Sample records for model cell surfaces

  1. Modeling Surface Growth of Escherichia coli on Agar Plates

    PubMed Central

    Fujikawa, Hiroshi; Morozumi, Satoshi

    2005-01-01

    Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34°C) were successfully described with the modified model (model III). Model III gave better predictions of the rate constant of growth and the lag period than a modified Gompertz model and the Baranyi model. Using the parameter values of model III at the constant temperatures, surface growth at various temperatures was successfully predicted. Surface growth curves at various initial cell numbers were also sigmoidal and converged to the same maximum cell numbers at the stationary phase. Surface growth curves at various nutrient levels were also sigmoidal. The maximum cell number and the rate of growth were lower as the nutrient level decreased. The surface growth curve was the same as that in a liquid, except for the large curvature at the deceleration period. These curves were also well described with model III. The pattern of increase in the ATP content of cells grown on a surface was sigmoidal, similar to that for cell growth. We discovered several characteristics of the surface growth of bacterial cells under various growth conditions and examined the applicability of our model to describe these growth curves. PMID:16332768

  2. Modelling cell motility and chemotaxis with evolving surface finite elements

    PubMed Central

    Elliott, Charles M.; Stinner, Björn; Venkataraman, Chandrasekhar

    2012-01-01

    We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction–diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html. PMID:22675164

  3. Surface tension and modeling of cellular intercalation during zebrafish gastrulation.

    PubMed

    Calmelet, Colette; Sepich, Diane

    2010-04-01

    In this paper we discuss a model of zebrafish embryo notochord development based on the effect of surface tension of cells at the boundaries. We study the process of interaction of mesodermal cells at the boundaries due to adhesion and cortical tension, resulting in cellular intercalation. From in vivo experiments, we obtain cell outlines of time-lapse images of cell movements during zebrafish embryo development. Using Cellular Potts Model, we calculate the total surface energy of the system of cells at different time intervals at cell contacts. We analyze the variations of total energy depending on nature of cell contacts. We demonstrate that our model can be viable by calculating the total surface energy value for experimentally observed configurations of cells and showing that in our model these configurations correspond to a decrease in total energy values in both two and three dimensions.

  4. Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey

    2017-01-01

    Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.

  5. Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities.

    PubMed

    Marcus, Ian M; Herzberg, Moshe; Walker, Sharon L; Freger, Viatcheslav

    2012-04-17

    While biofilms are ubiquitous in nature, the mechanism by which they form is still poorly understood. This study investigated the process by which bacteria deposit and, shortly after, attach irreversibly to surfaces by reorienting to create a stronger interaction, which leads to biofilm formation. A model for attachment of Pseudomonas aeruginosa was developed using a quartz crystal microbalance with dissipation monitoring (QCM-D) technology, along with a fluorescent microscope and camera to monitor kinetics of adherence of the cells over time. In this model, the interaction differs depending on the force that dominates between the viscous, inertial, and elastic loads. P. aeruginosa, grown to the midexponential growth phase (hydrophilic) and stationary phase (hydrophobic) and two different surfaces, silica (SiO(2)) and polyvinylidene fluoride (PVDF), which are hydrophilic and hydrophobic, respectively, were used to test the model. The bacteria deposited on both of the sensor surfaces, though on the silica surface the cells reached a steady state where there was no net increase in deposition of bacteria, while the quantity of cells depositing on the PVDF surface continued to increase until the end of the experiments. The change in frequency and dissipation per cell were both positive for each overtone (n), except when the cells and surface are both hydrophilic. In the model three factors, specifically, viscous, inertial, and elastic loads, contribute to the change in frequency and dissipation at each overtone when a cell deposits on a sensor. On the basis of the model, hydrophobic cells were shown to form an elastic connection to either surface, with an increase of elasticity at higher overtones. At lower overtones, hydrophilic cells depositing on the hydrophobic surface were shown to also be elastic, but as the overtone increases the connection between the cells and sensor becomes more viscoelastic. In the case of hydrophilic cells interacting with the hydrophilic surface, the connection is viscous at each overtone measured. It could be inferred that the transformation of the viscoelasticity of the cell-surface connection is due to changes in the orientation of the cells to the surface, which allow the bacteria to attach irreversibly and begin biofilm formation. © 2012 American Chemical Society

  6. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    USGS Publications Warehouse

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  7. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Haag, Emily

    2013-01-01

    A simplified model of solar power in the Venus environment is developed, in which the solar intensity, solar spectrum, and temperature as a function of altitude is applied to a model of photovoltaic performance, incorporating the temperature and intensity dependence of the open-circuit voltage and the temperature dependence of the bandgap and spectral response of the cell. We use this model to estimate the performance of solar cells for both the surface of Venus and for atmospheric probes at altitudes from the surface up to 60 km. The model shows that photovoltaic cells will produce power even at the surface of Venus.

  8. Use of a chemical equilibrium model to describe surface properties and uptake of cadmium, strontium, and lead by Chlorella (UTEX 252)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett, J.M.

    1988-01-01

    Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less

  9. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension

    PubMed Central

    Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria

    2010-01-01

    In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053

  10. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  11. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  12. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.

    PubMed

    Pogodin, Sergey; Hasan, Jafar; Baulin, Vladimir A; Webb, Hayden K; Truong, Vi Khanh; Phong Nguyen, The Hong; Boshkovikj, Veselin; Fluke, Christopher J; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-02-19

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. The wings provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface structures, and show that mechanical properties, in particular cell rigidity, are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface. We confirmed this experimentally by decreasing the rigidity of surface-resistant strains through microwave irradiation of the cells, which renders them susceptible to the wing effects. Our findings demonstrate the potential benefits of incorporating cicada wing nanopatterns into the design of antibacterial nanomaterials. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Interdigitated Back-Surface-Contact Solar Cell Modeling Using Silvaco Atlas

    DTIC Science & Technology

    2015-06-01

    11 2. Solar Spectrum ...................................................................................13 3. PV Cell Efficiency...Figure 10. Spectrum of solar radiance, from [12]. 14 3. PV Cell Efficiency There are many factors that affect the efficiency of a solar cell. Metal...BACK-SURFACE-CONTACT SOLAR CELL MODELING USING SILVACO ATLAS by Shawn E. Green June 2015 Thesis Advisor: Sherif Michael Second Reader

  14. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  15. Influence of yield surface curvature on the macroscopic yielding and ductile failure of isotropic porous plastic materials

    NASA Astrophysics Data System (ADS)

    Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture

    2017-10-01

    Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.

  16. Diffraction Analysis of Antennas With Mesh Surfaces

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya

    1987-01-01

    Strip-aperture model replaces wire-grid model. Far-field radiation pattern of antenna with mesh reflector calculated more accurately with new strip-aperture model than with wire-grid model of reflector surface. More adaptable than wire-grid model to variety of practical configurations and decidedly superior for reflectors in which mesh-cell width exceeds mesh thickness. Satisfies reciprocity theorem. Applied where mesh cells are no larger than tenth of wavelength. Small cell size permits use of simplifying approximation that reflector-surface current induced by electromagnetic field is present even in apertures. Approximation useful in calculating far field.

  17. The importance of surface recombination and energy-bandgap narrowing in p-n-junction silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.

    1979-01-01

    Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.

  18. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  19. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1974-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open-circuit voltage and improved radiation resistance. Several analytical models for open-circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero surface recombination velocity (SRV) case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells.

  20. Glycobiology of the cell surface: Its debt to cell electrophoresis 1940-65.

    PubMed

    Cook, Geoffrey M W

    2016-06-01

    This Review describes how in the period 1940-1959 cell electrophoresis (in the earlier literature often referred to as 'microelectrophoresis') was used to explore the surface chemistry of cells. Using the erythrocyte as a suitable model for the study of biological membranes, the early investigators were agreed on the presence of negatively charged groups at the surface of this cell. The contemporary dogma was that these were phosphate groups associated with phospholipids. Work in the 1960s, particularly on changes in the electrokinetic properties of erythrocytes following treatment with proteolytic enzymes, lead to the realization that the negatively charged groups at the red cell surface are predominantly due to sialic acids carried on glycoproteins. It quickly became apparent from cell electrophoresis that sialic acids have a ubiquitous presence on the surface of animal cells. This finding required that any complete model of the plasma membrane must include glycosylated molecules at the cell periphery, thus laying the foundations for the field termed 'Glycobiology of the Cell Surface'. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface

    PubMed Central

    Yamanaka, Nobuko; Wong, Christine J.; Gertsenstein, Marina; Casper, Robert F.; Nagy, Andras; Rogers, Ian M.

    2009-01-01

    Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice. PMID:20046883

  2. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals

    PubMed Central

    Taneda, Haruhiko; Watanabe-Taneda, Ayako; Chhetry, Rita; Ikeda, Hiroshi

    2015-01-01

    Background and Aims The epidermal surface of a flower petal is composed of convex cells covered with a structured cuticle, and the roughness of the surface is related to the wettability of the petal. If the surface remains wet for an excessive amount of time the attractiveness of the petal to floral visitors may be impaired, and adhesion of pathogens may be promoted. However, it remains unclear how the epidermal cells and structured cuticle contribute to surface wettability of a petal. Methods By considering the additive effects of the epidermal cells and structured cuticle on petal wettability, a thermodynamic model was developed to predict the wetting mode and contact angle of a water droplet at a minimum free energy. Quantitative relationships between petal wettability and the geometries of the epidermal cells and the structured cuticle were then estimated. Measurements of contact angles and anatomical traits of petals were made on seven herbaceous species commonly found in alpine habitats in eastern Nepal, and the measured wettability values were compared with those predicted by the model using the measured geometries of the epidermal cells and structured cuticles. Key Results The model indicated that surface wettability depends on the height and interval between cuticular steps, and on a height-to-width ratio for epidermal cells if a thick hydrophobic cuticle layer covers the surface. For a petal epidermis consisting of lenticular cells, a repellent surface results when the cuticular step height is greater than 0·85 µm and the height-to-width ratio of the epidermal cells is greater than 0·3. For an epidermis consisting of papillate cells, a height-to-width ratio of greater than 1·1 produces a repellent surface. In contrast, if the surface is covered with a thin cuticle layer, the petal is highly wettable (hydrophilic) irrespective of the roughness of the surface. These predictions were supported by the measurements of petal wettability made on flowers of alpine species. Conclusions The results indicate that surface roughness caused by epidermal cells and a structured cuticle produces a wide range of petal wettability, and that this can be successfully modelled using a thermodynamic approach. PMID:25851137

  3. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    An empirical study was performed (1) to evaluate the validity of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces and (2) to determine the variation of solar cell sensitivity to solar radiation over a wide range of atmospheric condition. Evaluation of the insolation data indicates that the isotropic sky model of Liu and Jordan underestimates the amount of solar radiation falling on tilted surfaces by as much as 10%. An anisotropic-clear-sky model proposed by Temps and Coulson was also evaluated and found to be deficient under cloudy conditions. A new model, formulated herein, reduced the deviations between measured and predicted insolation to less than 3%. Evaluation of solar cell sensitivity data indicates small change (2-3%) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells as done by Treble is discussed.

  4. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.

    PubMed

    MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H

    2016-03-15

    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.

  5. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology.

    PubMed

    Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T

    2015-03-01

    Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Foam structure :from soap froth to solid foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraynik, Andrew Michael

    2003-01-01

    The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less

  7. The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow

    NASA Astrophysics Data System (ADS)

    Sesay, Juldeh

    2005-11-01

    The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.

  8. Crosslinking of surface antibodies and Fc sub. gamma. receptors: Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wofsy, C.; Goldstein, B.

    1991-03-15

    In an immune response, the crosslinking of surface immunoglobulin (sIg) on B cells by multiply-bound ligand activates a range of cell responses, culminating in the production of antibody-secreting cells. However, when the crosslinking agent is itself an antibody, B cell activation is inhibited. Solution antibody (IgG) can bind simultaneously to sIg and to another cell surface receptor, Fc{sub {gamma}}R, co-crosslinking' the distinct receptors. Experiments point to co-crosslinking as the inhibitory signal. It is not clear how co-crosslinking inhibits B cell stimulation. The authors construct and analyze a mathematical model aimed at clarifying the nature and mechanisms of action of themore » separate cell signals controlling B cell responses to antibodies. Basophils and mast cells respond to the crosslinking of cell surface antibody by releasing histamine. Like B cells, basophils also express FC{sub {gamma}}R. They use their model to analyze new data on the effect of antibody-induced co-crosslinking of the two types of receptor on this family of cells. Predictions of the model indicate that an observed difference between the response patterns induced by antibodies and by antibody fragments that cannot bind to FC{sub {gamma}}R can be explained if co-crosslinking is neither inhibitory nor stimulatory in this system.« less

  9. Variation of solar cell sensitivity and solar radiation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1978-01-01

    The validity is studied that one of various insolation models used to compute solar radiation incident on tilted surfaces from global data measured on horizontal surfaces. The variation of solar cell sensitivity to solar radiation is determined over a wide range of atmospheric condition. A new model was formulated that reduced the deviations between measured and predicted insolation to less than 3 percent. Evaluation of solar cell sensitivity data indicates small change (2-3 percent) in sensitivity from winter to summer for tilted cells. The feasibility of using such global data as a means for calibrating terrestrial solar cells is discussed.

  10. Biointerface dynamics--Multi scale modeling considerations.

    PubMed

    Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko

    2015-08-01

    Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    PubMed

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  12. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires

    Treesearch

    M. B. Dickinson

    2002-01-01

    Heat-transfer and cell-survival models are used to link surface fire behavior with vascular cambium necrosis from heating by flames. Vascular cambium cell survival was predicted with a numerical model based on the kinetics of protein denaturation and parameterized with data from the literature. Cell survival was predicted for vascular cambium temperature regimes...

  13. A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface

    NASA Astrophysics Data System (ADS)

    Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2018-06-01

    Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.

  14. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

  15. Experimental determination of folding factor of benign breast cancer cell (MCF10A) and its effect on contact models and 3D manipulation of biological particles.

    PubMed

    Korayem, M H; Shahali, S; Rastegar, Z

    2018-06-01

    Plasma membrane of most cells is not smooth. The surfaces of both small and large micropermeable cells are folded and corrugated which makes mammalian cells to have a larger membrane surface than the supposed ideal mode, that is, the smooth sphere of the same volume. Since cancer is an anthropic disease, cancer cells tend to have a larger membrane area than normal cells. Therefore, cancer cells have higher folding factor and larger radius than normal and healthy cells. On the other hand, the prevalence of breast cancer has prompted researchers to improve the treatment options raised for the disease in the past. In this paper, the impact of folding factor of the cell surface has been investigated. Considering that AFM is one of the most effective tools in performing the tests at micro- and nanoscales, it was used to determine the topography of MCF10 cells and then the resulting images and results were used to experimentally extract the folding factor of cells. By applying this factor in the Hertz, DMT and JKR contact models in the elastic and viscoelastic states, these models have been modified and the simulation of the three models shows that the simulation results are closer to the experimental results by considering the folding in the calculations. Additionally, the simulation of 3D manipulation has been done in both elastic and viscoelastic states with and without consideration of folding. Finally, the results were compared to investigate the effects of folding of the cell surface to the critical force and critical time of sliding and rolling in contact with the substrate and AFM tip in the 3D manipulation model.

  16. Temperature-dependent rate models of vascular cambium cell mortality

    Treesearch

    Matthew B. Dickinson; Edward A. Johnson

    2004-01-01

    We use two rate-process models to describe cell mortality at elevated temperatures as a means of understanding vascular cambium cell death during surface fires. In the models, cell death is caused by irreversible damage to cellular molecules that occurs at rates that increase exponentially with temperature. The models differ in whether cells show cumulative effects of...

  17. Analysis of the interaction of an electron beam with back surface field solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Luke, K. L.

    1983-01-01

    In this paper the short circuit current Isc induced by the electron beam of a scanning electron microscope in a back surface field solar cell will be determined theoretically. It will be shown that, in a configuration used previously for solar cells with an ohmic back surface, the Isc gives a convenient means for estimating the back surface recombination velocities and thus the quality of back surface field cells. Numerical data will be presented applicable to a point source model for the electron-hole pair generation.

  18. A model for the kinetics of homotypic cellular aggregation under static conditions

    NASA Technical Reports Server (NTRS)

    Neelamegham, S.; Munn, L. L.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.

  19. A simplified model for dynamics of cell rolling and cell-surface adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk

    2015-03-10

    We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore amore » simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.« less

  20. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    PubMed

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Computational modelling of biomaterial surface interactions with blood platelets and osteoblastic cells for the prediction of contact osteogenesis.

    PubMed

    Amor, N; Geris, L; Vander Sloten, J; Van Oosterwyck, H

    2011-02-01

    Surface microroughness can induce contact osteogenesis (bone formation initiated at the implant surface) around oral implants, which may result from different mechanisms, such as blood platelet-biomaterial interactions and/or interaction with (pre-)osteoblast cells. We have developed a computational model of implant endosseous healing that takes into account these interactions. We hypothesized that the initial attachment and growth factor release from activated platelets is crucial in achieving contact osteogenesis. In order to investigate this, a computational model was applied to an animal experiment [7] that looked at the effect of surface microroughness on endosseous healing. Surface-specific model parameters were implemented based on in vitro data (Lincks et al. Biomaterials 1998;19:2219-32). The predicted spatio-temporal patterns of bone formation correlated with the histological data. It was found that contact osteogenesis could not be predicted if only the osteogenic response of cells was up-regulated by surface microroughness. This could only be achieved if platelet-biomaterial interactions were sufficiently up-regulated as well. These results confirmed our hypothesis and demonstrate the added value of the computational model to study the importance of surface-mediated events for peri-implant endosseous healing. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Effect of Inhibition of Deoxyribonucleic Acid and Protein Synthesis on the Direction of Cell Wall Growth in Streptococcus faecalis

    PubMed Central

    Higgins, M. L.; Daneo-Moore, L.; Boothby, D.; Shockman, G. D.

    1974-01-01

    Selective inhibition of protein synthesis in Streptococcus faecalis (ATCC 9790) was accompanied by a rapid and severe inhibition of cell division and a reduction of enlargement of cellular surface area. Continued synthesis of cell wall polymers resulted in rapid thickening of the wall to an extent not seen in exponential-phase populations. Thus, the normal direction of wall growth was changed from a preferential feeding out of new wall surface to that of thickening existing cell surfaces. However, the overall manner in which the wall thickened, from nascent septa toward polar regions, was the same in both exponential-phase and inhibited populations. In contrast, selective inhibition of deoxyribonucleic acid (DNA) synthesis using mitomycin C was accompanied by an increase in cellular surface area and by division of about 80% of the cells in random populations. Little or no wall thickening was observed until the synthesis of macromolecules other than DNA was impaired and further cell division ceased. Concomitant inhibition of both DNA and protein synthesis inhibited cell division but permitted an increase in average cell volume. In such doubly inhibited cells, walls thickened less than in cells inhibited for protein synthesis only. On the basis of the results obtained, a model for cell surface enlargement and cell division is presented. The model proposes that: (i) each wall enlargement site is influenced by an individual chromosome replication cycle; (ii) during chromosome replication peripheral surface enlargement would be favored over thickening (or septation); (iii) a signal associated with chromosome termination would favor thickening (and septation) at the expense of surface enlargement; and (iv) a factor or signal related to protein synthesis would be required for one or more of the near terminal stages of cell division or cell separation, or both. Images PMID:4133352

  3. In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell.

    PubMed

    Peng, Cheng-Chun; Fajardo, Neil P; Razunguzwa, Trust; Radke, Clayton J

    2015-07-01

    We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.

  4. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale

    PubMed Central

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635

  5. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale.

    PubMed

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.

  6. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  7. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  8. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    NASA Astrophysics Data System (ADS)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  9. Impact of a compound droplet on a flat surface: A model for single cell epitaxy.

    PubMed

    Tasoglu, Savas; Kaynak, Gozde; Szeri, Andrew J; Demirci, Utkan; Muradoglu, Metin

    2010-08-01

    The impact and spreading of a compound viscous droplet on a flat surface are studied computationally using a front-tracking method as a model for the single cell epitaxy. This is a technology developed to create two-dimensional and three-dimensional tissue constructs cell by cell by printing cell-encapsulating droplets precisely on a substrate using an existing ink-jet printing method. The success of cell printing mainly depends on the cell viability during the printing process, which requires a deeper understanding of the impact dynamics of encapsulated cells onto a solid surface. The present study is a first step in developing a model for deposition of cell-encapsulating droplets. The inner droplet representing the cell, the encapsulating droplet, and the ambient fluid are all assumed to be Newtonian. Simulations are performed for a range of dimensionless parameters to probe the deformation and rate of deformation of the encapsulated cell, which are both hypothesized to be related to cell damage. The deformation of the inner droplet consistently increases: as the Reynolds number increases; as the diameter ratio of the encapsulating droplet to the cell decreases; as the ratio of surface tensions of the air-solution interface to the solution-cell interface increases; as the viscosity ratio of the cell to encapsulating droplet decreases; or as the equilibrium contact angle decreases. It is observed that maximum deformation for a range of Weber numbers has (at least) one local minimum at We=2. Thereafter, the effects of cell deformation on viability are estimated by employing a correlation based on the experimental data of compression of cells between parallel plates. These results provide insight into achieving optimal parameter ranges for maximal cell viability during cell printing.

  10. Microcinematographic analysis of tethered Leptospira illini.

    PubMed Central

    Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N

    1984-01-01

    A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226

  11. Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.

    PubMed Central

    Munn, L L; Melder, R J; Jain, R K

    1994-01-01

    The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2. Images FIGURE 1 FIGURE 2 PMID:7948702

  12. Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve; Behrends, Thilo; van Cappellen, Philippe; Hyacinthe, Christelle; Röling, Wilfred F. M.

    2006-12-01

    A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model dissimilatory iron reducing bacteria and Fe(III) colloidal particles, respectively. Attachment of nanohematite to the bacteria is formally described by a Langmuir isotherm. Initial iron reduction rates are shown to correlate linearly with the relative coverage of the cell surface by nanohematite particles, hence supporting a direct electron transfer from membrane-bound reductases to mineral particles attached to the cells. Using internally consistent parameter values for the maximum attachment capacity of Fe(III) colloids to the cells, Mmax, the attachment constant, KP, and the first-order Fe(III) reduction rate constant, k, the model reproduces the initial reduction rates of a variety of fine-grained Fe(III) oxyhydroxides by S. putrefaciens. The model explains the observed dependency of the apparent Fe(III) half-saturation constant, Km∗, on the solid to cell ratio, and it predicts that initial iron reduction rates exhibit saturation with respect to both the cell density and the abundance of the Fe(III) oxyhydroxide substrate.

  13. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  14. Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces.

    PubMed

    Rideout, D C; Lambert, M; Kendall, D A; Moe, G R; Osterman, D G; Tao, H P; Weinstein, I B; Kaiser, E T

    1985-09-01

    Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.

  15. Inhibition and enhancement of microbial surface colonization: the role of silicate composition

    USGS Publications Warehouse

    Roberts, Jennifer A.

    2004-01-01

    Classical treatment of cell attachment by models of filtration or coulombic attraction assumes that attachment of cells to mineral surfaces would be controlled by factors such as response to predation, collision efficiency, or coulombic attraction between the charged groups at the mineral and cell surfaces. In the study reported here, the passive model of attachment was investigated using a native microbial consortium and a variety of Al- and Fe-bearing silicates and oxides to determine if other controls, such as mineral composition, also influence the interaction between cells and surfaces. Results from in situ colonization studies in an anaerobic groundwater at pH 6.8 combined with most probable number analyses (MPN) of surface-adherent cells demonstrate that electrostatic effects dominate microbial colonization on positively charged oxide surfaces regardless of mineral composition. In contrast, on negatively charged silicate minerals and glasses, the solid phase composition is a factor in determining the extent of microbial colonization, as well as the diversity of the attached community. In particular, silicates containing more than 1.2% Al exhibit less biomass than Al-poor silicates and MPN suggests a shift in community diversity, possibly indicating Al toxicity on these surfaces. When Fe is present in the silicate, however, this trend is reversed and abundant colonization of the surface is observed. Here, microorganisms preferentially colonize those silicate surfaces that offer beneficial nutrients and avoid those that contain potentially toxic elements.

  16. A novel phenomenological multi-physics model of Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.

    2016-09-01

    A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.

  17. Modeling the Morphogenesis of Epidermal Tissues on the Surface of a 3D Last

    NASA Astrophysics Data System (ADS)

    McCleery, W. Tyler; Crews, Sarah M.; Mashburn, David N.; Veldhuis, Jim; Brodland, G. Wayne; Hutson, M. Shane

    2014-03-01

    Embryogenesis in the fruit fly Drosophila melanogaster is coordinated by the interaction of cells in adjacent tissues. For some events of embryogenesis, e.g., dorsal closure, two-dimensional models have been sufficient to elucidate the relevant cell and tissue mechanics. Here, we describe a new three-dimensional cell-level finite element model for investigating germ band retraction - a morphogenetic event where one epidermal tissue, the germ band, initially wraps around the posterior end of the ellipsoidal embryo. This tissue then retracts with a mechanical assist from contraction of cells in a second epidermal tissue, the amnioserosa. To speed simulation run times and focus on the relevant tissues, we only model epidermal tissue interactions. Epidermal cells are defined as polygons constrained to lie on the surface of the ellipsoidal last, but have adjustable parameters such as edge tensions and cell pressures. Tissue movements are simulated by balancing these dynamic cell-level forces with viscous resistance and allowing cells to exchange neighbors. Our choice of modeling parameters is informed by in vivo measurements of cell-level forces using laser microsurgery. We use this model to investigate the multicellular stress fields in normal and aberrant development.

  18. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  19. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets*

    PubMed Central

    Rhoden, John J.; Dyas, Gregory L.

    2016-01-01

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022

  20. Guard cells elongate: relationship of volume and surface area during stomatal movement.

    PubMed

    Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard

    2007-02-01

    Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.

  1. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  2. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Haiyan; Wang, Lan; Ruan, Yuanyuan

    2011-01-21

    Research highlights: {yields} Hsp60 transported to cell surface through the classical secretory pathway was modified with N-glycosylation. {yields} HSAPB-N18 could efficiently deliver Hsp60 to the cell surface via the unconventional secretory pathway. {yields} Cell surface Hsp60 delivered by HASPB-N18 has a proper conformation. {yields} HASPB-N18 is an efficient delivery signal for other DAMP molecules such as Hsp70 and HMGB1. -- Abstract: Damage-associated molecular patterns (DAMPs) are signals released from dying cells evoking the immune system response in several inflammatory disorders. In normal situations, many of DAMPs are nuclear or cytosolic proteins with defined intracellular function, but they could be foundmore » on the cell surface following tissue injury. The biological function of the translocated DAMPs is still not well known and an efficient delivery of these molecules on the cell surface is required to clarify their biological effects. In this study, we demonstrated that an unclassical secretory signal peptide, N-terminal 18 amino acids of HASPB (HASPB-N18), could efficiently deliver Hsp60, Hsp70, and HMGB1 on the cell surface. Furthermore, the delivery of these molecules on the cell surface by HASPB-N18 is not limited to a special cell line because several cell lines could use this delivery signal to deliver these molecules on the cell surface. Moreover, we demonstrated that Hsp60 on the cell surface delivered by HASPB-N18 could be recognized by a soluble form of LOX-1, which implies that DAMPs on the cell surface delivered by HASPB-N18 have a proper conformation during transport. Therefore, delivery of DAMPs by HASPB-N18 is a reliable model to further understand the biological significance of DAMPs on the cell surface.« less

  3. Fine Tuning of Tissues' Viscosity and Surface Tension through Contractility Suggests a New Role for α-Catenin

    PubMed Central

    Stirbat, Tomita Vasilica; Mgharbel, Abbas; Bodennec, Selena; Ferri, Karine; Mertani, Hichem C.; Rieu, Jean-Paul; Delanoë-Ayari, Hélène

    2013-01-01

    What governs tissue organization and movement? If molecular and genetic approaches are able to give some answers on these issues, more and more works are now giving a real importance to mechanics as a key component eventually triggering further signaling events. We chose embryonic cell aggregates as model systems for tissue organization and movement in order to investigate the origin of some mechanical constraints arising from cells organization. Steinberg et al. proposed a long time ago an analogy between liquids and tissues and showed that indeed tissues possess a measurable tissue surface tension and viscosity. We question here the molecular origin of these parameters and give a quantitative measurement of adhesion versus contractility in the framework of the differential interfacial tension hypothesis. Accompanying surface tension measurements by angle measurements (at vertexes of cell-cell contacts) at the cell/medium interface, we are able to extract the full parameters of this model: cortical tensions and adhesion energy. We show that a tunable surface tension and viscosity can be achieved easily through the control of cell-cell contractility compared to cell-medium one. Moreover we show that -catenin is crucial for this regulation to occur: these molecules appear as a catalyser for the remodeling of the actin cytoskeleton underneath cell-cell contact, enabling a differential contractility between the cell-medium and cell-cell interface to take place. PMID:23390488

  4. Computer simulations of the mechanical response of brushes on the surface of cancerous epithelial cells

    NASA Astrophysics Data System (ADS)

    Goicochea, A. Gama; Guardado, S. J. Alas

    2015-08-01

    We report a model for atomic force microscopy by means of computer simulations of molecular brushes on surfaces of biological interest such as normal and cancerous cervical epithelial cells. Our model predicts that the force needed to produce a given indentation on brushes that can move on the surface of the cell (called “liquid” brushes) is the same as that required for brushes whose ends are fixed on the cell’s surface (called “solid” brushes), as long as the tip of the microscope covers the entire area of the brush. Additionally, we find that cancerous cells are softer than normal ones, in agreement with various experiments. Moreover, soft brushes are found to display larger resistance to compression than stiff ones. This phenomenon is the consequence of the larger equilibrium length of the soft brushes and the cooperative association of solvent molecules trapped within the brushes, which leads to an increase in the osmotic pressure. Our results show that a careful characterization of the brushes on epithelial cells is indispensable when determining the mechanical response of cancerous cells.

  5. Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.

    PubMed

    Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka

    2017-07-01

    Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Acid base properties of cyanobacterial surfaces I: Influences of growth phase and nitrogen metabolism on cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.

  7. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model.

    PubMed

    Han, Ji Yun; Kang, Boram; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2017-05-01

    To compare the effect of exposure to particulate matter on the ocular surface of normal and experimental dry eye (EDE) rat models. Titanium dioxide (TiO2) nanoparticles were used as the particulate matter. Rats were divided into 4 groups: normal control group, TiO2 challenge group of the normal model, EDE control group, and TiO2 challenge group of the EDE model. After 24 hours, corneal clarity was compared and tear samples were collected for quantification of lactate dehydrogenase, MUC5AC, and tumor necrosis factor-α concentrations. The periorbital tissues were used to evaluate the inflammatory cell infiltration and detect apoptotic cells. The corneal clarity score was greater in the EDE model than in the normal model. The score increased after TiO2 challenge in each group compared with each control group (normal control vs. TiO2 challenge group, 0.0 ± 0.0 vs. 0.8 ± 0.6, P = 0.024; EDE control vs. TiO2 challenge group, 2.2 ± 0.6 vs. 3.8 ± 0.4, P = 0.026). The tear lactate dehydrogenase level and inflammatory cell infiltration on the ocular surface were higher in the EDE model than in the normal model. These measurements increased significantly in both normal and EDE models after TiO2 challenge. The tumor necrosis factor-α levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were also higher in the EDE model than in the normal model. TiO2 nanoparticle exposure on the ocular surface had a more prominent effect in the EDE model than it did in the normal model. The ocular surface of dry eyes seems to be more vulnerable to fine dust of air pollution than that of normal eyes.

  8. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    PubMed

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  9. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    PubMed

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  10. The Fluid Dynamics of Nascent Biofilms

    NASA Astrophysics Data System (ADS)

    Farthing, Nicola; Snow, Ben; Wilson, Laurence; Bees, Martin

    2017-11-01

    Many anti-biofilm approaches target mature biofilms with biochemical or physio-chemical interventions. We investigate the mechanics of interventions at an early stage that aim to inhibit biofilm maturation, focusing on hydrodynamics as cells transition from planktonic to surface-attached. Surface-attached cells generate flow fields that are relatively long-range compared with cells that are freely-swimming. We look at the effect of these flows on the biofilm formation. In particular, we use digital inline holographic microscopy to determine the three-dimensional flow due to a surface-attached cell and the effect this flow has on both tracers and other cells in the fluid. We compare experimental data with two models of cells on boundaries. The first approach utilizes slender body theory and captures many of the features of the experimental field. The second model develops a simple description in terms of singularity solutions of Stokes' flow, which produces qualitatively similar dynamics to both the experiments and more complex model but with significant computational savings. The range of validity of multiple cell arrangements is investigated. These two descriptions can be used to investigate the efficacy of actives developed by Unilever on nascent biofilms.

  11. Laser-induced surface deformation microscope for the study of the dynamic viscoelasticity of plasma membrane in a living cell.

    PubMed

    Morisaku, Toshinori; Yui, Hiroharu

    2018-05-15

    A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.

  12. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  13. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.

    PubMed

    Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B

    2005-06-01

    This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.

  14. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.

    PubMed

    Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E

    2015-01-01

    Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.

  15. Hydrodynamic Attraction of Swimming Microorganisms by Surfaces

    NASA Astrophysics Data System (ADS)

    Berke, Allison P.; Turner, Linda; Berg, Howard C.; Lauga, Eric

    2008-07-01

    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their reorientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A model is derived for the steady-state distribution of swimming cells, which compares favorably with our measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli.

  16. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.

    PubMed

    Lee, Calvin K; de Anda, Jaime; Baker, Amy E; Bennett, Rachel R; Luo, Yun; Lee, Ernest Y; Keefe, Joshua A; Helali, Joshua S; Ma, Jie; Zhao, Kun; Golestanian, Ramin; O'Toole, George A; Wong, Gerard C L

    2018-04-24

    Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.

  17. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  18. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.

    PubMed

    van Gestel, Jordi; Nowak, Martin A

    2016-02-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.

  19. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, J.; Feingold, G.; Wang, Hailong

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.« less

  20. Cell-to-Cell Heterogeneity in Cortical Tension Specifies Curvature of Contact Surfaces in Caenorhabditis elegans Embryos

    PubMed Central

    Fujita, Masashi; Onami, Shuichi

    2012-01-01

    In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P1 blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P1. However, the higher pressure in AB is intriguing because AB has a larger volume than P1. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P1 is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos. PMID:22253922

  1. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. Electronic supplementary information (ESI) available: UV-Vis spectra of Au NPs, the most significantly changed genes of HDF cells after Au NP incubation under GO accession number GO:0007049 ``cell cycle'', detailed information about the primer/probe sets used for RT-PCR validation of results. See DOI: 10.1039/c4nr05166a

  2. Mining for osteogenic surface topographies: In silico design to in vivo osseo-integration.

    PubMed

    Hulshof, Frits F B; Papenburg, Bernke; Vasilevich, Aliaksei; Hulsman, Marc; Zhao, Yiping; Levers, Marloes; Fekete, Natalie; de Boer, Meint; Yuan, Huipin; Singh, Shantanu; Beijer, Nick; Bray, Mark-Anthony; Logan, David J; Reinders, Marcel; Carpenter, Anne E; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-08-01

    Stem cells respond to the physicochemical parameters of the substrate on which they grow. Quantitative material activity relationships - the relationships between substrate parameters and the phenotypes they induce - have so far poorly predicted the success of bioactive implant surfaces. In this report, we screened a library of randomly selected designed surface topographies for those inducing osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Cell shape features, surface design parameters, and osteogenic marker expression were strongly correlated in vitro. Furthermore, the surfaces with the highest osteogenic potential in vitro also demonstrated their osteogenic effect in vivo: these indeed strongly enhanced bone bonding in a rabbit femur model. Our work shows that by giving stem cells specific physicochemical parameters through designed surface topographies, differentiation of these cells can be dictated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Unique Procedure to Identify Cell Surface Markers Through a Spherical Self-Organizing Map Applied to DNA Microarray Analysis.

    PubMed

    Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu

    2016-01-01

    To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.

  4. A Modeling and Experimental Investigation of the Effects of Antigen Density, Binding Affinity, and Antigen Expression Ratio on Bispecific Antibody Binding to Cell Surface Targets.

    PubMed

    Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J

    2016-05-20

    Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Migration of lymphocytes on fibronectin-coated surfaces: temporal evolution of migratory parameters

    NASA Technical Reports Server (NTRS)

    Bergman, A. J.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Lymphocytes typically interact with implanted biomaterials through adsorbed exogenous proteins. To provide a more complete characterization of these interactions, analysis of lymphocyte migration on adsorbed extracellular matrix proteins must accompany the commonly performed adhesion studies. We report here a comparison of the migratory and adhesion behavior of Jurkat cells (a T lymphoblastoid cell line) on tissue culture treated and untreated polystyrene surfaces coated with various concentrations of fibronectin. The average speed of cell locomotion showed a biphasic response to substrate adhesiveness for cells migrating on untreated polystyrene and a monotonic decrease for cells migrating on tissue culture-treated polystyrene. A modified approach to the persistent random walk model was implemented to determine the time dependence of cell migration parameters. The random motility coefficient showed significant increases with time when cells migrated on tissue culture-treated polystyrene surfaces, while it remained relatively constant for experiments with untreated polystyrene plates. Finally, a cell migration computer model was developed to verify our modified persistent random walk analysis. Simulation results suggest that our experimental data were consistent with temporally increasing random motility coefficients.

  6. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    PubMed

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  7. Multiscale Model of Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Alber, Mark

    2011-03-01

    Many bacteria can rapidly traverse surfaces from which they are extracting nutrient for growth. They generate flat, spreading colonies, called swarms because they resemble swarms of insects. In the beginning of the talk, swarms of the M. xanthus will be described in detail. Individual M. xanthus cells are elongated; they always move in the direction of their long axis; and they are in constant motion, repeatedly touching each other. As a cell glides, the slime capsule of a cell interacts with the bare agar surface, non-oriented slime which arises from the surface contact with the slime capsule, or oriented slime trails. Remarkably, cells regularly reverse their gliding directions. In this talk a detailed cell- and behavior-based computational model of M. xanthus swarming will be used to demonstrate that reversals of gliding direction and cell bending are essential for swarming and that specific reversal frequencies result in optimal swarming rate of the whole population. This suggests that the circuit regulating reversals evolved to its current sensitivity under selection for growth achieved by swarming.

