Sample records for model checking algorithm

  1. Towards Symbolic Model Checking for Multi-Agent Systems via OBDDs

    NASA Technical Reports Server (NTRS)

    Raimondi, Franco; Lomunscio, Alessio

    2004-01-01

    We present an algorithm for model checking temporal-epistemic properties of multi-agent systems, expressed in the formalism of interpreted systems. We first introduce a technique for the translation of interpreted systems into boolean formulae, and then present a model-checking algorithm based on this translation. The algorithm is based on OBDD's, as they offer a compact and efficient representation for boolean formulae.

  2. Symbolic LTL Compilation for Model Checking: Extended Abstract

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2007-01-01

    In Linear Temporal Logic (LTL) model checking, we check LTL formulas representing desired behaviors against a formal model of the system designed to exhibit these behaviors. To accomplish this task, the LTL formulas must be translated into automata [21]. We focus on LTL compilation by investigating LTL satisfiability checking via a reduction to model checking. Having shown that symbolic LTL compilation algorithms are superior to explicit automata construction algorithms for this task [16], we concentrate here on seeking a better symbolic algorithm.We present experimental data comparing algorithmic variations such as normal forms, encoding methods, and variable ordering and examine their effects on performance metrics including processing time and scalability. Safety critical systems, such as air traffic control, life support systems, hazardous environment controls, and automotive control systems, pervade our daily lives, yet testing and simulation alone cannot adequately verify their reliability [3]. Model checking is a promising approach to formal verification for safety critical systems which involves creating a formal mathematical model of the system and translating desired safety properties into a formal specification for this model. The complement of the specification is then checked against the system model. When the model does not satisfy the specification, model-checking tools accompany this negative answer with a counterexample, which points to an inconsistency between the system and the desired behaviors and aids debugging efforts.

  3. Model checking for linear temporal logic: An efficient implementation

    NASA Technical Reports Server (NTRS)

    Sherman, Rivi; Pnueli, Amir

    1990-01-01

    This report provides evidence to support the claim that model checking for linear temporal logic (LTL) is practically efficient. Two implementations of a linear temporal logic model checker is described. One is based on transforming the model checking problem into a satisfiability problem; the other checks an LTL formula for a finite model by computing the cross-product of the finite state transition graph of the program with a structure containing all possible models for the property. An experiment was done with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms.

  4. The Priority Inversion Problem and Real-Time Symbolic Model Checking

    DTIC Science & Technology

    1993-04-23

    real time systems unpredictable in subtle ways. This makes it more difficult to implement and debug such systems. Our work discusses this problem and presents one possible solution. The solution is formalized and verified using temporal logic model checking techniques. In order to perform the verification, the BDD-based symbolic model checking algorithm given in previous works was extended to handle real-time properties using the bounded until operator. We believe that this algorithm, which is based on discrete time, is able to handle many real-time properties

  5. Temporal Precedence Checking for Switched Models and its Application to a Parallel Landing Protocol

    NASA Technical Reports Server (NTRS)

    Duggirala, Parasara Sridhar; Wang, Le; Mitra, Sayan; Viswanathan, Mahesh; Munoz, Cesar A.

    2014-01-01

    This paper presents an algorithm for checking temporal precedence properties of nonlinear switched systems. This class of properties subsume bounded safety and capture requirements about visiting a sequence of predicates within given time intervals. The algorithm handles nonlinear predicates that arise from dynamics-based predictions used in alerting protocols for state-of-the-art transportation systems. It is sound and complete for nonlinear switch systems that robustly satisfy the given property. The algorithm is implemented in the Compare Execute Check Engine (C2E2) using validated simulations. As a case study, a simplified model of an alerting system for closely spaced parallel runways is considered. The proposed approach is applied to this model to check safety properties of the alerting logic for different operating conditions such as initial velocities, bank angles, aircraft longitudinal separation, and runway separation.

  6. Model-Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  7. Stochastic Local Search for Core Membership Checking in Hedonic Games

    NASA Astrophysics Data System (ADS)

    Keinänen, Helena

    Hedonic games have emerged as an important tool in economics and show promise as a useful formalism to model multi-agent coalition formation in AI as well as group formation in social networks. We consider a coNP-complete problem of core membership checking in hedonic coalition formation games. No previous algorithms to tackle the problem have been presented. In this work, we overcome this by developing two stochastic local search algorithms for core membership checking in hedonic games. We demonstrate the usefulness of the algorithms by showing experimentally that they find solutions efficiently, particularly for large agent societies.

  8. Parallel Software Model Checking

    DTIC Science & Technology

    2015-01-08

    checker. This project will explore this strategy to parallelize the generalized PDR algorithm for software model checking. It belongs to TF1 due to its ... focus on formal verification . Generalized PDR. Generalized Property Driven Rechability (GPDR) i is an algorithm for solving HORN-SMT reachability...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 08

  9. Model Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  10. Program Model Checking: A Practitioner's Guide

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas T.; Mansouri-Samani, Masoud; Mehlitz, Peter C.; Pasareanu, Corina S.; Markosian, Lawrence Z.; Penix, John J.; Brat, Guillaume P.; Visser, Willem C.

    2008-01-01

    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools.

  11. Symbolic discrete event system specification

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.; Chi, Sungdo

    1992-01-01

    Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.

  12. Parameter discovery in stochastic biological models using simulated annealing and statistical model checking.

    PubMed

    Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J

    2014-01-01

    Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.

  13. Proceedings of the First NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Denney, Ewen (Editor); Giannakopoulou, Dimitra (Editor); Pasareanu, Corina S. (Editor)

    2009-01-01

    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000.

  14. Model Checking Degrees of Belief in a System of Agents

    NASA Technical Reports Server (NTRS)

    Raimondi, Franco; Primero, Giuseppe; Rungta, Neha

    2014-01-01

    Reasoning about degrees of belief has been investigated in the past by a number of authors and has a number of practical applications in real life. In this paper we present a unified framework to model and verify degrees of belief in a system of agents. In particular, we describe an extension of the temporal-epistemic logic CTLK and we introduce a semantics based on interpreted systems for this extension. In this way, degrees of beliefs do not need to be provided externally, but can be derived automatically from the possible executions of the system, thereby providing a computationally grounded formalism. We leverage the semantics to (a) construct a model checking algorithm, (b) investigate its complexity, (c) provide a Java implementation of the model checking algorithm, and (d) evaluate our approach using the standard benchmark of the dining cryptographers. Finally, we provide a detailed case study: using our framework and our implementation, we assess and verify the situational awareness of the pilot of Air France 447 flying in off-nominal conditions.

  15. An Integrated Environment for Efficient Formal Design and Verification

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains.

  16. Proceedings of the Second NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar (Editor)

    2010-01-01

    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis.

  17. The method of a joint intraday security check system based on cloud computing

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Feng, Changyou; Zhou, Caiqi; Cai, Zhi; Dan, Xu; Dai, Sai; Zhang, Chuancheng

    2017-01-01

    The intraday security check is the core application in the dispatching control system. The existing security check calculation only uses the dispatch center’s local model and data as the functional margin. This paper introduces the design of all-grid intraday joint security check system based on cloud computing and its implementation. To reduce the effect of subarea bad data on the all-grid security check, a new power flow algorithm basing on comparison and adjustment with inter-provincial tie-line plan is presented. And the numerical example illustrated the effectiveness and feasibility of the proposed method.

  18. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  19. Abstraction and Assume-Guarantee Reasoning for Automated Software Verification

    NASA Technical Reports Server (NTRS)

    Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.

    2004-01-01

    Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.

  20. An effective automatic procedure for testing parameter identifiability of HIV/AIDS models.

    PubMed

    Saccomani, Maria Pia

    2011-08-01

    Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.

  1. Redundancy checking algorithms based on parallel novel extension rule

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yang, Yang; Li, Guangli; Wang, Qi; Lü, Shuai

    2017-05-01

    Redundancy checking (RC) is a key knowledge reduction technology. Extension rule (ER) is a new reasoning method, first presented in 2003 and well received by experts at home and abroad. Novel extension rule (NER) is an improved ER-based reasoning method, presented in 2009. In this paper, we first analyse the characteristics of the extension rule, and then present a simple algorithm for redundancy checking based on extension rule (RCER). In addition, we introduce MIMF, a type of heuristic strategy. Using the aforementioned rule and strategy, we design and implement RCHER algorithm, which relies on MIMF. Next we design and implement an RCNER (redundancy checking based on NER) algorithm based on NER. Parallel computing greatly accelerates the NER algorithm, which has weak dependence among tasks when executed. Considering this, we present PNER (parallel NER) and apply it to redundancy checking and necessity checking. Furthermore, we design and implement the RCPNER (redundancy checking based on PNER) and NCPPNER (necessary clause partition based on PNER) algorithms as well. The experimental results show that MIMF significantly influences the acceleration of algorithm RCER in formulae on a large scale and high redundancy. Comparing PNER with NER and RCPNER with RCNER, the average speedup can reach up to the number of task decompositions when executed. Comparing NCPNER with the RCNER-based algorithm on separating redundant formulae, speedup increases steadily as the scale of the formulae is incrementing. Finally, we describe the challenges that the extension rule will be faced with and suggest possible solutions.

  2. The PlusCal Algorithm Language

    NASA Astrophysics Data System (ADS)

    Lamport, Leslie

    Algorithms are different from programs and should not be described with programming languages. The only simple alternative to programming languages has been pseudo-code. PlusCal is an algorithm language that can be used right now to replace pseudo-code, for both sequential and concurrent algorithms. It is based on the TLA + specification language, and a PlusCal algorithm is automatically translated to a TLA + specification that can be checked with the TLC model checker and reasoned about formally.

  3. Birth/death process model

    NASA Technical Reports Server (NTRS)

    Solloway, C. B.; Wakeland, W.

    1976-01-01

    First-order Markov model developed on digital computer for population with specific characteristics. System is user interactive, self-documenting, and does not require user to have complete understanding of underlying model details. Contains thorough error-checking algorithms on input and default capabilities.

  4. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  5. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations

    DTIC Science & Technology

    2008-02-01

    Craig interpolants has enabled the development of powerful hardware and software model checking techniques. Efficient algorithms are known for computing...interpolants in rational and real linear arithmetic. We focus on subsets of integer linear arithmetic. Our main results are polynomial time algorithms ...congruences), and linear diophantine disequations. We show the utility of the proposed interpolation algorithms for discovering modular/divisibility predicates

  6. Non-invasive quality evaluation of confluent cells by image-based orientation heterogeneity analysis.

    PubMed

    Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji

    2016-02-01

    In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Automated Verification of Specifications with Typestates and Access Permissions

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu I.; Catano, Nestor

    2011-01-01

    We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).

  8. Slicing AADL Specifications for Model Checking

    NASA Technical Reports Server (NTRS)

    Odenbrett, Maximilian; Nguyen, Viet Yen; Noll, Thomas

    2010-01-01

    To combat the state-space explosion problem in model checking larger systems, abstraction techniques can be employed. Here, methods that operate on the system specification before constructing its state space are preferable to those that try to minimize the resulting transition system as they generally reduce peak memory requirements. We sketch a slicing algorithm for system specifications written in (a variant of) the Architecture Analysis and Design Language (AADL). Given a specification and a property to be verified, it automatically removes those parts of the specification that are irrelevant for model checking the property, thus reducing the size of the corresponding transition system. The applicability and effectiveness of our approach is demonstrated by analyzing the state-space reduction for an example, employing a translator from AADL to Promela, the input language of the SPIN model checker.

  9. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    PubMed

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-04-28

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  10. State-based verification of RTCP-nets with nuXmv

    NASA Astrophysics Data System (ADS)

    Biernacka, Agnieszka; Biernacki, Jerzy; Szpyrka, Marcin

    2015-12-01

    The paper deals with an algorithm of translation of RTCP-nets' (real-time coloured Petri nets) coverability graphs into nuXmv state machines. The approach enables users to verify RTCP-nets with model checking techniques provided by the nuXmv tool. Full details of the algorithm are presented and an illustrative example of the approach usefulness is provided.

  11. Research on registration algorithm for check seal verification

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen

    2008-03-01

    Nowadays seals play an important role in China. With the development of social economy, the traditional method of manual check seal identification can't meet the need s of banking transactions badly. This paper focus on pre-processing and registration algorithm for check seal verification using theory of image processing and pattern recognition. First of all, analyze the complex characteristics of check seals. To eliminate the difference of producing conditions and the disturbance caused by background and writing in check image, many methods are used in the pre-processing of check seal verification, such as color components transformation, linearity transform to gray-scale image, medium value filter, Otsu, close calculations and labeling algorithm of mathematical morphology. After the processes above, the good binary seal image can be obtained. On the basis of traditional registration algorithm, a double-level registration method including rough and precise registration method is proposed. The deflection angle of precise registration method can be precise to 0.1°. This paper introduces the concepts of difference inside and difference outside and use the percent of difference inside and difference outside to judge whether the seal is real or fake. The experimental results of a mass of check seals are satisfied. It shows that the methods and algorithmic presented have good robustness to noise sealing conditions and satisfactory tolerance of difference within class.

  12. The Infobiotics Workbench: an integrated in silico modelling platform for Systems and Synthetic Biology.

    PubMed

    Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio

    2011-12-01

    The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.

  13. Low complexity Reed-Solomon-based low-density parity-check design for software defined optical transmission system based on adaptive puncturing decoding algorithm

    NASA Astrophysics Data System (ADS)

    Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua

    2016-08-01

    We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.

  14. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    PubMed

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  15. Bounded Parametric Model Checking for Elementary Net Systems

    NASA Astrophysics Data System (ADS)

    Knapik, Michał; Szreter, Maciej; Penczek, Wojciech

    Bounded Model Checking (BMC) is an efficient verification method for reactive systems. BMC has been applied so far to verification of properties expressed in (timed) modal logics, but never to their parametric extensions. In this paper we show, for the first time that BMC can be extended to PRTECTL - a parametric extension of the existential version of CTL. To this aim we define a bounded semantics and a translation from PRTECTL to SAT. The implementation of the algorithm for Elementary Net Systems is presented, together with some experimental results.

  16. Multiattribute Decision Modeling Techniques: A Comparative Analysis

    DTIC Science & Technology

    1988-08-01

    Analytic Hierarchy Process ( AHP ). It is structurally similar to SMART, but elicitation methods are different and there are several algorithms for...reconciliation of inconsistent judgments and for consistency checks that are not available in any of the utility procedures. The AHP has been applied...of commercially available software packages that implement the AHP algorithms. Elicitation Methods. The AHP builds heavily on value trees, which

  17. An Adaptive Buddy Check for Observational Quality Control

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.

  18. Temporal Specification and Verification of Real-Time Systems.

    DTIC Science & Technology

    1991-08-30

    of concrete real - time systems can be modeled adequately. Specification: We present two conservative extensions of temporal logic that allow for the...logic. We present both model-checking algorithms for the automatic verification of finite-state real - time systems and proof methods for the deductive verification of real - time systems .

  19. Model Checking - My 27-Year Quest to Overcome the State Explosion Problem

    NASA Technical Reports Server (NTRS)

    Clarke, Ed

    2009-01-01

    Model Checking is an automatic verification technique for state-transition systems that are finite=state or that have finite-state abstractions. In the early 1980 s in a series of joint papers with my graduate students E.A. Emerson and A.P. Sistla, we proposed that Model Checking could be used for verifying concurrent systems and gave algorithms for this purpose. At roughly the same time, Joseph Sifakis and his student J.P. Queille at the University of Grenoble independently developed a similar technique. Model Checking has been used successfully to reason about computer hardware and communication protocols and is beginning to be used for verifying computer software. Specifications are written in temporal logic, which is particularly valuable for expressing concurrency properties. An intelligent, exhaustive search is used to determine if the specification is true or not. If the specification is not true, the Model Checker will produce a counterexample execution trace that shows why the specification does not hold. This feature is extremely useful for finding obscure errors in complex systems. The main disadvantage of Model Checking is the state-explosion problem, which can occur if the system under verification has many processes or complex data structures. Although the state-explosion problem is inevitable in worst case, over the past 27 years considerable progress has been made on the problem for certain classes of state-transition systems that occur often in practice. In this talk, I will describe what Model Checking is, how it works, and the main techniques that have been developed for combating the state explosion problem.

  20. An Algorithm for Interactive Modeling of Space-Transportation Engine Simulations: A Constraint Satisfaction Approach

    NASA Technical Reports Server (NTRS)

    Mitra, Debasis; Thomas, Ajai; Hemminger, Joseph; Sakowski, Barbara

    2001-01-01

    In this research we have developed an algorithm for the purpose of constraint processing by utilizing relational algebraic operators. Van Beek and others have investigated in the past this type of constraint processing from within a relational algebraic framework, producing some unique results. Apart from providing new theoretical angles, this approach also gives the opportunity to use the existing efficient implementations of relational database management systems as the underlying data structures for any relevant algorithm. Our algorithm here enhances that framework. The algorithm is quite general in its current form. Weak heuristics (like forward checking) developed within the Constraint-satisfaction problem (CSP) area could be also plugged easily within this algorithm for further enhancements of efficiency. The algorithm as developed here is targeted toward a component-oriented modeling problem that we are currently working on, namely, the problem of interactive modeling for batch-simulation of engineering systems (IMBSES). However, it could be adopted for many other CSP problems as well. The research addresses the algorithm and many aspects of the problem IMBSES that we are currently handling.

  1. Determination of MLC model parameters for Monaco using commercial diode arrays.

    PubMed

    Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian

    2016-07-08

    Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors

  2. Space shuttle propulsion parameter estimation using optional estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A regression analyses on tabular aerodynamic data provided. A representative aerodynamic model for coefficient estimation. It also reduced the storage requirements for the "normal' model used to check out the estimation algorithms. The results of the regression analyses are presented. The computer routines for the filter portion of the estimation algorithm and the :"bringing-up' of the SRB predictive program on the computer was developed. For the filter program, approximately 54 routines were developed. The routines were highly subsegmented to facilitate overlaying program segments within the partitioned storage space on the computer.

  3. A method for generating reliable atomistic models of amorphous polymers based on a random search of energy minima

    NASA Astrophysics Data System (ADS)

    Curcó, David; Casanovas, Jordi; Roca, Marc; Alemán, Carlos

    2005-07-01

    A method for generating atomistic models of dense amorphous polymers is presented. The method is organized in a two-steps procedure. First, structures are generated using an algorithm that minimizes the torsional strain. After this, a relaxation algorithm is applied to minimize the non-bonding interactions. Two alternative relaxation methods, which are based simple minimization and Concerted Rotation techniques, have been implemented. The performance of the method has been checked by simulating polyethylene, polypropylene, nylon 6, poly(L,D-lactic acid) and polyglycolic acid.

  4. Using chemical organization theory for model checking

    PubMed Central

    Kaleta, Christoph; Richter, Stephan; Dittrich, Peter

    2009-01-01

    Motivation: The increasing number and complexity of biomodels makes automatic procedures for checking the models' properties and quality necessary. Approaches like elementary mode analysis, flux balance analysis, deficiency analysis and chemical organization theory (OT) require only the stoichiometric structure of the reaction network for derivation of valuable information. In formalisms like Systems Biology Markup Language (SBML), however, information about the stoichiometric coefficients required for an analysis of chemical organizations can be hidden in kinetic laws. Results: First, we introduce an algorithm that uncovers stoichiometric information that might be hidden in the kinetic laws of a reaction network. This allows us to apply OT to SBML models using modifiers. Second, using the new algorithm, we performed a large-scale analysis of the 185 models contained in the manually curated BioModels Database. We found that for 41 models (22%) the set of organizations changes when modifiers are considered correctly. We discuss one of these models in detail (BIOMD149, a combined model of the ERK- and Wnt-signaling pathways), whose set of organizations drastically changes when modifiers are considered. Third, we found inconsistencies in 5 models (3%) and identified their characteristics. Compared with flux-based methods, OT is able to identify those species and reactions more accurately [in 26 cases (14%)] that can be present in a long-term simulation of the model. We conclude that our approach is a valuable tool that helps to improve the consistency of biomodels and their repositories. Availability: All data and a JAVA applet to check SBML-models is available from http://www.minet.uni-jena.de/csb/prj/ot/tools Contact: dittrich@minet.uni-jena.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19468053

  5. Algorithm design for automated transportation photo enforcement camera image and video quality diagnostic check modules

    NASA Astrophysics Data System (ADS)

    Raghavan, Ajay; Saha, Bhaskar

    2013-03-01

    Photo enforcement devices for traffic rules such as red lights, toll, stops, and speed limits are increasingly being deployed in cities and counties around the world to ensure smooth traffic flow and public safety. These are typically unattended fielded systems, and so it is important to periodically check them for potential image/video quality problems that might interfere with their intended functionality. There is interest in automating such checks to reduce the operational overhead and human error involved in manually checking large camera device fleets. Examples of problems affecting such camera devices include exposure issues, focus drifts, obstructions, misalignment, download errors, and motion blur. Furthermore, in some cases, in addition to the sub-algorithms for individual problems, one also has to carefully design the overall algorithm and logic to check for and accurately classifying these individual problems. Some of these issues can occur in tandem or have the potential to be confused for each other by automated algorithms. Examples include camera misalignment that can cause some scene elements to go out of focus for wide-area scenes or download errors that can be misinterpreted as an obstruction. Therefore, the sequence in which the sub-algorithms are utilized is also important. This paper presents an overview of these problems along with no-reference and reduced reference image and video quality solutions to detect and classify such faults.

