles over two years. Data collection processes included: survey; in-depth interviews; a training intervention; observations of practice; workplace diaries; and two nominal groups. The listen/reflect/act process enabled lessons from practice to inform future capacity-building processes. This research strengthened and supported the development of health promotion to inform 'better health' practices through respectful change processes based on research, practitioner-informed evidence, and capacity-building strategies. A conceptual model for building health promotion capacity in the primary health care workforce was informed by the PAR processes and recognised the importance of the determinants approach. Practitioner-informed evidence is the missing link in the evidence debate and provides the links between evidence and its translation to practice. New models of health promotion service delivery can be developed in community settings recognising the importance of involving practitioners themselves in these processes.

  1. Achieving Actionable Results from Available Inputs: Metamodels Take Building Energy Simulations One Step Further

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsey, Henry; Fleming, Katherine; Ball, Brian

    Modeling commercial building energy usage can be a difficult and time-consuming task. The increasing prevalence of optimization algorithms provides one path for reducing the time and difficulty. Many use cases remain, however, where information regarding whole-building energy usage is valuable, but the time and expertise required to run and post-process a large number of building energy simulations is intractable. A relatively underutilized option to accurately estimate building energy consumption in real time is to pre-compute large datasets of potential building energy models, and use the set of results to quickly and efficiently provide highly accurate data. This process is calledmore » metamodeling. In this paper, two case studies are presented demonstrating the successful applications of metamodeling using the open-source OpenStudio Analysis Framework. The first case study involves the U.S. Department of Energy's Asset Score Tool, specifically the Preview Asset Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of expected results based on building system-level inputs. The second case study involves estimating the potential demand response capabilities of retail buildings in Colorado. The metamodel developed in this second application not only allows for estimation of a single building's expected performance, but also can be combined with public data to estimate the aggregate DR potential across various geographic (county and state) scales. In both case studies, the unique advantages of pre-computation allow building energy models to take the place of topdown actuarial evaluations. This paper ends by exploring the benefits of using metamodels and then examines the cost-effectiveness of this approach.« less

  2. BIM-Based Timber Structures Refurbishment of the Immovable Heritage Listed Buildings

    NASA Astrophysics Data System (ADS)

    Henek, Vladan; Venkrbec, Václav

    2017-12-01

    The use of Building information model (BIM) design tools is no longer an exception, but a common issue. When designing new buildings or complex renovations using BIM, the benefits have already been repeatedly published. The essence of BIM is to create a multidimensional geometric model of a planned building electronically on a computer, supplemented with the necessary information in advance of the construction process. Refurbishment is a specific process that combines both - new structures and demolished structures, or structures that need to be dismantled, repaired, and then returned to the original position. Often it can be historically valuable part of the building. BIM-based repairs and refurbishments of the constructions, especially complicated repairs of the structures of roof trusses of immovable heritage listed buildings, have not yet been credibly presented. However, the use of BIM tools may be advantageous in this area, because user can quickly response to the necessary changes that may be needed during refurbishments, but also in connection with the quick assessment and cost estimation of any unexpected additional works. The paper deals with the use of BIM in the field of repairs and refurbishment of the buildings in general. The emphasis on monumentally protected elements was priority. Advantage of the proposal research is demonstrated on case study of the refurbishment of the immovable heritage listed truss roof. According to this study, this construction was realized in the Czech Republic. Case study consists of 3D modelled truss parts and the connected technological workflow base. The project work was carried out in one common model environment.

  3. Critical Issues and Key Points from the Survey to the Creation of the Historical Building Information Model: the Case of Santo Stefano Basilica

    NASA Astrophysics Data System (ADS)

    Castagnetti, C.; Dubbini, M.; Ricci, P. C.; Rivola, R.; Giannini, M.; Capra, A.

    2017-05-01

    The new era of designing in architecture and civil engineering applications lies in the Building Information Modeling (BIM) approach, based on a 3D geometric model including a 3D database. This is easier for new constructions whereas, when dealing with existing buildings, the creation of the BIM is based on the accurate knowledge of the as-built construction. Such a condition is allowed by a 3D survey, often carried out with laser scanning technology or modern photogrammetry, which are able to guarantee an adequate points cloud in terms of resolution and completeness by balancing both time consuming and costs with respect to the request of final accuracy. The BIM approach for existing buildings and even more for historical buildings is not yet a well known and deeply discussed process. There are still several choices to be addressed in the process from the survey to the model and critical issues to be discussed in the modeling step, particularly when dealing with unconventional elements such as deformed geometries or historical elements. The paper describes a comprehensive workflow that goes through the survey and the modeling, allowing to focus on critical issues and key points to obtain a reliable BIM of an existing monument. The case study employed to illustrate the workflow is the Basilica of St. Stefano in Bologna (Italy), a large monumental complex with great religious, historical and architectural assets.

  4. Building Physics Test Cases | Buildings | NREL

    Science.gov Websites

    building physics test cases in BESTEST-EX. In these cases, the model inputs that describe the house are programs. This diagram provides an overview of the BESTEST-EX physics case process. On the left side of the diagram is a box labeled "BESTEST-EX Document" with a list that contains two bulleted items. The

  5. Towards an Interdisciplinary Model of Practice for Participatory Building Design in Education

    ERIC Educational Resources Information Center

    Könings, Karen D.; Bovill, Catherine; Woolner, Pamela

    2017-01-01

    It is recognised that educational environments influence learning experiences, so it is important to ensure that educational buildings are designed to be fit for purpose. In order to ensure that educational buildings meet the needs of those who use them, all relevant stakeholders should be involved in the design process. However, this is not…

  6. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    ERIC Educational Resources Information Center

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  7. Teaching Mathematical Modelling: Demonstrating Enrichment and Elaboration

    ERIC Educational Resources Information Center

    Warwick, Jon

    2015-01-01

    This paper uses a series of models to illustrate one of the fundamental processes of model building--that of enrichment and elaboration. The paper describes how a problem context is given which allows a series of models to be developed from a simple initial model using a queuing theory framework. The process encourages students to think about the…

  8. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.

    PubMed

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.

  9. Seismic fragility assessment of low-rise stone masonry buildings

    NASA Astrophysics Data System (ADS)

    Abo-El-Ezz, Ahmad; Nollet, Marie-José; Nastev, Miroslav

    2013-03-01

    Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads. Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers. This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada. The old historic center of Quebec City has been selected as a typical study area. The standard fragility analysis combines the inelastic spectral displacement, a structure-dependent earthquake intensity measure, and the building damage state correlated to the induced building displacement. The proposed procedure consists of a three-step development process: (1) mechanics-based capacity model, (2) displacement-based damage model and (3) seismic demand model. The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings. Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER. Hazus shows the highest probability of the occurrence of no to slight damage, whereas the highest probability of extensive and complete damage is predicted with ELER. This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.

  10. The Building Game: From Enumerative Combinatorics to Conformational Diffusion

    NASA Astrophysics Data System (ADS)

    Johnson-Chyzhykov, Daniel; Menon, Govind

    2016-08-01

    We study a discrete attachment model for the self-assembly of polyhedra called the building game. We investigate two distinct aspects of the model: (i) enumerative combinatorics of the intermediate states and (ii) a notion of Brownian motion for the polyhedral linkage defined by each intermediate that we term conformational diffusion. The combinatorial configuration space of the model is computed for the Platonic, Archimedean, and Catalan solids of up to 30 faces, and several novel enumerative results are generated. These represent the most exhaustive computations of this nature to date. We further extend the building game to include geometric information. The combinatorial structure of each intermediate yields a systems of constraints specifying a polyhedral linkage and its moduli space. We use a random walk to simulate a reflected Brownian motion in each moduli space. Empirical statistics of the random walk may be used to define the rates of transition for a Markov process modeling the process of self-assembly.

  11. Voluminator 2.0 - Speeding up the Approximation of the Volume of Defective 3d Building Models

    NASA Astrophysics Data System (ADS)

    Sindram, M.; Machl, T.; Steuer, H.; Pültz, M.; Kolbe, T. H.

    2016-06-01

    Semantic 3D city models are increasingly used as a data source in planning and analyzing processes of cities. They represent a virtual copy of the reality and are a common information base and source of information for examining urban questions. A significant advantage of virtual city models is that important indicators such as the volume of buildings, topological relationships between objects and other geometric as well as thematic information can be derived. Knowledge about the exact building volume is an essential base for estimating the building energy demand. In order to determine the volume of buildings with conventional algorithms and tools, the buildings may not contain any topological and geometrical errors. The reality, however, shows that city models very often contain errors such as missing surfaces, duplicated faces and misclosures. To overcome these errors (Steuer et al., 2015) have presented a robust method for approximating the volume of building models. For this purpose, a bounding box of the building is divided into a regular grid of voxels and it is determined which voxels are inside the building. The regular arrangement of the voxels leads to a high number of topological tests and prevents the application of this method using very high resolutions. In this paper we present an extension of the algorithm using an octree approach limiting the subdivision of space to regions around surfaces of the building models and to regions where, in the case of defective models, the topological tests are inconclusive. We show that the computation time can be significantly reduced, while preserving the robustness against geometrical and topological errors.

  12. Developing Historic Building Information Modelling Guidelines and Procedures for Architectural Heritage in Ireland

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Corns, A.; Cahill, J.; Eliashvili, K.; Chenau, A.; Pybus, C.; Shaw, R.; Devlin, G.; Deevy, A.; Truong-Hong, L.

    2017-08-01

    Cultural heritage researchers have recently begun applying Building Information Modelling (BIM) to historic buildings. The model is comprised of intelligent objects with semantic attributes which represent the elements of a building structure and are organised within a 3D virtual environment. Case studies in Ireland are used to test and develop the suitable systems for (a) data capture/digital surveying/processing (b) developing library of architectural components and (c) mapping these architectural components onto the laser scan or digital survey to relate the intelligent virtual representation of a historic structure (HBIM). While BIM platforms have the potential to create a virtual and intelligent representation of a building, its full exploitation and use is restricted to narrow set of expert users with access to costly hardware, software and skills. The testing of open BIM approaches in particular IFCs and the use of game engine platforms is a fundamental component for developing much wider dissemination. The semantically enriched model can be transferred into a WEB based game engine platform.

  13. Using Openstreetmap Data to Generate Building Models with Their Inner Structures for 3d Maps

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zipf, A.

    2017-09-01

    With the development of Web 2.0, more and more data related to indoor environments has been collected within the volunteered geographic information (VGI) framework, which creates a need for construction of indoor environments from VGI. In this study, we focus on generating 3D building models from OpenStreetMap (OSM) data, and provide an approach to support construction and visualization of indoor environments on 3D maps. In this paper, we present an algorithm which can extract building information from OSM data, and can construct building structures as well as inner building components (e.g., doors, rooms, and windows). A web application is built to support the processing and visualization of the building models on a 3D map. We test our approach with an indoor dataset collected from the field. The results show the feasibility of our approach and its potentials to provide support for a wide range of applications, such as indoor and outdoor navigation, urban planning, and incident management.

  14. EIA models and capacity building in Viet Nam: an analysis of development aid programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doberstein, Brent

    2004-04-01

    There has been a decided lack of empirical research examining development aid agencies as 'agents of change' in environmental impact assessment (EIA) systems in developing countries, particularly research examining the model of environmental planning practice promoted by aid agencies as part of capacity building. This paper briefly traces a conceptual framework of EIA, then introduces the concept of 'EIA capacity building'. Using Viet Nam as a case study, the paper then outlines the empirical results of the research, focusing on the extent to which aid agency capacity-building programs promoted a Technical vs. Planning Model of EIA and on the coherencemore » of capacity-building efforts across all aid programs. A discussion follows, where research results are interpreted within the Vietnamese context, and implications of research results are identified for three main groups of actors. The paper concludes by calling for development aid agencies to reconceptualise EIA capacity building as an opportunity to transform developing countries' development planning processes.« less

  15. 3-D Object Recognition from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case studies have been conducted using a variety of point densities, terrain types and building densities. The results have been encouraging. More work is required for better processing of, for example, forested areas, buildings with sides that are not at right angles or are not straight, and single trees that impinge on buildings. Further work may also be required to ensure that the buildings extracted are of fully cartographic quality. A first version will be included in production software later in 2011. In addition to the standard geospatial applications and the UAV navigation, the results have a further advantage: since LiDAR data tends to be accurately georeferenced, the building models extracted can be used to refine image metadata whenever the same buildings appear in imagery for which the GPS/IMU values are poorer than those for the LiDAR.

  16. Estimating the Additional Greenhouse Gas Emissions in Korea: Focused on Demolition of Asbestos Containing Materials in Building

    PubMed Central

    Kim, Young-Chan; Hong, Won-Hwa; Zhang, Yuan-Long; Son, Byeung-Hun; Seo, Youn-Kyu; Choi, Jun-Ho

    2016-01-01

    When asbestos containing materials (ACM) must be removed from the building before demolition, additional greenhouse gas (GHG) emissions are generated. However, precedent studies have not considered the removal of ACM from the building. The present study aimed to develop a model for estimating GHG emissions created by the ACM removal processes, specifically the removal of asbestos cement slates (ACS). The second objective was to use the new model to predict the total GHG emission produced by ACM removal in the entire country of Korea. First, an input-equipment inventory was established for each step of the ACS removal process. Second, an energy consumption database for each equipment type was established. Third, the total GHG emission contributed by each step of the process was calculated. The GHG emissions generated from the 1,142,688 ACS-containing buildings in Korea was estimated to total 23,778 tonCO2eq to 132,141 tonCO2eq. This study was meaningful in that the emissions generated by ACS removal have not been studied before. Furthermore, the study deals with additional problems that can be triggered by the presence of asbestos in building materials. The method provided in this study is expected to contribute greatly to the calculation of GHG emissions caused by ACM worldwide. PMID:27626433

  17. IDC Re-Engineering Phase 2 Iteration E2 Use Case Realizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, James M.; Burns, John F.; Hamlet, Benjamin R.

    2016-06-01

    This architecturally significant use case describes how the System acquires meteorological data to build atmospheric models used in automatic and interactive processing of infrasound data. The System requests the latest available high-resolution global meteorological data from external data centers and puts it into the correct formats for generation of infrasound propagation models. The system moves the meteorological data from Data Acquisition Partition to the Data Processing Partition and stores the meteorological data. The System builds a new atmospheric model based on the meteorological data. This use case is architecturally significant because it describes acquiring meteorological data from various sources andmore » creating dynamic atmospheric transmission model to support the prediction of infrasonic signal detection« less

  18. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  19. D Modelling of a Historical Building Using Close-Range Photogrammetry and Remotely Piloted Aircraft System (rpas)

    NASA Astrophysics Data System (ADS)

    Lo Brutto, M.; Ebolese, D.; Dardanelli, G.

    2018-05-01

    The photogrammetric survey of architectural Cultural Heritage is a very useful and standard process in order to obtain accurate 3D data for the documentation and visualization of historical buildings. In particular, the integration of terrestrial close-range photogrammetry and Remotely Piloted Aircraft Systems (RPASs) photogrammetry allows to create accurate and reliable 3D models of buildings and to monitor their state of conservation. The use of RPASs has indeed become more popular in Cultural Heritage survey to measure and detect areas that cannot normally be covered using terrestrial photogrammetry or terrestrial laser scanner. The paper presents the results of a photogrammetric survey executed to document the monumental complex of Villa Lampedusa ai Colli in Palermo (Italy), one of the most important historical buildings of the town. An integrated survey by close-range photogrammetry and RPAS photogrammetry was planned and carried out to reconstruct the 3D digital model of the monumental complex. Different images configurations (terrestrial, aerial nadiral, aerial parallel and oblique to the façades) have been acquired; data have been processed to verify the accuracy of the photogrammetric survey as regards the camera calibration parameters and the number of Ground Control Points (GCPs) measured on building façades. A very detailed 3D digital model and high-resolution ortho-images of the façades were obtained in order to carry out further analysis for historical studies, conservation and restoration project. The final 3D model of Villa Lampedusa ai Colli has been compared with a laser scanner 3D model to evaluate the quality of the photogrammetric approach. Beyond a purely metric assessment, 3D textured model has employed to generate 2D representations, useful for documentation purpose and to highlight the most significant damaged areas. 3D digital models and 2D representations can effectively contribute to monitor the state of conservation of historical buildings and become a very useful support for preliminary restoration works.

  20. Goal-Directed Aiming: Two Components but Multiple Processes

    ERIC Educational Resources Information Center

    Elliott, Digby; Hansen, Steve; Grierson, Lawrence E. M.; Lyons, James; Bennett, Simon J.; Hayes, Spencer J.

    2010-01-01

    This article reviews the behavioral literature on the control of goal-directed aiming and presents a multiple-process model of limb control. The model builds on recent variants of Woodworth's (1899) two-component model of speed-accuracy relations in voluntary movement and incorporates ideas about dynamic online limb control based on prior…

  1. From Point Cloud to Bim: a Modelling Challenge in the Cultural Heritage Field

    NASA Astrophysics Data System (ADS)

    Tommasi, C.; Achille, C.; Fassi, F.

    2016-06-01

    Speaking about modelling the Cultural Heritage, nowadays it is no longer enough to build the mute model of a monument, but it has to contain plenty of information inside it, especially when we refer to existing construction. For this reason, the aim of the research is to insert an historical building inside a BIM process, proposing in this way a working method that can build a reality based model and preserve the unicity of the elements. The question is: "What is the more useful mean in term of survey data management, level of detail, information and time savings?" To test the potentialities and the limits of this process we employed the most used software in the international market, taking as example some composed elements, made by regular and complex, but also modular parts. Once a final model is obtained, it is necessary to provide a test phase on the interoperability between the used software modules, in order to give a general picture of the state of art and to contribute to further studies on this subject.

  2. EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing

    PubMed Central

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments. PMID:21687590

  3. Adapting to change: The role of the right hemisphere in mental model building and updating.

    PubMed

    Filipowicz, Alex; Anderson, Britt; Danckert, James

    2016-09-01

    We recently proposed that the right hemisphere plays a crucial role in the processes underlying mental model building and updating. Here, we review the evidence we and others have garnered to support this novel account of right hemisphere function. We begin by presenting evidence from patient work that suggests a critical role for the right hemisphere in the ability to learn from the statistics in the environment (model building) and adapt to environmental change (model updating). We then provide a review of neuroimaging research that highlights a network of brain regions involved in mental model updating. Next, we outline specific roles for particular regions within the network such that the anterior insula is purported to maintain the current model of the environment, the medial prefrontal cortex determines when to explore new or alternative models, and the inferior parietal lobule represents salient and surprising information with respect to the current model. We conclude by proposing some future directions that address some of the outstanding questions in the field of mental model building and updating. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  5. Verification and Validation of EnergyPlus Phase Change Material Model for Opaque Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCMs) represent a technology that may reduce peak loads and HVAC energy consumption in buildings. A few building energy simulation programs have the capability to simulate PCMs, but their accuracy has not been completely tested. This study shows the procedure used to verify and validate the PCM model in EnergyPlus using a similar approach as dictated by ASHRAE Standard 140, which consists of analytical verification, comparative testing, and empirical validation. This process was valuable, as two bugs were identified and fixed in the PCM model, and version 7.1 of EnergyPlus will have a validated PCM model. Preliminarymore » results using whole-building energy analysis show that careful analysis should be done when designing PCMs in homes, as their thermal performance depends on several variables such as PCM properties and location in the building envelope.« less

  6. Numerical simulation of residual stress in laser based additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Kalyan Panda, Bibhu; Sahoo, Seshadev

    2018-03-01

    Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.

  7. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  8. Coordination between Understanding Historic Buildings and BIM Modelling: A 3D-Output Oriented and typological Data Capture Method

    NASA Astrophysics Data System (ADS)

    Li, K.; Li, S. J.; Liu, Y.; Wang, W.; Wu, C.

    2015-08-01

    At the present, in trend of shifting the old 2D-output oriented survey to a new 3D-output oriented survey based on BIM technology, the corresponding working methods and workflow for data capture, process, representation, etc. have to be changed.Based on case study of two buildings in the Summer Palace of Beijing, and Jiayuguan Pass at the west end of the Great Wall (both World Heritage sites), this paper puts forward a "structure-and-type method" by means of typological method used in archaeology, Revit family system, and the tectonic logic of building to realize a good coordination between understanding of historic buildings and BIM modelling.

  9. Institutional Transformation Version 2.5 Modeling and Planning.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Daniel; Mizner, Jack H.; Passell, Howard D.

    Reducing the resource consumption and emissions of large institutions is an important step toward a sustainable future. Sandia National Laboratories' (SNL) Institutional Transformation (IX) project vision is to provide tools that enable planners to make well-informed decisions concerning sustainability, resource conservation, and emissions reduction across multiple sectors. The building sector has been the primary focus so far because it is the largest consumer of resources for SNL. The IX building module allows users to define the evolution of many buildings over time. The module has been created so that it can be generally applied to any set of DOE-2 (more » http://doe2.com ) building models that have been altered to include parameters and expressions required by energy conservation measures (ECM). Once building models have been appropriately prepared, they are checked into a Microsoft Access (r) database. Each building can be represented by many models. This enables the capability to keep a continuous record of models in the past, which are replaced with different models as changes occur to the building. In addition to this, the building module has the capability to apply climate scenarios through applying different weather files to each simulation year. Once the database has been configured, a user interface in Microsoft Excel (r) is used to create scenarios with one or more ECMs. The capability to include central utility buildings (CUBs) that service more than one building with chilled water has been developed. A utility has been created that joins multiple building models into a single model. After using the utility, several manual steps are required to complete the process. Once this CUB model has been created, the individual contributions of each building are still tracked through meters. Currently, 120 building models from SNL's New Mexico and California campuses have been created. This includes all buildings at SNL greater than 10,000 sq. ft., representing 80% of the energy consumption at SNL. SNL has been able to leverage this model to estimate energy savings potential of many competing ECMs. The results helped high level decision makers to create energy reduction goals for SNL. These resources also have multiple applications for use of the models as individual buildings. In addition to the building module, a solar module built in Powersim Studio (r) allows planners to evaluate the potential photovoltaic (PV) energy generation potential for flat plate PV, concentrating solar PV, and concentration solar thermal technologies at multiple sites across SNL's New Mexico campus. Development of the IX modeling framework was a unique collaborative effort among planners and engineers in SNL's facilities division; scientists and computer modelers in SNL's research and development division; faculty from Arizona State University; and energy modelers from Bridger and Paxton Consulting Engineers Incorporated.« less

  10. Modular modeling system for building distributed hydrologic models with a user-friendly software package

    NASA Astrophysics Data System (ADS)

    Wi, S.; Ray, P. A.; Brown, C.

    2015-12-01

    A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.

  11. A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Yu, Xiaohui; Zhang, Yanjuan; Zhai, Changhai

    2018-01-01

    Casualty prediction in a building during earthquakes benefits to implement the economic loss estimation in the performance-based earthquake engineering methodology. Although after-earthquake observations reveal that the evacuation has effects on the quantity of occupant casualties during earthquakes, few current studies consider occupant movements in the building in casualty prediction procedures. To bridge this knowledge gap, a numerical simulation method using refined cellular automata model is presented, which can describe various occupant dynamic behaviors and building dimensions. The simulation on the occupant evacuation is verified by a recorded evacuation process from a school classroom in real-life 2013 Ya'an earthquake in China. The occupant casualties in the building under earthquakes are evaluated by coupling the building collapse process simulation by finite element method, the occupant evacuation simulation, and the casualty occurrence criteria with time and space synchronization. A case study of casualty prediction in a building during an earthquake is provided to demonstrate the effect of occupant movements on casualty prediction.

  12. Models of resource planning during formation of calendar construction plans for erection of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Pocebneva, Irina; Belousov, Vadim; Fateeva, Irina

    2018-03-01

    This article provides a methodical description of resource-time analysis for a wide range of requirements imposed for resource consumption processes in scheduling tasks during the construction of high-rise buildings and facilities. The core of the proposed approach and is the resource models being determined. The generalized network models are the elements of those models, the amount of which can be too large to carry out the analysis of each element. Therefore, the problem is to approximate the original resource model by simpler time models, when their amount is not very large.

  13. Evaluation of animal models of neurobehavioral disorders

    PubMed Central

    van der Staay, F Josef; Arndt, Saskia S; Nordquist, Rebecca E

    2009-01-01

    Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s) of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration. Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended) replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result. Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia. In a manner congruent to that for improving animal models, guided by the procedure expounded upon in this paper, the developmental and evaluation procedure itself may be improved by careful definition of the purpose(s) of a model and by defining better evaluation criteria, based on the proposed use of the model. PMID:19243583

  14. Semi-automatic building extraction in informal settlements from high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Mayunga, Selassie David

    The extraction of man-made features from digital remotely sensed images is considered as an important step underpinning management of human settlements in any country. Man-made features and buildings in particular are required for varieties of applications such as urban planning, creation of geographical information systems (GIS) databases and Urban City models. The traditional man-made feature extraction methods are very expensive in terms of equipment, labour intensive, need well-trained personnel and cannot cope with changing environments, particularly in dense urban settlement areas. This research presents an approach for extracting buildings in dense informal settlement areas using high-resolution satellite imagery. The proposed system uses a novel strategy of extracting building by measuring a single point at the approximate centre of the building. The fine measurement of the building outlines is then effected using a modified snake model. The original snake model on which this framework is based, incorporates an external constraint energy term which is tailored to preserving the convergence properties of the snake model; its use to unstructured objects will negatively affect their actual shapes. The external constrained energy term was removed from the original snake model formulation, thereby, giving ability to cope with high variability of building shapes in informal settlement areas. The proposed building extraction system was tested on two areas, which have different situations. The first area was Tungi in Dar Es Salaam, Tanzania where three sites were tested. This area is characterized by informal settlements, which are illegally formulated within the city boundaries. The second area was Oromocto in New Brunswick, Canada where two sites were tested. Oromocto area is mostly flat and the buildings are constructed using similar materials. Qualitative and quantitative measures were employed to evaluate the accuracy of the results as well as the performance of the system. The qualitative and quantitative measures were based on visual inspection and by comparing the measured coordinates to the reference data respectively. In the course of this process, a mean area coverage of 98% was achieved for Dar Es Salaam test sites, which globally indicated that the extracted building polygons were close to the ground truth data. Furthermore, the proposed system saved time to extract a single building by 32%. Although the extracted building polygons are within the perimeter of ground truth data, visually some of the extracted building polygons were somewhat distorted. This implies that interactive post-editing process is necessary for cartographic representation.

  15. Russian Apartment Building Thermal Response Models for Retrofit Selection and Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Dirks, James A.; Reilly, Raymond W.

    2000-08-21

    The Enterprise Housing Divestiture Project (EHDP) aims to identify cost-effective energy efficiency and conservation measures for Russian apartment buildings and to implement these measures in the entire stock of buildings undergoing divestiture in six cities. Short-term measurements of infiltration and exterior wall heat-loss coefficient were made in the cities of Cheropovets, Orenburg, Petrozavodsk, Ryazan, and Vladimir. Long-term monitoring equipment was installed in six or more buildings in the aforementioned and in the city of Volxhov. The results of these measurements will be used to calibrate models used to select optimal retrofit packages and to verify energy savings. The retrofit categoriesmore » representing the largest technical potential in these buildings are envelope, heat recovery, and heating/hot water system improvements. This paper describes efforts to establish a useful thermal model calibration process. The model structures and analytical methods for obtaining building parameters from time series weather, energy use, and thermal response data are developed. Our experience applying these methods to two, nominally identical 5-story apartment buildings in the city of Ryazan is presented. Building envelope UA?s inferred from measured whole-building thermal response data are compared with UA?s based on window and wall U-values (the latter obtained by ASTM in-situ measurements of 20 wall sections in various Ryazan panel buildings) as well. The UA's obtained by these completely independent measurements differ by less than 10%.« less

  16. Diversity's Impact on the Executive Coaching Process

    ERIC Educational Resources Information Center

    Maltbia, Terrence E.; Power, Anne

    2005-01-01

    This paper presents a conceptual model intended to expand existing executive coaching processes used in organizations by building the strategic learning capabilities needed to integrate a diversity perspective into this emerging field of HRD practice. This model represents the early development of results from a Diversity Practitioner Study…

  17. Interagency Collaborative Team Model for Capacity Building to Scale-Up Evidence-Based Practice

    PubMed Central

    Hurlburt, Michael; Aarons, Gregory A; Fettes, Danielle; Willging, Cathleen; Gunderson, Lara; Chaffin, Mark J

    2015-01-01

    Background System-wide scale up of evidence-based practice (EBP) is a complex process. Yet, few strategic approaches exist to support EBP implementation and sustainment across a service system. Building on the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework, we developed and are testing the Interagency Collaborative Team (ICT) process model to implement an evidence-based child neglect intervention (i.e., SafeCare®) within a large children’s service system. The ICT model emphasizes the role of local agency collaborations in creating structural supports for successful implementation. Methods We describe the ICT model and present preliminary qualitative results from use of the implementation model in one large scale EBP implementation. Qualitative interviews were conducted to assess challenges in building system, organization, and home visitor collaboration and capacity to implement the EBP. Data collection and analysis centered on EBP implementation issues, as well as the experiences of home visitors under the ICT model. Results Six notable issues relating to implementation process emerged from participant interviews, including: (a) initial commitment and collaboration among stakeholders, (b) leadership, (c) communication, (d) practice fit with local context, (e) ongoing negotiation and problem solving, and (f) early successes. These issues highlight strengths and areas for development in the ICT model. Conclusions Use of the ICT model led to sustained and widespread use of SafeCare in one large county. Although some aspects of the implementation model may benefit from enhancement, qualitative findings suggest that the ICT process generates strong structural supports for implementation and creates conditions in which tensions between EBP structure and local contextual variations can be resolved in ways that support the expansion and maintenance of an EBP while preserving potential for public health benefit. PMID:27512239

  18. Interagency Collaborative Team Model for Capacity Building to Scale-Up Evidence-Based Practice.

    PubMed

    Hurlburt, Michael; Aarons, Gregory A; Fettes, Danielle; Willging, Cathleen; Gunderson, Lara; Chaffin, Mark J

    2014-04-01

    System-wide scale up of evidence-based practice (EBP) is a complex process. Yet, few strategic approaches exist to support EBP implementation and sustainment across a service system. Building on the Exploration, Preparation, Implementation, and Sustainment (EPIS) implementation framework, we developed and are testing the Interagency Collaborative Team (ICT) process model to implement an evidence-based child neglect intervention (i.e., SafeCare®) within a large children's service system. The ICT model emphasizes the role of local agency collaborations in creating structural supports for successful implementation. We describe the ICT model and present preliminary qualitative results from use of the implementation model in one large scale EBP implementation. Qualitative interviews were conducted to assess challenges in building system, organization, and home visitor collaboration and capacity to implement the EBP. Data collection and analysis centered on EBP implementation issues, as well as the experiences of home visitors under the ICT model. Six notable issues relating to implementation process emerged from participant interviews, including: (a) initial commitment and collaboration among stakeholders, (b) leadership, (c) communication, (d) practice fit with local context, (e) ongoing negotiation and problem solving, and (f) early successes. These issues highlight strengths and areas for development in the ICT model. Use of the ICT model led to sustained and widespread use of SafeCare in one large county. Although some aspects of the implementation model may benefit from enhancement, qualitative findings suggest that the ICT process generates strong structural supports for implementation and creates conditions in which tensions between EBP structure and local contextual variations can be resolved in ways that support the expansion and maintenance of an EBP while preserving potential for public health benefit.

  19. Articulating the Resources for Business Process Analysis and Design

    ERIC Educational Resources Information Center

    Jin, Yulong

    2012-01-01

    Effective process analysis and modeling are important phases of the business process management lifecycle. When many activities and multiple resources are involved, it is very difficult to build a correct business process specification. This dissertation provides a resource perspective of business processes. It aims at a better process analysis…

  20. Adventures in Modeling: Exploring Complex, Dynamic Systems with StarLogo.

    ERIC Educational Resources Information Center

    Colella, Vanessa Stevens; Klopfer, Eric; Resnick, Mitchel

    For thousands of years people from da Vinci to Einstein have created models to help them better understand patterns and processes in the world around them. Computers make it easier for novices to build and explore their own models and learn new scientific ideas in the process. This book introduces teachers and students to designing, creating, and…

  1. Enhancing Infant Mental Health Using a Capacity-Building Model: A Case Study of a Process Evaluation of the "Ready, Steady, Grow" Initiative

    ERIC Educational Resources Information Center

    O'Farrelly, Christine; Guerin, Suzanne; Victory, Gerard

    2017-01-01

    Infant mental health (IMH) is best promoted through a continuum of services underpinned by strong service capacity. However, service providers often lack fundamental IMH knowledge and skills. Using the Ready, Steady, Grow (RSG) initiative as a case study of a capacity-building model (P., Hawe, L., King, M., Noort, C., Jordens, & B., Llyod,…

  2. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    NASA Astrophysics Data System (ADS)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  3. Social network supported process recommender system.

    PubMed

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  4. Assessment Processes to Increase the Burden of Existing Buildings Using BIM

    NASA Astrophysics Data System (ADS)

    Szeląg, Romuald

    2017-10-01

    The process of implementation of the reconstruction of buildings is often associated with the need to adapt them to increased loads. In the restricted access to the archive project documentation it is necessary to use technical solutions to obtain a fairly short period of time necessary to implement the technical parameters of such processes. Dissemination of BIM in the design process can also be used effectively in the processes of identification of existing facilities for the implementation of the work of strengthening or adapting objects to the increased load requirements. Obtained in the process of research and macroscopic data is then used in the processes of numerical processing aimed at developing a numerical model reflects the actual parameters of the structure of the existing structure and, therefore, allows a better look at the object and the execution of the process to strengthen future. This article will identify possibilities for the use of BIM in processes of identification technology buildings and structures and indicated the necessary data to be obtained during the preliminary work. Introduced in model solutions enable the use of multi-criteria analysis of the choice of the most optimal solutions in terms of costs or expenditures of time during the process of construction. Taking the above work by building a numerical model of the object allows every step of verification by authorized person inventoried solutions and enables tracking and changes in the situation of those found derogations in relation to the parameters established at the primary stage. In the event of significant deviations, there is the possibility of rapid changes to the completed process of calculation and presentation of alternative solutions. Availability software using BIM technology is increasingly common here knowledge of the implementation of such solutions will become in a short time, the standard for most objects or engineering structures. The use of modern solutions using the described processes will be discussed on the example of an industrial facility where there was a need for installation of new equipment and adapt it to the technical parameters.

  5. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    NASA Astrophysics Data System (ADS)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  6. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  7. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  8. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand reduction potentials in typical air-conditioning seasons in typical China cites as well as the impacts of operation and control strategies.