  8. An application of a Hill-based response surface model for a drug combination experiment on lung cancer.

    PubMed

    Ning, Shaoyang; Xu, Hongquan; Al-Shyoukh, Ibrahim; Feng, Jiaying; Sun, Ren

    2014-10-30

    Combination chemotherapy with multiple drugs has been widely applied to cancer treatment owing to enhanced efficacy and reduced drug resistance. For drug combination experiment analysis, response surface modeling has been commonly adopted. In this paper, we introduce a Hill-based global response surface model and provide an application of the model to a 512-run drug combination experiment with three chemicals, namely AG490, U0126, and indirubin-3  ' -monoxime (I-3-M), on lung cancer cells. The results demonstrate generally improved goodness of fit of our model from the traditional polynomial model, as well as the original Hill model on the basis of fixed-ratio drug combinations. We identify different dose-effect patterns between normal and cancer cells on the basis of our model, which indicates the potential effectiveness of the drug combination in cancer treatment. Meanwhile, drug interactions are analyzed both qualitatively and quantitatively. The distinct interaction patterns between U0126 and I-3-M on two types of cells uncovered by the model could be a further indicator of the efficacy of the drug combination. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study.

    PubMed

    Paz, María Dolores; Álava, J Iñaki; Goikoetxea, Leire; Chiussi, Stefano; Díaz-Güemes, Idoia; Usón, Jesus; Sánchez, Francisco; León, Betty

    2011-01-01

    To assess both the in vitro and in vivo biological response of a laser modified surface in an integrated manner. A combined innovative approach applies lasers to macrostructure as well as to oxidize the surface of titanium alloy implants. A Nd:YAG marking and ArF excimer lasers were used for macrostructuring and UV-oxidizing the surface of Ti6Al4V discs, respectively. Human fetal osteoblastic cell culture and a sheep tibia model were used to assess the cell response and the osseogeneration capability of as-machined, laser macrostructured and laser macrostructured and oxidized surfaces. In vitro: Laser macrostructuration alone did not promote cell response. Cellular proliferation was enhanced by the additional UV laser oxidation. In vivo: A greater significant percentage of bone-implant contact was obtained for both laser treated surfaces compared to machine-turned control samples, three months after implantation, in spite of the low cellular response for macrostructured samples. The use of sheep model for six months appears to be less adequate for a comparison because of the high level of bone integration in all samples. In spite of the often reported positive effect of titanium oxidation on the triggering of faster osseointegration, in this experiment the additional UV laser oxidation did not lead to a significant in vivo improvement. Laser macrostructuration of titanium alloy surfaces appears to promote bone apposition and may therefore constitute a promising surface modification strategy. In animal models, the natural process of titanium surface oxidation, because of physiologic fluids, alters properties observed in vitro with cells.

  10. Understanding and Portraying the Global Atmospheric Circulation.

    ERIC Educational Resources Information Center

    Harrington, John, Jr.; Oliver, John E.

    2000-01-01

    Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)

  11. The effects of spatial inhomogeneities on flow through the endothelial surface layer.

    PubMed

    Leiderman, Karin M; Miller, Laura A; Fogelson, Aaron L

    2008-05-21

    Flow through the endothelial surface layer (the glycocalyx and adsorbed plasma proteins) plays an important but poorly understood role in cell signaling through a process known as mechanotransduction. Characterizing the flow rates and shear stresses throughout this layer is critical for understanding how flow-induced ionic currents, deformations of transmembrane proteins, and the convection of extracellular molecules signal biochemical events within the cell, including cytoskeletal rearrangements, gene activation, and the release of vasodilators. Previous mathematical models of flow through the endothelial surface layer are based upon the assumptions that the layer is of constant hydraulic permeability and constant height. These models also assume that the layer is continuous across the endothelium and that the layer extends into only a small portion of the vessel lumen. Results of these models predict that fluid shear stress is dissipated through the surface layer and is thus negligible near endothelial cell membranes. In this paper, such assumptions are removed, and the resultant flow rates and shear stresses through the layer are described. The endothelial surface layer is modeled as clumps of a Brinkman medium immersed in a Newtonian fluid. The width and spacing of each clump, hydraulic permeability, and fraction of the vessel lumen occupied by the layer are varied. The two-dimensional Navier-Stokes equations with an additional Brinkman resistance term are solved using a projection method. Several fluid shear stress transitions in which the stress at the membrane shifts from low to high values are described. These transitions could be significant to cell signaling since the endothelial surface layer is likely dynamic in its composition, density, and height.

  12. Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)

    2002-01-01

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  13. Triangle geometry processing for surface modeling and cartesian grid generation

    DOEpatents

    Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY

    2002-09-03

    Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.

  14. A method to generate the surface cell layer of the 3D virtual shoot apex from apical initials.

    PubMed

    Kucypera, Krzysztof; Lipowczan, Marcin; Piekarska-Stachowiak, Anna; Nakielski, Jerzy

    2017-01-01

    The development of cell pattern in the surface cell layer of the shoot apex can be investigated in vivo by use of a time-lapse confocal images, showing naked meristem in 3D in successive times. However, how this layer is originated from apical initials and develops as a result of growth and divisions of their descendants, remains unknown. This is an open area for computer modelling. A method to generate the surface cell layer is presented on the example of the 3D paraboloidal shoot apical dome. In the used model the layer originates from three apical initials that meet at the dome summit and develops through growth and cell divisions under the isotropic surface growth, defined by the growth tensor. The cells, which are described by polyhedrons, divide anticlinally with the smallest division plane that passes depending on the used mode through the cell center, or the point found randomly near this center. The formation of the surface cell pattern is described with the attention being paid to activity of the apical initials and fates of their descendants. The computer generated surface layer that included about 350 cells required about 1200 divisions of the apical initials and their derivatives. The derivatives were arranged into three more or less equal clonal sectors composed of cellular clones at different age. Each apical initial renewed itself 7-8 times to produce the sector. In the shape and location and the cellular clones the following divisions of the initial were manifested. The application of the random factor resulted in more realistic cell pattern in comparison to the pure mode. The cell divisions were analyzed statistically on the top view. When all of the division walls were considered, their angular distribution was uniform, whereas in the distribution that was limited to apical initials only, some preferences related to their arrangement at the dome summit were observed. The realistic surface cell pattern was obtained. The present method is a useful tool to generate surface cell layer, study activity of initial cells and their derivatives, and how cell expansion and division are coordinated during growth. We expect its further application to clarify the question of a number and permanence or impermanence of initial cells, and possible relationship between their shape and oriented divisions, both on the ground of the growth tensor approach.

  15. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    PubMed Central

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  16. Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface

    NASA Astrophysics Data System (ADS)

    Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael

    2017-11-01

    A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.

  17. Collective cell behavior on basement membranes floating in space

    NASA Astrophysics Data System (ADS)

    Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas

    The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.

  18. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

    NASA Astrophysics Data System (ADS)

    Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther

    2018-04-01

    A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.

  19. SURFACE WATER FLOW IN LANDSCAPE MODELS: 1. EVERGLADES CASE STUDY. (R824766)

    EPA Science Inventory

    Many landscape models require extensive computational effort using a large array of grid cells that represent the landscape. The number of spatial cells may be in the thousands and millions, while the ecological component run in each of the cells to account for landscape dynamics...

  20. Surface deformation during an action potential in pearled cells

    NASA Astrophysics Data System (ADS)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  1. "Active" drops as phantom models for living cells: a mesoscopic particle-based approach.

    PubMed

    Dallavalle, Marco; Lugli, Francesca; Rapino, Stefania; Zerbetto, Francesco

    2016-04-21

    Drops and biological cells share some morphological features and visco-elastic properties. The modelling of drops by mesoscopic non-atomistic models has been carried out to a high degree of success in recent years. We extend such treatment and discuss a simple, drop-like model to describe the interactions of the outer layer of cells with the surfaces of materials. Cells are treated as active mechanical objects that are able to generate adhesion forces. They appear with their true size and are made of "parcels of fluids" or beads. The beads are described by (very) few quantities/parameters related to fundamental chemical forces such as hydrophilicity and lipophilicity that represent an average of the properties of a patch of material or an area of the cell(s) surface. The investigation of adhesion dynamics, motion of individual cells, and the collective behavior of clusters of cells on materials is possible. In the simulations, the drops become active soft matter objects and different from regular droplets they do not fuse when in contact, their trajectories are not Brownian, and they can be forced "to secrete" molecules, to name some of the properties targeted by the modeling. The behavior that emerges from the simulations allows ascribing some cell properties to their mechanics, which are related to their biological features.

  2. Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles

    PubMed Central

    van Gestel, Jordi; Nowak, Martin A.

    2016-01-01

    Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881

  3. The rhesus monkey as a model for testing the immunological effects of space flight

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, G.; Schaffar, L.; Schmitt, D. A.; Peres, C.; Miller, E. S.

    1994-08-01

    The Rhesus monkey has been proposed as a model for the effects of space flight on immunity. In order to determine the feasibility of the use of the Rhesus monkey as a model, we studied the use of Rhesus monkey cells for immunological procedures that have been shown to be affected by space flight in both rodents and humans. We have shown that both lymph node cells and peripheral blood leukocytes can be stained with monoclonal antibodies to detect the following surface markers: CD4, CD-8, Ia and surface immunoglobulin. Also, the level of Ia antigen expression was increased by treatment of the cells with human interferon-gamma. In addition, cells were induced to produce interferons and interleukins. Isolated neutrophils also demonstrated increased oxidative burst. These data indicate that the Rhesus monkey will be a useful model for space flight studies of immunity.

  4. The Rhesus monkey as a model for testing the immunological effects of space flight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Schaffar, L.; Schmitt, D. A.; Peres, C.; Miller, E. S.

    1994-01-01

    The Rhesus monkey has been proposed as a model for the effects of space flight on immunity. In order to determine the feasibility of the use of the Rhesus monkey as a model, we studied the use of Rhesus monkey cells for immunological procedures that have been shown to be affected by space flight in both rodents and humans. We have shown that both lymph node cells and peripheral blood leukocytes can be stained with monoclonal antibodies to detect the following surface markers: CD4, CD-8, Ia and surface immunoglobulin. Also, the level of Ia antigen expression was increased by treatment of the cells with human interferon-gamma. In addition, cells were induced to produce interferons and interleukins. Isolated neutrophils also demonstrated increased oxidative burst. These data indicate that the Rhesus monkey will be a useful model for space flight studies of immunity.

  5. Development of advanced silicon solar cells for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Lillington, David R.

    1990-01-01

    This report describes the development of large area high efficiency wrapthrough solar cells for Space Station Freedom. The goal of this contract was the development and fabrication of 8 x 8 cm coplanar back contact solar cells with a minimum output of 1.039 watts/cell. The first task in this program was a modeling study to determine the optimum configuration of the cell and to study the effects of surface passivation, substrate resistivity, and back surface field on the BOL and EOL performance. In addition, the optical stack, including the cell cover, AR coatings, and Kapton blanket, was modeled to optimize 'on orbit' operation. The second phase was a manufacturing development phase to develop high volume manufacturing processes for the reliable production of low recombination velocity boron back surface fields, techniques to produce smooth, low leakage wrapthrough holes, passivation, photoresist application methods, and metallization schemes. The final portion of this program was a pilot production phase. Seven hundred solar cells were delivered in this phase. At the end of the program, cells with average efficiencies over 13 percent were being produced with power output in excess of 1.139 watts/cell, thus substantially exceeding the program goal.

  6. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  7. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    PubMed

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  8. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix

    NASA Astrophysics Data System (ADS)

    Damanik, Febriyani F. R.; Rothuizen, Tonia C.; van Blitterswijk, Clemens; Rotmans, Joris I.; Moroni, Lorenzo

    2014-09-01

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  9. Generalized Boussinesq-Scriven surface fluid model with curvature dissipation for liquid surfaces and membranes.

    PubMed

    Aguilar Gutierrez, Oscar F; Herrera Valencia, Edtson E; Rey, Alejandro D

    2017-10-01

    Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Kinetics of biochemical sensing by single cells and populations of cells

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-10-01

    We investigate the collective stationary sensing using N communicative cells, which involves surface receptors, diffusive signaling molecules, and cell-cell communication messengers. We restrict the scenarios to the signal-to-noise ratios (SNRs) for both strong communication and extrinsic noise only. We modified a previous model [Bialek and Setayeshgar, Proc. Natl. Acad. Sci. USA 102, 10040 (2005), 10.1073/pnas.0504321102] to eliminate the singularities in the fluctuation correlations by considering a uniform receptor distribution over the surface of each cell with a finite radius a . The modified model enables a simple and rigorous mathematical treatment of the collective sensing phenomenon. We then derive the scaling of the SNR for both juxtacrine and autocrine cases in all dimensions. For the optimal locations of the cells in the autocrine case, we find identical scaling for both two and three dimensions.

  11. Model Simulation of Diurnal Vertical Migration Patterns of Different-Sized Colonies of Microcystis Employing a Particle Trajectory Approach.

    PubMed

    Chien, Yu Ching; Wu, Shian Chee; Chen, Wan Ching; Chou, Chih Chung

    2013-04-01

    Microcystis , a genus of potentially harmful cyanobacteria, is known to proliferate in stratified freshwaters due to its capability to change cell density and regulate buoyancy. In this study, a trajectory model was developed to simulate the cell density change and spatial distribution of Microcystis cells with nonuniform colony sizes. Simulations showed that larger colonies migrate to the near-surface water layer during the night to effectively capture irradiation and become heavy enough to sink during daytime. Smaller-sized colonies instead took a longer time to get to the surface. Simulation of the diurnally varying Microcystis population profile matched the observed pattern in the field when the radii of the multisized colonies were in a beta distribution. This modeling approach is able to take into account the history of cells by keeping track of their positions and properties, such as cell density and the sizes of colonies. It also serves as the basis for further developmental modeling of phytoplanktons that are forming colonies and changing buoyancy.

  12. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06157a

  13. Widespread Non-Hematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity

    PubMed Central

    Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.

    2011-01-01

    Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447

  14. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  15. Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers.

    PubMed

    Hao, Lijing; Fu, Xiaoling; Li, Tianjie; Zhao, Naru; Shi, Xuetao; Cui, Fuzhai; Du, Chang; Wang, Yingjun

    2016-12-01

    Self-assembled monolayers (SAMs) of alkanethiols on gold are highly controllable model substrates and have been employed to mimic the extracellular matrix for cell-related studies. This study aims to systematically explore how surface chemistry influences the adhesion, morphology, proliferation and osteogenic differentiation of mouse mesenchymal stem cells (mMSCs) using various functional groups (-OEG, -CH 3 , -PO 3 H 2 , -OH, -NH 2 and -COOH). Surface analysis demonstrated that these functional groups produced a wide range of wettability and charge: -OEG (hydrophilic and moderate iso-electric point (IEP)), -CH 3 (strongly hydrophobic and low IEP), -PO 3 H 2 (moderate wettability and low IEP), -OH (hydrophilic and moderate IEP), -NH 2 (moderate wettability and high IEP) and -COOH (hydrophilic and low IEP). In terms of cell responses, the effect of wettability may be more influential than charge for these groups. Moreover, compared to -OEG and -CH 3 groups, -PO 3 H 2 , -OH, -NH 2 and -COOH functionalities tended to promote not only cell adhesion, proliferation and osteogenic differentiation but also the expression of α v and β 1 integrins. This finding indicates that the surface chemistry may guide mMSC activities through α v and β 1 integrin signaling pathways. Model surfaces with controllable chemistry may provide insight into biological responses to substrate surfaces that would be useful for the design of biomaterial surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. TMEM2: A missing link in hyaluronan catabolism identified?

    PubMed

    Yamaguchi, Yu; Yamamoto, Hayato; Tobisawa, Yuki; Irie, Fumitoshi

    2018-03-27

    Hyaluronan (HA) is a glycosaminoglycan (GAG) composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. HA is an extremely long, unbranched polymer, which often exceeds 10 6  Da and sometimes reaches 10 7  Da. A feature that epitomizes HA is its rapid turnover; one-third of the total body HA is turned over daily. The current model of HA catabolism postulates that high-molecular weight HA in the extracellular space is first cleaved into smaller fragments by a hyaluronidase(s) that resides at the cell surface, followed by internalization of fragments and their degradation into monosaccharides in lysosomes. Over the last decade, considerable research has shown that the HYAL family of hyaluronidases plays significant roles in HA catabolism. Nonetheless, the identity of a hyaluronidase responsible for the initial step of HA cleavage on the cell surface remains elusive, as biochemical and enzymological properties of HYAL proteins are not entirely consistent with those expected of cell surface hyaluronidases. Recent identification of transmembrane 2 (TMEM2) as a cell surface protein that possesses potent hyaluronidase activity suggests that it may be the "missing" cell surface hyaluronidase, and that novel models of HA catabolism should include this protein. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  17. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    PubMed Central

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272

  18. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    PubMed

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  19. DEVELOPMENT OF A MODEL TO INVESTIGATE RED BLOOD CELL SURFACE CHARACTERISTICS AFTER CRYOPRESERVATION.

    PubMed

    Gordiyenko, O I; Anikieieva, M O; Rozanova, S L; Kovalenko, S Ye; Kovalenkol, I F; Gordiyenko, E O

    2015-01-01

    Maintaining cell surface properties after freezing and thawing, characterized in particular by the surface potential and associated with it cell ability to intercellular adhesion, could be used as a characteristic of successful cryopreservation. This study was conducted to research applying different erythrocytes freezing modes and analyses the regimes cryopreservation effect on the cell surface charge and adhesion to microorganisms. Human erythrocytes frozen by three modes. In order to determine adhesion index was used dried bacterial cells of S. thermophilus. The surface charge of erythrocytes was evaluated using Alcian blue cationic dye. The results showed the significant decrease in the lactobacillus adhesion to erythrocytes frozen glycerol and 1,2-propanediol. After erythrocytes were freezen with glycerol and 1,2-propanediol, the cationic dye binding to erythrocytes significantly reduced. AB binding to erythrocytes frozen with PEG-1500 does not differ from control data. Erythrocytes frozen with PEG-1500 mantained surface properties after thawing better, compared to erythrocytes cryopreserved by other methods.

  20. Functional cell-surface display of a lipase-specific chaperone.

    PubMed

    Wilhelm, Susanne; Rosenau, Frank; Becker, Stefan; Buest, Sebastian; Hausmann, Sascha; Kolmar, Harald; Jaeger, Karl-Erich

    2007-01-02

    Lipases are important enzymes in biotechnology. Extracellular bacterial lipases from Pseudomonads and related species require the assistance of specific chaperones, designated "Lif" proteins (lipase specific foldases). Lifs, a unique family of steric chaperones, are anchored to the periplasmic side of the inner membrane where they convert lipases into their active conformation. We have previously shown that the autotransporter protein EstA from P. aeruginosa can be used to direct a variety of proteins to the cell surface of Escherichia coli. Here we demonstrate for the first time the functional cell-surface display of the Lif chaperone and FACS (fluorescence-activated cell sorting)-based analysis of bacterial cells that carried foldase-lipase complexes. The model Lif protein, LipH from P. aeruginosa, was displayed at the surface of E. coli cells. Surface exposed LipH was functional and efficiently refolded chemically denatured lipase. The foldase autodisplay system reported here can be used for a variety of applications including the ultrahigh-throughput screening of large libraries of foldase variants generated by directed evolution.

  1. Antibody neutralization of cell-surface gC1qR/HABP1/SF2-p32 prevents lamellipodia formation and tumorigenesis

    PubMed Central

    Kim, Beom-Chan; Hwang, Hyun-Jung; An, Hyoung-Tae; Lee, Hyun; Park, Jun-Sub; Hong, Jin; Ko, Jesang; Kim, Chungho; Lee, Jae-Seon; Ko, Young-Gyu

    2016-01-01

    We previously demonstrated that cell-surface gC1qR is a key regulator of lamellipodia formation and cancer metastasis. Here, we screened a monoclonal mouse antibody against gC1qR to prevent cell migration by neutralizing cell-surface gC1qR. The anti-gC1qR antibody prevented growth factor-stimulated lamellipodia formation, cell migration and focal adhesion kinase activation by inactivating receptor tyrosine kinases (RTKs) in various cancer cells such as A549, MDA-MB-231, MCF7 and HeLa cells. The antibody neutralization of cell-surface gC1qR also inhibited angiogenesis because the anti-gC1qR antibody prevented growth factor-stimulated RTK activation, lamellipodia formation, cell migration and tube formation in HUVEC. In addition, we found that A549 tumorigenesis was reduced in a xenograft mouse model by following the administration of the anti-gC1qR antibody. With these data, we can conclude that the antibody neutralization of cell-surface gC1qR could be a good therapeutic strategy for cancer treatment. PMID:27363031

  2. Agent-Based Computational Modeling of Cell Culture ...

    EPA Pesticide Factsheets

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  3. Automated Array Assembly, Phase 2

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The solar cell module process development activities in the areas of surface preparation are presented. The process step development was carried out on texture etching including the evolution of a conceptual process model for the texturing process; plasma etching; and diffusion studies that focused on doped polymer diffusion sources. Cell processing was carried out to test process steps and a simplified diode solar cell process was developed. Cell processing was also run to fabricate square cells to populate sample minimodules. Module fabrication featured the demonstration of a porcelainized steel glass structure that should exceed the 20 year life goal of the low cost silicon array program. High efficiency cell development was carried out in the development of the tandem junction cell and a modification of the TJC called the front surface field cell. Cell efficiencies in excess of 16 percent at AM1 have been attained with only modest fill factors. The transistor-like model was proposed that fits the cell performance and provides a guideline for future improvements in cell performance.

  4. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    PubMed Central

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  5. Ion-implanted polytetrafluoroethylene enhances Saccharomyces cerevisiae biofilm formation for improved immobilization

    PubMed Central

    Tran, Clara T. H.; Kondyurin, Alexey; Hirsh, Stacey L.; McKenzie, David R.; Bilek, Marcela M. M.

    2012-01-01

    The surface of polytetrafluoroethylene (PTFE) was modified using plasma immersion ion implantation (PIII) with the aim of improving its ability to immobilize yeast. The density of immobilized cells on PIII-treated and -untreated PTFE was compared as a function of incubation time over 24 h. Rehydrated yeast cells attached to the PIII-treated PTFE surface more rapidly, with higher density, and greater attachment strength than on the untreated surface. The immobilized yeast cells were removed mechanically or chemically with sodium hydroxide and the residues left on the surfaces were analysed with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). The results revealed that the mechanism of cell attachment on both surfaces differs and a model is presented for each. Rapid attachment on the PIII-treated surface occurs through covalent bonds of cell wall proteins and the radicals on the treated surface. In contrast, on the untreated surface, only physisorbed molecules were found in the residue and lipids were more highly concentrated than proteins. The presence of lipids in the residue was found to be a consequence of damage to the plasma membrane during the rehydration process and the increased cell stress was also apparent by the amount of Hsp12 in the protein residue. The immobilized yeast cells on PIII-treated PTFE were found to be as active as yeast cells in suspension. PMID:22696486

  6. Exopolysaccharide-Independent Social Motility of Myxococcus xanthus

    PubMed Central

    Hu, Wei; Hossain, Muhaiminu; Lux, Renate; Wang, Jing; Yang, Zhe; Li, Yuezhong; Shi, Wenyuan

    2011-01-01

    Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that “S motility” is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS- cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces. PMID:21245931

  7. Studies on the Ionic Permeability of Muscle Cells and their Models

    PubMed Central

    Ling, Gilbert N.; Ochsenfeld, Margaret M.

    1965-01-01

    We studied the effect an alkali-metal ion exercised on the rate of entry of another alkali-metal ion into frog sartorius muscle cells and their models (i.e., ion exchange resin and sheep's wool). In the case of frog muscle, it was shown that the interaction fell into one of four categories; competition, facilitation, and two types of indifference. The observed pK value (4.6 to 4.7) of the surface anionic groups that combine with the alkali-metal ions suggests that they are β- or γ-carboxyl groups of proteins on the cell surface. The results were compared with four theoretical models which included three membrane models (continuous lipoid membrane with carrier; leaky membrane with carrier; membrane with fixed ionic sites) and one bulk-phase model. This comparison led to the conclusion that the only model that is self-consistent and agrees with all of the experimental facts is the one based on the concept that the entire living cell represents a proteinaceous fixed-charge system; this model correctly predicts all four types of interaction observed. PMID:5884012

  8. A hybrid finite-difference and analytic element groundwater model

    USGS Publications Warehouse

    Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym

    2010-01-01

    Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.

  9. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun

    2005-02-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growthmore » factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.« less

  10. Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid.

    PubMed

    Wu, Ming; He, Jia; Ren, Xiao; Cai, Wen-Sheng; Fang, Yong-Chun; Feng, Xi-Zeng

    2014-04-01

    The effect of physicochemical surface properties and chemical structure on the attachment and viability of bacteria and mammalian cells has been extensively studied for the development of biologically relevant applications. In this study, we report a new approach that uses chlorogenic acid (CA) to modify the surface wettability, anti-bacterial activity and cell adhesion properties of polydimethylsiloxane (PDMS). The chemical structure of the surface was obtained by X-ray photoelectron spectroscopy (XPS), the roughness was measured by atomic force microscopy (AFM), and the water contact angle was evaluated for PDMS substrates both before and after CA modification. Molecular modelling showed that the modification was predominately driven by van der Waals and electrostatic interactions. The exposed quinic-acid moiety improved the hydrophilicity of CA-modified PDMS substrates. The adhesion and viability of E. coli and HeLa cells were investigated using fluorescence and phase contrast microscopy. Few viable bacterial cells were found on CA-coated PDMS surfaces compared with unmodified PDMS surfaces. Moreover, HeLa cells exhibited enhanced adhesion and increased spreading on the modified PDMS surface. Thus, CA-coated PDMS surfaces reduced the ratio of viable bacterial cells and increased the adhesion of HeLa cells. These results contribute to the purposeful design of anti-bacterial surfaces for medical device use. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Modeling of hydrogen evolution reaction on the surface of GaInP2

    NASA Astrophysics Data System (ADS)

    Choi, Woon Ih; Wood, Brandon; Schwegler, Eric; Ogitsu, Tadashi

    2012-02-01

    GaInP2 is promising candidate material for hydrogen production using sunlight. It reduces solvated proton into hydrogen molecule using light-induced excited electrons in the photoelectrochemical cell. However, it is challenging to model hydrogen evolution reaction (HER) using first-principles molecular dynamics. Instead, we use Anderson-Newns model and generalized solvent coordinate in Marcus-Hush theory to describe adiabatic free energy surface of HER. Model parameters are fitted from the DFT calculations. We model Volmer-Heyrovsky reaction path on the surfaces of CuPt phase of GaInP2. We also discuss effects of surface oxide and catalyst atoms that exist on top of bare surfaces in experimental circumstances.

  12. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  13. [Membrane model of the regulation of proliferation: the theory and interpretation of an experiment].

    PubMed

    Volkov, E I

    1983-04-01

    The role of cell surface physical organization in the cell cycle regulation is analyzed within the framework of the earlier proposed theory (Chernavskii et al., 1982). Two models of cell surface are considered: hard-frame fluid-mosaic model (latticemosaic) and the fluid-mosaic one. The former deals with normal cells. The existence of integral carcasse or "frame" which is formed by the essential part of cross-linked membrane components and may have at least two different conformational states is hypothesized. The second model describes membranes of tumour cells. With the latter theory any mitogen (excluding the restoration of nutrient depletion) reduces the mechanical tensile strength of the frame and stimulates the general structural rearrangement of the plasma membrane. There are only two conformational transitions during the cell cycle which serve as signals for the beginning of S and M phases. If the values of tensile strength are great enough and therefore the conformational transitions are impossible, the cells pass into the resting (prereplicative--G01, or premitotical--G02) state. Three types of experiments are interpreted in the proposed theory: a) on differences in the action of growth factors on normal and tumour cell cycle, b) on the necessary condition for mitogenicity of lectins, c) on the stimulation of proliferation by mechanical deformation of cells.

  14. An N-terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: A Novel Sub-family of Type I Secretion Systems.

    PubMed

    Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A

    2018-02-05

    LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.

  15. Surface matching for correlation of virtual models: Theory and application

    NASA Technical Reports Server (NTRS)

    Caracciolo, Roberto; Fanton, Francesco; Gasparetto, Alessandro

    1994-01-01

    Virtual reality can enable a robot user to off line generate and test in a virtual environment a sequence of operations to be executed by the robot in an assembly cell. Virtual models of objects are to be correlated to the real entities they represent by means of a suitable transformation. A solution to the correlation problem, which is basically a problem of 3-dimensional adjusting, has been found exploiting the surface matching theory. An iterative algorithm has been developed, which matches the geometric surface representing the shape of the virtual model of an object, with a set of points measured on the surface in the real world. A peculiar feature of the algorithm is to work also if there is no one-to-one correspondence between the measured points and those representing the surface model. Furthermore the problem of avoiding convergence to local minima is solved, by defining a starting point of states ensuring convergence to the global minimum. The developed algorithm has been tested by simulation. Finally, this paper proposes a specific application, i.e., correlating a robot cell, equipped for biomedical use with its virtual representation.

  16. An Animal Model to Investigate the Potential for Breast Cancer Metastatic Dissemination Following Surgery Intervention on the Primitive Tumor

    DTIC Science & Technology

    2010-09-01

    cancer cells at the plasma membrane level were measured by cell surface biotinylation, using a dedicated kit (cat. #89881) obtained from Pierce...each form of the receptor at the plasma membrane of transfected cells was confirmed by isolation of cell surface proteins obtained by biotinylation...this receptor to interact with both plasma membrane-bound and soluble FKN. Based on our study, it seems reasonable to postulate that the dissemination

  17. Analysis of Fc(epsilon)RI-mediated mast cell stimulation by surface-carried antigens.

    PubMed Central

    Schweitzer-Stenner, R; Tamir, I; Pecht, I

    1997-01-01

    Clustering of the type I receptor for IgE (Fc[epsilon]RI) on mast cells initiates a cascade of biochemical processes that result in secretion of inflammatory mediators. To determine the Fc(epsilon)RI proximity, cluster size, and mobility requirements for initiating the Fc(epsilon)RI cascade, a novel experimental protocol has been developed in which mast cells are reacted with glass surfaces carrying different densities of both antigen and bound IgE, and the cell's secretory response to these stimuli is measured. The results have been analyzed in terms of a model based on the following assumptions: 1) the glass surface antigen distribution and consequently that of the bound IgE are random; 2) Fc(epsilon)RI binding to these surface-bound IgEs immobilizes the former and saturates the latter; 3) the cell surface is formally divided into small elements, which function as a secretory stimulus unit when occupied by two or more immobilized IgE-Fc(epsilon)RI complexes; 4) alternatively, similar stimulatory units can be formed by binding of surface-carried IgE dimers to two Fc(epsilon)RI. This model yielded a satisfactory and self-consistent fitting of all of the different experimental data sets. Hence the present results establish the essential role of Fc(epsilon)RI immobilization for initiating its signaling cascade. Moreover, it provides independent support for the notion that as few as two Fc(epsilon)RIs immobilized at van der Waals contact constitute an "elementary stimulatory unit" leading to mast cell (RBL-2H3 line) secretory response. PMID:9168023

  18. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  19. Association of Cell Surface Mucins with Galectin-3 Contributes to the Ocular Surface Epithelial Barrier*

    PubMed Central

    Argüeso, Pablo; Guzman-Aranguez, Ana; Mantelli, Flavio; Cao, Zhiyi; Ricciuto, Jessica; Panjwani, Noorjahan

    2009-01-01

    Maintenance of an intact mucosal barrier is critical to preventing damage to and infection of wet-surfaced epithelia. The mechanism of defense has been the subject of much investigation, and there is evidence now implicating O-glycosylated mucins on the epithelial cell surface. Here we investigate a new role for the carbohydrate-binding protein galectin-3 in stabilizing mucosal barriers through its interaction with mucins on the apical glycocalyx. Using the surface of the eye as a model system, we found that galectin-3 colocalized with two distinct membrane-associated mucins, MUC1 and MUC16, on the apical surface of epithelial cells and that both mucins bound to galectin-3 affinity columns in a galactose-dependent manner. Abrogation of the mucin-galectin interaction in four different mucosal epithelial cell types using competitive carbohydrate inhibitors of galectin binding, β-lactose and modified citrus pectin, resulted in decreased levels of galectin-3 on the cell surface with concomitant loss of barrier function, as indicated by increased permeability to rose bengal diagnostic dye. Similarly, down-regulation of mucin O-glycosylation using a stable tetracycline-inducible RNA interfering system to knockdown c1galt1 (T-synthase), a critical galactosyltransferase required for the synthesis of core 1 O-glycans, resulted in decreased cell surface O-glycosylation, reduced cell surface galectin-3, and increased epithelial permeability. Taken together, these results suggest that galectin-3 plays a key role in maintaining mucosal barrier function through carbohydrate-dependent interactions with cell surface mucins. PMID:19556244

  20. [Stimuli sensitive changes in electrical surface properties of soft membranes: from a synthesized polymer to a biological system].

    PubMed

    Makino, K

    1997-01-01

    The electrical surface properties of biological cells have been studied, which provided us with the fundamental knowledge about the cell surface. The change in shape or biological functions of cells may affect the surface properties and can be detected by electrokinetic measurements. Biological cell surfaces are covered with polysaccharide chains, some are charged and some are not. Some polysaccharides produce a hydrogel matrixes under a proper condition. We thus consider it reasonable that cell surface is approximated by a hydrogel surface. Electrophoretic mobility measurements are useful for studying the surface properties of biological cells suspended as colloidal particles in an electrolyte solution. The electro-osmotic velocity measurements on the other hand are advantageous to the study of the surface properties of slab-shaped biological systems such as membranes. This work was started with a hydrogel, as a model material. As a hydrogel, poly(N-isopropylacrylamide) poly(NIPAAm), abbreviated as hereafter, was chosen, because this hydrogel changes its volume depending on temperature. The dependence of the electrophoretic mobility of latex particles covered with poly(NIPAAm) hydrogel layer or of the electro-osmotic mobility on poly(NIPAAm) plate upon temperature and ionic strength of the dispersing medium was well explained with an electrophoretic mobility formula for "soft particles" developed by Ohshima. The electrokinetic measurements and the explanation of data with an electrophoretic mobility formula for "soft particles" give us information about the surface charge density and the "softness" of soft surfaces. On the basis of the findings with hydrogels, we have discussed the relationship between the changes in shape or function of the biological cells and the change in physicochemical surface properties using these measurements. To study the change in physicochemical properties of the cell surface caused by apoptosis, we have measured the electrophoretic mobilities of intact and apoptotic human promyelocytic leukemia cell lines, HL-60RG cells. We have also studied the differences observed in surface properties of malignant lymphosarcoma cell line, RAW117-P, and its variant, RAW117-H10, with a high metastatic property to the liver. In both cases, the cell surfaces became softer by the changes of biological functions. We have applied electrophoresis and electro-osmosis measurements to the study of the electrokinetic surface properties of rat basophilic leukemia cells, RBL cells. It was also found that the surface of Human umbilical vein endothelial cells, HUVEC, is considerably soft as compared with those of other biological cells we have studied before.

  1. Targeted Identification of Metastasis-associated Cell-surface Sialoglycoproteins in Prostate Cancer*

    PubMed Central

    Yang, Lifang; Nyalwidhe, Julius O.; Guo, Siqi; Drake, Richard R.; Semmes, O. John

    2011-01-01

    Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC4ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells. PMID:21447706

  2. Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer.

    PubMed

    Yang, Lifang; Nyalwidhe, Julius O; Guo, Siqi; Drake, Richard R; Semmes, O John

    2011-06-01

    Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC(4)ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells.

  3. Generation of Monoclonal Antibodies against Immunoglobulin Proteins of the Domestic Ferret (Mustela putorius furo)

    PubMed Central

    2017-01-01

    The domestic ferret (Mustela putorius furo) serves as an animal model for the study of several viruses that cause human disease, most notably influenza. Despite the importance of this animal model, characterization of the immune response by flow cytometry (FCM) is severely hampered due to the limited number of commercially available reagents. To begin to address this unmet need and to facilitate more in-depth study of ferret B cells including the identification of antibody-secreting cells, eight unique murine monoclonal antibodies (mAb) with specificity for ferret immunoglobulin (Ig) were generated using conventional B cell hybridoma technology. These mAb were screened for reactivity against ferret peripheral blood mononuclear cells by FCM and demonstrate specificity for CD79β+ B cells. Several of these mAb are specific for the light chain of surface B cell receptor (BCR) and enable segregation of kappa and lambda B cells. Additionally, a mAb that yielded surface staining of nearly all surface BCR positive cells (i.e., pan ferret Ig) was generated. Collectively, these MαF-Ig mAb offer advancement compared to the existing portfolio of polyclonal anti-ferret Ig detection reagents and should be applicable to a wide array of immunologic assays including the identification of antibody-secreting cells by FCM. PMID:28286781

  4. Chemically grafted fibronectin for use in QCM-D cell studies

    PubMed Central

    Sobolewski, Peter; Tomczyk, Nancy; Composto, Russell J.; Eckmann, David M.