  6. Learning Assumptions for Compositional Verification

    NASA Technical Reports Server (NTRS)

    Cobleigh, Jamieson M.; Giannakopoulou, Dimitra; Pasareanu, Corina; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Compositional verification is a promising approach to addressing the state explosion problem associated with model checking. One compositional technique advocates proving properties of a system by checking properties of its components in an assume-guarantee style. However, the application of this technique is difficult because it involves non-trivial human input. This paper presents a novel framework for performing assume-guarantee reasoning in an incremental and fully automated fashion. To check a component against a property, our approach generates assumptions that the environment needs to satisfy for the property to hold. These assumptions are then discharged on the rest of the system. Assumptions are computed by a learning algorithm. They are initially approximate, but become gradually more precise by means of counterexamples obtained by model checking the component and its environment, alternately. This iterative process may at any stage conclude that the property is either true or false in the system. We have implemented our approach in the LTSA tool and applied it to the analysis of a NASA system.

  7. Interface Generation and Compositional Verification in JavaPathfinder

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Pasareanu, Corina

    2009-01-01

    We present a novel algorithm for interface generation of software components. Given a component, our algorithm uses learning techniques to compute a permissive interface representing legal usage of the component. Unlike our previous work, this algorithm does not require knowledge about the component s environment. Furthermore, in contrast to other related approaches, our algorithm computes permissive interfaces even in the presence of non-determinism in the component. Our algorithm is implemented in the JavaPathfinder model checking framework for UML statechart components. We have also added support for automated assume-guarantee style compositional verification in JavaPathfinder, using component interfaces. We report on the application of the presented approach to the generation of interfaces for flight software components.

  8. An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm

    NASA Astrophysics Data System (ADS)

    Heaton, T. H.; Karakus, G.; Beck, J. L.

    2016-12-01

    Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.

  9. Generalized Symbolic Execution for Model Checking and Testing

    NASA Technical Reports Server (NTRS)

    Khurshid, Sarfraz; Pasareanu, Corina; Visser, Willem; Kofmeyer, David (Technical Monitor)

    2003-01-01

    Modern software systems, which often are concurrent and manipulate complex data structures must be extremely reliable. We present a novel framework based on symbolic execution, for automated checking of such systems. We provide a two-fold generalization of traditional symbolic execution based approaches: one, we define a program instrumentation, which enables standard model checkers to perform symbolic execution; two, we give a novel symbolic execution algorithm that handles dynamically allocated structures (e.g., lists and trees), method preconditions (e.g., acyclicity of lists), data (e.g., integers and strings) and concurrency. The program instrumentation enables a model checker to automatically explore program heap configurations (using a systematic treatment of aliasing) and manipulate logical formulae on program data values (using a decision procedure). We illustrate two applications of our framework: checking correctness of multi-threaded programs that take inputs from unbounded domains with complex structure and generation of non-isomorphic test inputs that satisfy a testing criterion. Our implementation for Java uses the Java PathFinder model checker.

  10. Secure open cloud in data transmission using reference pattern and identity with enhanced remote privacy checking

    NASA Astrophysics Data System (ADS)

    Vijay Singh, Ran; Agilandeeswari, L.

    2017-11-01

    To handle the large amount of client’s data in open cloud lots of security issues need to be address. Client’s privacy should not be known to other group members without data owner’s valid permission. Sometime clients are fended to have accessing with open cloud servers due to some restrictions. To overcome the security issues and these restrictions related to storing, data sharing in an inter domain network and privacy checking, we propose a model in this paper which is based on an identity based cryptography in data transmission and intermediate entity which have client’s reference with identity that will take control handling of data transmission in an open cloud environment and an extended remote privacy checking technique which will work at admin side. On behalf of data owner’s authority this proposed model will give best options to have secure cryptography in data transmission and remote privacy checking either as private or public or instructed. The hardness of Computational Diffie-Hellman assumption algorithm for key exchange makes this proposed model more secure than existing models which are being used for public cloud environment.

  11. A formally verified algorithm for interactive consistency under a hybrid fault model

    NASA Technical Reports Server (NTRS)

    Lincoln, Patrick; Rushby, John

    1993-01-01

    Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.

  12. Formal Verification of Safety Properties for Aerospace Systems Through Algorithms Based on Exhaustive State-Space Exploration

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco

    2004-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce aviation accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems. Attempts to verify RSM with NuSMV and SPIN have failed due to excessive memory consumption.

  13. PyBoolNet: a python package for the generation, analysis and visualization of boolean networks.

    PubMed

    Klarner, Hannes; Streck, Adam; Siebert, Heike

    2017-03-01

    The goal of this project is to provide a simple interface to working with Boolean networks. Emphasis is put on easy access to a large number of common tasks including the generation and manipulation of networks, attractor and basin computation, model checking and trap space computation, execution of established graph algorithms as well as graph drawing and layouts. P y B ool N et is a Python package for working with Boolean networks that supports simple access to model checking via N u SMV, standard graph algorithms via N etwork X and visualization via dot . In addition, state of the art attractor computation exploiting P otassco ASP is implemented. The package is function-based and uses only native Python and N etwork X data types. https://github.com/hklarner/PyBoolNet. hannes.klarner@fu-berlin.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  15. The instant sequencing task: Toward constraint-checking a complex spacecraft command sequence interactively

    NASA Technical Reports Server (NTRS)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Amador, Arthur V.; Spitale, Joseph N.

    1993-01-01

    Robotic spacecraft are controlled by sets of commands called 'sequences.' These sequences must be checked against mission constraints. Making our existing constraint checking program faster would enable new capabilities in our uplink process. Therefore, we are rewriting this program to run on a parallel computer. To do so, we had to determine how to run constraint-checking algorithms in parallel and create a new method of specifying spacecraft models and constraints. This new specification gives us a means of representing flight systems and their predicted response to commands which could be used in a variety of applications throughout the command process, particularly during anomaly or high-activity operations. This commonality could reduce operations cost and risk for future complex missions. Lessons learned in applying some parts of this system to the TOPEX/Poseidon mission will be described.

  16. Using Runtime Analysis to Guide Model Checking of Java Programs

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes how two runtime analysis algorithms, an existing data race detection algorithm and a new deadlock detection algorithm, have been implemented to analyze Java programs. Runtime analysis is based on the idea of executing the program once. and observing the generated run to extract various kinds of information. This information can then be used to predict whether other different runs may violate some properties of interest, in addition of course to demonstrate whether the generated run itself violates such properties. These runtime analyses can be performed stand-alone to generate a set of warnings. It is furthermore demonstrated how these warnings can be used to guide a model checker, thereby reducing the search space. The described techniques have been implemented in the b e grown Java model checker called PathFinder.

  17. Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem

    PubMed Central

    Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi

    2013-01-01

    Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429

  18. Action-based verification of RTCP-nets with CADP

    NASA Astrophysics Data System (ADS)

    Biernacki, Jerzy; Biernacka, Agnieszka; Szpyrka, Marcin

    2015-12-01

    The paper presents an RTCP-nets' (real-time coloured Petri nets) coverability graphs into Aldebaran format translation algorithm. The approach provides the possibility of automatic RTCP-nets verification using model checking techniques provided by the CADP toolbox. An actual fire alarm control panel system has been modelled and several of its crucial properties have been verified to demonstrate the usability of the approach.

  19. Quantum algorithm for linear regression

    NASA Astrophysics Data System (ADS)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  20. Machine-checked proofs of the design and implementation of a fault-tolerant circuit

    NASA Technical Reports Server (NTRS)

    Bevier, William R.; Young, William D.

    1990-01-01

    A formally verified implementation of the 'oral messages' algorithm of Pease, Shostak, and Lamport is described. An abstract implementation of the algorithm is verified to achieve interactive consistency in the presence of faults. This abstract characterization is then mapped down to a hardware level implementation which inherits the fault-tolerant characteristics of the abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A significant results is the demonstration of a fault-tolerant device that is formally specified and whose implementation is proved correct with respect to this specification. A significant simplifying assumption is that the redundant processors behave synchronously. A mechanically checked proof that the oral messages algorithm is 'optimal' in the sense that no algorithm which achieves agreement via similar message passing can tolerate a larger proportion of faulty processor is also described.

  1. Spectral Retrieval of Latent Heating Profiles from TRMM PR data. Part 3; Moistening Estimates over Tropical Ocean Regions

    NASA Technical Reports Server (NTRS)

    Shige, S.; Takayabu, Y.; Tao, W.-K.

    2007-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "econsti-LKth"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels, are larger than those for latent heat. Larger discrepancies in Q2 at low levels are due to moistening for non-precipitating region that algorithm cannot reconstruct. Nevertheless, the algorithm-reconstructed total Q2 profiles are in good agreement with the CRM-simulated ones.

  2. Fall 2014 SEI Research Review Probabilistic Analysis of Time Sensitive Systems

    DTIC Science & Technology

    2014-10-28

    Osmosis SMC Tool Osmosis is a tool for Statistical Model Checking (SMC) with Semantic Importance Sampling. • Input model is written in subset of C...ASSERT() statements in model indicate conditions that must hold. • Input probability distributions defined by the user. • Osmosis returns the...on: – Target relative error, or – Set number of simulations Osmosis Main Algorithm 1 http://dreal.cs.cmu.edu/ (?⃑?): Indicator

  3. Probabilistic choice between symmetric disparities in motion stereo matching for a lateral navigation system

    NASA Astrophysics Data System (ADS)

    Ershov, Egor; Karnaukhov, Victor; Mozerov, Mikhail

    2016-02-01

    Two consecutive frames of a lateral navigation camera video sequence can be considered as an appropriate approximation to epipolar stereo. To overcome edge-aware inaccuracy caused by occlusion, we propose a model that matches the current frame to the next and to the previous ones. The positive disparity of matching to the previous frame has its symmetric negative disparity to the next frame. The proposed algorithm performs probabilistic choice for each matched pixel between the positive disparity and its symmetric disparity cost. A disparity map obtained by optimization over the cost volume composed of the proposed probabilistic choice is more accurate than the traditional left-to-right and right-to-left disparity maps cross-check. Also, our algorithm needs two times less computational operations per pixel than the cross-check technique. The effectiveness of our approach is demonstrated on synthetic data and real video sequences, with ground-truth value.

  4. Lord-Wingersky Algorithm Version 2.0 for Hierarchical Item Factor Models with Applications in Test Scoring, Scale Alignment, and Model Fit Testing.

    PubMed

    Cai, Li

    2015-06-01

    Lord and Wingersky's (Appl Psychol Meas 8:453-461, 1984) recursive algorithm for creating summed score based likelihoods and posteriors has a proven track record in unidimensional item response theory (IRT) applications. Extending the recursive algorithm to handle multidimensionality is relatively simple, especially with fixed quadrature because the recursions can be defined on a grid formed by direct products of quadrature points. However, the increase in computational burden remains exponential in the number of dimensions, making the implementation of the recursive algorithm cumbersome for truly high-dimensional models. In this paper, a dimension reduction method that is specific to the Lord-Wingersky recursions is developed. This method can take advantage of the restrictions implied by hierarchical item factor models, e.g., the bifactor model, the testlet model, or the two-tier model, such that a version of the Lord-Wingersky recursive algorithm can operate on a dramatically reduced set of quadrature points. For instance, in a bifactor model, the dimension of integration is always equal to 2, regardless of the number of factors. The new algorithm not only provides an effective mechanism to produce summed score to IRT scaled score translation tables properly adjusted for residual dependence, but leads to new applications in test scoring, linking, and model fit checking as well. Simulated and empirical examples are used to illustrate the new applications.

  5. An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1983-01-01

    An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.

  6. Fast computation of the multivariable stability margin for real interrelated uncertain parameters

    NASA Technical Reports Server (NTRS)

    Sideris, Athanasios; Sanchez Pena, Ricardo S.

    1988-01-01

    A novel algorithm for computing the multivariable stability margin for checking the robust stability of feedback systems with real parametric uncertainty is proposed. This method eliminates the need for the frequency search involved in another given algorithm by reducing it to checking a finite number of conditions. These conditions have a special structure, which allows a significant improvement on the speed of computations.

  7. Constraint-Based Abstract Semantics for Temporal Logic: A Direct Approach to Design and Implementation

    NASA Astrophysics Data System (ADS)

    Banda, Gourinath; Gallagher, John P.

    interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal μ-calculus, which is the basis for abstract model checking. The abstract semantic function is constructed directly from the standard concrete semantics together with a Galois connection between the concrete state-space and an abstract domain. There is no need for mixed or modal transition systems to abstract arbitrary temporal properties, as in previous work in the area of abstract model checking. Using the modal μ-calculus to implement CTL, the abstract semantics gives an over-approximation of the set of states in which an arbitrary CTL formula holds. Then we show that this leads directly to an effective implementation of an abstract model checking algorithm for CTL using abstract domains based on linear constraints. The implementation of the abstract semantic function makes use of an SMT solver. We describe an implemented system for proving properties of linear hybrid automata and give some experimental results.

  8. Litho hotspots fixing using model based algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Yu, Shirui; Mao, Zhibiao; Shafee, Marwa; Madkour, Kareem; ElManhawy, Wael; Kwan, Joe; Hu, Xinyi; Wan, Qijian; Du, Chunshan

    2017-04-01

    As technology advances, IC designs are getting more sophisticated, thus it becomes more critical and challenging to fix printability issues in the design flow. Running lithography checks before tapeout is now mandatory for designers, which creates a need for more advanced and easy-to-use techniques for fixing hotspots found after lithographic simulation without creating a new design rule checking (DRC) violation or generating a new hotspot. This paper presents a new methodology for fixing hotspots on layouts while using the same engine currently used to detect the hotspots. The fix is achieved by applying minimum movement of edges causing the hotspot, with consideration of DRC constraints. The fix is internally simulated by the lithographic simulation engine to verify that the hotspot is eliminated and that no new hotspot is generated by the new edge locations. Hotspot fix checking is enhanced by adding DRC checks to the litho-friendly design (LFD) rule file to guarantee that any fix options that violate DRC checks are removed from the output hint file. This extra checking eliminates the need to re-run both DRC and LFD checks to ensure the change successfully fixed the hotspot, which saves time and simplifies the designer's workflow. This methodology is demonstrated on industrial designs, where the fixing rate of single and dual layer hotspots is reported.

  9. Alteration of Box-Jenkins methodology by implementing genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad

    2015-02-01

    A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.

  10. Finite element implementation of state variable-based viscoplasticity models

    NASA Technical Reports Server (NTRS)

    Iskovitz, I.; Chang, T. Y. P.; Saleeb, A. F.

    1991-01-01

    The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested.

  11. Quantum adiabatic computation and adiabatic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Zhaohui; Ying Mingsheng

    2007-08-15

    Recently, quantum adiabatic computation has attracted more and more attention in the literature. It is a novel quantum computation model based on adiabatic approximation, and the analysis of a quantum adiabatic algorithm depends highly on the adiabatic conditions. However, it has been pointed out that the traditional adiabatic conditions are problematic. Thus, results obtained previously should be checked and sufficient adiabatic conditions applicable to adiabatic computation should be proposed. Based on a result of Tong et al. [Phys. Rev. Lett. 98, 150402 (2007)], we propose a modified adiabatic criterion which is more applicable to the analysis of adiabatic algorithms. Asmore » an example, we prove the validity of the local adiabatic search algorithm by employing our criterion.« less

  12. Automatic Rail Extraction and Celarance Check with a Point Cloud Captured by Mls in a Railway

    NASA Astrophysics Data System (ADS)

    Niina, Y.; Honma, R.; Honma, Y.; Kondo, K.; Tsuji, K.; Hiramatsu, T.; Oketani, E.

    2018-05-01

    Recently, MLS (Mobile Laser Scanning) has been successfully used in a road maintenance. In this paper, we present the application of MLS for the inspection of clearance along railway tracks of West Japan Railway Company. Point clouds around the track are captured by MLS mounted on a bogie and rail position can be determined by matching the shape of the ideal rail head with respect to the point cloud by ICP algorithm. A clearance check is executed automatically with virtual clearance model laid along the extracted rail. As a result of evaluation, the accuracy of extracting rail positions is less than 3 mm. With respect to the automatic clearance check, the objects inside the clearance and the ones related to a contact line is successfully detected by visual confirmation.

  13. Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.

    PubMed

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang S J; Zhang, Jianqiu Michelle

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.

  14. Accurate LC Peak Boundary Detection for 16 O/ 18 O Labeled LC-MS Data

    PubMed Central

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang (SJ); Zhang, Jianqiu (Michelle)

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements. PMID:24115998

  15. Statistical mechanics of broadcast channels using low-density parity-check codes.

    PubMed

    Nakamura, Kazutaka; Kabashima, Yoshiyuki; Morelos-Zaragoza, Robert; Saad, David

    2003-03-01

    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

  16. The remote sensing of ocean primary productivity - Use of a new data compilation to test satellite algorithms

    NASA Technical Reports Server (NTRS)

    Balch, William; Evans, Robert; Brown, Jim; Feldman, Gene; Mcclain, Charles; Esaias, Wayne

    1992-01-01

    Global pigment and primary productivity algorithms based on a new data compilation of over 12,000 stations occupied mostly in the Northern Hemisphere, from the late 1950s to 1988, were tested. The results showed high variability of the fraction of total pigment contributed by chlorophyll, which is required for subsequent predictions of primary productivity. Two models, which predict pigment concentration normalized to an attenuation length of euphotic depth, were checked against 2,800 vertical profiles of pigments. Phaeopigments consistently showed maxima at about one optical depth below the chlorophyll maxima. CZCS data coincident with the sea truth data were also checked. A regression of satellite-derived pigment vs ship-derived pigment had a coefficient of determination. The satellite underestimated the true pigment concentration in mesotrophic and oligotrophic waters and overestimated the pigment concentration in eutrophic waters. The error in the satellite estimate showed no trends with time between 1978 and 1986.

  17. A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao

    2013-07-01

    This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.

  18. Simulation of dense amorphous polymers by generating representative atomistic models

    NASA Astrophysics Data System (ADS)

    Curcó, David; Alemán, Carlos

    2003-08-01

    A method for generating atomistic models of dense amorphous polymers is presented. The generated models can be used as starting structures of Monte Carlo and molecular dynamics simulations, but also are suitable for the direct evaluation physical properties. The method is organized in a two-step procedure. First, structures are generated using an algorithm that minimizes the torsional strain. After this, an iterative algorithm is applied to relax the nonbonding interactions. In order to check the performance of the method we examined structure-dependent properties for three polymeric systems: polyethyelene (ρ=0.85 g/cm3), poly(L,D-lactic) acid (ρ=1.25 g/cm3), and polyglycolic acid (ρ=1.50 g/cm3). The method successfully generated representative packings for such dense systems using minimum computational resources.

  19. Intelligently deciphering unintelligible designs: algorithmic algebraic model checking in systems biology

    PubMed Central

    Mishra, Bud

    2009-01-01

    Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723

  20. The computation of Laplacian smoothing splines with examples

    NASA Technical Reports Server (NTRS)

    Wendelberger, J. G.

    1982-01-01

    Laplacian smoothing splines (LSS) are presented as generalizations of graduation, cubic and thin plate splines. The method of generalized cross validation (GCV) to choose the smoothing parameter is described. The GCV is used in the algorithm for the computation of LSS's. An outline of a computer program which implements this algorithm is presented along with a description of the use of the program. Examples in one, two and three dimensions demonstrate how to obtain estimates of function values with confidence intervals and estimates of first and second derivatives. Probability plots are used as a diagnostic tool to check for model inadequacy.