  9. Lightning attachment process to common buildings

    NASA Astrophysics Data System (ADS)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a lightning connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one lightning strike to that particular structure. Models and theories used to determine the zone of protection of a lightning rod have been developed, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of lightning attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by lightning protection standards. This paper also presents spectacular images and videos of lightning flashes connecting lightning rods that will be of interest not only to the lightning physics scientific community and to engineers that struggle with lightning protection but also to all those who want to understand how a lightning rod works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=consumer+AND+behavior+AND+model&pg=6&id=EJ178609','ERIC'); return false;" href="https://eric.ed.gov/?q=consumer+AND+behavior+AND+model&pg=6&id=EJ178609"><span>The Model-Building Process in Introductory College Geography: An Illustrative Example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cadwallader, Martin</p> <p>1978-01-01</p> <p>Illustrates the five elements of conceptual models by developing a model of consumer behavior in choosing among alternative supermarkets. The elements are: identifying the problem, constructing a conceptual model, translating it into a symbolic model, operationalizing the model, and testing. (Author/AV)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19360229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19360229"><span>Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa</p> <p>2008-01-01</p> <p>This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..178a2028N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..178a2028N"><span>Modeling of microstructure evolution in direct metal laser sintering: A phase field approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev</p> <p>2017-02-01</p> <p>Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1007a2030S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1007a2030S"><span>A Framework for Text Mining in Scientometric Study: A Case Study in Biomedicine Publications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silalahi, V. M. M.; Hardiyati, R.; Nadhiroh, I. M.; Handayani, T.; Rahmaida, R.; Amelia, M.</p> <p>2018-04-01</p> <p>The data of Indonesians research publications in the domain of biomedicine has been collected to be text mined for the purpose of a scientometric study. The goal is to build a predictive model that provides a classification of research publications on the potency for downstreaming. The model is based on the drug development processes adapted from the literatures. An effort is described to build the conceptual model and the development of a corpus on the research publications in the domain of Indonesian biomedicine. Then an investigation is conducted relating to the problems associated with building a corpus and validating the model. Based on our experience, a framework is proposed to manage the scientometric study based on text mining. Our method shows the effectiveness of conducting a scientometric study based on text mining in order to get a valid classification model. This valid model is mainly supported by the iterative and close interactions with the domain experts starting from identifying the issues, building a conceptual model, to the labelling, validation and results interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/87437-seasonal-performance-liquid-desiccant-air-conditioner','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/87437-seasonal-performance-liquid-desiccant-air-conditioner"><span>The seasonal performance of a liquid-desiccant air conditioner</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lowenstein, A.; Novosel, D.</p> <p>1995-08-01</p> <p>Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Building+AND+Information+AND+Modeling&pg=3&id=ED563236','ERIC'); return false;" href="https://eric.ed.gov/?q=Building+AND+Information+AND+Modeling&pg=3&id=ED563236"><span>Rank and Sparsity in Language Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hutchinson, Brian</p> <p>2013-01-01</p> <p>Language modeling is one of many problems in language processing that have to grapple with naturally high ambient dimensions. Even in large datasets, the number of unseen sequences is overwhelmingly larger than the number of observed ones, posing clear challenges for estimation. Although existing methods for building smooth language models tend to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1109314.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1109314.pdf"><span>Building and Sharing Knowledge Key Practice: What Do You Know, What Don't You Know, What Did You Learn? Research Report. ETS RR-15-24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>O'Reilly, Tenaha; Deane, Paul; Sabatini, John</p> <p>2015-01-01</p> <p>In this paper we provide the rationale and foundation for the building and sharing knowledge key practice for the "CBAL"™ English language arts competency model. Building and sharing knowledge is a foundational literacy activity that enables students to learn and communicate what they read in texts. It is a strategic process that…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16797227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16797227"><span>Building an ontology of pulmonary diseases with natural language processing tools using textual corpora.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baneyx, Audrey; Charlet, Jean; Jaulent, Marie-Christine</p> <p>2007-01-01</p> <p>Pathologies and acts are classified in thesauri to help physicians to code their activity. In practice, the use of thesauri is not sufficient to reduce variability in coding and thesauri are not suitable for computer processing. We think the automation of the coding task requires a conceptual modeling of medical items: an ontology. Our task is to help lung specialists code acts and diagnoses with software that represents medical knowledge of this concerned specialty by an ontology. The objective of the reported work was to build an ontology of pulmonary diseases dedicated to the coding process. To carry out this objective, we develop a precise methodological process for the knowledge engineer in order to build various types of medical ontologies. This process is based on the need to express precisely in natural language the meaning of each concept using differential semantics principles. A differential ontology is a hierarchy of concepts and relationships organized according to their similarities and differences. Our main research hypothesis is to apply natural language processing tools to corpora to develop the resources needed to build the ontology. We consider two corpora, one composed of patient discharge summaries and the other being a teaching book. We propose to combine two approaches to enrich the ontology building: (i) a method which consists of building terminological resources through distributional analysis and (ii) a method based on the observation of corpus sequences in order to reveal semantic relationships. Our ontology currently includes 1550 concepts and the software implementing the coding process is still under development. Results show that the proposed approach is operational and indicates that the combination of these methods and the comparison of the resulting terminological structures give interesting clues to a knowledge engineer for the building of an ontology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150006640&hterms=COMMAND&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DCOMMAND','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150006640&hterms=COMMAND&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DCOMMAND"><span>Command Process Modeling & Risk Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meshkat, Leila</p> <p>2011-01-01</p> <p>Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H33G1114H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H33G1114H"><span>Using simplifications of reality in the real world: Robust benefits of models for decision making</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hunt, R. J.</p> <p>2008-12-01</p> <p>Models are by definition simplifications of reality; the degree and nature of simplification, however, is debated. One view is "the world is 3D, heterogeneous, and transient, thus good models are too" - the more a model directly simulates the complexity of the real world the better it is considered to be. An alternative view is to only use simple models up front because real-world complexity can never be truly known. A third view is construct and calibrate as many models as predictions. A fourth is to build highly parameterized models and either look at an ensemble of results, or use mathematical regularization to identify an optimal most reasonable parameter set and fit. Although each view may have utility for a given decision-making process, there are common threads that perhaps run through all views. First, the model-construction process itself can help the decision-making process because it raises the discussion of opposing parties from one of contrasting professional opinions to discussion of reasonable types and ranges of model inputs and processes. Secondly, no matter what view is used to guide the model building, model predictions for the future might be expected to perform poorly in the future due to unanticipated future changes and stressors to the underlying system simulated. Although this does not reduce the obligation of the modeler to build representative tools for the system, it should serve to temper expectations of model performance. Finally, perhaps the most under-appreciated utility of models is for calculating the reduction in prediction uncertainty resulting from different data collection strategies - an attractive feature separate from the calculation and minimization of absolute prediction uncertainty itself. This type of model output facilitates focusing on efficient use of current and future monitoring resources - something valued by many decision-makers regardless of background, system managed, and societal context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NHESS..12.2865S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NHESS..12.2865S"><span>Damage estimation of subterranean building constructions due to groundwater inundation - the GIS-based model approach GRUWAD</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schinke, R.; Neubert, M.; Hennersdorf, J.; Stodolny, U.; Sommer, T.; Naumann, T.</p> <p>2012-09-01</p> <p>The analysis and management of flood risk commonly focuses on surface water floods, because these types are often associated with high economic losses due to damage to buildings and settlements. The rising groundwater as a secondary effect of these floods induces additional damage, particularly in the basements of buildings. Mostly, these losses remain underestimated, because they are difficult to assess, especially for the entire building stock of flood-prone urban areas. For this purpose an appropriate methodology has been developed and lead to a groundwater damage simulation model named GRUWAD. The overall methodology combines various engineering and geoinformatic methods to calculate major damage processes by high groundwater levels. It considers a classification of buildings by building types, synthetic depth-damage functions for groundwater inundation as well as the results of a groundwater-flow model. The modular structure of this procedure can be adapted in the level of detail. Hence, the model allows damage calculations from the local to the regional scale. Among others it can be used to prepare risk maps, for ex-ante analysis of future risks, and to simulate the effects of mitigation measures. Therefore, the model is a multifarious tool for determining urban resilience with respect to high groundwater levels.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5539481','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5539481"><span>A Context-Driven Model for the Flat Roofs Construction Process through Sensing Systems, Internet-of-Things and Last Planner System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Andújar-Montoya, María Dolores</p> <p>2017-01-01</p> <p>The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way. PMID:28737693</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28737693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28737693"><span>A Context-Driven Model for the Flat Roofs Construction Process through Sensing Systems, Internet-of-Things and Last Planner System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andújar-Montoya, María Dolores; Marcos-Jorquera, Diego; García-Botella, Francisco Manuel; Gilart-Iglesias, Virgilio</p> <p>2017-07-22</p> <p>The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LNCS.5833....2B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LNCS.5833....2B"><span>Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara</p> <p></p> <p>Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W7..385P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W7..385P"><span>Modelling of Indoor Environments Using Lindenmayer Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peter, M.</p> <p>2017-09-01</p> <p>Documentation of the "as-built" state of building interiors has gained a lot of interest in the recent years. Various data acquisition methods exist, e.g. the extraction from photographed evacuation plans using image processing or, most prominently, indoor mobile laser scanning. Due to clutter or data gaps as well as errors during data acquisition and processing, automatic reconstruction of CAD/BIM-like models from these data sources is not a trivial task. Thus it is often tried to support reconstruction by general rules for the perpendicularity and parallelism which are predominant in man-made structures. Indoor environments of large, public buildings, however, often also follow higher-level rules like symmetry and repetition of e.g. room sizes and corridor widths. In the context of reconstruction of city city elements (e.g. street networks) or building elements (e.g. façade layouts), formal grammars have been put to use. In this paper, we describe the use of Lindenmayer systems - which originally have been developed for the computer-based modelling of plant growth - to model and reproduce the layout of indoor environments in 2D.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=inverse+AND+control&pg=7&id=ED207490','ERIC'); return false;" href="https://eric.ed.gov/?q=inverse+AND+control&pg=7&id=ED207490"><span>Instructional Design and Directed Cognitive Processing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bovy, Ruth Colvin</p> <p></p> <p>This paper argues that the information processing model provides a promising basis on which to build a comprehensive theory of instruction. Characteristics of the major information processing constructs are outlined including attention, encoding and rehearsal, working memory, long term memory, retrieval, and metacognitive processes, and a unifying…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7966S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7966S"><span>Large-scale experiments for the vulnerability analysis of buildings impacted and intruded by fluviatile torrential hazard processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sturm, Michael; Gems, Bernhard; Fuchs, Sven; Mazzorana, Bruno; Papathoma-Köhle, Maria; Aufleger, Markus</p> <p>2016-04-01</p> <p>In European mountain regions, losses due to torrential hazards are still considerable high despite the ongoing debate on an overall increasing or decreasing trend. Recent events in Austria severely revealed that due to technical and economic reasons, an overall protection of settlements in the alpine environment against torrential hazards is not feasible. On the side of the hazard process, events with unpredictable intensities may represent overload scenarios for existent protection structures in the torrent catchments. They bear a particular risk of significant losses in the living space. Although the importance of vulnerability is widely recognised, there is still a research gap concerning its assessment. Currently, potential losses at buildings due to torrential hazards and their comparison with reinstatement costs are determined by the use of empirical functions. Hence, relations of process intensities and the extent of losses, gathered by the analysis of historic hazard events and the information of object-specific restoration values, are used. This approach does not represent a physics-based and integral concept since relevant and often crucial processes, as the intrusion of the fluid-sediment-mixture into elements at risk, are not considered. Based on these findings, our work is targeted at extending these findings and models of present risk research in the context of an integral, more physics-based vulnerability analysis concept. Fluviatile torrential hazard processes and their impacts on the building envelope are experimentally modelled. Material intrusion processes are thereby explicitly considered. Dynamic impacts are gathered quantitatively and spatially distributed by the use of a large set of force transducers. The experimental tests are accomplished with artificial, vertical and skewed plates, including also openings for material intrusion. Further, the impacts on specific buildings within the test site of the work, the fan apex of the Schnannerbach torrent in Tyrol (Austria), are analysed in detail. A couple of buildings are entirely reconstructed within the physical scale model at the scale 1:30. They include basement and first floor and thereby all relevant openings on the building envelopes. The results from experimental modelling represent the data basis for further physics-based vulnerability analysis. Hence, the applied vulnerability analysis concept significantly extends the methods presently used in flood risk assessment. The results of the study are of basic importance for practical application, as they provide extensive information to support hazard zone mapping and management, as well as the planning of local technical protection measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cases+AND+construction+AND+industry&pg=7&id=ED120562','ERIC'); return false;" href="https://eric.ed.gov/?q=cases+AND+construction+AND+industry&pg=7&id=ED120562"><span>Jobs in Construction. Job Family Series.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Science Research Associates, Inc., Chicago, IL.</p> <p></p> <p>The booklet describes jobs in the construction industry under the classifications of public and private building. Separate chapters discuss the process of building a city hospital, a model home, and a State highway. Chapters outline miscellaneous jobs in the industry such as elevator constructors, lathers, plasterers, roofers, and sheet metal…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22505259','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22505259"><span>Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brunger, Axel T; Das, Debanu; Deacon, Ashley M; Grant, Joanna; Terwilliger, Thomas C; Read, Randy J; Adams, Paul D; Levitt, Michael; Schröder, Gunnar F</p> <p>2012-04-01</p> <p>Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3322598','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3322598"><span>Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brunger, Axel T.; Das, Debanu; Deacon, Ashley M.; Grant, Joanna; Terwilliger, Thomas C.; Read, Randy J.; Adams, Paul D.; Levitt, Michael; Schröder, Gunnar F.</p> <p>2012-01-01</p> <p>Phasing by molecular replacement remains difficult for targets that are far from the search model or in situations where the crystal diffracts only weakly or to low resolution. Here, the process of determining and refining the structure of Cgl1109, a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum, at ∼3 Å resolution is described using a combination of homology modeling with MODELLER, molecular-replacement phasing with Phaser, deformable elastic network (DEN) refinement and automated model building using AutoBuild in a semi-automated fashion, followed by final refinement cycles with phenix.refine and Coot. This difficult molecular-replacement case illustrates the power of including DEN restraints derived from a starting model to guide the movements of the model during refinement. The resulting improved model phases provide better starting points for automated model building and produce more significant difference peaks in anomalous difference Fourier maps to locate anomalous scatterers than does standard refinement. This example also illustrates a current limitation of automated procedures that require manual adjustment of local sequence misalignments between the homology model and the target sequence. PMID:22505259</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17159467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17159467"><span>Advancing HIV/AIDS prevention among American Indians through capacity building and the community readiness model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thurman, Pamela Jumper; Vernon, Irene S; Plested, Barbara</p> <p>2007-01-01</p> <p>Although HIV/AIDS prevention has presented challenges over the past 25 years, prevention does work! To be most effective, however, prevention must be specific to the culture and the nature of the community. Building the capacity of a community for prevention efforts is not an easy process. If capacity is to be sustained, it must be practical and utilize the resources that already exist in the community. Attitudes vary across communities; resources vary, political climates are constantly varied and changing. Communities are fluid-always changing, adapting, growing. They are "ready" for different things at different times. Readiness is a key issue! This article presents a model that has experienced a high level of success in building community capacity for effective prevention/intervention for HIV/AIDS and offers case studies for review. The Community Readiness Model provides both quantitative and qualitative information in a user-friendly structure that guides a community through the process of understanding the importance of the measure of readiness. The model identifies readiness- appropriate strategies, provides readiness scores for evaluation, and most important, involves community stakeholders in the process. The article will demonstrate the importance of developing strategies consistent with readiness levels for more cost-effective and successful prevention efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002931"><span>Computational Process Modeling for Additive Manufacturing (OSU)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bagg, Stacey; Zhang, Wei</p> <p>2015-01-01</p> <p>Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...95b2004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...95b2004S"><span>On-line Data Transmission, as Part of the Seismic Evaluation Process in the Buildings Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sorin Dragomir, Claudiu; Dobre, Daniela; Craifaleanu, Iolanda; Georgescu, Emil-Sever</p> <p>2017-12-01</p> <p>The thorough analytical modelling of seismic actions, of the structural system and of the foundation soil is essential for a proper dynamic analysis of a building. However, the validation of the used models should be made, whenever possible, with reference to results obtained from experimental investigations, building instrumentation and monitoring of vibrations generated by various seismic or non-seismic sources. In Romania, the permanent seismic instrumentation/monitoring of buildings is part of a special follow-up activity, performed in accordance with the P130/1999 code for the time monitoring of building behaviour and with the seismic design code, P100-2013. By using the state-of-the-art modern equipment (GeoSIG and Kinemetrics digital accelerographs) in the seismic network of the National Institute for Research and Development URBAN-INCERC, the instrumented buildings can be monitored remotely, with recorded data being sent to authorities or to research institutes in the field by a real-time data transmission system. The obtained records are processed, computing the Fourier amplitude spectra and the response spectra, and the modal parameters of buildings are determined. The paper presents some of the most important results of the institute in the field of building monitoring, focusing on the situation of some significant instrumented buildings located in different parts of the country. In addition, maps with data received from seismic stations after the occurrence of two recent Vrancea (Romania) earthquakes, showing the spatial distribution of ground accelerations, are presented, together with a comparative analysis, performed with reference to previous studies in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5397468','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5397468"><span>Reorganization of the Connectivity between Elementary Functions – A Model Relating Conscious States to Neural Connections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mogensen, Jesper; Overgaard, Morten</p> <p>2017-01-01</p> <p>In the present paper it is argued that the “neural correlate of consciousness” (NCC) does not appear to be a separate “module” – but an aspect of information processing within the neural substrate of various cognitive processes. Consequently, NCC can only be addressed adequately within frameworks that model the general relationship between neural processes and mental states – and take into account the dynamic connectivity of the brain. We presently offer the REFGEN (general reorganization of elementary functions) model as such a framework. This model builds upon and expands the REF (reorganization of elementary functions) and REFCON (of elementary functions and consciousness) models. All three models integrate the relationship between the neural and mental layers of description via the construction of an intermediate level dealing with computational states. The importance of experience based organization of neural and cognitive processes is stressed. The models assume that the mechanisms of consciousness are in principle the same as the basic mechanisms of all aspects of cognition – when information is processed to a sufficiently “high level” it becomes available to conscious experience. The NCC is within the REFGEN model seen as aspects of the dynamic and experience driven reorganizations of the synaptic connectivity between the neurocognitive “building blocks” of the model – the elementary functions. PMID:28473797</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192528','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192528"><span>What do we gain from simplicity versus complexity in species distribution models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Merow, Cory; Smith, Matthew J.; Edwards, Thomas C.; Guisan, Antoine; McMahon, Sean M.; Normand, Signe; Thuiller, Wilfried; Wuest, Rafael O.; Zimmermann, Niklaus E.; Elith, Jane</p> <p>2014-01-01</p> <p>Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence–environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence–environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building ‘under fit’ models, having insufficient flexibility to describe observed occurrence–environment relationships, we risk misunderstanding the factors shaping species distributions. By building ‘over fit’ models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35017','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35017"><span>First-order fire effects models for land Management: Overview and issues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Elizabeth D. Reinhardt; Matthew B. Dickinson</p> <p>2010-01-01</p> <p>We give an overview of the science application process at work in supporting fire management. First-order fire effects models, such as those discussed in accompanying papers, are the building blocks of software systems designed for application to landscapes over time scales from days to centuries. Fire effects may be modeled using empirical, rule based, or process...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA262887','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA262887"><span>Selective Processing Techniques for Electronics and Opto-Electronic Applications: Quantum-Well Devices and Integrated Optic Circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-02-10</p> <p>new technology is to have sufficient control of processing to *- describable by an appropriate elecromagnetic model . build useful devices. For example...3. W aveguide Modulators .................................. 7 B. Integrated Optical Device and Circuit Modeling ... ................... .. 10 C...following categories: A. Integrated Optical Devices and Technology B. Integrated Optical Device and Circuit Modeling C. Cryogenic Etching for Low</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17904636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17904636"><span>Measuring societal effects of transdisciplinary research projects: design and application of an evaluation method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walter, Alexander I; Helgenberger, Sebastian; Wiek, Arnim; Scholz, Roland W</p> <p>2007-11-01</p> <p>Most Transdisciplinary Research (TdR) projects combine scientific research with the building of decision making capacity for the involved stakeholders. These projects usually deal with complex, societally relevant, real-world problems. This paper focuses on TdR projects, which integrate the knowledge of researchers and stakeholders in a collaborative transdisciplinary process through structured methods of mutual learning. Previous research on the evaluation of TdR has insufficiently explored the intended effects of transdisciplinary processes on the real world (societal effects). We developed an evaluation framework for assessing the societal effects of transdisciplinary processes. Outputs (measured as procedural and product-related involvement of the stakeholders), impacts (intermediate effects connecting outputs and outcomes) and outcomes (enhanced decision making capacity) are distinguished as three types of societal effects. Our model links outputs and outcomes of transdisciplinary processes via the impacts using a mediating variables approach. We applied this model in an ex post evaluation of a transdisciplinary process. 84 out of 188 agents participated in a survey. The results show significant mediation effects of the two impacts "network building" and "transformation knowledge". These results indicate an influence of a transdisciplinary process on the decision making capacity of stakeholders, especially through social network building and the generation of knowledge relevant for action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1239229','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1239229"><span>A Clustering Graph Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey</p> <p></p> <p>In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps tomore » understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8390E..25P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8390E..25P"><span>A new compact representation of morphological profiles: report on first massive VHR image processing at the JRC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pesaresi, Martino; Ouzounis, Georgios K.; Gueguen, Lionel</p> <p>2012-06-01</p> <p>A new compact representation of dierential morphological prole (DMP) vector elds is presented. It is referred to as the CSL model and is conceived to radically reduce the dimensionality of the DMP descriptors. The model maps three characteristic parameters, namely scale, saliency and level, into the RGB space through a HSV transform. The result is a a medium abstraction semantic layer used for visual exploration, image information mining and pattern classication. Fused with the PANTEX built-up presence index, the CSL model converges to an approximate building footprint representation layer in which color represents building class labels. This process is demonstrated on the rst high resolution (HR) global human settlement layer (GHSL) computed from multi-modal HR and VHR satellite images. Results of the rst massive processing exercise involving several thousands of scenes around the globe are reported along with validation gures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25197704','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25197704"><span>BIM based virtual environment for fire emergency evacuation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Bin; Li, Haijiang; Rezgui, Yacine; Bradley, Alex; Ong, Hoang N</p> <p>2014-01-01</p> <p>Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1250900','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1250900"><span>Controlling Energy Performance on the Big Stage - The New York Times Company</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Settlemyre, Kevin; Regnier, Cindy</p> <p>2015-08-01</p> <p>The Times partnered with the U.S. Department of Energy (DOE) as part of DOE’s Commercial Building Partnerships (CBP) Program to develop a post-occupancy evaluation (POE) of three EEMs that were implemented during the construction of The Times building between 2004-2006. With aggressive goals to reduce energy use and carbon emissions at a national level, one strategy of the US Department of Energy is looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals that are now needed at scale. The Times building incorporated a number of innovative technologies, systems and processes that makemore » their project a model for widespread replication in new and existing buildings. The measured results from the post occupancy evaluation study, the tools and processes developed, and continuous improvements in the performance and cost of the systems studied suggest that these savings are scalable and replicable in a wide range of commercial buildings nationwide.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336046','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336046"><span>Evaluation of Maximum Radionuclide Groundwater Concentrations for Basement Fill Model. Zion Station Restoration Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sullivan, T.</p> <p>2016-05-20</p> <p>ZionSolutions is in the process of decommissioning the Zion Nuclear Power Station (ZNPS). After decommissioning is completed, the site will contain two reactor Containment Buildings, the Fuel Handling Building and Transfer Canals, Auxiliary Building, Turbine Building, Crib House/Forebay, and a Waste Water Treatment Facility that have been demolished to a depth of 3 feet below grade. Additional below ground structures remaining will include the Main Steam Tunnels and large diameter intake and discharge pipes. These additional structures are not included in the modeling described in this report, but the inventory remaining (expected to be very low) will be included withmore » one of the structures that are modeled as designated in the Zion Station Restoration Project (ZSRP) License Termination Plan (LTP). The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934357','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934357"><span>Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jung, Jaewook; Sohn, Gunho; Bang, Kiin; Wichmann, Andreas; Armenakis, Costas; Kada, Martin</p> <p>2016-01-01</p> <p>A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH) method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1) feature extraction; (2) similarity measure; and matching, and (3) estimating exterior orientation parameters (EOPs) of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process. PMID:27338410</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9080E..0TK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9080E..0TK"><span>lidar change detection using building models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Angela M.; Runyon, Scott C.; Jalobeanu, Andre; Esterline, Chelsea H.; Kruse, Fred A.</p> <p>2014-06-01</p> <p>Terrestrial LiDAR scans of building models collected with a FARO Focus3D and a RIEGL VZ-400 were used to investigate point-to-point and model-to-model LiDAR change detection. LiDAR data were scaled, decimated, and georegistered to mimic real world airborne collects. Two physical building models were used to explore various aspects of the change detection process. The first model was a 1:250-scale representation of the Naval Postgraduate School campus in Monterey, CA, constructed from Lego blocks and scanned in a laboratory setting using both the FARO and RIEGL. The second model at 1:8-scale consisted of large cardboard boxes placed outdoors and scanned from rooftops of adjacent buildings using the RIEGL. A point-to-point change detection scheme was applied directly to the point-cloud datasets. In the model-to-model change detection scheme, changes were detected by comparing Digital Surface Models (DSMs). The use of physical models allowed analysis of effects of changes in scanner and scanning geometry, and performance of the change detection methods on different types of changes, including building collapse or subsistence, construction, and shifts in location. Results indicate that at low false-alarm rates, the point-to-point method slightly outperforms the model-to-model method. The point-to-point method is less sensitive to misregistration errors in the data. Best results are obtained when the baseline and change datasets are collected using the same LiDAR system and collection geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAr.XL5..315M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAr.XL5..315M"><span>Parametric Workflow (BIM) for the Repair Construction of Traditional Historic Architecture in Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Y.-P.; Hsu, C. C.; Lin, M.-C.; Tsai, Z.-W.; Chen, J.-Y.</p> <p>2015-08-01</p> <p>In Taiwan, numerous existing traditional buildings are constructed with wooden structures, brick structures, and stone structures. This paper will focus on the Taiwan traditional historic architecture and target the traditional wooden structure buildings as the design proposition and process the BIM workflow for modeling complex wooden combination geometry, integrating with more traditional 2D documents and for visualizing repair construction assumptions within the 3D model representation. The goal of this article is to explore the current problems to overcome in wooden historic building conservation, and introduce the BIM technology in the case of conserving, documenting, managing, and creating full engineering drawings and information for effectively support historic conservation. Although BIM is mostly oriented to current construction praxis, there have been some attempts to investigate its applicability in historic conservation projects. This article also illustrates the importance and advantages of using BIM workflow in repair construction process, when comparing with generic workflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1168735','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1168735"><span>Comparison of Building Energy Modeling Programs: Building Loads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhu, Dandan; Hong, Tianzhen; Yan, Da</p> <p></p> <p>This technical report presented the methodologies, processes, and results of comparing three Building Energy Modeling Programs (BEMPs) for load calculations: EnergyPlus, DeST and DOE-2.1E. This joint effort, between Lawrence Berkeley National Laboratory, USA and Tsinghua University, China, was part of research projects under the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation, an industrial partner of CERC-BEE, was the co-sponsor of this study work. It is widely known that large discrepancies in simulation results can exist between different BEMPs. The result is a lack of confidence in building simulation amongst many users and stakeholders. In themore » fields of building energy code development and energy labeling programs where building simulation plays a key role, there are also confusing and misleading claims that some BEMPs are better than others. In order to address these problems, it is essential to identify and understand differences between widely-used BEMPs, and the impact of these differences on load simulation results, by detailed comparisons of these BEMPs from source code to results. The primary goal of this work was to research methods and processes that would allow a thorough scientific comparison of the BEMPs. The secondary goal was to provide a list of strengths and weaknesses for each BEMP, based on in-depth understandings of their modeling capabilities, mathematical algorithms, advantages and limitations. This is to guide the use of BEMPs in the design and retrofit of buildings, especially to support China’s building energy standard development and energy labeling program. The research findings could also serve as a good reference to improve the modeling capabilities and applications of the three BEMPs. The methodologies, processes, and analyses employed in the comparison work could also be used to compare other programs. The load calculation method of each program was analyzed and compared to identify the differences in solution algorithms, modeling assumptions and simplifications. Identifying inputs of each program and their default values or algorithms for load simulation was a critical step. These tend to be overlooked by users, but can lead to large discrepancies in simulation results. As weather data was an important input, weather file formats and weather variables used by each program were summarized. Some common mistakes in the weather data conversion process were discussed. ASHRAE Standard 140-2007 tests were carried out to test the fundamental modeling capabilities of the load calculations of the three BEMPs, where inputs for each test case were strictly defined and specified. The tests indicated that the cooling and heating load results of the three BEMPs fell mostly within the range of spread of results from other programs. Based on ASHRAE 140-2007 test results, the finer differences between DeST and EnergyPlus were further analyzed by designing and conducting additional tests. Potential key influencing factors (such as internal gains, air infiltration, convection coefficients of windows and opaque surfaces) were added one at a time to a simple base case with an analytical solution, to compare their relative impacts on load calculation results. Finally, special tests were designed and conducted aiming to ascertain the potential limitations of each program to perform accurate load calculations. The heat balance module was tested for both single and double zone cases. Furthermore, cooling and heating load calculations were compared between the three programs by varying the heat transfer between adjacent zones, the occupancy of the building, and the air-conditioning schedule.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.842a2035J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.842a2035J"><span>Research of Ancient Architectures in Jin-Fen Area Based on GIS&BIM Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jia, Jing; Zheng, Qiuhong; Gao, Huiying; Sun, Hai</p> <p>2017-05-01</p> <p>The number of well-preserved ancient buildings located in Shanxi Province, enjoying the absolute maximum proportion of ancient architectures in China, is about 18418, among which, 9053 buildings have the structural style of wood frame. The value of the application of BIM (Building Information Modeling) and GIS (Geographic Information System) is gradually probed and testified in the corresponding fields of ancient architecture’s spatial distribution information management, routine maintenance and special conservation & restoration, the evaluation and simulation of related disasters, such as earthquake. The research objects are ancient architectures in JIN-FEN area, which were first investigated by Sicheng LIANG and recorded in his work of “Chinese ancient architectures survey report”. The research objects, i.e. the ancient architectures in Jin-Fen area include those in Sicheng LIANG’s investigation, and further adjustments were made through authors’ on-site investigation and literature searching & collection. During this research process, the spatial distributing Geodatabase of research objects is established utilizing GIS. The BIM components library for ancient buildings is formed combining on-site investigation data and precedent classic works, such as “Yingzao Fashi”, a treatise on architectural methods in Song Dynasty, “Yongle Encyclopedia” and “Gongcheng Zuofa Zeli”, case collections of engineering practice, by the Ministry of Construction of Qing Dynasty. A building of Guangsheng temple in Hongtong county is selected as an example to elaborate the BIM model construction process based on the BIM components library for ancient buildings. Based on the foregoing work results of spatial distribution data, attribute data of features, 3D graphic information and parametric building information model, the information management system for ancient architectures in Jin-Fen Area, utilizing GIS&BIM technology, could be constructed to support the further research of seismic disaster analysis and seismic performance simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3914351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3914351"><span>Social Network Supported Process Recommender System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ye, Yanming; Yin, Jianwei; Xu, Yueshen</p> <p>2014-01-01</p> <p>Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced. PMID:24672309</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED23E..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED23E..06R"><span>Interactive, process-oriented climate modeling with CLIMLAB</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, B. E. J.</p> <p>2016-12-01</p> <p>Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1249559','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1249559"><span>Modelica buildings library</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.</p> <p></p> <p>This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1249559-modelica-buildings-library','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1249559-modelica-buildings-library"><span>Modelica buildings library</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; ...</p> <p>2013-03-13</p> <p>This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......157L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......157L"><span>Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucich, Stephen M.</p> <p></p> <p>In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was determined that the addition of a PV array is not feasible from a purely economic viewpoint. Several avenues for expansion of this research are presented in Chapter 5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISPAr.XL4..357Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISPAr.XL4..357Z"><span>Indoor 3D Route Modeling Based On Estate Spatial Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, H.; Wen, Y.; Jiang, J.; Huang, W.</p> <p>2014-04-01</p> <p>Indoor three-dimensional route model is essential for space intelligence navigation and emergency evacuation. This paper is motivated by the need of constructing indoor route model automatically and as far as possible. By comparing existing building data sources, this paper firstly explained the reason why the estate spatial management data is chosen as the data source. Then, an applicable method of construction three-dimensional route model in a building is introduced by establishing the mapping relationship between geographic entities and their topological expression. This data model is a weighted graph consist of "node" and "path" to express the spatial relationship and topological structure of a building components. The whole process of modelling internal space of a building is addressed by two key steps: (1) each single floor route model is constructed, including path extraction of corridor using Delaunay triangulation algorithm with constrained edge, fusion of room nodes into the path; (2) the single floor route model is connected with stairs and elevators and the multi-floor route model is eventually generated. In order to validate the method in this paper, a shopping mall called "Longjiang New City Plaza" in Nanjing is chosen as a case of study. And the whole building space is constructed according to the modelling method above. By integrating of existing path finding algorithm, the usability of this modelling method is verified, which shows the indoor three-dimensional route modelling method based on estate spatial data in this paper can support indoor route planning and evacuation route design very well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.803a2026B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.803a2026B"><span>Hierarchical analytical and simulation modelling of human-machine systems with interference</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braginsky, M. Ya; Tarakanov, D. V.; Tsapko, S. G.; Tsapko, I. V.; Baglaeva, E. A.</p> <p>2017-01-01</p> <p>The article considers the principles of building the analytical and simulation model of the human operator and the industrial control system hardware and software. E-networks as the extension of Petri nets are used as the mathematical apparatus. This approach allows simulating complex parallel distributed processes in human-machine systems. The structural and hierarchical approach is used as the building method for the mathematical model of the human operator. The upper level of the human operator is represented by the logical dynamic model of decision making based on E-networks. The lower level reflects psychophysiological characteristics of the human-operator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...95b2053J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...95b2053J"><span>Indoor Radon Concentration Related to Different Radon Areas and Indoor Radon Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juhásová Šenitková, Ingrid; Šál, Jiří</p> <p>2017-12-01</p> <p>Indoor radon has been observed in the buildings at areas with different radon risk potential. Preventive measures are based on control of main potential radon sources (soil gas, building material and supplied water) to avoid building of new houses above recommended indoor radon level 200 Bq/m3. Radon risk (index) estimation of individual building site bedrock in case of new house siting and building protection according technical building code are obligatory. Remedial actions in buildings built at high radon risk areas were carried out principally by unforced ventilation and anti-radon insulation. Significant differences were found in the level of radon concentration between rooms where radon reduction techniques were designed and those where it was not designed. The mathematical model based on radon exhalation from soil has been developed to describe the physical processes determining indoor radon concentration. The model is focused on combined radon diffusion through the slab and advection through the gap from sub-slab soil. In this model, radon emanated from building materials is considered not having a significant contribution to indoor radon concentration. Dimensional analysis and Gauss-Newton nonlinear least squares parametric regression were used to simplify the problem, identify essential input variables and find parameter values. The presented verification case study is introduced for real buildings with respect to various underground construction types. Presented paper gives picture of possible mathematical approach to indoor radon concentration prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LNCS.5727..749S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LNCS.5727..749S"><span>Reflection of a Year Long Model-Driven Business and UI Modeling Development Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukaviriya, Noi; Mani, Senthil; Sinha, Vibha</p> <p></p> <p>Model-driven software development enables users to specify an application at a high level - a level that better matches problem domain. It also promises the users with better analysis and automation. Our work embarks on two collaborating domains - business process and human interactions - to build an application. Business modeling expresses business operations and flows then creates business flow implementation. Human interaction modeling expresses a UI design, its relationship with business data, logic, and flow, and can generate working UI. This double modeling approach automates the production of a working system with UI and business logic connected. This paper discusses the human aspects of this modeling approach after a year long of building a procurement outsourcing contract application using the approach - the result of which was deployed in December 2008. The paper discusses in multiple areas the happy endings and some heartache. We end with insights on how a model-driven approach could do better for humans in the process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=plate+AND+tectonics&pg=4&id=EJ996845','ERIC'); return false;" href="https://eric.ed.gov/?q=plate+AND+tectonics&pg=4&id=EJ996845"><span>Using Google Earth to Teach Plate Tectonics and Science Explanations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Blank, Lisa M.; Plautz, Mike; Almquist, Heather; Crews, Jeff; Estrada, Jen</p> <p>2012-01-01</p> <p>"A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" emphasizes that the practice of science is inherently a model-building activity focused on constructing explanations using evidence and reasoning (NRC 2012). Because building and refining is an iterative process, middle school students may view this practice…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1420279-gaussian-process-based-surrogate-modeling-framework-process-planning-laser-powder-bed-fusion-additive-manufacturing-stainless-steel','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1420279-gaussian-process-based-surrogate-modeling-framework-process-planning-laser-powder-bed-fusion-additive-manufacturing-stainless-steel"><span>Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.; ...