    2014-01-01

    Traditionally, fibronectin has been used as a physisorbed surface coating (physFN) in cell culture experiments due to its critical role in cell adhesion. However, because the resulting layer is thick, unstable, and of unpredictable uniformity, this method of fibronectin deposition is unsuitable for some types of research, including quartz crystal microbalance (QCM) experiments involving cells. Here, we present a new method for chemical immobilization of fibronectin onto silicon oxide surfaces, including QCM crystals pre-coated with silicon oxide. We characterize these chemically coated fibronectin surfaces (chemFN) as well as physFN ones using surface ellipsometry (SE), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle measurements. A cell culture model demonstrates that cells on chemFN and physFN surfaces exhibit similar viability, structure, adhesion and metabolism. Finally, we perform QCM experiments using cells on both surfaces which demonstrate the superior suitability of chemFN coatings for QCM research, and provide real-time QCM-D data from cells subjected to an actin depolymerizing agent. Overall, our method of chemical immobilization of fibronectin yields great potential for furthering cellular experiments in which thin, stable and uniform coatings are desirable. As QCM research with cells has been rather limited in success thus far, we anticipate that this new technique will particularly benefit this experimental system by availing it to the much broader field of cell mechanics. PMID:24657645

  5. Polymer microfilters with nanostructured surfaces for the culture of circulating cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarova, Olga V.; Adams, Daniel L.; Divan, Ralu

    There is a critical need to improve the accuracy of drug screening and testing through the development of in vitro culture systems that more effectively mimic the in vivo environment. Surface topographical features on the nanoscale level, in short nanotopography, effect the cell growth patterns, and hence affect cell function in culture. We report the preliminary results on the fabrication, and subsequent cellular growth, of nanoscale surface topography on polymer microfilters using cell lines as a precursor to circulating tumor cells (CTCs). To create various nanoscale features on the microfilter surface, we used reactive ion etching (RIE) with and withoutmore » an etching mask. An anodized aluminum oxide (AAO) membrane fabricated directly on the polymer surface served as an etching mask. Polymer filters with a variety of modified surfaces were used to compare the effects on the culture of cancer cell lines in blank culture wells, with untreated microfilters or with RIE-treated microfilters. We then report the differences of cell shape, phenotype and growth patterns of bladder and glioblastoma cancer cell lines after isolation on the various types of material modifications. Our data suggest that RIE modified polymer filters can isolate model cell lines while retaining ell viability, and that the RIE filter modification allows T24 monolayering cells to proliferate as a structured cluster. Copyright 2016 The Authors. Published by Elsevier B.V. All rights reserved.« less

  6. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    PubMed

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  7. Cell Surface Mechanochemistry and the Determinants of Bleb Formation, Healing, and Travel Velocity

    PubMed Central

    Manakova, Kathryn; Yan, Huaming; Lowengrub, John; Allard, Jun

    2016-01-01

    Blebs are pressure-driven cell protrusions implicated in cellular functions such as cell division, apoptosis, and cell motility, including motility of protease-inhibited cancer cells. Because of their mechanical nature, blebs inform us about general cell-surface mechanics, including membrane dynamics, pressure propagation throughout the cytoplasm, and the architecture and dynamics of the actin cortex. Mathematical models including detailed fluid dynamics have previously been used to understand bleb expansion. Here, we develop mathematical models in two and three dimensions on longer timescales that recapitulate the full bleb life cycle, including both expansion and healing by cortex reformation, in terms of experimentally accessible biophysical parameters such as myosin contractility, osmotic pressure, and turnover of actin and ezrin. The model provides conditions under which blebbing occurs, and naturally gives rise to traveling blebs. The model predicts conditions under which blebs travel or remain stationary, as well as the bleb traveling velocity, a quantity that has remained elusive in previous models. As previous studies have used blebs as reporters of membrane tension and pressure dynamics within the cell, we have used our system to investigate various pressure equilibration models and dynamic, nonuniform membrane tension to account for the shape of a traveling bleb. We also find that traveling blebs tend to expand in all directions unless otherwise constrained. One possible constraint could be provided by spatial heterogeneity in, for example, adhesion density. PMID:27074688

  8. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    PubMed

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  9. The penny pusher: a cellular model of lens growth.

    PubMed

    Shi, Yanrong; De Maria, Alicia; Lubura, Snježana; Šikić, Hrvoje; Bassnett, Steven

    2014-12-16

    The mechanisms that regulate the number of cells in the lens and, therefore, its size and shape are unknown. We examined the dynamic relationship between proliferative behavior in the epithelial layer and macroscopic lens growth. The distribution of S-phase cells across the epithelium was visualized by confocal microscopy and cell populations were determined from orthographic projections of the lens surface. The number of S-phase cells in the mouse lens epithelium fell exponentially, to an asymptotic value of approximately 200 cells by 6 months. Mitosis became increasingly restricted to a 300-μm-wide swath of equatorial epithelium, the germinative zone (GZ), within which two peaks in labeling index were detected. Postnatally, the cell population increased to approximately 50,000 cells at 4 weeks of age. Thereafter, the number of cells declined, despite continued growth in lens dimensions. This apparently paradoxical observation was explained by a time-dependent increase in the surface area of cells at all locations. The cell biological measurements were incorporated into a physical model, the Penny Pusher. In this simple model, cells were considered to be of a single type, the proliferative behavior of which depended solely on latitude. Simulations using the Penny Pusher predicted the emergence of cell clones and were in good agreement with data obtained from earlier lineage-tracing studies. The Penny Pusher, a simple stochastic model, offers a useful conceptual framework for the investigation of lens growth mechanisms and provides a plausible alternative to growth models that postulate the existence of lens stem cells. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  10. Respiration in heterotrophic unicellular eukaryotic organisms.

    PubMed

    Fenchel, Tom

    2014-08-01

    Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Evaluating RGB photogrammetry and multi-temporal digital surface models for detecting soil erosion

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2013-04-01

    Photogrammetry is a widely used tool for generating high-resolution digital surface models. Unmanned Aerial Vehicles (UAVs), equipped with a Red Green Blue (RGB) camera, have great potential in quickly acquiring multi-temporal high-resolution orthophotos and surface models. Such datasets would ease the monitoring of geomorphological processes, such as local soil erosion and rill formation after heavy rainfall events. In this study we test a photogrammetric setup to determine data requirements for soil erosion studies with UAVs. We used a rainfall simulator (5 m2) and above a rig with attached a Panasonic GX1 16 megapixel digital camera and 20mm lens. The soil material in the simulator consisted of loamy sand at an angle of 5 degrees. Stereo pair images were taken before and after rainfall simulation with 75-85% overlap. Acquired images were automatically mosaicked to create high-resolution orthorectified images and digital surface models (DSM). We resampled the DSM to different spatial resolutions to analyze the effect of cell size to the accuracy of measured rill depth and soil loss estimations, and determined an optimal cell size (thus flight altitude). Furthermore, the high spatial accuracy of the acquired surface models allows further analysis of rill formation and channel initiation related to e.g. surface roughness. We suggest implementing near-infrared and temperature sensors to combine soil moisture and soil physical properties with surface morphology for future investigations.

  12. Numerical calculations for effects of structure of skeletal muscle on frequency-dependence of its electrical admittance and impedance

    NASA Astrophysics Data System (ADS)

    Sekine, Katsuhisa; Yamada, Ayumi; Kageyama, Hitomi; Igarashi, Takahiro; Yamamoto, Nana; Asami, Koji

    2015-06-01

    Numerical calculations were carried out by the finite difference method using three-dimensional models to examine effects of the structure of skeletal muscle on the frequency-dependence of its electrical admittance Y and impedance Z in transversal and longitudinal directions. In the models, the muscle cell was represented by a rectangular solid surrounded by a smooth surface membrane, and the cells were assumed to be distributed periodically. The width of the cross section of the cell, thickness of the intercellular medium, and the relative permittivities and the conductivities of the cell interior, the intercellular medium and the surface membrane were changed. Based on the results of the calculations, reported changes in Y and Z of the muscles from 1 kHz to 1 MHz were analyzed. The analyses revealed that a decreased cell radius was reasonable to explain the Y and Z of the muscles of immature rats, rats subjected to sciatic nerve crush at chronic stage and the amyotrophic lateral sclerosis (ALS) mice. Changes in Y and Z due to the sciatic nerve crush at acute stage were attributable to the decreased cell radius, the increased space between the cells, the increased permittivity of the surface membrane and the increased conductivity of the cell interior. The changes in Z due to contraction were explained by the changes in the cell radius, and the conductivities of the cell interior and the intercellular medium. The changes in Z of meat due to aging were compared with the effects of the increase in the conductivity of the surface membrane.

  13. Use of Adipose Derived Stem Cells to Treat Large Bone Defects. Addendum

    DTIC Science & Technology

    2009-07-01

    optimal delivery . We have also completed characterization of our segmental defect model, including analysis of vascular ingrowth during defect healing...cells seeded in 1.2% Keltone alginate at a density of 12-15x106cells/ml were loaded on 24-well transwell insert membranes [6]. Once hydrogel discs...process from tissue culture plates and hydrogels does not alter the surface phenotype. Gene expression of surface markers and proteins associated with

  14. Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ha, Tae Woong

    1989-01-01

    Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.

  15. Osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindeler, Aaron; Little, David G.; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney

    2005-12-16

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over themore » 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.« less

  16. Front Instabilities and Invasiveness of Simulated Avascular Tumors

    PubMed Central

    Popławski, Nikodem J.; Agero, Ubirajara; Gens, J. Scott; Swat, Maciej; Glazier, James A.; Anderson, Alexander R. A.

    2009-01-01

    We study the interface morphology of a 2D simulation of an avascular tumor composed of identical cells growing in an homogeneous healthy tissue matrix (TM), in order to understand the origin of the morphological changes often observed during real tumor growth. We use the GlazierGraner-Hogeweg model, which treats tumor cells as extended, deformable objects, to study the effects of two parameters: a dimensionless diffusion-limitation parameter defined as the ratio of the tumor consumption rate to the substrate transport rate, and the tumor-TM surface tension. We model TM as a nondiffusing field, neglecting the TM pressure and haptotactic repulsion acting on a real growing tumor; thus our model is appropriate for studying tumors with highly motile cells, e.g., gliomas. We show that the diffusion-limitation parameter determines whether the growing tumor develops a smooth (noninvasive) or fingered (invasive) interface, and that the sensitivity of tumor morphology to tumor-TM surface tension increases with the size of the dimensionless diffusion-limitation parameter. For large diffusion-limitation parameters we find a transition (missed in previous work) between dendritic structures, produced when tumor-TM surface tension is high, and seaweed-like structures, produced when tumor-TM surface tension is low. This observation leads to a direct analogy between the mathematics and dynamics of tumors and those observed in nonbiological directional solidification. Our results are also consistent with biological observation that hypoxia promotes invasive growth of tumor cells by inducing higher levels of receptors for scatter factors that weaken cell-cell adhesion and increase cell motility. These findings suggest that tumor morphology may have value in predicting the efficiency of antiangiogenic therapy in individual patients. PMID:19234746

  17. Functional Anchoring Lipids for Drug Delivery Carrier Fabrication and Cell Surface Re-Engineering Applications

    NASA Astrophysics Data System (ADS)

    Vabbilisetty, Pratima

    For decades, lipid vesicular bodies such as liposomes have been widely used and explored as biomimetic models of cell membranes and as drug/gene delivery carrier systems. Similarly, micellar iron oxide nanoparticles have also been investigated as potential MRI agents as well as drug delivery carrier systems. Cell surface carbohydrate-protein interactions allow them to serve as markers for recognition of many molecular and cellular activities thereby, are exploited as attractive molecules for surface modification of nanocarrier systems with purpose for tissues specific targeting and biocompatibility. In addition, the cell lipid membrane serves as an important platform for occurrence of many biological processes that are governed and guided by cell surface receptors. Introduction of chemoselective functional groups, via bio-orthogonal conjugation strategies, at the cell surface facilitates many cellular modifications and paves path for novel and potential biomedical applications. Anchoring lipids are needed for liposome surface functionalization with ligands of interest and play important roles in ligand grafting density, liposomes stability and biological activity. On the other hand, anchoring lipids are also needed for cell surface re-engineering by lipid fusion approach and have high impact for ligand insertion efficiency and biological activity. Overall, in this dissertation study, functional anchoring lipids for glyco-functionalized carrier systems and for efficient cell surface re-engineering applications were systematically investigated, respectively. Firstly, investigation of the synthesis of glyco-functionalized liposome systems based on phosphatidylethonalamine (PE) and cholesterol (Chol) anchoring lipids, prepared by post chemically selective functionalization via Staudinger ligation were carried out. The effect of anchor lipids on the stability, encapsulation and releasing capacity of the glycosylated liposomes were investigated by dynamic light scattering (DLS) technique and by entrapping 5, 6-carboxyfluorescein (CF) dye and monitoring the fluorescence leakage, respectively. Overall, the Chol-anchored liposomes showed faster releasing rate than DSPE-anchored liposomes. This could be due to the increase in rigidity of the lipid membrane upon inclusion of Chol, thereby, leading to fast leakage of liposomes. Second, the potential effects of phospholipid (PE) and cholesterol (Chol)-based anchor lipids on cell surface re-engineering via copper free click chemistry were assessed with RAW 264.7 cells as model. The confocal microscopy and flow cytometry results indicated the successful incorporation of biotinylated Chol-based anchor lipids after specific streptavidin-FITC binding onto the cell surface. Higher fluorescence intensities from the cell membrane were observed for Chol-based anchor lipids when compared to DSPE as anchoring lipid. Furthermore, cytotoxicity of the synthesized biotinylated anchor lipids on the RAW 264.7 cells was assessed by MTT assay. The MTT assay results further confirmed that cell surface re-engineering via lipid anchoring approach strategy has very little or negligible amount of cytotoxicity on the cell viability. Thus, this study suggests the possible use of these lipids for potential cell surface re-engineering applications. In addition, synthesis of lipid coated iron oxide nanoparticles via dual solvent exchange approach and their glyco-functionalization via Staudinger ligation were investigated and characterized by FT-IR and TEM techniques. The stability of iron oxide nanoparticles with varying compositions of lipid anchors was evaluated by dynamic light scattering technique.

  18. Model predictions and visualization of the particle flux on the surface of Mars.

    PubMed

    Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C

    2002-12-01

    Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year.

  19. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.

    PubMed

    Dumais, Jacques; Long, Sharon R; Shaw, Sidney L

    2004-10-01

    Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.

  20. Depletion region surface effects in electron beam induced current measurements.

    PubMed

    Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.

  1. Low-high junction theory applied to solar cells

    NASA Technical Reports Server (NTRS)

    Godlewski, M. P.; Baraona, C. R.; Brandhorst, H. W., Jr.

    1973-01-01

    Recent use of alloying techniques for rear contact formation has yielded a new kind of silicon solar cell, the back surface field (BSF) cell, with abnormally high open circuit voltage and improved radiation resistance. Several analytical models for open circuit voltage based on the reverse saturation current are formulated to explain these observations. The zero SRV case of the conventional cell model, the drift field model, and the low-high junction (LHJ) model can predict the experimental trends. The LHJ model applies the theory of the low-high junction and is considered to reflect a more realistic view of cell fabrication. This model can predict the experimental trends observed for BSF cells. Detailed descriptions and derivations for the models are included. The correspondences between them are discussed. This modeling suggests that the meaning of minority carrier diffusion length measured in BSF cells be reexamined.

  2. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  3. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    PubMed

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  4. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression

    PubMed Central

    LU, WANLU; LU, LIBING; FENG, YUN; CHEN, JIAO; LI, YAN; KONG, XIANGLI; CHEN, SIXIU; LI, XIAOYU; CHEN, QIANMING; ZHANG, PING

    2013-01-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8+ T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment PMID:23761816

  5. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    DTIC Science & Technology

    2014-02-19

    hybrids have potential applications in solar cells and may thus provide mobile energy sources for aircraft and soldier technologies. Modeling and...modeling and simulation developed in this project are encouraging further development. 2. Technical Activities Hybrid organic solar cells are an...between surface-modified semiconducting nanoparticles and polymers often contributes to the limited efficiency of hybrid photovoltaic cells and

  6. Equilibrium Wall Model Implementation in a Nodal Finite Element Flow Solver JENRE for Large Eddy Simulations

    DTIC Science & Technology

    2017-11-13

    condition is applied to the inviscid and viscous fluxes on the wall to satisfy the surface physical condition, but a non -zero surface tangential...velocity profiles and turbulence quantities predicted by the current wall-model implementation agree well with available experimental data and...implementations. The volume and surface integrals based on the non -zero surface velocity in a cell adjacent to the wall show a good agreement with those

  7. Actomyosin-based tissue folding requires a multicellular myosin gradient

    PubMed Central

    Miller, Pearson W.; Chanet, Soline; Stoop, Norbert; Dunkel, Jörn

    2017-01-01

    Tissue folding promotes three-dimensional (3D) form during development. In many cases, folding is associated with myosin accumulation at the apical surface of epithelial cells, as seen in the vertebrate neural tube and the Drosophila ventral furrow. This type of folding is characterized by constriction of apical cell surfaces, and the resulting cell shape change is thought to cause tissue folding. Here, we use quantitative microscopy to measure the pattern of transcription, signaling, myosin activation and cell shape in the Drosophila mesoderm. We found that cells within the ventral domain accumulate different amounts of active apical non-muscle myosin 2 depending on the distance from the ventral midline. This gradient in active myosin depends on a newly quantified gradient in upstream signaling proteins. A 3D continuum model of the embryo with induced contractility demonstrates that contractility gradients, but not contractility per se, promote changes to surface curvature and folding. As predicted by the model, experimental broadening of the myosin domain in vivo disrupts tissue curvature where myosin is uniform. Our data argue that apical contractility gradients are important for tissue folding. PMID:28432215

  8. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  9. Band Gaps for Elastic Wave Propagation in a Periodic Composite Beam Structure Incorporating Microstructure and Surface Energy Effects

    DOE PAGES

    Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...

    2017-11-20

    Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less

  10. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips

    NASA Astrophysics Data System (ADS)

    Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.

    2017-12-01

    Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only 22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.

  11. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips.

    PubMed

    Moussa, Hassan I; Logan, Megan; Siow, Geoffrey C; Phann, Darron L; Rao, Zheng; Aucoin, Marc G; Tsui, Ting Y

    2017-01-01

    Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.

  12. Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips

    PubMed Central

    Moussa, Hassan I.; Logan, Megan; Siow, Geoffrey C.; Phann, Darron L.; Rao, Zheng; Aucoin, Marc G.; Tsui, Ting Y.

    2017-01-01

    Abstract Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability. PMID:29152017

  13. Fundamentals in Microalgae Harvesting: From Flocculation to Self-attachment

    NASA Astrophysics Data System (ADS)

    Cui, Yan

    Microalgae are a very promising source of biodiesel and other renewable energy due to their fast grow rates, high lipid contents and tremendous potential for water conservation and CO2 biofixation. However, a bottleneck issue with algae biofuel manufacturing is the lack of cost-effective harvesting methods. This research focuses on the technologies for improved microalgae harvesting to enable commercially viable and environmentally friendly biodiesel production. The first objective of this study was to optimize flocculation of marine microalga Nannochloropsis oculata with metal salts, aluminum sulfate (A.S.) and ferric chloride (F.C.) via response surface methodology. It was found that there existed a positive stoichiometric relationship between the flocculant dose (FD) and the initial biomass concentration (IABC). Optimum flocculation conditions were predicted at IABC of 1.7 g/l, pH 8.3, and FD of 383.5 microM for A.S., and IABC of 2.2 g/l, pH 7.9, and FD of 438.1 microM for F.C., under which the predicted maximum harvested solid concentration of algae were 32.98 and 30.10 g/l by using A.S. and F.C., respectively. The second objective was to investigate the mechanism of microalgae flocculation with metal salts. The theory of Derjaguin, Landau, Verwey and Overbeek (DLVO) was applied to understand the flocculation mechanism of a freshwater alga Scenedesmus dimorphus and a marine alga Nannochloropsis oculata under various pH and aluminum sulphate ionic strengths. Effective flocculation was achieved as a result of charge neutralization and sweep flocculation. When low flocculant dosage (<0.1 mM) was applied, charge neutralization seemed to be predominating and the DLVO predicted flocculation trends were found quantitatively accurate in matching the experimental results. In the case of high flocculant dosage, the DLVO theory failed to explain the results since sweep flocculation was found to predominate at alum dose above 1 mM. Understanding of cell-to-cell interactions of microalgae offered possibilities in design of a novel semi-immobilized algal production and harvesting method, which exploited cell to substrata interactions instead of cell-to-cell interactions. In such method, a solid carrier was used to grow and accumulate algal cells and the cost of harvesting and drying can be simply reduced by easy algae-water separation. In order to enable the envisioned algal attachment, the third objective was to investigate the cell to substrata attachment by a thermodynamic model. Based on the theoretical analysis, when the polar surface energy of the cell is greater than that of water, cellular attachment would be more favorable on materials with higher dispersive surface energy but lower polar surface energy. If the polar surface energy of the cell is smaller than that of water, more cell attachment would be expected on materials that are higher in both dispersive and polar surface energies. The model was also validated its capability in designing, selecting, and matching algal strains and solid carrier materials to enhance cell attachment. The forth objective was to investigate the effect of surface texturing on algal attachment. It was found that surface texturing had a greater effect than surface free energy, by changing the liquid wetting behavior and real contact area. The attachment is preferred when the feature size is close to the diameter of the cell attempting to settle. Larger or smaller feature dimensions have the potential to reduce cellular attachment. The fifth objective was to study the role of carrier materials and their surface roughness in attachment. If the surface chemical composition was similar, the attachment and orientation of algal cells was found to depend on the surface average roughness, wherein rougher surfaces resulted in increased attachment. Whereas, the attachment was strongly related to surface free energy as described by the thermodynamic model if materials were chemically different.

  14. A Model for Selection of Eyespots on Butterfly Wings.

    PubMed

    Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida

    2015-01-01

    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell.

  15. IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells.

    PubMed

    Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian

    2017-10-10

    Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP + mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP + cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP + mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.

  16. Dramatically reduced surface expression of NK cell receptor KIR2DS3 is attributed to multiple residues throughout the molecule.

    PubMed

    VandenBussche, C J; Mulrooney, T J; Frazier, W R; Dakshanamurthy, S; Hurley, C K

    2009-03-01

    Using flow cytometry, fluorescent microscopy and examination of receptor glycosylation status, we demonstrate that an entire killer cell immunoglobulin-like receptor (KIR) locus (KIR2DS3)--assumed earlier to be surface expressed--appears to have little appreciable surface expression in transfected cells. This phenotype was noted for receptors encoded by three allelic variants including the common KIR2DS3*001 allele. Comparing the surface expression of KIR2DS3 with that of the better-studied KIR2DS1 molecule in two different cell lines, mutational analysis identified multiple polymorphic amino-acid residues that significantly alter the proportion of molecules present on the cell surface. A simultaneous substitution of five residues localized to the leader peptide (residues -18 and -7), second domain (residues 123 and 150) and transmembrane region (residue 234) was required to restore KIR2DS3 to the expression level of KIR2DS1. Corresponding simultaneous substitutions of KIR2DS1 to the KIR2DS3 residues resulted in a dramatically decreased surface expression. Molecular modeling was used to predict how these substitutions contribute to this phenotype. Alterations in receptor surface expression are likely to affect the balance of immune cell signaling impacting the characteristics of the response to pathogens or malignancy.

  17. Nanopatterned polystyrene-b-poly(acrylic acid) surfaces to modulate cell-material interaction.

    PubMed

    Lizundia, Erlantz; Sáenz-Pérez, Míriam; Patrocinio, David; Aurrekoetxea, Iskander; dM Vivanco, Maria; Vilas, José Luis

    2017-06-01

    In this work we explore the effect of surface nanoarchitecture of polystyrene (PS) and polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer films on cell viability. PS and PS-b-PAA have been nanopatterned at temperatures of 110, 120 and 140°C using nanoporous aluminium oxide membranes (AAO) as a template. Surface architecture strongly depends on the infiltration temperature and the nature of the infiltrated polymer. High patterning temperatures yield hollow fibre shape architecture at the nanoscale level, which substantially modifies the surface hydrophobicity of the resulting materials. Up to date very scarce reports could be found in the literature dealing with the interaction of microstructured/nanostructured polymeric surfaces with cancer cells. Therefore, MCF-7 breast cancer cells have been selected as a model to conduct cell viability assays. The findings reveal that the fine-tuning of the surface nanoarchitecture contributes to the modification of its biocompatibility. Overall, this study highlights the potential of AAO membranes to obtain well-defined tailored morphologies at nanoscale level and its importance to develop novel soft functional surfaces to be used in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Contact Killing of Bacteria on Copper Is Suppressed if Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions

    PubMed Central

    Mathews, Salima; Hans, Michael

    2013-01-01

    Bacteria are rapidly killed on copper surfaces, and copper ions released from the surface have been proposed to play a major role in the killing process. However, it has remained unclear whether contact of the bacteria with the copper surface is also an important factor. Using laser interference lithography, we engineered copper surfaces which were covered with a grid of an inert polymer which prevented contact of the bacteria with the surface. Using Enterococcus hirae as a model organism, we showed that the release of ionic copper from these modified surfaces was not significantly reduced. In contrast, killing of bacteria was strongly attenuated. When E. hirae cells were exposed to a solid iron surface, the loss of cell viability was the same as on glass. However, exposing cells to iron in the presence of 4 mM CuSO4 led to complete killing in 100 min. These experiments suggest that contact killing proceeds by a mechanism whereby the metal-bacterial contact damages the cell envelope, which, in turn, makes the cells susceptible to further damage by copper ions. PMID:23396344

  19. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  20. High hydrostatic pressure inactivation of Lactobacillus plantarum cells in (O/W)-emulsions is independent from cell surface hydrophobicity and lipid phase parameters

    NASA Astrophysics Data System (ADS)

    Kafka, T. A.; Reitermayer, D.; Lenz, C. A.; Vogel, R. F.

    2017-07-01

    Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.

  1. Thermodynamic analysis of Bacillus subtilis endospore protonation using isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Harrold, Zoë R.; Gorman-Lewis, Drew

    2013-05-01

    Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.

  2. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  3. Effects of Titanium Surface Microtopography and Simvastatin on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells in Estrogen-Deprived Cell Culture.

    PubMed

    Arpornmaeklong, Premjit; Pripatnanont, Prisana; Chookiatsiri, Chonticha; Tangtrakulwanich, Boonsin

    This study aimed to investigate the effects of titanium surface topography and simvastatin on growth and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) in estrogen-deprived (ED) cell culture. Human BMSCs were seeded on cell culture plates, smooth-surface titanium (Ti) disks, and sandblasted with large grits and acid etched (SLA)-surface Ti disks; and subsequently cultured in regular (fetal bovine serum [FBS]), ED, and ED-with 100 nM simvastatin (ED-SIM) culture media for 14 to 21 days. Live/dead cell staining, scanning electron microscope examination, and cell viability assay were performed to determine cell attachment, morphology, and growth. Expression levels of osteoblast-associated genes, Runx2 and bone sialoprotein and levels of alkaline phosphatase (ALP) activity, calcium content, and osteocalcin in culture media were measured to determine osteoblastic differentiation. Expression levels of bone morphogenetic protein-2 (BMP-2) were investigated to examine stimulating effects of simvastatin (n = 4 to 5, mean ± SD). In vitro mineralization was verified by calcein staining. Human BMSCs exhibited different attachment and shapes on smooth and SLA titanium surfaces. Estrogen-deprived cell culture decreased cell attachment and growth, particularly on the SLA titanium surface, but cells were able to grow to reach confluence on day 21 in the ED-osteogenic (OS) culture medium. Promoting effects of the SLA titanium surface in ED-OS were significantly decreased. Simvastatin significantly increased osteogenic differentiation of human BMSCs on the SLA titanium surface in the ED-OS medium, and the promoting effects of simvastatin corresponded with the increasing of BMP-2 gene expression on the SLA titanium surface in ED-OS-SIM culture medium. The ED cell culture model provided a well-defined platform for investigating the effects of hormones and growth factors on cells and titanium surface interaction. Titanium, the SLA surface, and simvastatin synergistically promoted osteoblastic differentiation of hBMSCs in ED condition and might be useful to promote osteointegration in osteoporotic bone.

  4. Modeling of organic solar cell using response surface methodology

    NASA Astrophysics Data System (ADS)

    Suliman, Rajab; Mitul, Abu Farzan; Mohammad, Lal; Djira, Gemechis; Pan, Yunpeng; Qiao, Qiquan

    Polymer solar cells have drawn much attention during the past few decades due to their low manufacturing cost and incompatibility for flexible substrates. In solution-processed organic solar cells, the optimal thickness, annealing temperature, and morphology are key components to achieving high efficiency. In this work, response surface methodology (RSM) is used to find optimal fabrication conditions for polymer solar cells. In order to optimize cell efficiency, the central composite design (CCD) with three independent variables polymer concentration, polymer-fullerene ratio, and active layer spinning speed was used. Optimal device performance was achieved using 10.25 mg/ml polymer concentration, 0.42 polymer-fullerene ratio, and 1624 rpm of active layer spinning speed. The predicted response (the efficiency) at the optimum stationary point was found to be 5.23% for the Poly(diketopyrrolopyrrole-terthiophene) (PDPP3T)/PC60BM solar cells. Moreover, 97% of the variation in the device performance was explained by the best model. Finally, the experimental results are consistent with the CCD prediction, which proves that this is a promising and appropriate model for optimum device performance and fabrication conditions.

  5. Immobilization of concanavalin A receptors during differentiation of neuroblastoma cells.

    PubMed

    Fishman, M C; Dragsten, P R; Spector, I

    1981-04-30

    Neuroblastoma cells serve as a useful model of neuronal development because compounds such as dimethyl sulphoxide (DMSO) and dibutyryl cyclic AMP cause them to undergo a process of controlled differentiation in tissue culture, during which they can extend long processes, develop characteristic excitability mechanisms, synthesize neurotransmitters and form synapses. We have used the technique of fluorescence photobleaching recovery to study the lateral mobility of cell-surface constituents during the differentiation of neuroblastoma clone N1E-115 cells. The concanavalin A (Con A) binding sites appear as discrete patches distributed over the entire cell surface and exhibit lateral mobility in undifferentiated cells comparable with that of surface glycoproteins of other cells. After induction of differentiation, however, the vast majority of Con A binding sites become immobilized, and we present data which suggest that the mechanism of this immobilization may involve linkage to the internal actin network.

  6. Application of a simple cerebellar model to geologic surface mapping

    USGS Publications Warehouse

    Hagens, A.; Doveton, J.H.

    1991-01-01

    Neurophysiological research into the structure and function of the cerebellum has inspired computational models that simulate information processing associated with coordination and motor movement. The cerebellar model arithmetic computer (CMAC) has a design structure which makes it readily applicable as an automated mapping device that "senses" a surface, based on a sample of discrete observations of surface elevation. The model operates as an iterative learning process, where cell weights are continuously modified by feedback to improve surface representation. The storage requirements are substantially less than those of a conventional memory allocation, and the model is extended easily to mapping in multidimensional space, where the memory savings are even greater. ?? 1991.

  7. Computational modeling of in vitro biological responses on polymethacrylate surfaces

    PubMed Central

    Ghosh, Jayeeta; Lewitus, Dan Y; Chandra, Prafulla; Joy, Abraham; Bushman, Jared; Knight, Doyle; Kohn, Joachim

    2011-01-01

    The objective of this research was to examine the capabilities of QSPR (Quantitative Structure Property Relationship) modeling to predict specific biological responses (fibrinogen adsorption, cell attachment and cell proliferation index) on thin films of different polymethacrylates. Using 33 commercially available monomers it is theoretically possible to construct a library of over 40,000 distinct polymer compositions. A subset of these polymers were synthesized and solvent cast surfaces were prepared in 96 well plates for the measurement of fibrinogen adsorption. NIH 3T3 cell attachment and proliferation index were measured on spin coated thin films of these polymers. Based on the experimental results of these polymers, separate models were built for homo-, co-, and terpolymers in the library with good correlation between experiment and predicted values. The ability to predict biological responses by simple QSPR models for large numbers of polymers has important implications in designing biomaterials for specific biological or medical applications. PMID:21779132

  8. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface

    NASA Astrophysics Data System (ADS)

    Couture, O.; Cherin, E.; Foster, F. S.

    2007-07-01

    A model predicting the reflection of ultrasound from multiple layers of small scattering spheres is developed. Predictions of the reflection coefficient, which takes into account the interferences between the different sphere layers, are compared to measurements performed in the 10-80 MHz and 15-35 MHz frequency range with layers of glass beads and spherical acute myeloid leukemia (AML) cells, respectively. For both types of scatterers, the reflection coefficient increases as a function of their density on the surface for less than three superimposed layers, at which point it saturates at 0.38 for glass beads and 0.02 for AML cells. Above three layers, oscillations of the reflection coefficient due to constructive or destructive interference between layers are observed experimentally and are accurately predicted by the model. The use of such a model could lead to a better understanding of the structures observed in layered tissue images.

  9. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  10. A theoretical and computational framework for mechanics of the cortex

    NASA Astrophysics Data System (ADS)

    Torres-SáNchez, Alejandro; Arroyo, Marino

    The cell cortex is a thin network of actin filaments lying beneath the cell surface of animal cells. Myosin motors exert contractile forces in this network leading to active stresses, which play a key role in processes such as cytokinesis or cell migration. Thus, understanding the mechanics of the cortex is fundamental to understand the mechanics of animal cells. Due to the dynamic remodeling of the actin network, the cortex behaves as a viscoelastic fluid. Furthermore, due to the difference between its thickness (tens of nanometers) and its dimensions (tens of microns), the cortex can be regarded a surface. Thus, we can model the cortex as a viscoelastic fluid, confined to a surface, that generates active stresses. Interestingly, geometric confinement results in the coupling between shape generation and material flows. In this work we present a theoretical framework to model the mechanics of the cortex that couples elasticity, hydrodynamics and force generation. We complement our theoretical description with a computational setting to simulate the resulting non-linear equations. We use this methodology to understand different processes such as asymmetric cell division or experimental probing of the rheology of the cortex We acknowledge the support of the Europen Research Council through Grant ERC CoG-681434.

  11. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    PubMed Central

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  12. Combinatorial growth of oxide nanoscaffolds and its influence in osteoblast cell adhesion

    NASA Astrophysics Data System (ADS)

    Acevedo-Morantes, Claudia Y.; Irizarry-Ortiz, Roberto A.; Caceres-Valencia, Pablo G.; Singh, Surinder P.; Ramirez-Vick, Jaime E.

    2012-05-01

    We report a novel method for high-throughput investigations on cell-material interactions based on metal oxide nanoscaffolds. These scaffolds possess a continuous gradient of various titanium alloys allowing the compositional and morphological variation that could substantially improve the formation of an osseointegrative interface with bone. The model nanoscaffold has been fabricated on commercially pure titanium (cp-Ti) substrate with a compositional gradients of tin (Sn), chromium (Cr), and niobium (Nb) deposited using a combinatorial approach followed by annealing to create native oxide surface. As an invitro test system, the human fetal osteoblastic cell line (hFOB 1.19) has been used. Cell-adhesion of hFOB 1.19 cells and the suitability of these alloys have been evaluated for cell-morphology, cell-number, and protein adsorption. Although, cell-morphology was not affected by surface composition, cell-proliferation rates varied significantly with surface metal oxide composition; with the Sn- and Nb-rich regions showing the highest proliferation rate and the Cr-rich regions presenting the lowest. The results suggest that Sn and Nb rich regions on surface seems to promote hFOB 1.19 cell proliferation and may therefore be considered as implant material candidates that deserve further analysis.

  13. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    NASA Astrophysics Data System (ADS)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  14. An incomplete trafficking defect to the cell-surface leads to paradoxical thrombocytosis for human and murine MPL P106L.

    PubMed

    Favale, Fabrizia; Messaoudi, Kahia; Varghese, Leila N; Boukour, Siham; Pecquet, Christian; Gryshkova, Vitalina; Defour, Jean Philippe; Albu, Roxana-Irina; Bluteau, Olivier; Ballerini, Paola; Leverger, Guy; Plo, Isabelle; Debili, Najet; Raslova, Hana; Favier, Remi; Constantinescu, Stefan N; Vainchenker, William

    2016-12-29

    The mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage. MK progenitors from patients showed no spontaneous growth and responded to THPO, and MKs expressed MPL on their cell surface at low levels, whereas their platelets did not respond to THPO. Transduction of MPL P106L in CD34 + cells showed that this receptor was more efficiently localized at the cell surface on immature than on mature MKs, explaining a proliferative response to THPO of immature cells and a defect in THPO clearance in mature cells. In a retroviral mouse model performed in Mpl -/- mice, MPL P106L could induce a thrombocytosis phenotype with high circulating THPO levels. Furthermore, we could select THPO-dependent cell lines with more cell-surface MPL P106L localization that was detected by flow cytometry and [ 125 I]-THPO binding. Altogether, these results demonstrate that MPL P106L is a receptor with an incomplete defect in trafficking, which induces a low but not absent localization of the receptor on cell surface and a response to THPO in immature MK cells. © 2016 by The American Society of Hematology.

  15. Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Pellis, Neal R.

    2000-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells (PBMC) exposed to modeled microgravity using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in modeled microgravity and provide insights into the potential mechanisms of this phenomenon.

  16. Identification of CD166 as a Surface Marker for Enriching Prostate Stem/Progenitor and Cancer Initiating Cells

    PubMed Central

    Wang, Shunyou; Tran, Linh M.; Goldstein, Andrew S.; Lawson, Devon; Chen, Donghui; Li, Yunfeng; Guo, Changyong; Zhang, Baohui; Fazli, Ladan; Gleave, Martin; Witte, Owen N.; Garraway, Isla P.; Wu, Hong

    2012-01-01

    New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics. PMID:22880034

  17. Biological effects of desert dust in respiratory epithelial cells and a murine model.

    EPA Science Inventory

    Abstract As a result of the challenge of recent dust storms to public health, we tested the postulate that desert dust collected in the southwestern United States could impact a biological effect in respiratory epithelial cells and an animal model. Two samples of surface sedime...

  18. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    PubMed

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  19. Macrophages are required for dendritic cell uptake of respiratory syncytial virus from an infected epithelium.

    PubMed

    Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L

    2014-01-01

    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.