  1. An Interactive Program for the Calculation and Analysis of the Parameter Sensitivities in a Linear, Time-Invariant System.

    DTIC Science & Technology

    1981-03-01

    tifiability is imposed; and the system designer now has a tool to evaluate how well the model describes the system . The algorithm is verified by checking its...xi I. Introduction In analyzing a system , the design engineer uses a mathematical model. The model, by its very definition, represents the system . It...number of G (See Eq (23).) can 18 give the designer a good indication of just how well the model defined by Eqs (1) through (3) describes the system

  2. Timing analysis by model checking

    NASA Technical Reports Server (NTRS)

    Naydich, Dimitri; Guaspari, David

    2000-01-01

    The safety of modern avionics relies on high integrity software that can be verified to meet hard real-time requirements. The limits of verification technology therefore determine acceptable engineering practice. To simplify verification problems, safety-critical systems are commonly implemented under the severe constraints of a cyclic executive, which make design an expensive trial-and-error process highly intolerant of change. Important advances in analysis techniques, such as rate monotonic analysis (RMA), have provided a theoretical and practical basis for easing these onerous restrictions. But RMA and its kindred have two limitations: they apply only to verifying the requirement of schedulability (that tasks meet their deadlines) and they cannot be applied to many common programming paradigms. We address both these limitations by applying model checking, a technique with successful industrial applications in hardware design. Model checking algorithms analyze finite state machines, either by explicit state enumeration or by symbolic manipulation. Since quantitative timing properties involve a potentially unbounded state variable (a clock), our first problem is to construct a finite approximation that is conservative for the properties being analyzed-if the approximation satisfies the properties of interest, so does the infinite model. To reduce the potential for state space explosion we must further optimize this finite model. Experiments with some simple optimizations have yielded a hundred-fold efficiency improvement over published techniques.

  3. Simulation-Based Model Checking for Nondeterministic Systems and Rare Events

    DTIC Science & Technology

    2016-03-24

    year, we have investigated AO* search and Monte Carlo Tree Search algorithms to complement and enhance CMU’s SMCMDP. 1 Final Report, March 14... tree , so we can use it to find the probability of reachability for a property in PRISM’s Probabilistic LTL. By finding the maximum probability of...savings, particularly when handling very large models. 2.3 Monte Carlo Tree Search The Monte Carlo sampling process in SMCMDP can take a long time to

  4. Formal Verification of the Runway Safety Monitor

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu; Ciardo, Gianfranco

    2006-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce runway accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems.

  5. Exact and Approximate Probabilistic Symbolic Execution

    NASA Technical Reports Server (NTRS)

    Luckow, Kasper; Pasareanu, Corina S.; Dwyer, Matthew B.; Filieri, Antonio; Visser, Willem

    2014-01-01

    Probabilistic software analysis seeks to quantify the likelihood of reaching a target event under uncertain environments. Recent approaches compute probabilities of execution paths using symbolic execution, but do not support nondeterminism. Nondeterminism arises naturally when no suitable probabilistic model can capture a program behavior, e.g., for multithreading or distributed systems. In this work, we propose a technique, based on symbolic execution, to synthesize schedulers that resolve nondeterminism to maximize the probability of reaching a target event. To scale to large systems, we also introduce approximate algorithms to search for good schedulers, speeding up established random sampling and reinforcement learning results through the quantification of path probabilities based on symbolic execution. We implemented the techniques in Symbolic PathFinder and evaluated them on nondeterministic Java programs. We show that our algorithms significantly improve upon a state-of- the-art statistical model checking algorithm, originally developed for Markov Decision Processes.

  6. System for Configuring Modular Telemetry Transponders

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.

  7. Mechanical verification of a schematic Byzantine clock synchronization algorithm

    NASA Technical Reports Server (NTRS)

    Shankar, Natarajan

    1991-01-01

    Schneider generalizes a number of protocols for Byzantine fault tolerant clock synchronization and presents a uniform proof for their correctness. The authors present a machine checked proof of this schematic protocol that revises some of the details in Schneider's original analysis. The verification was carried out with the EHDM system developed at the SRI Computer Science Laboratory. The mechanically checked proofs include the verification that the egocentric mean function used in Lamport and Melliar-Smith's Interactive Convergence Algorithm satisfies the requirements of Schneider's protocol.

  8. SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET

    NASA Astrophysics Data System (ADS)

    KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya

    2013-02-01

    Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.

  9. Pure field theories and MACSYMA algorithms

    NASA Technical Reports Server (NTRS)

    Ament, W. S.

    1977-01-01

    A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.

  10. A code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Bai, Cheng-lin; Cheng, Zhi-hui

    2016-09-01

    In order to further improve the carrier synchronization estimation range and accuracy at low signal-to-noise ratio ( SNR), this paper proposes a code-aided carrier synchronization algorithm based on improved nonbinary low-density parity-check (NB-LDPC) codes to study the polarization-division-multiplexing coherent optical orthogonal frequency division multiplexing (PDM-CO-OFDM) system performance in the cases of quadrature phase shift keying (QPSK) and 16 quadrature amplitude modulation (16-QAM) modes. The simulation results indicate that this algorithm can enlarge frequency and phase offset estimation ranges and enhance accuracy of the system greatly, and the bit error rate ( BER) performance of the system is improved effectively compared with that of the system employing traditional NB-LDPC code-aided carrier synchronization algorithm.

  11. On the optimization of electromagnetic geophysical data: Application of the PSO algorithm

    NASA Astrophysics Data System (ADS)

    Godio, A.; Santilano, A.

    2018-01-01

    Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.

  12. A Machine-Checked Proof of A State-Space Construction Algorithm

    NASA Technical Reports Server (NTRS)

    Catano, Nestor; Siminiceanu, Radu I.

    2010-01-01

    This paper presents the correctness proof of Saturation, an algorithm for generating state spaces of concurrent systems, implemented in the SMART tool. Unlike the Breadth First Search exploration algorithm, which is easy to understand and formalise, Saturation is a complex algorithm, employing a mutually-recursive pair of procedures that compute a series of non-trivial, nested local fixed points, corresponding to a chaotic fixed point strategy. A pencil-and-paper proof of Saturation exists, but a machine checked proof had never been attempted. The key element of the proof is the characterisation theorem of saturated nodes in decision diagrams, stating that a saturated node represents a set of states encoding a local fixed-point with respect to firing all events affecting only the node s level and levels below. For our purpose, we have employed the Prototype Verification System (PVS) for formalising the Saturation algorithm, its data structures, and for conducting the proofs.

  13. Logic Model Checking of Time-Periodic Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Florian, Mihai; Gamble, Ed; Holzmann, Gerard

    2012-01-01

    In this paper we report on the work we performed to extend the logic model checker SPIN with built-in support for the verification of periodic, real-time embedded software systems, as commonly used in aircraft, automobiles, and spacecraft. We first extended the SPIN verification algorithms to model priority based scheduling policies. Next, we added a library to support the modeling of periodic tasks. This library was used in a recent application of the SPIN model checker to verify the engine control software of an automobile, to study the feasibility of software triggers for unintended acceleration events.

  14. Analysing the Costs of Integrated Care: A Case on Model Selection for Chronic Care Purposes

    PubMed Central

    Sánchez-Pérez, Inma; Ibern, Pere; Coderch, Jordi; Inoriza, José María

    2016-01-01

    Background: The objective of this study is to investigate whether the algorithm proposed by Manning and Mullahy, a consolidated health economics procedure, can also be used to estimate individual costs for different groups of healthcare services in the context of integrated care. Methods: A cross-sectional study focused on the population of the Baix Empordà (Catalonia-Spain) for the year 2012 (N = 92,498 individuals). A set of individual cost models as a function of sex, age and morbidity burden were adjusted and individual healthcare costs were calculated using a retrospective full-costing system. The individual morbidity burden was inferred using the Clinical Risk Groups (CRG) patient classification system. Results: Depending on the characteristics of the data, and according to the algorithm criteria, the choice of model was a linear model on the log of costs or a generalized linear model with a log link. We checked for goodness of fit, accuracy, linear structure and heteroscedasticity for the models obtained. Conclusion: The proposed algorithm identified a set of suitable cost models for the distinct groups of services integrated care entails. The individual morbidity burden was found to be indispensable when allocating appropriate resources to targeted individuals. PMID:28316542

  15. Fast Integer Ambiguity Resolution for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn; Crassidis, John L.; Markley, F. Landis

    1999-01-01

    In this paper, a new algorithm for GPS (Global Positioning System) integer ambiguity resolution is shown. The algorithm first incorporates an instantaneous (static) integer search to significantly reduce the search space using a geometric inequality. Then a batch-type loss function is used to check the remaining integers in order to determine the optimal integer. This batch function represents the GPS sightline vectors in the body frame as the sum of two vectors, one depending on the phase measurements and the other on the unknown integers. The new algorithm has several advantages: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can resolve the integers even when coplanar baselines exist. The performance of the new algorithm is tested on a dynamic hardware simulator.

  16. Analysis about modeling MEC7000 excitation system of nuclear power unit

    NASA Astrophysics Data System (ADS)

    Liu, Guangshi; Sun, Zhiyuan; Dou, Qian; Liu, Mosi; Zhang, Yihui; Wang, Xiaoming

    2018-02-01

    Aiming at the importance of accurate modeling excitation system in stability calculation of nuclear power plant inland and lack of research in modeling MEC7000 excitation system,this paper summarize a general method to modeling and simulate MEC7000 excitation system. Among this method also solve the key issues of computing method of IO interface parameter and the conversion process of excitation system measured model to BPA simulation model. At last complete the simulation modeling of MEC7000 excitation system first time in domestic. By used No-load small disturbance check, demonstrates that the proposed model and algorithm is corrective and efficient.

  17. Time-space modal logic for verification of bit-slice circuits

    NASA Astrophysics Data System (ADS)

    Hiraishi, Hiromi

    1996-03-01

    The major goal of this paper is to propose a new modal logic aiming at formal verification of bit-slice circuits. The new logic is called as time-space modal logic and its major feature is that it can handle two transition relations: one for time transition and the other for space transition. As for a verification algorithm, a symbolic model checking algorithm of the new logic is shown. This could be applicable to verification of bit-slice microprocessor of infinite bit width and 1D systolic array of infinite length. A simple benchmark result shows the effectiveness of the proposed approach.

  18. Symbolic Heuristic Search for Factored Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Morris, Robert (Technical Monitor); Feng, Zheng-Zhu; Hansen, Eric A.

    2003-01-01

    We describe a planning algorithm that integrates two approaches to solving Markov decision processes with large state spaces. State abstraction is used to avoid evaluating states individually. Forward search from a start state, guided by an admissible heuristic, is used to avoid evaluating all states. We combine these two approaches in a novel way that exploits symbolic model-checking techniques and demonstrates their usefulness for decision-theoretic planning.

  19. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This fourth monthly progress report again contains corrections and additions to the previously submitted reports. The additions include a simplified SRB model that is directly incorporated into the estimation algorithm and provides the required partial derivatives. The resulting partial derivatives are analytical rather than numerical as would be the case using the SOBER routines. The filter and smoother routine developments have continued. These routines are being checked out.

  20. Interactive collision detection for deformable models using streaming AABBs.

    PubMed

    Zhang, Xinyu; Kim, Young J

    2007-01-01

    We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.

  1. Private algorithms for the protected in social network search

    PubMed Central

    Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory

    2016-01-01

    Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets. PMID:26755606

  2. Private algorithms for the protected in social network search.

    PubMed

    Kearns, Michael; Roth, Aaron; Wu, Zhiwei Steven; Yaroslavtsev, Grigory

    2016-01-26

    Motivated by tensions between data privacy for individual citizens and societal priorities such as counterterrorism and the containment of infectious disease, we introduce a computational model that distinguishes between parties for whom privacy is explicitly protected, and those for whom it is not (the targeted subpopulation). The goal is the development of algorithms that can effectively identify and take action upon members of the targeted subpopulation in a way that minimally compromises the privacy of the protected, while simultaneously limiting the expense of distinguishing members of the two groups via costly mechanisms such as surveillance, background checks, or medical testing. Within this framework, we provide provably privacy-preserving algorithms for targeted search in social networks. These algorithms are natural variants of common graph search methods, and ensure privacy for the protected by the careful injection of noise in the prioritization of potential targets. We validate the utility of our algorithms with extensive computational experiments on two large-scale social network datasets.

  3. Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness.

    PubMed

    Muza, Stephen R

    2018-03-01

    This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO 2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.

  4. The Optimization of Automatically Generated Compilers.

    DTIC Science & Technology

    1987-01-01

    than their procedural counterparts, and are also easier to analyze for storage optimizations; (2) AGs can be algorithmically checked to be non-circular...Providing algorithms to move the storage for many attributes from the For structure tree into global stacks and variables. -Dd(2) Creating AEs which build and...54 3.5.2. Partitioning algorithm

  5. A source-channel coding approach to digital image protection and self-recovery.

    PubMed

    Sarreshtedari, Saeed; Akhaee, Mohammad Ali

    2015-07-01

    Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.

  6. Navigation Algorithms for the SeaWiFS Mission

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; McClain, Charles R. (Technical Monitor)

    2002-01-01

    The navigation algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) were designed to meet the requirement of 1-pixel accuracy-a standard deviation (sigma) of 2. The objective has been to extract the best possible accuracy from the spacecraft telemetry and avoid the need for costly manual renavigation or geometric rectification. The requirement is addressed by postprocessing of both the Global Positioning System (GPS) receiver and Attitude Control System (ACS) data in the spacecraft telemetry stream. The navigation algorithms described are separated into four areas: orbit processing, attitude sensor processing, attitude determination, and final navigation processing. There has been substantial modification during the mission of the attitude determination and attitude sensor processing algorithms. For the former, the basic approach was completely changed during the first year of the mission, from a single-frame deterministic method to a Kalman smoother. This was done for several reasons: a) to improve the overall accuracy of the attitude determination, particularly near the sub-solar point; b) to reduce discontinuities; c) to support the single-ACS-string spacecraft operation that was started after the first mission year, which causes gaps in attitude sensor coverage; and d) to handle data quality problems (which became evident after launch) in the direct-broadcast data. The changes to the attitude sensor processing algorithms primarily involved the development of a model for the Earth horizon height, also needed for single-string operation; the incorporation of improved sensor calibration data; and improved data quality checking and smoothing to handle the data quality issues. The attitude sensor alignments have also been revised multiple times, generally in conjunction with the other changes. The orbit and final navigation processing algorithms have remained largely unchanged during the mission, aside from refinements to data quality checking. Although further improvements are certainly possible, future evolution of the algorithms is expected to be limited to refinements of the methods presented here, and no substantial changes are anticipated.

  7. A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.

    PubMed

    Liu, Shuo; Zhang, Lei; Li, Jian

    2016-11-24

    The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.

  8. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Chao, C; Columbia University, NY, NY

    2014-06-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less

  9. SPIN or LURCH : a Comparative Assessment of Model Checking and Stochastic Search for Temporal Properties in Procedural Code

    NASA Technical Reports Server (NTRS)

    Powell, John D.; Owens, David; Menzies, Tim

    2004-01-01

    The difficulty of how to test large systems, such as the one on board a NASA robotic remote explorer (RRE) vehicle, is fundamentally a search issue: the global state space representing all possible has yet to be solved, even after many decades of work. Randomized algorithms have been known to outperform their deterministic counterparts for search problems representing a wide range of applications. In the case study presented here, the LURCH randomized algorithm proved to be adequate to the task of testing a NASA RRE vehicle. LURCH found all the errors found by an earlier analysis of a more complete method (SPIN). Our empirical results are that LURCH can scale to much larger models than standard model checkers like SMV and SPIN. Further, the LURCH analysis was simpler than the SPIN analysis. The simplicity and scalability of LURCH are two compelling reasons for experimenting further with this tool.

  10. Clarus quality checking algorithm documentation report.

    DOT National Transportation Integrated Search

    2010-12-21

    With funding and support from the USDOT RITA IntelliDrive(SM) initiative and direction from the FHWA Road Weather Management Program, NCAR enhanced QCh algorithms that are a part of the current Clarus System. Moreover, NCAR developed new QCh algorith...

  11. Switching portfolios.

    PubMed

    Singer, Y

    1997-08-01

    A constant rebalanced portfolio is an asset allocation algorithm which keeps the same distribution of wealth among a set of assets along a period of time. Recently, there has been work on on-line portfolio selection algorithms which are competitive with the best constant rebalanced portfolio determined in hindsight (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996). By their nature, these algorithms employ the assumption that high returns can be achieved using a fixed asset allocation strategy. However, stock markets are far from being stationary and in many cases the wealth achieved by a constant rebalanced portfolio is much smaller than the wealth achieved by an ad hoc investment strategy that adapts to changes in the market. In this paper we present an efficient portfolio selection algorithm that is able to track a changing market. We also describe a simple extension of the algorithm for the case of a general transaction cost, including the transactions cost models recently investigated in (Blum and Kalai, 1997). We provide a simple analysis of the competitiveness of the algorithm and check its performance on real stock data from the New York Stock Exchange accumulated during a 22-year period. On this data, our algorithm outperforms all the algorithms referenced above, with and without transaction costs.

  12. Application of Satellite-Derived Atmospheric Motion Vectors for Estimating Mesoscale Flows.

    NASA Astrophysics Data System (ADS)

    Bedka, Kristopher M.; Mecikalski, John R.

    2005-11-01

    This study demonstrates methods to obtain high-density, satellite-derived atmospheric motion vectors (AMV) that contain both synoptic-scale and mesoscale flow components associated with and induced by cumuliform clouds through adjustments made to the University of Wisconsin—Madison Cooperative Institute for Meteorological Satellite Studies (UW-CIMSS) AMV processing algorithm. Operational AMV processing is geared toward the identification of synoptic-scale motions in geostrophic balance, which are useful in data assimilation applications. AMVs identified in the vicinity of deep convection are often rejected by quality-control checks used in the production of operational AMV datasets. Few users of these data have considered the use of AMVs with ageostrophic flow components, which often fail checks that assure both spatial coherence between neighboring AMVs and a strong correlation to an NWP-model first-guess wind field. The UW-CIMSS algorithm identifies coherent cloud and water vapor features (i.e., targets) that can be tracked within a sequence of geostationary visible (VIS) and infrared (IR) imagery. AMVs are derived through the combined use of satellite feature tracking and an NWP-model first guess. Reducing the impact of the NWP-model first guess on the final AMV field, in addition to adjusting the target selection and vector-editing schemes, is found to result in greater than a 20-fold increase in the number of AMVs obtained from the UW-CIMSS algorithm for one convective storm case examined here. Over a three-image sequence of Geostationary Operational Environmental Satellite (GOES)-12 VIS and IR data, 3516 AMVs are obtained, most of which contain flow components that deviate considerably from geostrophy. In comparison, 152 AMVs are derived when a tighter NWP-model constraint and no targeting adjustments were imposed, similar to settings used with operational AMV production algorithms. A detailed analysis reveals that many of these 3516 vectors contain low-level (100 70 kPa) convergent and midlevel (70 40 kPa) to upper-level (40 10 kPa) divergent motion components consistent with localized mesoscale flow patterns. The applicability of AMVs for estimating cloud-top cooling rates at the 1-km pixel scale is demonstrated with excellent correspondence to rates identified by a human expert.

  13. A digital system for surface reconstruction

    USGS Publications Warehouse

    Zhou, Weiyang; Brock, Robert H.; Hopkins, Paul F.

    1996-01-01

    A digital photogrammetric system, STEREO, was developed to determine three dimensional coordinates of points of interest (POIs) defined with a grid on a textureless and smooth-surfaced specimen. Two CCD cameras were set up with unknown orientation and recorded digital images of a reference model and a specimen. Points on the model were selected as control or check points for calibrating or assessing the system. A new algorithm for edge-detection called local maximum convolution (LMC) helped extract the POIs from the stereo image pairs. The system then matched the extracted POIs and used a least squares “bundle” adjustment procedure to solve for the camera orientation parameters and the coordinates of the POIs. An experiment with STEREO found that the standard deviation of the residuals at the check points was approximately 24%, 49% and 56% of the pixel size in the X, Y and Z directions, respectively. The average of the absolute values of the residuals at the check points was approximately 19%, 36% and 49% of the pixel size in the X, Y and Z directions, respectively. With the graphical user interface, STEREO demonstrated a high degree of automation and its operation does not require special knowledge of photogrammetry, computers or image processing.