</p> <p>2017-09-22</p> <p>Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1420279-gaussian-process-based-surrogate-modeling-framework-process-planning-laser-powder-bed-fusion-additive-manufacturing-stainless-steel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1420279-gaussian-process-based-surrogate-modeling-framework-process-planning-laser-powder-bed-fusion-additive-manufacturing-stainless-steel"><span>Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tapia, Gustavo; Khairallah, Saad A.; Matthews, Manyalibo J.</p> <p></p> <p>Here, Laser Powder-Bed Fusion (L-PBF) metal-based additive manufacturing (AM) is complex and not fully understood. Successful processing for one material, might not necessarily apply to a different material. This paper describes a workflow process that aims at creating a material data sheet standard that describes regimes where the process can be expected to be robust. The procedure consists of building a Gaussian process-based surrogate model of the L-PBF process that predicts melt pool depth in single-track experiments given a laser power, scan speed, and laser beam size combination. The predictions are then mapped onto a power versus scan speed diagrammore » delimiting the conduction from the keyhole melting controlled regimes. This statistical framework is shown to be robust even for cases where experimental training data might be suboptimal in quality, if appropriate physics-based filters are applied. Additionally, it is demonstrated that a high-fidelity simulation model of L-PBF can equally be successfully used for building a surrogate model, which is beneficial since simulations are getting more efficient and are more practical to study the response of different materials, than to re-tool an AM machine for new material powder.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013030','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013030"><span>A Best Practices Model for Implementing Successful Electronic Disease Surveillance Systems: Insights from Peru and Around the Globe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-06-03</p> <p>associated Program design: Kenya . and written project with improved I) Generic model should be adaptable documentation. diagnosis or treatment. to local...potential for and threats to development through an unsustainable and 3) Gaps in evaluation in area of building sustainable to performance -based...implementation in developing countries by building a framework that will identify key elements in this process and serve as guidance to implementers. This study</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAr.XL5a..87G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAr.XL5a..87G"><span>Parametric Accuracy: Building Information Modeling Process Applied to the Cultural Heritage Preservation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garagnani, S.; Manferdini, A. M.</p> <p>2013-02-01</p> <p>Since their introduction, modeling tools aimed to architectural design evolved in today's "digital multi-purpose drawing boards" based on enhanced parametric elements able to originate whole buildings within virtual environments. Semantic splitting and elements topology are features that allow objects to be "intelligent" (i.e. self-aware of what kind of element they are and with whom they can interact), representing this way basics of Building Information Modeling (BIM), a coordinated, consistent and always up to date workflow improved in order to reach higher quality, reliability and cost reductions all over the design process. Even if BIM was originally intended for new architectures, its attitude to store semantic inter-related information can be successfully applied to existing buildings as well, especially if they deserve particular care such as Cultural Heritage sites. BIM engines can easily manage simple parametric geometries, collapsing them to standard primitives connected through hierarchical relationships: however, when components are generated by existing morphologies, for example acquiring point clouds by digital photogrammetry or laser scanning equipment, complex abstractions have to be introduced while remodeling elements by hand, since automatic feature extraction in available software is still not effective. In order to introduce a methodology destined to process point cloud data in a BIM environment with high accuracy, this paper describes some experiences on monumental sites documentation, generated through a plug-in written for Autodesk Revit and codenamed GreenSpider after its capability to layout points in space as if they were nodes of an ideal cobweb.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B5..667M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B5..667M"><span>Validation of Point Clouds Segmentation Algorithms Through Their Application to Several Case Studies for Indoor Building Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macher, H.; Landes, T.; Grussenmeyer, P.</p> <p>2016-06-01</p> <p>Laser scanners are widely used for the modelling of existing buildings and particularly in the creation process of as-built BIM (Building Information Modelling). However, the generation of as-built BIM from point clouds involves mainly manual steps and it is consequently time consuming and error-prone. Along the path to automation, a three steps segmentation approach has been developed. This approach is composed of two phases: a segmentation into sub-spaces namely floors and rooms and a plane segmentation combined with the identification of building elements. In order to assess and validate the developed approach, different case studies are considered. Indeed, it is essential to apply algorithms to several datasets and not to develop algorithms with a unique dataset which could influence the development with its particularities. Indoor point clouds of different types of buildings will be used as input for the developed algorithms, going from an individual house of almost one hundred square meters to larger buildings of several thousand square meters. Datasets provide various space configurations and present numerous different occluding objects as for example desks, computer equipments, home furnishings and even wine barrels. For each dataset, the results will be illustrated. The analysis of the results will provide an insight into the transferability of the developed approach for the indoor modelling of several types of buildings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........35D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........35D"><span>Post Occupancy energy evaluation of Ronald Tutor Hall using eQUEST; Computer based simulation of existing building and comparison of data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dulom, Duyum</p> <p></p> <p>Buildings account for about 40 percent of total U.S. energy consumption. It is therefore important to shift our focus on important measures that can be taken to make buildings more energy efficient. With the rise in number of buildings day by day and the dwindling resources, retrofitting buildings is the key to an energy efficiency future. Post occupancy evaluation (POE) is an important tool and is ideal for the retrofitting process. POE would help to identify the problem areas in the building and enable researchers and designers to come up with solutions addressing the inefficient energy usage as well as the overall wellbeing of the users of the building. The post occupancy energy evaluation of Ronald Tutor Hall (RTH) located at the University of Southern California is one small step in that direction. RTH was chosen to study because; (a) relatively easy access to the building data (b) it was built in compliance with Title 24 2001 and (c) it was old enough to have post occupancy data. The energy modeling tool eQuest was used to simulate the RTH building using the background information of the building such as internal thermal comfort profile, occupancy profile, building envelope profile, internal heat gain profile, etc. The simulation results from eQuest were then compared with the actual building recorded data to verify that our simulated model was behaving similar to the actual building. Once we were able to make the simulated model behave like the actual building, changes were made to the model such as installation of occupancy sensor in the classroom & laboratories, changing the thermostat set points and introducing solar shade on northwest and southwest facade. The combined savings of the proposed interventions resulted in a 6% savings in the overall usage of energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245f2015D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245f2015D"><span>Single-image-based Modelling Architecture from a Historical Photograph</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dzwierzynska, Jolanta</p> <p>2017-10-01</p> <p>Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391689-energy-management-study-proposed-case-government-building','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391689-energy-management-study-proposed-case-government-building"><span>Energy management study: A proposed case of government building</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal</p> <p></p> <p>Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount ofmore » energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1660i0040T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1660i0040T"><span>Energy management study: A proposed case of government building</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Baharum, Mohd Faizal</p> <p>2015-05-01</p> <p>Align with the current needs of the sustainable and green technology in Malaysian construction industry, this research is conducted to seek and identify opportunities to better manage energy use including the process of understand when, where, and how energy is used in a building. The purpose of this research is to provide a best practice guideline as a practical tool to assist construction industry in Malaysia to improve the energy efficiency of the office building during the post-production by reviewing the current practice of the building operation and maintenance in order to optimum the usage and reduce the amount of energy input into the building. Therefore, this paper will review the concept of maintenance management, current issue in energy management, and on how the research process will be conducted. There are several process involves and focuses on technical and management techniques such as energy metering, tracing, harvesting, and auditing based on the case study that will be accomplish soon. Accordingly, a case study is appropriate to be selected as a strategic research approach in which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence for the data collection process. A Government office building will be selected as an appropriate case study for this research. In the end of this research, it will recommend a strategic approach or model in a specific guideline for enabling energy-efficient operation and maintenance in the office building.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030067856','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030067856"><span>Microgravity Manufacturing Via Fused Deposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cooper, K. G.; Griffin, M. R.</p> <p>2003-01-01</p> <p>Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/19237','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/19237"><span>Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Robert M. Scheller; James B. Domingo; Brian R. Sturtevant; Jeremy S. Williams; Arnold Rudy; Eric J. Gustafson; David J. Mladenoff</p> <p>2007-01-01</p> <p>We introduce LANDIS-II, a landscape model designed to simulate forest succession and disturbances. LANDIS-II builds upon and preserves the functionality of previous LANDIS forest landscape simulation models. LANDIS-II is distinguished by the inclusion of variable time steps for different ecological processes; our use of a rigorous development and testing process used...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892r0002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892r0002S"><span>Means of escape provisions and evacuation simulation of public building in Malaysia and Singapore</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samad, Muna Hanim Abdul; Taib, Nooriati; Ying, Choo Siew</p> <p>2017-10-01</p> <p>The Uniform Building By-law 1984 of Malaysia is the legal document governing fire safety requirements in buildings. Its prescriptive nature has made the requirements out dated from the viewpoint of current performance based approach in most developed countries. The means of escape provisions is a critical requirement to safeguard occupants' safety in fire especially in public buildings. As stipulated in the UBBL 1984, the means of escape provisions includes sufficient escape routes, travel distance, protection of escape routes, etc. designated as means to allow occupants to escape within a safe period of time. This research aims at investigating the effectiveness of those provisions in public buildings during evacuation process involving massive crowd during emergencies. This research includes a scenario-based study on evacuation processes using two software i.e. PyroSim, a crowd modelling software to conduct smoke study and Pathfinder to stimulate evacuation model of building in Malaysia and Singapore as comparative study. The results show that the buildings used as case study were designed according to Malaysian UBBL 1984 and Singapore Firecode, 2013 respectively provide relative safe means of escape. The simulations of fire and smoke and coupled with simulation of evacuation have demonstrated that although there are adequate exits designated according to fire requirements, the impact of the geometry of atriums on the behavior of fire and smoke have significant effect on escape time especially for unfamiliar user of the premises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113476A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113476A"><span>Exploitation of Semantic Building Model in Indoor Navigation Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min</p> <p>2009-04-01</p> <p>There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication. The available solutions for location tagging are mostly based on proximity sensors and the information are bound to sensor references. In the proposed solution of this paper, the sensors simply play a role similar to annotations in Semantic Web world. Hence the sensors data in ontology sense bridges the gap between sensed information and building model. Combining these two and applying the proper inference rules, the building visitors will be able to reach their destinations with instant support of their communication devices such as hand helds, wearable computers, mobiles, etc. In a typical scenario of this kind, user's profile will be delivered to the smart building (via building ad-hoc services) and the appropriate route for user will be calculated and delivered to user's end-device. The calculated route is calculated by considering all constraints and requirements of the end user. So for example if the user is using a wheelchair, the calculated route should not contain stairs or narrow corridors that the wheelchair does not pass through. Then user starts to navigate through building by following the instructions of the end-device which are in turn generated from the calculated route. During the navigation process, the end-device should also interact with the smart building to sense the locations by reading the surrounding tags. So for example when a visually impaired person arrives at an unknown space, the tags will be sensed and the relevant information will be delivered to user in the proper way of communication. For example the building model can be used to generate a voice message for a blind person about a space and tell him/her that "the space has 3 doors, and the door on the left should be chosen which needs to be pushed to open". In this paper we will mainly focus on automatic generation of semantic building information models (Semantic BIM) and delivery of results to the end user. Combining the building information model with the environment and user constraints using Semantic Web technologies will make many scenarios conceivable. The generated IFC ontology that is base on the commonly accepted IFC (Industry Foundation Classes) standard can be used as the basis of information sharing between buildings, people, and applications. The proposed solution is aiming to facilitate the building navigation in an intuitive and extendable way that is easy to use by end-users and at the same time easy to maintain and manage by building administrators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20404211','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20404211"><span>Semiautomated model building for RNA crystallography using a directed rotameric approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keating, Kevin S; Pyle, Anna Marie</p> <p>2010-05-04</p> <p>Structured RNA molecules play essential roles in a variety of cellular processes; however, crystallographic studies of such RNA molecules present a large number of challenges. One notable complication arises from the low resolutions typical of RNA crystallography, which results in electron density maps that are imprecise and difficult to interpret. This problem is exacerbated by the lack of computational tools for RNA modeling, as many of the techniques commonly used in protein crystallography have no equivalents for RNA structure. This leads to difficulty and errors in the model building process, particularly in modeling of the RNA backbone, which is highly error prone due to the large number of variable torsion angles per nucleotide. To address this, we have developed a method for accurately building the RNA backbone into maps of intermediate or low resolution. This method is semiautomated, as it requires a crystallographer to first locate phosphates and bases in the electron density map. After this initial trace of the molecule, however, an accurate backbone structure can be built without further user intervention. To accomplish this, backbone conformers are first predicted using RNA pseudotorsions and the base-phosphate perpendicular distance. Detailed backbone coordinates are then calculated to conform both to the predicted conformer and to the previously located phosphates and bases. This technique is shown to produce accurate backbone structure even when starting from imprecise phosphate and base coordinates. A program implementing this methodology is currently available, and a plugin for the Coot model building program is under development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006NHESS...6..637K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006NHESS...6..637K"><span>Avalanche risk assessment - a multi-temporal approach, results from Galtür, Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keiler, M.; Sailer, R.; Jörg, P.; Weber, C.; Fuchs, S.; Zischg, A.; Sauermoser, S.</p> <p>2006-07-01</p> <p>Snow avalanches pose a threat to settlements and infrastructure in alpine environments. Due to the catastrophic events in recent years, the public is more aware of this phenomenon. Alpine settlements have always been confronted with natural hazards, but changes in land use and in dealing with avalanche hazards lead to an altering perception of this threat. In this study, a multi-temporal risk assessment is presented for three avalanche tracks in the municipality of Galtür, Austria. Changes in avalanche risk as well as changes in the risk-influencing factors (process behaviour, values at risk (buildings) and vulnerability) between 1950 and 2000 are quantified. An additional focus is put on the interconnection between these factors and their influence on the resulting risk. The avalanche processes were calculated using different simulation models (SAMOS as well as ELBA+). For each avalanche track, different scenarios were calculated according to the development of mitigation measures. The focus of the study was on a multi-temporal risk assessment; consequently the used models could be replaced with other snow avalanche models providing the same functionalities. The monetary values of buildings were estimated using the volume of the buildings and average prices per cubic meter. The changing size of the buildings over time was inferred from construction plans. The vulnerability of the buildings is understood as a degree of loss to a given element within the area affected by natural hazards. A vulnerability function for different construction types of buildings that depends on avalanche pressure was used to assess the degree of loss. No general risk trend could be determined for the studied avalanche tracks. Due to the high complexity of the variations in risk, small changes of one of several influencing factors can cause considerable differences in the resulting risk. This multi-temporal approach leads to better understanding of the today's risk by identifying the main changes and the underlying processes. Furthermore, this knowledge can be implemented in strategies for sustainable development in Alpine settlements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCrGr.459...50Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCrGr.459...50Z"><span>Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin</p> <p>2017-02-01</p> <p>In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..106a2003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..106a2003S"><span>Intelligent seismic risk mitigation system on structure building</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suryanita, R.; Maizir, H.; Yuniorto, E.; Jingga, H.</p> <p>2018-01-01</p> <p>Indonesia located on the Pacific Ring of Fire, is one of the highest-risk seismic zone in the world. The strong ground motion might cause catastrophic collapse of the building which leads to casualties and property damages. Therefore, it is imperative to properly design the structural response of building against seismic hazard. Seismic-resistant building design process requires structural analysis to be performed to obtain the necessary building responses. However, the structural analysis could be very difficult and time consuming. This study aims to predict the structural response includes displacement, velocity, and acceleration of multi-storey building with the fixed floor plan using Artificial Neural Network (ANN) method based on the 2010 Indonesian seismic hazard map. By varying the building height, soil condition, and seismic location in 47 cities in Indonesia, 6345 data sets were obtained and fed into the ANN model for the learning process. The trained ANN can predict the displacement, velocity, and acceleration responses with up to 96% of predicted rate. The trained ANN architecture and weight factors were later used to build a simple tool in Visual Basic program which possesses the features for prediction of structural response as mentioned previously.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1179532','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1179532"><span>Energy Modeling for the Artisan Food Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Goel, Supriya</p> <p>2013-05-01</p> <p>The Artisan Food Center is a 6912 sq.ft food processing plant located in Dayton, Washington. PNNL was contacted by Strecker Engineering to assist with the building’s energy analysis as a part of the project’s U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) submittal requirements. The project is aiming for LEED Silver certification, one of the prerequisites to which is a whole building energy model to demonstrate compliance with American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) 90.1 2007 Appendix G, Performance Rating Method. The building incorporates a number of energy efficiency measures as part ofmore » its design and the energy analysis aimed at providing Strecker Engineering with the know-how of developing an energy model for the project as well as an estimate of energy savings of the proposed design over the baseline design, which could be used to document points in the LEED documentation. This report documents the ASHRAE 90.1 2007 baseline model design, the proposed model design, the modeling assumptions and procedures as well as the energy savings results in order to inform the Strecker Engineering team on a possible whole building energy model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160011504','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160011504"><span>Challenges in Laser Sintering of Melt-Processable Thermoset Imide Resin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chuang, Kathy C.; Gornet, Timothy; Koerner, Hilmar</p> <p>2016-01-01</p> <p>Polymer Laser Sintering (LS) is an additive manufacturing technique that builds 3D models layer by layer using a laser to selectively melt cross sections in powdered polymeric materials, following sequential slices of the CAD model. LS generally uses thermoplastic polymeric powders, such as polyamides (i.e. Nylon), and the resultant 3D objects are often weaker in their strength compared to traditionally processed materials, due to the lack of polymer inter-chain connection in the z-direction. The objective of this project is to investigate the possibility of printing a melt-processable RTM370 imide resin powder terminated with reactive phenylethynyl groups by LS, followed by a postcure in order to promote additional crosslinking to achieve higher temperature (250-300 C) capability. A preliminary study to build tensile specimens by LS and the corresponding DSC and rheology study of RTM370 during LS process is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr.422.1213Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr.422.1213Y"><span>Mesh-To from Segmented Mesh Elements to Bim Model with Limited Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, X.; Koehl, M.; Grussenmeyer, P.</p> <p>2018-05-01</p> <p>Building Information Modelling (BIM) technique has been widely utilized in heritage documentation and comes to a general term Historical/Heritage BIM (HBIM). The current HBIM project mostly employs the scan-to-BIM process to manually create the geometric model from the point cloud. This paper explains how it is possible to shape from the mesh geometry with reduced human involvement during the modelling process. Aiming at unbuilt heritage, two case studies are handled in this study, including a ruined Roman stone architectural and a severely damaged abbey. The pipeline consists of solid element modelling based on documentation data using Autodesk Revit, a common BIM platform, and the successive modelling from these geometric primitives using Autodesk Dynamo, a visual programming built-in plugin tool in Revit. The BIM-based reconstruction enriches the classic visual model from computer graphics approaches with measurement, semantic and additional information. Dynamo is used to develop a semi-automated function to reduce the manual process, which builds the final BIM model from segmented parametric elements directly. The level of detail (LoD) of the final models is dramatically relevant with the manual involvement in the element creation. The proposed outline also presents two potential issues in the ongoing work: combining the ontology semantics with the parametric BIM model, and introducing the proposed pipeline into the as-built HBIM process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25654723','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25654723"><span>3D modeling of building indoor spaces and closed doors from imagery and point clouds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro</p> <p>2015-02-03</p> <p>3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9815E..0YL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9815E..0YL"><span>Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun</p> <p>2015-12-01</p> <p>Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1584....9L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1584....9L"><span>An approach to developing an integrated pyroprocessing simulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol; Kim, Sung Ki; Kim, In Tae; Lee, Han Soo</p> <p>2014-02-01</p> <p>Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggested a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22266094-approach-developing-integrated-pyroprocessing-simulator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22266094-approach-developing-integrated-pyroprocessing-simulator"><span>An approach to developing an integrated pyroprocessing simulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol</p> <p></p> <p>Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggestedmore » a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1088757.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1088757.pdf"><span>Model of Values-Based Management Process in Schools: A Mixed Design Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dogan, Soner</p> <p>2016-01-01</p> <p>The aim of this paper is to evaluate the school administrators' values-based management behaviours according to the teachers' perceptions and opinions and, accordingly, to build a model of values-based management process in schools. The study was conducted using explanatory design which is inclusive of both quantitative and qualitative methods.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=transport&pg=3&id=EJ917721','ERIC'); return false;" href="https://eric.ed.gov/?q=transport&pg=3&id=EJ917721"><span>Linking Physical and Numerical Modelling in Hydrogeology Using Sand Tank Experiments and Comsol Multiphysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Singha, Kamini; Loheide, Steven P., II</p> <p>2011-01-01</p> <p>Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=technology+AND+improve+AND+science+AND+classroom+AND+instruction&pg=4&id=EJ998912','ERIC'); return false;" href="https://eric.ed.gov/?q=technology+AND+improve+AND+science+AND+classroom+AND+instruction&pg=4&id=EJ998912"><span>Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sun, Daner; Looi, Chee-Kit</p> <p>2013-01-01</p> <p>The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1253720','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1253720"><span>Occupancy schedules learning process through a data mining framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>D'Oca, Simona; Hong, Tianzhen</p> <p></p> <p>Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10more » minute interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. Furthermore, the identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1253720-occupancy-schedules-learning-process-through-data-mining-framework','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1253720-occupancy-schedules-learning-process-through-data-mining-framework"><span>Occupancy schedules learning process through a data mining framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>D'Oca, Simona; Hong, Tianzhen</p> <p>2014-12-17</p> <p>Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10more » minute interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. Furthermore, the identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP..107..502B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP..107..502B"><span>Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas</p> <p>2018-07-01</p> <p>This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........47B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........47B"><span>Building Energy Modeling and Control Methods for Optimization and Renewables Integration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burger, Eric M.</p> <p></p> <p>This dissertation presents techniques for the numerical modeling and control of building systems, with an emphasis on thermostatically controlled loads. The primary objective of this work is to address technical challenges related to the management of energy use in commercial and residential buildings. This work is motivated by the need to enhance the performance of building systems and by the potential for aggregated loads to perform load following and regulation ancillary services, thereby enabling the further adoption of intermittent renewable energy generation technologies. To increase the generalizability of the techniques, an emphasis is placed on recursive and adaptive methods which minimize the need for customization to specific buildings and applications. The techniques presented in this dissertation can be divided into two general categories: modeling and control. Modeling techniques encompass the processing of data streams from sensors and the training of numerical models. These models enable us to predict the energy use of a building and of sub-systems, such as a heating, ventilation, and air conditioning (HVAC) unit. Specifically, we first present an ensemble learning method for the short-term forecasting of total electricity demand in buildings. As the deployment of intermittent renewable energy resources continues to rise, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. Second, we present a recursive parameter estimation technique for identifying a thermostatically controlled load (TCL) model that is non-linear in the parameters. For TCLs to perform demand response services in real-time markets, online methods for parameter estimation are needed. Third, we develop a piecewise linear thermal model of a residential building and train the model using data collected from a custom-built thermostat. This model is capable of approximating unmodeled dynamics within a building by learning from sensor data. Control techniques encompass the application of optimal control theory, model predictive control, and convex distributed optimization to TCLs. First, we present the alternative control trajectory (ACT) representation, a novel method for the approximate optimization of non-convex discrete systems. This approach enables the optimal control of a population of non-convex agents using distributed convex optimization techniques. Second, we present a distributed convex optimization algorithm for the control of a TCL population. Experimental results demonstrate the application of this algorithm to the problem of renewable energy generation following. This dissertation contributes to the development of intelligent energy management systems for buildings by presenting a suite of novel and adaptable modeling and control techniques. Applications focus on optimizing the performance of building operations and on facilitating the integration of renewable energy resources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA260980','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA260980"><span>A Methodology and Software Environment for Testing Process Model’s Sequential Predictions with Protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-12-21</p> <p>in preparation). Foundations of artificial intelligence. Cambridge, MA: MIT Press. O’Reilly, R. C. (1991). X3DNet: An X- Based Neural Network ...2.2.3 Trace based protocol analysis 19 2.2A Summary of important data features 21 2.3 Tools related to process model testing 23 2.3.1 Tools for building...algorithm 57 3. Requirements for testing process models using trace based protocol 59 analysis 3.1 Definition of trace based protocol analysis (TBPA) 59</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B5..293K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B5..293K"><span>a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kıvılcım, C. Ö.; Duran, Z.</p> <p>2016-06-01</p> <p>The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1943b0061C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1943b0061C"><span>Effect of processing parameters on FDM process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chari, V. Srinivasa; Venkatesh, P. R.; Krupashankar, Dinesh, Veena</p> <p>2018-04-01</p> <p>This paper focused on the process parameters on fused deposition modeling (FDM). Infill, resolution, temperature are the process variables considered for experimental studies. Compression strength, Hardness test microstructure are the outcome parameters, this experimental study done based on the taguchi's L9 orthogonal array is used. Taguchi array used to build the 9 different models and also to get the effective output results on the under taken parameters. The material used for this experimental study is Polylactic Acid (PLA).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=changing+AND+existing+AND+beliefs&id=EJ517880','ERIC'); return false;" href="https://eric.ed.gov/?q=changing+AND+existing+AND+beliefs&id=EJ517880"><span>Conceptual Models, Choices, and Benchmarks for Building Quality Work Cultures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Acker-Hocevar, Michele</p> <p>1996-01-01</p> <p>The two models in Florida's Educational Quality Benchmark System represent a new way of thinking about developing schools' work culture. The Quality Performance System Model identifies nine dimensions of work within a quality system. The Change Process Model provides a theoretical framework for changing existing beliefs, attitudes, and behaviors…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=model+AND+business+AND+concept&pg=5&id=EJ875623','ERIC'); return false;" href="https://eric.ed.gov/?q=model+AND+business+AND+concept&pg=5&id=EJ875623"><span>Business Models for Training and Performance Improvement Departments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carliner, Saul</p> <p>2004-01-01</p> <p>Although typically applied to entire enterprises, the concept of business models applies to training and performance improvement groups. Business models are "the method by which firm[s] build and use [their] resources to offer.. value." Business models affect the types of projects, services offered, skills required, business processes, and type of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Interpersonal+AND+relationships+AND+work.&pg=7&id=EJ895816','ERIC'); return false;" href="https://eric.ed.gov/?q=Interpersonal+AND+relationships+AND+work.&pg=7&id=EJ895816"><span>Public Relationship Building in Grassroots Community Organizing: Relational Intervention for Individual and Systems Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Christens, Brian D.</p> <p>2010-01-01</p> <p>Building relationships among participants has become a strategic lynchpin of many community organizing initiatives. Although the relational work of organizing is often mentioned in studies on community change, it has not been studied as a process or model for community intervention. This article positions the development of a specific type of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=art+AND+history&pg=3&id=EJ1169854','ERIC'); return false;" href="https://eric.ed.gov/?q=art+AND+history&pg=3&id=EJ1169854"><span>Developing Secondary Students' Epistemic Agency in a Knowledge-Building Community</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lai, Kwok-Wing; Campbell, Madeline</p> <p>2018-01-01</p> <p>A key educational objective for the twenty-first century is developing students' epistemic agency. Epistemic agency is the active process of choosing when, what, where one learns and how one knows, as well as the capacity to create knowledge in a community. The knowledge-building communities model developed by Scardamalia and Bereiter was used in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED122454.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED122454.pdf"><span>Institutional Approaches to Innovation and Change (II): The Configurational Perspective on Institution Building.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bhola, H. S.</p> <p></p> <p>Institution building is considered as a process amenable to both explanation and design if a generic "grammar of artifactual action" is used. The Configurational Theory of Innovation Diffusion model (CLER) is introduced and used to demonstrate how the world of the institution builder could be ordered as part of such grammar for designing…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=broadcast+AND+journalism+AND+trends&id=EJ1031462','ERIC'); return false;" href="https://eric.ed.gov/?q=broadcast+AND+journalism+AND+trends&id=EJ1031462"><span>Assessment Update: Progress, Trends, and Practices in Higher Education. Volume 26, Issue 2, March-April 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Banta, Trudy W., Ed.</p> <p>2014-01-01</p> <p>This issue of "Assessment Update" presents the following articles: (1) Effective Leadership Assessment: A 360-Degree Process; (2) Editor's Notes: Accentuating the Positive in Our Work; (3) The Broadcast Education Association's Model Rubrics Project: Building Consensus One Rubric at a Time; (4) Building a Better…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H43Q..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H43Q..03B"><span>Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandaragoda, C.; Dumas, M.</p> <p>2014-12-01</p> <p>As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights. Our participatory modeling process aims to integrate disciplines and watershed processes over time and space, while building capacity for more holistic watershed-scale thinking, or community knowledge, by research, governmental and public interests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1968c0070D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1968c0070D"><span>Refurbishment and school buildings management in a smart building environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Giuda, Giuseppe Martino; Villa, Valentina; Tagliabue, Lavinia Chiara; Giana, Paolo Ettore; Rinaldi, Stefano; Ciribini, Angelo Luigi Camillo</p> <p>2018-05-01</p> <p>Building Information Modelling is a methodology, which is able to take into account many data, both geometrical and non-geometrical, in order to evaluate at the actual condition of the asset. The project has the scope of evaluating the conditions of different school buildings, in order to develop a way to choose the best-tailored management solution to the owner. A further step is the management and planning of design solutions during the life cycle customized on monitored buildings' conditions. The research work focuses on providing a support decisions concerning the gap between the present building state laws and the current state of the existing buildings. The process will be developed in an expanded BIM environment, using sensors, which will give back the state of the consistency of the actual conditions to enable the buildings to adapt themselves in the best way into their specific constraints and boundaries. The results of the study are (i) a complete workflow to make decision and the possibility to shape the decision process on an objective through a scientific approach, (ii) evaluate the current state of the asset and (iii) manage maintenance in the lifespan. Further development will take in consideration all the aspects related to management of big data environment generated by a smart buildings system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070017996','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070017996"><span>Build-up Approach to Updating the Mock Quiet Spike(TradeMark) Beam Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herrera, Claudia Y.; Pak, Chan-gi</p> <p>2007-01-01</p> <p>A crucial part of aircraft design is ensuring that the required margin for flutter is satisfied. A trustworthy flutter analysis, which begins by possessing an accurate dynamics model, is necessary for this task. Traditionally, a model was updated manually by fine tuning specific stiffness parameters until the analytical results matched test data. This is a time consuming iterative process. NASA Dryden Flight Research Center has developed a mode matching code to execute this process in a more efficient manner. Recently, this code was implemented in the F-15B/Quiet Spike(TradeMark) (Gulfstream Aerospace Corporation, Savannah, Georgia) model update. A build-up approach requiring several ground vibration test configurations and a series of model updates was implemented in order to determine the connection stiffness between aircraft and test article. The mode matching code successfully updated various models for the F-15B/Quiet Spike(TradeMark) project to within 1 percent error in frequency and the modal assurance criteria values ranged from 88.51-99.42 percent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070021685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070021685"><span>Build-up Approach to Updating the Mock Quiet Spike(TM)Beam Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herrera, Claudia Y.; Pak, Chan-gi</p> <p>2007-01-01</p> <p>A crucial part of aircraft design is ensuring that the required margin for flutter is satisfied. A trustworthy flutter analysis, which begins by possessing an accurate dynamics model, is necessary for this task. Traditionally, a model was updated manually by fine tuning specific stiffness parameters until the analytical results matched test data. This is a time consuming iterative process. The NASA Dryden Flight Research Center has developed a mode matching code to execute this process in a more efficient manner. Recently, this code was implemented in the F-15B/Quiet Spike (Gulfstream Aerospace Corporation, Savannah, Georgia) model update. A build-up approach requiring several ground vibration test configurations and a series of model updates was implemented to determine the connection stiffness between aircraft and test article. The mode matching code successfully updated various models for the F-15B/Quiet Spike project to within 1 percent error in frequency and the modal assurance criteria values ranged from 88.51-99.42 percent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/988999','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/988999"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aden, Nathaniel; Qin, Yining; Fridley, David</p> <p></p> <p>Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use andmore » carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RGG...104...91G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RGG...104...91G"><span>Integration of Models of Building Interiors with Cadastral Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gotlib, Dariusz; Karabin, Marcin</p> <p>2017-12-01</p> <p>Demands for applications which use models of building interiors is growing and highly diversified. Those models are applied at the stage of designing and construction of a building, in applications which support real estate management, in navigation and marketing systems and, finally, in crisis management and security systems. They are created on the basis of different data: architectural and construction plans, both, in the analogue form, as well as CAD files, BIM data files, by means of laser scanning (TLS) and conventional surveys. In this context the issue of searching solutions which would integrate the existing models and lead to elimination of data redundancy is becoming more important. The authors analysed the possible input- of cadastral data (legal extent of premises) at the stage of the creation and updating different models of building's interiors. The paper focuses on one issue - the way of describing the geometry of premises basing on the most popular source data, i.e. architectural and construction plans. However, the described rules may be considered as universal and also may be applied in practice concerned may be used during the process of creation and updating indoor models based on BIM dataset or laser scanning clouds</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/114586','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/114586"><span>Emissions model of waste treatment operations at the Idaho Chemical Processing Plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schindler, R.E.</p> <p>1995-03-01</p> <p>An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1067..491M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1067..491M"><span>Ontological Model of Business Process Management Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manoilov, G.; Deliiska, B.</p> <p>2008-10-01</p> <p>The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790010888&hterms=energy+consumption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Denergy%2Bconsumption','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790010888&hterms=energy+consumption&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Denergy%2Bconsumption"><span>The updated algorithm of the Energy Consumption Program (ECP): A computer model simulating heating and cooling energy loads in buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lansing, F. L.; Strain, D. M.; Chai, V. W.; Higgins, S.</p> <p>1979-01-01</p> <p>The energy Comsumption Computer Program was developed to simulate building heating and cooling loads and compute thermal and electric energy consumption and cost. This article reports on the new additional algorithms and modifications made in an effort to widen the areas of application. The program structure was rewritten accordingly to refine and advance the building model and to further reduce the processing time and cost. The program is noted for its very low cost and ease of use compared to other available codes. The accuracy of computations is not sacrificed however, since the results are expected to lie within + or - 10% of actual energy meter readings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=intervention+AND+system+AND+leadership+AND+improvement&pg=4&id=EJ1072539','ERIC'); return false;" href="https://eric.ed.gov/?q=intervention+AND+system+AND+leadership+AND+improvement&pg=4&id=EJ1072539"><span>School Success as a Process of Structuration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tubin, Dorit</p> <p>2015-01-01</p> <p>Purpose: The purpose of the present study is to explore the process, routines, and structuration at successful schools leading their students to high achievements. Method: The approach of building a theory from case study research together with process perspective and an organizational routines model were applied to analyzing seven successful…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=audit+AND+planning&pg=7&id=EJ657807','ERIC'); return false;" href="https://eric.ed.gov/?q=audit+AND+planning&pg=7&id=EJ657807"><span>Appreciative Inquiry as an Organizational Development Tool.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Martinetz, Charles F.</p> <p>2002-01-01</p> <p>Defines appreciative inquiry as a change model that uses traditional organizational development processes (team building, strategic planning, business process redesign, management audits) in a new way, both as a philosophy and as a process. Emphasizes collaboration, participation of all voices, and changing the organization rather than the people.