  20. Reconstruction of incomplete cell paths through a 3D-2D level set segmentation

    NASA Astrophysics Data System (ADS)

    Hariri, Maia; Wan, Justin W. L.

    2012-02-01

    Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.

  1. Proteolysis during Tumor Cell Extravasation In Vitro: Metalloproteinase Involvement across Tumor Cell Types

    PubMed Central

    Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama

    2013-01-01

    To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929

  2. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  3. Optimizing Micromixer Surfaces To Deter Biofouling.

    PubMed

    Waters, James T; Liu, Ya; Li, Like; Balazs, Anna C

    2018-03-07

    Using computational modeling, we show that the dynamic interplay between a flowing fluid and the appropriately designed surface relief pattern can inhibit the fouling of the substrate. We specifically focus on surfaces that are decorated with three-dimensional (3D) chevron or sawtooth "micromixer" patterns and model the fouling agents (e.g., cells) as spherical microcapsules. The interaction between the imposed shear flow and the chevrons on the surface generates 3D vortices in the system. We pinpoint a range of shear rates where the forces from these vortices can rupture the bonds between the two mobile microcapsules near the surface. Notably, the patterned surface offers fewer points of attachment than a flat substrate, and the shear flows readily transport the separated capsules away from the layer. We contrast the performance of surfaces that encompass rectangular posts, chevrons, and asymmetric sawtooth patterns and thereby identify the geometric factors that cause the sawtooth structure to be most effective at disrupting the bonding between the capsules. By breaking up nascent clusters of contaminant cells, these 3D relief patterns can play a vital role in disrupting the biofouling of surfaces immersed in flowing fluids.

  4. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-07

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.

  5. Feline Glycoprotein A Repetitions Predominant Anchors Transforming Growth Factor Beta on the Surface of Activated CD4+CD25+ Regulatory T Cells and Mediates AIDS Lentivirus-Induced T Cell Immunodeficiency

    PubMed Central

    Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter

    2013-01-01

    Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523

  6. Feline glycoprotein A repetitions predominant anchors transforming growth factor beta on the surface of activated CD4(+)CD25(+) regulatory T cells and mediates AIDS lentivirus-induced T cell immunodeficiency.

    PubMed

    Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B

    2013-04-01

    Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.

  7. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63

    NASA Astrophysics Data System (ADS)

    Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula

    2014-04-01

    To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.

  8. Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase.

    PubMed

    Dechristé, Guillaume; Fehrenbach, Jérôme; Griseti, Elena; Lobjois, Valérie; Poignard, Clair

    2018-06-08

    Since several decades, the experiments have highlighted the analogy of fusing cell aggregates with liquid droplets. The physical macroscopic models have been derived under incompressible assumptions. The aim of this paper is to provide a 3D model of growing spheroids, which is more relevant regarding embryo cell aggregates or tumor cell spheroids. We extend the past approach to a compressible 3D framework in order to account for the tumor spheroid growth. We exhibit the crucial importance of the effective surface tension, and of the inner pressure of the spheroid to describe precisely the fusion. The experimental data were obtained on spheroids of colon carcinoma human cells (HCT116 cell line). After 3 or 6 days of culture, two identical spheroids were transferred in one well and their fusion was monitored by live videomicroscopy acquisition each 2 h during 72 h. From these images the neck radius and the diameter of the assembly of the fusing spheroids are extracted. The numerical model is fitted with the experiments. It is worth noting that the time evolution of both neck radius and spheroid diameter are quantitatively obtained. The interesting feature lies in the fact that such measurements characterise the macroscopic rheological properties of the tumor spheroids. The experimental determination of the kinetics of neck radius and overall diameter during spheroids fusion characterises the rheological properties of the spheroids. The consistency of the model is shown by fitting the model with two different experiments, enhancing the importance of both surface tension and cell proliferation. The paper sheds new light on the macroscopic rheological properties of tumor spheroids. It emphasizes the role of the surface tension and the inner pressure in the fusion of growing spheroid. Under geometrical assumptions, the model reduces to a 2-parameter differential equation fit with experimental measurements. The 3-D partial differential system makes it possible to study the fusion of spheroids in non-symmetrical or more general frameworks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. NanoTopoChip: High-throughput nanotopographical cell instruction.

    PubMed

    Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-10-15

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Magnetic Beads Enhance Adhesion of NIH 3T3 Fibroblasts: A Proof-of-Principle In Vitro Study for Implant-Mediated Long-Term Drug Delivery to the Inner Ear

    PubMed Central

    Aliuos, Pooyan; Schulze, Jennifer; Schomaker, Markus; Reuter, Günter; Stolle, Stefan R. O.; Werner, Darja; Ripken, Tammo; Lenarz, Thomas; Warnecke, Athanasia

    2016-01-01

    Introduction Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated. Materials and Methods Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB. Results Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release. Discussion Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest. PMID:26918945

  11. Correlation between substratum roughness and wettability, cell adhesion, and cell migration.

    PubMed

    Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F

    1997-07-01

    Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.

  12. A mathematical model of a lithium/thionyl chloride primary cell

    NASA Technical Reports Server (NTRS)

    Evans, T. I.; Nguyen, T. V.; White, R. E.

    1987-01-01

    A 1-D mathematical model for the lithium/thionyl chloride primary cell was developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict 1-D, time dependent profiles of concentration, porosity, current, and potential as well as cell temperature and voltage. When a certain discharge rate is required, the model can be used to determine the design criteria and operating variables which yield high cell capacities. Model predictions can be used to establish operational and design limits within which the thermal runaway problem, inherent in these cells, can be avoided.

  13. The mechanics of cellular compartmentalization as a model for tumor spreading

    NASA Astrophysics Data System (ADS)

    Fritsch, Anatol; Pawlizak, Steve; Zink, Mareike; Kaes, Josef A.

    2012-02-01

    Based on a recently developed surgical method of Michael H"ockel, which makes use of cellular confinement to compartments in the human body, we study the mechanics of the process of cell segregation. Compartmentalization is a fundamental process of cellular organization and occurs during embryonic development. A simple model system can demonstrate the process of compartmentalization: When two populations of suspended cells are mixed, this mixture will eventually segregate into two phases, whereas mixtures of the same cell type will not. In the 1960s, Malcolm S. Steinberg formulated the so-called differential adhesion hypothesis which explains the segregation in the model system and the process of compartmentalization by differences in surface tension and adhesiveness of the interacting cells. We are interested in to which extend the same physical principles affect tumor growth and spreading between compartments. For our studies, we use healthy and cancerous breast cell lines of different malignancy as well as primary cells from human cervix carcinoma. We apply a set of techniques to study their mechanical properties and interactions. The Optical Stretcher is used for whole cell rheology, while Cell-cell-adhesion forces are directly measured with a modified AFM. In combination with 3D segregation experiments in droplet cultures we try to clarify the role of surface tension in tumor spreading.

  14. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  15. Modeling to predict growth/no growth boundaries and kinetic behavior of Salmonella on cutting board surfaces.

    PubMed

    Yoon, Hyunjoo; Lee, Joo-Yeon; Suk, Hee-Jin; Lee, Sunah; Lee, Heeyoung; Lee, Soomin; Yoon, Yohan

    2012-12-01

    This study developed models to predict the growth probabilities and kinetic behavior of Salmonella enterica strains on cutting boards. Polyethylene coupons (3 by 5 cm) were rubbed with pork belly, and pork purge was then sprayed on the coupon surface, followed by inoculation of a five-strain Salmonella mixture onto the surface of the coupons. These coupons were stored at 13 to 35°C for 12 h, and total bacterial and Salmonella cell counts were enumerated on tryptic soy agar and xylose lysine deoxycholate (XLD) agar, respectively, every 2 h, which produced 56 combinations. The combinations that had growth of ≥0.5 log CFU/cm(2) of Salmonella bacteria recovered on XLD agar were given the value 1 (growth), and the combinations that had growth of <0.5 log CFU/cm(2) were assigned the value 0 (no growth). These growth response data from XLD agar were analyzed by logistic regression for producing growth/no growth interfaces of Salmonella bacteria. In addition, a linear model was fitted to the Salmonella cell counts to calculate the growth rate (log CFU per square centimeter per hour) and initial cell count (log CFU per square centimeter), following secondary modeling with the square root model. All of the models developed were validated with observed data, which were not used for model development. Growth of total bacteria and Salmonella cells was observed at 28, 30, 33, and 35°C, but there was no growth detected below 20°C within the time frame investigated. Moreover, various indices indicated that the performance of the developed models was acceptable. The results suggest that the models developed in this study may be useful in predicting the growth/no growth interface and kinetic behavior of Salmonella bacteria on polyethylene cutting boards.

  16. Simulation of Escherichia coli Dynamics in Biofilms and Submerged Colonies with an Individual-Based Model Including Metabolic Network Information.

    PubMed

    Tack, Ignace L M M; Nimmegeers, Philippe; Akkermans, Simen; Hashem, Ihab; Van Impe, Jan F M

    2017-01-01

    Clustered microbial communities are omnipresent in the food industry, e.g., as colonies of microbial pathogens in/on food media or as biofilms on food processing surfaces. These clustered communities are often characterized by metabolic differentiation among their constituting cells as a result of heterogeneous environmental conditions in the cellular surroundings. This paper focuses on the role of metabolic differentiation due to oxygen gradients in the development of Escherichia coli cell communities, whereby low local oxygen concentrations lead to cellular secretion of weak acid products. For this reason, a metabolic model has been developed for the facultative anaerobe E. coli covering the range of aerobic, microaerobic, and anaerobic environmental conditions. This metabolic model is expressed as a multiparametric programming problem, in which the influence of low extracellular pH values and the presence of undissociated acid cell products in the environment has been taken into account. Furthermore, the developed metabolic model is incorporated in MICRODIMS, an in-house developed individual-based modeling framework to simulate microbial colony and biofilm dynamics. Two case studies have been elaborated using the MICRODIMS simulator: (i) biofilm growth on a substratum surface and (ii) submerged colony growth in a semi-solid mixed food product. In the first case study, the acidification of the biofilm environment and the emergence of typical biofilm morphologies have been observed, such as the mushroom-shaped structure of mature biofilms and the formation of cellular chains at the exterior surface of the biofilm. The simulations show that these morphological phenomena are respectively dependent on the initial affinity of pioneer cells for the substratum surface and the cell detachment process at the outer surface of the biofilm. In the second case study, a no-growth zone emerges in the colony center due to a local decline of the environmental pH. As a result, cellular growth in the submerged colony is limited to the colony periphery, implying a linear increase of the colony radius over time. MICRODIMS has been successfully used to reproduce complex dynamics of clustered microbial communities.

  17. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    PubMed

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces.

    PubMed

    Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui

    2013-06-04

    The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment.

  19. Comparison of mesenchymal stem cells obtained by suspended culture of synovium from patients with rheumatoid arthritis and osteoarthritis.

    PubMed

    Kohno, Yuji; Mizuno, Mitsuru; Ozeki, Nobutake; Katano, Hisako; Otabe, Koji; Koga, Hideyuki; Matsumoto, Mikio; Kaneko, Haruka; Takazawa, Yuji; Sekiya, Ichiro

    2018-03-09

    Mobilization of mesenchymal stem cells (MSCs) from the synovium was revealed using a "suspended synovium culture model" of osteoarthritis (OA). The pathology of rheumatoid arthritis (RA) differs from that of OA. We investigated whether mobilization of MSCs from the synovium also occurred in RA, and we compared the properties of synovial MSCs collected from suspended synovium culture models of RA and OA. Human synovium was harvested during total knee arthroplasty from the knee joints of patients with RA (n = 8) and OA (n = 6). The synovium was suspended in a bottle containing culture medium and a culture dish at the bottom. Cells were harvested from the dish and analyzed. No significant difference was observed between RA and OA in the harvested cell numbers per g of synovium. However, the variation in the number of cells harvested from each donor was greater for RA than for OA. The harvested cells were multipotent and no difference was observed in the cartilage pellet weight between RA and OA. The surface epitopes of the cells in RA and OA were similar to those of MSCs. Mobilization of MSCs from the synovium was demonstrated using a suspended synovium culture model for RA. The harvested cell numbers, chondrogenic potentials, and surface epitope profiles were comparable between the RA and OA models.

  20. Modeling the Epithelial Morphogenesis of Germ Band Retraction in Three Dimensions

    NASA Astrophysics Data System (ADS)

    McCleery, W. Tyler; Veldhuis, Jim; Brodland, G. Wayne; Crews, Sarah M.; Hutson, M. Shane

    2015-03-01

    Embryogenesis of higher-order organisms is driven by an intricate coordination of cellular mechanics. Mechanical analysis of certain developmental events, e.g., dorsal closure in the fruit fly D. melanogaster, has been sufficiently described using two-dimensional models. Here, we present a three-dimensional modeling technique to investigate germ band retraction (GBR) - a whole-embryo, irreducibly 3D morphogenetic event. At the start of GBR, the epithelial tissue known as the germ band is initially wrapped around the posterior end of an ellipsoidal fly embryo. This tissue then retracts as an adjacent epithelial tissue, the amnioserosa, simultaneously contracts. We hypothesize that proper GBR requires maintenance of cell-cell connectivity in the amnioserosa, as well as both cell and tissue topology on the embryo's ellipsoidal surface. The exact interfacial tensions are less important. We test the dynamic interactions between these two tissues on a 3D ellipsoidal last. To speed simulation run times and focus on the relevant tissues, epithelial cells are defined as polygons constrained to lie on the surface of the ellipsoidal last. These cells have adjustable parameters such as edge tensions and cell pressures. Tissue movements are simulated by balancing these dynamic cell-level forces with viscous resistance and allowing cells to exchange neighbors. This modeling approach helps elucidate the multicellular stress fields in normal and aberrant development, providing deeper insight into the mechanical interdependence of developing tissues.

  1. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    PubMed

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  2. Pavement cells and the topology puzzle.

    PubMed

    Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M

    2017-12-01

    D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.

  3. Pavement cells and the topology puzzle

    PubMed Central

    2017-01-01

    D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. PMID:29084800

  4. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    PubMed

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  5. Process and design considerations for high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Rohati, A.; Rai-Choudhury, P.

    1985-01-01

    This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.

  6. A glycosylphosphatidylinositol anchor is required for membrane localization but dispensable for cell wall association of chitin deacetylase 2 in Cryptococcus neoformans.

    PubMed

    Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K

    2012-01-01

    Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.

  7. Myxobacteria Fruiting Body Formation

    NASA Astrophysics Data System (ADS)

    Jiang, Yi

    2006-03-01

    Myxobacteria are social bacteria that swarm and glide on surfaces, and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies, inside which cells differentiate into nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction mediated by diffusing chemicals. However, myxobacteria aggregation is the consequence of direct cell-contact interactions. I will review our recent efforts in modeling the fruiting body formation of Myxobacteria, using lattice gas cellular automata models that are based on local cell-cell contact signaling. These models have reproduced the individual phases in Myxobacteria development such as the rippling, streaming, early aggregation and the final sporulation; the models can be unified to simulate the whole developmental process of Myxobacteria.

  8. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  9. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu

    2009-03-10

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less

  10. An Improved Model of Nonuniform Coleochaete Cell Division.

    PubMed

    Wang, Yuandi; Cong, Jinyu

    2016-08-01

    Cell division is a key biological process in which cells divide forming new daughter cells. In the present study, we investigate continuously how a Coleochaete cell divides by introducing a modified differential equation model in parametric equation form. We discuss both the influence of "dead" cells and the effects of various end-points on the formation of the new cells' boundaries. We find that the boundary condition on the free end-point is different from that on the fixed end-point; the former has a direction perpendicular to the surface. It is also shown that the outer boundaries of new cells are arc-shaped. The numerical experiments and theoretical analyses for this model to construct the outer boundary are given.

  11. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.

    PubMed

    Lee, Woong Ryeol; Oh, Kyung Taek; Park, So Young; Yoo, Na Young; Ahn, Yong Sik; Lee, Don Haeng; Youn, Yu Seok; Lee, Deok-Keun; Cha, Kyung-Hoi; Lee, Eun Seong

    2011-07-01

    Herein, we describe magnetic cell levitation models using conventional polymeric microparticles or nanoparticles as a substrate for the three-dimensional tumor cell culture. When the magnetic force originating from the ring-shaped magnets overcame the gravitational force, the magnetic field-levitated KB tumor cells adhered to the surface area of magnetic iron oxide (Fe(3)O(4))-encapsulated nano/microparticles and concentrated clusters of levitated cells, ultimately developing tumor cells to tumor spheroids. These simple cell culture models may prove useful for the screening of anticancer drugs and their formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Electrochemically Initiated Tagging of Thiols Using an Electrospray Ionization-Based Liquid Microjunction Surface Sampling Probe Two-Electrode Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    2009-01-01

    This paper reports on the conversion of a liquid microjunction surface sampling probe (LMJ-SSP) into a two electrode electrochemical cell using a conductive sample surface and the probe as the two electrodes with an appropriate battery powered circuit. With this LMJ-SSP, two-electrode cell arrangement, tagging of analyte thiol functionalities (in this case peptide cysteine residues) with hydroquinone tags was initiated electrochemically using a hydroquinone doped solution when the analyte either was initially in solution or was sampled from a surface. Efficient tagging (~90%), at flow rates of 5-10 L/min, could be achieved for up to at least two cysteines onmore » a peptide. The high tagging efficiency observed was explained with a simple kinetic model. In general, the incorporation of a two-electrode electrochemical cell, or other multiple electrode arrangement, into the LMJ-SSP is expected to add to the versatility of this approach for surface sampling and ionization coupled with mass spectrometric detection.« less

  13. β-Arrestin1 and Distinct CXCR4 Structures Are Required for Stromal Derived Factor-1 to Downregulate CXCR4 Cell-Surface Levels in Neuroblastoma

    PubMed Central

    Clift, Ian C.; Bamidele, Adebowale O.; Rodriguez-Ramirez, Christie; Kremer, Kimberly N.

    2014-01-01

    CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis. PMID:24452472

  14. Comprehensive design of omnidirectional high-performance perovskite solar cells

    PubMed Central

    Zhang, Yutao; Xuan, Yimin

    2016-01-01

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight. PMID:27405419

  15. Comprehensive design of omnidirectional high-performance perovskite solar cells.

    PubMed

    Zhang, Yutao; Xuan, Yimin

    2016-07-13

    The comprehensive design approach is established with coupled optical-electrical simulation for perovskite-based solar cell, which emerged as one of the most promising competitors to silicon solar cell for its low-cost fabrication and high PCE. The selection of structured surface, effect of geometry parameters, incident angle-dependence and polarization-sensitivity are considered in the simulation. The optical modeling is performed via the finite-difference time-domain method whilst the electrical properties are obtained by solving the coupled nonlinear equations of Poisson, continuity, and drift-diffusion equations. The optical and electrical performances of five different structured surfaces are compared to select a best structured surface for perovskite solar cell. The effects of the geometry parameters on the optical and electrical properties of the perovskite cell are analyzed. The results indicate that the light harvesting is obviously enhanced by the structured surface. The electrical performance can be remarkably improved due to the enhanced light harvesting of the designed best structured surface. The angle-dependence for s- and p-polarizations is investigated. The structured surface exhibits omnidirectional behavior and favorable polarization-insensitive feature within a wide incident angle range. Such a comprehensive design approach can highlight the potential of perovskite cell for power conversion in the full daylight.

  16. Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.

    PubMed

    Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales

    2012-12-01

    To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.

  17. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    NASA Astrophysics Data System (ADS)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  18. Swimming motility plays a key role in the stochastic dynamics of cell clumping

    NASA Astrophysics Data System (ADS)

    Qi, Xianghong; Nellas, Ricky B.; Byrn, Matthew W.; Russell, Matthew H.; Bible, Amber N.; Alexandre, Gladys; Shen, Tongye

    2013-04-01

    Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.

  19. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes.

    PubMed

    Andriani, Yosephine; Chua, Jason Min-Wen; Chua, Benjamin Yan-Jiang; Phang, In Yee; Shyh-Chang, Ng; Tan, Wui Siew

    2017-07-15

    Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: implications for the effective separation of circulating tumor cells (CTCs).

    PubMed

    Myung, Ja Hye; Launiere, Cari A; Eddington, David T; Hong, Seungpyo

    2010-06-01

    The selective detection of circulating tumor cells (CTCs) is of significant clinical importance for the clinical diagnosis and prognosis of cancer metastasis. However, largely because of the extremely low number of CTCs (as low as 1 in 10(9) hematologic cells) in the blood of patients, effective detection and separation of the rare cells remain a tremendous challenge. Cell rolling is known to play a key role in physiological processes such as the recruitment of leukocytes to sites of inflammation and selectin-mediated CTC metastasis. Furthermore, because CTCs typically express the epithelial-cell adhesion molecule (EpCAM) on the surface whereas normal hematologic cells do not, substrates with immobilized antibody against EpCAM may specifically interact with CTCs. In this article, we created biomimetic surfaces functionalized with P- and E-selectin and anti-EpCAM that induce different responses in HL-60 (used as a model of leukocytes in this study) and MCF-7 (a model of CTCs) cells. HL-60 and MCF-7 cells showed different degrees of interaction with P-/E-selectin and anti-EpCAM at a shear stress of 0.32 dyn/cm(2). HL-60 cells exhibited rolling on P-selectin-immobilized substrates at a velocity of 2.26 +/- 0.28 microm/s whereas MCF-7 cells had no interaction with the surface. Both cell lines, however, had interactions with E-selectin, and the rolling velocity of MCF-7 cells (4.24 +/- 0.31 microm/s) was faster than that of HL-60 cells (2.12 +/- 0.15 microm/s). However, only MCF-7 cells interacted with anti-EpCAM-coated surfaces, forming stationary binding under flow. More importantly, the combination of the rolling (E-selectin) and stationary binding (anti-EpCAM) resulted in substantially enhanced separation capacity and capture efficiency (more than 3-fold enhancement), as compared to a surface functionalized solely with anti-EpCAM that has been commonly used for CTC capture. Our results indicate that cell-specific detection and separation may be achieved through mimicking the biological processes of combined dynamic cell rolling and stationary binding, which will likely lead to a CTC detection device with significantly enhanced specificity and sensitivity without a complex fabrication process.

  1. Simple mechanisms of early life - simulation model on the origin of semi-cells.

    PubMed

    Klein, Adrian; Bock, Martin; Alt, Wolfgang

    2017-01-01

    The development of first cellular structures played an important role in the early evolution of life. Early evolution of life probably took place on a molecular level in a reactive environment. The iron-sulfur theory postulates the formation of cell-like structures on catalytic surfaces. Experiments show that H 2 S together with FeS and other metallic centers drive auto-catalytic surface reactions, in which organic molecules such as pyruvic and amino acids occur. It is questionable which mechanisms are needed to form cell-like structures under these conditions. To address this question, we implemented a model system featuring the fundamentals of molecular dynamics: heat, attraction, repulsion and formation of covalent bonds. Our basic model exhibits a series of essential processes: self-organization of lipid micelles and bilayers, formation of fluid filled cavities, flux of molecules along membranes, transport of energized groups towards sinks and whole colonies of cell-like structures on a larger scale. The results demonstrate that only a few features are sufficient for discovering hitherto non described phenomena of self-assembly and dynamics of cell-like structures as candidates for early evolving proto-cells. Significance statement The quest for a possible origin of life continues to be one of the most fascinating problems in biology. In one theoretical scenario, early life originated from a solution of reactive chemicals in the ancient deep sea, similar to conditions as to be found in thermal vents. Experiments have shown that a variety of organic molecules, the building blocks of life, form under these conditions. Based on such experiments, the iron-sulfur theory postulates the growth of cell-like structures at certain catalytic surfaces. For an explanation and proof of such a process we have developed a computer model simulating molecular assembly of lipid bilayers and formation of semi-cell cavities. The results demonstrate the possibility of cell-like self-organization under appropriate physico-chemical conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces

    NASA Technical Reports Server (NTRS)

    Chadi, D. J.

    1985-01-01

    A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces.

  3. Microscopic visualization of metabotropic glutamate receptors on the surface of living cells using bifunctional magnetic resonance imaging probes.

    PubMed

    Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David

    2014-02-19

    A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.

  4. An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK.

    PubMed

    Rochford, Edward T J; Subbiahdoss, Guruprakash; Moriarty, T Fintan; Poulsson, Alexandra H C; van der Mei, Henny C; Busscher, Henk J; Richards, R Geoff

    2014-12-01

    Polyetheretherketone (PEEK) films were oxygen plasma treated to increase surface free energy and characterized by X-ray photoelectron microscopy, atomic force microscopy, and water contact angles. A parallel plate flow chamber was used to measure Staphylococcus epidermidis, Staphylococcus aureus, and U-2 OS osteosarcomal cell-line adhesion to the PEEK films in separate monocultures. In addition, bacteria and U-2 OS cells were cocultured to model competition between osteoblasts and contaminating bacteria for the test surfaces. Plasma treatment of the surfaces increased surface oxygen content and decreased the hydrophobicity of the materials, but did not lead to a significant difference in bacterial or U-2 OS cell adhesion in the monocultures. In the S. epidermidis coculture experiments, the U-2 OS cells adhered in greater numbers on the treated surfaces compared to the untreated PEEK and spread to a similar extent. However, in the presence of S. aureus, cell death of the U-2 OS occurred within 10 h on all surfaces. The results of this study suggest that oxygen plasma treatment of PEEK may maintain the ability of osteoblast-like cells to adhere and spread, even in the presence of S. epidermidis contamination, without increasing the risk of preoperative bacterial adhesion. Therefore, oxygen plasma-treated PEEK remains a promising method to improve implant surface free energy for osseointegration. © 2014 Wiley Periodicals, Inc.

  5. Escherichia coli attachment to model particulates: The effects of bacterial cell characteristics and particulate properties.

    PubMed

    Liang, Xiao; Liao, Chunyu; Soupir, Michelle L; Jarboe, Laura R; Thompson, Michael L; Dixon, Philip M

    2017-01-01

    E. coli bacteria move in streams freely in a planktonic state or attached to suspended particulates. Attachment is a dynamic process, and the fraction of attached microorganisms is thought to be affected by both bacterial characteristics and particulate properties. In this study, we investigated how the properties of cell surfaces and stream particulates influence attachment. Attachment assays were conducted for 77 E. coli strains and three model particulates (ferrihydrite, Ca-montmorillonite, or corn stover) under environmentally relevant conditions. Surface area, particle size distribution, and total carbon content were determined for each type of particulate. Among the three particulates, attachment fractions to corn stover were significantly larger than the attachments to 2-line ferrihydrite (p-value = 0.0036) and Ca-montmorillonite (p-value = 0.022). Furthermore, attachment to Ca-montmorillonite and corn stover was successfully modeled by a Generalized Additive Model (GAM) using cell characteristics as predictor variables. The natural logarithm of the net charge on the bacterial surface had a significant, positive, and linear impact on the attachment of E. coli bacteria to Ca-montmorillonite (p-value = 0.013), but it did not significantly impact the attachment to corn stover (p-value = 0.36). The large diversities in cell characteristics among 77 E. coli strains, particulate properties, and attachment fractions clearly demonstrated the inadequacy of using a static parameter or linear coefficient to predict the attachment behavior of E. coli in stream water quality models.

  6. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    PubMed Central

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2014-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef−/− mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef−/− mice revealed down-regulation of goblet cell–specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef−/− mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. PMID:23665202

  7. Induction of IL-17 production from human peripheral blood CD4+ cells by asbestos exposure.

    PubMed

    Maeda, Megumi; Chen, Ying; Lee, Suni; Kumagai-Takei, Naoko; Yoshitome, Kei; Matsuzaki, Hidenori; Yamamoto, Shoko; Hatayama, Tamayo; Ikeda, Miho; Nishimura, Yasumitsu; Otsuki, Takemi

    2017-06-01

    We have previously reported that chronic, recurrent and low-dose exposure to asbestos fibers causes a reduction in antitumor immunity. Investigation of natural killer (NK) cells using an in vitro cell line model and comprising in vitro activation using freshly isolated NK cells co-cultured with chrysotile fibers, as well as NK cells derived from asbestos-exposed patients with pleural plaque (PP) or malignant mesothelioma (MM), revealed decreased expression of NK cell activating receptors such as NKG2D, 2B4 and NKp46. An in vitro differentiation and clonal expansion model for CD8+ cytotoxic T lymphocytes (CTLs) showed reduced cytotoxicity with decreased levels of cytotoxic molecules such as granzyme B and perforin, as well as suppressed proliferation of CTLs. Additionally, analysis of T helper cells showed that surface CXCR3, chemokine receptor, and the productive potential of interferon (IFN)γ were reduced following asbestos exposure in an in vitro cell line model and in peripheral CD4+ cells of asbestos-exposed patients. Moreover, experiments revealed that asbestos exposure enhanced regulatory T cell (Treg) function. This study also focused on CXCR3 expression and the Th-17 cell fraction. Following activation with T-cell receptor and co-culture with various concentrations of chrysotile fibers using freshly isolated CD4+ surface CXCR3 positive and negative fractions, the intracellular expression of CXCR3, IFNγ and IL-17 remained unchanged when co-cultured with chrysotile. However, subsequent re-stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin resulted in enhanced IL-17 production and expression, particularly in CD4+ surface CXCR3 positive cells. These results indicated that the balance and polarization between Treg and Th-17 fractions play an important role with respect to the immunological effects of asbestos and the associated reduction in antitumor immunity.

  8. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    NASA Astrophysics Data System (ADS)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  9. Computer modeling of dendritic web growth processes and characterization of the material

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  10. Engineering antigens for in situ erythrocyte binding induces T-cell deletion.

    PubMed

    Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A

    2013-01-02

    Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.

  11. Depletion region surface effects in electron beam induced current measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haney, Paul M.; Zhitenev, Nikolai B.; Yoon, Heayoung P.

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and chargedmore » surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.« less

  12. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  13. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    PubMed

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  14. PV cells electrical parameters measurement

    NASA Astrophysics Data System (ADS)

    Cibira, Gabriel

    2017-12-01

    When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.

  15. Effects of DA-6034, a flavonoid derivative, on mucin-like glycoprotein and ocular surface integrity in a rabbit model.

    PubMed

    Choi, Seul Min; Seo, Mi Jeong; Lee, Yeong Geon; Lee, Min Jung; Jeon, Hyung Jun; Kang, Kyung Koo; Ahn, Byoung Ok; Yoo, Moohi

    2009-01-01

    This study was designed to assess whether DA-6034 (7-carboxymethyloxy-3',4',5-trimethoxy flavone monohydrate), a new synthetic derivative of eupatilin, increases secretion of mucin-like glycoprotein and some mucins species in conjunctiva and cornea, and contributes to the preservation of ocular surface integrity. Human conjunctival and corneal epithelial cells were incubated with DA-6034 (1-250 microM). To investigate mucin secreting activity more directly, isolated rat conjunctival goblet cells were also used. Corneal protection was investigated using a desiccation-induced rabbit model of dry eye syndrome. It was found that DA-6034 increased mucin-like glycoprotein levels of both conjunctival and corneal epithelial cells at concentrations above 100 microM. Using human conjunctival epithelial cells, it was demonstrated that treatment with DA-6034 (200 microM) significantly increased production of some mucins species including MUC1, MUC2, MUC4, MUC5AC, MUC5B, and MUC16. DA-6034 also significantly increased MUC5AC production from conjunctival goblet cells isolated from rats. In the rabbit desiccation model, an ophthalmic suspension containing 3% DA-6034 significantly reduced corneal damage induced by desiccation. These results suggest that DA-6034 is a good candidate for treatment of dry eye through maintaining ocular surface integrity, which might be related to mucin secretion.

  16. Insulin-Like Growth Factor Binding Proteins Increase Intracellular Calcium Levels in Two Different Cell Lines

    PubMed Central

    Seurin, Danielle; Lombet, Alain; Babajko, Sylvie; Godeau, François; Ricort, Jean-Marc

    2013-01-01

    Background Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297). Methodology/Principal Findings We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. Conclusions Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins. PMID:23527161

  17. Theoretical analysis of improved efficiency of silicon-wafer solar cells with textured nanotriangular grating structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoju; Zheng, Jun; Zhao, Xuesong; Ruan, Xiukai; Cui, Guihua; Zhu, Haiyong; Dai, Yuxing

    2018-03-01

    A practical model of crystalline silicon-wafer solar cells is proposed in order to enhance the light absorption and improve the conversion efficiency of silicon solar cells. In the model, the front surface of the silicon photovoltaic film is designed to be a textured-triangular-grating (TTG) structure, and the ITO contact film and the antireflection coating (ARC) of glass are coated on the TTG surface of silicon solar cells. The optical absorption spectrum of solar cells are simulated by applying the finite difference time domain method. Electrical parameters of the solar cells are calculated using two models with and without carrier loss. The effect of structure parameters on the performance of the TTG cell is discussed in detail. It is found that the thickness (tg) of the ARC, period (p) of grating, and base angle (θ) of triangle have a crucial influence on the conversion efficiency. The optimal structure of the TTG cell is designed. The TTG solar cell can produce higher efficiency in a wide range of solar incident angle and the average efficiency of the optimal TTG cell over 7:30-16:30 time of day is 8% higher than that of the optimal plane solar cell. In addition, the study shows that the bulk recombination of carriers has an influence on the conversion efficiency of the cell, the conversion efficiency of the actual solar cell with carrier recombination is reduced by 20.0% of the ideal cell without carrier recombination.

  18. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.

  19. THE AP-2 CLATHRIN ADAPTOR MEDIATES ENDOCYTOSIS OF AN INHIBITORY KILLER CELL Ig-LIKE RECEPTOR (KIR) IN HUMAN NK CELLS1

    PubMed Central

    Purdy, Amanda K.; Alvarez-Arias, Diana A.; Oshinsky, Jennifer; James, Ashley M.; Serebriiskii, Ilya; Campbell, Kerry S.

    2014-01-01

    Stable surface expression of human inhibitory killer cell immunoglobulin-like receptors (KIR) is critical for controlling NK cell function and maintaining NK cell tolerance toward normal MHC-I+ cells. Our recent experiments, however, have found that antibody-bound KIR3DL1 (3DL1) readily leaves the cell surface and undergoes endocytosis to early/recycling endosomes and subsequently to late endosomes. We found that 3DL1 internalization is at least partially mediated by an interaction between the μ2 subunit of the AP-2 clathrin adaptor complex and ITIM tyrosine residues in the cytoplasmic domain of 3DL1. Disruption of the 3DL1/μ2 interaction, either by mutation of the ITIM tyrosines in 3DL1 or mutation of μ2, significantly diminished endocytosis and increased surface expression of 3DL1 in human primary NK cells and cell lines. Furthermore, we found that the 3DL1/AP-2 interaction is diminished upon antibody engagement with the receptor, as compared to untreated cells. Thus, we have identified AP-2-mediated endocytosis as a mechanism regulating the surface levels of inhibitory KIR though their ITIM domains. Based upon our results, we propose a model in which non-engaged KIR are internalized by this mechanism, whereas engagement with MHC-I ligand would diminish AP-2 binding, thereby prolonging stable receptor surface expression and promoting inhibitory function. Furthermore, this ITIM-mediated mechanism may similarly regulate the surface expression of other inhibitory immune receptors. PMID:25238755

  20. Interactions between cells and ionized dendritic biomaterials: Flow cytometry and fluorescence spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.

  1. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  2. Hydroxy-Al and cell-surface negativity are responsible for the enhanced sensitivity of Rhodotorula taiwanensis to aluminum by increased medium pH.

    PubMed

    Zhao, Xue Qiang; Bao, Xue Min; Wang, Chao; Xiao, Zuo Yi; Hu, Zhen Min; Zheng, Chun Li; Shen, Ren Fang

    2017-10-01

    Aluminum (Al) is ubiquitous and toxic to microbes. High Al 3+ concentration and low pH are two key factors responsible for Al toxicity, but our present results contradict this idea. Here, an Al-tolerant yeast strain Rhodotorula taiwanensis RS1 was incubated in glucose media containing Al with a continuous pH gradient from pH 3.1-4.2. The cells became more sensitive to Al and accumulated more Al when pH increased. Calculations using an electrostatic model Speciation Gouy Chapman Stern indicated that, the increased Al sensitivity of cells was associated with AlOH 2+ and Al(OH) 2 + rather than Al 3+ . The alcian blue (a positively charged dye) adsorption and zeta potential determination of cell surface indicated that, higher pH than 3.1 increased the negative charge and Al adsorption at the cell surface. Taken together, the enhanced sensitivity of R. taiwanensis RS1 to Al from pH 3.1-4.2 was associated with increased hydroxy-Al and cell-surface negativity.

  3. Toward the reconstitution of synthetic cell motility

    PubMed Central

    Siton-Mendelson, Orit; Bernheim-Groswasser, Anne

    2016-01-01

    ABSTRACT Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell. PMID:27019160

  4. Kupffer cell/tumor cell interactions and hepatic metastasis in colorectal cancer.

    PubMed

    Meterissian, S H; Toth, C A; Steele, G; Thomas, P

    1994-06-15

    The degree of interaction with Kupffer cells of two moderately well differentiated cell lines, CX-1 and CCl-188 of high metastatic potential (61%) were compared to two poorly differentiated cell lines, MIP-101 and Clone A of low metastatic potential (6%) in the intrasplenic injection model for liver metastasis. MIP-101 and Clone A bound significantly better to mouse Kupffer cells in vitro than either CX-1 or CCL-188. We also identified specific cell surface proteins mediating attachment of colorectal carcinoma cells to murine Kupffer cells. Kupffer cells were radiolabelled and their surface proteins incubated with MIP-101 and CX-1. Two radiolabelled proteins from murine Kupffer cells of 14 and 34 kDa were identified consistently binding to the tumor cells. Binding of both proteins was inhibited by asialofetuin but not by fetuin. This suggests that the major binding proteins between Kupffer cells and colorectal cancer cells are galactose binding lectins.

  5. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior

    PubMed Central

    2014-01-01

    Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation. PMID:25246859

  6. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.