  14. Runtime Analysis of Linear Temporal Logic Specifications

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus

    2001-01-01

    This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  15. Automata-Based Verification of Temporal Properties on Running Programs

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus; Lan, Sonie (Technical Monitor)

    2001-01-01

    This paper presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to Buchi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  16. Method for implementation of recursive hierarchical segmentation on parallel computers

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Inventor)

    2005-01-01

    A method, computer readable storage, and apparatus for implementing a recursive hierarchical segmentation algorithm on a parallel computing platform. The method includes setting a bottom level of recursion that defines where a recursive division of an image into sections stops dividing, and setting an intermediate level of recursion where the recursive division changes from a parallel implementation into a serial implementation. The segmentation algorithm is implemented according to the set levels. The method can also include setting a convergence check level of recursion with which the first level of recursion communicates with when performing a convergence check.

  17. Modelling Team Adversarial Actions in UAV Operations

    DTIC Science & Technology

    2007-11-01

    support for the dynamic creation and destruction of entities is the history dependent automata ( HDA ) [9] which evolved from an algorithmic structure for...checking bi-similarity of π- calculus agents. The authors define HDA as automata which perform actions that can carry information generated in the...past history of the system. The states, transitions and labels of the HDA are enriched with sets of local names. Thus, each transition can refer to the

  18. Using Block-local Atomicity to Detect Stale-value Concurrency Errors

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus; Biere, Armin

    2004-01-01

    Data races do not cover all kinds of concurrency errors. This paper presents a data-flow-based technique to find stale-value errors, which are not found by low-level and high-level data race algorithms. Stale values denote copies of shared data where the copy is no longer synchronized. The algorithm to detect such values works as a consistency check that does not require any assumptions or annotations of the program. It has been implemented as a static analysis in JNuke. The analysis is sound and requires only a single execution trace if implemented as a run-time checking algorithm. Being based on an analysis of Java bytecode, it encompasses the full program semantics, including arbitrarily complex expressions. Related techniques are more complex and more prone to over-reporting.

  19. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  20. Stakeout surveys for check dams in gullied areas by using the FreeXSap photogrammetric method

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Marín-Moreno, Víctor; Taguas, Encarnación V.

    2017-04-01

    Prior to any check dam construction work, it is necessary to carry out field stakeout surveys to define the layout of the dam series according to spacing criteria. While in expensive and complex settings, accurate measurement techniques might be justified (e.g. differential GPS), for small to medium-sized check dams typical of areas affected by gully erosion, simpler methodologies might be more cost-efficient. Innovative 3D photogrammetric techniques based on Structure-from-Motion (SfM) algorithms have proved to be useful across different geomorphological applications and have been successfully applied for gully assessment. In this communication, we present an efficient methodology consisting of the application of a free interface for photogrammetric reconstruction (FreeXSap) combined with simple distance measurements to obtain channel cross-sections determining the width and height of the check dam for a particular cross-section. We will illustrate its use for a hundred-meter-long gully under conventional agriculture in Córdoba (Spain). FreeXSap is an easy-to-use graphical user interface written in Matlab Code (Mathworks, 2016) for the reconstruction of 3D models from image sets taken with digital consumer-grade cameras. The SfM algorithms are based on MicMac scripts (Pierrot-Deseilligny and Cléry, 2011) along with routines specifically developed for the orientation, determination and geometrical analysis of cross-sections. It only requires the collection of a few pictures of a channel cross-section (normally below 5) by the camera operator to build an accurate 3D model, while a second operator holds a pole in vertical position (with the help of a bubble level attached to the pole) in order to provide orientation and scale for further processing. The spacing between check dams was determined using the head-to-toe rule by using a clinometer App on a Smartphone. In this work we will evaluate the results of the application of this methodology in terms of time and cost requirements and the capabilities and operation procedure of FreeXSap will be presented. This tool will be available for free download. REFERENCES Pierrot-Deseilligny, M and Cléry, I. APERO, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of a Set of Images. Proceedings of the ISPRS Commission V Symposium, Image Engineering and Vision Metrology, Trento, Italy, 2-4 March 2011.

  1. a Line-Based 3d Roof Model Reconstruction Algorithm: Tin-Merging and Reshaping (tmr)

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.

    2012-07-01

    Three-dimensional building model is one of the major components of a cyber-city and is vital for the realization of 3D GIS applications. In the last decade, the airborne laser scanning (ALS) data is widely used for 3D building model reconstruction and object extraction. Instead, based on 3D roof structural lines, this paper presents a novel algorithm for automatic roof models reconstruction. A line-based roof model reconstruction algorithm, called TIN-Merging and Reshaping (TMR), is proposed. The roof structural line, such as edges, eaves and ridges, can be measured manually from aerial stereo-pair, derived by feature line matching or inferred from ALS data. The originality of the TMR algorithm for 3D roof modelling is to perform geometric analysis and topology reconstruction among those unstructured lines and then reshapes the roof-type using elevation information from the 3D structural lines. For topology reconstruction, a line constrained Delaunay Triangulation algorithm is adopted where the input structural lines act as constraint and their vertex act as input points. Thus, the constructed TINs will not across the structural lines. Later at the stage of Merging, the shared edge between two TINs will be check if the original structural line exists. If not, those two TINs will be merged into a polygon. Iterative checking and merging of any two neighboured TINs/Polygons will result in roof polygons on the horizontal plane. Finally, at the Reshaping stage any two structural lines with fixed height will be used to adjust a planar function for the whole roof polygon. In case ALS data exist, the Reshaping stage can be simplified by adjusting the point cloud within the roof polygon. The proposed scheme reduces the complexity of 3D roof modelling and makes the modelling process easier. Five test datasets provided by ISPRS WG III/4 located at downtown Toronto, Canada and Vaihingen, Germany are used for experiment. The test sites cover high rise buildings and residential area with diverse roof type. For performance evaluation, the adopted roof structural lines are manually measured from the provided stereo-pair. Experimental results indicate a nearly 100% success rate for topology reconstruction was achieved provided that the 3D structural lines can be enclosed as polygons. On the other hand, the success rate at the Reshaping stage is dependent on the complexity of the rooftop structure. Thus, a visual inspection and semi-automatic adjustment of roof-type is suggested and implemented to complete the roof modelling. The results demonstrate that the proposed scheme is robust and reliable with a high degree of completeness, correctness, and quality, even when a group of connected buildings with multiple layers and mixed roof types is processed.

  2. Dietary Iron Bioavailability: Agreement between Estimation Methods and Association with Serum Ferritin Concentrations in Women of Childbearing Age

    PubMed Central

    Dias, Gisele Cristina; Morimoto, Juliana Massami; Marchioni, Dirce Maria Lobo; Colli, Célia

    2018-01-01

    Predictive iron bioavailability (FeBio) methods aimed at evaluating the association between diet and body iron have been proposed, but few studies explored their validity and practical usefulness in epidemiological studies. In this cross-sectional study involving 127 women (18–42 years) with presumably steady-state body iron balance, correlations were checked among various FeBio estimates (probabilistic approach and meal-based and diet-based algorithms) and serum ferritin (SF) concentrations. Iron deficiency was defined as SF < 15 µg/L. Pearson correlation, Friedman test, and linear regression were employed. Iron intake and prevalence of iron deficiency were 10.9 mg/day and 12.6%. Algorithm estimates were strongly correlated (0.69≤ r ≥0.85; p < 0.001), although diet-based models (8.5–8.9%) diverged from meal-based models (11.6–12.8%; p < 0.001). Still, all algorithms underestimated the probabilistic approach (17.2%). No significant association was found between SF and FeBio from Monsen (1978), Reddy (2000), and Armah (2013) algorithms. Nevertheless, there was a 30–37% difference in SF concentrations between women stratified at extreme tertiles of FeBio from Hallberg and Hulthén (2000) and Collings’ (2013) models. The results demonstrate discordance of FeBio from probabilistic approach and algorithm methods while suggesting two models with best performances to rank individuals according to their bioavailable iron intakes. PMID:29883384

  3. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults

    PubMed Central

    Verschueren, Sabine M. P.; Degens, Hans; Morse, Christopher I.; Onambélé, Gladys L.

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual’s physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry. PMID:29155839

  4. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults.

    PubMed

    Wullems, Jorgen A; Verschueren, Sabine M P; Degens, Hans; Morse, Christopher I; Onambélé, Gladys L

    2017-01-01

    Accurate monitoring of sedentary behaviour and physical activity is key to investigate their exact role in healthy ageing. To date, accelerometers using cut-off point models are most preferred for this, however, machine learning seems a highly promising future alternative. Hence, the current study compared between cut-off point and machine learning algorithms, for optimal quantification of sedentary behaviour and physical activity intensities in the elderly. Thus, in a heterogeneous sample of forty participants (aged ≥60 years, 50% female) energy expenditure during laboratory-based activities (ranging from sedentary behaviour through to moderate-to-vigorous physical activity) was estimated by indirect calorimetry, whilst wearing triaxial thigh-mounted accelerometers. Three cut-off point algorithms and a Random Forest machine learning model were developed and cross-validated using the collected data. Detailed analyses were performed to check algorithm robustness, and examine and benchmark both overall and participant-specific balanced accuracies. This revealed that the four models can at least be used to confidently monitor sedentary behaviour and moderate-to-vigorous physical activity. Nevertheless, the machine learning algorithm outperformed the cut-off point models by being robust for all individual's physiological and non-physiological characteristics and showing more performance of an acceptable level over the whole range of physical activity intensities. Therefore, we propose that Random Forest machine learning may be optimal for objective assessment of sedentary behaviour and physical activity in older adults using thigh-mounted triaxial accelerometry.

  5. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  6. Statistical Quality Control of Moisture Data in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Rukhovets, L.; Todling, R.

    1999-01-01

    A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.

  7. Developing a dengue forecast model using machine learning: A case study in China.

    PubMed

    Guo, Pi; Liu, Tao; Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-10-01

    In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011-2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics.

  8. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.

    PubMed

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-15

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.

  9. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Parallel CE/SE Computations via Domain Decomposition

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Jorgenson, Philip C. E.; Wang, Xiao-Yen; Chang, Sin-Chung

    2000-01-01

    This paper describes the parallelization strategy and achieved parallel efficiency of an explicit time-marching algorithm for solving conservation laws. The Space-Time Conservation Element and Solution Element (CE/SE) algorithm for solving the 2D and 3D Euler equations is parallelized with the aid of domain decomposition. The parallel efficiency of the resultant algorithm on a Silicon Graphics Origin 2000 parallel computer is checked.

  11. VISIR-I: small vessels, least-time nautical routes using wave forecasts

    NASA Astrophysics Data System (ADS)

    Mannarini, G.; Pinardi, N.; Coppini, G.; Oddo, P.; Iafrati, A.

    2015-09-01

    A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of meters and a displacement hull. The model is made up of three components: the route optimization algorithm, the mechanical model of the ship, and the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. The system also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. Significant wave height, wave spectrum peak period, and wave direction forecast fields are employed as an input. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.

  12. Modeling and optimization of joint quality for laser transmission joint of thermoplastic using an artificial neural network and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia

    2012-11-01

    A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.

  13. Finite-density effects in the Fredrickson-Andersen and Kob-Andersen kinetically-constrained models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teomy, Eial, E-mail: eialteom@post.tau.ac.il; Shokef, Yair, E-mail: shokef@tau.ac.il

    2014-08-14

    We calculate the corrections to the thermodynamic limit of the critical density for jamming in the Kob-Andersen and Fredrickson-Andersen kinetically-constrained models, and find them to be finite-density corrections, and not finite-size corrections. We do this by introducing a new numerical algorithm, which requires negligible computer memory since contrary to alternative approaches, it generates at each point only the necessary data. The algorithm starts from a single unfrozen site and at each step randomly generates the neighbors of the unfrozen region and checks whether they are frozen or not. Our results correspond to systems of size greater than 10{sup 7} ×more » 10{sup 7}, much larger than any simulated before, and are consistent with the rigorous bounds on the asymptotic corrections. We also find that the average number of sites that seed a critical droplet is greater than 1.« less

  14. Optimization of the resources management in fighting wildfires.

    PubMed

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  15. Optimization of the Resources Management in Fighting Wildfires

    NASA Astrophysics Data System (ADS)

    Martin-Fernández, Susana; Martínez-Falero, Eugenio; Pérez-González, J. Manuel

    2002-09-01

    Wildfires lead to important economic, social, and environmental losses, especially in areas of Mediterranean climate where they are of a high intensity and frequency. Over the past 30 years there has been a dramatic surge in the development and use of fire spread models. However, given the chaotic nature of environmental systems, it is very difficult to develop real-time fire-extinguishing models. This article proposes a method of optimizing the performance of wildfire fighting resources such that losses are kept to a minimum. The optimization procedure includes discrete simulation algorithms and Bayesian optimization methods for discrete and continuous problems (simulated annealing and Bayesian global optimization). Fast calculus algorithms are applied to provide optimization outcomes in short periods of time such that the predictions of the model and the real behavior of the fire, combat resources, and meteorological conditions are similar. In addition, adaptive algorithms take into account the chaotic behavior of wildfire so that the system can be updated with data corresponding to the real situation to obtain a new optimum solution. The application of this method to the Northwest Forest of Madrid (Spain) is also described. This application allowed us to check that it is a helpful tool in the decision-making process.

  16. Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication.

    PubMed

    Qin, Heng; Zuo, Yong; Zhang, Dong; Li, Yinghui; Wu, Jian

    2017-03-06

    Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.

  17. SU-F-T-300: Impact of Electron Density Modeling of ArcCHECK Cylindricaldiode Array On 3DVH Patient Specific QA Software Tool Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwe, P; Mhatre, V; Dandekar, P

    Purpose: 3DVH software is a patient specific quality assurance tool which estimates the 3D dose to the patient specific geometry with the help of Planned Dose Perturbation algorithm. The purpose of this study is to evaluate the impact of HU value of ArcCHECK phantom entered in Eclipse TPS on 3D dose & DVH QA analysis. Methods: Manufacturer of ArcCHECK phantom provides CT data set of phantom & recommends considering it as a homogeneous phantom with electron density (1.19 gm/cc or 282 HU) close to PMMA. We performed this study on Eclipse TPS (V13, VMS) & trueBEAM STx VMS Linac &more » ArcCHECK phantom (SNC). Plans were generated for 6MV photon beam, 20cm×20cm field size at isocentre & SPD (Source to phantom distance) of 86.7 cm to deliver 100cGy at isocentre. 3DVH software requires patients DICOM data generated by TPS & plan delivered on ArcCHECK phantom. Plans were generated in TPS by assigning different HU values to phantom. We analyzed gamma index & the dose profile for all plans along vertical down direction of beam’s central axis for Entry, Exit & Isocentre dose. Results: The global gamma passing rate (2% & 2mm) for manufacturer recommended HU value 282 was 96.3%. Detector entry, Isocentre & detector exit Doses were 1.9048 (1.9270), 1.00(1.0199) & 0.5078(0.527) Gy for TPS (Measured) respectively.The global gamma passing rate for electron density 1.1302 gm/cc was 98.6%. Detector entry, Isocentre & detector exit Doses were 1.8714 (1.8873), 1.00(0.9988) & 0.5211(0.516) Gy for TPS (Measured) respectively. Conclusion: Electron density value assigned by manufacturer does not hold true for every user. Proper modeling of electron density of ArcCHECK in TPS is essential to avoid systematic error in dose calculation of patient specific QA.« less

  18. A Shared Memory Algorithm and Proof for the Alternative Construct in CSP (Communicating Sequential Processes).

    DTIC Science & Technology

    1987-08-25

    Department Of Computer Science University Of Utah Salt Lake City, UT 84112 August 25, 1987 C IO ,c Acessin Tor i Ifl G I . DTIC ?T3 0 ummouned 0C0 Juxtil t...generated for each instance of an alternative operation. One procedure merits special attention. CheckAndCommit(AltListr, g ): INTEGER is called by process P...in figure 2. CheckAndCommit uses a procedure CheckGuard(AltListr, g ): INTEGER that scans th, remote alternative list AltList7 looking for a matching

  19. An Algorithm for Automatic Checking of Exercises in a Dynamic Geometry System: iGeom

    ERIC Educational Resources Information Center

    Isotani, Seiji; de Oliveira Brandao, Leonidas

    2008-01-01

    One of the key issues in e-learning environments is the possibility of creating and evaluating exercises. However, the lack of tools supporting the authoring and automatic checking of exercises for specifics topics (e.g., geometry) drastically reduces advantages in the use of e-learning environments on a larger scale, as usually happens in Brazil.…

  20. Comparison of ANN and RKS approaches to model SCC strength

    NASA Astrophysics Data System (ADS)

    Prakash, Aravind J.; Sathyan, Dhanya; Anand, K. B.; Aravind, N. R.

    2018-02-01

    Self compacting concrete (SCC) is a high performance concrete that has high flowability and can be used in heavily reinforced concrete members with minimal compaction segregation and bleeding. The mix proportioning of SCC is highly complex and large number of trials are required to get the mix with the desired properties resulting in the wastage of materials and time. The research on SCC has been highly empirical and no theoretical relationships have been developed between the mixture proportioning and engineering properties of SCC. In this work effectiveness of artificial neural network (ANN) and random kitchen sink algorithm(RKS) with regularized least square algorithm(RLS) in predicting the split tensile strength of the SCC is analysed. Random kitchen sink algorithm is used for mapping data to higher dimension and classification of this data is done using Regularized least square algorithm. The training and testing data for the algorithm was obtained experimentally using standard test procedures and materials available. Total of 40 trials were done which were used as the training and testing data. Trials were performed by varying the amount of fine aggregate, coarse aggregate, dosage and type of super plasticizer and water. Prediction accuracy of the ANN and RKS model is checked by comparing the RMSE value of both ANN and RKS. Analysis shows that eventhough the RKS model is good for large data set, its prediction accuracy is as good as conventional prediction method like ANN so the split tensile strength model developed by RKS can be used in industries for the proportioning of SCC with tailor made property.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannamaker, Philip E.

    We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problemmore » and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.« less

  2. On several aspects and applications of the multigrid method for solving partial differential equations

    NASA Technical Reports Server (NTRS)

    Dinar, N.

    1978-01-01

    Several aspects of multigrid methods are briefly described. The main subjects include the development of very efficient multigrid algorithms for systems of elliptic equations (Cauchy-Riemann, Stokes, Navier-Stokes), as well as the development of control and prediction tools (based on local mode Fourier analysis), used to analyze, check and improve these algorithms. Preliminary research on multigrid algorithms for time dependent parabolic equations is also described. Improvements in existing multigrid processes and algorithms for elliptic equations were studied.

  3. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection

    PubMed Central

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-01

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963

  4. Optimal designs for copula models

    PubMed Central

    Perrone, E.; Müller, W.G.

    2016-01-01

    Copula modelling has in the past decade become a standard tool in many areas of applied statistics. However, a largely neglected aspect concerns the design of related experiments. Particularly the issue of whether the estimation of copula parameters can be enhanced by optimizing experimental conditions and how robust all the parameter estimates for the model are with respect to the type of copula employed. In this paper an equivalence theorem for (bivariate) copula models is provided that allows formulation of efficient design algorithms and quick checks of whether designs are optimal or at least efficient. Some examples illustrate that in practical situations considerable gains in design efficiency can be achieved. A natural comparison between different copula models with respect to design efficiency is provided as well. PMID:27453616

  5. Methods for Geometric Data Validation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges are detected, among additional criteria. Self-intersection might lead to different results, e.g. intersection points, lines or areas. Depending on the geometric constellation, they might represent gaps between bounding polygons of the solids, overlaps, or violations of the 2-manifoldness. Not least due to the floating point problem in digital numbers, tolerances must be considered in some algorithms, e.g. planarity and solid self-intersection. Effects of different tolerance values and their handling is discussed; recommendations for suitable values are given. The goal of the paper is to give a clear understanding of geometric validation in the context of 3D city models. This should also enable the data holder to get a better comprehension of the validation results and their consequences on the deployment fields of the validated data set.

  6. Data Mining: The Art of Automated Knowledge Extraction

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Sipes, T.