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4146354','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4146354"><span>BIM Based Virtual Environment for Fire Emergency Evacuation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rezgui, Yacine; Ong, Hoang N.</p> <p>2014-01-01</p> <p>Recent building emergency management research has highlighted the need for the effective utilization of dynamically changing building information. BIM (building information modelling) can play a significant role in this process due to its comprehensive and standardized data format and integrated process. This paper introduces a BIM based virtual environment supported by virtual reality (VR) and a serious game engine to address several key issues for building emergency management, for example, timely two-way information updating and better emergency awareness training. The focus of this paper lies on how to utilize BIM as a comprehensive building information provider to work with virtual reality technologies to build an adaptable immersive serious game environment to provide real-time fire evacuation guidance. The innovation lies on the seamless integration between BIM and a serious game based virtual reality (VR) environment aiming at practical problem solving by leveraging state-of-the-art computing technologies. The system has been tested for its robustness and functionality against the development requirements, and the results showed promising potential to support more effective emergency management. PMID:25197704</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18177294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18177294"><span>Building capacity for the continuous improvement of health-promoting schools.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoyle, Tena B; Samek, Beverly B; Valois, Robert F</p> <p>2008-01-01</p> <p>There has been much educational verbosity over the past decade related to building capacity for effective schools. However, there seems to be a scarcity of clarification about what is meant by school capacity building or how to accomplish and sustain this process. This article describes the preexisting conditions and ongoing processes in Pueblo, Colorado School District 60 (Pueblo 60) that built capacity for the development and continuous improvement of health-promoting schools. Capacity building strategies and a program-planning model for continuous improvement for health-promoting schools were used that included: (a) visionary/effective leadership and management structures, (b) extensive internal and external supports, (c) development and allocation of adequate resources, (d) supportive policies and procedures, and (e) ongoing, embedded professional development. Pueblo 60 strategically developed an infrastructure through which they successfully delivered a wide array of health programs and services. Through building organizational capacity at the school district and school level, additional school health programming can be developed and sustained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..126a2026H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..126a2026H"><span>Predicted carbonation of existing concrete building based on the Indonesian tropical micro-climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hilmy, M.; Prabowo, H.</p> <p>2018-03-01</p> <p>This paper is aimed to predict the carbonation progress based on the previous mathematical model. It shortly explains the nature of carbonation including the processes and effects. Environmental humidity and temperature of the existing concrete building are measured and compared to data from local Meteorological, Climatological, and Geophysical Agency. The data gained are expressed in the form of annual hygrothermal values which will use as the input parameter in carbonation model. The physical properties of the observed building such as its location, dimensions, and structural material used are quantified. These data then utilized as an important input parameter for carbonation coefficients. The relationships between relative humidity and the rate of carbonation established. The results can provide a basis for repair and maintenance of existing concrete buildings and the sake of service life analysis of them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=service+AND+processes&pg=3&id=EJ1051282','ERIC'); return false;" href="https://eric.ed.gov/?q=service+AND+processes&pg=3&id=EJ1051282"><span>Pre-Service Teachers' Modelling Processes through Engagement with Model Eliciting Activities with a Technological Tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Daher, Wajeeh M.; Shahbari, Juhaina Awawdeh</p> <p>2015-01-01</p> <p>Engaging mathematics students with modelling activities helps them learn mathematics meaningfully. This engagement, in the case of model eliciting activities, helps the students elicit mathematical models by interpreting real-world situation in mathematical ways. This is especially true when the students utilize technology to build the models.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1260331','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1260331"><span>Leveraging OpenStudio's Application Programming Interfaces: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Long, N.; Ball, B.; Goldwasser, D.</p> <p>2013-11-01</p> <p>OpenStudio development efforts have been focused on providing Application Programming Interfaces (APIs) where users are able to extend OpenStudio without the need to compile the open source libraries. This paper will discuss the basic purposes and functionalities of the core libraries that have been wrapped with APIs including the Building Model, Results Processing, Advanced Analysis, UncertaintyQuantification, and Data Interoperability through Translators. Several building energy modeling applications have been produced using OpenStudio's API and Software Development Kits (SDK) including the United States Department of Energy's Asset ScoreCalculator, a mobile-based audit tool, an energy design assistance reporting protocol, and a portfolio scalemore » incentive optimization analysismethodology. Each of these software applications will be discussed briefly and will describe how the APIs were leveraged for various uses including high-level modeling, data transformations from detailed building audits, error checking/quality assurance of models, and use of high-performance computing for mass simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914973S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914973S"><span>Scalable geocomputation: evolving an environmental model building platform from single-core to supercomputers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek</p> <p>2017-04-01</p> <p>There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26405950','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26405950"><span>Prediction model of sinoatrial node field potential using high order partial least squares.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Yu; Cao, Hui; Zhang, Yanbin</p> <p>2015-01-01</p> <p>High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4972146','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4972146"><span>Benchmarking novel approaches for modelling species range dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.</p> <p>2016-01-01</p> <p>Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26872305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26872305"><span>Benchmarking novel approaches for modelling species range dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E</p> <p>2016-08-01</p> <p>Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP43A0945M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP43A0945M"><span>A Quasi-2D Delta-growth Model Accounting for Multiple Avulsion Events, Validated by Robust Data from the Yellow River Delta, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Carlson, B.; Parker, G.</p> <p>2016-12-01</p> <p>The autogenic "life cycle" of a lowland fluvial channel building a deltaic lobe typically follows a temporal sequence that includes: channel initiation, progradation and aggradation, and abandonment via avulsion. In terms of modeling these processes, it is possible to use a one-dimensional (1D) morphodynamic scheme to capture the magnitude of the prograding and aggrading processes. These models can include algorithms to predict the timing and location of avulsions for a channel lobe. However, this framework falls short in its ability to evaluate the deltaic system beyond the time scale of a single channel, and assess sedimentation processes occurring on the floodplain, which is important for lobe building. Herein, we adapt a 1D model to explicitly account for multiple avulsions and therefore replicate a deltaic system that includes many lobe cycles. Following an avulsion, sediment on the floodplain and beyond the radially-averaged shoreline is redistributed across the delta topset and along the shoreline, respectively, simultaneously prograding and aggrading the delta. Over time this framework produces net shoreline progradation and forward-stepping of subsequent avulsions. Testing this model using modern systems is inherently difficult due to a lack of data: most modern delta lobes are active for timescales of centuries to millennia, and so observing multiple iterations of the channel-lobe cycle is impossible. However, the Yellow River delta (China) is unique because the lobe cycles here occur within years to decades. Therefore it is possible to measure shoreline evolution through multiple lobe cycles, based on satellite imagery and historical records. These data are used to validate the model outcomes. Our findings confirm that the explicit accounting of avulsion processes in a quasi-2D model framework is capable of capturing shoreline development patterns that otherwise are not resolvable based on previously published delta building models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21482430','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21482430"><span>A model to predict radon exhalation from walls to indoor air based on the exhalation from building material samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sahoo, B K; Sapra, B K; Gaware, J J; Kanse, S D; Mayya, Y S</p> <p>2011-06-01</p> <p>In recognition of the fact that building materials are an important source of indoor radon, second only to soil, surface radon exhalation fluxes have been extensively measured from the samples of these materials. Based on this flux data, several researchers have attempted to predict the inhalation dose attributable to radon emitted from walls and ceilings made up of these materials. However, an important aspect not considered in this methodology is the enhancement of the radon flux from the wall or the ceiling constructed using the same building material. This enhancement occurs mainly because of the change in the radon diffusion process from the former to the latter configuration. To predict the true radon flux from the wall based on the flux data of building material samples, we now propose a semi-empirical model involving radon diffusion length and the physical dimensions of the samples as well as wall thickness as other input parameters. This model has been established by statistically fitting the ratio of the solution to radon diffusion equations for the cases of three-dimensional cuboidal shaped building materials (such as brick, concrete block) and one dimensional wall system to a simple mathematical function. The model predictions have been validated against the measurements made at a new construction site. This model provides an alternative tool (substitute to conventional 1-D model) to estimate radon flux from a wall without relying on ²²⁶Ra content, radon emanation factor and bulk density of the samples. Moreover, it may be very useful in the context of developing building codes for radon regulation in new buildings. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrICA...1...54H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrICA...1...54H"><span>Crowd-sourced data collection to support automatic classification of building footprint data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hecht, Robert; Kalla, Matthias; Krüger, Tobias</p> <p>2018-05-01</p> <p>Human settlements are mainly formed by buildings with their different characteristics and usage. Despite the importance of buildings for the economy and society, complete regional or even national figures of the entire building stock and its spatial distribution are still hardly available. Available digital topographic data sets created by National Mapping Agencies or mapped voluntarily through a crowd via Volunteered Geographic Information (VGI) platforms (e.g. OpenStreetMap) contain building footprint information but often lack additional information on building type, usage, age or number of floors. For this reason, predictive modeling is becoming increasingly important in this context. The capabilities of machine learning allow for the prediction of building types and other building characteristics and thus, the efficient classification and description of the entire building stock of cities and regions. However, such data-driven approaches always require a sufficient amount of ground truth (reference) information for training and validation. The collection of reference data is usually cost-intensive and time-consuming. Experiences from other disciplines have shown that crowdsourcing offers the possibility to support the process of obtaining ground truth data. Therefore, this paper presents the results of an experimental study aiming at assessing the accuracy of non-expert annotations on street view images collected from an internet crowd. The findings provide the basis for a future integration of a crowdsourcing component into the process of land use mapping, particularly the automatic building classification.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=consolidation+AND+theories&pg=3&id=EJ823853','ERIC'); return false;" href="https://eric.ed.gov/?q=consolidation+AND+theories&pg=3&id=EJ823853"><span>A Model of Small Group Facilitator Competencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kolb, Judith A.; Jin, Sungmi; Song, Ji Hoon</p> <p>2008-01-01</p> <p>This study used small group theory, quantitative and qualitative data collected from experienced practicing facilitators at three points of time, and a building block process of collection, analysis, further collection, and consolidation to develop a model of small group facilitator competencies. The proposed model has five components:…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1868g0004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1868g0004H"><span>Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran</p> <p>2017-08-01</p> <p>Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7<x≤ 10 score, Medium Mental Modelling Ability (M-MMA) for 3< x ≤ 7 score, and Low Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25697902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25697902"><span>Empowering marginalized communities in water resources management: addressing inequitable practices in Participatory Model Building.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Butler, Cameron; Adamowski, Jan</p> <p>2015-04-15</p> <p>Within the field of water resource management, Group Model Building (GMB) is a growing method used to engage stakeholders in the development of models that describe environmental and socioeconomic systems to create and test policy alternatives. While there is significant focus on improving stakeholder engagement, there is a lack of studies specifically looking at the experiences of marginalized communities and the barriers that prevent their fuller participation in the decision-making process. This paper explores the common issues and presents recommended improved practices, based on anti-oppression, related to the stages of problem framing, stakeholder identification and selection, workshop preparation, and workshop facilitation. For problem defining and stakeholder selection, the major recommendations are to engage diverse stakeholder communities from the earliest stages and give them control over framing the project scope. With regards to planning the model building workshops, it is recommended that the facilitation team work closely with marginalized stakeholders to highlight and address barriers that would prevent their inclusion. With the actual facilitation of the workshops, it is best to employ activities that allow stakeholders to provide knowledge and input in mediums that are most comfortable to them; additionally, the facilitation team needs to be able to challenge problematic interpersonal interactions as they manifest within conversations. This article focuses on building comfortability with political language so that the systemic oppression in which existing participatory processes occur can be understood, thus allowing GMB practitioners to engage in social justice efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23446631','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23446631"><span>Selective classification and quantification model of C&D waste from material resources consumed in residential building construction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mercader-Moyano, Pilar; Ramírez-de-Arellano-Agudo, Antonio</p> <p>2013-05-01</p> <p>The unfortunate economic situation involving Spain and the European Union is, among other factors, the result of intensive construction activity over recent years. The excessive consumption of natural resources, together with the impact caused by the uncontrolled dumping of untreated C&D waste in illegal landfills have caused environmental pollution and a deterioration of the landscape. The objective of this research was to generate a selective classification and quantification model of C&D waste based on the material resources consumed in the construction of residential buildings, either new or renovated, namely the Conventional Constructive Model (CCM). A practical example carried out on ten residential buildings in Seville, Spain, enabled the identification and quantification of the C&D waste generated in their construction and the origin of the waste, in terms of the building material from which it originated and its impact for every m(2) constructed. This model enables other researchers to establish comparisons between the various improvements proposed for the minimization of the environmental impact produced by building a CCM, new corrective measures to be proposed in future policies that regulate the production and management of C&D waste generated in construction from the design stage to the completion of the construction process, and the establishment of sustainable management for C&D waste and for the selection of materials for the construction on projected or renovated buildings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...99a2012P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...99a2012P"><span>Algae façade as green building method: application of algae as a method to meet the green building regulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poerbo, Heru W.; Martokusumo, Widjaja; Donny Koerniawan, M.; Aulia Ardiani, Nissa; Krisanti, Susan</p> <p>2017-12-01</p> <p>The Local Government of Bandung city has stipulated a Green Building regulation through the Peraturan Walikota Number 1023/2016. Signed by the mayor in October 2016, Bandung became the first city in Indonesia that put green building as mandatory requirement in the building permit (IMB) process. Green Building regulation is intended to have more efficient consumption of energy and water, improved indoor air quality, management of liquid and solid waste etc. This objective is attained through various design method in building envelope, ventilation and air conditioning system, lighting, indoor transportation system, and electrical system. To minimize energy consumption of buildings that have large openings, sun shading device is often utilized together with low-E glass panes. For buildings in hot humid tropical climate, this method reduces indoor air temperature and thus requires less energy for air conditioning. Indoor air quality is often done by monitoring the carbon dioxide levels. Application of algae as part of building system façade has recently been introduced as replacement of large glass surface in the building façade. Algae are not yet included in the green building regulation because it is relatively new. The research will investigate, with the help of the modelling process and extensive literature, how effective is the implementation of algae in building façade to reduce energy consumption and improve its indoor air quality. This paper is written based on the design of ITB Innovation Park as an ongoing architectural design-based research how the algae-integrated building façade affects the energy consumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA31A2153C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA31A2153C"><span>Building Capacity to Use Earth Observations in Decision Making: A Case Study of NASA's DEVELOP National Program Methods and Best Practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Miller, T. N.; Favors, J. E.; Rogers, L.; Allsbrook, K. N.; Bender, M. R.; Ruiz, M. L.</p> <p>2015-12-01</p> <p>NASA's DEVELOP National Program fosters an immersive research environment for dual capacity building. Through rapid feasibility Earth science projects, the future workforce and current decision makers are engaged in research projects to build skills and capabilities to use Earth observation in environmental management and policy making. DEVELOP conducts over 80 projects annually, successfully building skills through partnerships with over 150 organizations and providing over 350 opportunities for project participants each year. Filling a void between short-term training courses and long-term research projects, the DEVELOP model has been successful in supporting state, local, federal and international government organizations to adopt methodologies and enhance decision making processes. This presentation will highlight programmatic best practices, feedback from participants and partner organizations, and three sample case studies of successful adoption of methods in the decision making process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017LatJP..54b..24K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017LatJP..54b..24K"><span>Environmental and Energy Aspects of Construction Industry and Green Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kauskale, L.; Geipele, I.; Zeltins, N.; Lecis, I.</p> <p>2017-04-01</p> <p>Green building is an important component of sustainable real estate market development, and one of the reasons is that the construction industry consumes a high amount of resources. Energy consumption of construction industry results in greenhouse gas emissions, so green buildings, energy systems, building technologies and other aspects play an important role in sustainable development of real estate market, construction and environmental development. The aim of the research is to analyse environmental aspects of sustainable real estate market development, focusing on importance of green buildings at the industry level and related energy aspects. Literature review, historical, statistical data analysis and logical access methods have been used in the research. The conducted research resulted in high environmental rationale and importance of environment-friendly buildings, and there are many green building benefits during the building life cycle. Future research direction is environmental information process and its models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED499696.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED499696.pdf"><span>Moon Munchies: Human Exploration Project Engineering Design Challenge--A Standards-Based Elementary School Model Unit Guide--Design, Build, and Evaluate (Lessons 1-6). Engineering By Design: Advancing Technological Literacy--A Standards-Based Program Series. EP-2007-08-92-MSFC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Weaver, Kim M.</p> <p>2005-01-01</p> <p>In this unit, elementary students design and build a lunar plant growth chamber using the Engineering Design Process. The purpose of the unit is to help students understand and apply the design process as it relates to plant growth on the moon. This guide includes six lessons, which meet a number of national standards and benchmarks in…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1362208','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1362208"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush</p> <p></p> <p>Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=BIM&pg=2&id=ED564889','ERIC'); return false;" href="https://eric.ed.gov/?q=BIM&pg=2&id=ED564889"><span>Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chen, Yixing</p> <p>2013-01-01</p> <p>The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=respiration&pg=2&id=EJ766566','ERIC'); return false;" href="https://eric.ed.gov/?q=respiration&pg=2&id=EJ766566"><span>Building Leaves and an Understanding of Photosynthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Littlejohn, Patty</p> <p>2007-01-01</p> <p>Where does cellular respiration take place? How does a plant make food and in turn use the food to produce its own energy? Do animals carry on this process also? To help students answer these and other questions, have them build a model leaf, plant cell, and animal cell. This hands-on project allows students to see and manipulate the reactants and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Building+AND+Information+AND+Modeling&pg=3&id=ED526838','ERIC'); return false;" href="https://eric.ed.gov/?q=Building+AND+Information+AND+Modeling&pg=3&id=ED526838"><span>Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Soares, Andrey</p> <p>2009-01-01</p> <p>This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr49B3..173B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr49B3..173B"><span>Automatic 3D Extraction of Buildings, Vegetation and Roads from LIDAR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bellakaout, A.; Cherkaoui, M.; Ettarid, M.; Touzani, A.</p> <p>2016-06-01</p> <p>Aerial topographic surveys using Light Detection and Ranging (LiDAR) technology collect dense and accurate information from the surface or terrain; it is becoming one of the important tools in the geosciences for studying objects and earth surface. Classification of Lidar data for extracting ground, vegetation, and buildings is a very important step needed in numerous applications such as 3D city modelling, extraction of different derived data for geographical information systems (GIS), mapping, navigation, etc... Regardless of what the scan data will be used for, an automatic process is greatly required to handle the large amount of data collected because the manual process is time consuming and very expensive. This paper is presenting an approach for automatic classification of aerial Lidar data into five groups of items: buildings, trees, roads, linear object and soil using single return Lidar and processing the point cloud without generating DEM. Topological relationship and height variation analysis is adopted to segment, preliminary, the entire point cloud preliminarily into upper and lower contours, uniform and non-uniform surface, non-uniform surfaces, linear objects, and others. This primary classification is used on the one hand to know the upper and lower part of each building in an urban scene, needed to model buildings façades; and on the other hand to extract point cloud of uniform surfaces which contain roofs, roads and ground used in the second phase of classification. A second algorithm is developed to segment the uniform surface into buildings roofs, roads and ground, the second phase of classification based on the topological relationship and height variation analysis, The proposed approach has been tested using two areas : the first is a housing complex and the second is a primary school. The proposed approach led to successful classification results of buildings, vegetation and road classes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPJCE...8...25J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPJCE...8...25J"><span>Implementation of MCA Method for Identification of Factors for Conceptual Cost Estimation of Residential Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juszczyk, Michał; Leśniak, Agnieszka; Zima, Krzysztof</p> <p>2013-06-01</p> <p>Conceptual cost estimation is important for construction projects. Either underestimation or overestimation of building raising cost may lead to failure of a project. In the paper authors present application of a multicriteria comparative analysis (MCA) in order to select factors influencing residential building raising cost. The aim of the analysis is to indicate key factors useful in conceptual cost estimation in the early design stage. Key factors are being investigated on basis of the elementary information about the function, form and structure of the building, and primary assumptions of technological and organizational solutions applied in construction process. The mentioned factors are considered as variables of the model which aim is to make possible conceptual cost estimation fast and with satisfying accuracy. The whole analysis included three steps: preliminary research, choice of a set of potential variables and reduction of this set to select the final set of variables. Multicriteria comparative analysis is applied in problem solution. Performed analysis allowed to select group of factors, defined well enough at the conceptual stage of the design process, to be used as a describing variables of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10585E..1TW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10585E..1TW"><span>Outlier detection in contamination control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weintraub, Jeffrey; Warrick, Scott</p> <p>2018-03-01</p> <p>A machine-learning model is presented that effectively partitions historical process data into outlier and inlier subpopulations. This is necessary in order to avoid using outlier data to build a model for detecting process instability. Exact control limits are given without recourse to approximations and the error characteristics of the control model are derived. A worked example for contamination control is presented along with the machine learning algorithm used and all the programming statements needed for implementation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24833291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24833291"><span>A model for mentoring newly-appointed nurse educators in nursing education institutions in South Africa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seekoe, Eunice</p> <p>2014-04-24</p> <p>South Africa transformed higher education through the enactment of the Higher Education Act (No. 101 of 1997). The researcher identified the need to develop a model for the mentoring of newly-appointed nurse educators in nursing education institutions in South Africa.  To develop and describe the model for mentoring newly-appointed nurse educators in nursing education institutions in South Africa.  A qualitative and theory-generating design was used (following empirical findings regarding needs analysis) in order to develop the model. The conceptualisation of the framework focused on the context, content, process and the theoretical domains that influenced the model. Ideas from different theories were borrowed from and integrated with the literature and deductive and inductive strategies were applied.  The structure of the model is multidimensional and complex in nature (macro, mesoand micro) based on the philosophy of reflective practice, competency-based practice andcritical learning theories. The assumptions are in relation to stakeholders, context, mentoring, outcome, process and dynamic. The stakeholders are the mentor and mentee within an interactive participatory relationship. The mentoring takes place within the process with a sequence of activities such as relationship building, development, engagement, reflective process and assessment. Capacity building and empowerment are outcomes of mentoring driven by motivation.  The implication for nurse managers is that the model can be used to develop mentoring programmes for newly-appointed nurse educators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.489a2096P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.489a2096P"><span>Organism-level models: When mechanisms and statistics fail us</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, M. H.; Meyer, J.; Smith, W. P.; Rockhill, J. K.</p> <p>2014-03-01</p> <p>Purpose: To describe the unique characteristics of models that represent the entire course of radiation therapy at the organism level and to highlight the uses to which such models can be put. Methods: At the level of an organism, traditional model-building runs into severe difficulties. We do not have sufficient knowledge to devise a complete biochemistry-based model. Statistical model-building fails due to the vast number of variables and the inability to control many of them in any meaningful way. Finally, building surrogate models, such as animal-based models, can result in excluding some of the most critical variables. Bayesian probabilistic models (Bayesian networks) provide a useful alternative that have the advantages of being mathematically rigorous, incorporating the knowledge that we do have, and being practical. Results: Bayesian networks representing radiation therapy pathways for prostate cancer and head & neck cancer were used to highlight the important aspects of such models and some techniques of model-building. A more specific model representing the treatment of occult lymph nodes in head & neck cancer were provided as an example of how such a model can inform clinical decisions. A model of the possible role of PET imaging in brain cancer was used to illustrate the means by which clinical trials can be modelled in order to come up with a trial design that will have meaningful outcomes. Conclusions: Probabilistic models are currently the most useful approach to representing the entire therapy outcome process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARM43006S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARM43006S"><span>Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman</p> <p>2015-03-01</p> <p>Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=equations+AND+differential&pg=7&id=EJ906195','ERIC'); return false;" href="https://eric.ed.gov/?q=equations+AND+differential&pg=7&id=EJ906195"><span>Modelling the Spread of an Oil-Slick with Irregular Information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Winkel, Brian</p> <p>2010-01-01</p> <p>We describe a modelling activity for students in a course in which modelling with differential equations is appropriate. We have used this model in our coursework for years and have found that it enlightens students as to the model building process and parameter estimation for a linear, first-order, ordinary differential equation. The activity…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10599E..0GH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10599E..0GH"><span>Combining the 3D model generated from point clouds and thermography to identify the defects presented on the facades of a building</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang</p> <p>2018-03-01</p> <p>Defects presented on the facades of a building do have profound impacts on extending the life cycle of the building. How to identify the defects is a crucial issue; destructive and non-destructive methods are usually employed to identify the defects presented on a building. Destructive methods always cause the permanent damages for the examined objects; on the other hand, non-destructive testing (NDT) methods have been widely applied to detect those defects presented on exterior layers of a building. However, NDT methods cannot provide efficient and reliable information for identifying the defects because of the huge examination areas. Infrared thermography is often applied to quantitative energy performance measurements for building envelopes. Defects on the exterior layer of buildings may be caused by several factors: ventilation losses, conduction losses, thermal bridging, defective services, moisture condensation, moisture ingress, and structure defects. Analyzing the collected thermal images can be quite difficult when the spatial variations of surface temperature are small. In this paper the authors employ image segmentation to cluster those pixels with similar surface temperatures such that the processed thermal images can be composed of limited groups. The surface temperature distribution in each segmented group is homogenous. In doing so, the regional boundaries of the segmented regions can be identified and extracted. A terrestrial laser scanner (TLS) is widely used to collect the point clouds of a building, and those point clouds are applied to reconstruct the 3D model of the building. A mapping model is constructed such that the segmented thermal images can be projected onto the 2D image of the specified 3D building. In this paper, the administrative building in Chaoyang University campus is used as an example. The experimental results not only provide the defect information but also offer their corresponding spatial locations in the 3D model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ArFKT..22..159H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ArFKT..22..159H"><span>Pedestrian mobile mapping system for indoor environments based on MEMS IMU and range camera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haala, N.; Fritsch, D.; Peter, M.; Khosravani, A. M.</p> <p>2011-12-01</p> <p>This paper describes an approach for the modeling of building interiors based on a mobile device, which integrates modules for pedestrian navigation and low-cost 3D data collection. Personal navigation is realized by a foot mounted low cost MEMS IMU, while 3D data capture for subsequent indoor modeling uses a low cost range camera, which was originally developed for gaming applications. Both steps, navigation and modeling, are supported by additional information as provided from the automatic interpretation of evacuation plans. Such emergency plans are compulsory for public buildings in a number of countries. They consist of an approximate floor plan, the current position and escape routes. Additionally, semantic information like stairs, elevators or the floor number is available. After the user has captured an image of such a floor plan, this information is made explicit again by an automatic raster-to-vector-conversion. The resulting coarse indoor model then provides constraints at stairs or building walls, which restrict the potential movement of the user. This information is then used to support pedestrian navigation by eliminating drift effects of the used low-cost sensor system. The approximate indoor building model additionally provides a priori information during subsequent indoor modeling. Within this process, the low cost range camera Kinect is used for the collection of multiple 3D point clouds, which are aligned by a suitable matching step and then further analyzed to refine the coarse building model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56077&Lab=NERL&keyword=Currently+AND+Available+AND+Methods+AND+Characterization&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56077&Lab=NERL&keyword=Currently+AND+Available+AND+Methods+AND+Characterization&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SCIENCE VERSION OF PM CHEMISTRY MODEL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>PM chemistry models containing detailed treatments of key chemical processes controlling ambient concentrations of inorganic and organic compounds in PM2.5 are needed to develop strategies for reducing PM2.5 concentrations. This task, that builds on previous research conducted i...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=women%27+AND+rights&pg=7&id=EJ892473','ERIC'); return false;" href="https://eric.ed.gov/?q=women%27+AND+rights&pg=7&id=EJ892473"><span>Emotional Valence and Arousal Effects on Memory and Hemispheric Asymmetries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mneimne, Malek; Powers, Alice S.; Walton, Kate E.; Kosson, David S.; Fonda, Samantha; Simonetti, Jessica</p> <p>2010-01-01</p> <p>This study examined predictions based upon the right hemisphere (RH) model, the valence-arousal model, and a recently proposed integrated model (Killgore & Yurgelun-Todd, 2007) of emotion processing by testing immediate recall and recognition memory for positive, negative, and neutral verbal stimuli among 35 right-handed women. Building upon…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED175436.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED175436.pdf"><span>Modeling User Behavior in Computer Learning Tasks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mantei, Marilyn M.</p> <p></p> <p>Model building techniques from Artifical Intelligence and Information-Processing Psychology are applied to human-computer interface tasks to evaluate existing interfaces and suggest new and better ones. The model is in the form of an augmented transition network (ATN) grammar which is built by applying grammar induction heuristics on a sequential…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=team+AND+building&pg=7&id=EJ921571','ERIC'); return false;" href="https://eric.ed.gov/?q=team+AND+building&pg=7&id=EJ921571"><span>Team Learning: Building Shared Mental Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Van den Bossche, Piet; Gijselaers, Wim; Segers, Mien; Woltjer, Geert; Kirschner, Paul</p> <p>2011-01-01</p> <p>To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning behaviors and team effectiveness. Analyses were…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=autonomous+AND+driving&id=EJ1099338','ERIC'); return false;" href="https://eric.ed.gov/?q=autonomous+AND+driving&id=EJ1099338"><span>Modeling the Distinct Phases of Skill Acquisition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tenison, Caitlin; Anderson, John R.</p> <p>2016-01-01</p> <p>A focus of early mathematics education is to build fluency through practice. Several models of skill acquisition have sought to explain the increase in fluency because of practice by modeling both the learning mechanisms driving this speedup and the changes in cognitive processes involved in executing the skill (such as transitioning from…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/12703','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/12703"><span>Participatory modeling of recreation and tourism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Lisa C. Chase; Roelof M.J. Boumans; Stephanie Morse</p> <p>2007-01-01</p> <p>Communities involved in recreation and tourism planning need to understand the broad range of benefits and challenges--economic, social, and ecological--in order to make informed decisions. Participatory computer modeling is a methodology that involves a community in the process of collectively building a model about a particular situation that affects participants...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108d2024W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108d2024W"><span>Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yao</p> <p>2018-01-01</p> <p>The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3301022B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3301022B"><span>The Design of Akhmat Tower</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beardsley, Sara; Stochetti, Alejandro; Cerone, Marc</p> <p>2018-03-01</p> <p>Akhmat Tower is a 435m supertall building designed by Adrian Smith + Gordon Gill Architecture. It is currently under construction in the city of Grozny, in the Chechen Republic, in the North Caucasus region of Russia. The design of the tower was done during a collaborative process by a multi-disciplinary architectural and engineering team, based primarily in the United States and Russia. During this process, the designers considered many factors including, most primarily, the cultural and historical context, the structural requirements given the high seismicity of the region, and the client's programmatic needs. The resulting crystalline-shaped tower is both an aesthetic statement and a performative architectural solution which will be a new landmark for Chechnya. "The Design of Akhmat Tower" describes in detail the design process including structural considerations, exterior wall design, building program, interior design, the tuned mass damper, and the use of building information modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......148W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......148W"><span>The impact of solar radiation on the heating and cooling of buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Witmer, Lucas</p> <p></p> <p>This work focuses on the impact of solar energy on the heating and cooling of buildings. The sun can be the primary driver for building cooling loads as well as a significant source of heat in the winter. Methods are presented for the calculation of solar energy incident on tilted surfaces and the irradiance data source options. A key deficiency in current building energy modeling softwares is reviewed with a demonstration of the impact of calculating for shade on opaque surfaces. Several tools include methods for calculating shade incident on windows, while none do so automatically for opaque surfaces. The resulting calculations for fully irradiated wall surfaces underestimate building energy consumption in the winter and overestimate in the summer by significant margins. A method has been developed for processing and filtering solar irradiance data based on local shading. This method is used to compare situations where a model predictive control system can make poor decisions for building comfort control. An MPC system informed by poor quality solar data will negatively impact comfort in perimeter building zones during the cooling season. The direct component of irradiance is necessary for the calculation of irradiance on a tilted surface. Using graphical analysis and conditional probability distributions, this work demonstrates a proof of concept for estimating direct normal irradiance from a multi-pyranometer array by leveraging inter-surface relationships without directly inverting a sky model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP33A0877K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP33A0877K"><span>Three Dimensional Morphodynamic and Vegetation Modeling of Wax Lake Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khadka, A. K.; Meselhe, E. A.; Sadid, K. M.</p> <p>2013-12-01</p> <p>The Wax Lake Delta (WLD) is located at the downstream end of the Wax Lake outlet, approximately 13 miles upstream from Morgan City, Louisiana. In 1942 the United States Army Corps of Engineer (USACE) dredged Wax Lake Outlet channel from lower Atchafalaya River to reduce flood stages at Morgan City. The channel diverts 50% of Atchafalaya River water and sediment to WLD. Since 1942, the WLD has been building seaward due to the deposition of sediment at the channel mouth. Growth of this delta supports the concept of land building via river diversions. A process based morphodynamic model (Delft3D) with the ability to predict evolution of river-dominated deltas is used in this study to further our understanding of land-building and delta growth processes. Initial model bathymetry is prepared based on USACE hydrographic survey of 1998 along with LIDAR survey data for over bank areas. Two continuous gauges at Wax Lake outlet near Calumet and Atchafalaya Bay near Eugene Island are used to assign upstream inflow and outflow boundary conditions, respectively. The model is calibrated and validated for Hydrodynamics and Sediment transport through two sets of field observations for flooded and average conditions. Vertical velocity and suspended sediment profiles made in the channels of the WLD in 2000 and 2001 are used for the model calibration and validation. More comprehensive field observations are being gathered as part of an ongoing study funded by the National Science Foundation (FESD-Delta Dynamics Collaboratory). Data include mutli-beam bathymetric data, velocities, sediment, and nutrient concentrations in the channels as well as on top of the islands. The Delft3D morphodynamic model for WLD provides quantitative information regarding water and sediment distribution among the inter-connected channel bifurcations, the exchange of sediment and nutrients between the channels and islands. The model is being used to investigate the rate of land building and delta growth from the early 1970s to present. The model provides great insights on fluvial-marine sediment dispersal and retention within the delta which will enhance the planning and design of future land building projects of comparable design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/938422','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/938422"><span>IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bazjanac, Vladimir</p> <p>2008-07-01</p> <p>Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part ofmore » the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMED51A0806R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMED51A0806R"><span>CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, B. E. J.</p> <p>2015-12-01</p> <p>Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003909','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003909"><span>Challenges in Laser Sintering of Thermoset Imide Resin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chuang, Kathy C.; Gornet, Timothy; Koerner, Hilmar</p> <p>2016-01-01</p> <p>Polymer Laser Sintering (LS) is an additive manufacturing technique that builds 3D models layer by layer using a laser to selectively melt cross sections in powdered polymeric materials, following sequential slices of the CAD model. LS generally uses thermoplastic polymeric powders, such as polyamides (i.e. Nylon), and the resultant 3D objects are often weaker in their strength compared to traditionally processed materials, due to the lack of polymer inter-chain connection in the z-direction. The objective of this project is to investigate the possibility of printing a melt-processable RTM370 imide resin powder terminated with reactive phenylethynyl groups by LS, followed by a postcure in order to promote additional crosslinking to achieve higher temperature (250-300 C) capability. A preliminary study to build tensile specimens by LS and the corresponding DSC and rheology study of RTM370 during LS process is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1233..572R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1233..572R"><span>Implementation of Building Information Modeling (BIM) in Construction: A Comparative Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowlinson, Steve; Collins, Ronan; Tuuli, Martin M.; Jia, Yunyan</p> <p>2010-05-01</p> <p>Building Information Modeling (BIM) approach is increasingly adopted in coordination of construction projects, with a number of parties providing BIM services and software solutions. However, the empirical impact of BIM on construction industry has yet to be investigated. This paper explores the interaction between BIM and the construction industry during its implementation, with a specific focus on the empirical impacts of BIM on the design and construction processes and professional roles during the process. Two cases were selected from recent construction projects coordinated with BIM systems: the Venetian Casino project in Macau and the Cathy Pacific Cargo Terminal project in Hong Kong. The former case illustrates how the conflicts emerged during the design process and procurement were addressed by adopting a BIM approach. The latter demonstrates how the adoption of BIM altered the roles of architect, contractor, and sub-contractors involved in the project. The impacts of BIM were critically reviewed and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1892m0001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1892m0001A"><span>Automating an integrated spatial data-mining model for landfill site selection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul</p> <p>2017-10-01</p> <p>An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.995a2112C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.995a2112C"><span>Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.