  8. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    PubMed

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  9. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  10. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  11. Controllable surface haptics via particle jamming and pneumatics.

    PubMed

    Stanley, Andrew A; Okamura, Allison M

    2015-01-01

    The combination of particle jamming and pneumatics allows the simultaneous control of shape and mechanical properties in a tactile display. A hollow silicone membrane is molded into an array of thin cells, each filled with coffee grounds such that adjusting the vacuum level in any individual cell rapidly switches it between flexible and rigid states. The array clamps over a pressure-regulated air chamber with internal mechanisms designed to pin the nodes between cells at any given height. Various sequences of cell vacuuming, node pinning, and chamber pressurization allow the surface to balloon into a variety of shapes. Experiments were performed to expand existing physical models of jamming at the inter-particle level to define the rheological characteristics of jammed systems from a macroscopic perspective, relevant to force-displacement interactions that would be experienced by human users. Force-displacement data show that a jammed cell in compression fits a Maxwell model and a cell deflected in the center while supported only at the edges fits a Zener model, each with stiffness and damping parameters that increase at higher levels of applied vacuum. This provides framework to tune and control the mechanical properties of a jamming haptic interface.

  12. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    PubMed

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value to the covalent grafting immobilization methods. However no differences in exposure of the cell binding domains were observed (ELISA results) before SDS rinsing, suggesting that pFN protein grafting to the surface is initially kinetically driven be a stochastic random adsorption phenomenon. Covalent grafting acts in the final stage as a process that simply tethers and stabilizes (or freezes) the initial conformation/orientation of the adsorbed protein on the surface. In addition covalent linkage via the SSMPB approach is likely favored by surface-induce exposure of one of the normally hidden free thiol group pair, thus optimizing covalent linkage to the surface. However after SDS rinsing, this "tethering"/"freezing" effect was significantly more prominent for the GA grafting approach (due to greater number of potential covalent links between the protein and the surface) compared to that for the SSMPB approach. This hypothesis was buttressed by the improved resistance to denaturation (smaller conformational lability) for the GA compared to the SMPB approach and improved exposure of the cell binding domain for the former (>50%) even after SDS rinsing. These results are promising in that they suggest covalent tethering of fibronectin to PS substrate in a monolayer range, with significantly improved irreversible protein surface bonding via both approaches (compared to that for mere adsorption). The latter are likely applicable to a wide range of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnell, J. L.; Prather, M. J.; Josse, B.

    Here we test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is lessmore » successfully matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. Lastly, we conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less

  14. Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

    DOE PAGES

    Schnell, J. L.; Prather, M. J.; Josse, B.; ...

    2015-09-25

    Here we test the current generation of global chemistry–climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1° × 1° grid cells, allowing commensurate model–measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (~ 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is lessmore » successfully matched. The observed summertime diurnal range (~ 25 ppb) is underestimated in all regions by about 7 ppb, and the observed seasonal range (~ 21 ppb) is underestimated by about 5 ppb except in the most polluted regions, where it is overestimated by about 5 ppb. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 % of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 ppb for larger-sized episodes. Lastly, we conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.« less

  15. Flow-induced attraction of swimming microorganisms by surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2008-03-01

    In this talk, we present an experimental and theoretical investigation of the accumulation of swimming cells by nearby surfaces. First, we present results of an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates; the distribution for the bacteria concentration is found to peak near the glass plates. We then present a physical model for the observed attraction, based on the hydrodynamics interactions between the swimming cells and the walls. We show that such interactions result in a reorientation of the cells in the direction parallel to the surfaces, and an attraction of these (parallel) cells by the nearest wall. Our results are exploited to obtain an estimate of the propulsive force of smooth-swimming E. coli.

  16. Ca-Mediated Electroformation of Cell-Sized Lipid Vesicles

    PubMed Central

    Tao, Fei; Yang, Peng

    2015-01-01

    Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca2+) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca2+ Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process. PMID:25950604

  17. Ca-mediated electroformation of cell-sized lipid vesicles.

    PubMed

    Tao, Fei; Yang, Peng

    2015-05-07

    Cell-sized lipid giant unilamellar vesicles (GUVs) are formed when lipid molecules self-assemble to construct a single bilayer compartment with similar morphology to living cells. The physics of self-assembly process is only generally understood and the size distribution of GUVs tends to be very polydisperse. Herein we report a strategy for the production of controlled size distributions of GUVs by a novel mechanism dissecting the mediation ability of calcium (Ca) on the conventional electroformation of GUVs. We finely construct both of the calcium ion (Ca(2+)) and calcium carbonate (CaCO3) mineral adsorption layers on a lipid film surface respectively during the electroformation of GUVs. It is found that Ca(2+) Slip plane polarized by alternating electric field could induce a pattern of electroosmotic flow across the surface, and thus confine the fusion and growth of GUVs to facilitate the formation of uniform GUVs. The model is further improved by directly using CaCO3 that is in situ formed on a lipid film surface, providing a GUV population with narrow polydispersity. The two models deciphers the new biological function of calcium on the birth of cell-like lipid vesicles, and thus might be potentially relevant to the construction of new model to elucidate the cellular development process.

  18. Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value.

    PubMed

    Simon, Martin; Plattner, Helmut

    2014-01-01

    Unicellular eukaryotes have been appreciated as model systems for the analysis of crucial questions in cell and molecular biology. This includes Dictyostelium (chemotaxis, amoeboid movement, phagocytosis), Tetrahymena (telomere structure, telomerase function), Paramecium (variant surface antigens, exocytosis, phagocytosis cycle) or both ciliates (ciliary beat regulation, surface pattern formation), Chlamydomonas (flagellar biogenesis and beat), and yeast (S. cerevisiae) for innumerable aspects. Nowadays many problems may be tackled with "higher" eukaryotic/metazoan cells for which full genomic information as well as domain databases, etc., were available long before protozoa. Established molecular tools, commercial antibodies, and established pharmacology are additional advantages available for higher eukaryotic cells. Moreover, an increasing number of inherited genetic disturbances in humans have become elucidated and can serve as new models. Among lower eukaryotes, yeast will remain a standard model because of its peculiarities, including its reduced genome and availability in the haploid form. But do protists still have a future as models? This touches not only the basic understanding of biology but also practical aspects of research, such as fund raising. As we try to scrutinize, due to specific advantages some protozoa should and will remain favorable models for analyzing novel genes or specific aspects of cell structure and function. Outstanding examples are epigenetic phenomena-a field of rising interest. © 2014 Elsevier Inc. All rights reserved.

  19. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  20. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    NASA Technical Reports Server (NTRS)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  1. A mathematical model of antibody-dependent cellular cytotoxicity (ADCC).

    PubMed

    Hoffman, F; Gavaghan, D; Osborne, J; Barrett, I P; You, T; Ghadially, H; Sainson, R; Wilkinson, R W; Byrne, H M

    2018-01-07

    Immunotherapies exploit the immune system to target and kill cancer cells, while sparing healthy tissue. Antibody therapies, an important class of immunotherapies, involve the binding to specific antigens on the surface of the tumour cells of antibodies that activate natural killer (NK) cells to kill the tumour cells. Preclinical assessment of molecules that may cause antibody-dependent cellular cytotoxicity (ADCC) involves co-culturing cancer cells, NK cells and antibody in vitro for several hours and measuring subsequent levels of tumour cell lysis. Here we develop a mathematical model of such an in vitro ADCC assay, formulated as a system of time-dependent ordinary differential equations and in which NK cells kill cancer cells at a rate which depends on the amount of antibody bound to each cancer cell. Numerical simulations generated using experimentally-based parameter estimates reveal that the system evolves on two timescales: a fast timescale on which antibodies bind to receptors on the surface of the tumour cells, and NK cells form complexes with the cancer cells, and a longer time-scale on which the NK cells kill the cancer cells. We construct approximate model solutions on each timescale, and show that they are in good agreement with numerical simulations of the full system. Our results show how the processes involved in ADCC change as the initial concentration of antibody and NK-cancer cell ratio are varied. We use these results to explain what information about the tumour cell kill rate can be extracted from the cytotoxicity assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rapid Steroid Hormone Actions Initiated at the Cell Surface and the Receptors that Mediate Them with an Emphasis on Recent Progress in Fish Models

    PubMed Central

    Thomas, Peter

    2011-01-01

    In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified. PMID:22154643

  3. Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.

    PubMed

    Francica, Joseph R; Matukonis, Meghan K; Bates, Paul

    2009-01-20

    Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.

  4. Prediction of anticancer activity of diterpenes isolated from the paraiban flora through a PLS model and molecular surfaces.

    PubMed

    Scotti, Luciana; Scotti, Marcus T; Ishiki, Hamilton; Junior, Francisco J B M; dos, Santos Paula F; Tavares, Josean F; da Silva, Marcelo S

    2014-05-01

    The aim of this work was to predict the anticancer potential of 3 atisane, and 3 trachylobane diterpene compounds extracted from the roots of Xylopia langsdorffiana. The prediction of anticancer activity as expressed against PC-3 tumor cells was made using a PLS model built with 26 diterpenes in the training set. Significant statistical measures were obtained. The six investigated diterpenes were applied to the model and their activities against PC-3 cells were calculated. All the diterpenes were active, with atisane diterpenes showing the higher pICso values. In human prostate carcinoma PC-3 cells, the apoptosis mechanism is related to an inhibition of IKK/NF-KB. Antioxidant potential implies a greater electronic molecular atmosphere (increased donor electron capacity), which can reduce radical reactivity, and facilitate post donation charge accommodation. Molecular surfaces indicated a much greater electronic cloud over atisane diterpenes.

  5. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto

    NASA Astrophysics Data System (ADS)

    Buhler, Peter B.; Ingersoll, Andrew P.

    2018-01-01

    The ∼106 km2 Sputnik Planitia, Pluto is the upper surface of a vast basin of nitrogen ice. Cellular landforms in Sputnik Planitia with areas in the range of a few × 102-103 km2 are likely the surface manifestation of convective overturn in the nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 × 10-3 and 5.9 ± 0.8 × 10-3 m m-1 away from the cell center, depending on the cell. This is a lower bound on the size increase because of the finite resolution of the data. Accounting for resolution yields upper bounds on the size vs. distance distribution of between 4.2 ± 0.2 × 10-3 and 23.4 ± 1.5 × 10-3 m m-1. We then use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6-0.6+2.1 ×10-4 m yr-1, which allows us to convert the pit size vs. distance distribution into a pit age vs. distance distribution. This yields surface velocities between 1.5-0.2+1.0 and 6.2-1.4+3.4 cm yr-1 for the slowest cell and surface velocities between 8.1-1.0+5.5 and 17.9-5.1+8.9 cm yr-1 for the fastest cell. These convection rates imply that the surface ages at the edge of cells reach ∼4.2-8.9 × 105 yr. The rates are comparable to rates of ∼6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia (McKinnon et al., 2016). Finally, we investigate the surface rheology of the convection cells and estimate that the minimum ice viscosity necessary to support the geometry of the observed pits is of order 1016-1017 Pa s, based on the argument that pits would relax away before growing to their observed radii of several hundred meters if the viscosity were lower than this value.

  6. Modelling and fabrication of high-efficiency silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Smith, A. W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. The third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high efficiency silicon cells.

  7. Extensions and applications of a second-order landsurface parameterization

    NASA Technical Reports Server (NTRS)

    Andreou, S. A.; Eagleson, P. S.

    1983-01-01

    Extensions and applications of a second order land surface parameterization, proposed by Andreou and Eagleson are developed. Procedures for evaluating the near surface storage depth used in one cell land surface parameterizations are suggested and tested by using the model. Sensitivity analysis to the key soil parameters is performed. A case study involving comparison with an "exact" numerical model and another simplified parameterization, under very dry climatic conditions and for two different soil types, is also incorporated.

  8. Clustered carbohydrates as a target for natural killer cells: a model system.

    PubMed

    Kovalenko, Elena I; Abakushina, Elena; Telford, William; Kapoor, Veena; Korchagina, Elena; Khaidukov, Sergei; Molotkovskaya, Irina; Sapozhnikov, Alexander; Vlaskin, Pavel; Bovin, Nicolai

    2007-03-01

    Membrane-associated oligosaccharides are known to take part in interactions between natural killer (NK) cells and their targets and modulate NK cell activity. A model system was therefore developed using synthetic glycoconjugates as tools to modify the carbohydrate pattern on NK target cell surfaces. NK cells were then assessed for function in response to synthetic glycoconjugates, using both cytolysis-associated caspase 6 activation measured by flow cytometry and IFN-gamma production. Lipophilic neoglycoconjugates were synthesized to provide their easy incorporation into the target cell membranes and to make carbohydrate residues available for cell-cell interactions. While incorporation was successful based on fluorescence monitoring, glycoconjugate incorporation did not evoke artifactual changes in surface antigen expression, and had no negative effect on cell viability. Glycoconjugates contained Le(x), sulfated Le(x), and Le(y) sharing the common structure motif trisaccharide Le(x) were revealed to enhance cytotoxicity mediated specifically by CD16 +CD56+NK cells. The glycoconjugate effects were dependent on saccharide presentation in a polymeric form. Only polymeric, or clustered, but not monomeric glycoconjugates resulted in alteration of cytotoxicity in our system, suggesting that appropriate presentation is critical for carbohydrate recognition and subsequent biological effects.

  9. Differential Effects of Tissue Culture Coating Substrates on Prostate Cancer Cell Adherence, Morphology and Behavior

    PubMed Central

    Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.

    2014-01-01

    Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165

  10. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    PubMed

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  11. Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.

    PubMed

    Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf

    2017-08-22

    The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Select α-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model.

    PubMed

    Hager, Natalie A; Krasowski, Collin J; Mackie, Timothy D; Kolb, Alexander R; Needham, Patrick G; Augustine, Andrew A; Dempsey, Alison; Szent-Gyorgyi, Christopher; Bruchez, Marcel P; Bain, Daniel J; Kwiatkowski, Adam V; O'Donnell, Allyson F; Brodsky, Jeffrey L

    2018-05-21

    Protein composition at the plasma membrane is tightly regulated, with rapid protein internalization and selective targeting to the cell surface occurring in response to environmental changes. For example, ion channels are dynamically relocalized to or from the plasma membrane in response to physiological alterations, allowing cells and organisms to maintain osmotic and salt homeostasis. To identify additional factors that regulate the selective trafficking of a specific ion channel, we used a yeast model for a mammalian potassium channel, the K+ inwardly rectifying channel Kir2.1. Kir2.1 maintains potassium homeostasis in heart muscle cells, and Kir2.1 defects lead to human disease. By examining the ability of Kir2.1 to rescue the growth of yeast cells lacking endogenous potassium channels, we discovered that specific α-arrestins regulate Kir2.1 localization. Specifically, we found that the Ldb19/Art1, Aly1/Art6, and Aly2/Art3 α-arrestin adaptor proteins promote Kir2.1 trafficking to the cell surface, increase Kir2.1 activity at the plasma membrane, and raise intracellular potassium levels. To better quantify the intracellular and cell-surface populations of Kir2.1, we created fluorescence-activating protein fusions and for the first time used this technique to measure the cell-surface residency of a plasma membrane protein in yeast. Our experiments revealed that two α-arrestin effectors also control Kir2.1 localization. In particular, both the Rsp5 ubiquitin ligase and the protein phosphatase calcineurin facilitated the α-arrestin-mediated trafficking of Kir2.1. Together, our findings implicate α-arrestins in regulating an additional class of plasma membrane proteins and establish a new tool for dissecting the trafficking itinerary of any membrane protein in yeast. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Efficient optical analysis of surface texture combinations for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2016-04-01

    Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.

  14. Sputnik Planitia, Pluto Convection Cell Surface Velocities of ~10 Centimeters per Year Based on Sublimation Pit Distribution

    NASA Astrophysics Data System (ADS)

    Buhler, Peter Benjamin; Ingersoll, Andrew P.

    2017-10-01

    Sputnik Planitia, Pluto contains cellular landforms with areas on the order of a few 102-103 km2 that are likely the surface manifestation of convective overturn in a vast basin of nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map over 12,000 pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 and 5.9 ± 0.8 × 10-3 m per meter away from the cell center, depending on the cell. Due to finite data resolution, this is a lower bound on the size increase. Conservatively accounting for resolution effects yields upper bounds on the size vs. distance distribution of 4.2 ± 0.2 to 23.4 ± 1.5 × 10-3 m m-1. In order to convert the pit size vs. distance distribution into a pit age vs. distance distribution, we use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6 [+2.1,-0.6] × 10-4 m yr-1. Combined with the mapped distribution of pit radii, this yields surface velocities between 1.5 [+1.0,-0.2] and 6.2 [+3.4,-1.4] cm yr-1 for the slowest cell and surface velocities between 8.1 [+5.5,-1.0] and 17.9 [+8.9,-5.1] cm yr-1 for the fastest cell; the lower bound estimate for each cell accounts for resolution effects, while the upper bound estimate does not. These convection rates imply that the surface ages at the edge of cells reach approximately 4.2 to 8.9 × 105 yr, depending on the cell. The rates we find are comparable to rates of ~6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia [McKinnon, W.B. et al., 2016, Nature, 534(7605), 82-85]. Finally, we find that the minimum viscosity at the surface of the convection cells is of order 1016 to 1017 Pa s; we find that pits would relax away before sublimating to their observed radii of several hundred meters if the viscosity were lower than this value.

  15. Antimicrobial Barrier of an in vitro Oral Epithelial Model

    PubMed Central

    Kimball, Janet R.; Nittayananta, Wipawee; Klausner, Mitchell; Chung, Whasun O.; Dale, Beverly A.

    2008-01-01

    Objective Oral epithelia function as a microbial barrier and are actively involved in recognizing and responding to bacteria. Our goal was to examine a tissue engineered model of buccal epithelium for its response to oral bacteria and proinflammatory cytokines and compare the tissue responses with those of a submerged monolayer cell culture. Design The tissue model was characterized for keratin and β-defensin expression. Altered expression of β-defensins was evaluated by RT-PCR after exposure of the apical surface to oral bacteria and after exposure to TNF-α in the medium. These were compared to the response in traditional submerged oral epithelial cell culture. Results The buccal model showed expression of differentiation specific keratin 13, hBD1 and hBD3 in the upper half of the tissue; hBD2 was not detected. hBD1 mRNA was constitutively expressed, while hBD2 mRNA increased 2-fold after exposure of the apical surface to three oral bacteria tested and hBD3 mRNA increased in response to the non-pathogenic bacteria tested. In contrast, hBD2 mRNA increased 3–600 fold in response to bacteria in submerged cell culture. HBD2 mRNA increased over 100 fold in response to TNF-α in the tissue model and 50 fold in submerged cell culture. Thus, the tissue model is capable of upregulating hBD2, however, the minimal response to bacteria suggests that the tissue has an effective antimicrobial barrier due to its morphology, differentiation, and defensin expression. Conclusions The oral mucosal model is differentiated, expresses hBD1 and hBD3, and has an intact surface with a functional antimicrobial barrier. PMID:16815238

  16. Investigation of Functional Activity of Cells in Granulomatous Inflammatory Lesions from Mice with Latent Tuberculous Infection in the New Ex Vivo Model

    PubMed Central

    2013-01-01

    The new ex vivo model system measuring functional input of individual granuloma cells to formation of granulomatous inflammatory lesions in mice with latent tuberculous infection has been developed and described in the current study. Monolayer cultures of cells that migrated from individual granulomas were established in the proposed culture settings for mouse spleen and lung granulomas induced by in vivo exposure to BCG vaccine. The cellular composition of individual granulomas was analyzed. The expression of the leukocyte surface markers such as phagocytic receptors CD11b, CD11c, CD14, and CD16/CD32 and the expression of the costimulatory molecules CD80, CD83, and CD86 were tested as well as the production of proinflammatory cytokines (IFNγ and IL-1α) and growth factors (GM-CSF and FGFb) for cells of individual granulomas. The colocalization of the phagocytic receptors and costimulatory molecules in the surface microdomains of granuloma cells (with and without acid-fast BCG-mycobacteria) has also been detected. It was found that some part of cytokine macrophage producers have carried acid-fast mycobacteria. Detected modulation in dynamics of production of pro-inflammatory cytokines, growth factors, and leukocyte surface markers by granuloma cells has indicated continued processes of activation and deactivation of granuloma inflammation cells during the latent tuberculous infection progress in mice. PMID:24198843

  17. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  18. A Caulobacter MreB mutant with irregular cell shape exhibits compensatory widening to maintain a preferred surface area to volume ratio

    PubMed Central

    Harris, Leigh K.; Dye, Natalie A.; Theriot, Julie A.

    2014-01-01

    Summary Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly-shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells. PMID:25266768

  19. Validating and improving a zero-dimensional stack voltage model of the Vanadium Redox Flow Battery

    NASA Astrophysics Data System (ADS)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2018-02-01

    Simple, computationally efficient battery models can contribute significantly to the development of flow batteries. However, validation studies for these models on an industrial-scale stack level are rarely published. We first extensively present a simple stack voltage model for the Vanadium Redox Flow Battery. For modeling the concentration overpotential, we derive mass transfer coefficients from experimental results presented in the 1990s. The calculated mass transfer coefficient of the positive half-cell is 63% larger than of the negative half-cell, which is not considered in models published to date. Further, we advance the concentration overpotential model by introducing an apparent electrochemically active electrode surface which differs from the geometric electrode area. We use the apparent surface as fitting parameter for adapting the model to experimental results of a flow battery manufacturer. For adapting the model, we propose a method for determining the agreement between model and reality quantitatively. To protect the manufacturer's intellectual property, we introduce a normalization method for presenting the results. For the studied stack, the apparent electrochemically active surface of the electrode is 41% larger than its geometrical area. Hence, the current density in the diffusion layer is 29% smaller than previously reported for a zero-dimensional model.

  20. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  1. Pili-taxis: Clustering of Neisseria gonorrhoeae bacteria

    NASA Astrophysics Data System (ADS)

    Taktikos, Johannes; Zaburdaev, Vasily; Biais, Nicolas; Stark, Holger; Weitz, David A.

    2012-02-01

    The first step of colonization of Neisseria gonorrhoeae bacteria, the etiological agent of gonorrhea, is the attachment to human epithelial cells. The attachment of N. gonorrhoeae bacteria to surfaces or other cells is primarily mediated by filamentous appendages, called type IV pili (Tfp). Cycles of elongation and retraction of Tfp are responsible for a common bacterial motility called twitching motility which allows the bacteria to crawl over surfaces. Experimentally, N. gonorrhoeae cells initially dispersed over a surface agglomerate into round microcolonies within hours. It is so far not known whether this clustering is driven entirely by the Tfp dynamics or if chemotactic interactions are needed. Thus, we investigate whether the agglomeration may stem solely from the pili-mediated attraction between cells. By developing a statistical model for pili-taxis, we try to explain the experimental measurements of the time evolution of the mean cluster size, number of clusters, and area fraction covered by the cells.

  2. Central Facilities Area Sewage Lagoon Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giesbrecht, Alan

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose ofmore » this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.« less

  3. A bio-recognition device developed onto nano-crystals of carbonate apatite for cell-targeted gene delivery.

    PubMed

    Chowdhury, E H; Akaike, Toshihiro

    2005-05-20

    The DNA delivery to mammalian cells is an essential tool for analyzing gene structure, regulation, and function. The approach holds great promise for the further development of gene therapy techniques and DNA vaccination strategies to treat and control diseases. Here, we report on the establishment of a cell-specific gene delivery and expression system by physical adsorption of a cell-recognition molecule on the nano-crystal surface of carbonate apatite. As a model, DNA/nano-particles were successfully coated with asialofetuin to facilitate uptake by hepatocyte-derived cell lines through the asialoglycoprotein receptor (ASGPr) and albumin to prevent non-specific interactions of the particles with cell-surface. The resulting composite particles with dual surface properties could accelerate DNA uptake and enhance expression to a notable extent. Nano-particles coated with transferrin in the same manner dramatically enhanced transgene expression in the corresponding receptor-bearing cells and thus our newly developed strategy represents a universal phenomenon for anchoring a bio-recognition macromolecule on the apatite crystal surface for targeted gene delivery, having immediate applications in basic research laboratories and great promise for gene therapy. (c) 2005 Wiley Periodicals, Inc.

  4. Biofilms’ Role in Planktonic Cell Proliferation

    PubMed Central

    Bester, Elanna; Wolfaardt, Gideon M.; Aznaveh, Nahid B.; Greener, Jesse

    2013-01-01

    The detachment of single cells from biofilms is an intrinsic part of this surface-associated mode of bacterial existence. Pseudomonas sp. strain CT07gfp biofilms, cultivated in microfluidic channels under continuous flow conditions, were subjected to a range of liquid shear stresses (9.42 mPa to 320 mPa). The number of detached planktonic cells was quantified from the effluent at 24-h intervals, while average biofilm thickness and biofilm surface area were determined by confocal laser scanning microscopy and image analysis. Biofilm accumulation proceeded at the highest applied shear stress, while similar rates of planktonic cell detachment was maintained for biofilms of the same age subjected to the range of average shear rates. The conventional view of liquid-mediated shear leading to the passive erosion of single cells from the biofilm surface, disregards the active contribution of attached cell metabolism and growth to the observed detachment rates. As a complement to the conventional conceptual biofilm models, the existence of a biofilm surface-associated zone of planktonic cell proliferation is proposed to highlight the need to expand the traditional perception of biofilms as promoting microbial survival, to include the potential of biofilms to contribute to microbial proliferation. PMID:24201127

  5. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2018-01-01

    Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s-1, corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.

  6. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.

    PubMed

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2018-01-26

    Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s -1 , corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.

  7. Characterization of the interface of the bone marrow stromal cell antigen 2-Vpu protein complex via computational chemistry.

    PubMed

    Zhou, Jinming; Zhang, Zhixin; Mi, Zeyun; Wang, Xin; Zhang, Quan; Li, Xiaoyu; Liang, Chen; Cen, Shan

    2012-02-14

    Bone marrow stromal cell antigen 2 (BST-2) inhibits the release of enveloped viruses from the cell surface. Various viral counter measures have been discovered, which allow viruses to escape BST-2 restriction. Human immunodeficiency virus type 1 (HIV-1) encodes viral protein U (Vpu) that interacts with BST-2 through their transmembrane domains and causes the downregulation of cell surface BST-2. In this study, we used a computer modeling method to establish a molecular model to investigate the binding interface of the transmembrane domains of BST-2 and Vpu. The model predicts that the interface is composed of Vpu residues I6, A10, A14, A18, V25, and W22 and BST-2 residues L23, I26, V30, I34, V35, L41, I42, and T45. Introduction of mutations that have been previously reported to disrupt the Vpu-BST-2 interaction led to a calculated higher binding free energy (MMGBSA), which supports our molecular model. A pharmacophore was also generated on the basis of this model. Our results provide a precise model that predicts the detailed interaction occurring between the transmembrane domains of Vpu and BST-2 and should facilitate the design of anti-HIV agents that are able to disrupt this interaction.

  8. Mound-Interface Kinetics in Dictyostelium Aggregation

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki

    2002-09-01

    The mound development of the cellular slime mold amoebae Dictyostelium discoideum is studied with an interface kinetic model for the height of cell layers. As a competitive role for the chemotaxis, we compare two types of curvature relaxations; the surface relaxation induced by cell-substrate affinity (model A), and that comes from a cell-cell adhesive effect (model B). It is found that both models are characterized by the growth law for the maximum mound height. Based on a self-similarity scaling hypothesis for the spatial structure of streaming pattern, we suggest a scaling law for the growth of mound-height hmax ˜ t1-1/α+β/α with α = 2 (4) for the model A (B) and a number 0 ≤ β < 1.

  9. Computational model for amoeboid motion: Coupling membrane and cytosol dynamics

    NASA Astrophysics Data System (ADS)

    Moure, Adrian; Gomez, Hector

    2016-10-01

    A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.

  10. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models.

    PubMed

    Anders, Catherine B; Chess, Jordan J; Wingett, Denise G; Punnoose, Alex

    2015-12-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  11. Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    NASA Astrophysics Data System (ADS)

    Anders, Catherine B.; Chess, Jordan J.; Wingett, Denise G.; Punnoose, Alex

    2015-11-01

    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO - FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1. In nZnO - FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (>24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO - FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO - FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO - FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments.

  12. Effects of stiffness and volume on the transit time of an erythrocyte through a slit.

    PubMed

    Salehyar, Sara; Zhu, Qiang

    2017-06-01

    By using a fully coupled fluid-cell interaction model, we numerically simulate the dynamic process of a red blood cell passing through a slit driven by an incoming flow. The model is achieved by combining a multiscale model of the composite cell membrane with a boundary element fluid dynamics model based on the Stokes flow assumption. Our concentration is on the correlation between the transit time (the time it takes to finish the whole translocation process) and different conditions (flow speed, cell orientation, cell stiffness, cell volume, etc.) that are involved. According to the numerical prediction (with some exceptions), the transit time rises as the cell is stiffened. It is also highly sensitive to volume increase inside the cell. In general, even slightly swollen cells (i.e., the internal volume is increased while the surface area of the cell kept unchanged) travel dramatically slower through the slit. For these cells, there is also an increased chance of blockage.

  13. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  14. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment.

    PubMed

    Christman, Mary C; Doctor, Daniel H; Niemiller, Matthew L; Weary, David J; Young, John A; Zigler, Kirk S; Culver, David C

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.

  15. Predicting the Occurrence of Cave-Inhabiting Fauna Based on Features of the Earth Surface Environment

    PubMed Central

    Doctor, Daniel H.; Niemiller, Matthew L.; Weary, David J.; Young, John A.; Zigler, Kirk S.

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas. PMID:27532611

  16. Predicting the occurrence of cave-inhabiting fauna based on features of the earth surface environment

    USGS Publications Warehouse

    Christman, Mary C.; Doctor, Daniel H.; Niemiller, Matthew L.; Weary, David J.; Young, John A.; Zigler, Kirk S.; Culver, David C.

    2016-01-01

    One of the most challenging fauna to study in situ is the obligate cave fauna because of the difficulty of sampling. Cave-limited species display patchy and restricted distributions, but it is often unclear whether the observed distribution is a sampling artifact or a true restriction in range. Further, the drivers of the distribution could be local environmental conditions, such as cave humidity, or they could be associated with surface features that are surrogates for cave conditions. If surface features can be used to predict the distribution of important cave taxa, then conservation management is more easily obtained. We examined the hypothesis that the presence of major faunal groups of cave obligate species could be predicted based on features of the earth surface. Georeferenced records of cave obligate amphipods, crayfish, fish, isopods, beetles, millipedes, pseudoscorpions, spiders, and springtails within the area of Appalachian Landscape Conservation Cooperative in the eastern United States (Illinois to Virginia and New York to Alabama) were assigned to 20 x 20 km grid cells. Habitat suitability for these faunal groups was modeled using logistic regression with twenty predictor variables within each grid cell, such as percent karst, soil features, temperature, precipitation, and elevation. Models successfully predicted the presence of a group greater than 65% of the time (mean = 88%) for the presence of single grid cell endemics, and for all faunal groups except pseudoscorpions. The most common predictor variables were latitude, percent karst, and the standard deviation of the Topographic Position Index (TPI), a measure of landscape rugosity within each grid cell. The overall success of these models points to a number of important connections between the surface and cave environments, and some of these, especially soil features and topographic variability, suggest new research directions. These models should prove to be useful tools in predicting the presence of species in understudied areas.

  17. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumb, Matthew P.; Naval Research Laboratory, Washington, DC 20375; Steiner, Myles A.

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close tomore » the fundamental efficiency limit.« less

  18. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.

    PubMed

    Hasan, Jafar; Webb, Hayden K; Truong, Vi Khanh; Pogodin, Sergey; Baulin, Vladimir A; Watson, Gregory S; Watson, Jolanta A; Crawford, Russell J; Ivanova, Elena P

    2013-10-01

    The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial contamination and infection. Their effectiveness against a wide spectrum of bacteria, however, is yet to be established. Here, the bactericidal properties of the wings were tested against several bacterial species, possessing a range of combinations of morphology and cell wall type. The tested species were primarily pathogens, and included Bacillus subtilis, Branhamella catarrhalis, Escherichia coli, Planococcus maritimus, Pseudomonas aeruginosa, Pseudomonas fluorescens, and Staphylococcus aureus. The wings were found to consistently kill Gram-negative cells (i.e., B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens), while Gram-positive cells (B. subtilis, P. maritimus, and S. aureus) remained resistant. The morphology of the cells did not appear to play any role in determining cell susceptibility. The bactericidal activity of the wing was also found to be quite efficient; 6.1 ± 1.5 × 10(6) P. aeruginosa cells in suspension were inactivated per square centimeter of wing surface after 30-min incubation. These findings demonstrate the potential for the development of selective bactericidal surfaces incorporating cicada wing nanopatterns into the design.

  19. The Efficiency of UVC Radiation in the Inactivation of
Listeria monocytogenes on Beef-Agar Food Models.

    PubMed

    Hamidi-Oskouei, Amir M; James, Christian; James, Stephen

    2015-06-01

    The aim of this study is to evaluate the effect of meat content and surface smoothness on the deactivation of Listeria monocytogenes in beef-agar food models achieved by shortwave ultraviolet (UVC) light. Food models with various meat contents were made using chopped beef slices and agar solution. Prepared models together with a Listeria selective agar (LSA) plate and a slice of cooked beef were inoculated with L. monocytogenes and then exposed to UVC light. Population of Listeria reduced to below the level of detection on the LSA plates. As the content of beef in the beef-agar models increased, more L. monocytogenes cells survived. Survival was greatest on the treated cooked slice of beef. To better understand the effect of surface irregularities, a white light interferometer was used to analyse the surface smoothness of beef-agar media and LSA plates. No correlation was observed between the surface roughness of seven out of nine types of produced beef-agar media and the degree of inactivation resulting from UVC radiation at the given dose, whereas, less bacterial cells were killed as beef content of the food models increased. The findings of the current study show that the chemical composition of the treated sample also plays an important role in pathogen resistance and survival, meaning that two samples with similar surface irregularities but different chemical composition might produce very different inactivation results when exposed to UVC light.

  20. The Efficiency of UVC Radiation in the Inactivation of
Listeria monocytogenes on Beef-Agar Food Models

    PubMed Central

    James, Christian; James, Stephen

    2015-01-01

    Summary The aim of this study is to evaluate the effect of meat content and surface smoothness on the deactivation of Listeria monocytogenes in beef-agar food models achieved by shortwave ultraviolet (UVC) light. Food models with various meat contents were made using chopped beef slices and agar solution. Prepared models together with a Listeria selective agar (LSA) plate and a slice of cooked beef were inoculated with L. monocytogenes and then exposed to UVC light. Population of Listeria reduced to below the level of detection on the LSA plates. As the content of beef in the beef-agar models increased, more L. monocytogenes cells survived. Survival was greatest on the treated cooked slice of beef. To better understand the effect of surface irregularities, a white light interferometer was used to analyse the surface smoothness of beef-agar media and LSA plates. No correlation was observed between the surface roughness of seven out of nine types of produced beef-agar media and the degree of inactivation resulting from UVC radiation at the given dose, whereas, less bacterial cells were killed as beef content of the food models increased. The findings of the current study show that the chemical composition of the treated sample also plays an important role in pathogen resistance and survival, meaning that two samples with similar surface irregularities but different chemical composition might produce very different inactivation results when exposed to UVC light. PMID:27904353

  1. Emergence of an apical epithelial cell surface in vivo

    PubMed Central

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B.

    2016-01-01

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological and laser-dissection experiments with theoretical modelling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  2. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential.

    PubMed

    de Oliveira, Maíra Maciel Mattos; Brugnera, Danilo Florisvaldo; Alves, Eduardo; Piccoli, Roberta Hilsdorf

    2010-01-01

    An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4) stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 °C and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM) after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  3. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage.

    PubMed

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-03-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles' heel of Cu surface-exposed cells.

  4. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage

    PubMed Central

    Santo, Christophe Espírito; Quaranta, Davide; Grass, Gregor

    2012-01-01

    Recently, copper (Cu) in its metallic form has regained interest for its antimicrobial properties. Use of metallic Cu surfaces in worldwide hospital trials resulted in remarkable reductions in surface contaminations. Yet, our understanding of why microbes are killed upon contact to the metal is still limited and different modes of action have been proposed. This knowledge, however, is crucial for sustained use of such surfaces in hospitals and other hygiene-sensitive areas. Here, we report on the molecular mechanisms by which the Gram-positive Staphylococcus haemolyticus is inactivated by metallic Cu. Staphylococcus haemolyticus was killed within minutes on Cu but not on stainless steel demonstrating the antimicrobial efficacy of metallic Cu. Inductively coupled plasma mass spectroscopy (ICP-MS) analysis and in vivo staining with Coppersensor-1 indicated that cells accumulated large amounts of Cu ions from metallic Cu surfaces contributing to lethal damage. Mutation rates of Cu- or steel-exposed cells were similarly low. Instead, live/dead staining indicated cell membrane damage in Cu- but not steel-exposed cells. These findings support a model of the cellular targets of metallic Cu toxicity in bacteria, which suggests that metallic Cu is not genotoxic and does not kill via DNA damage. In contrast, membranes constitute the likely Achilles’ heel of Cu surface-exposed cells. PMID:22950011

  5. Elementary reaction modeling of reversible CO/CO2 electrochemical conversion on patterned nickel electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Shi, Yixiang; Li, Wenying; Cai, Ningsheng

    2018-03-01

    CO/CO2 are the major gas reactant/product in the fuel electrode of reversible solid oxide cells (RSOC). This study proposes a two-charge-transfer-step mechanism to describe the reaction and transfer processes of CO-CO2 electrochemical conversion on a patterned Ni electrode of RSOC. An elementary reaction model is developed to couple two charge transfer reactions, C(Ni)+O2-(YSZ) ↔ CO(Ni)+(YSZ) +2e- and CO(Ni)+O2-(YSZ) ↔ CO2(Ni)+(YSZ)+2e-, with adsorption/desorption, surface chemical reactions and surface diffusion. This model well validates in both solid oxide electrolysis cell (SOEC) and solid oxide fuel cell (SOFC) modes by the experimental data from a patterned Ni electrode with 10 μm stripe width at different pCO (0-0.25 atm), pCO2 (0-0.35 atm) and operating temperature (600-700 °C). This model indicates SOEC mode is dominated by charge transfer step C(Ni)+O2-(YSZ)↔CO(Ni)+(YSZ) +2e-, while SOFC mode by CO(Ni)+ O2-(YSZ)↔CO2(Ni)+(YSZ)+2e- on the patterned Ni electrode. The sensitivity analysis shows charge transfer step is the major rate-determining step for RSOC, besides, surface diffusion of CO and CO2 as well as CO2 adsorption also plays a significant role in the electrochemical reaction of SOEC while surface diffusion of CO and CO2 desorption could be co-limiting in SOFC.