    2012-12-01

    Data mining algorithms are used routinely in a wide variety of fields and they are gaining adoption in sciences. The realities of real world data analysis are that (a) data has flaws, and (b) the models and assumptions that we bring to the data are inevitably flawed, and/or biased and misspecified in some way. Data mining can improve data analysis by detecting anomalies in the data, check for consistency of the user model assumptions, and decipher complex patterns and relationships that would not be possible otherwise. The common form of data collected from in situ spacecraft measurements is multi-variate time series which represents one of the most challenging problems in data mining. We have successfully developed algorithms to deal with such data and have extended the algorithms to handle streaming data. In this talk, we illustrate the utility of our algorithms through several examples including automated detection of reconnection exhausts in the solar wind and flux ropes in the magnetotail. We also show examples from successful applications of our technique to analysis of 3D kinetic simulations. With an eye to the future, we provide an overview of our upcoming plans that include collaborative data mining, expert outsourcing data mining, computer vision for image analysis, among others. Finally, we discuss the integration of data mining algorithms with web-based services such as VxOs and other Heliophysics data centers and the resulting capabilities that it would enable.

  7. Finite-Time Performance of Local Search Algorithms: Theory and Application

    DTIC Science & Technology

    2010-06-10

    security devices deployed at airport security checkpoints are used to detect prohibited items (e.g., guns, knives, explosives). Each security device...security devices are deployed, the practical issue of determining how to optimally use them can be difficult. For an airport security system design...checked baggage), explosive detection systems (designed to detect explosives in checked baggage), and detailed hand search by an airport security official

  8. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs

    NASA Astrophysics Data System (ADS)

    Thorpe, J.

    2003-08-01

    We introduce a new class of low-density parity-check (LDPC) codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. We apply standard density evolution techniques to predict the performance of large protograph codes. Finally, we use a randomized search algorithm to find good protographs.

  9. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  10. Automatic Debugging Support for UML Designs

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Swanson, Keith (Technical Monitor)

    2001-01-01

    Design of large software systems requires rigorous application of software engineering methods covering all phases of the software process. Debugging during the early design phases is extremely important, because late bug-fixes are expensive. In this paper, we describe an approach which facilitates debugging of UML requirements and designs. The Unified Modeling Language (UML) is a set of notations for object-orient design of a software system. We have developed an algorithm which translates requirement specifications in the form of annotated sequence diagrams into structured statecharts. This algorithm detects conflicts between sequence diagrams and inconsistencies in the domain knowledge. After synthesizing statecharts from sequence diagrams, these statecharts usually are subject to manual modification and refinement. By using the "backward" direction of our synthesis algorithm. we are able to map modifications made to the statechart back into the requirements (sequence diagrams) and check for conflicts there. Fed back to the user conflicts detected by our algorithm are the basis for deductive-based debugging of requirements and domain theory in very early development stages. Our approach allows to generate explanations oil why there is a conflict and which parts of the specifications are affected.

  11. Parallel State Space Construction for a Model Checking Based on Maximality Semantics

    NASA Astrophysics Data System (ADS)

    El Abidine Bouneb, Zine; Saīdouni, Djamel Eddine

    2009-03-01

    The main limiting factor of the model checker integrated in the concurrency verification environment FOCOVE [1, 2], which use the maximality based labeled transition system (noted MLTS) as a true concurrency model[3, 4], is currently the amount of available physical memory. Many techniques have been developed to reduce the size of a state space. An interesting technique among them is the alpha equivalence reduction. Distributed memory execution environment offers yet another choice. The main contribution of the paper is to show that the parallel state space construction algorithm proposed in [5], which is based on interleaving semantics using LTS as semantic model, may be adapted easily to the distributed implementation of the alpha equivalence reduction for the maximality based labeled transition systems.

  12. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.

  13. Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets

    NASA Astrophysics Data System (ADS)

    Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua

    2017-09-01

    In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.

  14. Teaching Semantic Tableaux Method for Propositional Classical Logic with a CAS

    ERIC Educational Resources Information Center

    Aguilera-Venegas, Gabriel; Galán-García, José Luis; Galán-García, María Ángeles; Rodríguez-Cielos, Pedro

    2015-01-01

    Automated theorem proving (ATP) for Propositional Classical Logic is an algorithm to check the validity of a formula. It is a very well-known problem which is decidable but co-NP-complete. There are many algorithms for this problem. In this paper, an educationally oriented implementation of Semantic Tableaux method is described. The program has…

  15. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.

    PubMed

    Abella, Monica; Serrano, Estefania; Garcia-Blas, Javier; García, Ines; de Molina, Claudia; Carretero, Jesus; Desco, Manuel

    2017-01-01

    The availability of digital X-ray detectors, together with advances in reconstruction algorithms, creates an opportunity for bringing 3D capabilities to conventional radiology systems. The downside is that reconstruction algorithms for non-standard acquisition protocols are generally based on iterative approaches that involve a high computational burden. The development of new flexible X-ray systems could benefit from computer simulations, which may enable performance to be checked before expensive real systems are implemented. The development of simulation/reconstruction algorithms in this context poses three main difficulties. First, the algorithms deal with large data volumes and are computationally expensive, thus leading to the need for hardware and software optimizations. Second, these optimizations are limited by the high flexibility required to explore new scanning geometries, including fully configurable positioning of source and detector elements. And third, the evolution of the various hardware setups increases the effort required for maintaining and adapting the implementations to current and future programming models. Previous works lack support for completely flexible geometries and/or compatibility with multiple programming models and platforms. In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be flexible and fast. Optimized implementation for different families of GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach based on a layered architecture and parallel implementation of the algorithms for both architectures. A detailed performance evaluation demonstrates that for different system configurations and hardware platforms, FUX-Sim maximizes performance with the CUDA programming model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU and OpenCL programming models allow FUX-Sim to be executed over a wide range of hardware platforms.

  16. A new image enhancement algorithm with applications to forestry stand mapping

    NASA Technical Reports Server (NTRS)

    Kan, E. P. F. (Principal Investigator); Lo, J. K.

    1975-01-01

    The author has identified the following significant results. Results show that the new algorithm produced cleaner classification maps in which holes of small predesignated sizes were eliminated and significant boundary information was preserved. These cleaner post-processed maps better resemble true life timber stand maps and are thus more usable products than the pre-post-processing ones: Compared to an accepted neighbor-checking post-processing technique, the new algorithm is more appropriate for timber stand mapping.

  17. Developing a dengue forecast model using machine learning: A case study in China

    PubMed Central

    Zhang, Qin; Wang, Li; Xiao, Jianpeng; Zhang, Qingying; Luo, Ganfeng; Li, Zhihao; He, Jianfeng; Zhang, Yonghui; Ma, Wenjun

    2017-01-01

    Background In China, dengue remains an important public health issue with expanded areas and increased incidence recently. Accurate and timely forecasts of dengue incidence in China are still lacking. We aimed to use the state-of-the-art machine learning algorithms to develop an accurate predictive model of dengue. Methodology/Principal findings Weekly dengue cases, Baidu search queries and climate factors (mean temperature, relative humidity and rainfall) during 2011–2014 in Guangdong were gathered. A dengue search index was constructed for developing the predictive models in combination with climate factors. The observed year and week were also included in the models to control for the long-term trend and seasonality. Several machine learning algorithms, including the support vector regression (SVR) algorithm, step-down linear regression model, gradient boosted regression tree algorithm (GBM), negative binomial regression model (NBM), least absolute shrinkage and selection operator (LASSO) linear regression model and generalized additive model (GAM), were used as candidate models to predict dengue incidence. Performance and goodness of fit of the models were assessed using the root-mean-square error (RMSE) and R-squared measures. The residuals of the models were examined using the autocorrelation and partial autocorrelation function analyses to check the validity of the models. The models were further validated using dengue surveillance data from five other provinces. The epidemics during the last 12 weeks and the peak of the 2014 large outbreak were accurately forecasted by the SVR model selected by a cross-validation technique. Moreover, the SVR model had the consistently smallest prediction error rates for tracking the dynamics of dengue and forecasting the outbreaks in other areas in China. Conclusion and significance The proposed SVR model achieved a superior performance in comparison with other forecasting techniques assessed in this study. The findings can help the government and community respond early to dengue epidemics. PMID:29036169

  18. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    PubMed

    Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  19. Novel optimization technique of isolated microgrid with hydrogen energy storage

    PubMed Central

    Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433

  20. Generalized Detectability for Discrete Event Systems

    PubMed Central

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  1. A Novel Strategy Using Factor Graphs and the Sum-Product Algorithm for Satellite Broadcast Scheduling Problems

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh

    This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.

  2. FPGA implementation of low complexity LDPC iterative decoder

    NASA Astrophysics Data System (ADS)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  3. Building Single-Cell Models of Planktonic Metabolism Using PSAMM

    NASA Astrophysics Data System (ADS)

    Dufault-Thompson, K.; Zhang, Y.; Steffensen, J. L.

    2016-02-01

    The Genome-scale models (GEMs) of metabolic networks simulate the metabolic activities of individual cells by integrating omics data with biochemical and physiological measurements. GEMs were applied in the simulation of various photo-, chemo-, and heterotrophic organisms and provide significant insights into the function and evolution of planktonic cells. Despite the quick accumulation of GEMs, challenges remain in assembling the individual cell-based models into community-level models. Among various problems, the lack of consistencies in model representation and model quality checking has hindered the integration of individual GEMs and can lead to erroneous conclusions in the development of new modeling algorithms. Here, we present a Portable System for the Analysis of Metabolic Models (PSAMM). Along with the software a novel format of model representation was developed to enhance the readability of model files and permit the inclusion of heterogeneous, model-specific annotation information. A number of quality checking procedures was also implemented in PSAMM to ensure stoichiometric balance and to identify unused reactions. Using a case study of Shewanella piezotolerans WP3, we demonstrated the application of PSAMM in simulating the coupling of carbon utilization and energy production pathways under low-temperature and high-pressure stress. Applying PSAMM, we have also analyzed over 50 GEMs in the current literature and released an updated collection of the models with corrections on a number of common inconsistencies. Overall, PSAMM opens up new opportunities for integrating individual GEMs for the construction and mathematical simulation of community-level models in the scope of entire ecosystems.

  4. Multi-objective parametric optimization of Inertance type pulse tube refrigerator using response surface methodology and non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Rout, Sachindra K.; Choudhury, Balaji K.; Sahoo, Ranjit K.; Sarangi, Sunil K.

    2014-07-01

    The modeling and optimization of a Pulse Tube Refrigerator is a complicated task, due to its complexity of geometry and nature. The aim of the present work is to optimize the dimensions of pulse tube and regenerator for an Inertance-Type Pulse Tube Refrigerator (ITPTR) by using Response Surface Methodology (RSM) and Non-Sorted Genetic Algorithm II (NSGA II). The Box-Behnken design of the response surface methodology is used in an experimental matrix, with four factors and two levels. The diameter and length of the pulse tube and regenerator are chosen as the design variables where the rest of the dimensions and operating conditions of the ITPTR are constant. The required output responses are the cold head temperature (Tcold) and compressor input power (Wcomp). Computational fluid dynamics (CFD) have been used to model and solve the ITPTR. The CFD results agreed well with those of the previously published paper. Also using the results from the 1-D simulation, RSM is conducted to analyse the effect of the independent variables on the responses. To check the accuracy of the model, the analysis of variance (ANOVA) method has been used. Based on the proposed mathematical RSM models a multi-objective optimization study, using the Non-sorted genetic algorithm II (NSGA-II) has been performed to optimize the responses.

  5. On the verification of intransitive noninterference in mulitlevel security.

    PubMed

    Ben Hadj-Alouane, Nejib; Lafrance, Stéphane; Lin, Feng; Mullins, John; Yeddes, Mohamed Moez

    2005-10-01

    We propose an algorithmic approach to the problem of verification of the property of intransitive noninterference (INI), using tools and concepts of discrete event systems (DES). INI can be used to characterize and solve several important security problems in multilevel security systems. In a previous work, we have established the notion of iP-observability, which precisely captures the property of INI. We have also developed an algorithm for checking iP-observability by indirectly checking P-observability for systems with at most three security levels. In this paper, we generalize the results for systems with any finite number of security levels by developing a direct method for checking iP-observability, based on an insightful observation that the iP function is a left congruence in terms of relations on formal languages. To demonstrate the applicability of our approach, we propose a formal method to detect denial of service vulnerabilities in security protocols based on INI. This method is illustrated using the TCP/IP protocol. The work extends the theory of supervisory control of DES to a new application domain.

  6. What does fault tolerant Deep Learning need from MPI?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatya, Vinay C.; Vishnu, Abhinav; Siegel, Charles M.

    Deep Learning (DL) algorithms have become the {\\em de facto} Machine Learning (ML) algorithm for large scale data analysis. DL algorithms are computationally expensive -- even distributed DL implementations which use MPI require days of training (model learning) time on commonly studied datasets. Long running DL applications become susceptible to faults -- requiring development of a fault tolerant system infrastructure, in addition to fault tolerant DL algorithms. This raises an important question: {\\em What is needed from MPI for designing fault tolerant DL implementations?} In this paper, we address this problem for permanent faults. We motivate the need for amore » fault tolerant MPI specification by an in-depth consideration of recent innovations in DL algorithms and their properties, which drive the need for specific fault tolerance features. We present an in-depth discussion on the suitability of different parallelism types (model, data and hybrid); a need (or lack thereof) for check-pointing of any critical data structures; and most importantly, consideration for several fault tolerance proposals (user-level fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL implementations. We leverage a distributed memory implementation of Caffe, currently available under the Machine Learning Toolkit for Extreme Scale (MaTEx). We implement our approaches by extending MaTEx-Caffe for using ULFM-based implementation. Our evaluation using the ImageNet dataset and AlexNet neural network topology demonstrates the effectiveness of the proposed fault tolerant DL implementation using OpenMPI based ULFM.« less

  7. Validation of SCIAMACHY and TOMS UV Radiances Using Ground and Space Observations

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bhartia, P. K.; Bojkov, B. R.; Kowalewski, M.; Labow, G.; Ahmad, Z.

    2004-01-01

    Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all B W instruments in orbit (TOMS, SBW/2, GOME, SCIAMACHY, OM, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. Radiance comparisons employ forward models and are inherently more accurate than inverse (retrieval) algorithms. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. TOMS and SCIAMACHY calibrations are checked to demonstrate this method and to demonstrate applicability for long term trends.

  8. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual

    PubMed Central

    Runciman, W; Kluger, M; Morris, R; Paix, A; Watterson, L; Webb, R

    2005-01-01

    Background: All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD–A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). Methods: The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Results: Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60–100 anaesthetists was then collated and is included. Conclusion: The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected. PMID:15933282

  9. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual.

    PubMed

    Runciman, W B; Kluger, M T; Morris, R W; Paix, A D; Watterson, L M; Webb, R K

    2005-06-01

    All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD-A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60-100 anaesthetists was then collated and is included. The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected.

  10. Research of improved banker algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Xingde; Xu, Hong; Qiao, Shijiao

    2013-03-01

    In the multi-process operating system, resource management strategy of system is a critical global issue, especially when many processes implicating for the limited resources, since unreasonable scheduling will cause dead lock. The most classical solution for dead lock question is the banker algorithm; however, it has its own deficiency and only can avoid dead lock occurring in a certain extent. This article aims at reducing unnecessary safety checking, and then uses the new allocation strategy to improve the banker algorithm. Through full analysis and example verification of the new allocation strategy, the results show the improved banker algorithm obtains substantial increase in performance.

  11. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  12. Bayesian models based on test statistics for multiple hypothesis testing problems.

    PubMed

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  13. Performance Improvements of the Phoneme Recognition Algorithm.

    DTIC Science & Technology

    1984-06-01

    VECTOR NUNDIRt"tIVECTj Beginning vector ; of speech to be extracted INDEX * MOD(IVECT,4) ICheck for vector being ; last vector in block 63 ILE u ((JUICT...1fIER0) ; Read header block. CALL CHECK(IERO) IHEADER(57) : ICOfP ; Change a of freq. components ICHECK : (IHEADER(56) - ([LENGTH - 1)) * ILENGTH...ICONT .Al. ICHECK ) GO TO 55 ; Check to make sure correct ;amount of vectors have been created# INCR u INCR + 32 ;Jump over last set of components

  14. Building on crossvalidation for increasing the quality of geostatistical modeling

    USGS Publications Warehouse

    Olea, R.A.

    2012-01-01

    The random function is a mathematical model commonly used in the assessment of uncertainty associated with a spatially correlated attribute that has been partially sampled. There are multiple algorithms for modeling such random functions, all sharing the requirement of specifying various parameters that have critical influence on the results. The importance of finding ways to compare the methods and setting parameters to obtain results that better model uncertainty has increased as these algorithms have grown in number and complexity. Crossvalidation has been used in spatial statistics, mostly in kriging, for the analysis of mean square errors. An appeal of this approach is its ability to work with the same empirical sample available for running the algorithms. This paper goes beyond checking estimates by formulating a function sensitive to conditional bias. Under ideal conditions, such function turns into a straight line, which can be used as a reference for preparing measures of performance. Applied to kriging, deviations from the ideal line provide sensitivity to the semivariogram lacking in crossvalidation of kriging errors and are more sensitive to conditional bias than analyses of errors. In terms of stochastic simulation, in addition to finding better parameters, the deviations allow comparison of the realizations resulting from the applications of different methods. Examples show improvements of about 30% in the deviations and approximately 10% in the square root of mean square errors between reasonable starting modelling and the solutions according to the new criteria. ?? 2011 US Government.

  15. Algorithmic characterization results for the Kerr-NUT-(A)dS space-time. II. KIDs for the Kerr-(A)(de Sitter) family

    NASA Astrophysics Data System (ADS)

    Paetz, Tim-Torben

    2017-04-01

    We characterize Cauchy data sets leading to vacuum space-times with vanishing Mars-Simon tensor. This approach provides an algorithmic procedure to check whether a given initial data set (Σ ,hi j,Ki j) evolves into a space-time which is locally isometric to a member of the Kerr-(A)(dS) family.

  16. Biochemia Medica has started using the CrossCheck plagiarism detection software powered by iThenticate

    PubMed Central

    Šupak-Smolčić, Vesna; Šimundić, Ana-Maria

    2013-01-01

    In February 2013, Biochemia Medica has joined CrossRef, which enabled us to implement CrossCheck plagiarism detection service. Therefore, all manuscript submitted to Biochemia Medica are now first assigned to Research integrity editor (RIE), before sending the manuscript for peer-review. RIE submits the text to CrossCheck analysis and is responsible for reviewing the results of the text similarity analysis. Based on the CrossCheck analysis results, RIE subsequently provides a recommendation to the Editor-in-chief (EIC) on whether the manuscript should be forwarded to peer-review, corrected for suspected parts prior to peer-review or immediately rejected. Final decision on the manuscript is, however, with the EIC. We hope that our new policy and manuscript processing algorithm will help us to further increase the overall quality of our Journal. PMID:23894858

  17. SU-F-T-423: Automating Treatment Planning for Cervical Cancer in Low- and Middle- Income Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisling, K; Zhang, L; Yang, J

    Purpose: To develop and test two independent algorithms that automatically create the photon treatment fields for a four-field box beam arrangement, a common treatment technique for cervical cancer in low- and middle-income countries. Methods: Two algorithms were developed and integrated into Eclipse using its Advanced Programming Interface:3D Method: We automatically segment bony anatomy on CT using an in-house multi-atlas contouring tool and project the structures into the beam’s-eye-view. We identify anatomical landmarks on the projections to define the field apertures. 2D Method: We generate DRRs for all four beams. An atlas of DRRs for six standard patients with corresponding fieldmore » apertures are deformably registered to the test patient DRRs. The set of deformed atlas apertures are fitted to an expected shape to define the final apertures. Both algorithms were tested on 39 patient CTs, and the resulting treatment fields were scored by a radiation oncologist. We also investigated the feasibility of using one algorithm as an independent check of the other algorithm. Results: 96% of the 3D-Method-generated fields and 79% of the 2D-method-generated fields were scored acceptable for treatment (“Per Protocol” or “Acceptable Variation”). The 3D Method generated more fields scored “Per Protocol” than the 2D Method (62% versus 17%). The 4% of the 3D-Method-generated fields that were scored “Unacceptable Deviation” were all due to an improper L5 vertebra contour resulting in an unacceptable superior jaw position. When these same patients were planned with the 2D method, the superior jaw was acceptable, suggesting that the 2D method can be used to independently check the 3D method. Conclusion: Our results show that our 3D Method is feasible for automatically generating cervical treatment fields. Furthermore, the 2D Method can serve as an automatic, independent check of the automatically-generated treatment fields. These algorithms will be implemented for fully automated cervical treatment planning.« less

  18. Use of GOES, SSM/I, TRMM Satellite Measurements Estimating Water Budget Variations in Gulf of Mexico - Caribbean Sea Basins

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of 3ourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple- algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective m identifying problems in estimating vapor transports from a leaky operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  19. Monthly-Diurnal Water Budget Variability Over Gulf of Mexico-Caribbean Sea Basin from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Santos, P.