</p> <p>2018-04-01</p> <p>Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAn.II4a...7E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAn.II4a...7E"><span>Automatic Reconstruction of 3D Building Models from Terrestrial Laser Scanner Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>El Meouche, R.; Rezoug, M.; Hijazi, I.; Maes, D.</p> <p>2013-11-01</p> <p>With modern 3D laser scanners we can acquire a large amount of 3D data in only a few minutes. This technology results in a growing number of applications ranging from the digitalization of historical artifacts to facial authentication. The modeling process demands a lot of time and work (Tim Volodine, 2007). In comparison with the other two stages, the acquisition and the registration, the degree of automation of the modeling stage is almost zero. In this paper, we propose a new surface reconstruction technique for buildings to process the data obtained by a 3D laser scanner. These data are called a point cloud which is a collection of points sampled from the surface of a 3D object. Such a point cloud can consist of millions of points. In order to work more efficiently, we worked with simplified models which contain less points and so less details than a point cloud obtained in situ. The goal of this study was to facilitate the modeling process of a building starting from 3D laser scanner data. In order to do this, we wrote two scripts for Rhinoceros 5.0 based on intelligent algorithms. The first script finds the exterior outline of a building. With a minimum of human interaction, there is a thin box drawn around the surface of a wall. This box is able to rotate 360° around an axis in a corner of the wall in search for the points of other walls. In this way we can eliminate noise points. These are unwanted or irrelevant points. If there is an angled roof, the box can also turn around the edge of the wall and the roof. With the different positions of the box we can calculate the exterior outline. The second script draws the interior outline in a surface of a building. By interior outline we mean the outline of the openings like windows or doors. This script is based on the distances between the points and vector characteristics. Two consecutive points with a relative big distance will form the outline of an opening. Once those points are found, the interior outline can be drawn. The designed scripts are able to ensure for simple point clouds: the elimination of almost all noise points and the reconstruction of a CAD model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090022248','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090022248"><span>Launch and Landing Effects Ground Operations (LLEGO) Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2008-01-01</p> <p>LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17282319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17282319"><span>Building Interactive Simulations in Web Pages without Programming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mailen Kootsey, J; McAuley, Grant; Bernal, Julie</p> <p>2005-01-01</p> <p>A software system is described for building interactive simulations and other numerical calculations in Web pages. The system is based on a new Java-based software architecture named NumberLinX (NLX) that isolates each function required to build the simulation so that a library of reusable objects could be assembled. The NLX objects are integrated into a commercial Web design program for coding-free page construction. The model description is entered through a wizard-like utility program that also functions as a model editor. The complete system permits very rapid construction of interactive simulations without coding. A wide range of applications are possible with the system beyond interactive calculations, including remote data collection and processing and collaboration over a network.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6357E..4UX','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6357E..4UX"><span>Intelligent classifier for dynamic fault patterns based on hidden Markov model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Bo; Feng, Yuguang; Yu, Jinsong</p> <p>2006-11-01</p> <p>It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAn.II2a.261S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAn.II2a.261S"><span>Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharkawi, K.-H.; Abdul-Rahman, A.</p> <p>2013-09-01</p> <p>Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0 to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=building+AND+maintaining+AND+relationship&pg=7&id=EJ301080','ERIC'); return false;" href="https://eric.ed.gov/?q=building+AND+maintaining+AND+relationship&pg=7&id=EJ301080"><span>A School-Based Mental Health Consultation Curriculum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sandoval, Jonathan; Davis, John M.</p> <p>1984-01-01</p> <p>Presents one position on consultation that integrates a theoretical model, a process model, and a curriculum for training school-based mental health consultants. Elements of the proposed curriculum include: ethics, relationship building, maintaining rapport, defining problems, gathering data, sharing information, generating and supporting…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.3072...37G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.3072...37G"><span>Object-oriented software design in semiautomatic building extraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guelch, Eberhard; Mueller, Hardo</p> <p>1997-08-01</p> <p>Developing a system for semiautomatic building acquisition is a complex process, that requires constant integration and updating of software modules and user interfaces. To facilitate these processes we apply an object-oriented design not only for the data but also for the software involved. We use the unified modeling language (UML) to describe the object-oriented modeling of the system in different levels of detail. We can distinguish between use cases from the users point of view, that represent a sequence of actions, yielding in an observable result and the use cases for the programmers, who can use the system as a class library to integrate the acquisition modules in their own software. The structure of the system is based on the model-view-controller (MVC) design pattern. An example from the integration of automated texture extraction for the visualization of results demonstrate the feasibility of this approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26644290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26644290"><span>Building political will for HIV response: an operational model and strategy options.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brinkerhoff, Derick W</p> <p>2016-10-01</p> <p>As global programs for HIV response look to transfer responsibility and financing increasingly to country governments, the political will to take on these responsibilities becomes increasingly prominent. However, defining and assessing political will are problematic; it involves intent and motivation, and thus is inherently difficult to observe. It is intimately connected to capacity and is contextually embedded. This article describes an operational model of political will comprised of seven components that are observable and measurable. Two case studies illustrate the application of the model and shed light on the interconnections among commitment, capacity and context: South Africa and China. Strategy options to build political will for HIV response identify possible actions for both government and civil society. Political will as a concept is most usefully viewed as integrated within larger political and bureaucratic processes, as a product of the complex array of incentives and disincentives that those processes create. However, this conclusion is not a recipe for discouragement or inaction. Agent-based conceptualizations of policy change offer a solid grounding for building political will that supports HIV policy and programs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=dynamical+AND+system&pg=3&id=EJ992908','ERIC'); return false;" href="https://eric.ed.gov/?q=dynamical+AND+system&pg=3&id=EJ992908"><span>Dynamical Analysis in the Mathematical Modelling of Human Blood Glucose</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bae, Saebyok; Kang, Byungmin</p> <p>2012-01-01</p> <p>We want to apply the geometrical method to a dynamical system of human blood glucose. Due to the educational importance of model building, we show a relatively general modelling process using observational facts. Next, two models of some concrete forms are analysed in the phase plane by means of linear stability, phase portrait and vector…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1436655-simulation-visualization-energy-related-occupant-behavior-office-buildings','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1436655-simulation-visualization-energy-related-occupant-behavior-office-buildings"><span>Simulation and visualization of energy-related occupant behavior in office buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chen, Yixing; Liang, Xin; Hong, Tianzhen; ...</p> <p>2017-03-15</p> <p>In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1436655','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1436655"><span>Simulation and visualization of energy-related occupant behavior in office buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Yixing; Liang, Xin; Hong, Tianzhen</p> <p></p> <p>In current building performance simulation programs, occupant presence and interactions with building systems are over-simplified and less indicative of real world scenarios, contributing to the discrepancies between simulated and actual energy use in buildings. Simulation results are normally presented using various types of charts. However, using those charts, it is difficult to visualize and communicate the importance of occupants’ behavior to building energy performance. This study introduced a new approach to simulating and visualizing energy-related occupant behavior in office buildings. First, the Occupancy Simulator was used to simulate the occupant presence and movement and generate occupant schedules for each spacemore » as well as for each occupant. Then an occupant behavior functional mockup unit (obFMU) was used to model occupant behavior and analyze their impact on building energy use through co-simulation with EnergyPlus. Finally, an agent-based model built upon AnyLogic was applied to visualize the simulation results of the occupant movement and interactions with building systems, as well as the related energy performance. A case study using a small office building in Miami, FL was presented to demonstrate the process and application of the Occupancy Simulator, the obFMU and EnergyPlus, and the AnyLogic module in simulation and visualization of energy-related occupant behaviors in office buildings. Furthermore, the presented approach provides a new detailed and visual way for policy makers, architects, engineers and building operators to better understand occupant energy behavior and their impact on energy use in buildings, which can improve the design and operation of low energy buildings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24034730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24034730"><span>Modeling stroke rehabilitation processes using the Unified Modeling Language (UML).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferrante, Simona; Bonacina, Stefano; Pinciroli, Francesco</p> <p>2013-10-01</p> <p>In organising and providing rehabilitation procedures for stroke patients, the usual need for many refinements makes it inappropriate to attempt rigid standardisation, but greater detail is required concerning workflow. The aim of this study was to build a model of the post-stroke rehabilitation process. The model, implemented in the Unified Modeling Language, was grounded on international guidelines and refined following the clinical pathway adopted at local level by a specialized rehabilitation centre. The model describes the organisation of the rehabilitation delivery and it facilitates the monitoring of recovery during the process. Indeed, a system software was developed and tested to support clinicians in the digital administration of clinical scales. The model flexibility assures easy updating after process evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28960285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28960285"><span>Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ishutov, Sergey; Hasiuk, Franciszek J; Jobe, Dawn; Agar, Susan</p> <p>2018-05-01</p> <p>Three-dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore-network models ("proxies") using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post-processing and validation can reduce uncertainty in the 3D-printed proxy accuracy (difference of proxy geometry from the digital model). Post-processing is a multi-step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin-section images of 3D-printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D-printed "gap test" wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (∼13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15-, 23-, and 30-fold magnifications to validate the workflow. Helium porosities of the 3D-printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ∼1% point), though uncertainties remain regarding the nature of sub-micron "artifact" pores imparted by the 3D printing process. This study shows the benefits of including post-processing and validation in any workflow to produce porous rock proxies. © 2017, National Ground Water Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53C3092R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53C3092R"><span>Building and Characterizing Volcanic Landscapes with a Numerical Landscape Evolution Model and Spectral Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, P. W.; Karlstrom, L.</p> <p>2016-12-01</p> <p>The competition between constructional volcanic processes such as lava flows, cinder cones, and tumuli compete with physical and chemical erosional processes to control the morphology of mafic volcanic landscapes. If volcanic effusion rates are high, these landscapes are primarily constructional, but over the timescales associated with hot spot volcanism (1-10 Myr) and arcs (10-50 Myr), chemical and physical erosional processes are important. For fluvial incision to occur, initially high infiltration rates must be overcome by chemical weathering or input of fine-grained sediment. We investigate lava flow resurfacing, using a new lava flow algorithm that can be calibrated for specific flows and eruption magnitude/frequency relationships, into a landscape evolution model to complete two modeling experiments to investigate the interplay between volcanic resurfacing and fluvial incision. We use a stochastic spatial vent distribution calibrated from the Hawaiian eruption record to resurface a synthetically produced ocean island. In one experiment, we investigate the consequences of including time-dependent channel incision efficiency. This effectively mimics the behavior of transient hydrological development of lava flows. In the second experiment, we explore the competition between channel incision and lava flow resurfacing. The relative magnitudes of channel incision versus lava flow resurfacing are captured in landscape topography. For example, during the shield building period for ocean islands, effusion rates are high and the signature of lava flow resurfacing dominates. In contrast, after the shield building phase, channel incision begins and eventually dominates the topographic signature. We develop a dimensionless ratio of resurfacing rate to erosion rate to characterize the transition between these processes. We use spectral techniques to characterize volcanic features and to pinpoint the transition between constructional and erosional morphology on modeled landscapes and on the Big Island of Hawaii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC11E..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC11E..05O"><span>Extreme heat event projections for a coastal megacity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz, L. E.; Gonzalez, J.</p> <p>2017-12-01</p> <p>As summers become warmer, extreme heat events are expected to increase in intensity, frequency, and duration. Large urban centers may affect these projections by introducing feedbacks between the atmosphere and the built environment through processes involving anthropogenic heat, wind modification, radiation blocking, and others. General circulation models are often run with spatial resolutions in the order of 100 km, limiting their skill at resolving local scale processes and highly spatially varying features such as cities' heterogeneous landscape and mountain topography. This study employs climate simulations using the Weather Research and Forecast (WRF) model coupled with a modified multi-layer urban canopy and building energy model to downscale CESM1 at 1 km horizontal resolution across three time slices (2006-2010, 2075-2079, and 2095-2099) and two projections (RCP 4.5 and 8.5). New York City Metropolitan area, with a population of over 20 million and a complex urban canopy, is used as a case study. The urban canopy model of WRF was modified to include a drag coefficient as a function of the building plant area fraction and the introduction of evaporative cooling systems at building roofs to reject the anthropogenic heat from the buildings, with urban canopy parameters computed from the New York City Property Land-Use Tax-lot Output (PLUTO). Model performance is evaluated against the input model and historical records from airport stations, showing improvement in the statistical characteristics in the downscaled model output. Projection results are presented as spatially distributed anomalies in heat wave frequency, duration, and maximum intensity from the 2006-2010 benchmark period. Results show that local sea-breeze circulations mitigate heat wave impacts, following a positive gradient with increasing distance from the coastline. However, end of century RCP 8.5 projections show the possibility of reversal of this pattern, sea surface temperatures increase and reduce the sea-land temperature gradient, thus reducing the sea-breeze magnitude. Impacts to human health and buildings energy demand are explored for future climate scenarios as key examples of anticipated societal consequences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=methods&pg=4&id=EJ1154544','ERIC'); return false;" href="https://eric.ed.gov/?q=methods&pg=4&id=EJ1154544"><span>Observation-Oriented Modeling: Going beyond "Is It All a Matter of Chance"?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Grice, James W.; Yepez, Maria; Wilson, Nicole L.; Shoda, Yuichi</p> <p>2017-01-01</p> <p>An alternative to null hypothesis significance testing is presented and discussed. This approach, referred to as observation-oriented modeling, is centered on model building in an effort to explicate the structures and processes believed to generate a set of observations. In terms of analysis, this novel approach complements traditional methods…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9808E..3LK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9808E..3LK"><span>Research on 3D virtual campus scene modeling based on 3ds Max and VRML</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue</p> <p>2015-12-01</p> <p>With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9808E..2EZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9808E..2EZ"><span>Spatial-temporal analysis of building surface temperatures in Hung Hom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, Ying; Shen, Yueqian</p> <p>2015-12-01</p> <p>This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=block&pg=6&id=EJ1089865','ERIC'); return false;" href="https://eric.ed.gov/?q=block&pg=6&id=EJ1089865"><span>Practicing Engineering While Building with Blocks: Identifying Engineering Thinking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bagiati, Aikaterini; Evangelou, Demetra</p> <p>2016-01-01</p> <p>Children's free play naturally enhances skills of observation, communication, experimentation, as well as development of rationale and construction skills. These domains, while synthesised, can lead to the development of certain process models regarding the way constructions could be designed, built and improved. The Design Process model…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED539074.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED539074.pdf"><span>Process Mining Online Assessment Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pechenizkiy, Mykola; Trcka, Nikola; Vasilyeva, Ekaterina; van der Aalst, Wil; De Bra, Paul</p> <p>2009-01-01</p> <p>Traditional data mining techniques have been extensively applied to find interesting patterns, build descriptive and predictive models from large volumes of data accumulated through the use of different information systems. The results of data mining can be used for getting a better understanding of the underlying educational processes, for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245f2056M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245f2056M"><span>Exploitation and Benefits of BIM in Construction Project Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mesároš, Peter; Mandičák, Tomáš</p> <p>2017-10-01</p> <p>BIM is increasingly getting into the awareness in construction industry. BIM is the process of creating and data managing of the building during its life cycle. BIM became a part of management tools in modern construction companies. Construction projects have a number of participants. It means difficulty process of construction project management and a serious requirement for processing the huge amount of information including design, construction, time and cost parameters, economic efficiency and sustainability. Progressive information and communication technologies support cost management and management of construction project. One of them is Building Information Modelling. Aim of the paper is to examine the impact of BIM exploitation and benefits on construction project management in Slovak companies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=171212&Lab=NERL&keyword=R+AND+programming&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=171212&Lab=NERL&keyword=R+AND+programming&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>BUILDING MODEL ANALYSIS APPLICATIONS WITH THE JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY (JUPITER) API</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23E2875C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23E2875C"><span>Building Change Detection from Harvey using Unmanned Aerial System (UAS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, A.; Yeom, J.; Jung, J.; Choi, I.</p> <p>2017-12-01</p> <p>Unmanned Aerial System (UAS) is getting to be the most important technique in recent days since the fine spatial and high temporal resolution data previously unobtainable from traditional remote sensing platforms. Advanced UAS data can provide a great opportunity for disaster monitoring. Especially, building change detection is the one of the most important topics for damage assessment and recovery from disasters. This study is proposing a method to monitor building change with UAS data for Holiday Beach in Texas, where was directly hit by Harvey on 25 August 2017. This study adopted 3D change detection to monitor building damage and recovery levels with building height as well as natural color information. We used a rotorcraft UAS to collect RGB data twice on 9 September and 18 October 2017 after the hurricane. The UAS data was processed using Agisoft Photoscan Pro Software to generate super high resolution dataset including orthomosaic, DSM (Digital Surface Model), and 3D point cloud. We compared the processed dataset with an airborne image considerable as before-hurricane data, which was acquired on January 2016. Building damage and recovery levels were determined by height and color change. The result will show that UAS data is useful to assess building damage and recovery for affected area by the natural disaster such as Harvey.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011MS%26E...26a2002E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011MS%26E...26a2002E"><span>Preliminary Empirical Models for Predicting Shrinkage, Part Geometry and Metallurgical Aspects of Ti-6Al-4V Shaped Metal Deposition Builds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Escobar-Palafox, Gustavo; Gault, Rosemary; Ridgway, Keith</p> <p>2011-12-01</p> <p>Shaped Metal Deposition (SMD) is an additive manufacturing process which creates parts layer by layer by weld depositions. In this work, empirical models that predict part geometry (wall thickness and outer diameter) and some metallurgical aspects (i.e. surface texture, portion of finer Widmanstätten microstructure) for the SMD process were developed. The models are based on an orthogonal fractional factorial design of experiments with four factors at two levels. The factors considered were energy level (a relationship between heat source power and the rate of raw material input.), step size, programmed diameter and travel speed. The models were validated using previous builds; the prediction error for part geometry was under 11%. Several relationships between the factors and responses were identified. Current had a significant effect on wall thickness; thickness increases with increasing current. Programmed diameter had a significant effect on percentage of shrinkage; this decreased with increasing component size. Surface finish decreased with decreasing step size and current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4324075','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4324075"><span>Toward a general psychological model of tension and suspense</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lehne, Moritz; Koelsch, Stefan</p> <p>2015-01-01</p> <p>Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena. PMID:25717309</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23566458','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23566458"><span>A task force model for statewide change in nursing education: building quality and safety.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mundt, Mary H; Clark, Margherita Procaccini; Klemczak, Jeanette Wrona</p> <p>2013-01-01</p> <p>The purpose of this article was to describe a statewide planning process to transform nursing education in Michigan to improve quality and safety of patient care. A task force model was used to engage diverse partners in issue identification, consensus building, and recommendations. An example of a statewide intervention in nursing education and practice that was executed was the Michigan Quality and Safety in Nursing Education Institute, which was held using an integrated approach to academic-practice partners from all state regions. This paper describes the unique advantage of leadership by the Michigan Chief Nurse Executive, the existence of a nursing strategic plan, and a funding model. An overview of the Task Force on Nursing Education is presented with a focus on the model's 10 process steps and resulting seven recommendations. The Michigan Nurse Education Council was established to implement the recommendations that included quality and safety. Copyright © 2013 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25717309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25717309"><span>Toward a general psychological model of tension and suspense.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lehne, Moritz; Koelsch, Stefan</p> <p>2015-01-01</p> <p>Tension and suspense are powerful emotional experiences that occur in a wide variety of contexts (e.g., in music, film, literature, and everyday life). The omnipresence of tension and suspense suggests that they build on very basic cognitive and affective mechanisms. However, the psychological underpinnings of tension experiences remain largely unexplained, and tension and suspense are rarely discussed from a general, domain-independent perspective. In this paper, we argue that tension experiences in different contexts (e.g., musical tension or suspense in a movie) build on the same underlying psychological processes. We discuss key components of tension experiences and propose a domain-independent model of tension and suspense. According to this model, tension experiences originate from states of conflict, instability, dissonance, or uncertainty that trigger predictive processes directed at future events of emotional significance. We also discuss possible neural mechanisms underlying tension and suspense. The model provides a theoretical framework that can inform future empirical research on tension phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.709a2004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.709a2004S"><span>Structural properties of H13 tool steel parts produced with use of selective laser melting technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Šafka, J.; Ackermann, M.; Voleský, L.</p> <p>2016-04-01</p> <p>This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1688d0003P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1688d0003P"><span>Processing system of jaws tomograms for pathology identification and surgical guide modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putrik, M. B.; Lavrentyeva, Yu. E.; Ivanov, V. Yu.</p> <p>2015-11-01</p> <p>The aim of the study is to create an image processing system, which allows dentists to find pathological resorption and to build surgical guide surface automatically. X-rays images of jaws from cone beam tomography or spiral computed tomography are the initial data for processing. One patient's examination always includes up to 600 images (or tomograms), that's why the development of processing system for fast automation search of pathologies is necessary. X-rays images can be useful not for only illness diagnostic but for treatment planning too. We have studied the case of dental implantation - for successful surgical manipulations surgical guides are used. We have created a processing system that automatically builds jaw and teeth boundaries on the x-ray image. After this step, obtained teeth boundaries used for surgical guide surface modeling and jaw boundaries limit the area for further pathologies search. Criterion for the presence of pathological resorption zones inside the limited area is based on statistical investigation. After described actions, it is possible to manufacture surgical guide using 3D printer and apply it in surgical operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1362208-powder-bed-charging-during-electron-beam-additive-manufacturing','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1362208-powder-bed-charging-during-electron-beam-additive-manufacturing"><span>Powder bed charging during electron-beam additive manufacturing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; ...</p> <p>2016-11-18</p> <p>Electrons injected into the build envelope during powder-bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Furthermore, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as smoking. Here, a model of powder bed charging is formulated and used to develop criteria that predict the conditions under which the powder bed will smoke. These criteria suggest dependences on particle size, pre-heat temperature, and process parameters that align closely with those observed in practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..138a2011A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..138a2011A"><span>Modeling of lighting behaviour of a hybrid lighting system in inner spaces of Building of Electrical Engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amado, L.; Osma, G.; Villamizar, R.</p> <p>2016-07-01</p> <p>This paper presents the modelling of lighting behaviour of a hybrid lighting system - HLS in inner spaces for tropical climate. HLS aims to mitigate the problem of high electricity consumption used by artificial lighting in buildings. These systems integrate intelligently the daylight and artificial light through control strategies. However, selection of these strategies usually depends on expertise of designer and of available budget. In order to improve the selection process of the control strategies, this paper analyses the Electrical Engineering Building (EEB) case, initially modelling of lighting behaviour is established for the HLS of a classroom and an office. This allows estimating the illuminance level of the mixed lighting in the space, and energy consumption by artificial light according to different lighting control techniques, a control strategy based on occupancy and a combination of them. The model considers the concept of Daylight Factor (DF) for the estimating of daylight illuminance on the work plane for tropical climatic conditions. The validation of the model was carried out by comparing the measured and model-estimated indoor illuminances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1241287','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1241287"><span>BioMOL: a computer-assisted biological modeling tool for complex chemical mixtures and biological processes at the molecular level.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Klein, Michael T; Hou, Gang; Quann, Richard J; Wei, Wei; Liao, Kai H; Yang, Raymond S H; Campain, Julie A; Mazurek, Monica A; Broadbelt, Linda J</p> <p>2002-01-01</p> <p>A chemical engineering approach for the rigorous construction, solution, and optimization of detailed kinetic models for biological processes is described. This modeling capability addresses the required technical components of detailed kinetic modeling, namely, the modeling of reactant structure and composition, the building of the reaction network, the organization of model parameters, the solution of the kinetic model, and the optimization of the model. Even though this modeling approach has enjoyed successful application in the petroleum industry, its application to biomedical research has just begun. We propose to expand the horizons on classic pharmacokinetics and physiologically based pharmacokinetics (PBPK), where human or animal bodies were often described by a few compartments, by integrating PBPK with reaction network modeling described in this article. If one draws a parallel between an oil refinery, where the application of this modeling approach has been very successful, and a human body, the individual processing units in the oil refinery may be considered equivalent to the vital organs of the human body. Even though the cell or organ may be much more complicated, the complex biochemical reaction networks in each organ may be similarly modeled and linked in much the same way as the modeling of the entire oil refinery through linkage of the individual processing units. The integrated chemical engineering software package described in this article, BioMOL, denotes the biological application of molecular-oriented lumping. BioMOL can build a detailed model in 1-1,000 CPU sec using standard desktop hardware. The models solve and optimize using standard and widely available hardware and software and can be presented in the context of a user-friendly interface. We believe this is an engineering tool with great promise in its application to complex biological reaction networks. PMID:12634134</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1246891','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1246891"><span>Building energy analysis tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars</p> <p>2016-04-12</p> <p>A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr62W5..489M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr62W5..489M"><span>Photogrammetric Recording and Reconstruction of Town Scale Models - the Case of the Plan-Relief of Strasbourg</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macher, H.; Grussenmeyer, P.; Landes, T.; Halin, G.; Chevrier, C.; Huyghe, O.</p> <p>2017-08-01</p> <p>The French collection of Plan-Reliefs, scale models of fortified towns, constitutes a precious testimony of the history of France. The aim of the URBANIA project is the valorisation and the diffusion of this Heritage through the creation of virtual models. The town scale model of Strasbourg at 1/600 currently exhibited in the Historical Museum of Strasbourg was selected as a case study. In this paper, the photogrammetric recording of this scale model is first presented. The acquisition protocol as well as the data post-processing are detailed. Then, the modelling of the city and more specially building blocks is investigated. Based on point clouds of the scale model, the extraction of roof elements is considered. It deals first with the segmentation of the point cloud into building blocks. Then, for each block, points belonging to roofs are identified and the extraction of chimney point clouds as well as roof ridges and roof planes is performed. Finally, the 3D parametric modelling of the building blocks is studied by considering roof polygons and polylines describing chimneys as input. In a future works section, the semantically enrichment and the potential usage scenarios of the scale model are envisaged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030067971','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030067971"><span>Analysis and Modeling of Ground Operations at Hub Airports</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.</p> <p>2000-01-01</p> <p>Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMTA...47.3811M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMTA...47.3811M"><span>Powder Bed Layer Characteristics: The Overseen First-Order Process Input</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mindt, H. W.; Megahed, M.; Lavery, N. P.; Holmes, M. A.; Brown, S. G. R.</p> <p>2016-08-01</p> <p>Powder Bed Additive Manufacturing offers unique advantages in terms of manufacturing cost, lot size, and product complexity compared to traditional processes such as casting, where a minimum lot size is mandatory to achieve economic competitiveness. Many studies—both experimental and numerical—are dedicated to the analysis of how process parameters such as heat source power, scan speed, and scan strategy affect the final material properties. Apart from the general urge to increase the build rate using thicker powder layers, the coating process and how the powder is distributed on the processing table has received very little attention to date. This paper focuses on the first step of every powder bed build process: Coating the process table. A numerical study is performed to investigate how powder is transferred from the source to the processing table. A solid coating blade is modeled to spread commercial Ti-6Al-4V powder. The resulting powder layer is analyzed statistically to determine the packing density and its variation across the processing table. The results are compared with literature reports using the so-called "rain" models. A parameter study is performed to identify the influence of process table displacement and wiper velocity on the powder distribution. The achieved packing density and how that affects subsequent heat source interaction with the powder bed is also investigated numerically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21481472','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21481472"><span>Flood management: prediction of microbial contamination in large-scale floods in urban environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip</p> <p>2011-07-01</p> <p>With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities, insurance companies and residents to better understand, prepare for and manage a large-scale flood in urban environments. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22093102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22093102"><span>Desktop microsimulation: a tool to improve efficiency in the medical office practice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Montgomery, James B; Linville, Beth A; Slonim, Anthony D</p> <p>2013-01-01</p> <p>Because the economic crisis in the United States continues to have an impact on healthcare organizations, industry leaders must optimize their decision making. Discrete-event computer simulation is a quality tool with a demonstrated track record of improving the precision of analysis for process redesign. However, the use of simulation to consolidate practices and design efficiencies into an unfinished medical office building was a unique task. A discrete-event computer simulation package was used to model the operations and forecast future results for four orthopedic surgery practices. The scenarios were created to allow an evaluation of the impact of process change on the output variables of exam room utilization, patient queue size, and staff utilization. The model helped with decisions regarding space allocation and efficient exam room use by demonstrating the impact of process changes in patient queues at check-in/out, x-ray, and cast room locations when compared to the status quo model. The analysis impacted decisions on facility layout, patient flow, and staff functions in this newly consolidated practice. Simulation was found to be a useful tool for process redesign and decision making even prior to building occupancy. © 2011 National Association for Healthcare Quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NHESS..17.1871A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NHESS..17.1871A"><span>High-resolution modeling of tsunami run-up flooding: a case study of flooding in Kamaishi city, Japan, induced by the 2011 Tohoku tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akoh, Ryosuke; Ishikawa, Tadaharu; Kojima, Takashi; Tomaru, Mahito; Maeno, Shiro</p> <p>2017-11-01</p> <p>Run-up processes of the 2011 Tohoku tsunami into the city of Kamaishi, Japan, were simulated numerically using 2-D shallow water equations with a new treatment of building footprints. The model imposes an internal hydraulic condition of permeable and impermeable walls at the building footprint outline on unstructured triangular meshes. Digital data of the building footprint approximated by polygons were overlaid on a 1.0 m resolution terrain model. The hydraulic boundary conditions were ascertained using conventional tsunami propagation calculation from the seismic center to nearshore areas. Run-up flow calculations were conducted under the same hydraulic conditions for several cases having different building permeabilities. Comparison of computation results with field data suggests that the case with a small amount of wall permeability gives better agreement than the case with impermeable condition. Spatial mapping of an indicator for run-up flow intensity (IF = (hU2)max, where h and U respectively denote the inundation depth and flow velocity during the flood, shows fairly good correlation with the distribution of houses destroyed by flooding. As a possible mitigation measure, the influence of the buildings on the flow was assessed using a numerical experiment for solid buildings arrayed alternately in two lines along the coast. Results show that the buildings can prevent seawater from flowing straight to the city center while maintaining access to the sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9688E..10T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9688E..10T"><span>Geoinformation techniques for the 3D visualisation of historic buildings and representation of a building's pathology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsilimantou, Elisavet; Delegou, Ekaterini; Ioannidis, Charalabos; Moropoulou, Antonia</p> <p>2016-08-01</p> <p>In this paper, the documentation of an historic building registered as Cultural Heritage asset is presented. The aim of the survey is to create a 3D geometric representation of a historic building and in accordance with multidisciplinary study extract useful information regarding the extent of degradation, constructions' durability etc. For the implementation of the survey, a combination of different types of acquisition technologies is used. The project focuses on the study of Villa Klonaridi, in Athens, Greece. For the complete documentation of the building, conventional topography, photogrammetric and laser scanning techniques is combined. Close range photogrammetric techniques are used for the acquisition of the façades and architectural details. One of the main objectives is the development of an accurate 3D model, where the photorealistic representation of the building is achieved, along with the decay pathology, historical phases and architectural components. In order to achieve a suitable graphical representation for the study of the material and decay patterns beyond the 2D representation, 3D modelling and additional information modelling is performed for comparative analysis. The study provides various conclusions regarding the scale of deterioration obtained by the 2D and 3D analysis respectively. Considering the variation in material and decay patterns, comparative results are obtained regarding the degradation of the building. Overall, the paper describes a process performed on a Historic Building, where the 3D digital acquisition of the monuments' structure is realized with the combination of close range surveying and laser scanning methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=physical+AND+activity+AND+importance&pg=7&id=EJ826837','ERIC'); return false;" href="https://eric.ed.gov/?q=physical+AND+activity+AND+importance&pg=7&id=EJ826837"><span>Transnational Strategies for the Promotion of Physical Activity and Active Aging: The World Health Organization Model of Consensus Building in International Public Health</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chodzko-Zajko, Wojtek; Schwingel, Andiara</p> <p>2009-01-01</p> <p>In this paper we focus our attention on an examination of the four-step process adopted by the World Health Organization (WHO) in its systematic campaign to promote physically active lifestyles by older adults across the 193 WHO member states. The four steps adopted by the WHO include (1) Building Consensus Among Professionals; (2) Educating the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA495157','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA495157"><span>Evaluating The Impact Of Building Information Modeling (BIM) On Construction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-01-01</p> <p>and interrelated processes. The flowchart in Figure 4-26 shows a visual interpretation of the Project Delivery Process Map. Figure 4-26. PMBP...they participated in training that was not effective at the beginning of LRL’s BIM initiative. The beginner courses provided by Bentley proved to be</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED078298.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED078298.pdf"><span>Institution Building and Evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wedemeyer, Charles A.</p> <p></p> <p>Institutional modeling and program evaluation in relation to a correspondence program are discussed. The evaluation process is first considered from the viewpoint that it is an add-on activity, which is largely summative, and is the least desirable type of evaluation. Formative evaluation is next considered as a part of the process of institution…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Building+AND+Information+AND+Modeling&pg=7&id=EJ518228','ERIC'); return false;" href="https://eric.ed.gov/?q=Building+AND+Information+AND+Modeling&pg=7&id=EJ518228"><span>Reshaping the Enterprise through an Information Architecture and Process Reengineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Laudato, Nicholas C.; DeSantis, Dennis J.</p> <p>1995-01-01</p> <p>The approach used by the University of Pittsburgh (Pennsylvania) in designing a campus-wide information architecture and a framework for reengineering the business process included building consensus on a general philosophy for information systems, using pattern-based abstraction techniques, applying data modeling and application prototyping, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH23C1881L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH23C1881L"><span>Using Remote Sensing to Visualize and Extract Building Inventories of Urban Areas for Disaster Planning and Response</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, A. F.; Salvaggio, C.</p> <p>2016-12-01</p> <p>Climate change, skyrocketing global population, and increasing urbanization have set the stage for more so-called "mega-disasters." We possess the knowledge to mitigate and predict the scope of these events, and recent advancements in remote sensing can inform these efforts. Satellite and aerial imagery can be obtained anywhere of interest; unmanned aerial systems can be deployed quickly; and improved sensor resolutions and image processing techniques allow close examination of the built environment. Combined, these technologies offer an unprecedented ability for the disaster community to visualize, assess, and communicate risk. Disaster mitigation and response efforts rely on an accurate representation of the built environment, including knowledge of building types, structural characteristics, and juxtapositions to known hazards. The use of remote sensing to extract these inventory data has come far in the last five years. Researchers in the Digital Imaging and Remote Sensing (DIRS) group at the Rochester Institute of Technology are meeting the needs of the disaster community through the development of novel image processing methods capable of extracting detailed information of individual buildings. DIRS researchers have pioneered the ability to generate three-dimensional building models from point cloud imagery (e.g., LiDAR). This method can process an urban area and recreate it in a navigable virtual reality environment such as Google Earth within hours. Detailed geometry is obtained for individual structures (e.g., footprint, elevation). In a recent step forward, these geometric data can now be combined with imagery from other sources, such as high resolution or multispectral imagery. The latter ascribes a spectral signature to individual pixels, suggesting construction material. Ultimately, these individual building data are amassed over an entire region, facilitating aggregation and risk modeling analyses. The downtown region of Rochester, New York is presented as a case study. High resolution optical, LiDAR, and multi-spectral imagery was captured of this region. Using the techniques described, these imagery sources are combined and processed to produce a holistic representation of the built environment, inclusive of individual building characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED073027.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED073027.pdf"><span>Design and Implementation Skills for Social Innovation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tornatzky, Louis G.; Fairweather, George W.</p> <p></p> <p>New models of research and training combined with dissemination techniques can contribute to relevant social change. The Ecological Psychology Program at Michigan State University, a graduate training program which focuses on model building and implementation research, offers ideas on the plausability of social programming. The process would…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=future+AND+business+AND+model&pg=3&id=EJ1062581','ERIC'); return false;" href="https://eric.ed.gov/?q=future+AND+business+AND+model&pg=3&id=EJ1062581"><span>Linear and Nonlinear Thinking: A Multidimensional Model and Measure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Groves, Kevin S.; Vance, Charles M.