  6. Use of North American and European Air Quality Networks to Evaluate Global Chemistry-Climate Modeling of Surface Ozone

    NASA Technical Reports Server (NTRS)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; hide

    2015-01-01

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1 degree by 1 degree grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (approximately 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (25 ppb) is underestimated in all regions by about 7 parts per billion, and the observed seasonal range (approximately 21 parts per billion) is underestimated by about 5 parts per billion except in the most polluted regions, where it is overestimated by about 5 parts per billion. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 percent of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 parts per billion for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.

  7. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  8. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2011-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.

  9. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2012-11-01

    One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.

  10. Validation of a spatial model used to locate fish spawning reef construction sites in the St. Clair–Detroit River system

    USGS Publications Warehouse

    Fischer, Jason L.; Bennion, David; Roseman, Edward F.; Manny, Bruce A.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) populations have suffered precipitous declines in the St. Clair–Detroit River system, following the removal of gravel spawning substrates and overfishing in the late 1800s to mid-1900s. To assist the remediation of lake sturgeon spawning habitat, three hydrodynamic models were integrated into a spatial model to identify areas in two large rivers, where water velocities were appropriate for the restoration of lake sturgeon spawning habitat. Here we use water velocity data collected with an acoustic Doppler current profiler (ADCP) to assess the ability of the spatial model and its sub-models to correctly identify areas where water velocities were deemed suitable for restoration of fish spawning habitat. ArcMap 10.1 was used to create raster grids of water velocity data from model estimates and ADCP measurements which were compared to determine the percentage of cells similarly classified as unsuitable, suitable, or ideal for fish spawning habitat remediation. The spatial model categorized 65% of the raster cells the same as depth-averaged water velocity measurements from the ADCP and 72% of the raster cells the same as surface water velocity measurements from the ADCP. Sub-models focused on depth-averaged velocities categorized the greatest percentage of cells similar to ADCP measurements where 74% and 76% of cells were the same as depth-averaged water velocity measurements. Our results indicate that integrating depth-averaged and surface water velocity hydrodynamic models may have biased the spatial model and overestimated suitable spawning habitat. A model solely integrating depth-averaged velocity models could improve identification of areas suitable for restoration of fish spawning habitat.

  11. Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana

    PubMed Central

    Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd

    2002-01-01

    Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin. PMID:12095424

  12. Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana.

    PubMed

    Baumann, Otto; Dames, Petra; Kühnel, Dana; Walz, Bernd

    2002-06-24

    The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controlled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.

  13. Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence

    NASA Astrophysics Data System (ADS)

    Lovecchio, Salvatore; Zonta, Francesco; Marchioli, Cristian; Soldati, Alfredo

    2017-05-01

    Thermal stratification in water bodies influences the exchange of heat, momentum, and chemical species across the air-water interface by modifying the sub-surface turbulence characteristics. Turbulence modifications may in turn prevent small motile algae (phytoplankton, in particular) from reaching the heated surface. We examine how different regimes of stable thermal stratification affect the motion of these microscopic organisms (modelled as gyrotactic self-propelling cells) in a free-surface turbulent channel flow. This archetypal setup mimics an environmentally plausible situation that can be found in lakes and oceans. Results from direct numerical simulations of turbulence coupled with Lagrangian tracking reveal that rising of bottom-heavy self-propelling cells depends strongly on the strength of stratification, especially near the thermocline where high temperature and velocity gradients occur: Here hydrodynamic shear may disrupt directional cell motility and hamper near-surface accumulation. For all gyrotactic re-orientation times considered in this study (spanning two orders of magnitude), we observe a reduction of the cell rising speed and temporary confinement under the thermocline: If re-orientation is fast, cells eventually trespass the thermocline within the simulated time span; if re-orientation is slow, confinement lasts much longer because cells align in the streamwise direction and their vertical swimming is practically annihilated.

  14. An Improved Model for Nucleation-Limited Ice Formation in Living Cells during Freezing

    PubMed Central

    Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications. PMID:24852166

  15. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  16. Cylindrical cellular geometry ensures fidelity of division site placement in fission yeast.

    PubMed

    Mishra, Mithilesh; Huang, Yinyi; Srivastava, Pragya; Srinivasan, Ramanujam; Sevugan, Mayalagu; Shlomovitz, Roie; Gov, Nir; Rao, Madan; Balasubramanian, Mohan

    2012-08-15

    Successful cytokinesis requires proper assembly of the contractile actomyosin ring, its stable positioning on the cell surface and proper constriction. Over the years, many of the key molecular components and regulators of the assembly and positioning of the actomyosin ring have been elucidated. Here we show that cell geometry and mechanics play a crucial role in the stable positioning and uniform constriction of the contractile ring. Contractile rings that assemble in locally spherical regions of cells are unstable and slip towards the poles. By contrast, actomyosin rings that assemble on locally cylindrical portions of the cell under the same conditions do not slip, but uniformly constrict the cell surface. The stability of the rings and the dynamics of ring slippage can be described by a simple mechanical model. Using fluorescence imaging, we verify some of the quantitative predictions of the model. Our study reveals an intimate interplay between geometry and actomyosin dynamics, which are likely to apply in a variety of cellular contexts.

  17. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    PubMed

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  18. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation. PMID:27382277

  19. Inoculation onto solid surfaces protects Salmonella spp. during acid challenge: a model study using polyethersulfone membranes.

    PubMed

    Gawande, Purushottam V; Bhagwat, Arvind A

    2002-01-01

    Salmonellae are the most frequently reported cause of outbreaks of food-borne gastroenteritis in the United States. In clinical trials, the oral infective dose (ID) for healthy volunteers was estimated to be approximately 1 million cells. However, in reports from various outbreaks, the ID of Salmonella species associated with solid foods was estimated to be as few as 100 cells. We found that fresh-cut produce surfaces not only provided suitable solid support for pathogen attachment but also played a critical role in increasing the acid tolerance of the pathogen. However the acidic nature of certain produce played no role in making salmonellae resistant to stomach acidity. Inoculation onto fresh-cut produce surfaces, as well as onto inert surfaces, such as polyethersulfone membranes and tissue paper, increased the survival of salmonellae during acid challenge (50 mM Na-citrate, pH 3.0; 37 degrees C; 2 h) by 4 to 5 log units. Acid challenge experiments using cells inoculated onto polyethersulfone membranes provided a model system suitable for studying the underlying fundamentals of the protection that occurs when Salmonella strains are associated with solid foods. The surface-associated acid protection, which was observed in several Salmonella strains, required de novo protein synthesis and was independent of stationary-phase sigma transcription factor.

  20. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  1. Inoculation onto Solid Surfaces Protects Salmonella spp. during Acid Challenge: a Model Study Using Polyethersulfone Membranes

    PubMed Central

    Gawande, Purushottam V.; Bhagwat, Arvind A.

    2002-01-01

    Salmonellae are the most frequently reported cause of outbreaks of food-borne gastroenteritis in the United States. In clinical trials, the oral infective dose (ID) for healthy volunteers was estimated to be approximately 1 million cells. However, in reports from various outbreaks, the ID of Salmonella species associated with solid foods was estimated to be as few as 100 cells. We found that fresh-cut produce surfaces not only provided suitable solid support for pathogen attachment but also played a critical role in increasing the acid tolerance of the pathogen. However the acidic nature of certain produce played no role in making salmonellae resistant to stomach acidity. Inoculation onto fresh-cut produce surfaces, as well as onto inert surfaces, such as polyethersulfone membranes and tissue paper, increased the survival of salmonellae during acid challenge (50 mM Na-citrate, pH 3.0; 37°C; 2 h) by 4 to 5 log units. Acid challenge experiments using cells inoculated onto polyethersulfone membranes provided a model system suitable for studying the underlying fundamentals of the protection that occurs when Salmonella strains are associated with solid foods. The surface-associated acid protection, which was observed in several Salmonella strains, required de novo protein synthesis and was independent of stationary-phase sigma transcription factor. PMID:11772613

  2. The fractal dimension of cell membrane correlates with its capacitance: A new fractal single-shell model

    PubMed Central

    Wang, Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.

    2010-01-01

    The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski–Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM. PMID:21198103

  3. Nonlinear analysis of a model of vascular tumour growth and treatment

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Yoshida, Norio; Guo, Qian

    2004-05-01

    We consider a mathematical model describing the evolution of a vascular tumour in response to traditional chemotherapy. The model is a free boundary problem for a system of partial differential equations governing intratumoural drug concentration, cancer cell density and blood vessel density. Tumour cells consist of two types of competitive cells that have different proliferation rates and different sensitivities to drugs. The balance between cell proliferation and death generates a velocity field that drives tumour cell movement. The tumour surface is a moving boundary. The purpose of this paper is to establish a rigorous mathematical analysis of the model for studying the dynamics of intratumoural blood vessels and to explore drug dosage for the successful treatment of a tumour. We also study numerically the competitive effects of the two cell types on tumour growth.

  4. Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ahrar Ahmed

    Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our best fabricated result of FSF cell achieved ˜18.40% efficiency. Characterizations on such cells provide that, cell performance can be further improved by utilizing high lifetime base wafer. We showed a step by step improvement on the device parameters to achieve ˜22% efficiency FSF cell. Finally, bifacial cells were fabricated with 13.32% front and 9.65% rear efficiency. The efficiency limitation is due to the quality of base wafer. Detail resistance breakdown was conducted on these cells to analyze parasitic resistance losses. It was found that base and gridline resistances dominated the FF loss. However, very low contact resistance of 20 mO-cm 2 at front side and 2 mO-cm2 at the rear side was observed by utilizing same Ag paste for front and rear contact formation. This might provide a pathway towards the search of an optimized Ag paste to attain high efficiency screen-printed bifacial cell. Detail investigations needs to be carried out to unveil the property of this Ag paste. In future work, more focus will be given on the metallization design to incorporate further reduction in Ag cost. Al2O3 passivation layer will be incorporated as a means to attain ˜23% screen-printed bifacial cell.

  5. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  6. Targeted therapy of human glioblastoma via delivery of a toxin through a peptide directed to cell surface nucleolin.

    PubMed

    Dhez, Anne-Chloé; Benedetti, Elisabetta; Antonosante, Andrea; Panella, Gloria; Ranieri, Brigida; Florio, Tiziana M; Cristiano, Loredana; Angelucci, Francesco; Giansanti, Francesco; Di Leandro, Luana; d'Angelo, Michele; Melone, Marina; De Cola, Antonella; Federici, Luca; Galzio, Renato; Cascone, Ilaria; Raineri, Fabio; Cimini, Annamaria; Courty, José; Giordano, Antonio; Ippoliti, Rodolfo

    2018-05-01

    Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID 50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma. © 2017 Wiley Periodicals, Inc.

  7. The fate of epithelial cells in the human large intestine.

    PubMed

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  8. Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.

    PubMed

    Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie

    2018-06-08

    Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.

  9. Geometric modeling of space-optimal unit-cell-based tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Lu, Lichun; Yaszemski, Michael J.; Robb, Richard A.

    2005-04-01

    Tissue engineering involves regenerating damaged or malfunctioning organs using cells, biomolecules, and synthetic or natural scaffolds. Based on their intended roles, scaffolds can be injected as space-fillers or be preformed and implanted to provide mechanical support. Preformed scaffolds are biomimetic "trellis-like" structures which, on implantation and integration, act as tissue/organ surrogates. Customized, computer controlled, and reproducible preformed scaffolds can be fabricated using Computer Aided Design (CAD) techniques and rapid prototyping devices. A curved, monolithic construct with minimal surface area constitutes an efficient substrate geometry that promotes cell attachment, migration and proliferation. However, current CAD approaches do not provide such a biomorphic construct. We address this critical issue by presenting one of the very first physical realizations of minimal surfaces towards the construction of efficient unit-cell based tissue engineering scaffolds. Mask programmability, and optimal packing density of triply periodic minimal surfaces are used to construct the optimal pore geometry. Budgeted polygonization, and progressive minimal surface refinement facilitate the machinability of these surfaces. The efficient stress distributions, as deduced from the Finite Element simulations, favor the use of these scaffolds for orthopedic applications.

  10. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.

    PubMed

    Att, Wael; Kubo, Katsutoshi; Yamada, Masahiro; Maeda, Hatsuhiko; Ogawa, Takahiro

    2009-01-01

    This study evaluated the biomechanical properties of periosteum-derived mineralized culture on different surface topographies of titanium. Titanium surfaces modified by machining or by acid etching were analyzed using scanning electron microscopy (SEM). Rat mandibular periosteum-derived cells were cultured on either of the titanium surfaces. Cell proliferation was evaluated by cell counts, and gene expression was analyzed using a reverse-transcriptase polymerase chain reaction. Alkaline phosphatase (ALP) stain assay was employed to evaluate osteoblastic activity. Matrix mineralization was examined via von Kossa stain assay, total calcium deposition, and SEM. The hardness and elastic modulus of mineralized cultures were measured using a nano-indenter. The machined surface demonstrated a flat topographic configuration, while the acid-etched surface revealed a uniform micron-scale roughness. Both cell density and ALP activity were significantly higher on the machined surface than on the acid-etched surface. The expression of bone-related genes was up-regulated or enhanced on the acid-etched surface compared to the machined surface. Von Kossa stain showed significantly greater positive areas for the machined surface compared to the acid-etched surface, while total calcium deposition was statistically similar. Mineralized culture on the acid-etched surface was characterized by denser calcium deposition, more mature collagen deposition on the superficial layer, and larger and denser globular matrices inside the matrix than the culture on the machined surface. The mineralized matrix on the acid-etched surface was two times harder than on the machined surface, whereas the elastic modulus was comparable between the two surfaces. The design of this study can be used as a model to evaluate the effect of implant surface topography on the biomechanical properties of periosteum-derived mineralized culture. The results suggest that mandibular periosteal cells respond to different titanium surface topographies differently enough to produce mineralized matrices with different biomechanical qualities.

  11. A Novel Porcine Model for Future Studies of Cell-enriched Fat Grafting

    PubMed Central

    Sørensen, Celine L.; Vester-Glowinski, Peter V.; Herly, Mikkel; Kurbegovic, Sorel; Ørholt, Mathias; Svalgaard, Jesper D.; Kølle, Stig-Frederik T.; Kristensen, Annemarie T.; Talman, Maj-Lis M.; Drzewiecki, Krzysztof T.; Fischer-Nielsen, Anne

    2018-01-01

    Background: Cell-enriched fat grafting has shown promising results for improving graft survival, although many questions remain unanswered. A large animal model is crucial for bridging the gap between rodent studies and human trials. We present a step-by-step approach in using the Göttingen minipig as a model for future studies of cell-enriched large volume fat grafting. Methods: Fat grafting was performed as bolus injections and structural fat grafting. Graft retention was assessed by magnetic resonance imaging after 120 days. The stromal vascular fraction (SVF) was isolated from excised fat and liposuctioned fat from different anatomical sites and analyzed. Porcine adipose-derived stem/stromal cells (ASCs) were cultured in different growth supplements, and population doubling time, maximum cell yield, expression of surface markers, and differentiation potential were investigated. Results: Structural fat grafting in the breast and subcutaneous bolus grafting in the abdomen revealed average graft retention of 53.55% and 15.28%, respectively, which are similar to human reports. Liposuction yielded fewer SVF cells than fat excision, and abdominal fat had the most SVF cells/g fat with SVF yields similar to humans. Additionally, we demonstrated that porcine ASCs can be readily isolated and expanded in culture in allogeneic porcine platelet lysate and fetal bovine serum and that the use of 10% porcine platelet lysate or 20% fetal bovine serum resulted in population doubling time, maximum cell yield, surface marker profile, and trilineage differentiation that were comparable with humans. Conclusions: The Göttingen minipig is a feasible and cost-effective, large animal model for future translational studies of cell-enriched fat grafting. PMID:29876178

  12. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  13. Modeled microgravity inhibits apoptosis in peripheral blood lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells exposed to modeled microgravity (MMG) using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in MMG and provide insights into the potential mechanisms of this phenomenon.

  14. Efficacy of a New Ocular Surface Modulator in Restoring Epithelial Changes in an In Vitro Model of Dry Eye Syndrome.

    PubMed

    Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa

    2017-03-01

    So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.

  15. In situ cell surface proteomics reveals differentially expressed membrane proteins in retinal pigment epithelial cells during autoimmune uveitis.

    PubMed

    Uhl, P B; Szober, C M; Amann, B; Alge-Priglinger, C; Ueffing, M; Hauck, S M; Deeg, C A

    2014-09-23

    Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye and plays an important role in pathogenesis of the sight threatening disease equine recurrent uveitis (ERU). ERU is a spontaneous autoimmune mediated inflammatory disease characterised by the breakdown of the outer blood-retinal barrier and an influx of autoaggressive T-cells into the inner eye. Therefore, identification of molecular mechanisms contributing to changed function of blood-retinal barrier in ERU is important for the understanding of pathophysiology. Cell surface proteins of RPE collected from healthy horses and horses with ERU were captured by in situ biotinylation and analysed with high resolution mass spectrometry coupled to liquid chromatography (LC-MS/MS) to identify differentially expressed proteins. With label free differential proteomics, a total of 27 differently expressed cell surface proteins in diseased RPE could be detected. Significant down-regulation of three very interesting proteins, synaptotagmin 1, basigin and collectrin was verified and further characterised. We applied an innovative and successful method to detect changes in the plasma cell surface proteome of RPE cells in a spontaneous inflammatory eye disease, serving as a valuable model for human autoimmune uveitis. We were able to identify 27 differentially expressed plasma cell membrane proteins, including synaptotagmin 1, basigin and collectrin, which play important roles in cell adhesion, transport and cell communication. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  17. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Subramaniyam Ramesh, Bala; Giorgakis, Emmanouil; Lopez-Davila, Victor; Kamali Dashtarzheneha, Ashkan; Loizidou, Marilena

    2016-07-01

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.

  18. Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces

    PubMed Central

    Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.

    2013-01-01

    Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193

  19. Relaxation of Actinide Surfaces: An All Electron Study

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok

    2006-10-01

    Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.

  20. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    NASA Astrophysics Data System (ADS)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  1. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    PubMed

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  2. Assays to Study the Interaction of Campylobacter jejuni with the Mucosal Surface.

    PubMed

    Clyne, Marguerite; Duggan, Gina; Dunne, Ciara; Dolan, Brendan; Alvarez, Luis; Bourke, Billy

    2017-01-01

    Mucosal colonization and overcoming the mucosal barrier are essential steps in the establishment of infection by Campylobacter jejuni. The interaction between C. jejuni and host cells, including binding and invasion, is thought to be the key virulence factor important for pathogenesis of C. jejuni infections in animals or humans. The intestinal mucosal barrier is composed of a polarized epithelium covered by a thick adherent mucus gel layer. There is a requirement for cell culture assays of infection to accurately represent the in vivo mucosal surface. In this chapter, we describe the use of a number of cell culture models and the use of polarized in vitro organ culture to examine the interaction of C. jejuni with mucosal surfaces.

  3. Modeling COSMO-SkyMed measurements of precipitating clouds over the sea using simultaneous weather radar observations

    NASA Astrophysics Data System (ADS)

    Roberto, N.; Baldini, L.; Facheris, L.; Chandrasekar, V.

    2014-07-01

    Several satellite missions employing X-band synthetic aperture radar (SAR) have been activated to provide high-resolution images of normalized radar cross-sections (NRCS) on land and ocean for numerous applications. Rainfall and wind affect the sea surface roughness and consequently the NRCS from the combined effects of corrugation due to impinging raindrops and surface wind. X-band frequencies are sensitive to precipitation: intense convective cells result in irregularly bright and dark patches in SAR images, masking changes in surface NRCS. Several works have modeled SAR images of intense precipitation over land; less adequately investigated is the precipitation effect over the sea surface. These images are analyzed in this study by modeling both the scattering and attenuation of radiation by hydrometeors in the rain cells and the NRCS surface changes using weather radar precipitation estimates as input. The reconstruction of X-band SAR returns in precipitating clouds is obtained by the joint utilization of volume reflectivity and attenuation, the latter estimated by coupling ground-based radar measurements and an electromagnetic model to predict the sea surface NRCS. Radar signatures of rain cells were investigated using X-band SAR images collected from the COSMO-SkyMed constellation of the Italian Space Agency. Two case studies were analyzed. The first occurred over the sea off the coast of Louisiana (USA) in summer 2010 with COSMO-SkyMed (CSK®) ScanSar mode monitoring of the Deepwater Horizon oil spill. Simultaneously, the NEXRAD S-band Doppler radar (KLIX) located in New Orleans was scanning the same portion of ocean. The second case study occurred in Liguria (Italy) on November 4, 2011, during an extraordinary flood event. The same events were observed by the Bric della Croce C-band dual polarization radar located close to Turin (Italy). The polarimetric capability of the ground radars utilized allows discrimination of the composition of the precipitation volume, in particular distinguishing ice from rain. Results shows that for space-borne SAR at X-band, effects due to precipitation on water surfaces can be modeled using coincident ground-based weather radar measurements.

  4. Modeling of flow stress size effect based on variation of dislocation substructure in micro-tension of pure nickel

    NASA Astrophysics Data System (ADS)

    Wang, Chuanjie; Liu, Huan; Zhang, Ying; Chen, Gang; Li, Yujie; Zhang, Peng

    2017-12-01

    Micro-forming is one promising technology for manufacturing micro metal parts. However, the traditional metal-forming theories fail to analyze the plastic deformation behavior in micro-scale due to the size effect arising from the part geometry scaling down from macro-scale to micro-scale. To reveal the mechanism of plastic deformation behavior size effect in micro-scale, the geometrical parameters and the induced variation of microstructure by them need to be integrated in the developed constitutive models considering the free surface effect. In this research, the variations of dislocation cell diameter with original grain size, strain and location (surface grain or inner grain) are derived according the previous research data. Then the overall flow stress of the micro specimen is determined by employing the surface layer model and the relationship between dislocation cell diameter and the flow stress. This new developed constitutive model considers the original grain size, geometrical dimension and strain simultaneously. The flow stresses in micro-tensile tests of thin sheets are compared with calculated results using the developed constitutive model. The calculated and experimental results match well. Thus the validity of the developed constitutive model is verified.

  5. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    PubMed

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A mechanistic dissection of polyethylenimine mediated transfection of CHO cells: to enhance the efficiency of recombinant DNA utilization.

    PubMed

    Mozley, Olivia L; Thompson, Ben C; Fernandez-Martell, Alejandro; James, David C

    2014-01-01

    In this study, we examine the molecular and cellular interactions that underpin efficient internalization and utilization of polyethylenimine (PEI):DNA complexes (polyplexes) by Chinese Hamster Ovary (CHO) cells. Cell surface polyplex binding and internalization was a biphasic process, consisting of an initial rapid Phase (I), lasting approximately 15 min, followed by a slower second Phase (II), saturating at approximately 240 min post transfection. The second Phase accounted for the majority (60-70%) of polyplex internalization. While cell surface heparan sulphate proteoglycans (HSPGs) were rapidly cointernalized with polyplexes during Phase I, cell surface polyplex binding was not dependent on HSPGs. However, Phase II polyplex internalization and HSPG regeneration onto the surface of trypsinized cells occurred at similar rates, suggesting that the rate of recycling of HSPG-containing membrane to the plasma membrane limits Phase II internalization rate. Under optimal transfection conditions, polyplexes had a near neutral surface charge (zeta potential) and cell surface binding was dependent on hydrophobic interactions, being significantly inhibited by both chemical sequestration of cholesterol from the plasma membrane and addition of nonionic surfactant. Induced alterations in polyplex zeta potential, using ferric (III) citrate to decrease surface charge and varying PEI:DNA ratio to increase surface charge, served to inhibit polyplex binding or reduce secreted alkaline phosphatase reporter expression and cell viability, respectively. To increase polyplex hydrophobicity and internalization an alkylated derivative of PEI, propyl-PEI, was chemically synthesized. Using Design of Experiments-Response Surface Modeling to optimize the transfection process, the function of propyl-PEI was compared to that of unmodified PEI in both parental CHO-S cells and a subclone (Clone 4), which exhibited superior transgene expression via an increased resistance to polyplex cytotoxicity. The combination of propyl-PEI and Clone 4 doubled the efficiency of recombinant DNA utilization and reporter protein production. These data show that for maximal efficacy, strategies to increase polyplex internalization into cells must be used in concert with strategies to offset the inherent cytotoxicity of this process. © 2014 American Institute of Chemical Engineers.

  7. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells

    PubMed Central

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe

    2017-01-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. PMID:29046391

  8. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    PubMed

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Surface functions during mitosis. III. Quantitative analysis of ligand- receptor movement into the cleavage furrow: diffusion vs. flow

    PubMed Central

    1982-01-01

    The surface distribution of concanavalin A (Con A) bound to cell membrane receptors varies dramatically as a function of mitotic phase. The lectin is distributed diffusely on cells labeled and observed between mid-prophase and early anaphase, whereas cells observed in late anaphase or telophase demonstrate a marked accumulation of Con A- receptor complexes over the developing cleavage furrow (Berlin, Oliver, and Walter. 1978. Cell. 15:327-341). In this report, we first use a system based on video intensification fluorescence microscopy to describe the simultaneous changes in cell shape and in lectin-receptor complex topography during progression of single cells through the mitotic cycle. The video analysis establishes that fluorescein succinyl Con A (F-S Con A)-receptor complex redistribution begins coincident with the first appearance of the cleavage furrow and is essentially complete within 2-3 min. This remarkable redistribution of surface fluorescence occurs during only a modest change in cell shape from a sphere to a belted cylinder. It reflects the translocation of complexes and not the accumulation of excess labeled membrane in the cleavage furrow: first, bound fluorescent cholera toxin which faithfully outlines the plasma membrane is not accumulated in the cleavage furrow, and, second, electron microscopy of peroxidase-Con A labeled cells undergoing cleavage shows that there is a high linear density of lectin within the furrow while Con A is virtually eliminated from the poles. The rate of surface movement of F-S Con A was quantitated by photon counting during a repetitive series of laser-excited fluorescence scans across dividing cells. Results were analyzed in terms of two alternative models of movement: a flow model in which complexes moved unidirectionally at constant velocity, and a diffusion model in which complexes could diffuse freely but were trapped at the cleavage furrow. According to these models, the observed rates of accumulation were attainable at either an effective flow velocity of approximately 1 micron/min, or an effective diffusion coefficient of approximately 10(- 9) cm2/s. However, in separate experiments the lectin-receptor diffusion rate measured directly by the method of fluorescence recovery after photobleaching (FRAP) on metaphase cells was only approximately 10(-10) cm2/s. Most importantly, photobleaching experiments during the actual period of F-S Con A accumulation showed that lectin-receptor movement during cleavage occurs unidirectionally. These results rule out diffusion and make a process of oriented flow of ligand-receptor complexes the most likely mechanism for ligand-receptor accumulation in the cleavage furrow. PMID:7119007

  10. A model study of factors involved in adhesion of Pseudomonas fluorescens to meat.

    PubMed Central

    Piette, J P; Idziak, E S

    1992-01-01

    A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules. Images PMID:1444387

  11. Substratum interfacial energetic effects on the attachment of marine bacteria

    NASA Astrophysics Data System (ADS)

    Ista, Linnea Kathryn

    Biofilms represent an ancient, ubiquitous and influential form of life on earth. Biofilm formation is initiated by attachment of bacterial cells from an aqueous suspension onto a suitable attachment substratum. While in certain, well studied cases initial attachment and subsequent biofilm formation is mediated by specific ligand-receptor pairs on the bacteria and attachment substratum, in the open environment, including the ocean, it is assumed to be non-specific and mediated by processes similar to those that drive adsorption of colloids at the water-solid interface. Colloidal principles are studied to determine the molecular and physicochemical interactions involved in the attachment of the model marine bacterium, Cobetia marina to model self-assembled monolayer surfaces. In the simplest application of colloidal principles the wettability of attachment substrata, as measured by the advancing contact angle of water (theta AW) on the surface, is frequently used as an approximation for the surface tension. We demonstrate the applicability of this approach for attachment of C. marina and algal zoospores and extend it to the development of a means to control attachment and release of microorganisms by altering and tuning surface thetaAW. In many cases, however, thetaAW does not capture all the information necessary to model attachment of bacteria to attachment substrata; SAMs with similar thetaAW attach different number of bacteria. More advanced colloidal models of initial bacterial attachment have evolved over the last several decades, with the emergence of the model proposed by van Oss, Chaudhury and Good (VCG) as preeminent. The VCG model enables calculation of interfacial tensions by dividing these into two major interactions thought to be important at biointerfaces: apolar, Lifshitz-van der Waals and polar, Lewis acid-base (including hydrogen bonding) interactions. These interfacial tensions are combined to yield DeltaGadh, the free energy associated with attachment of bacteria to a substratum. We use VCG to model DeltaGadh and interfacial tensions as they relate to model bacterial attachment on SAMs that accumulate cells to different degrees. Even with the more complex interactions measured by VCG, surface energy of the attachment substratum alone was insufficient to predict attachment. VCG was then employed to model attachment of C. marina to a series of SAMs varying systematically in the number of ethylene glycol residues present in the molecule; an identical series has been previously shown to vary dramatically in the number of cells attached as a function of ethylene glycols present. Our results indicate that while VCG adequately models the interfacial tension between water and ethylene glycol SAMs in a manner that predicts bacterial attachment, DeltaGadh as calculated by VCG neither qualitatively nor quantitatively reflects the attachment data. The VCG model, thus, fails to capture specific information regarding the interactions between the attaching bacteria, water, and the SAM. We show that while hydrogen-bond accepting interactions are very well captured by this model, the ability for SAMs and bacteria to donate hydrogen bonds is not adequately described as the VCG model is currently applied. We also describe ways in which VCG fails to capture two specific biological aspects that may be important in bacterial attachment to surfaces:1.) specific interactions between molecules on the surface and bacteria and 2.) bacterial cell surface heterogeneities that may be important in differential attachment to different substrata.

  12. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  13. A stem cell apostasy: A tale of 4 H words

    PubMed Central

    Quesenberry, Peter J.; Goldberg, Laura R.; Dooner, Mark S.

    2014-01-01

    The field of hematopoietic stem cell biology has become increasingly dominated by the pursuit and study of highly purified populations of hematopoietic stem cells (HSCs). Such HSCs are typically isolated based on their cell surface marker expression patterns and ultimately defined by their multipotency and capacity for self-generation. However, even with progressively more stringent stem cell separation techniques, the resultant HSC population remains heterogeneous with respect to both self-renewal and differentiation capacity. Critical studies on un-separated whole bone marrow (WBM) have definitively shown that long-term engraftable hematopoietic stem cells are in active cell cycle and thus continually changing phenotype. Therefore, they cannot be purified by current approaches dependent on stable surface epitope expression because the surface markers are continually changing as well. These critical cycling cells are discarded with current stem cell purifications. Despite this, research defining such characteristics as self-renewal capacity, lineage-commitment, bone marrow niches, and proliferative state of HSCs continues to focus predominantly on this small sub-population of purified marrow cells. This review discusses the research leading to the hierarchical model of hematopoiesis and questions the dogmas pertaining to HSC quiescence and purification. PMID:25183450

  14. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    PubMed Central

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  15. The structurally effect of surface coated rhamnogalacturonan I on response of the osteoblast-like cell line SaOS-2.

    PubMed

    Svava, Rikke; Gurzawska, Katarzyna; Yihau, Yu; Haugshøj, Kenneth Brian; Dirscherl, Kai; Levery, Steven B; Jørgensen, Niklas Rye; Gotfredsen, Klaus; Damager, Iben; Ulvskov, Peter; Jørgensen, Bodil

    2014-06-01

    Osseointegration is important when implants are inserted into the bone and can be improved by biochemical surface coating of the implant. In this paper enzymatically modified rhamnogalacturonan I (RG-I) from apple and lupin was used for biochemical coating of aminated surfaces and the importance of the quality of RG-I, the nature of the binding, the fine structure of RG-I, and its effect on SaOS-2 cell line cultured on coated surfaces was investigated. SaOS-2 cells are osteoblast-like cells and a well-established in vitro model of bone-matrix forming osteoblasts. Purification by gel filtration could remove small fragments of galacturonic acid (GalA) and binding studies showed that the purity of the RG-I molecules was important for the quality of the coating. The structure of RG-I and osteoblast-like cells' viability were positively correlated so that high content of 1,4-linked galactose (Gal) and a low content of arabinose in the RG-I molecules favored cell viability. These results indicate that coating of implants with RG-I affect osseointegration positively. Copyright © 2013 Wiley Periodicals, Inc.

  16. A hybrid scanning mode for fast scanning ion conductance microscopy (SICM) imaging

    PubMed Central

    Zhukov, Alex; Richards, Owen; Ostanin, Victor; Korchev, Yuri; Klenerman, David

    2012-01-01

    We have developed a new method of controlling the pipette for scanning ion conductance microscopy to obtain high-resolution images faster. The method keeps the pipette close to the surface during a single line scan but does not follow the exact surface topography, which is calculated by using the ion current. Using an FPGA platform we demonstrate this new method on model test samples and then on live cells. This method will be particularly useful to follow changes occurring on relatively flat regions of the cell surface at high spatial and temporal resolutions. PMID:22902298

  17. Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Pellis, Neal R.

    1999-01-01

    Impairment of the immunity in astronauts and cosmonauts even in short term flights is a recognized risk. Long term orbital space missions and anticipated interplanetary flights increase the concern for more pronounced effects on the immune system with potential clinical consequences. Impairment of the immunity in space may be due tonumerous physiological changes caused by space-related factors, which in turn affect the immune system, or alternatively, it may be due to direct effects of different factors encountered in space on lymphoid cells and their interactions. Indeed, in modeled microgravity (MMG) experiments on Earth we and others showed that microgravity directly affects multiple lymphocyte functions. It interferes with expression of cell surface molecules, causes inhibition of lymphocyte locomotion, suppresses polyclopal and antigen-specific lymphocyte activation, selectively inhibits protein kinase C (PKC) isoforms. Some of these effects were also confirmed in cell culture experiments in real space conditions during Spacelab, Biokosmos and Shuttle Missions. The results of these studies, taken together, strongly indicated that microgravity interferes with fundamental biological processes associated with functional and structural changes in cell surface membranes, cell surface molecules and in their interaction. Based on the data and on their interpretation, we hypothesized that microgravity in addition to observed functional changes affects programmed cell death (PCD) in lymphocyte populations and that this mechanism could contribute to the impairment of the immunity.

  18. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  19. Analytical determination of critical crack size in solar cells

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1988-01-01

    Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.

  20. Comparison of cropland and forest surface temperatures across the conterminous United States

    Treesearch

    James D. Wickham; Timothy G. Wade; Kurt H. Riitters

    2012-01-01

    Global climate models (GCM) investigating the effects of land cover on climate have found that replacing extra-tropical forest with cropland promotes cooling. We compared cropland and forest surface temperatures across the continental United States in 16 cells that were approximately 1◦ × 2◦ using 1 km2 MODIS land surface...

  1. Modeling of Oxygen Transport Across Tumor Multicellular Layers

    PubMed Central

    Braun, Rod D.; Beatty, Alexis L.

    2007-01-01

    Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225

  2. Biodynsensing: Sensing Through Dynamics of Hybrid Affinity/Cellular Platforms; Towards Appraisal of Environmental and Biological Risks of Nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.

    Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related to cellular mechanisms involved in sensing, i.e., adaptation to stimuli. This should not mean that when coping with living cells, stray effects might not also corrupt the measurement itself, introducing distinct dynamics. Besides targeted/specific process, analytical platforms might exhibit additional ones due to “stray influences” that could include the effect of, e.g.: supporting matrix, nonspecific binding and temperature variation. Stray processes interfere with the desired ones and the measured data could display a non-monotonous behavior.

  3. Surface structure of coherently strained ceria ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan

    2016-11-14

    Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO 2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a “stacks andmore » islands” model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO 2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. In conclusion, the successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.« less

  4. Fabrication of biocompatible and efficient antimicrobial porous polymer surfaces by the Breath Figures approach.

    PubMed

    Vargas-Alfredo, Nelson; Martínez-Campos, Enrique; Santos-Coquillat, Ana; Dorronsoro, Ane; Cortajarena, Aitziber L; Del Campo, Adolfo; Rodríguez-Hernández, Juan

    2018-03-01

    We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity. For that purpose, microporous substrates (pore sizes in the range of 3-5 μm) were fabricated using the Breath Figures approach (BFs). These substrates have additionally a defined chemical composition in the pore cavity (herein either a poly(acrylic acid) or the antimicrobial peptide Nisin) while the composition of the rest of the surface is identical to the polymer matrix. As a result, considering the differences in size of bacteria (1-4 μm) in comparison to mammalian cells (above 10 µm) the bacteria were able to enter in contact with the inner part of the pores where the antimicrobial functionality has been placed. On the opposite, mammalian cells remain in contact with the top surface thus preventing cytotoxic effects and enhancing the biocompatibility of the substrates. The resulting antimicrobial surfaces were exposed to Staphylococcus aureus as a model bacteria and murine endothelial C166-GFP cells. Superior antibacterial performance while maintaining an excellent biocompatibility was obtained by those surfaces prepared using PAA while no evidence of significant antibacterial activity was observed at those surfaces prepared using Nisin. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cell distribution profiles in three-dimensional scaffolds with inverted-colloidal-crystal geometry: modeling and experimental investigations.