    2006-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system design d to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5-channel Imager, the TRMM TMI radiometer, and the DMSP 7-channel passive microwave radiometers (SSM/I) have been acquired for the combined Gulf of Mexico-Caribbean Sea basin. Whereas the methodology has been tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the TRMM and SSM/I passive microwave measurements in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, the intent is to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is validated by cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. A further check on the validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithms to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin, although it is fair to say that these checks are more effective in identifying problems in estimating vapor transports from a "leaky" operational radiosonde network than in verifying the transport estimates determined from the satellite algorithm system. Total columnar atmospheric water budget results are presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98,October-98, and January- 1999. These results are used to emphasize the changing relationship in E-P, as well as in the varying roles of storage and advection in balancing E-P both on daily and monthly time scales and on localized and basin space scales. Results from the algorithm-to-algorithm intercomparisons are also presented in the context of sensitivity testing to help understand the intrinsic uncertainties in evaluating the water budget terms by an all-satellite algorithm approach.

  20. Entanglement-assisted quantum quasicyclic low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor

    2009-03-01

    We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.

  1. SU-F-J-148: A Collapsed Cone Algorithm Can Be Used for Quality Assurance for Monaco Treatment Plans for the MR-Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, S; Asselen, B van; Wolthaus, J

    2016-06-15

    Purpose: Treatment plans for the MR-linac, calculated in Monaco v5.19, include direct simulation of the effects of the 1.5T B{sub 0}-field. We tested the feasibility of using a collapsed-cone (CC) algorithm in Oncentra, which does not account for effects of the B{sub 0}-field, as a fast online, independent 3D check of dose calculations. Methods: Treatment plans for six patients were generated in Monaco with a 6 MV FFF beam and the B{sub 0}-field. All plans were recalculated with a CC model of the same beam. Plans for the same patients were also generated in Monaco without the B{sub 0}-field. Themore » mean dose (Dmean) and doses to 10% (D10%) and 90% (D90%) of the volume were determined, as percentages of the prescribed dose, for target volumes and OARs in each calculated dose distribution. Student’s t-tests between paired parameters from Monaco plans and corresponding CC calculations were performed. Results: Figure 1 shows an example of the difference between dose distributions calculated in Monaco, with the B{sub 0}-field, and the CC algorithm. Figure 2 shows distributions of (absolute) difference between parameters for Monaco plans, with the B{sub 0}-field, and CC calculations. The Dmean and D90% values for the CTVs and PTVs were significantly different, but differences in dose distributions arose predominantly at the edges of the target volumes. Inclusion of the B{sub 0}-field had little effect on agreement of the Dmean values, as illustrated by Figure 3, nor on agreement of the D10% and D90% values. Conclusion: Dose distributions recalculated with a CC algorithm show good agreement with those calculated with Monaco, for plans both with and without the B{sub 0}-field, indicating that the CC algorithm could be used to check online treatment planning for the MRlinac. Agreement for a wider range of treatment sites, and the feasibility of using the γ-test as a simple pass/fail criterion, will be investigated.« less

  2. Automated basin delineation from digital terrain data

    NASA Technical Reports Server (NTRS)

    Marks, D.; Dozier, J.; Frew, J.

    1983-01-01

    While digital terrain grids are now in wide use, accurate delineation of drainage basins from these data is difficult to efficiently automate. A recursive order N solution to this problem is presented. The algorithm is fast because no point in the basin is checked more than once, and no points outside the basin are considered. Two applications for terrain analysis and one for remote sensing are given to illustrate the method, on a basin with high relief in the Sierra Nevada. This technique for automated basin delineation will enhance the utility of digital terrain analysis for hydrologic modeling and remote sensing.

  3. Proof Checking the RSA (Rivest, Shamir and Adleman) Public Key Encryption Algorithm.

    DTIC Science & Technology

    1982-09-01

    Pt- R136 626 PROOF CHECKING THE RSA (RIVEST SNAMIR AND ADLENRN) 1/i PUBLIC KEY ENCRYPTION.. (U) TEXAS UNIV AT AUSTIN INST FOR COMPUTING SCIENCE AND...Austin, Texas 78712 Ir t1 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE - Software Systems Science Office of Naval Research September. 1982...properties are proved in [11. The third property is not proved; instead the authors of [li) argue that "all the obvious approaches to breaking our system are

  4. Galileo: The Added Value for Integrity in Harsh Environments.

    PubMed

    Borio, Daniele; Gioia, Ciro

    2016-01-16

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.

  5. Galileo: The Added Value for Integrity in Harsh Environments

    PubMed Central

    Borio, Daniele; Gioia, Ciro

    2016-01-01

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability. PMID:26784205

  6. PCSYS: The optimal design integration system picture drawing system with hidden line algorithm capability for aerospace vehicle configurations

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderburg, J. D.

    1977-01-01

    A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.

  7. General A Scheme to Share Information via Employing Discrete Algorithm to Quantum States

    NASA Astrophysics Data System (ADS)

    Kang, Guo-Dong; Fang, Mao-Fa

    2011-02-01

    We propose a protocol for information sharing between two legitimate parties (Bob and Alice) via public-key cryptography. In particular, we specialize the protocol by employing discrete algorithm under mod that maps integers to quantum states via photon rotations. Based on this algorithm, we find that the protocol is secure under various classes of attacks. Specially, owe to the algorithm, the security of the classical privacy contained in the quantum public-key and the corresponding ciphertext is guaranteed. And the protocol is robust against the impersonation attack and the active wiretapping attack by designing particular checking processing, thus the protocol is valid.

  8. An Arbitrary First Order Theory Can Be Represented by a Program: A Theorem

    NASA Technical Reports Server (NTRS)

    Hosheleva, Olga

    1997-01-01

    How can we represent knowledge inside a computer? For formalized knowledge, classical logic seems to be the most adequate tool. Classical logic is behind all formalisms of classical mathematics, and behind many formalisms used in Artificial Intelligence. There is only one serious problem with classical logic: due to the famous Godel's theorem, classical logic is algorithmically undecidable; as a result, when the knowledge is represented in the form of logical statements, it is very difficult to check whether, based on this statement, a given query is true or not. To make knowledge representations more algorithmic, a special field of logic programming was invented. An important portion of logic programming is algorithmically decidable. To cover knowledge that cannot be represented in this portion, several extensions of the decidable fragments have been proposed. In the spirit of logic programming, these extensions are usually introduced in such a way that even if a general algorithm is not available, good heuristic methods exist. It is important to check whether the already proposed extensions are sufficient, or further extensions is necessary. In the present paper, we show that one particular extension, namely, logic programming with classical negation, introduced by M. Gelfond and V. Lifschitz, can represent (in some reasonable sense) an arbitrary first order logical theory.

  9. Using Latent Class Analysis to Model Temperament Types.

    PubMed

    Loken, Eric

    2004-10-01

    Mixture models are appropriate for data that arise from a set of qualitatively different subpopulations. In this study, latent class analysis was applied to observational data from a laboratory assessment of infant temperament at four months of age. The EM algorithm was used to fit the models, and the Bayesian method of posterior predictive checks was used for model selection. Results show at least three types of infant temperament, with patterns consistent with those identified by previous researchers who classified the infants using a theoretically based system. Multiple imputation of group memberships is proposed as an alternative to assigning subjects to the latent class with maximum posterior probability in order to reflect variance due to uncertainty in the parameter estimation. Latent class membership at four months of age predicted longitudinal outcomes at four years of age. The example illustrates issues relevant to all mixture models, including estimation, multi-modality, model selection, and comparisons based on the latent group indicators.

  10. Optimal policy for profit maximising in an EOQ model under non-linear holding cost and stock-dependent demand rate

    NASA Astrophysics Data System (ADS)

    Pando, V.; García-Laguna, J.; San-José, L. A.

    2012-11-01

    In this article, we integrate a non-linear holding cost with a stock-dependent demand rate in a maximising profit per unit time model, extending several inventory models studied by other authors. After giving the mathematical formulation of the inventory system, we prove the existence and uniqueness of the optimal policy. Relying on this result, we can obtain the optimal solution using different numerical algorithms. Moreover, we provide a necessary and sufficient condition to determine whether a system is profitable, and we establish a rule to check when a given order quantity is the optimal lot size of the inventory model. The results are illustrated through numerical examples and the sensitivity of the optimal solution with respect to changes in some values of the parameters is assessed.

  11. Searching for memories, Sudoku, implicit check bits, and the iterative use of not-always-correct rapid neural computation.

    PubMed

    Hopfield, J J

    2008-05-01

    The algorithms that simple feedback neural circuits representing a brain area can rapidly carry out are often adequate to solve easy problems but for more difficult problems can return incorrect answers. A new excitatory-inhibitory circuit model of associative memory displays the common human problem of failing to rapidly find a memory when only a small clue is present. The memory model and a related computational network for solving Sudoku puzzles produce answers that contain implicit check bits in the representation of information across neurons, allowing a rapid evaluation of whether the putative answer is correct or incorrect through a computation related to visual pop-out. This fact may account for our strong psychological feeling of right or wrong when we retrieve a nominal memory from a minimal clue. This information allows more difficult computations or memory retrievals to be done in a serial fashion by using the fast but limited capabilities of a computational module multiple times. The mathematics of the excitatory-inhibitory circuits for associative memory and for Sudoku, both of which are understood in terms of energy or Lyapunov functions, is described in detail.

  12. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation

    PubMed Central

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David

    2017-01-01

    Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. Conclusions The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. PMID:28213343

  13. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation.

    PubMed

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David; Yang, Rong

    2017-02-17

    As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. ©Xianlai Chen, Yang C Fann, Matthew McAuliffe, David Vismer, Rong Yang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.02.2017.

  14. Evolutionary Approach for Relative Gene Expression Algorithms

    PubMed Central

    Czajkowski, Marcin

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space. PMID:24790574

  15. Addressing Dynamic Issues of Program Model Checking

    NASA Technical Reports Server (NTRS)

    Lerda, Flavio; Visser, Willem

    2001-01-01

    Model checking real programs has recently become an active research area. Programs however exhibit two characteristics that make model checking difficult: the complexity of their state and the dynamic nature of many programs. Here we address both these issues within the context of the Java PathFinder (JPF) model checker. Firstly, we will show how the state of a Java program can be encoded efficiently and how this encoding can be exploited to improve model checking. Next we show how to use symmetry reductions to alleviate some of the problems introduced by the dynamic nature of Java programs. Lastly, we show how distributed model checking of a dynamic program can be achieved, and furthermore, how dynamic partitions of the state space can improve model checking. We support all our findings with results from applying these techniques within the JPF model checker.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbee, D; McCarthy, A; Galavis, P

    Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# tomore » check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria database queries, and eventual automated plan checks.« less

  17. Privacy Protection on Multiple Sensitive Attributes

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Ye, Xiaojun

    In recent years, a privacy model called k-anonymity has gained popularity in the microdata releasing. As the microdata may contain multiple sensitive attributes about an individual, the protection of multiple sensitive attributes has become an important problem. Different from the existing models of single sensitive attribute, extra associations among multiple sensitive attributes should be invested. Two kinds of disclosure scenarios may happen because of logical associations. The Q&S Diversity is checked to prevent the foregoing disclosure risks, with an α Requirement definition used to ensure the diversity requirement. At last, a two-step greedy generalization algorithm is used to carry out the multiple sensitive attributes processing which deal with quasi-identifiers and sensitive attributes respectively. We reduce the overall distortion by the measure of Masking SA.

  18. Techniques used for the analysis of oculometer eye-scanning data obtained from an air traffic control display

    NASA Technical Reports Server (NTRS)

    Crawford, Daniel J.; Burdette, Daniel W.; Capron, William R.

    1993-01-01

    The methodology and techniques used to collect and analyze look-point position data from a real-time ATC display-format comparison experiment are documented. That study compared the delivery precision and controller workload of three final approach spacing aid display formats. Using an oculometer, controller lookpoint position data were collected, associated with gaze objects (e.g., moving aircraft) on the ATC display, and analyzed to determine eye-scan behavior. The equipment involved and algorithms for saving, synchronizing with the ATC simulation output, and filtering the data are described. Target (gaze object) and cross-check scanning identification algorithms are also presented. Data tables are provided of total dwell times, average dwell times, and cross-check scans. Flow charts, block diagrams, file record descriptors, and source code are included. The techniques and data presented are intended to benefit researchers in other studies that incorporate non-stationary gaze objects and oculometer equipment.

  19. Active structural acoustic control of helicopter interior multifrequency noise using input-output-based hybrid control

    NASA Astrophysics Data System (ADS)

    Ma, Xunjun; Lu, Yang; Wang, Fengjiao

    2017-09-01

    This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.

  20. Analysis of an ABE Scheme with Verifiable Outsourced Decryption.

    PubMed

    Liao, Yongjian; He, Yichuan; Li, Fagen; Jiang, Shaoquan; Zhou, Shijie

    2018-01-10

    Attribute-based encryption (ABE) is a popular cryptographic technology to protect the security of users' data in cloud computing. In order to reduce its decryption cost, outsourcing the decryption of ciphertexts is an available method, which enables users to outsource a large number of decryption operations to the cloud service provider. To guarantee the correctness of transformed ciphertexts computed by the cloud server via the outsourced decryption, it is necessary to check the correctness of the outsourced decryption to ensure security for the data of users. Recently, Li et al. proposed a full verifiability of the outsourced decryption of ABE scheme (ABE-VOD) for the authorized users and unauthorized users, which can simultaneously check the correctness of the transformed ciphertext for both them. However, in this paper we show that their ABE-VOD scheme cannot obtain the results which they had shown, such as finding out all invalid ciphertexts, and checking the correctness of the transformed ciphertext for the authorized user via checking it for the unauthorized user. We first construct some invalid ciphertexts which can pass the validity checking in the decryption algorithm. That means their "verify-then-decrypt" skill is unavailable. Next, we show that the method to check the validity of the outsourced decryption for the authorized users via checking it for the unauthorized users is not always correct. That is to say, there exist some invalid ciphertexts which can pass the validity checking for the unauthorized user, but cannot pass the validity checking for the authorized user.

  1. Analysis of an ABE Scheme with Verifiable Outsourced Decryption

    PubMed Central

    He, Yichuan; Li, Fagen; Jiang, Shaoquan; Zhou, Shijie

    2018-01-01

    Attribute-based encryption (ABE) is a popular cryptographic technology to protect the security of users’ data in cloud computing. In order to reduce its decryption cost, outsourcing the decryption of ciphertexts is an available method, which enables users to outsource a large number of decryption operations to the cloud service provider. To guarantee the correctness of transformed ciphertexts computed by the cloud server via the outsourced decryption, it is necessary to check the correctness of the outsourced decryption to ensure security for the data of users. Recently, Li et al. proposed a full verifiability of the outsourced decryption of ABE scheme (ABE-VOD) for the authorized users and unauthorized users, which can simultaneously check the correctness of the transformed ciphertext for both them. However, in this paper we show that their ABE-VOD scheme cannot obtain the results which they had shown, such as finding out all invalid ciphertexts, and checking the correctness of the transformed ciphertext for the authorized user via checking it for the unauthorized user. We first construct some invalid ciphertexts which can pass the validity checking in the decryption algorithm. That means their “verify-then-decrypt” skill is unavailable. Next, we show that the method to check the validity of the outsourced decryption for the authorized users via checking it for the unauthorized users is not always correct. That is to say, there exist some invalid ciphertexts which can pass the validity checking for the unauthorized user, but cannot pass the validity checking for the authorized user. PMID:29320418

  2. A Method for Correcting Broken Hyphenations in Noisy English Text

    DTIC Science & Technology

    2012-04-01

    words, such as a frequency list . An algorithm that would make use of word validation, taking into account the various usages of hyphens in English, is...commas, and question marks from the surrounding words. The British National Corpus (2) (BNC) frequency list was used to perform the validation...rather than a separate spell checking program. This was primarily because implementation of the algorithm using a frequency list was quite trivial

  3. Verifying Multi-Agent Systems via Unbounded Model Checking

    NASA Technical Reports Server (NTRS)

    Kacprzak, M.; Lomuscio, A.; Lasica, T.; Penczek, W.; Szreter, M.

    2004-01-01

    We present an approach to the problem of verification of epistemic properties in multi-agent systems by means of symbolic model checking. In particular, it is shown how to extend the technique of unbounded model checking from a purely temporal setting to a temporal-epistemic one. In order to achieve this, we base our discussion on interpreted systems semantics, a popular semantics used in multi-agent systems literature. We give details of the technique and show how it can be applied to the well known train, gate and controller problem. Keywords: model checking, unbounded model checking, multi-agent systems

  4. Toward improved design of check dam systems: A case study in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Pal, Debasish; Galelli, Stefano; Tang, Honglei; Ran, Qihua

    2018-04-01

    Check dams are one of the most common strategies for controlling sediment transport in erosion prone areas, along with soil and water conservation measures. However, existing mathematical models that simulate sediment production and delivery are often unable to simulate how the storage capacity of check dams varies with time. To explicitly account for this process-and to support the design of check dam systems-we developed a modelling framework consisting of two components, namely (1) the spatially distributed Soil Erosion and Sediment Delivery Model (WaTEM/SEDEM), and (2) a network-based model of check dam storage dynamics. The two models are run sequentially, with the second model receiving the initial sediment input to check dams from WaTEM/SEDEM. The framework is first applied to Shejiagou catchment, a 4.26 km2 area located in the Loess Plateau, China, where we study the effect of the existing check dam system on sediment dynamics. Results show that the deployment of check dams altered significantly the sediment delivery ratio of the catchment. Furthermore, the network-based model reveals a large variability in the life expectancy of check dams and abrupt changes in their filling rates. The application of the framework to six alternative check dam deployment scenarios is then used to illustrate its usefulness for planning purposes, and to derive some insights on the effect of key decision variables, such as the number, size, and site location of check dams. Simulation results suggest that better performance-in terms of life expectancy and sediment delivery ratio-could have been achieved with an alternative deployment strategy.

  5. Explosive Detection in Aviation Applications Using CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats.more » The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.« less

  6. Reducing False Positives in Runtime Analysis of Deadlocks

    NASA Technical Reports Server (NTRS)

    Bensalem, Saddek; Havelund, Klaus; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper presents an improvement of a standard algorithm for detecting dead-lock potentials in multi-threaded programs, in that it reduces the number of false positives. The standard algorithm works as follows. The multi-threaded program under observation is executed, while lock and unlock events are observed. A graph of locks is built, with edges between locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock. The typical standard example is the group of dining philosophers sharing forks. The algorithm is interesting because it can catch deadlock potentials even though no deadlocks occur in the examined trace, and at the same time it scales very well in contrast t o more formal approaches to deadlock detection. The algorithm, however, can yield false positives (as well as false negatives). The extension of the algorithm described in this paper reduces the amount of false positives for three particular cases: when a gate lock protects a cycle, when a single thread introduces a cycle, and when the code segments in different threads that cause the cycle can actually not execute in parallel. The paper formalizes a theory for dynamic deadlock detection and compares it to model checking and static analysis techniques. It furthermore describes an implementation for analyzing Java programs and its application to two case studies: a planetary rover and a space craft altitude control system.

  7. Measuring the lesion load of multiple sclerosis patients within the corticospinal tract

    NASA Astrophysics Data System (ADS)

    Klein, Jan; Hanken, Katrin; Koceva, Jasna; Hildebrandt, Helmut; Hahn, Horst K.