</p> <p>2015-01-01</p> <p>Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=organisational+AND+change&pg=6&id=EJ1163038','ERIC'); return false;" href="https://eric.ed.gov/?q=organisational+AND+change&pg=6&id=EJ1163038"><span>The I3E Model for Embedding Education for Sustainability within Higher Education Institutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cebrián, Gisela</p> <p>2018-01-01</p> <p>This paper presents an evidence-based model (the I3E model) for embedding education for sustainability (EfS) within a higher education institution. This model emerged from a doctoral research that examined organisational learning and change processes at the University of Southampton to build EfS into the university curriculum. The researcher aimed…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812706K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812706K"><span>Impacts of traffic composition and street-canyon geometry on on-road air quality in a high-rise building area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin</p> <p>2016-04-01</p> <p>Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and the building geometries around an intersection for better air quality in a high-rise building area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA13E..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA13E..03M"><span>A Multi-Tiered Approach for Building Capacity in Hydrologic Modeling for Water Resource Management in Developing Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markert, K. N.; Limaye, A. S.; Rushi, B. R.; Adams, E. C.; Anderson, E.; Ellenburg, W. L.; Mithieu, F.; Griffin, R.</p> <p>2017-12-01</p> <p>Water resource management is the process by which governments, businesses and/or individuals reach and implement decisions that are intended to address the future quantity and/or quality of water for societal benefit. The implementation of water resource management typically requires the understanding of the quantity and/or timing of a variety of hydrologic variables (e.g. discharge, soil moisture and evapotranspiration). Often times these variables for management are simulated using hydrologic models particularly in data sparse regions. However, there are several large barriers to entry in learning how to use models, applying best practices during the modeling process, and selecting and understanding the most appropriate model for diverse applications. This presentation focuses on a multi-tiered approach to bring the state-of-the-art hydrologic modeling capabilities and methods to developing regions through the SERVIR program, a joint NASA and USAID initiative that builds capacity of regional partners and their end users on the use of Earth observations for environmental decision making. The first tier is a series of trainings on the use of multiple hydrologic models, including the Variable Infiltration Capacity (VIC) and Ensemble Framework For Flash Flood Forecasting (EF5), which focus on model concepts and steps to successfully implement the models. We present a case study for this in a pilot area, the Nyando Basin in Kenya. The second tier is focused on building a community of practice on applied hydrology modeling aimed at creating a support network for hydrologists in SERVIR regions and promoting best practices. The third tier is a hydrologic inter-comparison project under development in the SERVIR regions. The objective of this step is to understand model performance under specific decision-making scenarios, and to share knowledge among hydrologists in SERVIR regions. The results of these efforts include computer programs, training materials, and new scientific understanding, all of which are shared in an open and collaborative environment for transparency and subsequent capacity building in SERVIR regions and beyond. The outcome of this work is increased awareness and capacity on the use of hydrologic models in developing regions to support water resource management and water security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10526E..17W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10526E..17W"><span>A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea</p> <p>2018-02-01</p> <p>The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29583062','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29583062"><span>Process Evaluation for Improving K12 Program Effectiveness: Case Study of a National Institutes of Health Building Interdisciplinary Research Careers in Women's Health Research Career Development Program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raymond, Nancy C; Wyman, Jean F; Dighe, Satlaj; Harwood, Eileen M; Hang, Mikow</p> <p>2018-06-01</p> <p>Process evaluation is an important tool in quality improvement efforts. This article illustrates how a systematic and continuous evaluation process can be used to improve the quality of faculty career development programs by using the University of Minnesota's Building Interdisciplinary Research Careers in Women's Health (BIRCWH) K12 program as an exemplar. Data from a rigorous process evaluation incorporating quantitative and qualitative measurements were analyzed and reviewed by the BIRCWH program leadership on a regular basis. Examples are provided of how this evaluation model and processes were used to improve many aspects of the program, thereby improving scholar, mentor, and advisory committee members' satisfaction and scholar outcomes. A rigorous evaluation plan can increase the effectiveness and impact of a research career development plan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W3..439L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W3..439L"><span>From Oss CAD to Bim for Cultural Heritage Digital Representation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Logothetis, S.; Karachaliou, E.; Stylianidis, E.</p> <p>2017-02-01</p> <p>The paper illustrates the use of open source Computer-aided design (CAD) environments in order to develop Building Information Modelling (BIM) tools able to manage 3D models in the field of cultural heritage. Nowadays, the development of Free and Open Source Software (FOSS) has been rapidly growing and their use tends to be consolidated. Although BIM technology is widely known and used, there is a lack of integrated open source platforms able to support all stages of Historic Building Information Modelling (HBIM) processes. The present research aims to use a FOSS CAD environment in order to develop BIM plug-ins which will be able to import and edit digital representations of cultural heritage models derived by photogrammetric methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAnIV21...39P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAnIV21...39P"><span>Towards Automatic Processing of Virtual City Models for Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.</p> <p>2016-10-01</p> <p>Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH43B1841F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH43B1841F"><span>A consistent model for tsunami actions on buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, A.; Rossetto, T.; Eames, I.; Chandler, I.; Allsop, W.</p> <p>2016-12-01</p> <p>The Japan (2011) and Indian Ocean (2004) tsunami resulted in significant loss of life, buildings, and critical infrastructure. The tsunami forces imposed upon structures in coastal regions are initially due to wave slamming, after which the quasi-steady flow of the sea water around buildings becomes important. An essential requirement in both design and loss assessment is a consistent model that can accurately predict these forces. A model suitable for predicting forces in the in the quasi-steady range has been established as part of a systematic programme of research by the UCL EPICentre to understand the fundamental physical processes of tsunami actions on buildings, and more generally their social and economic consequences. Using the pioneering tsunami generator at HR Wallingford, this study considers the influence of unsteady flow conditions on the forces acting upon a rectangular building occupying 10-80% of a channel for 20-240 second wave periods. A mathematical model based upon basic open-channel flow principles is proposed, which provides empirical estimates for drag and hydrostatic coefficients. A simple force prediction equation, requiring only basic flow velocity and wave height inputs is then developed, providing good agreement with the experimental results. The results of this study demonstrate that the unsteady forces from the very long waves encountered during tsunami events can be predicted with a level of accuracy and simplicity suitable for design and risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAn.II5...97H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAn.II5...97H"><span>Digitally-Assisted Stone Carving of a Relief Sculpture for the Parliament Buildings National Historic Site of Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, J.; Fai, S.; Kretz, S.; Ouimet, C.; White, P.</p> <p>2015-08-01</p> <p>The emerging field of digital fabrication is a process where three-dimensional datasets can be directly transferred to fabrication equipment to create models or even 1:1 building elements. In this paper, we will discuss the results of a collaboration between the Carleton Immersive Media Studio (CIMS), the Dominion Sculptor of Canada, and the Heritage Conservation Directorate (HCD) of Public Works and Government Services Canada (PWGSC), that utilizes digital fabrication technologies in the development of a digitally-assisted stone carving process. The collaboration couples the distinguished skill of the Dominion Sculptor with the latest digital acquisition and digital fabrication technologies for the reconstruction of a deteriorated stone bas-relief on the façade of the East Block building of the Parliament Buildings National Historic Site of Canada. The intention of the research is to establish a workflow of hybrid digital/analogue methodologies from acquisition through rehabilitation and ultimately to the fabrication of stone elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmEn.170..143C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmEn.170..143C"><span>A modified Brownian force for ultrafine particle penetration through building crack modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Chen; Zhao, Bin</p> <p>2017-12-01</p> <p>Combustion processes related to industry, traffic, agriculture, and waste treatment and disposal increase the amount of outdoor ultrafine particles (UFPs), which have adverse effects on human health. Given that people spend the majority of their time indoors, it is critical to understand the penetration of outdoor UFPs through building cracks in order to estimate human exposure to outdoor-originated UFPs. Lagrangian tracking is an efficient approach for modeling particle penetration. However, the Brownian motion for Lagrangian tracking in ANSYS Fluent®, a widely used software for particle dispersion modeling, is not able to model UFP dispersion accurately. In this study, we modified the Brownian force by rewriting the Brownian diffusion coefficient and particle integration time step with a user-defined function in ANSYS Fluent® to model particle penetration through building cracks. The results obtained using the modified model agree much better with the experimental results, with the averaged relative error less than 14% for the smooth crack cases and 21% for the rough crack case. We expect the modified Brownian force model proposed herein to be applied for UFP dispersion modeling in more indoor air quality studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1244811-scaling-retro-commissioning-small-commercial-buildings-turnkey-automated-hardware-software-solution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1244811-scaling-retro-commissioning-small-commercial-buildings-turnkey-automated-hardware-software-solution"><span>Scaling Retro-Commissioning to Small Commercial Buildings: A Turnkey Automated Hardware-Software Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Guanjing; Granderson, J.; Brambley, Michael R.</p> <p>2015-07-01</p> <p>In the United States, small commercial buildings represent 51% of total floor space of all commercial buildings and consume nearly 3 quadrillion Btu (3.2 quintillion joule) of site energy annually, presenting an enormous opportunity for energy savings. Retro-commissioning (RCx), the process through which professional energy service providers identify and correct operational problems, has proven to be a cost-effective means to achieve median energy savings of 16%. However, retro-commissioning is not typically conducted at scale throughout the commercial stock. Very few small commercial buildings are retro-commissioned because utility expenses are relatively modest, margins are tighter, and capital for improvements is limited.more » In addition, small buildings do not have in-house staff with the expertise to identify improvement opportunities. In response, a turnkey hardware-software solution was developed to enable cost-effective, monitoring-based RCx of small commercial buildings. This highly tailored solution enables non-commissioning providers to identify energy and comfort problems, as well as associated cost impacts and remedies. It also facilitates scale by offering energy service providers the means to streamline their existing processes and reduce costs by more than half. The turnkey RCx sensor suitcase consists of two primary components: a suitcase of sensors for short-term building data collection that guides users through the process of deploying and retrieving their data and a software application that automates analysis of sensor data, identifies problems and generates recommendations. This paper presents the design and testing of prototype models, including descriptions of the hardware design, analysis algorithms, performance testing, and plans for dissemination.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25704604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25704604"><span>Waste generated in high-rise buildings construction: a quantification model based on statistical multiple regression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana</p> <p>2015-05-01</p> <p>Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25626197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25626197"><span>Strategic re-design of team-based patient-focused health care services.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tahara, Denise C; Green, Richard P</p> <p>2014-01-01</p> <p>This paper proposes an organizational change process to prepare physicians and other health professionals for their new roles in patient-centered medical homes (PCMHs). It provides physician-centered tools, models, concepts, and the language to implement transformational patient-centered medical care. To improve care delivery, quality, and patient engagement, a systems approach to care is required. This paper examines a systems approach to patient care where all inputs that influence patient interactions and participation are considered in the design of health care delivery and follow-up treatment plans. Applying systems thinking, organizational change models, and team-building, we have examined the continuum of this change process from ideation through the diffusion of new methods and behaviors. PCMHs make compelling business sense. Studies have shown that the PCMH improves patient satisfaction, clinical outcomes and reduces underuse and overuse of medical services. Patient-centered care necessitates transitioning from an adversarial to a collaborative culture. It is a transformation process predicated on strong leadership able to align an organization toward a vision of patient-centered care, creating a collaborative culture committed to health-goal achievement. This paper proposes that the PCMH is a rigorous team-building transformational organizational change, a radical departure from the current hierarchical, silo-oriented, medical practice model. It requires that participants within and across health care organizations learn new skills and behaviors to achieve the anticipated quality and efficiency improvements. It is an innovative health care organization model of the future whose success is premised on teams supplanting the individual as the building block and unit of health care performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ISPAr3819W.227P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ISPAr3819W.227P"><span>Hybrid Automatic Building Interpretation System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pakzad, K.; Klink, A.; Müterthies, A.; Gröger, G.; Stroh, V.; Plümer, L.</p> <p>2011-09-01</p> <p>HABIS (Hybrid Automatic Building Interpretation System) is a system for an automatic reconstruction of building roofs used in virtual 3D building models. Unlike most of the commercially available systems, HABIS is able to work to a high degree automatically. The hybrid method uses different sources intending to exploit the advantages of the particular sources. 3D point clouds usually provide good height and surface data, whereas spatial high resolution aerial images provide important information for edges and detail information for roof objects like dormers or chimneys. The cadastral data provide important basis information about the building ground plans. The approach used in HABIS works with a multi-stage-process, which starts with a coarse roof classification based on 3D point clouds. After that it continues with an image based verification of these predicted roofs. In a further step a final classification and adjustment of the roofs is done. In addition some roof objects like dormers and chimneys are also extracted based on aerial images and added to the models. In this paper the used methods are described and some results are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27572730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27572730"><span>Tools for Model Building and Optimization into Near-Atomic Resolution Electron Cryo-Microscopy Density Maps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DiMaio, F; Chiu, W</p> <p>2016-01-01</p> <p>Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool for high-resolution structural biology research. The ultimate outcome of a cryoEM study is an atomic model of a macromolecule or its complex with interacting partners. This chapter describes a variety of algorithms and software to build a de novo model based on the cryoEM 3D density map, to optimize the model with the best stereochemistry restraints and finally to validate the model with proper protocols. The full process of atomic structure determination from a cryoEM map is described. The tools outlined in this chapter should prove extremely valuable in revealing atomic interactions guided by cryoEM data. © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16024165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16024165"><span>Learning Petri net models of non-linear gene interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mayo, Michael</p> <p>2005-10-01</p> <p>Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B5..633C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B5..633C"><span>Historical Buildings Models and Their Handling via 3d Survey: from Points Clouds to User-Oriented Hbim</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiabrando, F.; Sammartano, G.; Spanò, A.</p> <p>2016-06-01</p> <p>This paper retraces some research activities and application of 3D survey techniques and Building Information Modelling (BIM) in the environment of Cultural Heritage. It describes the diffusion of as-built BIM approach in the last years in Heritage Assets management, the so-called Built Heritage Information Modelling/Management (BHIMM or HBIM), that is nowadays an important and sustainable perspective in documentation and administration of historic buildings and structures. The work focuses the documentation derived from 3D survey techniques that can be understood like a significant and unavoidable knowledge base for the BIM conception and modelling, in the perspective of a coherent and complete management and valorisation of CH. It deepens potentialities, offered by 3D integrated survey techniques, to acquire productively and quite easilymany 3D information, not only geometrical but also radiometric attributes, helping the recognition, interpretation and characterization of state of conservation and degradation of architectural elements. From these data, they provide more and more high descriptive models corresponding to the geometrical complexity of buildings or aggregates in the well-known 5D (3D + time and cost dimensions). Points clouds derived from 3D survey acquisition (aerial and terrestrial photogrammetry, LiDAR and their integration) are reality-based models that can be use in a semi-automatic way to manage, interpret, and moderately simplify geometrical shapes of historical buildings that are examples, as is well known, of non-regular and complex geometry, instead of modern constructions with simple and regular ones. In the paper, some of these issues are addressed and analyzed through some experiences regarding the creation and the managing of HBIMprojects on historical heritage at different scales, using different platforms and various workflow. The paper focuses on LiDAR data handling with the aim to manage and extract geometrical information; on development and optimization of semi-automatic process of segmentation, recognition and modelling of historical shapes of complex structures; on communication of historical heritage by virtual and augmented reality (VR/AR) in a 3D reconstruction of buildings aggregates from a LiDAR and UAV survey. The HBIM model have been implemented and optimized to be managed and browse by mobile devices for not only touristic or informative scopes, but also to ensure that HBIM platforms will become more easy and valuable tools helping all professionals of AEC involved in the documentation and valorisation process, that nowadays more and more distinguish CH policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28579541','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28579541"><span>Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Diba, Mani; Pape, Bram; Klymov, Alexey; Zhang, Yang; Song, Jiankang; Löwik, Dennis W P M; Seyednejad, Hajar; Leeuwenburgh, Sander C G</p> <p>2017-08-01</p> <p>Multicompartment particles, which are particles composed of smaller building units, have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of several biomolecules in various applications. Supercritical carbon dioxide (CO 2 ) processing is an industrial technology widely used for large-scale synthesis and processing of materials. However, the application of this technology for production of multicompartment particles from colloidal particles has not yet been explored. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO 2 processing. We show that these RLG microparticles exhibit a high stability upon dispersion in aqueous media without requiring chemical cross-linking. We further demonstrate that these microparticles are cytocompatible and facilitate differential release of two different model compounds. The strategy presented here can be utilized as a cost-effective route for production of various types of multicompartment particles using colloidal particles with suitable interparticle interactions. Multicompartment particles have gained considerable interest during the past decade to facilitate simultaneous and differential delivery of multiple biomolecules in various biomedical applications. Nevertheless, common methods employed for the production of such particles are often complex and only offer small-scale production. Here, we report the formation of raspberry-like gelatin (RLG) microparticles composed of gelatin nanoparticles as colloidal building blocks through supercritical CO 2 processing. We show that these microparticles are cytocompatible and facilitate differential release of two model compounds with different molecular sizes, promising successful applications in various biomedical areas. Summarizing, this paper presents a novel strategy that can be utilized as a cost-effective route for production of various types of multicompartment particles using a wide range of colloidal building blocks. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=boiler&pg=3&id=EJ333487','ERIC'); return false;" href="https://eric.ed.gov/?q=boiler&pg=3&id=EJ333487"><span>Exploiting the On-Campus Boiler House.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Woods, Donald R.; And Others</p> <p>1986-01-01</p> <p>Shows how a university utility building ("boiler house") is used in a chemical engineering course for computer simulations, mathematical modeling and process problem exercises. Student projects involving the facility are also discussed. (JN)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP23A0927K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP23A0927K"><span>Morphodynamic Assessment of West Bay Sediment Diversion: A Land Building Analogue for the Lower Mississippi River Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khadka, A. K.; Meselhe, E. A.; Allison, M. A.; Yuill, B.</p> <p>2016-12-01</p> <p>Wetlands of the Mississippi River Deltaic Plain have undergone enormous land loss in the last century due to natural and anthropogenic factors such as subsidence and canal building. After years of feasibility research, Lower Mississippi River (LMR) diversions have been authorized as a tool to build and sustain regional wetlands. To this end, the West Bay sediment diversion (WBD), located on the west bank of the Mississippi River at river kilometer 7.6 above Head of Passes, was constructed in 2003 with a project goal of building 4,000 hectares of wetlands in the estuarine receiving . This sediment diversion serves as splay analogue to calibrate predictive morphologic models that are being used to test the effects of proposed land building sediment diversions in the LMR. We developed a two-dimensional Delft3D model for the WBD area which includes the main channel of the Mississippi River, the diversion cut, and the receiving basin. The model is extensively calibrated and validated for hydrodynamics and morphodynamics in the main river stem, diversion cut and receiving basin using an array of field observations. The model provides quantitative information on the capture efficiency and grain size of LMR sediment diverted through the diversion. Further, the model provides insights into the morphological evolution and sediment capture efficiency of the receiving basin with diversion operation. Sensitivity tests were performed to examine the impacts of dominant drivers (wind, wave and sediment retention islands) on land building processes. The calibrated WBD model is helpful to establish appropriate parameterizations (e.g., substrate design) for the development of future numerical models designed to investigate the morphological response of receiving basins to the proposed diversions located along the LMR and in similar deltaic environments. Keywords: Numerical Modeling, Morphodynamics, Sediment Diversions, Lower Mississippi River, Delft3D,</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1342999-experimental-comparison-residual-stresses-thermomechanical-model-simulation-selective-laser-melting','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1342999-experimental-comparison-residual-stresses-thermomechanical-model-simulation-selective-laser-melting"><span>Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hodge, N. E.; Ferencz, R. M.; Vignes, R. M.</p> <p>2016-05-30</p> <p>Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of the complex interaction between heat transfer and solid mechanics. Here, the present work describes the authors initial efforts to validate their first generation model. In particular, the comparison of model-generated solid mechanics results, including both deformation and stresses, is presented. Additionally, results of various perturbations of the process parameters and modeling strategies are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1019..383I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1019..383I"><span>Intelligent Diagnosis of Degradation State under Corrosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isoc, Dorin; Ignat-Coman, Aurelian; Joldiş, Adrian</p> <p>2008-06-01</p> <p>The work presents an inter- and multi-disciplinary research where the diagnosis is treated by using the artificial intelligence means and the application the degradation state of buildings and urban power networks. A possible model of degradation process caused by the corrosion and the technical achievement manner is given. The notions of micro- and macro-modeling and model granularity are introduced and applied. For resulting model the specification of intelligent processing of information and further the knowledge for suggested model are prepared. As concluding remarks the results are analysed and interpreted and a generalized approach is suggested and argued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27858504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27858504"><span>Rise and Shock: Optimal Defibrillator Placement in a High-rise Building.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Timothy C Y</p> <p>2017-01-01</p> <p>Out-of-hospital cardiac arrests (OHCA) in high-rise buildings experience lower survival and longer delays until paramedic arrival. Use of publicly accessible automated external defibrillators (AED) can improve survival, but "vertical" placement has not been studied. We aim to determine whether elevator-based or lobby-based AED placement results in shorter vertical distance travelled ("response distance") to OHCAs in a high-rise building. We developed a model of a single-elevator, n-floor high-rise building. We calculated and compared the average distance from AED to floor of arrest for the two AED locations. We modeled OHCA occurrences using floor-specific Poisson processes, the risk of OHCA on the ground floor (λ 1 ) and the risk on any above-ground floor (λ). The elevator was modeled with an override function enabling direct travel to the target floor. The elevator location upon override was modeled as a discrete uniform random variable. Calculations used the laws of probability. Elevator-based AED placement had shorter average response distance if the number of floors (n) in the building exceeded three quarters of the ratio of ground-floor OHCA risk to above-ground floor risk (λ 1 /λ) plus one half (n ≥ 3λ 1 /4λ + 0.5). Otherwise, a lobby-based AED had shorter average response distance. If OHCA risk on each floor was equal, an elevator-based AED had shorter average response distance. Elevator-based AEDs travel less vertical distance to OHCAs in tall buildings or those with uniform vertical risk, while lobby-based AEDs travel less vertical distance in buildings with substantial lobby, underground, and nearby street-level traffic and OHCA risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001SPIE.4566...30L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001SPIE.4566...30L"><span>Supporting virtual enterprise design by a web-based information model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Dong; Barn, Balbir; McKay, Alison; de Pennington, Alan</p> <p>2001-10-01</p> <p>Development of IT and its applications have led to significant changes in business processes. To pursue agility, flexibility and best service to customers, enterprises focus on their core competence and dynamically build relationships with partners to form virtual enterprises as customer driven temporary demand chains/networks. Building the networked enterprise needs responsively interactive decisions instead of a single-direction partner selection process. Benefits and risks in the combination should be systematically analysed, and aggregated information about value-adding abilities and risks of networks needs to be derived from interactions of all partners. In this research, a hierarchical information model to assess partnerships for designing virtual enterprises was developed. Internet technique has been applied to the evaluation process so that interactive decisions can be visualised and made responsively during the design process. The assessment is based on the process which allows each partner responds to requirements of the virtual enterprise by planning its operational process as a bidder. The assessment is then produced by making an aggregated value to represent prospect of the combination of partners given current bidding. Final design is a combination of partners with the greatest total value-adding capability and lowest risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28773516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28773516"><span>Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera</p> <p>2016-05-20</p> <p>Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5503064','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5503064"><span>Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera</p> <p>2016-01-01</p> <p>Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Web+AND+Engineering&id=EJ844487','ERIC'); return false;" href="https://eric.ed.gov/?q=Web+AND+Engineering&id=EJ844487"><span>Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hadjerrouit, Said</p> <p>2005-01-01</p> <p>In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=modeling+AND+relief&id=EJ158060','ERIC'); return false;" href="https://eric.ed.gov/?q=modeling+AND+relief&id=EJ158060"><span>Modeling in Ceramic Clay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Miller, Louis J.</p> <p>1976-01-01</p> <p>Modeling is an additive process of building up a sculpture with some plastic material like clay. It affords the student an opportunity to work in three dimensions, a creative relief from the general two-dimensional drawing and design activities that occupy a large segment of time in the art curriculum. (Author/RK)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=system+AND+dynamics&pg=4&id=EJ937871','ERIC'); return false;" href="https://eric.ed.gov/?q=system+AND+dynamics&pg=4&id=EJ937871"><span>Building Dynamic Conceptual Physics Understanding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Trout, Charlotte; Sinex, Scott A.; Ragan, Susan</p> <p>2011-01-01</p> <p>Models are essential to the learning and doing of science, and systems thinking is key to appreciating many environmental issues. The National Science Education Standards include models and systems in their unifying concepts and processes standard, while the AAAS Benchmarks include them in their common themes chapter. Hyerle and Marzano argue for…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=asoka&id=EJ665809','ERIC'); return false;" href="https://eric.ed.gov/?q=asoka&id=EJ665809"><span>Conducting Participatory Culture-Specific Consultation: A Global Perspective on Multicultural Consultation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Nastasi, Bonnie K.; Varjas, Kristen; Bernstein, Rachel; Iavasena, Asoka</p> <p>2000-01-01</p> <p>Describes a participatory approach to consultation that builds upon contemporary models of research and practice and is designed to address the culture-specific needs of individuals and systems. The Participatory Culture-Specific Consultation (PCSC) model embodies a participatory interpersonal process and relies on ethnographic and action research…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=communication+AND+theories+AND+models&pg=5&id=EJ1003430','ERIC'); return false;" href="https://eric.ed.gov/?q=communication+AND+theories+AND+models&pg=5&id=EJ1003430"><span>Understanding the Listening Process: Rethinking the "One Size Fits All" Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wolvin, Andrew</p> <p>2013-01-01</p> <p>Robert Bostrom's seminal contributions to listening theory and research represent an impressive legacy and provide listening scholars with important perspectives on the complexities of listening cognition and behavior. Bostrom's work provides a solid foundation on which to build models that more realistically explain how listeners function…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1074464.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1074464.pdf"><span>Arctic Climate Connections Curriculum: A Model for Bringing Authentic Data into the Classroom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gold, Anne U.; Kirk, Karin; Morrison, Deb; Lynds, Susan; Sullivan, Susan Buhr; Grachev, Andrey; Persson, Ola</p> <p>2015-01-01</p> <p>Science education can build a bridge between research carried out by scientists and relevant learning opportunities for students. The Broader Impact requirements for scientists by funding agencies facilitate this connection. We propose and test a model curriculum development process in which scientists, curriculum developers, and classroom…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1111878.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1111878.pdf"><span>Reconstructing the Theory-to-Practice Narrative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schulte, Julia</p> <p>2013-01-01</p> <p>Many teacher-development models posit teacher learning as a linear process in which teachers build skills and knowledge while progressing through different stages of expertise. Although this model is attractive for many reasons and often does seem to shed light on some of the aspects of teacher development, this author's own experience largely…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...90a2030B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...90a2030B"><span>Development of a cultural heritage object BIM model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braila, Natalya; Vakhrusheva, Svetlana; Martynenko, Elena; Kisel, Tatyana</p> <p>2017-10-01</p> <p>The BIM technology during her creation has been aimed, first of all, at design and construction branch, but its application in the field of studying and operation of architectural heritage can essentially change and transfer this kind of activity to new qualitative level. The question of effective introduction of BIM technologies at the solution of administrative questions of operation and development of monuments of architecture is considered in article. Creation of the information model of the building object of cultural heritage including a full complex of information on an object is offered: historical and archival, legal, technical, administrative, etc. The 3D model of an object of cultural heritage with color marking of elements on degree of wear and a first priority of carrying out repair will become one of components of model. This model will allow to estimate visually technical condition of the building in general and to gain general idea about scales of necessary repair and construction actions that promotes improvement of quality of operation of an object, and also simplifies and accelerates processing of information and in need of a memorial building assessment as subject to investment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA600339','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA600339"><span>Scalable Deployment of Advanced Building Energy Management Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-06-01</p> <p>Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EntIS...9..349M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EntIS...9..349M"><span>A methodology proposal for collaborative business process elaboration using a model-driven approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mu, Wenxin; Bénaben, Frédérick; Pingaud, Hervé</p> <p>2015-05-01</p> <p>Business process management (BPM) principles are commonly used to improve processes within an organisation. But they can equally be applied to supporting the design of an Information System (IS). In a collaborative situation involving several partners, this type of BPM approach may be useful to support the design of a Mediation Information System (MIS), which would ensure interoperability between the partners' ISs (which are assumed to be service oriented). To achieve this objective, the first main task is to build a collaborative business process cartography. The aim of this article is to present a method for bringing together collaborative information and elaborating collaborative business processes from the information gathered (by using a collaborative situation framework, an organisational model, an informational model, a functional model and a metamodel and by using model transformation rules).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51A1169A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51A1169A"><span>Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.</p> <p>2013-12-01</p> <p>Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19745339','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19745339"><span>Adopting software quality measures for healthcare processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yildiz, Ozkan; Demirörs, Onur</p> <p>2009-01-01</p> <p>In this study, we investigated the adoptability of software quality measures for healthcare process measurement. Quality measures of ISO/IEC 9126 are redefined from a process perspective to build a generic healthcare process quality measurement model. Case study research method is used, and the model is applied to a public hospital's Entry to Care process. After the application, weak and strong aspects of the process can be easily observed. Access audibility, fault removal, completeness of documentation, and machine utilization are weak aspects and these aspects are the candidates for process improvement. On the other hand, functional completeness, fault ratio, input validity checking, response time, and throughput time are the strong aspects of the process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20332160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20332160"><span>An integrated occupational hygiene consultation model for the catering industry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Yi-Kuei; Lee, Lien-Hsiung</p> <p>2010-07-01</p> <p>Vegetable oil used in food processing, during high-temperature exposure, will generate particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic chemical compounds, with the potential to cause lung disease for restaurant kitchen staff. This study's design includes a three-stage consultation process with eight major consultation items, in order to build an integrated consultation model for occupational hygiene. This model combines inspection and consultation, targeting Chinese restaurants in the catering industry. Characteristics of the integrated consultation model include cooperation between different government departments and collaboration with nongovernmental, professional consulting organizations. An additional benefit of the model is the building of a good partnership relationship with the Catering Trade Association. The consultation model helps Chinese restaurants attain improvements in their work environments with minimal investment. Postconsultation, results show a 63.35% and 61.98% (P < 0.001) decrease in the mean time-weighted concentration of exposure to PM and PAHs, respectively. The overall regulation compliance rate of Chinese restaurants significantly increased from 34.3% to 89.6%. These results show that the integrated consultation model for occupational hygiene not only helps small and medium enterprises reduce exposure concentrations in the workplace but also has specific potential for successful implementation in Taiwan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1539S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1539S"><span>a New Process-Oriented and Spatiotemporal Data Model for GIS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Y.</p> <p>2018-04-01</p> <p>With the rapid development of wireless sensor and information technology, there is a trend of transition from "digital monitoring" to "intelligence monitoring" advancing process. The traditional model cannot completely match the dynamic data to accurately describe changes of geographical and environmental changes. In this paper, we try to build a process-oriented and real-time spatiotemporal data model to meet the demands. With various types of monitoring devices, detection methods and the utilization of new technologies, the model can simulate the possible waterlog area in a specific year by analyzing the given data. By testing and modifying the spatiotemporal model, we can come to a rational conclusion that our model can forecast the actual situation in certain extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4457334','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4457334"><span>Parent Management Training-Oregon Model (PMTO™) in Mexico City: Integrating Cultural Adaptation Activities in an Implementation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baumann, Ana A.; Domenech Rodríguez, Melanie M.; Amador, Nancy G.; Forgatch, Marion S.; Parra-Cardona, J. Rubén</p> <p>2015-01-01</p> <p>This article describes the process of cultural adaptation at the start of the implementation of the Parent Management Training intervention-Oregon model (PMTO) in Mexico City. The implementation process was guided by the model, and the cultural adaptation of PMTO was theoretically guided by the cultural adaptation process (CAP) model. During the process of the adaptation, we uncovered the potential for the CAP to be embedded in the implementation process, taking into account broader training and economic challenges and opportunities. We discuss how cultural adaptation and implementation processes are inextricably linked and iterative and how maintaining a collaborative relationship with the treatment developer has guided our work and has helped expand our research efforts, and how building human capital to implement PMTO in Mexico supported the implementation efforts of PMTO in other places in the United States. PMID:26052184</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26052184','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26052184"><span>Parent Management Training-Oregon Model (PMTO™) in Mexico City: Integrating Cultural Adaptation Activities in an Implementation Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baumann, Ana A; Domenech Rodríguez, Melanie M; Amador, Nancy G; Forgatch, Marion S; Parra-Cardona, J Rubén</p> <p>2014-03-01</p> <p>This article describes the process of cultural adaptation at the start of the implementation of the Parent Management Training intervention-Oregon model (PMTO) in Mexico City. The implementation process was guided by the model, and the cultural adaptation of PMTO was theoretically guided by the cultural adaptation process (CAP) model. During the process of the adaptation, we uncovered the potential for the CAP to be embedded in the implementation process, taking into account broader training and economic challenges and opportunities. We discuss how cultural adaptation and implementation processes are inextricably linked and iterative and how maintaining a collaborative relationship with the treatment developer has guided our work and has helped expand our research efforts, and how building human capital to implement PMTO in Mexico supported the implementation efforts of PMTO in other places in the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.A33B..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.A33B..06S"><span>NAME Modeling and Climate Process Team</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schemm, J. E.; Williams, L. N.; Gutzler, D. S.</p> <p>2007-05-01</p> <p>NAME Climate Process and Modeling Team (CPT) has been established to address the need of linking climate process research to model development and testing activities for warm season climate prediction. The project builds on two existing NAME-related modeling efforts. One major component of this project is the organization and implementation of a second phase of NAMAP, based on the 2004 season. NAMAP2 will re-examine the metrics proposed by NAMAP, extend the NAMAP analysis to transient variability, exploit the extensive observational database provided by NAME 2004 to analyze simulation targets of special interest, and expand participation. Vertical column analysis will bring local NAME observations and model outputs together in a context where key physical processes in the models can be evaluated and improved. The second component builds on the current NAME-related modeling effort focused on the diurnal cycle of precipitation in several global models, including those implemented at NCEP, NASA and GFDL. Our activities will focus on the ability of the operational NCEP Global Forecast System (GFS) to simulate the diurnal and seasonal evolution of warm season precipitation during the NAME 2004 EOP, and on changes to the treatment of deep convection in the complicated terrain of the NAMS domain that are necessary to improve the simulations, and ultimately predictions of warm season precipitation These activities will be strongly tied to NAMAP2 to ensure technology transfer from research to operations. Results based on experiments conducted with the NCEP CFS GCM will be reported at the conference with emphasis on the impact of horizontal resolution in predicting warm season precipitation over North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr62W5...57B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr62W5...57B"><span>Bim Orientation: Grades of Generation and Information for Different Type of Analysis and Management Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banfi, F.</p> <p>2017-08-01</p> <p>Architecture, Engineering and Construction (AEC) industry is facing a great process re-engineering of the management procedures for new constructions, and recent studies show a significant increase of the benefits obtained through the use of Building Information Modelling (BIM) methodologies. This innovative approach needs new developments for information and communication technologies (ICT) in order to improve cooperation and interoperability among different actors and scientific disciplines. Accordingly, BIM could be described as a new tool capable of collect/analyse a great quantity of information (Big data) and improve the management of building during its life of cycle (LC). The main aim of this research is, in addition to a reduction in production times, reduce physical and financial resources (economic impact), to demonstrate how technology development can support a complex generative process with new digital tools (modelling impact). This paper reviews recent BIMs of different historical Italian buildings such as Basilica of Collemaggio in L'Aquila, Masegra Castle in Sondrio, Basilica of Saint Ambrose in Milan and Visconti Bridge in Lecco and carries out a methodological analysis to optimize output information and results combining different data and modelling techniques into a single hub (cloud service) through the use of new Grade of Generation (GoG) and Information (GoI) (management impact). Finally, this study shows the need to orient GoG and GoI for a different type of analysis, which requires a high Grade of Accuracy (GoA) and an Automatic Verification System (AVS ) at the same time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004NHESS...4..285S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004NHESS...4..285S"><span>Simulation of earthquake caused building damages for the development of fast reconnaissance techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schweier, C.; Markus, M.; Steinle, E.</p> <p>2004-04-01</p> <p>Catastrophic events like strong earthquakes can cause big losses in life and economic values. An increase in the efficiency of reconnaissance techniques could help to reduce the losses in life as many victims die after and not during the event. A basic prerequisite to improve the rescue teams' work is an improved planning of the measures. This can only be done on the basis of reliable and detailed information about the actual situation in the affected regions. Therefore, a bundle of projects at Karlsruhe university aim at the development of a tool for fast information retrieval after strong earthquakes. The focus is on urban areas as the most losses occur there. In this paper the approach for a damage analysis of buildings will be presented. It consists of an automatic methodology to model buildings in three dimensions, a comparison of pre- and post-event models to detect changes and a subsequent classification of the changes into damage types. The process is based on information extraction from airborne laserscanning data, i.e. digital surface models (DSM) acquired through scanning of an area with pulsed laser light. To date, there are no laserscanning derived DSMs available to the authors that were taken of areas that suffered damages from earthquakes. Therefore, it was necessary to simulate such data for the development of the damage detection methodology. In this paper two different methodologies used for simulating the data will be presented. The first method is to create CAD models of undamaged buildings based on their construction plans and alter them artificially in such a way as if they had suffered serious damage. Then, a laserscanning data set is simulated based on these models which can be compared with real laserscanning data acquired of the buildings (in intact state). The other approach is to use measurements of actual damaged buildings and simulate their intact state. It is possible to model the geometrical structure of these damaged buildings based on digital photography taken after the event by evaluating the images with photogrammetrical methods. The intact state of the buildings is simulated based on on-site investigations, and finally laserscanning data are simulated for both states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W1..473P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W1..473P"><span>Localized Segment Based Processing for Automatic Building Extraction from LiDAR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parida, G.; Rajan, K. S.