    PubMed

    Shanbhag, Sachin; Wang, Shaopeng; Kotov, Nicholas A

    2005-12-01

    Limited ingrowth of stromal cells is observed when a three-dimensionally ordered scaffold possessing inverted-colloidal-crystal geometry is used to culture adherent cells. In this work, a computational model explaining, as well as predicting, experimental cell distributions is developed. It incorporates a modified Contois cell-growth model that includes the effects of nutrient saturation, competitive product inhibition, and cell-contact inhibition to describe the scaffold-cell system. Our results agree with the hypothesis that the rapid growth of cells on the surface of the scaffold depletes the nutrient supply to the core, resulting in the preferential growth on the exterior of the scaffold. When the cells are cultured in a scaffold subjected to a uniform velocity field, they penetrate to a greater extent into the scaffold core. Alternative seeding and culture strategies are suggested and evaluated.

  6. Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory.

    PubMed

    Boyde, Lars; Ekpenyong, Andrew; Whyte, Graeme; Guck, Jochen

    2012-11-20

    We present two electromagnetic frameworks to compare the surface stresses on spheroidal particles in the optical stretcher (a dual-beam laser trap that can be used to capture and deform biological cells). The first model is based on geometrical optics (GO) and limited in its applicability to particles that are much greater than the incident wavelength. The second framework is more sophisticated and hinges on the generalized Lorenz-Mie theory (GLMT). Despite the difference in complexity between both theories, the stress profiles computed with GO and GLMT are in good agreement with each other (relative errors are on the order of 1-10%). Both models predict a diminishing of the stresses for larger wavelengths and a strong increase of the stresses for shorter laser-cell distances. Results indicate that surface stresses on a spheroid with an aspect ratio of 1.2 hardly differ from the stresses on a sphere of similar size. Knowledge of the surface stresses and whether or not they redistribute during the stretching process is of crucial importance in real-time applications of the stretcher that aim to discern the viscoelastic properties of cells for purposes of cell characterization, sorting, and medical diagnostics.

  7. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations

    PubMed Central

    Dennis, Robin L.; Schwede, Donna B.; Bash, Jesse O.; Pleim, Jon E.; Walker, John T.; Foley, Kristen M.

    2013-01-01

    Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent. PMID:23713122

  8. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations.

    PubMed

    Dennis, Robin L; Schwede, Donna B; Bash, Jesse O; Pleim, Jon E; Walker, John T; Foley, Kristen M

    2013-07-05

    Reactive nitrogen (Nr) is removed by surface fluxes (air-surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air-surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1-4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.

  9. The influence of incommensurability on the long-range periodicity of the Pd(100)-(√{ 5 } ×√{ 5 })R27°-PdO(101)

    NASA Astrophysics Data System (ADS)

    Shipilin, Mikhail; Stierle, Andreas; Merte, Lindsay R.; Gustafson, Johan; Hejral, Uta; Martin, Natalia M.; Zhang, Chu; Franz, Dirk; Kilic, Volkan; Lundgren, Edvin

    2017-06-01

    The structural model of the (√{ 5 } ×√{ 5 })R27°-PdO(101) surface oxide grown on Pd(100) has been proposed and refined by a number of authors over more than a decade. In the current contribution we discuss the long-range periodicity of this structure arising along one of the crystallographic directions due to its incommensurability with the substrate. Analyzing the results of surface sensitive diffraction studies, we determined a slight distortion of the previously reported perfect (√{ 5 } ×√{ 5 })R27° surface oxide unit cell. Considering it, we were able to achieve both qualitatively and quantitatively better fit to the experimental diffraction data than it was possible for the perfect structure. Further, taking into account the experimentally obtained scanning tunneling microscopy data and closely examining high-resolution patterns recorded by means of high-energy surface X-ray diffraction, we developed a qualitative structural model based on a larger non-orthogonal surface unit cell to shed more light on the long-range order of the PdO(101) surface oxide. The model comprises a shift of the atoms of the PdO perpendicularly to the direction of the incommensurability to correct for it. This structural model reproduces the fine details of the high-resolution diffraction patterns and qualitatively explains the periodic stripes of structural distortion observed in the images recorded by a scanning tunneling microscope.

  10. A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles.

    PubMed

    Zhang, Yu; Yang, Mo; Park, Ji-Ho; Singelyn, Jennifer; Ma, Huiqing; Sailor, Michael J; Ruoslahti, Erkki; Ozkan, Mihrimah; Ozkan, Cengiz

    2009-09-01

    Surface-charge measurements of mammalian cells in terms of Zeta potential are demonstrated as a useful biological characteristic in identifying cellular interactions with specific nanomaterials. A theoretical model of the changes in Zeta potential of cells after incubation with nanoparticles is established to predict the possible patterns of Zeta-potential change to reveal the binding and internalization effects. The experimental results show a distinct pattern of Zeta-potential change that allows the discrimination of human normal breast epithelial cells (MCF-10A) from human cancer breast epithelial cells (MCF-7) when the cells are incubated with dextran coated iron oxide nanoparticles that contain tumor-homing F3 peptides, where the tumor-homing F3 peptide specifically bound to nucleolin receptors that are overexpressed in cancer breast cells.

  11. Measurement uncertainty evaluation of cellular spheroids surface tension in compressing tests using Young-Laplace equation

    NASA Astrophysics Data System (ADS)

    Beatrici, Anderson; Santos Baptista, Leandra; Mauro Granjeiro, José

    2018-03-01

    Regenerative Medicine comprises the Biotechnology, Tissue Engineering and Biometrology for stem cell therapy. Starting from stem cells extracted from the patient, autologous implant, these cells are cultured and differentiated into other tissues, for example, articular cartilage. These cells are reorganized into microspheres (cell spheroids). Such tissue units are recombined into functional tissues constructs that can be implanted in the injured region for regeneration. It is necessary the biomechanical characterization of these constructed to determine if their properties are similar to native tissue. In this study was carried out the modeling of the calculation of uncertainty of the surface tension of cellular spheroids with the use of the Young-Laplace equation. We obtained relative uncertainties about 10%.

  12. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    PubMed

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (EpCAM) identification of fibroblasts from breast and prostate tumor tissues is advised. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  13. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

    PubMed

    Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2016-10-01

    Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    NASA Astrophysics Data System (ADS)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  15. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling & paired-agent principles from nuclear medicine and optical imaging

    PubMed Central

    Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.

    2015-01-01

    The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619

  16. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction.

    PubMed

    Stenmark, Pål; Dupuy, Jérôme; Imamura, Akihiro; Kiso, Makoto; Stevens, Raymond C

    2008-08-15

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in the toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.

  17. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    PubMed

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area. (c) 1993 John Wiley & Sons, Inc.

  18. Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling

    NASA Astrophysics Data System (ADS)

    Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.

    2013-09-01

    Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.

  19. Monoclonal Antibody and an Antibody-Toxin Conjugate to a Cell Surface Proteoglycan of Melanoma Cells Suppress in vivo Tumor Growth

    NASA Astrophysics Data System (ADS)

    Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.

    1983-01-01

    A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.

  20. Metabolic Reconstruction and Modeling Microbial Electrosynthesis.

    PubMed

    Marshall, Christopher W; Ross, Daniel E; Handley, Kim M; Weisenhorn, Pamela B; Edirisinghe, Janaka N; Henry, Christopher S; Gilbert, Jack A; May, Harold D; Norman, R Sean

    2017-08-21

    Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. We assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community members belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. These molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.

  1. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface.

    PubMed

    Tan, Shumin; Noto, Jennifer M; Romero-Gallo, Judith; Peek, Richard M; Amieva, Manuel R

    2011-05-01

    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche.

  2. Helicobacter pylori Perturbs Iron Trafficking in the Epithelium to Grow on the Cell Surface

    PubMed Central

    Tan, Shumin; Noto, Jennifer M.; Romero-Gallo, Judith; Peek, Richard M.; Amieva, Manuel R.

    2011-01-01

    Helicobacter pylori (Hp) injects the CagA effector protein into host epithelial cells and induces growth factor-like signaling, perturbs cell-cell junctions, and alters host cell polarity. This enables Hp to grow as microcolonies adhered to the host cell surface even in conditions that do not support growth of free-swimming bacteria. We hypothesized that CagA alters host cell physiology to allow Hp to obtain specific nutrients from or across the epithelial barrier. Using a polarized epithelium model system, we find that isogenic ΔcagA mutants are defective in cell surface microcolony formation, but exogenous addition of iron to the apical medium partially rescues this defect, suggesting that one of CagA's effects on host cells is to facilitate iron acquisition from the host. Hp adhered to the apical epithelial surface increase basolateral uptake of transferrin and induce its transcytosis in a CagA-dependent manner. Both CagA and VacA contribute to the perturbation of transferrin recycling, since VacA is involved in apical mislocalization of the transferrin receptor to sites of bacterial attachment. To determine if the transferrin recycling pathway is involved in Hp colonization of the cell surface, we silenced transferrin receptor expression during infection. This resulted in a reduced ability of Hp to colonize the polarized epithelium. To test whether CagA is important in promoting iron acquisition in vivo, we compared colonization of Hp in iron-replete vs. iron-deficient Mongolian gerbils. While wild type Hp and ΔcagA mutants colonized iron-replete gerbils at similar levels, ΔcagA mutants are markedly impaired in colonizing iron-deficient gerbils. Our study indicates that CagA and VacA act in concert to usurp the polarized process of host cell iron uptake, allowing Hp to use the cell surface as a replicative niche. PMID:21589900

  3. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  4. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. © 2015 by The American Society of Hematology.

  5. Modeling the effect of dynamic surfaces on membrane penetration

    NASA Astrophysics Data System (ADS)

    van Lehn, Reid; Alexander-Katz, Alfredo

    2011-03-01

    The development of nanoscale materials for targeted drug delivery is an important current pursuit in materials science. One task of drug carriers is to release therapeutic agents within cells by bypassing the cell membrane to maximize the effectiveness of their payload and minimize bodily exposure. In this work, we use coarse-grained simulations to study nanoparticles (NPs) grafted with hydrophobic and hydrophilic ligands that rearrange in response to the amphiphilic lipid bilayer. We demonstrate that this dynamic surface permits the NP to spontaneously penetrate to the bilayer midplane when the surface ligands are near an order-disorder transition. We believe that this work will lead to the design of new drug carriers capable of non-specifically accessing cell interiors based solely on their dynamic surface properties. Our work is motivated by existing nanoscale systems such as micelles, or NPs grafted with highly mobile ligands or polymer brushes.

  6. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  7. Slowdown of surface diffusion during early stages of bacterial colonization

    NASA Astrophysics Data System (ADS)

    Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.

    2018-03-01

    We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.

  8. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone

    PubMed Central

    Kolonin, Mikhail G.; Sergeeva, Anna; Staquicini, Daniela I.; Smith, Tracey L.; Tarleton, Christy A.; Molldrem, Jeffrey J.; Sidman, Richard L.; Marchiò, Serena; Pasqualini, Renata; Arap, Wadih

    2017-01-01

    Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a non-proteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short time frame. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. PMID:28428279

  9. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance.

    PubMed

    Li, Yizeng; Sun, Sean X

    2018-06-19

    Cells in vivo can reside in diverse physical and biochemical environments. For example, epithelial cells typically live in a two-dimensional (2D) environment, whereas metastatic cancer cells can move through dense three-dimensional matrices. These distinct environments impose different kinds of mechanical forces on cells and thus potentially can influence the mechanism of cell migration. For example, cell movement on 2D flat surfaces is mostly driven by forces from focal adhesion and actin polymerization, whereas in confined geometries, it can be driven by water permeation. In this work, we utilize a two-phase model of the cellular cytoplasm in which the mechanics of the cytosol and the F-actin network are treated on an equal footing. Using conservation laws and simple force balance considerations, we are able to describe the contributions of water flux, actin polymerization and flow, and focal adhesions to cell migration both on 2D surfaces and in confined spaces. The theory shows how cell migration can seamlessly transition from a focal adhesion- and actin-based mechanism on 2D surfaces to a water-based mechanism in confined geometries. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Nucleation of rotating crystals by Thiovulum majus bacteria

    NASA Astrophysics Data System (ADS)

    Petroff, A. P.; Libchaber, A.

    2018-01-01

    Thiovulum majus self-organize on glass surfaces into active two-dimensional crystals of rotating cells. Unlike classical crystals, these bacterial crystallites continuously rotate and reorganize as the power of rotating cells is dissipated by the surrounding flow. In this article, we describe the earliest stage of crystallization, the attraction of two bacteria into a hydrodynamically-bound dimer. This process occurs in three steps. First a free-swimming cell collides with the wall and becomes hydrodynamically bound to the two-dimensional surface. We present a simple model to understand how viscous forces localize cells near the chamber walls. Next, the cell diffuses over the surface for an average of 63+/- 6 s before escaping to the bulk fluid. The diffusion coefficient {D}{{eff}}=7.98 +/- 0.1 μ {{{m}}}2 {{{s}}}-1 of these 8.5 μ {{m}} diameter cells corresponds to a temperature of (4.16+/- 0.05)× {10}4 K, and thus cannot be explained by equilibrium fluctuations. Finally, two cells coalesce into a rotating dimer when the convergent flow created by each cell overwhelms their active Brownian motion. This occurs when cells diffuse to within a distance of 13.3 ± 0.2 μm of each other.

  11. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    PubMed

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse liver injury model, the modification of PKH-labeled exosomes with pullulan enabled increased accumulation of PKH specifically in the injured liver. Furthermore the greater therapeutic effects against the liver injury compared with unmodified original exosomes was observed. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    PubMed Central

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-01-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity. PMID:28186133

  13. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically.

    PubMed

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-10

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  14. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    NASA Astrophysics Data System (ADS)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  15. Lysosomal Rerouting of Hsp70 Trafficking as a Potential Immune Activating Tool for Targeting Melanoma

    PubMed Central

    Juhász, Kata; Thuenauer, Roland; Spachinger, Andrea; Duda, Ernő; Horváth, Ibolya; Vígh, László; Sonnleitner, Alois; Balogi, Zsolt

    2013-01-01

    Tumor specific cell surface localization and release of the stress inducible heat shock protein 70 (Hsp70) stimulate the immune system against cancer cells. A key immune stimulatory function of tumor-derived Hsp70 has been exemplified with the murine melanoma cell model, B16 overexpressing exogenous Hsp70. Despite the therapeutic potential mechanism of Hsp70 transport to the surface and release remained poorly understood. We investigated principles of Hsp70 trafficking in B16 melanoma cells with low and high level of Hsp70. In cells with low level of Hsp70 apparent trafficking of Hsp70 was mediated by endosomes. Excess Hsp70 triggered a series of changes such as a switch of Hsp70 trafficking from endosomes to lysosomes and a concomitant accumulation of Hsp70 in lysosomes. Moreover, lysosomal rerouting resulted in an elevated concentration of surface Hsp70 and enabled active release of Hsp70. In fact, hyperthermia, a clinically applicable approach triggered immediate active lysosomal release of soluble Hsp70 from cells with excess Hsp70. Furthermore, excess Hsp70 enabled targeting of internalized surface Hsp70 to lysosomes, allowing in turn heat-induced secretion of surface Hsp70. Altogether, we show that excess Hsp70 expressed in B16 melanoma cells diverts Hsp70 trafficking from endosomes to lysosomes, thereby supporting its surface localization and lysosomal release. Controlled excess-induced lysosomal rerouting and secretion of Hsp70 is proposed as a promising tool to stimulate anti-tumor immunity targeting melanoma. PMID:22920897

  16. Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion

    PubMed Central

    Hermes, Michiel; Schwarz-Linek, Jana; Poon, Wilson C. K.

    2018-01-01

    Understanding and controlling the surface adhesion of pathogenic bacteria is of urgent biomedical importance. However, many aspects of this process remain unclear (for example, microscopic details of the initial adhesion and possible variations between individual cells). Using a new high-throughput method, we identify and follow many single cells within a clonal population of Escherichia coli near a glass surface. We find strong phenotypic heterogeneities: A fraction of the cells remain in the free (planktonic) state, whereas others adhere with an adhesion strength that itself exhibits phenotypic heterogeneity. We explain our observations using a patchy colloid model; cells bind with localized, adhesive patches, and the strength of adhesion is determined by the number of patches: Nonadherers have no patches, weak adherers bind with a single patch only, and strong adherers bind via a single or multiple patches. We discuss possible implications of our results for controlling bacterial adhesion in biomedical and other applications. PMID:29719861

  17. Comparison of cropland and forest surface temperatures across the conterminous United States

    EPA Science Inventory

    Global climate models (GCM) investigating the effects of land cover on climate have found that replacing extra-tropical forest with cropland promotes cooling. We compared cropland and forest surface temperatures across the continental United States in 16 cells that were approxim...

  18. Controls on Mixing-Dependent Denitrification in Hyporheic Zones

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Young, K. I.; Widdowson, M. A.

    2013-12-01

    Interaction of surface water and groundwater in hyporheic sediments of river systems is known to create unique biogeochemical conditions that can attenuate contaminants flowing downstream. Oxygen, carbon, and the contaminants themselves (e.g., excess nitrate) often advect together through the hyporheic zone from sources in surface water. However, the ability of the hyporheic zone to attenuate contaminants in upwelling groundwater plumes as they exit to rivers is less known. Such reactions may be more dependent on mixing of carbon and oxygen sources from surface water with contaminants from deeper groundwater. We simulated hyporheic flow cells and upwelling groundwater together with mixing-dependent denitrification of an upwelling nitrate plume in shallow riverbed sediments using MODFLOW and SEAM3D. For our first set of model scenarios, we set biogeochemical boundary conditions to be consistent with situations where only mixing-dependent denitrification occurred within the model domain. This occurred where dissolved organic carbon (DOC) advecting from surface water through hyporheic flow cells meets nitrate upwelling from deeper groundwater. This would be common where groundwater is affected by septic systems which contribute nitrate that upwells into streams that do not have significant nitrate sources from upstream. We conducted a sensitivity analysis that showed that mixing-dependent denitrification increased with parameters that increase mixing itself, such as the degree of heterogeneity of sediment hydraulic conductivity (K). Mixing-dependent denitrification also increased with certain biogeochemical boundary concentrations such as increasing DOC or decreasing dissolved oxygen (DO) advecting from surface water. For our second set of model scenarios, we set biogeochemical boundary conditions to be consistent with common situations where non-mixing-dependent denitrification also occurred within the model domain. For example, when nitrate concentrations are substantial in water advecting from surface water, non-mixing-dependent denitrification can occur within the hyporheic flow cells. This would be common where surface water and groundwater have high nitrate concentrations in agricultural areas. We conducted a sensitivity analysis for this set of model scenarios as well, to evaluate controls on the relative balance of mixing-dependent and non-mixing-dependent denitrification. We found that non-mixing-dependent denitrification often has higher potential to consume nitrate than mixing-dependent denitrification. This is because non-mixing-dependent denitrification is not confined to the relatively small mixing zone between upwelling groundwater and hyporheic flow cells, and hence often has longer residence times available for consumption of existing oxygen followed by consumption of nitrate. Nevertheless, the potential for hyporheic zones to attenuate upwelling nitrate plumes appears to be substantial, yet is variable depending on geomorphic, hydraulic, and biogeochemical conditions.

  19. Notch Signaling Modulates MUC16 Biosynthesis in an In Vitro Model of Human Corneal and Conjunctival Epithelial Cell Differentiation

    PubMed Central

    Xiong, Linjie; Woodward, Ashley M.

    2011-01-01

    Purpose. Notch proteins are a family of transmembrane receptors that coordinate binary cell fate decisions and differentiation in wet-surfaced epithelia. We sought to determine whether Notch signaling contributes to maintaining mucosal homeostasis by modulating the biosynthesis of cell surface-associated mucins in an in vitro model of human corneal (HCLE) and conjunctival (HCjE) epithelial cell differentiation. Methods. HCLE and HCjE cells were grown at different stages of differentiation, representing nondifferentiated (preconfluent and confluent) and differentiated (stratified) epithelial cultures. Notch signaling was blocked with the γ-secretase inhibitor dibenzazepine (DBZ). The presence of Notch intracellular domains (Notch1 to Notch3) and mucin protein (MUC1, -4, -16) was evaluated by electrophoresis and Western blot analysis. Mucin gene expression was determined by TaqMan real-time polymerase chain reaction. Results. Here we demonstrate that Notch3 is highly expressed in undifferentiated and differentiated HCLE and HCjE cells, and that Notch1 and Notch2 biosynthesis is enhanced by induction of differentiation with serum-containing media. Inhibition of Notch signaling with DBZ impaired MUC16 biosynthesis in a concentration-dependent manner in undifferentiated cells at both preconfluent and confluent stages, but not in postmitotic stratified cells. In contrast to protein levels, the amount of MUC16 transcripts were not significantly reduced after DBZ treatment, suggesting that Notch regulates MUC16 posttranscriptionally. Immunoblots of DBZ-treated epithelial cells grown at different stages of differentiation revealed no differences in the levels of MUC1 and MUC4. Conclusions. These results indicate that MUC16 biosynthesis is posttranscriptionally regulated by Notch signaling at early stages of epithelial cell differentiation, and suggest that Notch activation contributes to maintaining a mucosal phenotype at the ocular surface. PMID:21508102

  20. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies

    PubMed Central

    Mamonkin, Maksim; Rouce, Rayne H.; Tashiro, Haruko

    2015-01-01

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. PMID:26056165

  1. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    PubMed

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.

  2. Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation

    PubMed Central

    Navabi, Nazanin; McGuckin, Michael A.; Lindén, Sara K.

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface. PMID:23869232

  3. Mechanical behavior in living cells consistent with the tensegrity model

    NASA Technical Reports Server (NTRS)

    Wang, N.; Naruse, K.; Stamenovic, D.; Fredberg, J. J.; Mijailovich, S. M.; Tolic-Norrelykke, I. M.; Polte, T.; Mannix, R.; Ingber, D. E.

    2001-01-01

    Alternative models of cell mechanics depict the living cell as a simple mechanical continuum, porous filament gel, tensed cortical membrane, or tensegrity network that maintains a stabilizing prestress through incorporation of discrete structural elements that bear compression. Real-time microscopic analysis of cells containing GFP-labeled microtubules and associated mitochondria revealed that living cells behave like discrete structures composed of an interconnected network of actin microfilaments and microtubules when mechanical stresses are applied to cell surface integrin receptors. Quantitation of cell tractional forces and cellular prestress by using traction force microscopy confirmed that microtubules bear compression and are responsible for a significant portion of the cytoskeletal prestress that determines cell shape stability under conditions in which myosin light chain phosphorylation and intracellular calcium remained unchanged. Quantitative measurements of both static and dynamic mechanical behaviors in cells also were consistent with specific a priori predictions of the tensegrity model. These findings suggest that tensegrity represents a unified model of cell mechanics that may help to explain how mechanical behaviors emerge through collective interactions among different cytoskeletal filaments and extracellular adhesions in living cells.

  4. Establishment of a pancreatic cancer stem cell model using the SW1990 human pancreatic cancer cell line in nude mice.

    PubMed

    Pan, Yan; Gao, Song; Hua, Yong-Qiang; Liu, Lu-Ming

    2015-01-01

    To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of 125 mm3, they treated with gemcitabine at a dose of 50 mg/kg by intraperitoneal injection of 0.2 ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5 g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

  5. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE PAGES

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    2016-11-08

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  6. Simulating Fragmentation and Fluid-Induced Fracture in Disordered Media Using Random Finite-Element Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Martinez, Mario J.; Newell, Pania

    Fracture and fragmentation are extremely nonlinear multiscale processes in which microscale damage mechanisms emerge at the macroscale as new fracture surfaces. Numerous numerical methods have been developed for simulating fracture initiation, propagation, and coalescence. In this paper, we present a computational approach for modeling pervasive fracture in quasi-brittle materials based on random close-packed Voronoi tessellations. Each Voronoi cell is formulated as a polyhedral finite element containing an arbitrary number of vertices and faces. Fracture surfaces are allowed to nucleate only at the intercell faces. Cohesive softening tractions are applied to new fracture surfaces in order to model the energy dissipatedmore » during fracture growth. The randomly seeded Voronoi cells provide a regularized discrete random network for representing fracture surfaces. The potential crack paths within the random network are viewed as instances of realizable crack paths within the continuum material. Mesh convergence of fracture simulations is viewed in a weak, or distributional, sense. The explicit facet representation of fractures within this approach is advantageous for modeling contact on new fracture surfaces and fluid flow within the evolving fracture network. Finally, applications of interest include fracture and fragmentation in quasi-brittle materials and geomechanical applications such as hydraulic fracturing, engineered geothermal systems, compressed-air energy storage, and carbon sequestration.« less

  7. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Alan; Colbow, Vesna; Harvey, David

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stressmore » test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.« less

  8. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    PubMed

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  9. Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS)

    NASA Technical Reports Server (NTRS)

    Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.

    1994-01-01

    A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.

  10. Mathematical Modeling of the Thermal State of an Isothermal Element with Account of the Radiant Heat Transfer Between Parts of a Spacecraft

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.

    2016-01-01

    A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.

  11. 2D particle-in-cell simulation of the entire process of surface flashover on insulator in vacuum

    NASA Astrophysics Data System (ADS)

    Wang, Hongguang; Zhang, Jianwei; Li, Yongdong; Lin, Shu; Zhong, Pengfeng; Liu, Chunliang

    2018-04-01

    With the introduction of an external circuit model and a gas desorption model, the surface flashover on the plane insulator-vacuum interface perpendicular to parallel electrodes is simulated by a Particle-In-Cell method. It can be seen from simulations that when the secondary electron emission avalanche (SEEA) occurs, the current sharply increases because of the influence of the insulator surface charge on the cathode field emission. With the introduction of the gas desorption model, the current keeps on increasing after SEEA, and then the feedback of the external circuit causes the voltage between the two electrodes to decrease. The cathode emission current decreases, while the anode current keeps growing. With the definition that flashover occurs when the diode voltage drops by more than 20%, we obtained the simulated flashover voltage which agrees with the experimental value with the use of the field enhancement factor β = 145 and the gas molecule desorption coefficient γ=0.25 . From the simulation results, we can also see that the time delay of flashover decreases exponentially with voltage. In addition, from the gas desorption model, the gas density on the insulator surface is found to be proportional to the square of the gas desorption rate and linear with time.

  12. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    PubMed

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  13. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  14. The Dynamics of Hadley Circulation Variability and Change

    NASA Astrophysics Data System (ADS)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to radiative forcings. It is found that it is primarily the eddy response to greenhouse-gas-like forcings that causes Hadley cell expansion. However, the mean flow changes in the Hadley circulation itself crucially mediate this eddy response such that the full response comes about due to eddy-mean flow interactions. A theoretical scaling for the Hadley cell width based on moist static energy is developed to provide an improved framework to understand climate change responses of the general circulation. The scaling predicts that expansion is driven by increases in the surface latent heat flux and the width of the rising branch of the circulation and opposed by increases in tropospheric radiative cooling. A reduction in subtropical moist static energy flux divergence by the eddies is key, as it tilts the energetic balance in favor of expansion.

  15. Impact of surface coupling grids on tropical cyclone extremes in high-resolution atmospheric simulations

    DOE PAGES

    Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...

    2016-02-25

    This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less

  16. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    NASA Astrophysics Data System (ADS)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  17. Towards early detection of cervical cancer: Fractal dimension of AFM images of human cervical epithelial cells at different stages of progression to cancer.

    PubMed

    Guz, Nataliia V; Dokukin, Maxim E; Woodworth, Craig D; Cardin, Andrew; Sokolov, Igor

    2015-10-01

    We used AFM HarmoniX modality to analyse the surface of individual human cervical epithelial cells at three stages of progression to cancer, normal, immortal (pre-malignant) and carcinoma cells. Primary cells from 6 normal strains, 6 cancer, and 6 immortalized lines (derived by plasmid DNA-HPV-16 transfection of cells from 6 healthy individuals) were tested. This cell model allowed for good control of the cell phenotype down to the single cell level, which is impractical to attain in clinical screening tests (ex-vivo). AFM maps of physical (nonspecific) adhesion are collected on fixed dried cells. We show that a surface parameter called fractal dimension can be used to segregate normal from both immortal pre-malignant and malignant cells with sensitivity and specificity of more than 99%. The reported method of analysis can be directly applied to cells collected in liquid cytology screening tests and identified as abnormal with regular optical methods to increase sensitivity. Despite cervical smear screening, sometimes it is very difficult to differentiate cancers cells from pre-malignant cells. By using AFM to analyze the surface properties of human cervical epithelial cells, the authors were able to accurately identify normal from abnormal cells. This method could augment existing protocols to increase diagnostic accuracy. Copyright © 2015. Published by Elsevier Inc.

  18. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.

    PubMed

    van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth

    2012-05-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.

  19. Designing perturbative metamaterials from discrete models.

    PubMed

    Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara

    2018-04-01

    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.

  20. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.

    PubMed

    Innala, Marcus; Riebe, Ilse; Kuzmenko, Volodymyr; Sundberg, Johan; Gatenholm, Paul; Hanse, Eric; Johannesson, Sara

    2014-10-01

    A new in vitro model, mimicking the complexity of nerve tissue, was developed based on a bacterial nanocellulose (BNC) scaffold that supports 3D culturing of neuronal cells. BNC is extracellularly excreted by Gluconacetobacter xylinus (G. xylinus) in the shape of long non-aggregated nanofibrils. The cellulose network created by G. xylinus has good mechanical properties, 99% water content, and the ability to be shaped into 3D structures by culturing in different molds. Surface modification with trimethyl ammonium beta-hydroxypropyl (TMAHP) to induce a positive surface charge, followed by collagen I coating, has been used to improve cell adhesion, growth, and differentiation on the scaffold. In the present study, we used SH-SY5Y neuroblastoma cells as a neuronal model. These cells attached and proliferated well on the BNC scaffold, as demonstrated by scanning electron microscopy (SEM) and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. Following neuronal differentiation, we demonstrated functional action potentials (APs) by electrophysiological recordings, indicating the presence of mature neurons on the scaffolds. In conclusion, we have demonstrated for the first time that neurons can attach, proliferate, and differentiate on BNC. This 3D model based on BNC scaffolds could possibly be used for developing in vitro disease models, when combined with human induced pluripotent stem (iPS) cells (derived from diseased patients) for detailed investigations of neurodegenerative disease mechanisms and in the search for new therapeutics.

  1. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  2. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85

    PubMed Central

    Raut, Mahendra P.; Karunakaran, Esther; Mukherjee, Joy; Biggs, Catherine A.; Wright, Phillip C.

    2015-01-01

    Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane. PMID:26492413

  3. Modeling and validation of spectral BRDF on material surface of space target

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei

    2014-11-01

    The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.

  4. The effects of flagellar hook compliance on motility of monotrichous bacteria: A modeling study

    NASA Astrophysics Data System (ADS)

    Shum, H.; Gaffney, E. A.

    2012-06-01

    A crucial structure in the motility of flagellated bacteria is the hook, which connects the flagellum filament to the motor in the cell body. Early mathematical models of swimming bacteria assume that the helically shaped flagellum rotates rigidly about its axis, which coincides with the axis of the cell body. Motivated by evidence that the hook is much more flexible than the rest of the flagellum, we develop a new model that allows a naturally straight hook to bend. Hook dynamics are based on the Kirchhoff rod model, which is combined with a boundary element method for solving viscous interactions between the bacterium and the surrounding fluid. For swimming in unbounded fluid, we find good support for using a rigid model since the hook reaches an equilibrium configuration within several revolutions of the motor. However, for effective swimming, there are constraints on the hook stiffness relative to the scale set by the product of the motor torque with the hook length. When the hook is too flexible, its shape cannot be maintained and large deformations and stresses build up. When the hook is too rigid, the flagellum does not align with the cell body axis and the cell "wobbles" with little net forward motion. We also examine the attraction of swimmers to no-slip surfaces and find that the tendency to swim steadily close to a surface can be very sensitive to the combination of the hook rigidity and the precise shape of the cell and flagellum.

  5. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    PubMed Central

    Reiter, Sebastian; Grillo, Alfio; Herrmann, Eva; Wittum, Gabriel

    2017-01-01

    Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures—namely the ER surface and the membranous webs—based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results described in the present study. PMID:28973992

  6. Modeling Multivalent Ligand-Receptor Interactions with Steric Constraints on Configurations of Cell-Surface Receptor Aggregates

    PubMed Central

    Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.

    2010-01-01

    Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718

  7. Imaging the Dynamics of Cell Wall Polymer Deposition in the Unicellular Model Plant, Penium margaritaceum.

    PubMed

    Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C

    2017-01-01

    The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.

  8. STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors

    PubMed Central

    Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.

    1999-01-01

    In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738

  9. Geometry can provide long-range mechanical guidance for embryogenesis

    PubMed Central

    Dicko, Mahamar; Saramito, Pierre

    2017-01-01

    Downstream of gene expression, effectors such as the actomyosin contractile machinery drive embryo morphogenesis. During Drosophila embryonic axis extension, actomyosin has a specific planar-polarised organisation, which is responsible for oriented cell intercalation. In addition to these cell rearrangements, cell shape changes also contribute to tissue deformation. While cell-autonomous dynamics are well described, understanding the tissue-scale behaviour challenges us to solve the corresponding mechanical problem at the scale of the whole embryo, since mechanical resistance of all neighbouring epithelia will feedback on individual cells. Here we propose a novel numerical approach to compute the whole-embryo dynamics of the actomyosin-rich apical epithelial surface. We input in the model specific patterns of actomyosin contractility, such as the planar-polarisation of actomyosin in defined ventro-lateral regions of the embryo. Tissue strain rates and displacements are then predicted over the whole embryo surface according to the global balance of stresses and the material behaviour of the epithelium. Epithelia are modelled using a rheological law that relates the rate of deformation to the local stresses and actomyosin anisotropic contractility. Predicted flow patterns are consistent with the cell flows observed when imaging Drosophila axis extension in toto, using light sheet microscopy. The agreement between model and experimental data indicates that the anisotropic contractility of planar-polarised actomyosin in the ventro-lateral germband tissue can directly cause the tissue-scale deformations of the whole embryo. The three-dimensional mechanical balance is dependent on the geometry of the embryo, whose curved surface is taken into account in the simulations. Importantly, we find that to reproduce experimental flows, the model requires the presence of the cephalic furrow, a fold located anteriorly of the extending tissues. The presence of this geometric feature, through the global mechanical balance, guides the flow and orients extension towards the posterior end. PMID:28346461

  10. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis

    PubMed Central

    Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-im

    2017-01-01

    Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular surface caused by conjunctival allergic reactions, and further increases the inflammatory response in IL-1α-pretreated conjunctival epithelial cells. PMID:28046113

  11. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma.

    PubMed

    Smet, C; Noriega, E; Rosier, F; Walsh, J L; Valdramidis, V P; Van Impe, J F

    2017-01-02

    The large potential of cold atmospheric plasma (CAP) for food decontamination has recently been recognized. Room-temperature gas plasmas can decontaminate foods without causing undesired changes. This innovative technology is a promising alternative for treating fresh produce. However, more fundamental studies are needed before its application in the food industry. The impact of the food structure on CAP decontamination efficacy of Salmonella Typhimurium and Listeria monocytogenes was studied. Cells were grown planktonically or as surface colonies in/on model systems. Both microorganisms were grown in lab culture media in petri dishes at 20°C until cells reached the stationary phase. Before CAP treatment, cells were deposited in a liquid carrier, on a solid(like) surface or on a filter. A dielectric barrier discharge reactor generated helium-oxygen plasma, which was used to treat samples up to 10min. Although L. monocytogenes is more resistant to CAP treatment, similar trends in inactivation behavior as for S. Typhimurium are observed, with log reductions in the range [1.0-2.9] for S. Typhimurium and [0.2-2.2] for L. monocytogenes. For both microorganisms, cells grown planktonically are easily inactivated, as compared to surface colonies. More stressing growth conditions, due to cell immobilization, result in more resistant cells during CAP treatment. The main difference between the inactivation support systems is the absence or presence of a shoulder phase. For experiments in the liquid carrier, which exhibit a long shoulder, the plasma components need to diffuse and penetrate through the medium. This explains the higher efficacies of CAP treatment on cells deposited on a solid(like) surface or on a filter. This research demonstrates that the food structure influences the cell inactivation behavior and efficacy of CAP, and indicates that food intrinsic factors need to be accounted when designing plasma treatment. Copyright © 2016. Published by Elsevier B.V.

  12. Coupled atmosphere-biophysics-hydrology models for environmental modeling

    USGS Publications Warehouse

    Walko, R.L.; Band, L.E.; Baron, Jill S.; Kittel, T.G.F.; Lammers, R.; Lee, T.J.; Ojima, D.; Pielke, R.A.; Taylor, C.; Tague, C.; Tremback, C.J.; Vidale, P.L.

    2000-01-01

    The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.