    2015-03-01

    In this paper we present a framework for reliable determination of the lesion load within the corticospinal tract (CST) of multiple sclerosis patients. The basis constitutes a probabilistic fiber tracking approach which checks possible parameter intervals on the fly using an anatomical brain atlas. By exploiting the range of those intervals, the algorithm is able to resolve fiber crossings and to determine the CST in its full entity although it can use a simple diffusion tensor model. Another advantage is its short running time, tracking the CST takes less than a minute. For segmenting the lesions we developed a semi-automatic approach. First, a trained classifier is applied to multimodal MRI data (T1/FLAIR) where the spectrum of lesions has been determined in advance by a clustering algorithm. This leads to an automatic detection of the lesions which can be manually corrected afterwards using a threshold-based approach. For evaluation we scanned 46 MS patients and 16 healthy controls. Fiber tracking has been performed using our novel fiber tracking and a standard defection based algorithm. Regression analysis of the old and new version of the algorithm showed a highly significant superiority of the new algorithm for disease duration. Additionally, a low correlation between old and new approach supports the observation that standard DTI fiber tracking is not always able to track and quantify the CST reliably.

  8. Markov chain algorithms: a template for building future robust low-power systems

    PubMed Central

    Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh

    2014-01-01

    Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030

  9. Comparison of Event Detection Methods for Centralized Sensor Networks

    NASA Technical Reports Server (NTRS)

    Sauvageon, Julien; Agogiono, Alice M.; Farhang, Ali; Tumer, Irem Y.

    2006-01-01

    The development of an Integrated Vehicle Health Management (IVHM) for space vehicles has become a great concern. Smart Sensor Networks is one of the promising technologies that are catching a lot of attention. In this paper, we propose to a qualitative comparison of several local event (hot spot) detection algorithms in centralized redundant sensor networks. The algorithms are compared regarding their ability to locate and evaluate the event under noise and sensor failures. The purpose of this study is to check if the ratio performance/computational power of the Mote Fuzzy Validation and Fusion algorithm is relevant compare to simpler methods.

  10. A Shared Memory Algorithm and Proof for the Generalized Alternative Construct in CSP (Communicating Sequential Processes)

    DTIC Science & Technology

    1987-06-01

    shared variables. This will be discussed later. One procedure merits special attention. CheckAndCommit(m, g ,): INTEGER is called by process P, (I...denotes the local process) to check that "valid" communications can take place between P, using guard g , and Pm (m denotes the remote process). If so, P...local guard gi. By matching we mean gj contains an 1/O operation with P. By compatible we mean g , and gj do not both contain input (output) commands

  11. Implementing Model-Check for Employee and Management Satisfaction

    NASA Technical Reports Server (NTRS)

    Jones, Corey; LaPha, Steven

    2013-01-01

    This presentation will discuss methods to which ModelCheck can be implemented to not only improve model quality, but also satisfy both employees and management through different sets of quality checks. This approach allows a standard set of modeling practices to be upheld throughout a company, with minimal interaction required by the end user. The presenter will demonstrate how to create multiple ModelCheck standards, preventing users from evading the system, and how it can improve the quality of drawings and models.

  12. Scalable video transmission over Rayleigh fading channels using LDPC codes

    NASA Astrophysics Data System (ADS)

    Bansal, Manu; Kondi, Lisimachos P.

    2005-03-01

    In this paper, we investigate an important problem of efficiently utilizing the available resources for video transmission over wireless channels while maintaining a good decoded video quality and resilience to channel impairments. Our system consists of the video codec based on 3-D set partitioning in hierarchical trees (3-D SPIHT) algorithm and employs two different schemes using low-density parity check (LDPC) codes for channel error protection. The first method uses the serial concatenation of the constant-rate LDPC code and rate-compatible punctured convolutional (RCPC) codes. Cyclic redundancy check (CRC) is used to detect transmission errors. In the other scheme, we use the product code structure consisting of a constant rate LDPC/CRC code across the rows of the `blocks' of source data and an erasure-correction systematic Reed-Solomon (RS) code as the column code. In both the schemes introduced here, we use fixed-length source packets protected with unequal forward error correction coding ensuring a strictly decreasing protection across the bitstream. A Rayleigh flat-fading channel with additive white Gaussian noise (AWGN) is modeled for the transmission. The rate-distortion optimization algorithm is developed and carried out for the selection of source coding and channel coding rates using Lagrangian optimization. The experimental results demonstrate the effectiveness of this system under different wireless channel conditions and both the proposed methods (LDPC+RCPC/CRC and RS+LDPC/CRC) outperform the more conventional schemes such as those employing RCPC/CRC.

  13. Analysis of the penumbra enlargement in lung versus the quality index of photon beams: a methodology to check the dose calculation algorithm.

    PubMed

    Tsiakalos, Miltiadis F; Theodorou, Kiki; Kappas, Constantin; Zefkili, Sofia; Rosenwold, Jean-Claude

    2004-04-01

    It is well known that considerable underdosage can occur at the edges of a tumor inside the lung because of the degradation of penumbra due to lack of lateral electronic equilibrium. Although present even at smaller energies, this phenomenon is more pronounced for higher energies. Apart from Monte Carlo calculation, most of the existing Treatment Planning Systems (TPSs) cannot deal at all, or with acceptable accuracy, with this effect. A methodology has been developed for assessing the dose calculation algorithms in the lung region where lateral electronic disequilibrium exists, based on the Quality Index (QI) of the incident beam. A phantom, consisting of layers of polystyrene and lung material, has been irradiated using photon beams of 4, 6, 15, and 20 MV. The cross-plane profiles of each beam for 5x5, 10x10, and 25x10 fields have been measured at the middle of the phantom with the use of films. The penumbra (20%-80%) and fringe (50%-90%) enlargement was measured and the ratio of the widths for the lung to that of polystyrene was defined as the Correction Factor (CF). Monte Carlo calculations in the two phantoms have also been performed for energies of 6, 15, and 20 MV. Five commercial TPS's algorithms were tested for their ability to predict the penumbra and fringe enlargement. A linear relationship has been found between the QI of the beams and the CF of the penumbra and fringe enlargement for all the examined fields. Monte Carlo calculations agree very well (less than 1% difference) with the film measurements. The CF values range between 1.1 for 4 MV (QI 0.620) and 2.28 for 20 MV (QI 0.794). Three of the tested TPS's algorithms could not predict any enlargement at all for all energies and all fields and two of them could predict the penumbra enlargement to some extent. The proposed methodology can help any user or developer to check the accuracy of its algorithm for lung cases, based on a simple phantom geometry and the QI of the incident beam. This check is very important especially when higher energies are used, as the inaccuracies in existing algorithms can lead to an incorrect choice of energy for lung treatment and consequently to a failure in tumor control.

  14. Topology design and performance analysis of an integrated communication network

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  15. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  16. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... in different states or check processing regions)]. If you make the deposit in person to one of our...] Substitute Checks and Your Rights What Is a Substitute Check? To make check processing faster, federal law...

  17. Mobility Research for Future Vehicles: A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

    DTIC Science & Technology

    2018-01-31

    Language for SeBBAS ............................................................... 23 2.4.3 Running SeBBAS Algorithm in MATLAB...Input File Error Checking ................................................................................................... 76 4.4.3 Running ...99 6.2 5- Blade Rotor System Investigation

  18. VISIR-I: small vessels - least-time nautical routes using wave forecasts

    NASA Astrophysics Data System (ADS)

    Mannarini, Gianandrea; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Iafrati, Alessandro

    2016-05-01

    A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of metres and a displacement hull. The model is comprised of three components: a route optimization algorithm, a mechanical model of the ship, and a processor of the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. It also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. The processor of the environmental fields employs significant wave height, wave spectrum peak period, and wave direction forecast fields as input. The topological issues of coastal navigation (islands, peninsulas, narrow passages) are addressed. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Time savings up to 2.7 % and route lengthening up to 3.2 % are found for the case studies analysed. However, there is no upper bound for the magnitude of the changes of such route metrics, which especially in case of extreme sea states can be much greater. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.

  19. HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Brownston, Lee

    2012-01-01

    Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The component model is expressed as operating modes of the component and conditions for transitions between these various modes. Faults are modeled as transitions whose conditions for transitions are unknown (and have to be inferred through the reasoning process). Finally, the behavior of the components is expressed as a set of variables/ parameters and relations governing the interaction between the variables. The hybrid nature of the systems being modeled is captured by a combination of the above transitional model and behavioral model. Stochasticity is captured as probabilities associated with transitions (indicating the likelihood of that transition being taken), as well as noise on the sensed variables.

  20. FIVQ algorithm for interference hyper-spectral image compression

    NASA Astrophysics Data System (ADS)

    Wen, Jia; Ma, Caiwen; Zhao, Junsuo

    2014-07-01

    Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.

  1. Application of conditional moment tests to model checking for generalized linear models.

    PubMed

    Pan, Wei

    2002-06-01

    Generalized linear models (GLMs) are increasingly being used in daily data analysis. However, model checking for GLMs with correlated discrete response data remains difficult. In this paper, through a case study on marginal logistic regression using a real data set, we illustrate the flexibility and effectiveness of using conditional moment tests (CMTs), along with other graphical methods, to do model checking for generalized estimation equation (GEE) analyses. Although CMTs provide an array of powerful diagnostic tests for model checking, they were originally proposed in the econometrics literature and, to our knowledge, have never been applied to GEE analyses. CMTs cover many existing tests, including the (generalized) score test for an omitted covariate, as special cases. In summary, we believe that CMTs provide a class of useful model checking tools.

  2. Take the Reins on Model Quality with ModelCHECK and Gatekeeper

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2012-01-01

    Model quality and consistency has been an issue for us due to the diverse experience level and imaginative modeling techniques of our users. Fortunately, setting up ModelCHECK and Gatekeeper to enforce our best practices has helped greatly, but it wasn't easy. There were many challenges associated with setting up ModelCHECK and Gatekeeper including: limited documentation, restrictions within ModelCHECK, and resistance from end users. However, we consider ours a success story. In this presentation we will describe how we overcame these obstacles and present some of the details of how we configured them to work for us.

  3. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    PubMed

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  4. DYNA3D/ParaDyn Regression Test Suite Inventory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry I.

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to amore » particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.« less

  5. A multilevel-skin neighbor list algorithm for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhao, Mingcan; Hou, Chaofeng; Ge, Wei

    2018-01-01

    Searching of the interaction pairs and organization of the interaction processes are important steps in molecular dynamics (MD) algorithms and are critical to the overall efficiency of the simulation. Neighbor lists are widely used for these steps, where thicker skin can reduce the frequency of list updating but is discounted by more computation in distance check for the particle pairs. In this paper, we propose a new neighbor-list-based algorithm with a precisely designed multilevel skin which can reduce unnecessary computation on inter-particle distances. The performance advantages over traditional methods are then analyzed against the main simulation parameters on Intel CPUs and MICs (many integrated cores), and are clearly demonstrated. The algorithm can be generalized for various discrete simulations using neighbor lists.

  6. Conditional nonlinear optimal perturbations based on the particle swarm optimization and their applications to the predictability problems

    NASA Astrophysics Data System (ADS)

    Zheng, Qin; Yang, Zubin; Sha, Jianxin; Yan, Jun

    2017-02-01

    In predictability problem research, the conditional nonlinear optimal perturbation (CNOP) describes the initial perturbation that satisfies a certain constraint condition and causes the largest prediction error at the prediction time. The CNOP has been successfully applied in estimation of the lower bound of maximum predictable time (LBMPT). Generally, CNOPs are calculated by a gradient descent algorithm based on the adjoint model, which is called ADJ-CNOP. This study, through the two-dimensional Ikeda model, investigates the impacts of the nonlinearity on ADJ-CNOP and the corresponding precision problems when using ADJ-CNOP to estimate the LBMPT. Our conclusions are that (1) when the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model in the prediction variable will lead to failure of the ADJ-CNOP method, and (2) when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making a false estimation of the LBMPT. Furthermore, the particle swarm optimization (PSO) algorithm, one kind of intelligent algorithm, is introduced to solve this problem. The method using PSO to compute CNOP is called PSO-CNOP. The results of numerical experiments show that even with a large initial perturbation and long prediction time, or when the objective function has multiple extreme values, PSO-CNOP can always obtain the global CNOP. Since the PSO algorithm is a heuristic search algorithm based on the population, it can overcome the impact of nonlinearity and the disturbance from multiple extremes of the objective function. In addition, to check the estimation accuracy of the LBMPT presented by PSO-CNOP and ADJ-CNOP, we partition the constraint domain of initial perturbations into sufficiently fine grid meshes and take the LBMPT obtained by the filtering method as a benchmark. The result shows that the estimation presented by PSO-CNOP is closer to the true value than the one by ADJ-CNOP with the forecast time increasing.

  7. Faster Parameterized Algorithms for Minor Containment

    NASA Astrophysics Data System (ADS)

    Adler, Isolde; Dorn, Frederic; Fomin, Fedor V.; Sau, Ignasi; Thilikos, Dimitrios M.

    The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it appears that many deep results from Robertson and Seymour's theory can be also used in the design of practical algorithms. Minor containment testing is one of algorithmically most important and technical parts of the theory, and minor containment in graphs of bounded branchwidth is a basic ingredient of this algorithm. In order to implement minor containment testing on graphs of bounded branchwidth, Hicks [NETWORKS 04] described an algorithm, that in time O(3^{k^2}\\cdot (h+k-1)!\\cdot m) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. That algorithm follows the ideas introduced by Robertson and Seymour in [J'CTSB 95]. In this work we improve the dependence on k of Hicks' result by showing that checking if H is a minor of G can be done in time O(2^{(2k +1 )\\cdot log k} \\cdot h^{2k} \\cdot 2^{2h^2} \\cdot m). Our approach is based on a combinatorial object called rooted packing, which captures the properties of the potential models of subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first single-exponential algorithm for minor containment testing. Namely, it runs in time 2^{O(k)} \\cdot h^{2k} \\cdot 2^{O(h)} \\cdot n, with n = |V(G)|. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction minor containment.

  8. Flight Test Results of a Synthetic Vision Elevation Database Integrity Monitor

    NASA Technical Reports Server (NTRS)

    deHaag, Maarten Uijt; Sayre, Jonathon; Campbell, Jacob; Young, Steve; Gray, Robert

    2001-01-01

    This paper discusses the flight test results of a real-time Digital Elevation Model (DEM) integrity monitor for Civil Aviation applications. Providing pilots with Synthetic Vision (SV) displays containing terrain information has the potential to improve flight safety by improving situational awareness and thereby reducing the likelihood of Controlled Flight Into Terrain (CFIT). Utilization of DEMs, such as the digital terrain elevation data (DTED), requires a DEM integrity check and timely integrity alerts to the pilots when used for flight-critical terrain-displays, otherwise the DEM may provide hazardous misleading terrain information. The discussed integrity monitor checks the consistency between a terrain elevation profile synthesized from sensor information, and the profile given in the DEM. The synthesized profile is derived from DGPS and radar altimeter measurements. DEMs of various spatial resolutions are used to illustrate the dependency of the integrity monitor s performance on the DEMs spatial resolution. The paper will give a description of proposed integrity algorithms, the flight test setup, and the results of a flight test performed at the Ohio University airport and in the vicinity of Asheville, NC.

  9. Reliability considerations for the total strain range version of strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.; Wu, Y. T.

    1984-01-01

    A proposed total strainrange version of strainrange partitioning (SRP) to enhance the manner in which SRP is applied to life prediction is considered with emphasis on how advanced reliability technology can be applied to perform risk analysis and to derive safety check expressions. Uncertainties existing in the design factors associated with life prediction of a component which experiences the combined effects of creep and fatigue can be identified. Examples illustrate how reliability analyses of such a component can be performed when all design factors in the SRP model are random variables reflecting these uncertainties. The Rackwitz-Fiessler and Wu algorithms are used and estimates of the safety index and the probablity of failure are demonstrated for a SRP problem. Methods of analysis of creep-fatigue data with emphasis on procedures for producing synoptic statistics are presented. An attempt to demonstrate the importance of the contribution of the uncertainties associated with small sample sizes (fatique data) to risk estimates is discussed. The procedure for deriving a safety check expression for possible use in a design criteria document is presented.

  10. A generalized memory test algorithm

    NASA Technical Reports Server (NTRS)

    Milner, E. J.

    1982-01-01

    A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.

  11. Designing Business System Model using System Modeling Approach to the Small and Medium Enterprises (SME) of Furniture in Indonesia

    NASA Astrophysics Data System (ADS)

    Sukendar, Irwan; Fatmawati, Wiwiek; Much Ibnu Subroto, Imam; Arigama, Rizki

    2017-04-01

    This paper studies the design of business system model with System Modeling Approach on small and medium enterprises (SMEs) of furniture. Methods used consists of five phases: phase of identification of business processes actual on SMEs of Furniture, phase of identification of deficiencies and improvement of business processes, phase of design algorithm and flowchart business processes, phase of analysis of the elements of the system, and phase of the design of data flow diagram (DFD), The results of the analysis of the elements of the system are: Products and quantities ordered product consumers and DP paid by consumers identified as elements of system inputs 1,2 and 3. The result of the calculation, payment slips and mail order (SO) are identified as elements of system output 1, 2 and 3. Acceptance of orders, stocks checking of raw materials at the warehouse, calculating raw material requirements, adequacy of raw materials, the price of the contract, and the due date, as well as the submission of the results of calculations to consumers were identified as elements of system components 1, 2, 3, and 4. Admin taking orders, Admin check stocks of raw materials at the warehouse, Admin making calculation, and Admin convey the results of calculations to consumers were identified as an element of interaction system 1, 2, 3, and 4. Consumers were identified as element of environmental systems. Moreover, the boundary between SMEs and consumers were identified as elements of the system boundary.

  12. Nonschematic drawing recognition: a new approach based on attributed graph grammar with flexible embedding

    NASA Astrophysics Data System (ADS)

    Lee, Kyu J.; Kunii, T. L.; Noma, T.

    1993-01-01

    In this paper, we propose a syntactic pattern recognition method for non-schematic drawings, based on a new attributed graph grammar with flexible embedding. In our graph grammar, the embedding rule permits the nodes of a guest graph to be arbitrarily connected with the nodes of a host graph. The ambiguity caused by this flexible embedding is controlled with the evaluation of synthesized attributes and the check of context sensitivity. To integrate parsing with the synthesized attribute evaluation and the context sensitivity check, we also develop a bottom up parsing algorithm.

  13. Training self-assessment and task-selection skills to foster self-regulated learning: Do trained skills transfer across domains?

    PubMed

    Raaijmakers, Steven F; Baars, Martine; Paas, Fred; van Merriënboer, Jeroen J G; van Gog, Tamara

    2018-01-01

    Students' ability to accurately self-assess their performance and select a suitable subsequent learning task in response is imperative for effective self-regulated learning. Video modeling examples have proven effective for training self-assessment and task-selection skills, and-importantly-such training fostered self-regulated learning outcomes. It is unclear, however, whether trained skills would transfer across domains. We investigated whether skills acquired from training with either a specific, algorithmic task-selection rule or a more general heuristic task-selection rule in biology would transfer to self-regulated learning in math. A manipulation check performed after the training confirmed that both algorithmic and heuristic training improved task-selection skills on the biology problems compared with the control condition. However, we found no evidence that students subsequently applied the acquired skills during self-regulated learning in math. Future research should investigate how to support transfer of task-selection skills across domains.

  14. Training self‐assessment and task‐selection skills to foster self‐regulated learning: Do trained skills transfer across domains?

    PubMed Central

    Baars, Martine; Paas, Fred; van Merriënboer, Jeroen J. G.; van Gog, Tamara

    2018-01-01

    Summary Students' ability to accurately self‐assess their performance and select a suitable subsequent learning task in response is imperative for effective self‐regulated learning. Video modeling examples have proven effective for training self‐assessment and task‐selection skills, and—importantly—such training fostered self‐regulated learning outcomes. It is unclear, however, whether trained skills would transfer across domains. We investigated whether skills acquired from training with either a specific, algorithmic task‐selection rule or a more general heuristic task‐selection rule in biology would transfer to self‐regulated learning in math. A manipulation check performed after the training confirmed that both algorithmic and heuristic training improved task‐selection skills on the biology problems compared with the control condition. However, we found no evidence that students subsequently applied the acquired skills during self‐regulated learning in math. Future research should investigate how to support transfer of task‐selection skills across domains. PMID:29610547

  15. Mitigating energy loss on distribution lines through the allocation of reactors

    NASA Astrophysics Data System (ADS)

    Miranda, T. M.; Romero, F.; Meffe, A.; Castilho Neto, J.; Abe, L. F. T.; Corradi, F. E.