</p> <p>2017-05-01</p> <p>The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1049250','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1049250"><span>Quantifying Impacts of Urban Growth Potential on Army Training Capabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-09-12</p> <p>Capacity” ERDC/CERL TR-17-34 ii Abstract Building on previous studies of urban growth and population effects on U.S. military installations and...combat team studies . CAA has developed an iterative process that builds on Military Value Anal- ysis (MVA) models that include a set of attributes that...Methods and tools were developed to support a nationwide analysis. This study focused on installations operating training areas that were high</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24960453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24960453"><span>Automatic building of a web-like structure based on thermoplastic adhesive.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leach, Derek; Wang, Liyu; Reusser, Dorothea; Iida, Fumiya</p> <p>2014-09-01</p> <p>Animals build structures to extend their control over certain aspects of the environment; e.g., orb-weaver spiders build webs to capture prey, etc. Inspired by this behaviour of animals, we attempt to develop robotics technology that allows a robot to automatically builds structures to help it accomplish certain tasks. In this paper we show automatic building of a web-like structure with a robot arm based on thermoplastic adhesive (TPA) material. The material properties of TPA, such as elasticity, adhesiveness, and low melting temperature, make it possible for a robot to form threads across an open space by an extrusion-drawing process and then combine several of these threads into a web-like structure. The problems addressed here are discovering which parameters determine the thickness of a thread and determining how web-like structures may be used for certain tasks. We first present a model for the extrusion and the drawing of TPA threads which also includes the temperature-dependent material properties. The model verification result shows that the increasing relative surface area of the TPA thread as it is drawn thinner increases the heat loss of the thread, and that by controlling how quickly the thread is drawn, a range of diameters can be achieved from 0.2-0.75 mm. We then present a method based on a generalized nonlinear finite element truss model. The model was validated and could predict the deformation of various web-like structures when payloads are added. At the end, we demonstrate automatic building of a web-like structure for payload bearing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr62W5....7A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr62W5....7A"><span>Architectural Heritage Visualization Using Interactive Technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albourae, A. T.; Armenakis, C.; Kyan, M.</p> <p>2017-08-01</p> <p>With the increased exposure to tourists, historical monuments are at an ever-growing risk of disappearing. Building Information Modelling (BIM) offers a process of digitally documenting of all the features that are made or incorporated into the building over its life-span, thus affords unique opportunities for information preservation. BIM of historical buildings are called Historical Building Information Models (HBIM). This involves documenting a building in detail throughout its history. Geomatics professionals have the potential to play a major role in this area as they are often the first professionals involved on construction development sites for many Architectural, Engineering, and Construction (AEC) projects. In this work, we discuss how to establish an architectural database of a heritage site, digitally reconstruct, preserve and then interact with it through an immersive environment that leverages BIM for exploring historic buildings. The reconstructed heritage site under investigation was constructed in the early 15th century. In our proposed approach, the site selection was based on many factors such as architectural value, size, and accessibility. The 3D model is extracted from the original collected and integrated data (Image-based, range-based, CAD modelling, and land survey methods), after which the elements of the 3D objects are identified by creating a database using the BIM software platform (Autodesk Revit). The use of modern and widely accessible game engine technology (Unity3D) is explored, allowing the user to fully embed and interact with the scene using handheld devices. The details of implementing an integrated pipeline between HBIM, GIS and augmented and virtual reality (AVR) tools and the findings of the work are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1324396-openstudio-platform-ex-ante-incentive-programs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1324396-openstudio-platform-ex-ante-incentive-programs"><span>OpenStudio: A Platform for Ex Ante Incentive Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roth, Amir; Brackney, Larry; Parker, Andrew</p> <p></p> <p>Many utilities operate programs that provide ex ante (up front) incentives for building energy conservation measures (ECMs). A typical incentive program covers two kinds of ECMs. ECMs that deliver similar savings in different contexts are associated with pre-calculated 'deemed' savings values. ECMs that deliver different savings in different contexts are evaluated on a 'custom' per-project basis. Incentive programs often operate at less than peak efficiency because both deemed ECMs and custom projects have lengthy and effort-intensive review processes--deemed ECMs to gain confidence that they are sufficiently context insensitive, custom projects to ensure that savings are claimed appropriately. DOE's OpenStudio platformmore » can be used to automate ex ante processes and help utilities operate programs more efficiently, consistently, and transparently, resulting in greater project throughput and energy savings. A key concept of the platform is the OpenStudio Measure, a script that queries and transforms building energy models. Measures can be simple or surgical, e.g., applying different transformations based on space-type, orientation, etc. Measures represent ECMs explicitly and are easier to review than ECMs that are represented implicitly as the difference between a with-ECM and without-ECM models. Measures can be automatically applied to large numbers of prototype models--and instantiated from uncertainty distributions--facilitating the large scale analysis required to develop deemed savings values. For custom projects, Measures can also be used to calibrate existing building models, to automatically create code baseline models, and to perform quality assurance screening.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......406A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......406A"><span>Probabilistic seismic vulnerability and risk assessment of stone masonry structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abo El Ezz, Ahmad</p> <p></p> <p>Earthquakes represent major natural hazards that regularly impact the built environment in seismic prone areas worldwide and cause considerable social and economic losses. The high losses incurred following the past destructive earthquakes promoted the need for assessment of the seismic vulnerability and risk of the existing buildings. Many historic buildings in the old urban centers in Eastern Canada such as Old Quebec City are built of stone masonry and represent un-measurable architectural and cultural heritage. These buildings were built to resist gravity loads only and generally offer poor resistance to lateral seismic loads. Seismic vulnerability assessment of stone masonry buildings is therefore the first necessary step in developing seismic retrofitting and pre-disaster mitigation plans. The objective of this study is to develop a set of probability-based analytical tools for efficient seismic vulnerability and uncertainty analysis of stone masonry buildings. A simplified probabilistic analytical methodology for vulnerability modelling of stone masonry building with systematic treatment of uncertainties throughout the modelling process is developed in the first part of this study. Building capacity curves are developed using a simplified mechanical model. A displacement based procedure is used to develop damage state fragility functions in terms of spectral displacement response based on drift thresholds of stone masonry walls. A simplified probabilistic seismic demand analysis is proposed to capture the combined uncertainty in capacity and demand on fragility functions. In the second part, a robust analytical procedure for the development of seismic hazard compatible fragility and vulnerability functions is proposed. The results are given by sets of seismic hazard compatible vulnerability functions in terms of structure-independent intensity measure (e.g. spectral acceleration) that can be used for seismic risk analysis. The procedure is very efficient for conducting rapid vulnerability assessment of stone masonry buildings. With modification of input structural parameters, it can be adapted and applied to any other building class. A sensitivity analysis of the seismic vulnerability modelling is conducted to quantify the uncertainties associated with each of the input parameters. The proposed methodology was validated for a scenario-based seismic risk assessment of existing buildings in Old Quebec City. The procedure for hazard compatible vulnerability modelling was used to develop seismic fragility functions in terms of spectral acceleration representative of the inventoried buildings. A total of 1220 buildings were considered. The assessment was performed for a scenario event of magnitude 6.2 at distance 15km with a probability of exceedance of 2% in 50 years. The study showed that most of the expected damage is concentrated in the old brick and stone masonry buildings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375742','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375742"><span>Temperature Mapping of 3D Printed Polymer Plates: Experimental and Numerical Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kousiatza, Charoula; Chatzidai, Nikoleta; Karalekas, Dimitris</p> <p>2017-01-01</p> <p>In Fused Deposition Modeling (FDM), which is a common thermoplastic Additive Manufacturing (AM) method, the polymer model material that is in the form of a flexible filament is heated above its glass transition temperature (Tg) to a semi-molten state in the head’s liquefier. The heated material is extruded in a rastering configuration onto the building platform where it rapidly cools and solidifies with the adjoining material. The heating and rapid cooling cycles of the work materials exhibited during the FDM process provoke non-uniform thermal gradients and cause stress build-up that consequently result in part distortions, dimensional inaccuracy and even possible part fabrication failure. Within the purpose of optimizing the FDM technique by eliminating the presence of such undesirable effects, real-time monitoring is essential for the evaluation and control of the final parts’ quality. The present work investigates the temperature distributions developed during the FDM building process of multilayered thin plates and on this basis a numerical study is also presented. The recordings of temperature changes were achieved by embedding temperature measuring sensors at various locations into the middle-plane of the printed structures. The experimental results, mapping the temperature variations within the samples, were compared to the corresponding ones obtained by finite element modeling, exhibiting good correlation. PMID:28245557</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29432761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29432761"><span>Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arsiccio, Andrea; Pisano, Roberto</p> <p>2018-06-01</p> <p>The present work shows a rational method for the development of the freezing step of a freeze-drying cycle. The current approach to the selection of freezing conditions is still empirical and nonsystematic, thus resulting in poor robustness of control strategy. The final aim of this work is to fill this gap, describing a rational procedure, based on mathematical modeling, for properly choosing the freezing conditions. Mechanistic models are used for the prediction of temperature profiles during freezing and dimension of ice crystals being formed. Mathematical description of the drying phase of freeze-drying is also coupled with the results obtained by freezing models, thus providing a comprehensive characterization of the lyophilization process. In this framework, deep understanding of the phenomena involved is required, and according to the Quality by Design approach, this knowledge can be used to build the design space. The step-by-step procedure for building the design space for freezing is thus described, and examples of applications are provided. The calculated design space is validated upon experimental data, and we show that it allows easy control of the freezing process and fast selection of appropriate operating conditions. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3863864','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3863864"><span>Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fernández-Llatas, Carlos; Meneu, Teresa; Traver, Vicente; Benedi, José-Miguel</p> <p>2013-01-01</p> <p>Born in the early nineteen nineties, evidence-based medicine (EBM) is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized. PMID:24185841</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25226417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25226417"><span>The role of mental health in primary prevention of sexual and gender-based violence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gevers, Aník; Dartnall, Elizabeth</p> <p>2014-01-01</p> <p>In this short communication, we assert that mental health has a crucial role in the primary prevention of sexual and gender-based violence (SGBV). However, we found that most research and practice to date has focused on the role of mental health post-violence, and SGBV primary prevention is relying on public health models that do not explicitly include mental health. Yet, key concepts, processes, and competencies in the mental health field appear essential to successful SGBV primary prevention. For example, empathy, self-esteem, compassion, emotional regulation and resilience, stress management, relationship building, and challenging problematic social norms are crucial. Furthermore, competencies such as rapport building, group processing, emotional nurturing, modelling, and the prevention of vicarious trauma among staff are important for the successful implementation of SGBV primary prevention programmes. SGBV primary prevention work would benefit from increased collaboration with mental health professionals and integration of key mental health concepts, processes, and skills in SGBV research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......260P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......260P"><span>Part height control of laser metal additive manufacturing process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Yu-Herng</p> <p></p> <p>Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1001593-swarm-scientific-workflow-supporting-bayesian-approaches-improve-metabolic-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1001593-swarm-scientific-workflow-supporting-bayesian-approaches-improve-metabolic-models"><span>SWARM : a scientific workflow for supporting Bayesian approaches to improve metabolic models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shi, X.; Stevens, R.; Mathematics and Computer Science</p> <p>2008-01-01</p> <p>With the exponential growth of complete genome sequences, the analysis of these sequences is becoming a powerful approach to build genome-scale metabolic models. These models can be used to study individual molecular components and their relationships, and eventually study cells as systems. However, constructing genome-scale metabolic models manually is time-consuming and labor-intensive. This property of manual model-building process causes the fact that much fewer genome-scale metabolic models are available comparing to hundreds of genome sequences available. To tackle this problem, we design SWARM, a scientific workflow that can be utilized to improve genome-scale metabolic models in high-throughput fashion. SWARM dealsmore » with a range of issues including the integration of data across distributed resources, data format conversions, data update, and data provenance. Putting altogether, SWARM streamlines the whole modeling process that includes extracting data from various resources, deriving training datasets to train a set of predictors and applying Bayesian techniques to assemble the predictors, inferring on the ensemble of predictors to insert missing data, and eventually improving draft metabolic networks automatically. By the enhancement of metabolic model construction, SWARM enables scientists to generate many genome-scale metabolic models within a short period of time and with less effort.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=customizing+AND+review&id=EJ1142863','ERIC'); return false;" href="https://eric.ed.gov/?q=customizing+AND+review&id=EJ1142863"><span>A Model to Build Capacity through a Multi-Program Curriculum Review Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dyjur, Patti; Lock, Jennifer</p> <p>2016-01-01</p> <p>Curriculum reviews are becoming more prevalent in higher educational institutions as a means to address quality assurance and improve program offerings. However, the review process can be structured so that instructors experience professional learning benefits as they work with program-level learning outcomes, map their courses, and analyze…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=learning+AND+rank&pg=7&id=EJ1155320','ERIC'); return false;" href="https://eric.ed.gov/?q=learning+AND+rank&pg=7&id=EJ1155320"><span>Building a Model of Employee Training through Holistic Analysis of Biological, Psychological, and Sociocultural Factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schenck, Andrew</p> <p>2015-01-01</p> <p>While theories of adult learning and motivation are often framed as being either biological, psychological, or sociocultural, they represent a more complex, integral process. To gain a more holistic perspective of this process, a study was designed to concurrently investigate relationships between a biological factor (age), psychological factors…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23898827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23898827"><span>Practical support aids addiction recovery: the positive identity model of change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johansen, Ayna B; Brendryen, Håvar; Darnell, Farnad J; Wennesland, Dag K</p> <p>2013-07-31</p> <p>There is a need for studies that can highlight principles of addiction recovery. Because social relationships are involved in all change processes, understanding how social motivations affect the recovery process is vital to guide support programs. The objective was to develop a model of recovery by examining addicted individuals' social motivations through longitudinal assessment of non-professional support dyads. A qualitative, longitudinal study design was used, combining focus groups and in-depth interviews with addicted individuals and their sponsors. Data were analyzed using the principles of grounded theory: open coding and memos for conceptual labelling, axial coding for category building, and selective coding for theory building. The setting was an addiction recovery social support program in Oslo, Norway. The informants included nine adults affected by addiction, six sponsors, and the program coordinator. The participants were addicted to either alcohol (2), benzodiazepines (1), pain killers (1) or polydrug-use (5). The sponsors were unpaid, and had no history of addiction problems. Support perceived to be ineffective emerged in dyads with no operationalized goal, and high emotional availability with low degree of practical support. Support perceived to be effective was signified by the sponsor attending to power imbalance and the addict coming into position to help others and feel useful. The findings appear best understood as a positive identity-model of recovery, indicated by the pursuit of skill building relevant to a non-drug using identity, and enabled by the on-going availability of instrumental support. This produced situations where role reversals were made possible, leading to increased self-esteem. Social support programs should be based on a positive identity-model of recovery that enable the building of a life-sustainable identity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3751355','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3751355"><span>Practical support aids addiction recovery: the positive identity model of change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Background There is a need for studies that can highlight principles of addiction recovery. Because social relationships are involved in all change processes, understanding how social motivations affect the recovery process is vital to guide support programs. Methods The objective was to develop a model of recovery by examining addicted individuals’ social motivations through longitudinal assessment of non-professional support dyads. A qualitative, longitudinal study design was used, combining focus groups and in-depth interviews with addicted individuals and their sponsors. Data were analyzed using the principles of grounded theory: open coding and memos for conceptual labelling, axial coding for category building, and selective coding for theory building. The setting was an addiction recovery social support program in Oslo, Norway. The informants included nine adults affected by addiction, six sponsors, and the program coordinator. The participants were addicted to either alcohol (2), benzodiazepines (1), pain killers (1) or polydrug-use (5). The sponsors were unpaid, and had no history of addiction problems. Results Support perceived to be ineffective emerged in dyads with no operationalized goal, and high emotional availability with low degree of practical support. Support perceived to be effective was signified by the sponsor attending to power imbalance and the addict coming into position to help others and feel useful. Conclusions The findings appear best understood as a positive identity-model of recovery, indicated by the pursuit of skill building relevant to a non-drug using identity, and enabled by the on-going availability of instrumental support. This produced situations where role reversals were made possible, leading to increased self-esteem. Social support programs should be based on a positive identity-model of recovery that enable the building of a life-sustainable identity. PMID:23898827</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......126S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......126S"><span>Intelligent demand side management of residential building energy systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, Maruti N.</p> <p></p> <p>Advent of modern sensing technologies, data processing capabilities and rising cost of energy are driving the implementation of intelligent systems in buildings and houses which constitute 41% of total energy consumption. The primary motivation has been to provide a framework for demand-side management and to improve overall reliability. The entire formulation is to be implemented on NILM (Non-Intrusive Load Monitoring System), a smart meter. This is going to play a vital role in the future of demand side management. Utilities have started deploying smart meters throughout the world which will essentially help to establish communication between utility and consumers. This research is focused on investigation of a suitable thermal model of residential house, building up control system and developing diagnostic and energy usage forecast tool. The present work has considered measurement based approach to pursue. Identification of building thermal parameters is the very first step towards developing performance measurement and controls. The proposed identification technique is PEM (Prediction Error Method) based, discrete state-space model. The two different models have been devised. First model is focused toward energy usage forecast and diagnostics. Here one of the novel idea has been investigated which takes integral of thermal capacity to identify thermal model of house. The purpose of second identification is to build up a model for control strategy. The controller should be able to take into account the weather forecast information, deal with the operating point constraints and at the same time minimize the energy consumption. To design an optimal controller, MPC (Model Predictive Control) scheme has been implemented instead of present thermostatic/hysteretic control. This is a receding horizon approach. Capability of the proposed schemes has also been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H32G..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H32G..02B"><span>Model Comparison in Subsurface Science: The DECOVALEX and Sim-SEQ Initiatives (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birkholzer, J. T.; Mukhopadhyay, S.; Rutqvist, J.; Tsang, C.</p> <p>2013-12-01</p> <p>Building predictive model for flow and transport processes in the subsurface is a challenging task, even more so if these processes are coupled to geomechanical and/or geochemical effects. Modelers must take into consideration a multiplicity of length scales, a wide range of time scales, the coupling between processes, different model components, and the spatial variability in the value of most model input parameters (and often limited knowledge about them). Consequently, modelers have to make choices while developing their conceptual models. Such model choices may cause a wide range in the predictions made by different models and different modeling groups, even if each of the underlying simulators has been perfectly verified against appropriate benchmarks. In other words, the modeling activity itself is prone to uncertainty and bias. This uncertainty, referred to here as model selection uncertainty, forms one of the greatest sources of uncertainty for predictive modeling. In this paper, we discuss two examples of model intercomparison exercises that are currently undertaken to better understand model selection uncertainty, elucidate system behavior, inform needs for data collection and better physics parameterizations, and enhance community understanding of capabilities. The first example is the international DECOVALEX project, which was launched in 1992 by a group of countries dealing with modeling issues related to geologic disposal of radioactive waste. DECOVALEX is an acronym for DEvelopment of COupled THM models and their VALidation against Experiments. To date, the project has progressed successfully through five stages, each of which featuring a small number of test cases for model comparison related to coupled thermo-hydro-mechanical (THM) processes in geologic systems. The test cases are proposed and developed by the organizations participating in DECOVALEX; they typically involve results from major field and laboratory experiments. Over the past decades, the DECOVALEX project has played a major role in improving our understanding of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance to performance assessment of a radioactive waste geologic repository. The second example is the Sim-SEQ project, a relatively recent model comparison initiative addressing multi-phase processes relevant in geologic carbon sequestration. Like DECOVALEX, Sim-SEQ is not about benchmarking, but rather about evaluating model building efforts in a broad and comprehensive sense. In Sim-SEQ, sixteen international modeling teams are building their own models for a specific carbon sequestration site referred to as the Sim-SEQ Study site (the S-3 site). The S-3 site is patterned after the ongoing SECARB Phase III Early Test site in southwestern Mississippi, where CO2 is injected into a fluvial sandstone unit with high vertical and lateral heterogeneity. The complex geology of the S-3 site, its location in the water leg of a CO2-EOR field with a strong water drive, and the presence of methane in the reservoir brine make this a challenging task, requiring the modelers to use their best judgment in making a large number of choices about how to model various processes and properties of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........11W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........11W"><span>Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagh, Aditi</p> <p></p> <p>Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both modalities, with students who built models not incorporating slippage explanations in responses. Study 3 compares these modalities with a control using traditional activities. Pre and posttests reveal that the two modalities manifested greater facility with accessing and assembling rules than the control. The dissertation offers implications for the design of learning environments for evolutionary change, design of the two modalities based on their strengths and weaknesses, and teacher training for the same.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16405475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16405475"><span>Building pit dewatering: application of transient analytic elements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaadnoordijk, Willem J</p> <p>2006-01-01</p> <p>Analytic elements are well suited for the design of building pit dewatering. Wells and drains can be modeled accurately by analytic elements, both nearby to determine the pumping level and at some distance to verify the targeted drawdown at the building site and to estimate the consequences in the vicinity. The ability to shift locations of wells or drains easily makes the design process very flexible. The temporary pumping has transient effects, for which transient analytic elements may be used. This is illustrated using the free, open-source, object-oriented analytic element simulator Tim(SL) for the design of a building pit dewatering near a canal. Steady calculations are complemented with transient calculations. Finally, the bandwidths of the results are estimated using linear variance analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1096373-emerging-technologies-built-environment-geographic-information-science-gis-printing-additive-manufacturing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1096373-emerging-technologies-built-environment-geographic-information-science-gis-printing-additive-manufacturing"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>New, Joshua Ryan</p> <p></p> <p>Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: Thismore » presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19087933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19087933"><span>The computational future for climate and Earth system models: on the path to petaflop and beyond.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Washington, Warren M; Buja, Lawrence; Craig, Anthony</p> <p>2009-03-13</p> <p>The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2933505','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2933505"><span>Developing a framework for transferring knowledge into action: a thematic analysis of the literature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ward, Vicky; House, Allan; Hamer, Susan</p> <p>2010-01-01</p> <p>Objectives Although there is widespread agreement about the importance of transferring knowledge into action, we still lack high quality information about what works, in which settings and with whom. Whilst there are a large number of models and theories for knowledge transfer interventions, they are untested meaning that their applicability and relevance is largely unknown. This paper describes the development of a conceptual framework of translating knowledge into action and discusses how it can be used for developing a useful model of the knowledge transfer process. Methods A narrative review of the knowledge transfer literature identified 28 different models which explained all or part of the knowledge transfer process. The models were subjected to a thematic analysis to identify individual components and the types of processes used when transferring knowledge into action. The results were used to build a conceptual framework of the process. Results Five common components of the knowledge transfer process were identified: problem identification and communication; knowledge/research development and selection; analysis of context; knowledge transfer activities or interventions; and knowledge/research utilization. We also identified three types of knowledge transfer processes: a linear process; a cyclical process; and a dynamic multidirectional process. From these results a conceptual framework of knowledge transfer was developed. The framework illustrates the five common components of the knowledge transfer process and shows that they are connected via a complex, multidirectional set of interactions. As such the framework allows for the individual components to occur simultaneously or in any given order and to occur more than once during the knowledge transfer process. Conclusion Our framework provides a foundation for gathering evidence from case studies of knowledge transfer interventions. We propose that future empirical work is designed to test and refine the relevant importance and applicability of each of the components in order to build more useful models of knowledge transfer which can serve as a practical checklist for planning or evaluating knowledge transfer activities. PMID:19541874</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9244E..0TB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9244E..0TB"><span>Very fast road database verification using textured 3D city models obtained from airborne imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bulatov, Dimitri; Ziems, Marcel; Rottensteiner, Franz; Pohl, Melanie</p> <p>2014-10-01</p> <p>Road databases are known to be an important part of any geodata infrastructure, e.g. as the basis for urban planning or emergency services. Updating road databases for crisis events must be performed quickly and with the highest possible degree of automation. We present a semi-automatic algorithm for road verification using textured 3D city models, starting from aerial or even UAV-images. This algorithm contains two processes, which exchange input and output, but basically run independently from each other. These processes are textured urban terrain reconstruction and road verification. The first process contains a dense photogrammetric reconstruction of 3D geometry of the scene using depth maps. The second process is our core procedure, since it contains various methods for road verification. Each method represents a unique road model and a specific strategy, and thus is able to deal with a specific type of roads. Each method is designed to provide two probability distributions, where the first describes the state of a road object (correct, incorrect), and the second describes the state of its underlying road model (applicable, not applicable). Based on the Dempster-Shafer Theory, both distributions are mapped to a single distribution that refers to three states: correct, incorrect, and unknown. With respect to the interaction of both processes, the normalized elevation map and the digital orthophoto generated during 3D reconstruction are the necessary input - together with initial road database entries - for the road verification process. If the entries of the database are too obsolete or not available at all, sensor data evaluation enables classification of the road pixels of the elevation map followed by road map extraction by means of vectorization and filtering of the geometrically and topologically inconsistent objects. Depending on the time issue and availability of a geo-database for buildings, the urban terrain reconstruction procedure has semantic models of buildings, trees, and ground as output. Building s and ground are textured by means of available images. This facilitates the orientation in the model and the interactive verification of the road objects that where initially classified as unknown. The three main modules of the texturing algorithm are: Pose estimation (if the videos are not geo-referenced), occlusion analysis, and texture synthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040066084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040066084"><span>Combining Model-driven and Schema-based Program Synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Denney, Ewen; Whittle, John</p> <p>2004-01-01</p> <p>We describe ongoing work which aims to extend the schema-based program synthesis paradigm with explicit models. In this context, schemas can be considered as model-to-model transformations. The combination of schemas with explicit models offers a number of advantages, namely, that building synthesis systems becomes much easier since the models can be used in verification and in adaptation of the synthesis systems. We illustrate our approach using an example from signal processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1170597','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1170597"><span>Achieving Energy Savings in Municipal Construction in Long Beach, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Parrish, Kristen; Regnier, Cindy</p> <p></p> <p>Long Beach Gas and Oil (LBGO), the public gas utility in Long Beach, California, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy modular office building that is at least 50% below requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) program.3 The LBGO building, which demonstrates that modular construction can be very energy efficient, is expected to exceed the ASHRAEmore » baseline by about 45%. The new 15,000-square foot (ft2) LBGO office building has two stories and houses private offices, open-plan cubicle offices, and a conference room and call center on the second floor. The building’s modular nature allowed LBGO to realize the cost benefits of fasttracked construction while saving substantial energy and reducing operational costs. The project was funded by the utility’s ratepayer revenue, which imposed a tight budget limit. The design process was a collaborative effort involving LBGO and its design-build team, Lawrence Berkeley National Laboratory (Berkeley Lab), and subcontractors Stantec (formerly Burt Hill) and LHB Inc. The team proposed efficiency measures based on computer modeling of the building in full compliance with ASHRAE 90.1-2007; in the modeled building, the lighting and cooling systems were the largest energy users, so increasing the efficiency of these systems was a top priority. Promising measures were modeled to estimate their energy performance, and each measure was evaluated for its feasibility within the budget.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11765624','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11765624"><span>The second phase in creating the cardiac center for the next generation: beyond structure to process improvement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woods, J</p> <p>2001-01-01</p> <p>The third generation cardiac institute will build on the successes of the past in structuring the service line, re-organizing to assimilate specialist interests, and re-positioning to expand cardiac services into cardiovascular services. To meet the challenges of an increasingly competitive marketplace and complex delivery system, the focus for this new model will shift away from improved structures, and toward improved processes. This shift will require a sound methodology for statistically measuring and sustaining process changes related to the optimization of cardiovascular care. In recent years, GE Medical Systems has successfully applied Six Sigma methodologies to enable cardiac centers to control key clinical and market development processes through its DMADV, DMAIC and Change Acceleration processes. Data indicates Six Sigma is having a positive impact within organizations across the United States, and when appropriately implemented, this approach can serve as a solid foundation for building the next generation cardiac institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6752E..34C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6752E..34C"><span>Research on application of intelligent computation based LUCC model in urbanization process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zemin</p> <p>2007-06-01</p> <p>Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPRS..119..334I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPRS..119..334I"><span>Slicing Method for curved façade and window extraction from point clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iman Zolanvari, S. M.; Laefer, Debra F.</p> <p>2016-09-01</p> <p>Laser scanning technology is a fast and reliable method to survey structures. However, the automatic conversion of such data into solid models for computation remains a major challenge, especially where non-rectilinear features are present. Since, openings and the overall dimensions of the buildings are the most critical elements in computational models for structural analysis, this article introduces the Slicing Method as a new, computationally-efficient method for extracting overall façade and window boundary points for reconstructing a façade into a geometry compatible for computational modelling. After finding a principal plane, the technique slices a façade into limited portions, with each slice representing a unique, imaginary section passing through a building. This is done along a façade's principal axes to segregate window and door openings from structural portions of the load-bearing masonry walls. The method detects each opening area's boundaries, as well as the overall boundary of the façade, in part, by using a one-dimensional projection to accelerate processing. Slices were optimised as 14.3 slices per vertical metre of building and 25 slices per horizontal metre of building, irrespective of building configuration or complexity. The proposed procedure was validated by its application to three highly decorative, historic brick buildings. Accuracy in excess of 93% was achieved with no manual intervention on highly complex buildings and nearly 100% on simple ones. Furthermore, computational times were less than 3 sec for data sets up to 2.6 million points, while similar existing approaches required more than 16 hr for such datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3303067D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3303067D"><span>Modeling work of the dispatching service of high-rise building as queuing system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dement'eva, Marina; Dement'eva, Anastasiya</p> <p>2018-03-01</p> <p>The article presents the results of calculating the performance indicators of the dispatcher service of a high-rise building as a queuing system with an unlimited queue. The calculation was carried out for three models: with a single control room and brigade of service, with a single control room and a specialized service, with several dispatch centers and specialized services. The aim of the work was to investigate the influence of the structural scheme of the organization of the dispatcher service of a high-rise building on the amount of operating costs and the time of processing and fulfilling applications. The problems of high-rise construction and their impact on the complication of exploitation are analyzed. The composition of exploitation activities of high-rise buildings is analyzed. The relevance of the study is justified by the need to review the role of dispatch services in the structure of management of the quality of buildings. Dispatching service from the lower level of management of individual engineering systems becomes the main link in the centralized automated management of the exploitation of high-rise buildings. With the transition to market relations, the criterion of profitability at the organization of the dispatching service becomes one of the main parameters of the effectiveness of its work. A mathematical model for assessing the efficiency of the dispatching service on a set of quality of service indicators is proposed. The structure of operating costs is presented. The algorithm of decision-making is given when choosing the optimal structural scheme of the dispatching service of a high-rise building.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1773610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1773610"><span>Object-oriented design and programming in medical decision support.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heathfield, H; Armstrong, J; Kirkham, N</p> <p>1991-12-01</p> <p>The concept of object-oriented design and programming has recently received a great deal of attention from the software engineering community. This paper highlights the realisable benefits of using the object-oriented approach in the design and development of clinical decision support systems. These systems seek to build a computational model of some problem domain and therefore tend to be exploratory in nature. Conventional procedural design techniques do not support either the process of model building or rapid prototyping. The central concepts of the object-oriented paradigm are introduced, namely encapsulation, inheritance and polymorphism, and their use illustrated in a case study, taken from the domain of breast histopathology. In particular, the dual roles of inheritance in object-oriented programming are examined, i.e., inheritance as a conceptual modelling tool and inheritance as a code reuse mechanism. It is argued that the use of the former is not entirely intuitive and may be difficult to incorporate into the design process. However, inheritance as a means of optimising code reuse offers substantial technical benefits.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H53K..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H53K..07D"><span>The dynamics of human-water systems: comparing observations and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.</p> <p>2016-12-01</p> <p>Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46429','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46429"><span>A general equilibrium model of ecosystem services in a river basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Travis Warziniack</p> <p>2014-01-01</p> <p>This study builds a general equilibrium model of ecosystem services, with sectors of the economy competing for use of the environment. The model recognizes that production processes in the real world require a combination of natural and human inputs, and understanding the value of these inputs and their competing uses is necessary when considering policies of resource...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=SCHOOL+AND+GARDEN&pg=5&id=EJ947230','ERIC'); return false;" href="https://eric.ed.gov/?q=SCHOOL+AND+GARDEN&pg=5&id=EJ947230"><span>Intrinsic Motivation and Engagement as "Active Ingredients" in Garden-Based Education: Examining Models and Measures Derived from Self-Determination Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Skinner, Ellen A.; Chi, Una</p> <p>2012-01-01</p> <p>Building on self-determination theory, this study presents a model of intrinsic motivation and engagement as "active ingredients" in garden-based education. The model was used to create reliable and valid measures of key constructs, and to guide the empirical exploration of motivational processes in garden-based learning. Teacher- and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/876739','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/876739"><span>Groundwater Model Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ahmed E. Hassan</p> <p>2006-01-24</p> <p>Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process ofmore » stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation data to constrain model input parameters is shown for the second case study using a Bayesian approach known as Markov Chain Monte Carlo. The approach shows a great potential to be helpful in the validation process and in incorporating prior knowledge with new field data to derive posterior distributions for both model input and output.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Stonehenge&id=EJ635650','ERIC'); return false;" href="https://eric.ed.gov/?q=Stonehenge&id=EJ635650"><span>Reconstructing an Ancient Wonder.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Imhof, Christopher J.</p> <p>2001-01-01</p> <p>Describes a Montessori class project involving the building of a model of the ancient Briton monument, Stonehenge. Illustrates how the flexibility of the Montessori elementary curriculum encourages children to make their own toys and learn from the process. (JPB)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1366406-metal-big-area-additive-manufacturing-process-modeling-validation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1366406-metal-big-area-additive-manufacturing-process-modeling-validation"><span>Metal Big Area Additive Manufacturing: Process Modeling and Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Simunovic, Srdjan; Nycz, Andrzej; Noakes, Mark W</p> <p></p> <p>Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology for printing large-scale 3D objects. mBAAM is based on the gas metal arc welding process and uses a continuous feed of welding wire to manufacture an object. An electric arc forms between the wire and the substrate, which melts the wire and deposits a bead of molten metal along the predetermined path. In general, the welding process parameters and local conditions determine the shape of the deposited bead. The sequence of the bead deposition and the corresponding thermal history of the manufactured object determine the long rangemore » effects, such as thermal-induced distortions and residual stresses. Therefore, the resulting performance or final properties of the manufactured object are dependent on its geometry and the deposition path, in addition to depending on the basic welding process parameters. Physical testing is critical for gaining the necessary knowledge for quality prints, but traversing the process parameter space in order to develop an optimized build strategy for each new design is impractical by pure experimental means. Computational modeling and optimization may accelerate development of a build process strategy and saves time and resources. Because computational modeling provides these opportunities, we have developed a physics-based Finite Element Method (FEM) simulation framework and numerical models to support the mBAAM process s development and design. In this paper, we performed a sequentially coupled heat transfer and stress analysis for predicting the final deformation of a small rectangular structure printed using the mild steel welding wire. Using the new simulation technologies, material was progressively added into the FEM simulation as the arc weld traversed the build path. In the sequentially coupled heat transfer and stress analysis, the heat transfer was performed to calculate the temperature evolution, which was used in a stress analysis to evaluate the residual stresses and distortions. In this formulation, we assume that physics is directionally coupled, i.e. the effect of stress of the component on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........14F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........14F"><span>Electricity Markets, Smart Grids and Smart Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Falcey, Jonathan M.