  13. Vimentin Modulates Infectious Internalization of Human Papillomavirus 16 Pseudovirions.

    PubMed

    Schäfer, Georgia; Graham, Lisa M; Lang, Dirk M; Blumenthal, Melissa J; Bergant Marušič, Martina; Katz, Arieh A

    2017-08-15

    Human papillomavirus (HPV) infection is the most common viral infection of the reproductive tract, with virtually all cases of cervical cancer being attributable to infection by oncogenic HPVs. However, the exact mechanism and receptors used by HPV to infect epithelial cells are controversial. The current entry model suggests that HPV initially attaches to heparan sulfate proteoglycans (HSPGs) at the cell surface, followed by conformational changes, cleavage by furin convertase, and subsequent transfer of the virus to an as-yet-unidentified high-affinity receptor. In line with this model, we established an in vitro infection system using the HSPG-deficient cell line pgsD677 together with HPV16 pseudovirions (HPV16-PsVs). While pgsD677 cells were nonpermissive for untreated HPV16-PsVs, furin cleavage of the particles led to a substantial increase in infection. Biochemical pulldown assays followed by mass spectrometry analysis showed that furin-precleaved HPV16-PsVs specifically interacted with surface-expressed vimentin on pgsD677 cells. We further demonstrated that both furin-precleaved and uncleaved HPV16-PsVs colocalized with surface-expressed vimentin on pgsD677, HeLa, HaCaT, and NIKS cells, while binding of incoming viral particles to soluble vimentin protein before infection led to a substantial decrease in viral uptake. Interestingly, decreasing cell surface vimentin by small interfering RNA (siRNA) knockdown in HeLa and NIKS cells significantly increased HPV16-PsV infectious internalization, while overexpression of vimentin had the opposite effect. The identification of vimentin as an HPV restriction factor enhances our understanding of the initial steps of HPV-host interaction and may lay the basis for the design of novel antiviral drugs preventing HPV internalization into epithelial cells. IMPORTANCE Despite HPV being a highly prevalent sexually transmitted virus causing significant disease burden worldwide, particularly cancer of the cervix, cell surface events preceding oncogenic HPV internalization are poorly understood. We herein describe the identification of surface-expressed vimentin as a novel molecule not previously implicated in the infectious internalization of HPV16. Contrary to our expectations, vimentin was found to act not as a receptor but rather as a restriction factor dampening the initial steps of HPV16 infection. These results importantly contribute to our current understanding of the molecular events during the infectious internalization of HPV16 and open a new direction in the development of alternative drugs to prevent HPV infection. Copyright © 2017 Schäfer et al.

  14. Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells

    NASA Astrophysics Data System (ADS)

    Thalji, Ghadeer N.

    Objectives: To determine the molecular processes involved in osseointegration. Materials and methods: A structured literature review concerning in vitro and in vivo molecular assessment of osseointegration was performed. A rat and a human model were then used to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. In the rat model, 32 titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Whereas in the human model, four titanium mini-implants with either a moderately roughened surface (TiOblast) or super-imposed nanoscale topography (Osseospeed) were placed in edentulous sites of eleven systemically healthy subjects and subsequently removed after 3 and 7 days. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix 1.1 ST Array platform was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. Results: The literature review provided evidence that particular topographic cues can be specifically integrated among the many extracellular signals received by the cell in its signal transduction network. In the rat model, functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development and biomineral tissue development were upregulated and more prominent at AT-I compared to AT-II. In the human model, there were no significant differences when comparing the two-implant surfaces at each time point. However, the microarray identified several genes that were differentially regulated at day 7 vs. day 3 for both implant surfaces. Functionally relevant categories related to the extracellular matrix, collagen fibril organization and angiogenesis were upregulated at both surfaces. Abundant upregulation of several differential markers of alternative activated macrophages was also observed. The biological processes involved with the inflammatory/immune response gene expression were concomitantly downregulated. Conclusions: The presence of micro-roughened and nanosurface features modulated in vivo bone response. This work confirms previous evaluations and further implicates modulation of the inflammatory/immune responses as a factor affecting the accrual of bone mass shortly after implant placement.

  15. Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra

    PubMed Central

    Tortiglione, Claudia; Quarta, Alessandra; Malvindi, Maria Ada; Tino, Angela; Pellegrino, Teresa

    2009-01-01

    Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism. PMID:19888325

  16. CD70 is downregulated by interaction with CD27

    PubMed Central

    Kuka, Mirela; Munitic, Ivana; Torchia, Maria Letizia Giardino; Ashwell, Jonathan D.

    2013-01-01

    Engagement of the receptor CD27 by CD70 affects the magnitude and quality of T cell responses in a variety of infection models, and exaggerated signaling via this pathway results in enhanced immune responses and autoimmunity. One means by which signaling is regulated is tight control of cell surface CD70, which is expressed on dendritic, T, and B cells only upon activation. Here we show that there is a second level of regulation. First, although undetectable on the cell surface by flow cytometry, immature dendritic cells (DC) have a small pool of CD70 that continuously recycles from the plasma membrane. In addition, surface levels of CD70 on DC and T cells were higher in mice deficient in CD27, or on DC for which the interaction between CD70 and CD27 was precluded by blocking antibodies. Binding of CD70 by its receptor resulted in downregulation of CD70 transcription and protein levels, suggesting that CD70-mediated “reverse signals” regulate its own levels. Therefore, the ability of CD70 to trigger costimulation is self-regulated when it binds its complementary receptor. PMID:23913967

  17. Cultivation of animal cells in a reticulated vitreous carbon foam.

    PubMed

    Kent, B L; Mutharasan, R

    1992-02-01

    A reticulated vitreous carbon foam (RVCF) was used as a surface to cultivate a model anchorage-dependent animal cell line, 3T6 (mouse embryo fibroblast). This fixed-surface bioreactor provided a low-shear, chemically-inert, and reusable environment for cell growth. An external medium recirculation loop allowed aeration, nutrient monitoring, and medium replacement without disturbing the cells. Optimal flow rates for the attachment and growth phases were determined. Growth rates comparable to static (T-flask and petri dish) cultures and agitated microcarrier cultures were achieved with appropriately high medium recirculation rates. Metabolic parameters were shown to be useful indicators of cell mass, although specific glucose consumption rates were considerably higher for cultures in the RVCF reactor. Oxygen supply was shown to be the most likely limiting factor for scaleup.

  18. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models.

    PubMed

    King, Shelby M; Burdette, Joanna E

    2011-07-01

    Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium.

  19. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers.

    PubMed

    Zielińska, Paulina; Staniszewska, Monika; Bondaryk, Małgorzata; Koronkiewicz, Mirosława; Urbańczyk-Lipkowska, Zofia

    2015-11-13

    Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  1. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

    NASA Astrophysics Data System (ADS)

    Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure

    2017-04-01

    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.

  2. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  3. Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Farajpour, A.; Rastgoo, A.

    Carbon nanotubes are a new class of microtubule-stabilizing agents since they interact with protein microtubules in living cells, interfering with cell division and inducing apoptosis. In the present work, a modified beam model is developed to investigate the effect of carbon nanotubes on the buckling of microtubule bundles in living cell. A realistic interaction model is employed using recent experimental data on the carbon nanotube-stabilized microtubules. Small scale and surface effects are taken into account applying the nonlocal strain gradient theory and surface elasticity theory. Pasternak model is used to describe the normal and shearing effects of enclosing filament matrix on the buckling behavior of the system. An exact solution is obtained for the buckling growth rates of the mixed bundle in viscoelastic surrounding cytoplasm. The present results are compared with those reported in the open literature for single microtubules and an excellent agreement is found. Finally, the effects of different parameters such as the size, chirality, position and surface energy of carbon nanotubes on the buckling growth rates of microtubule bundles are studied. It is found that the buckling growth rate may increase or decrease by adding carbon nanotubes, depending on the diameter and chirality of carbon nanotubes.

  4. Glycocalyx Engineering Reveals a Siglec-Based Mechanism for NK Cell Immunoevasion

    PubMed Central

    Hudak, Jason E.; Canham, Stephen M.; Bertozzi, Carolyn R.

    2013-01-01

    The increase of cell surface sialic acid is a characteristic shared by many tumor types. A correlation between hypersialylation and immunoprotection has been observed, but few hypotheses have provided a mechanistic understanding of this immunosuppressive phenomenon. Here, we show that increasing sialylated glycans on cancer cells inhibits human NK cell activation through the recruitment of Siglec-7. Key to these findings was the use of glycopolymers end-functionalized with phospholipids, which enable the introduction of synthetically defined glycans onto cancer cell surfaces. Remodeling the sialylation status of cancer cells affected the susceptibility to NK cell cytotoxicity via Siglec-7 engagement in a variety of tumor types. These results support a model in which hypersialylation offers a selective advantage to tumor cells under pressure from NK immunosurveillance by increasing Siglec ligands. We also exploited this finding to protect allogeneic and xenogeneic primary cells from NK-mediated killing suggesting the potential of Siglecs as therapeutic targets in cell transplant therapy. PMID:24292068

  5. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION

    PubMed Central

    Finch, Craig; Clarke, Thomas; Hickman, James J.

    2012-01-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843

  6. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.

    PubMed

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe; Zurzolo, Chiara

    2017-12-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. © 2017 The Author(s).

  7. Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer

    PubMed Central

    Yang, Lifang; Dutta, Sucharita M.; Troyer, Dean A.; Lin, Jefferson B.; Lance, Raymond A.; Nyalwidhe, Julius O.; Drake, Richard R; Semmes, O. John

    2015-01-01

    CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression. PMID:26497208

  8. Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development.

    PubMed

    Bennett, Rachel R; Lee, Calvin K; De Anda, Jaime; Nealson, Kenneth H; Yildiz, Fitnat H; O'Toole, George A; Wong, Gerard C L; Golestanian, Ramin

    2016-02-01

    Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa, Shewanella oneidensis and Vibrio cholerae, and provides a detailed dictionary for connecting observed spinning behaviour to bacteria-surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms. © 2016 The Author(s).

  9. Radiation induces an antitumour immune response to mouse melanoma.

    PubMed

    Perez, Carmen A; Fu, Allie; Onishko, Halina; Hallahan, Dennis E; Geng, Ling

    2009-12-01

    Irradiation of cancer cells can cause immunogenic death. We used mouse models to determine whether irradiation of melanoma can enhance the host antitumour immune response and function as an effective vaccination strategy, and investigated the molecular mechanisms involved in this radiation-induced response. For in vivo studies, C57BL6/J mice and the B16F0 melanoma cell line were used in a lung metastasis model, intratumoural host immune activation assays, and tumour growth delay studies. In vitro studies included a dendritic cell (DC) phagocytosis assay, detection of cell surface exposure of the protein calreticulin (CRT), and small interfering RNA (siRNA)-mediated depletion of CRT cellular levels. Irradiation of cutaneous melanomas prior to their resection resulted in more than 20-fold reduction in lung metastases after systemic challenge with untreated melanoma cells. A syngeneic vaccine derived from irradiated melanoma cells also induced adaptive immune response markers in irradiated melanoma implants. Our data indicate a trend for radiation-induced increase in melanoma cell surface exposure of CRT, which is involved in the enhanced phagocytic activity of DC against irradiated melanoma cells (VIACUC). The present study suggests that neoadjuvant irradiation of cutaneous melanoma tumours prior to surgical resection can stimulate an endogenous anti-melanoma host immune response.

  10. Role of Akt and Ca2+ on cell permeabilization via connexin43 hemichannels induced by metabolic inhibition.

    PubMed

    Salas, Daniela; Puebla, Carlos; Lampe, Paul D; Lavandero, Sergio; Sáez, Juan C

    2015-07-01

    Connexin hemichannels are regulated under physiological and pathological conditions. Metabolic inhibition, a model of ischemia, promotes surface hemichannel activation associated, in part, with increased surface hemichannel levels, but little is known about its underlying mechanism. Here, we investigated the role of Akt on the connexin43 hemichannel's response induced by metabolic inhibition. In HeLa cells stably transfected with rat connexin43 fused to EGFP (HeLa43 cells), metabolic inhibition induced a transient Akt activation necessary to increase the amount of surface connexin43. The increase in levels of surface connexin43 was also found to depend on an intracellular Ca2+ signal increase that was partially mediated by Akt activation. However, the metabolic inhibition-induced Akt activation was not significantly affected by intracellular Ca2+ chelation. The Akt-dependent increase in connexin43 hemichannel activity in HeLa43 cells also occurred after oxygen-glucose deprivation, another ischemia-like condition, and in cultured cortical astrocytes (endogenous connexin43 expression system) under metabolic inhibition. Since opening of hemichannels has been shown to accelerate cell death, inhibition of Akt-dependent phosphorylation of connexin43 hemichannels could reduce cell death induced by ischemia/reperfusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A rigorous multiple independent binding site model for determining cell-based equilibrium dissociation constants.

    PubMed

    Drake, Andrew W; Klakamp, Scott L

    2007-01-10

    A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data.

  12. CD1d expression on chronic lymphocytic leukemia B cells affects disease progression and induces T cell skewing in CD8 positive and CD4CD8 double negative T cells.

    PubMed

    Zaborsky, Nadja; Gassner, Franz Josef; Asslaber, Daniela; Reinthaler, Petra; Denk, Ursula; Flenady, Sabine; Hofbauer, Josefina Piñón; Danner, Barbara; Rebhandl, Stefan; Harrer, Andrea; Geisberger, Roland; Greil, Richard; Egle, Alexander

    2016-08-02

    Chronic lymphocytic leukemia develops within a complex network driven by genetic mutations and microenvironmental interactions. Among the latter a complex interplay with the immune system is established by the clone. Next to a proposed recruitment of support from T and myeloid cells, potential anti-CLL immune reactions need to be subverted. By using TCL1 mice as a CLL model, we show that TCR-Vβ7+ NK1.1+ T cells are overrepresented in this disease model and constitute a main subset of peripheral CD3+ cells with biased TCR usage, showing that these cells account for a major part for T cell skewing in TCL1 mice. Moreover, we show that overrepresentation is dependent on CD1d expression in TCL1 mice, implicating that these cells belong to a NKT-like cell fraction which are restricted to antigen presented by the MHC-like surface marker CD1d. Accordingly, we observed a high fraction of CD161+ cells within overrepresented T cells in CLL patients and we found downregulation of CD1d on the surface of CLL cells, both in TCL1 mice and patients. Finally, we show that in TCL1 mice, CD1d deficiency resulted in shortened overall survival. Our results point to an interaction between CLL and CD161+ T cells that may represent a novel therapeutic target for immune modulation.

  13. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    PubMed Central

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  14. A binomial modeling approach for upscaling colloid transport under unfavorable conditions: Emergent prediction of extended tailing

    NASA Astrophysics Data System (ADS)

    Hilpert, Markus; Rasmuson, Anna; Johnson, William P.

    2017-07-01

    Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.

  15. Low temperature surface passivation of crystalline silicon and its application to interdigitated back contact silicon heterojunction (ibc-shj) solar cell

    NASA Astrophysics Data System (ADS)

    Shu, Zhan

    With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and the carrier capture cross sections of interface defect states were extracted. Additionally, anti-reflection properties of the stack structure were optimized and optical losses were analyzed. The Voc over 700 mV and Jsc over 38 mA/cm2 were achieved in IBC-SHJ solar cells using the stack structure for front surface passivation. Direct comparison shows that such low temperature deposited stack structure developed in this work achieves comparable device performance to the high temperature processed front surface passivation structure used in other high efficiency IBC solar cells. However, the lower fill factor (FF) of IBC-SHJ solar cell as compared with traditional front a-Si:H/c-Si heterojunction cell (HIT cell) greatly limits the overall performance of these devices. Two-dimensional (2D) simulations were used to comparatively model the HIT and IBC-SHJ solar cells to understand the underlying device physics which controls cell performance. The effects of a wide range of device parameters were investigated in the simulation, and pathways to improve the FF of IBC-SHJ solar cell were suggested.

  16. Enceladus' Plumes Reflectance. Particle-in-Cell Model Parametric Study

    NASA Astrophysics Data System (ADS)

    Kotlarz, J. P.; Zalewska, N. E.

    2018-06-01

    In our work we are using kinetic numerical model to describe plumes curtain forms as a result of kinetic and thermodynamic processes: a) in the ocean, b) inside Tiger Stripes icy forms and c) over moon's surface.

  17. Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding

    PubMed Central

    Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.

    2015-01-01

    Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric. PMID:26236245

  18. A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings

    USGS Publications Warehouse

    Borrok, D.; Turner, B.F.; Fein, J.B.

    2005-01-01

    Adsorption onto bacterial cell walls can significantly affect the speciation and mobility of aqueous metal cations in many geologic settings. However, a unified thermodynamic framework for describing bacterial adsorption reactions does not exist. This problem originates from the numerous approaches that have been chosen for modeling bacterial surface protonation reactions. In this study, we compile all currently available potentiometric titration datasets for individual bacterial species, bacterial consortia, and bacterial cell wall components. Using a consistent, four discrete site, non-electrostatic surface complexation model, we determine total functional group site densities for all suitable datasets, and present an averaged set of 'universal' thermodynamic proton binding and site density parameters for modeling bacterial adsorption reactions in geologic systems. Modeling results demonstrate that the total concentrations of proton-active functional group sites for the 36 bacterial species and consortia tested are remarkably similar, averaging 3.2 ?? 1.0 (1??) ?? 10-4 moles/wet gram. Examination of the uncertainties involved in the development of proton-binding modeling parameters suggests that ignoring factors such as bacterial species, ionic strength, temperature, and growth conditions introduces relatively small error compared to the unavoidable uncertainty associated with the determination of cell abundances in realistic geologic systems. Hence, we propose that reasonable estimates of the extent of bacterial cell wall deprotonation can be made using averaged thermodynamic modeling parameters from all of the experiments that are considered in this study, regardless of bacterial species used, ionic strength, temperature, or growth condition of the experiment. The average site densities for the four discrete sites are 1.1 ?? 0.7 ?? 10-4, 9.1 ?? 3.8 ?? 10-5, 5.3 ?? 2.1 ?? 10-5, and 6.6 ?? 3.0 ?? 10-5 moles/wet gram bacteria for the sites with pKa values of 3.1, 4.7, 6.6, and 9.0, respectively. It is our hope that this thermodynamic framework for modeling bacteria-proton binding reactions will also provide the basis for the development of an internally consistent set of bacteria-metal binding constants. 'Universal' constants for bacteria-metal binding reactions can then be used in conjunction with equilibrium constants for other important metal adsorption and complexation reactions to calculate the overall distribution of metals in realistic geologic systems.

  19. A multi scale multi-dimensional thermo electrochemical modelling of high capacity lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-06-01

    Lithium iron phosphate (LFP) and lithium manganese oxide (LMO) are competitive and complementary to each other as cathode materials for lithium-ion batteries, especially for use in electric vehicles. A multi scale multi-dimensional physic-based model is proposed in this paper to study the thermal behaviour of the two lithium-ion chemistries. The model consists of two sub models, a one dimensional (1D) electrochemical sub model and a two dimensional (2D) thermo-electric sub model, which are coupled and solved concurrently. The 1D model predicts the heat generation rate (Qh) and voltage (V) of the battery cell through different load cycles. The 2D model of the battery cell accounts for temperature distribution and current distribution across the surface of the battery cell. The two cells are examined experimentally through 90 h load cycles including high/low charge/discharge rates. The experimental results are compared with the model results and they are in good agreement. The presented results in this paper verify the cells temperature behaviour at different operating conditions which will lead to the design of a cost effective thermal management system for the battery pack.

  20. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    PubMed Central

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  1. Physical Model of the Dynamic Instability in an Expanding Cell Culture

    PubMed Central

    Mark, Shirley; Shlomovitz, Roie; Gov, Nir S.; Poujade, Mathieu; Grasland-Mongrain, Erwan; Silberzan, Pascal

    2010-01-01

    Abstract Collective cell migration is of great significance in many biological processes. The goal of this work is to give a physical model for the dynamics of cell migration during the wound healing response. Experiments demonstrate that an initially uniform cell-culture monolayer expands in a nonuniform manner, developing fingerlike shapes. These fingerlike shapes of the cell culture front are composed of columns of cells that move collectively. We propose a physical model to explain this phenomenon, based on the notion of dynamic instability. In this model, we treat the first layers of cells at the front of the moving cell culture as a continuous one-dimensional membrane (contour), with the usual elasticity of a membrane: curvature and surface-tension. This membrane is active, due to the forces of cellular motility of the cells, and we propose that this motility is related to the local curvature of the culture interface; larger convex curvature correlates with a stronger cellular motility force. This shape-force relation gives rise to a dynamic instability, which we then compare to the patterns observed in the wound healing experiments. PMID:20141748

  2. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  3. An experimental study of mushroom shaped stall cells. [on finite wings with separated flow

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1982-01-01

    Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.

  4. Proliferative vitreoretinopathy in the Swine-a new model.

    PubMed

    Umazume, Kazuhiko; Barak, Yoreh; McDonald, Kevin; Liu, Lanhsin; Kaplan, Henry J; Tamiya, Shigeo

    2012-07-24

    To develop a large animal model of proliferative vitreoretinopathy (PVR) in the swine to eventually study disease pathophysiology, as well as novel therapies. PVR was induced in domestic swine by creation of a posterior vitreous detachment, creation of a retinal detachment by the injection of subretinal fluid, and intravitreal injection of green fluorescent protein-positive retinal pigment epithelial (GFP+ RPE) cells. Control eyes had the same surgical procedures without RPE cell injection. PVR was clinically graded on days 3, 7, and 14. Animals were euthanized on day 14, and enucleated eyes were analyzed by light microscopy and immunohistochemistry. Injection of GFP+ RPE cells into the vitreous cavity produced localized, traction retinal detachments by day 14 in all eyes (14 of 14); in contrast, the retina spontaneously reattached by day 3 and remained attached in all control eyes (10 of 10). Contractile epiretinal membranes on the inner retinal surface that caused the traction retinal detachments consisted predominantly of GFP+ RPE cells. These cells stained positive for cytokeratin, confirming their epithelial origin, and also expressed α-SMA and fibronectin, markers for myofibroblasts and fibrosis, respectively. We established a swine PVR model that recapitulates key clinical features found in humans and, thus, can be used to study the pathophysiology of PVR, as well as new novel therapies. GFP+ RPE cells injected into the vitreous cavity formed contractile membranes on the inner retinal surface and caused localized traction retinal detachments.

  5. Experimental validation of a sub-surface model of solar power for distributed marine sensor systems

    NASA Astrophysics Data System (ADS)

    Hahn, Gregory G.; Cantin, Heather P.; Shafer, Michael W.

    2016-04-01

    The capabilities of distributed sensor systems such as marine wildlife telemetry tags could be significantly enhanced through the integration of photovoltaic modules. Photovoltaic cells could be used to supplement the primary batteries for wildlife telemetry tags to allow for extended tag deployments, wherein larger amounts of data could be collected and transmitted in near real time. In this article, we present experimental results used to validate and improve key aspects of our original model for sub-surface solar power. We discuss the test methods and results, comparing analytic predictions to experimental results. In a previous work, we introduced a model for sub-surface solar power that used analytic models and empirical data to predict the solar irradiance available for harvest at any depth under the ocean's surface over the course of a year. This model presented underwater photovoltaic transduction as a viable means of supplementing energy for marine wildlife telemetry tags. The additional data provided by improvements in daily energy budgets would enhance the temporal and spatial comprehension of the host's activities and/or environments. Photovoltaic transduction is one method that has not been widely deployed in the sub-surface marine environments despite widespread use on terrestrial and avian species wildlife tag systems. Until now, the use of photovoltaic cells for underwater energy harvesting has generally been disregarded as a viable energy source in this arena. In addition to marine telemetry systems, photovoltaic energy harvesting systems could also serve as a means of energy supply for autonomous underwater vehicles (AUVs), as well as submersible buoys for oceanographic data collection.

  6. Modelling the role of surface stress on the kinetics of tissue growth in confined geometries.

    PubMed

    Gamsjäger, E; Bidan, C M; Fischer, F D; Fratzl, P; Dunlop, J W C

    2013-03-01

    In a previous paper we presented a theoretical framework to describe tissue growth in confined geometries based on the work of Ambrosi and Guillou [Ambrosi D, Guillou A. Growth and dissipation in biological tissues. Cont Mech Thermodyn 2007;19:245-51]. A thermodynamically consistent eigenstrain rate for growth was derived using the concept of configurational forces and used to investigate growth in holes of cylindrical geometries. Tissue growing from concave surfaces can be described by a model based on this theory. However, an apparently asymmetric behaviour between growth from convex and concave surfaces has been observed experimentally, but is not predicted by this model. This contradiction is likely to be due to the presence of contractile tensile stresses produced by cells near the tissue surface. In this contribution we extend the model in order to couple tissue growth to the presence of a surface stress. This refined growth model is solved for two geometries, within a cylindrical hole and on the outer surface of a cylinder, thus demonstrating how surface stress may indeed inhibit growth on convex substrates. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. A New In Vitro Model of Breast Cancer Metastasis to Bone

    DTIC Science & Technology

    2010-04-01

    excessive cell vacuolization, ruffled cell margins , and increasing rates of cell-surface detachment. Thus, conventional tissue-culture strategies...determined. 3050 DHURJATI ET AL. apoptotic bodies, cytoplasmic vesiculation, and chromatin margination (Fig. 3) and a distinct loss of insoluble ECM...respond abnormally to various hor- mones and cytokines compared to normal, differen- tiated human osteoblasts. In effort to overcome these limitations

  8. Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles

    DTIC Science & Technology

    2010-03-01

    Electrolyte Membrane PEMFC PEM Fuel Cell RAM Rapid Aircraft Modeler R/C Radio Controlled RMFC Reformed Methanol Fuel Cell SBIR Small Business...of rechargeable batteries, the Proton Exchange Membrane Fuel Cell ( PEMFC ) is only limited by the amount of hydrogen it can store, and can be...of fuel cells within MAVs through the creation of the Hornet. This slightly heavier, 380 g MAV integrated a 10 W PEMFC into the wing surface for a

  9. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells

    PubMed Central

    Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.

    2015-01-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303

  10. Chronic Dry Eye Disease is Principally Mediated by Effector Memory Th17 Cells

    PubMed Central

    Chen, Yihe; Chauhan, Sunil K.; Lee, Hyun Soo; Saban, Daniel R.; Dana, Reza

    2013-01-01

    Recent experimental and clinical data suggest that there is a link between dry eye disease (DED) and T cell-mediated immunity. However, whether these immune responses are a consequence or cause of ocular surface inflammation remains to be determined. Thus far, only models of acute DED have been used to derive experimental data. This is in contrast to clinical DED which usually presents as a chronic disease. In the present study, using a murine model of chronic DED, it was established that the chronic phase of the disease is accompanied by Th17 responses at the ocular surface, and that a significant memory T cell population can be recovered from chronic DED. This memory response is predominantly mediated by Th17 cells. Moreover, adoptive transfer of this memory T cell population was shown to induce more severe and rapidly progressing DED than did the adoptive transfer of its effector or naïve counterparts. Not only do these results clearly demonstrate that effector memory Th17 cells are primarily responsible for maintaining the chronic and relapsing course of DED, but they also highlight a potentially novel therapeutic strategy for targeting memory immune responses in patients with DED. PMID:23571503

  11. Monocyte activation by smooth muscle cell-derived matrices.

    PubMed

    Kaufmann, J; Jorgensen, R W; Martin, B M; Franzblau, C

    1990-12-01

    Mononuclear phagocytes adhere to and penetrate the vessel wall endothelium and contact the subendothelial space prior to the development of the atherosclerotic plaque. In an attempt to model the early events of plaque development we used an elastin-rich, multicomponent, cell-derived matrix from neonatal rat aortic smooth muscle cells as a substratum for monocytes. Using this model, we show that human monocyte morphology and metabolism are markedly altered by the matrix substratum. When a mixed mononuclear cell population is seeded on matrix or plastic, only monocytes adhere to the matrix surface. In contrast, lymphocytes as well as monocytes adhere to the plastic surface. The matrix-adherent monocytes develop large intracellular granules and form extensive clusters of individual cells. Metabolically, these cells develop sodium fluoride resistant non-specific esterase activity and their media contain more growth factor activity and PGE2. Although total protein synthesis is equivalent in both cultures, the matrix contact induces an increase in specific proteins in the media. We also show that a purified alpha-elastin substratum induces some, but not all, of the monocyte changes seen when using the matrix substratum. Using the alpha-elastin substratum, there is selective adhesion of monocytes and increased growth factor activity, however, the cells are morphologically different from the matrix-adherent cells. Thus, the use of the smooth muscle cell-derived matrix, in conjunction with purified matrix components, serves as a model that can provide insight into the mechanisms of monocyte adhesion and stimulation by the matrix environment that exists in vivo. Such mechanisms may be particularly important in atherogenesis.

  12. Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an in Vitro Model.

    PubMed

    Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin

    2015-10-21

    Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.

  13. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of mass at the bubble center, and if the bubble-to-cell spacing is much larger than the cell radius, the flow around the cell is approximately extensional in the cell's frame of reference. It is known that the present algae are quasi-spherical with cytoplasmic viscosity approximately 100 times that of water, so the cell is approximated as a viscous sphere. Thus, conditions that cause cell disruption from an expanding microbubble are modeled as either steady inviscid extensional flow or steady point source flow over a viscous sphere. In the inviscid extensional flow model, the flow inside the sphere is dominated by viscous forces so the Stokes equation is solved with matched stresses at the sphere surface from the exterior inviscid extensional flow. The short-time deformation of the sphere surface suggests that inviscid extensional flow is insufficient to disrupt cells. This indicates that asymmetry of the flow over the sphere may be required to provide sufficient surface areal strain to rupture the cell. In a more detailed model, the bubble expansion is modeled as an expansion near a viscous sphere using finite element software. For conditions similar to those seen in the experiment, deformation shows similar scaling to disruption. The deformation in this model is significantly higher than predicted from the inviscid extensional flow model due to the effect of asymmetric flow on the cell membrane. Estimates suggest 21% average areal strain on the algal membrane is required to disrupt algal cells, and this result agrees well with areal strains typically required to disrupt cell membranes although the actual value would be lessened by the effect of an elastic membrane, which is neglected in the present model. The local areal strain on the sphere surface is a maximum closest to the point source, and there is compressive strain near theta = +/-pi/4 with theta the angle from the line between the cell center and the point source. The maximum local areal strain shows less sensitivity to the viscosity of the interior fluid than the average areal strain. Overall, the dissertation lays the groundwork for more efficient algal disruption through the judicious use of microbubbles. Separation of bubble generation and bubble growth provides the ability to improve the efficiency of each process and localize energy. Results suggest that effective disruption can occur by pulsing high-pressure ultrasound waves to a solution of cells co-suspended with microbubbles. The models are thought to represent basic phenomenological mechanisms of disruption that could be exploited to improve the overall energy efficiency of schemes. Analysis suggests that extensional flow alone cannot be the cause of cell disruption near an expanding microbubble. Additionally, this work provides an estimate of the areal strain required disrupt an algal cell membrane. This research suggests a couple routes toward reducing the energy required for production of algal biodiesel.

  14. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  15. Crystal Structure of Botulinum Neurotoxin Type a in Complex With the Cell Surface Co-Receptor GT1b-Insight Into the Toxin-Neuron Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenmark, P.; Dupuy, J.; Inamura, A.

    2009-05-26

    Botulinum neurotoxins have a very high affinity and specificity for their target cells requiring two different co-receptors located on the neuronal cell surface. Different toxin serotypes have different protein receptors; yet, most share a common ganglioside co-receptor, GT1b. We determined the crystal structure of the botulinum neurotoxin serotype A binding domain (residues 873-1297) alone and in complex with a GT1b analog at 1.7 A and 1.6 A, respectively. The ganglioside GT1b forms several key hydrogen bonds to conserved residues and binds in a shallow groove lined by Tryptophan 1266. GT1b binding does not induce any large structural changes in themore » toxin; therefore, it is unlikely that allosteric effects play a major role in the dual receptor recognition. Together with the previously published structures of botulinum neurotoxin serotype B in complex with its protein co-receptor, we can now generate a detailed model of botulinum neurotoxin's interaction with the neuronal cell surface. The two branches of the GT1b polysaccharide, together with the protein receptor site, impose strict geometric constraints on the mode of interaction with the membrane surface and strongly support a model where one end of the 100 A long translocation domain helix bundle swing into contact with the membrane, initiating the membrane anchoring event.« less

  16. A Temporospatial Map That Defines Specific Steps at Which Critical Surfaces in the Gag MA and CA Domains Act during Immature HIV-1 Capsid Assembly in Cells

    PubMed Central

    Robinson, Bridget A.; Reed, Jonathan C.; Geary, Clair D.; Swain, J. Victor

    2014-01-01

    ABSTRACT During HIV-1 assembly, Gag polypeptides target to the plasma membrane, where they multimerize to form immature capsids that undergo budding and maturation. Previous mutational analyses identified residues within the Gag matrix (MA) and capsid (CA) domains that are required for immature capsid assembly, and structural studies showed that these residues are clustered on four exposed surfaces in Gag. Exactly when and where the three critical surfaces in CA function during assembly are not known. Here, we analyzed how mutations in these four critical surfaces affect the formation and stability of assembly intermediates in cells expressing the HIV-1 provirus. The resulting temporospatial map reveals that critical MA residues act during membrane targeting, residues in the C-terminal CA subdomain (CA-CTD) dimer interface are needed for the stability of the first membrane-bound assembly intermediate, CA-CTD base residues are necessary for progression past the first membrane-bound intermediate, and residues in the N-terminal CA subdomain (CA-NTD) stabilize the last membrane-bound intermediate. Importantly, we found that all four critical surfaces act while Gag is associated with the cellular facilitators of assembly ABCE1 and DDX6. When correlated with existing structural data, our findings suggest the following model: Gag dimerizes via the CA-CTD dimer interface just before or during membrane targeting, individual CA-CTD hexamers form soon after membrane targeting, and the CA-NTD hexameric lattice forms just prior to capsid release. This model adds an important new dimension to current structural models by proposing the potential order in which key contacts within the immature capsid lattice are made during assembly in cells. IMPORTANCE While much is known about the structure of the completed HIV-1 immature capsid and domains of its component Gag proteins, less is known about the sequence of events leading to formation of the HIV-1 immature capsid. Here we used biochemical and ultrastructural analyses to generate a temporospatial map showing the precise order in which four critical surfaces in Gag act during immature capsid formation in provirus-expressing cells. Because three of these surfaces make important contacts in the hexameric lattices that are found in the completed immature capsid, these data allow us to propose a model for the sequence of events leading to formation of the hexameric lattices. By providing a dynamic view of when and where critical Gag-Gag contacts form during the assembly process and how those contacts function in the nascent capsid, our study provides novel insights into how an immature capsid is built in infected cells. PMID:24623418

  17. Interaction of atmospheric pressure plasmas with dry and wet wounded skin

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kushner, Mark

    2010-11-01

    Non-equilibrium plasmas in direct contact with living tissue can produce therapeutic effects. Dielectric barrier discharge (DBD) devices used for this purpose contain the powered electrode while the tissue being treated is usually the floating electrode. The plasma produces beneficial effects through: (i) electric fields, (ii) production of radicals and charged species, (iii) photons and (iv) energetic ions impinging onto wounds and tissue surfaces. Using a 2-d plasma hydrodynamics model, we discuss the interaction of DBD filaments with human skin. We model the propagation of the streamer across the gap, its intersection with skin, the charging of cell surfaces and the generation of conduction and displacement currents, and electric fields in the cells. The cellular structure in the first few mm of human skin is incorporated into the computational mesh with permittivity and conductivity to represent the electrical properties of the intra- and inter-cell structures. In this talk, we concentrate on the effects of plasmas on open wounds which are either dry or filled with blood serum. We will discuss the penetration of electric fields through the blood serum and into the underlying cells, including the possible interactions with blood platelets, and the distribution of ion energies onto the liquid and cellular surfaces.

  18. Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling.

    PubMed

    André Dias, Sofia; Planus, Emmanuelle; Angely, Christelle; Lotteau, Luc; Tissier, Renaud; Filoche, Marcel; Louis, Bruno; Pelle, Gabriel; Isabey, Daniel

    2018-02-15

    During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their response to PFC exposure, using DMEM as control condition. Changes in F-actin structure, focal adhesion density and glycocalyx distribution are evaluated by confocal fluorescent microscopy. Changes in cell mechanics and adhesion are measured by multiscale magnetic twisting cytometry (MTC). Two different microrheological models (single Voigt and power law) are used to analyze the cell mechanics characterized by cytoskeleton (CSK) stiffness and characteristic relaxation times. Cell-matrix adhesion is analyzed using a stochastic multibond deadhesion model taking into account the non-reversible character of the cell response, allowing us to quantify the adhesion weakness and the number of associated bonds. The roles of F-actin structure and glycocalyx layer are evaluated by depolymerizing F-actin and degrading glycocalyx, respectively. Results show that PFC exposure consistently induces F-actin remodeling, CSK softening and adhesion weakening. These results demonstrate that PFC triggers an alveolar epithelial cell response herein evidenced by a decay in intracellular CSK tension, an adhesion weakening and a glycocalyx layer redistribution. These PFC-induced cell adjustments are consistent with the hypothesis that cells respond to a decrease in adhesion energy at cell surface. This adhesion energy can be even further reduced in the presence of surfactant adsorbed at the cell surface.

  19. Theory and algorithms to compute Helfrich bending forces: a review.

    PubMed

    Guckenberger, Achim; Gekle, Stephan

    2017-05-24

    Cell membranes are vital to shield a cell's interior from the environment. At the same time they determine to a large extent the cell's mechanical resistance to external forces. In recent years there has been considerable interest in the accurate computational modeling of such membranes, driven mainly by the amazing variety of shapes that red blood cells and model systems such as vesicles can assume in external flows. Given that the typical height of a membrane is only a few nanometers while the surface of the cell extends over many micrometers, physical modeling approaches mostly consider the interface as a two-dimensional elastic continuum. Here we review recent modeling efforts focusing on one of the computationally most intricate components, namely the membrane's bending resistance. We start with a short background on the most widely used bending model due to Helfrich. While the Helfrich bending energy by itself is an extremely simple model equation, the computation of the resulting forces is far from trivial. At the heart of these difficulties lies the fact that the forces involve second order derivatives of the local surface curvature which by itself is the second derivative of the membrane geometry. We systematically derive and compare the different routes to obtain bending forces from the Helfrich energy, namely the variational approach and the thin-shell theory. While both routes lead to mathematically identical expressions, so-called linear bending models are shown to reproduce only the leading order term while higher orders differ. The main part of the review contains a description of various computational strategies which we classify into three categories: the force, the strong and the weak formulation. We finally give some examples for the application of these strategies in actual simulations.

  20. Depletion of CD11c+ Cells Does Not Influence Outcomes in Mice Subjected to Transient Middle Cerebral Artery Occlusion.

    PubMed

    Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph

    2017-01-01

    While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.

Top