</p> <p></p> <p>A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable accuracy can be determined. While this work shows that a combination of a deterministic and statistical methods can accurately forecast building energy usage, the ability to produce accurate results is heavily dependent upon software availability, accurate data and the proper calibration of the model. Creating the software required for a smart building model is time consuming and expensive. Bad or missing data have significant negative impacts on the accuracy of the results and can be caused by a hodgepodge of equipment and communication protocols. Proper calibration of the model is essential to ensure that the device level estimations are sufficiently accurate. Any building model which is to be successful at creating a smart building must be able to overcome these challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940030930','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940030930"><span>Modeling and managing risk early in software development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Briand, Lionel C.; Thomas, William M.; Hetmanski, Christopher J.</p> <p>1993-01-01</p> <p>In order to improve the quality of the software development process, we need to be able to build empirical multivariate models based on data collectable early in the software process. These models need to be both useful for prediction and easy to interpret, so that remedial actions may be taken in order to control and optimize the development process. We present an automated modeling technique which can be used as an alternative to regression techniques. We show how it can be used to facilitate the identification and aid the interpretation of the significant trends which characterize 'high risk' components in several Ada systems. Finally, we evaluate the effectiveness of our technique based on a comparison with logistic regression based models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008036&hterms=BIM&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBIM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008036&hterms=BIM&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DBIM"><span>Virtual Construction of Space Habitats: Connecting Building Information Models (BIM) and SysML</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Polit-Casillas, Raul; Howe, A. Scott</p> <p>2013-01-01</p> <p>Current trends in design, construction and management of complex projects make use of Building Information Models (BIM) connecting different types of data to geometrical models. This information model allow different types of analysis beyond pure graphical representations. Space habitats, regardless their size, are also complex systems that require the synchronization of many types of information and disciplines beyond mass, volume, power or other basic volumetric parameters. For this, the state-of-the-art model based systems engineering languages and processes - for instance SysML - represent a solid way to tackle this problem from a programmatic point of view. Nevertheless integrating this with a powerful geometrical architectural design tool with BIM capabilities could represent a change in the workflow and paradigm of space habitats design applicable to other aerospace complex systems. This paper shows some general findings and overall conclusions based on the ongoing research to create a design protocol and method that practically connects a systems engineering approach with a BIM architectural and engineering design as a complete Model Based Engineering approach. Therefore, one hypothetical example is created and followed during the design process. In order to make it possible this research also tackles the application of IFC categories and parameters in the aerospace field starting with the application upon the space habitats design as way to understand the information flow between disciplines and tools. By building virtual space habitats we can potentially improve in the near future the way more complex designs are developed from very little detail from concept to manufacturing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2302001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2302001A"><span>Sustainable Design Approach: A case study of BIM use</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdelhameed, Wael</p> <p>2017-11-01</p> <p>Achieving sustainable design in areas such as energy-efficient design depends largely on the accuracy of the analysis performed after the design is completed with all its components and material details. There are different analysis approaches and methods that predict relevant values and metrics such as U value, energy use and energy savings. Although certain differences in the accuracy of these approaches and methods have been recorded, this research paper does not focus on such matter, where determining the reason for discrepancies between those approaches and methods is difficult, because all error sources act simultaneously. The research paper rather introduces an approach through which BIM, building information modelling, can be utilised during the initial phases of the designing process, by analysing the values and metrics of sustainable design before going into the design details of a building. Managing all of the project drawings in a single file, BIM -building information modelling- is well known as one digital platform that offers a multidisciplinary detailed design -AEC model (Barison and Santos, 2010, Welle et.al., 2011). The paper presents in general BIM use in the early phases of the design process, in order to achieve certain required areas of sustainable design. The paper proceeds to introduce BIM use in specific areas such as site selection, wind velocity and building orientation, in terms of reaching the farther possible sustainable solution. In the initial phases of designing, material details and building components are not fully specified or selected yet. The designer usually focuses on zoning, topology, circulations, and other design requirements. The proposed approach employs the strategies and analysis of BIM use during those initial design phases in order to have the analysis and results of each solution or alternative design. The stakeholders and designers would have a better effective decision making process with a full clarity of each alternative's consequences. The architect would settle down and proceed in the alternative design of the best sustainable analysis. In later design stages, using the sustainable types of materials such as insulation, cladding, etc., and applying sustainable building components such as doors, windows, etc. would add more improvements and enhancements in reaching better values and metrics. The paper describes the methodology of this design approach through BIM strategies adopted in design creation. Case studies of architectural designs are used to highlight the details and benefits of this proposed approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.745c2036S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.745c2036S"><span>Study of potential nonconformities of a new recreation center building's envelope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanescu, M.; Kajl, S.; Lamarche, L.</p> <p>2016-09-01</p> <p>This article presents a building envelope's analysis in order to verify the compliance with mandatory provisions of the Model National Energy Code for Buildings in Canada (MNECB 1997). Because some of the requirements are «not met», investigations were carried out to provide justifications in order to prove that the building can be considered as an exception to the mandatory provisions of MNECB. Therefore, we evaluate the impact of three (3) potential nonconformities of the building's walls on the building energy performance. In regards to article 3.1.1.1.4 of MNECB, there is an exception if it can be proved that permanent process (like heat recovery of refrigeration compressors) can produce at all times enough heat that no other heating source is required. First of all, by using simulation, we were able to indicate that almost all building's heating will be provided by energy recovery from ice rinks refrigeration systems (99.2%). Secondly, by using an energy analysis carried out with HEAT2 software, we can show that the increase of heating energy demand caused by the 3 studied walls is very low. This represents an increase of the heating energy demand of only 0.2%, and this, regardless of the heat recovery process. Because the nonconforming wall sections are small (0.97% of the envelope area), this mainly explains the minor impact in terms of building performance. In conclusion, according to the results obtained, we were able to recommend the building for consideration as an exception to the mandatory provisions of MNECB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA184919','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA184919"><span>A Model for Effective Performance in the Indonesian Navy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-06-01</p> <p>Navy LMET I AWBRAC’ (COAGAU0 OAl reVerie of necoiuary and .dfmtk by block num"ber) 7,- This thesis describes a process of designing a management ...effective from ineffective manager . In the process of building the model two main steps are taken. First, a literature study of the empirical analysis of... management competencies was conducted to identify management competencies in the United States in general and the U.S. Navy in particular. Second, a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015d2006B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015d2006B"><span>Strategic planning toolset for reproduction of machinebuilding engines and equipment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyko, A. A.; Kukartsev, V. V.; Lobkov, K. Y.; Stupina, A. A.</p> <p>2018-05-01</p> <p>This article illustrates a replica of a dynamic model of machine-building equipment. The model was designed on the basis of a ‘system dynamics method’ including the Powersim Studio toolset. The given model provides the basis and delineates the reproduction process of equipment in its natural as well as appraisal forms. The presented model was employed as a tool to explore reproduction of a wide range of engines and equipment in machine-building industry. As a result of these experiments, a variety of reproducible options were revealed which include productive capacity and distribution of equipment among technology groups. The authors’ research concludes that the replica of the dynamic model designed by us has proved to be universal. This also opens the way for further research exploring a wide range of industrial equipment reproduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4538588','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4538588"><span>Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction Projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project. PMID:26339227</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26339227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26339227"><span>Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction Projects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shin, Yoonseok</p> <p>2015-01-01</p> <p>Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in other domains. Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven to have a high performance in cost estimation domains. The BRT model has shown results similar to those of NN model using 234 actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the importance plot and structure model, which can support estimators in comprehending the decision making process. Consequently, the boosting approach has potential applicability in preliminary cost estimations in a building construction project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.953a2056A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.953a2056A"><span>A new model in achieving Green Accounting at hotels in Bali</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Astawa, I. P.; Ardina, C.; Yasa, I. M. S.; Parnata, I. K.</p> <p>2018-01-01</p> <p>The concept of green accounting becomes a debate in terms of its implementation in a company. The result of previous studies indicates that there are no standard model regarding its implementation to support performance. The research aims to create a different green accounting model to other models by using local cultural elements as the variables in building it. The research is conducted in two steps. The first step is designing the model based on theoretical studies by considering the main and supporting elements in building the concept of green accounting. The second step is conducting a model test at 60 five stars hotels started with data collection through questionnaire and followed by data processing using descriptive statistic. The result indicates that the hotels’ owner has implemented green accounting attributes and it supports previous studies. Another result, which is a new finding, shows that the presence of local culture, government regulation, and the awareness of hotels’ owner has important role in the development of green accounting concept. The results of the research give contribution to accounting science in terms of green reporting. The hotel management should adopt local culture in building the character of accountant hired in the accounting department.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAr.XL4..189L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAr.XL4..189L"><span>Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, I.-C.; Tsai, F.</p> <p>2015-05-01</p> <p>A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22496165-processing-system-jaws-tomograms-pathology-identification-surgical-guide-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22496165-processing-system-jaws-tomograms-pathology-identification-surgical-guide-modeling"><span>Processing system of jaws tomograms for pathology identification and surgical guide modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Putrik, M. B., E-mail: pmb-88@mail.ru; Ivanov, V. Yu.; Lavrentyeva, Yu. E.</p> <p></p> <p>The aim of the study is to create an image processing system, which allows dentists to find pathological resorption and to build surgical guide surface automatically. X-rays images of jaws from cone beam tomography or spiral computed tomography are the initial data for processing. One patient’s examination always includes up to 600 images (or tomograms), that’s why the development of processing system for fast automation search of pathologies is necessary. X-rays images can be useful not for only illness diagnostic but for treatment planning too. We have studied the case of dental implantation – for successful surgical manipulations surgical guidesmore » are used. We have created a processing system that automatically builds jaw and teeth boundaries on the x-ray image. After this step, obtained teeth boundaries used for surgical guide surface modeling and jaw boundaries limit the area for further pathologies search. Criterion for the presence of pathological resorption zones inside the limited area is based on statistical investigation. After described actions, it is possible to manufacture surgical guide using 3D printer and apply it in surgical operation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED465625.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED465625.pdf"><span>Discrepant Questioning as a Tool To Build Complex Mental Models of Respiration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rea-Ramirez, Mary Anne; Nunez-Oviedo, Maria C.</p> <p></p> <p>Discrepant questioning is a teaching technique that can help students "unlearn" misconceptions and process science ideas for deep understanding. Discrepant questioning is a technique in which teachers question students in a way that requires them to examine their ideas or models, without giving information prematurely to the student or passing…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED375263.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED375263.pdf"><span>Implementing the Indiana Model. Indiana Leadership Consortium: Equity through Change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Indiana Leadership Consortium.</p> <p></p> <p>This guide, which was developed as a part of a multi-year, statewide effort to institutionalize gender equity in various educational settings throughout Indiana, presents a step-by-step process model for achieving gender equity in the state's secondary- and postsecondary-level vocational programs through coalition building and implementation of a…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=job+AND+satisfaction+AND+income&pg=6&id=EJ992488','ERIC'); return false;" href="https://eric.ed.gov/?q=job+AND+satisfaction+AND+income&pg=6&id=EJ992488"><span>Parent Resources during Adolescence: Effects on Education and Careers in Young Adulthood</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Faas, Caitlin; Benson, Mark J.; Kaestle, Christine E.</p> <p>2013-01-01</p> <p>Building on the Wisconsin Model of Status Attainment, this study examined the contextual process of obtaining educational attainment and the subsequent work outcomes and career satisfaction. This study used the National Longitudinal Study of Adolescent Health (Add Health) with structural equation modeling techniques to assess US participants from…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=law&pg=3&id=EJ1150302','ERIC'); return false;" href="https://eric.ed.gov/?q=law&pg=3&id=EJ1150302"><span>Students' Development of Structure Sense for the Distributive Law</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schüler-Meyer, Alexander</p> <p>2017-01-01</p> <p>After being introduced to the distributive law in meaningful contexts, students need to extend its scope of application to unfamiliar expressions. In this article, a process model for the development of structure sense is developed. Building on this model, this article reports on a design research project in which exercise tasks support students…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/15894','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/15894"><span>Using sampling theory as the basis for a conceptual data model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Fred C. Martin; Tonya Baggett; Tom Wolfe</p> <p>2000-01-01</p> <p>Greater demands on forest resources require that larger amounts of information be readily available to decisionmakers. To provide more information faster, databases must be developed that are more comprehensive and easier to use. Data modeling is a process for building more complete and flexible databases by emphasizing fundamental relationships over existing or...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=office+AND+managers&pg=6&id=ED528550','ERIC'); return false;" href="https://eric.ed.gov/?q=office+AND+managers&pg=6&id=ED528550"><span>Knowledge Management in Preserving Ecosystems: The Case of Seoul</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lee, Jeongseok</p> <p>2009-01-01</p> <p>This study explores the utility of employing knowledge management as a framework for understanding how public managers perform ecosystem management. It applies the grounded theory method to build a model. The model is generated by applying the concept of knowledge process to an investigation of how the urban ecosystem is publicly managed by civil…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=PROMOTING+AND+HEALTH+AND+SCHOOLS&pg=2&id=EJ922515','ERIC'); return false;" href="https://eric.ed.gov/?q=PROMOTING+AND+HEALTH+AND+SCHOOLS&pg=2&id=EJ922515"><span>Promoting Connectedness through Whole-School Approaches: Key Elements and Pathways of Influence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rowe, Fiona; Stewart, Donald</p> <p>2011-01-01</p> <p>Purpose: A comprehensive whole-school approach has emerged as a promising model for building connectedness in the school setting. The health-promoting school model, through its whole-school orientation and attention to the school organizational environment, identifies structures and processes that influence school connectedness. This paper aims to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Science+AND+Society&id=ED577141','ERIC'); return false;" href="https://eric.ed.gov/?q=Science+AND+Society&id=ED577141"><span>Modeling Comprehension Processes via Automated Analyses of Dialogism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dascalu, Mihai; Allen, Laura K.; McNamara, Danielle S.; Trausan-Matu, Stefan; Crossley, Scott A.</p> <p>2017-01-01</p> <p>Dialogism provides the grounds for building a comprehensive model of discourse and it is focused on the multiplicity of perspectives (i.e., voices). Dialogism can be present in any type of text, while voices become themes or recurrent topics emerging from the discourse. In this study, we examine the extent that differences between…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29076777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29076777"><span>An estimation framework for building information modeling (BIM)-based demolition waste by type.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Young-Chan; Hong, Won-Hwa; Park, Jae-Woo; Cha, Gi-Wook</p> <p>2017-12-01</p> <p>Most existing studies on demolition waste (DW) quantification do not have an official standard to estimate the amount and type of DW. Therefore, there are limitations in the existing literature for estimating DW with a consistent classification system. Building information modeling (BIM) is a technology that can generate and manage all the information required during the life cycle of a building, from design to demolition. Nevertheless, there has been a lack of research regarding its application to the demolition stage of a building. For an effective waste management plan, the estimation of the type and volume of DW should begin from the building design stage. However, the lack of tools hinders an early estimation. This study proposes a BIM-based framework that estimates DW in the early design stages, to achieve an effective and streamlined planning, processing, and management. Specifically, the input of construction materials in the Korean construction classification system and those in the BIM library were matched. Based on this matching integration, the estimates of DW by type were calculated by applying the weight/unit volume factors and the rates of DW volume change. To verify the framework, its operation was demonstrated by means of an actual BIM modeling and by comparing its results with those available in the literature. This study is expected to contribute not only to the estimation of DW at the building level, but also to the automated estimation of DW at the district level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4893429','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4893429"><span>An Artificial Intelligence System to Predict Quality of Service in Banking Organizations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Popovič, Aleš</p> <p>2016-01-01</p> <p>Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge. PMID:27313604</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27313604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27313604"><span>An Artificial Intelligence System to Predict Quality of Service in Banking Organizations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castelli, Mauro; Manzoni, Luca; Popovič, Aleš</p> <p>2016-01-01</p> <p>Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title23-vol1/pdf/CFR-2014-title23-vol1-sec636-109.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title23-vol1/pdf/CFR-2014-title23-vol1-sec636-109.pdf"><span>23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-04-01</p> <p>... 23 Highways 1 2014-04-01 2014-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title23-vol1/pdf/CFR-2011-title23-vol1-sec636-109.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title23-vol1/pdf/CFR-2011-title23-vol1-sec636-109.pdf"><span>23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-04-01</p> <p>... 23 Highways 1 2011-04-01 2011-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title23-vol1/pdf/CFR-2010-title23-vol1-sec636-109.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title23-vol1/pdf/CFR-2010-title23-vol1-sec636-109.pdf"><span>23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-04-01</p> <p>... 23 Highways 1 2010-04-01 2010-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title23-vol1/pdf/CFR-2012-title23-vol1-sec636-109.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title23-vol1/pdf/CFR-2012-title23-vol1-sec636-109.pdf"><span>23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-04-01</p> <p>... 23 Highways 1 2012-04-01 2012-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title23-vol1/pdf/CFR-2013-title23-vol1-sec636-109.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title23-vol1/pdf/CFR-2013-title23-vol1-sec636-109.pdf"><span>23 CFR 636.109 - How does the NEPA process relate to the design-build procurement process?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-04-01</p> <p>... 23 Highways 1 2013-04-01 2013-04-01 false How does the NEPA process relate to the design-build... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING General § 636.109 How does the NEPA process relate to the design-build procurement process? The purpose of this section is to ensure that...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12393925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12393925"><span>Automated structure solution, density modification and model building.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terwilliger, Thomas C</p> <p>2002-11-01</p> <p>The approaches that form the basis of automated structure solution in SOLVE and RESOLVE are described. The use of a scoring scheme to convert decision making in macromolecular structure solution to an optimization problem has proven very useful and in many cases a single clear heavy-atom solution can be obtained and used for phasing. Statistical density modification is well suited to an automated approach to structure solution because the method is relatively insensitive to choices of numbers of cycles and solvent content. The detection of non-crystallographic symmetry (NCS) in heavy-atom sites and checking of potential NCS operations against the electron-density map has proven to be a reliable method for identification of NCS in most cases. Automated model building beginning with an FFT-based search for helices and sheets has been successful in automated model building for maps with resolutions as low as 3 A. The entire process can be carried out in a fully automatic fashion in many cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29610050','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29610050"><span>UPMC's blueprint for BuILDing a high-value health care system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keyser, Donna; Kogan, Jane; McGowan, Marion; Peele, Pamela; Holder, Diane; Shrank, William</p> <p>2018-03-30</p> <p>National-level demonstration projects and real-world studies continue to inform health care transformation efforts and catalyze implementation of value-based service delivery and payment models, though evidence generation and diffusion of learnings often occurs at a relatively slow pace. Rapid-cycle learning models, however, can help individual organizations to more quickly adapt health care innovations to meet the challenges and demands of a rapidly changing health care landscape. Integrated delivery and financing systems (IDFSs) offer a unique platform for rapid-cycle learning and innovation. Since both the provider and payer benefit from delivering care that enhances the patient experience, improves quality, and reduces cost, incentives are aligned to experiment with value-based models, enhance learning about what works and why, and contribute to solutions that can accelerate transformation. In this article, we describe how the UPMC Insurance Services Division, as part of a large IDFS, uses its Business, Innovation, Learning, and Dissemination (BuILD) model to prioritize, design, test, and refine health care innovations and accelerate learning. We provide examples of how the BuILD model offers an approach for quickly assessing the impact and value of health care transformation efforts. Lessons learned through the BuILD process will offer insights and guidance for a wide range of stakeholders whether an IDFS or independent payer-provider collaborators. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W4..261L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W4..261L"><span>Metric Survey and Bim Technologies to Record Decay Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo Turco, M.; Mattone, M.; Rinaudo, F.</p> <p>2017-05-01</p> <p>The paper proposes a method able to describe, classify and organize information assets concerned with Architectural Heritage, through the use of integrated survey procedures, mainly based on Terrestrial Laser Scanner (TLS). The point clouds are then imported into the Building Information Modeling (BIM) software to start with the modeling phase. With regard to this issue, in the last period Building Information Modeling is emerging as the most reliable method to manage architectural design and building processes. Literature supplies both theoretical approaches and several practical applications. However, very little researches are devoted to BIM applied to historical architecture, even if some initial results indicate the actual HBIM (Historic/Heritage BIM) as a possible instrument for the design of an intervention aimed at the conservation of the Cultural Heritage. The focus of the research is the creation of parametric objects representing the preservation status of materials and building components: 3D modeling of decays in the BIM platform ensures to enrich the related database with graphic, geometric and alphanumeric data that can be effectively used to design and manage future interventions. The added value consists in its capability to associate new parameters that describe both the state of conservation of the materials and the detailed description of interventions needed to restore the building. The analyzed case study belongs to Ferrovie dello Stato (the main Italian Railways company) and it is part of the maintenance area, which was originally constituted by a roundhouse containing 51 sheltered railroad tracks and two big sheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900016648','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900016648"><span>Enroute flight planning: The design of cooperative planning systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Philip J.; Layton, Chuck; Mccoy, Elaine</p> <p>1990-01-01</p> <p>Design concepts and principles to guide in the building of cooperative problem solving systems are being developed and evaluated. In particular, the design of cooperative systems for enroute flight planning is being studied. The investigation involves a three stage process, modeling human performance in existing environments, building cognitive artifacts, and studying the performance of people working in collaboration with these artifacts. The most significant design concepts and principles identified thus far are the principle focus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24354782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24354782"><span>Cross-cultural differences in processing of architectural ranking: evidence from an event-related potential study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mecklinger, Axel; Kriukova, Olga; Mühlmann, Heiner; Grunwald, Thomas</p> <p>2014-01-01</p> <p>Visual object identification is modulated by perceptual experience. In a cross-cultural ERP study we investigated whether cultural expertise determines how buildings that vary in their ranking between high and low according to the Western architectural decorum are perceived. Two groups of German and Chinese participants performed an object classification task in which high- and low-ranking Western buildings had to be discriminated from everyday life objects. ERP results indicate that an early stage of visual object identification (i.e., object model selection) is facilitated for high-ranking buildings for the German participants, only. At a later stage of object identification, in which object knowledge is complemented by information from semantic and episodic long-term memory, no ERP evidence for cultural differences was obtained. These results suggest that the identification of architectural ranking is modulated by culturally specific expertise with Western-style architecture already at an early processing stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1438728','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1438728"><span>Data mining and statistical inference in selective laser melting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kamath, Chandrika</p> <p></p> <p>Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438728-data-mining-statistical-inference-selective-laser-melting','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438728-data-mining-statistical-inference-selective-laser-melting"><span>Data mining and statistical inference in selective laser melting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kamath, Chandrika</p> <p>2016-01-11</p> <p>Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1863g0021Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1863g0021Z"><span>Transactions in domain-specific information systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zacek, Jaroslav</p> <p>2017-07-01</p> <p>Substantial number of the current information system (IS) implementations is based on transaction approach. In addition, most of the implementations are domain-specific (e.g. accounting IS, resource planning IS). Therefore, we have to have a generic transaction model to build and verify domain-specific IS. The paper proposes a new transaction model for domain-specific ontologies. This model is based on value oriented business process modelling technique. The transaction model is formalized by the Petri Net theory. First part of the paper presents common business processes and analyses related to business process modeling. Second part defines the transactional model delimited by REA enterprise ontology paradigm and introduces states of the generic transaction model. The generic model proposal is defined and visualized by the Petri Net modelling tool. Third part shows application of the generic transaction model. Last part of the paper concludes results and discusses a practical usability of the generic transaction model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAr.XL2b...7B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAr.XL2b...7B"><span>Reconstruction of 3d Objects of Assets and Facilities by Using Benchmark Points</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baig, S. U.; Rahman, A. A.</p> <p>2013-08-01</p> <p>Acquiring and modeling 3D geo-data of building assets and facility objects is one of the challenges. A number of methods and technologies are being utilized for this purpose. Total station, GPS, photogrammetric and terrestrial laser scanning are few of these technologies. In this paper, points commonly shared by potential facades of assets and facilities modeled from point clouds are identified. These points are useful for modeling process to reconstruct 3D models of assets and facilities stored to be used for management purposes. These models are segmented through different planes to produce accurate 2D plans. This novel method improves the efficiency and quality of construction of models of assets and facilities with the aim utilize in 3D management projects such as maintenance of buildings or group of items that need to be replaced, or renovated for new services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9118E..0EC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9118E..0EC"><span>Highway 3D model from image and lidar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan</p> <p>2014-05-01</p> <p>We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1140096','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1140096"><span>NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>2014-07-01</p> <p>The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21058610','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21058610"><span>The dual process model of coping with bereavement: a decade on.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stroebe, Margaret; Schut, Henk</p> <p>2010-01-01</p> <p>The Dual Process Model of Coping with Bereavement (DPM; Stroebe & Schut, 1999) is described in this article. The rationale is given as to why this model was deemed necessary and how it was designed to overcome limitations of earlier models of adaptive coping with loss. Although building on earlier theoretical formulations, it contrasts with other models along a number of dimensions which are outlined. In addition to describing the basic parameters of the DPM, theoretical and empirical developments that have taken place since the original publication of the model are summarized. Guidelines for future research are given focusing on principles that should be followed to put the model to stringent empirical test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..138a2013C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..138a2013C"><span>Building energy analysis of Electrical Engineering Building from DesignBuilder tool: calibration and simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cárdenas, J.; Osma, G.; Caicedo, C.; Torres, A.; Sánchez, S.; Ordóñez, G.</p> <p>2016-07-01</p> <p>This research shows the energy analysis of the Electrical Engineering Building, located on campus of the Industrial University of Santander in Bucaramanga - Colombia. This building is a green pilot for analysing energy saving strategies such as solar pipes, green roof, daylighting, and automation, among others. Energy analysis was performed by means of DesignBuilder software from virtual model of the building. Several variables were analysed such as air temperature, relative humidity, air velocity, daylighting, and energy consumption. According to two criteria, thermal load and energy consumption, critical areas were defined. The calibration and validation process of the virtual model was done obtaining error below 5% in comparison with measured values. The simulations show that the average indoor temperature in the critical areas of the building was 27°C, whilst relative humidity reached values near to 70% per year. The most critical discomfort conditions were found in the area of the greatest concentration of people, which has an average annual temperature of 30°C. Solar pipes can increase 33% daylight levels into the areas located on the upper floors of the building. In the case of the green roofs, the simulated results show that these reduces of nearly 31% of the internal heat gains through the roof, as well as a decrease in energy consumption related to air conditioning of 5% for some areas on the fourth and fifth floor. The estimated energy consumption of the building was 69 283 kWh per year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..353a2023O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..353a2023O"><span>Modelling and simulation of “Free Cooling” process applied to building construction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ousegui, A.; Asbik, M.</p> <p>2018-05-01</p> <p>Thermal energy storage systems (TES), using phase change material (PCM) in building walls, consists a hot topic within the research community currently. In the present work, a numerical model is developed to simulate free cooling of air-PCM heat exchanger in both charging and discharging steps. The studied case is taken from experimental work. The domain consists in two parallel plates made of Paraffin as PCM, separate by a gap where air circulates. The flow and temperature can be adjusted. The goal is to calculate the temperature of the air at the outlet, in order to analyse the performance of the device. A good agreement was founded between experimental and numerical results. The analysis of the influence of the flow rate on the efficiency of the process confirms a previous works, that the heating flow rate should be higher than cooling one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1418063','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1418063"><span>Energy Savings Analysis of the Proposed NYStretch-Energy Code 2018</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Bing; Zhang, Jian; Chen, Yan</p> <p></p> <p>This study was conducted by the Pacific Northwest National Laboratory (PNNL) in support of the stretch energy code development led by the New York State Energy Research and Development Authority (NYSERDA). In 2017 NYSERDA developed its 2016 Stretch Code Supplement to the 2016 New York State Energy Conservation Construction Code (hereinafter referred to as “NYStretch-Energy”). NYStretch-Energy is intended as a model energy code for statewide voluntary adoption that anticipates other code advancements culminating in the goal of a statewide Net Zero Energy Code by 2028. Since then, NYSERDA continues to develop the NYStretch-Energy Code 2018 edition. To support the effort,more » PNNL conducted energy simulation analysis to quantify the energy savings of proposed commercial provisions of the NYStretch-Energy Code (2018) in New York. The focus of this project is the 20% improvement over existing commercial model energy codes. A key requirement of the proposed stretch code is that it be ‘adoptable’ as an energy code, meaning that it must align with current code scope and limitations, and primarily impact building components that are currently regulated by local building departments. It is largely limited to prescriptive measures, which are what most building departments and design projects are most familiar with. This report describes a set of energy-efficiency measures (EEMs) that demonstrate 20% energy savings over ANSI/ASHRAE/IES Standard 90.1-2013 (ASHRAE 2013) across a broad range of commercial building types and all three climate zones in New York. In collaboration with New Building Institute, the EEMs were developed from national model codes and standards, high-performance building codes and standards, regional energy codes, and measures being proposed as part of the on-going code development process. PNNL analyzed these measures using whole building energy models for selected prototype commercial buildings and multifamily buildings representing buildings in New York. Section 2 of this report describes the analysis methodology, including the building types and construction area weights update for this analysis, the baseline, and the method to conduct the energy saving analysis. Section 3 provides detailed specifications of the EEMs and bundles. Section 4 summarizes the results of individual EEMs and EEM bundles by building type, energy end-use and climate zone. Appendix A documents detailed descriptions of the selected prototype buildings. Appendix B provides energy end-use breakdown results by building type for both the baseline code and stretch code in all climate zones.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Measurement%2bof%2bmass%2bof%2bdetails%2bof%2bplanes&pg=4&id=EJ1102992','ERIC'); return false;" href="https://eric.ed.gov/?q=Measurement%2bof%2bmass%2bof%2bdetails%2bof%2bplanes&pg=4&id=EJ1102992"><span>Using Networks to Visualize and Analyze Process Data for Educational Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zhu, Mengxiao; Shu, Zhan; von Davier, Alina A.</p> <p>2016-01-01</p> <p>New technology enables interactive and adaptive scenario-based tasks (SBTs) to be adopted in educational measurement. At the same time, it is a challenging problem to build appropriate psychometric models to analyze data collected from these tasks, due to the complexity of the data. This study focuses on process data collected from SBTs. We…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=macro+AND+environmental+AND+analysis&pg=2&id=EJ100539','ERIC'); return false;" href="https://eric.ed.gov/?q=macro+AND+environmental+AND+analysis&pg=2&id=EJ100539"><span>Trends in Process-related Research on Curriculum and Teaching at Different Problem Levels in Educational Sciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dahllof, Urban</p> <p>1974-01-01</p> <p>A re-analysis is given of the research about the influences of certain environmental factors on student achievement. The study indicates that educational process data seem to be helpful in building up an explanatory model not only on the macro systems level, but also on the classroom interaction level. (Editor)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=brand&pg=4&id=EJ977481','ERIC'); return false;" href="https://eric.ed.gov/?q=brand&pg=4&id=EJ977481"><span>Higher Education Institution Branding as a Component of Country Branding in Ghana: Renaming Kwame Nkrumah University of Science and Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Williams, Robert, Jr.; Osei, Collins; Omar, Maktoba</p> <p>2012-01-01</p> <p>As Higher Education Institutions (HEI) become more marketised and increasingly promotionalised, brand building gains in intensity and names become increasingly important. This conceptual paper plans to explore the application of the Renaming Process Model which depicts the key components that impact the organization brand renaming process,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=simulation+AND+processes&id=EJ1172695','ERIC'); return false;" href="https://eric.ed.gov/?q=simulation+AND+processes&id=EJ1172695"><span>Building a Market Simulation to Teach Business Process Analysis: Effects of Realism on Engaged Learning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Peng, Jacob; Abdullah, Ira</p> <p>2018-01-01</p> <p>The emphases of student involvement and meaningful engagement in the learner-centered education model have created a new paradigm in an effort to generate a more engaging learning environment. This study examines the success of using different simulation platforms in creating a market simulation to teach business processes in the accounting…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED338475.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED338475.pdf"><span>Providing Transition Planning for the Secondary Student through the Community Based Inservice Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Glasenapp, Gary</p> <p></p> <p>This paper provides an overview of the transition process for students with severe handicaps. For secondary age youths with severe handicaps, explicit and intensive transition planning is necessary to bridge the gap between school experiences and adult life. The transition planning process is designed to build the skills necessary for an…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1146148.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1146148.pdf"><span>Testing Methodology in the Student Learning Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gorbunova, Tatiana N.</p> <p>2017-01-01</p> <p>The subject of the research is to build methodologies to evaluate the student knowledge by testing. The author points to the importance of feedback about the mastering level in the learning process. Testing is considered as a tool. The object of the study is to create the test system models for defence practice problems. Special attention is paid…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=evaluative+AND+research+AND+design&pg=5&id=EJ1170030','ERIC'); return false;" href="https://eric.ed.gov/?q=evaluative+AND+research+AND+design&pg=5&id=EJ1170030"><span>Hierarchical Thinking: A Cognitive Tool for Guiding Coherent Decision Making in Design Problem Solving</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Haupt, Grietjie</p> <p>2018-01-01</p> <p>This paper builds on two concepts, the first of which is the extended information processing model of expert design cognition. This proposes twelve internal psychological characteristics interacting with the external world of expert designers during the early phases of the design process. Here, I explore one of the characteristics, hierarchical…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA499986','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA499986"><span>Assessing Capabilities of the High Energy Liquid Laser Area Defense System through Combat Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-03-01</p> <p>it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISPAr.XL3..341T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISPAr.XL3..341T"><span>Comparision of photogrammetric point clouds with BIM building elements for construction progress monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.</p> <p>2014-08-01</p> <p>For construction progress monitoring a planned state of the construction at a certain time (as-planed) has to be compared to the actual state (as-built). The as-planed state is derived from a building information model (BIM), which contains the geometry of the building and the construction schedule. In this paper we introduce an approach for the generation of an as-built point cloud by photogrammetry. It is regarded that that images on a construction cannot be taken from everywhere it seems to be necessary. Because of this we use a combination of structure from motion process together with control points to create a scaled point cloud in a consistent coordinate system. Subsequently this point cloud is used for an as-built - as-planed comparison. For that voxels of an octree are marked as occupied, free or unknown by raycasting based on the triangulated points and the camera positions. This allows to identify not existing building parts. For the verification of the existence of building parts a second test based on the points in front and behind the as-planed model planes is performed. The proposed procedure is tested based on an inner city construction site under real conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8692E..0TN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8692E..0TN"><span>Data-driven forecasting algorithms for building energy consumption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noh, Hae Young; Rajagopal, Ram</p> <p>2013-04-01</p> <p>This paper introduces two forecasting methods for building energy consumption data that are recorded from smart meters in high resolution. For utility companies, it is important to reliably forecast the aggregate consumption profile to determine energy supply for the next day and prevent any crisis. The proposed methods involve forecasting individual load on the basis of their measurement history and weather data without using complicated models of building system. The first method is most efficient for a very short-term prediction, such as the prediction period of one hour, and uses a simple adaptive time-series model. For a longer-term prediction, a nonparametric Gaussian process has been applied to forecast the load profiles and their uncertainty bounds to predict a day-ahead. These methods are computationally simple and adaptive and thus suitable for analyzing a large set of data whose pattern changes over the time. These forecasting methods are applied to several sets of building energy consumption data for lighting and heating-ventilation-air-conditioning (HVAC) systems collected from a campus building at Stanford University. The measurements are collected every minute, and corresponding weather data are provided hourly. The results show that the proposed algorithms can predict those energy consumption data with high accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.loc.gov/pictures/collection/hh/item/id0446.photos.224466p/','SCIGOV-HHH'); return false;" href="https://www.loc.gov/pictures/collection/hh/item/id0446.photos.224466p/"><span>BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.loc.gov/pictures/collection/hh/">Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey</a></p> <p></p> <p></p> <p>BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103080. ALTERNATE ID NUMBER 542-11-B-74. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>