    2018-03-01

    This paper presents a methodology for automatic reactors allocation on medium voltage distribution lines to reduce energy loss. In Brazil, some feeders are distinguished by their long lengths and very low load, which results in a high influence of the capacitance of the line on the circuit’s performance, requiring compensation through the installation of reactors. The automatic allocation is accomplished using an optimization meta-heuristic called Global Neighbourhood Algorithm. Given a set of reactor models and a circuit, it outputs an optimal solution in terms of reduction of energy loss. The algorithm is also able to verify if the voltage limits determined by the user are not being violated, besides checking for energy quality. The methodology was implemented in a software tool, which can also show the allocation graphically. A simulation with four real feeders is presented in the paper. The obtained results were able to reduce the energy loss significantly, from 50.56%, in the worst case, to 93.10%, in the best case.

  16. Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips

    NASA Astrophysics Data System (ADS)

    Yu, Thomas Edison; Yoneda, Tomokazu; Chakrabarty, Krishnendu; Fujiwara, Hideo

    Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

  17. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  18. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy Disclosure and Notices C Appendix C to Part 229 Banks and... OF FUNDS AND COLLECTION OF CHECKS (REGULATION CC) Pt. 229, App. C Appendix C to Part 229—Model...

  19. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation observations at the site. CALIPSO data with near-simultaneous colocation are added for multi-layered cloud cases which may have high clouds aloft beyond the ground measurements. Multi-month statistics of performance and case studies will be shown. Additional efforts for algorithm refinements will be also discussed.

  20. Monitoring Java Programs with Java PathExplorer

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the execution of Java programs. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program's late code which will then omit events to an observer during its execution. The observer checks the events against user provided high level requirement specifications, for example temporal logic formulae, and against lower level error detection procedures, for example concurrency related such as deadlock and data race algorithms. High level requirement specifications together with their underlying logics are defined in the Maude rewriting logic, and then can either be directly checked using the Maude rewriting engine, or be first translated to efficient data structures and then checked in Java.

  1. Visual saliency-based fast intracoding algorithm for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin

    2017-01-01

    Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.

  2. A Methodology for Evaluating Artifacts Produced by a Formal Verification Process

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu I.; Miner, Paul S.; Person, Suzette

    2011-01-01

    The goal of this study is to produce a methodology for evaluating the claims and arguments employed in, and the evidence produced by formal verification activities. To illustrate the process, we conduct a full assessment of a representative case study for the Enabling Technology Development and Demonstration (ETDD) program. We assess the model checking and satisfiabilty solving techniques as applied to a suite of abstract models of fault tolerant algorithms which were selected to be deployed in Orion, namely the TTEthernet startup services specified and verified in the Symbolic Analysis Laboratory (SAL) by TTTech. To this end, we introduce the Modeling and Verification Evaluation Score (MVES), a metric that is intended to estimate the amount of trust that can be placed on the evidence that is obtained. The results of the evaluation process and the MVES can then be used by non-experts and evaluators in assessing the credibility of the verification results.

  3. Optical proximity correction for anamorphic extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Clifford, Chris; Lam, Michael; Raghunathan, Ananthan; Jiang, Fan; Fenger, Germain; Adam, Kostas

    2017-10-01

    The change from isomorphic to anamorphic optics in high numerical aperture extreme ultraviolet scanners necessitates changes to the mask data preparation flow. The required changes for each step in the mask tape out process are discussed, with a focus on optical proximity correction (OPC). When necessary, solutions to new problems are demonstrated and verified by rigorous simulation. Additions to the OPC model include accounting for anamorphic effects in the optics, mask electromagnetics, and mask manufacturing. The correction algorithm is updated to include awareness of anamorphic mask geometry for mask rule checking. OPC verification through process window conditions is enhanced to test different wafer scale mask error ranges in the horizontal and vertical directions. This work will show that existing models and methods can be updated to support anamorphic optics without major changes. Also, the larger mask size in the Y direction can result in better model accuracy, easier OPC convergence, and designs that are more tolerant to mask errors.

  4. Measuring the self-similarity exponent in Lévy stable processes of financial time series

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, M.; Sánchez-Granero, M. A.; Trinidad Segovia, J. E.

    2013-11-01

    Geometric method-based procedures, which will be called GM algorithms herein, were introduced in [M.A. Sánchez Granero, J.E. Trinidad Segovia, J. García Pérez, Some comments on Hurst exponent and the long memory processes on capital markets, Phys. A 387 (2008) 5543-5551], to efficiently calculate the self-similarity exponent of a time series. In that paper, the authors showed empirically that these algorithms, based on a geometrical approach, are more accurate than the classical algorithms, especially with short length time series. The authors checked that GM algorithms are good when working with (fractional) Brownian motions. Moreover, in [J.E. Trinidad Segovia, M. Fernández-Martínez, M.A. Sánchez-Granero, A note on geometric method-based procedures to calculate the Hurst exponent, Phys. A 391 (2012) 2209-2214], a mathematical background for the validity of such procedures to estimate the self-similarity index of any random process with stationary and self-affine increments was provided. In particular, they proved theoretically that GM algorithms are also valid to explore long-memory in (fractional) Lévy stable motions. In this paper, we prove empirically by Monte Carlo simulation that GM algorithms are able to calculate accurately the self-similarity index in Lévy stable motions and find empirical evidence that they are more precise than the absolute value exponent (denoted by AVE onwards) and the multifractal detrended fluctuation analysis (MF-DFA) algorithms, especially with a short length time series. We also compare them with the generalized Hurst exponent (GHE) algorithm and conclude that both GM2 and GHE algorithms are the most accurate to study financial series. In addition to that, we provide empirical evidence, based on the accuracy of GM algorithms to estimate the self-similarity index in Lévy motions, that the evolution of the stocks of some international market indices, such as U.S. Small Cap and Nasdaq100, cannot be modelized by means of a Brownian motion.

  5. Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  6. Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Symal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  7. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    NASA Astrophysics Data System (ADS)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  8. Sinusoidal synthesis based adaptive tracking for rotating machinery fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; McDonald, Geoff L.; Zhao, Qing

    2017-01-01

    This paper presents a novel Sinusoidal Synthesis Based Adaptive Tracking (SSBAT) technique for vibration-based rotating machinery fault detection. The proposed SSBAT algorithm is an adaptive time series technique that makes use of both frequency and time domain information of vibration signals. Such information is incorporated in a time varying dynamic model. Signal tracking is then realized by applying adaptive sinusoidal synthesis to the vibration signal. A modified Least-Squares (LS) method is adopted to estimate the model parameters. In addition to tracking, the proposed vibration synthesis model is mainly used as a linear time-varying predictor. The health condition of the rotating machine is monitored by checking the residual between the predicted and measured signal. The SSBAT method takes advantage of the sinusoidal nature of vibration signals and transfers the nonlinear problem into a linear adaptive problem in the time domain based on a state-space realization. It has low computation burden and does not need a priori knowledge of the machine under the no-fault condition which makes the algorithm ideal for on-line fault detection. The method is validated using both numerical simulation and practical application data. Meanwhile, the fault detection results are compared with the commonly adopted autoregressive (AR) and autoregressive Minimum Entropy Deconvolution (ARMED) method to verify the feasibility and performance of the SSBAT method.

  9. Simulation of load traffic and steeped speed control of conveyor

    NASA Astrophysics Data System (ADS)

    Reutov, A. A.

    2017-10-01

    The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.

  10. Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using Non-dominated sorting genetic algorithm-II

    NASA Astrophysics Data System (ADS)

    Dhingra, Sunil; Bhushan, Gian; Dubey, Kashyap Kumar

    2014-03-01

    The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NO x , unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NO x , HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NO x , HC, smoke, a multiobjective optimization problem is formulated. Nondominated sorting genetic algorithm-II is used in predicting the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine output and emission parameters depending upon their own requirements.

  11. Optimizing groundwater development strategies by genetic algorithm: a case study for balancing the needs for agricultural irrigation and environmental protection in northern China

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Zheng, Li; Liu, Depeng

    2007-11-01

    Gaoqing Plain is a major agriculture center of Shandong Province in northern China. Over the last 30 years, the diversion of Yellow River water for intensive irrigation in Gaoqing Plain has led to elevation of the water table and increased evaporation, and subsequently, a dramatic increase in salt content in soil and rapid degradation of crop productivity. Optimal strategies have been explored, that will balance the need to extract sufficient groundwater for irrigation (to ease the pressure on diverting Yellow River water) with the need to improve the local environment by appropriately lowering the water table. Two simulation-optimization models have been formulated and a genetic algorithm (GA) is applied to search for the optimal groundwater development strategies in Gaoqing Plain, while keeping the adverse environmental impacts in check. Compared with the trial-and-error approach of previous studies, the optimization results demonstrate that using an optimization model coupled with a GA search is both effective and efficient. The optimal solutions identified by the GA will provide Gaoqing Plain with the blueprints for developing sustainable groundwater abstraction plans to support local economic development and improve its environmental quality.

  12. Vectorization of a particle simulation method for hypersonic rarefied flow

    NASA Technical Reports Server (NTRS)

    Mcdonald, Jeffrey D.; Baganoff, Donald

    1988-01-01

    An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.

  13. The influence of social anxiety on the body checking behaviors of female college students.

    PubMed

    White, Emily K; Warren, Cortney S

    2014-09-01

    Social anxiety and eating pathology frequently co-occur. However, there is limited research examining the relationship between anxiety and body checking, aside from one study in which social physique anxiety partially mediated the relationship between body checking cognitions and body checking behavior (Haase, Mountford, & Waller, 2007). In an independent sample of 567 college women, we tested the fit of Haase and colleagues' foundational model but did not find evidence of mediation. Thus we tested the fit of an expanded path model that included eating pathology and clinical impairment. In the best-fitting path model (CFI=.991; RMSEA=.083) eating pathology and social physique anxiety positively predicted body checking, and body checking positively predicted clinical impairment. Therefore, women who endorse social physique anxiety may be more likely to engage in body checking behaviors and experience impaired psychosocial functioning. Published by Elsevier Ltd.

  14. Parallel Guessing: A Strategy for High-Speed Computation

    DTIC Science & Technology

    1984-09-19

    for using additional hardware to obtain higher processing speed). In this paper we argue that parallel guessing for image analysis is a useful...from a true solution, or the correctness of a guess, can be readily checked. We review image - analysis algorithms having a parallel guessing or

  15. A fast algorithm for solving a linear feasibility problem with application to Intensity-Modulated Radiation Therapy.

    PubMed

    Herman, Gabor T; Chen, Wei

    2008-03-01

    The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.

  16. Range wise busy checking 2-way imbalanced algorithm for cloudlet allocation in cloud environment

    NASA Astrophysics Data System (ADS)

    Alanzy, Mohammed; Latip, Rohaya; Muhammed, Abdullah

    2018-05-01

    Cloud computing considers as a new business paradigm and a popular platform over the last few years. Many organizations, agencies, and departments consider responsible tasks time and tasks needed to be accomplished as soon as possible. These agencies counter IT issues due to the massive arise of data, applications, and solution scopes. Currently, the main issue related with the cloud is the way of making the environment of the cloud computing more qualified, and this way needs a competent allocation strategy of the cloudlet, Thus, there are huge number of studies conducted with regards to this matter that sought to assign the cloudlets to VMs or resources by variety of strategies. In this paper we have proposed range wise busy checking 2-way imbalanced Algorithm in cloud computing. Compare to other methods, it decreases the completion time to finish tasks’ execution, it is considered the fundamental part to enhance the system performance such as the makespan. This algorithm was simulated using Cloudsim to give more opportunity to the higher VM speed to accommodate more Cloudlets in its local queue without considering the threshold balance condition. The simulation result shows that the average makespan time is lesser compare to the previous cloudlet allocation strategy.

  17. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in different states or check processing regions)]. If you make the deposit in person to one of our... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... Your Rights What Is a Substitute Check? To make check processing faster, federal law permits banks to...

  18. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in different states or check processing regions)]. If you make the deposit in person to one of our... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... Your Rights What Is a Substitute Check? To make check processing faster, federal law permits banks to...

  19. 12 CFR Appendix C to Part 229 - Model Availability Policy Disclosures, Clauses, and Notices; Model Substitute Check Policy...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in different states or check processing regions)]. If you make the deposit in person to one of our... processing regions)]. If you make the deposit in person to one of our employees, funds from the following... Your Rights What Is a Substitute Check? To make check processing faster, federal law permits banks to...

  20. Tuning of radar algorithms with disdrometer data during two extremely wet months in the Paris area

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Radar algorithms convert quantities measured by radars to rain rate, the quantity hydrometerologists are interested in. They basically rely on power law relations between these quantities. This paper focuses on three relations between the horizontal reflectivity (Zh), the differential reflectivity (Zdr), the differential phase shift (Kdp) and the rain rate (R) : Zh-R, R-Kdp and R-Z-Zdr. Data collected during the extremely wet months of May and June 2016 by three disdrometers operated by Ecole des Ponts ParisTech on its campus is used to assess the performance of these respective algorithms. In a first step the temporal variability of the parameters characterizing the radar relations is investigated and quantified. It appears to be significant between events and even within an event. In a second step a methodology relying on checking the ability of a given algorithm to reproduce the very good scale invariant multifractal behaviour (on scales 30 s - few h) observed on rainfall time series is implemented. It is compared with the use of standard scores computed at a single scale as commonly done. We show that a hybrid model (Zh-R relation for low rain rates and R-Kdp for great ones) performs best. In also appears that the more local possible estimates of the parameters should be used in the radar relations.

  1. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    NASA Astrophysics Data System (ADS)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  2. Pixel-based OPC optimization based on conjugate gradients.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  3. Propel: Tools and Methods for Practical Source Code Model Checking

    NASA Technical Reports Server (NTRS)

    Mansouri-Samani, Massoud; Mehlitz, Peter; Markosian, Lawrence; OMalley, Owen; Martin, Dale; Moore, Lantz; Penix, John; Visser, Willem

    2003-01-01

    The work reported here is an overview and snapshot of a project to develop practical model checking tools for in-the-loop verification of NASA s mission-critical, multithreaded programs in Java and C++. Our strategy is to develop and evaluate both a design concept that enables the application of model checking technology to C++ and Java, and a model checking toolset for C++ and Java. The design concept and the associated model checking toolset is called Propel. It builds upon the Java PathFinder (JPF) tool, an explicit state model checker for Java applications developed by the Automated Software Engineering group at NASA Ames Research Center. The design concept that we are developing is Design for Verification (D4V). This is an adaption of existing best design practices that has the desired side-effect of enhancing verifiability by improving modularity and decreasing accidental complexity. D4V, we believe, enhances the applicability of a variety of V&V approaches; we are developing the concept in the context of model checking. The model checking toolset, Propel, is based on extending JPF to handle C++. Our principal tasks in developing the toolset are to build a translator from C++ to Java, productize JPF, and evaluate the toolset in the context of D4V. Through all these tasks we are testing Propel capabilities on customer applications.

  4. On-board attitude determination for the Explorer Platform satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C.; Class, B.

    1992-01-01

    This paper describes the attitude determination algorithm for the Explorer Platform satellite. The algorithm, which is baselined on the Landsat code, is a six-element linear quadratic state estimation processor, in the form of a Kalman filter augmented by an adaptive filter process. Improvements to the original Landsat algorithm were required to meet mission pointing requirements. These consisted of a more efficient sensor processing algorithm and the addition of an adaptive filter which acts as a check on the Kalman filter during satellite slew maneuvers. A 1750A processor will be flown on board the satellite for the first time as a coprocessor (COP) in addition to the NASA Standard Spacecraft Computer. The attitude determination algorithm, which will be resident in the COP's memory, will make full use of its improved processing capabilities to meet mission requirements. Additional benefits were gained by writing the attitude determination code in Ada.

  5. Image based book cover recognition and retrieval

    NASA Astrophysics Data System (ADS)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  6. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  7. Self-adaptive predictor-corrector algorithm for static nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Padovan, J.

    1981-01-01

    A multiphase selfadaptive predictor corrector type algorithm was developed. This algorithm enables the solution of highly nonlinear structural responses including kinematic, kinetic and material effects as well as pro/post buckling behavior. The strategy involves three main phases: (1) the use of a warpable hyperelliptic constraint surface which serves to upperbound dependent iterate excursions during successive incremental Newton Ramphson (INR) type iterations; (20 uses an energy constraint to scale the generation of successive iterates so as to maintain the appropriate form of local convergence behavior; (3) the use of quality of convergence checks which enable various self adaptive modifications of the algorithmic structure when necessary. The restructuring is achieved by tightening various conditioning parameters as well as switch to different algorithmic levels to improve the convergence process. The capabilities of the procedure to handle various types of static nonlinear structural behavior are illustrated.

  8. A computational study of liposome logic: towards cellular computing from the bottom up

    PubMed Central

    Smaldon, James; Romero-Campero, Francisco J.; Fernández Trillo, Francisco; Gheorghe, Marian; Alexander, Cameron

    2010-01-01

    In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This “liposome logic” approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in “top-down” synthetic biology, particularly in the specification, design and implementation of logic circuits through bacterial genome reengineering. The second contribution in this paper is the demonstration of a novel set of tools for the specification, modelling and analysis of “bottom-up” liposome logic. In particular, simulation and modelling techniques are used to analyse some example liposome logic designs, ranging from relatively simple NOT gates and NAND gates to SR-Latches, D Flip-Flops all the way to 3 bit ripple counters. The approach we propose consists of specifying, by means of P systems, gene regulatory network-like systems operating inside proto-membranes. This P systems specification can be automatically translated and executed through a multiscaled pipeline composed of dissipative particle dynamics (DPD) simulator and Gillespie’s stochastic simulation algorithm (SSA). Finally, model selection and analysis can be performed through a model checking phase. This is the first paper we are aware of that brings to bear formal specifications, DPD, SSA and model checking to the problem of modeling target computational functionality in protocells. Potential chemical routes for the laboratory implementation of these simulations are also discussed thus for the first time suggesting a potentially realistic physiochemical implementation for membrane computing from the bottom-up. PMID:21886681

  9. The Non-Axisymmetric Milky Way

    NASA Technical Reports Server (NTRS)

    Spergel, David N.

    1996-01-01

    The Dwek et al. model represents the current state-of-the-art model for the stellar structure of our Galaxy. The improvements we have made to this model take a number of forms: (1) the construction of a more detailed dust model so that we can extend our modeling to the galactic plane; (2) simultaneous fits to the bulge and the disk; (3) the construction of the first self-consistent model for a galactic bar; and (4) the development and application of algorithms for constructing nonparametric bar models. The improved Galaxy model has enabled a number of exciting science projects. In Zhao et al., we show that the number and duration of microlensing events seen by the OGLE and MACHO collaborations towards the bulge were consistent with the predictions of our bar model. In Malhotra et al., we constructed an infrared Tully-Fisher (TF) relation for the local group. We found the tightest TF relation ever seen in any band and in any group of galaxies. The tightness of the correlation places strong constraints on galaxy formation models and provides a independent check of the Cepheid distance scale.

  10. A multi-institutional study of independent calculation verification in inhomogeneous media using a simple and effective method of heterogeneity correction integrated with the Clarkson method.

    PubMed

    Jinno, Shunta; Tachibana, Hidenobu; Moriya, Shunsuke; Mizuno, Norifumi; Takahashi, Ryo; Kamima, Tatsuya; Ishibashi, Satoru; Sato, Masanori

    2018-05-21

    In inhomogeneous media, there is often a large systematic difference in the dose between the conventional Clarkson algorithm (C-Clarkson) for independent calculation verification and the superposition-based algorithms of treatment planning systems (TPSs). These treatment site-dependent differences increase the complexity of the radiotherapy planning secondary check. We developed a simple and effective method of heterogeneity correction integrated with the Clarkson algorithm (L-Clarkson) to account for the effects of heterogeneity in the lateral dimension, and performed a multi-institutional study to evaluate the effectiveness of the method. In the method, a 2D image reconstructed from computed tomography (CT) images is divided according to lines extending from the reference point to the edge of the multileaf collimator (MLC) or jaw collimator for each pie sector, and the radiological path length (RPL) of each line is calculated on the 2D image to obtain a tissue maximum ratio and phantom scatter factor, allowing the dose to be calculated. A total of 261 plans (1237 beams) for conventional breast and lung treatments and lung stereotactic body radiotherapy were collected from four institutions. Disagreements in dose between the on-site TPSs and a verification program using the C-Clarkson and L-Clarkson algorithms were compared. Systematic differences with the L-Clarkson method were within 1% for all sites, while the C-Clarkson method resulted in systematic differences of 1-5%. The L-Clarkson method showed smaller variations. This heterogeneity correction integrated with the Clarkson algorithm would provide a simple evaluation within the range of -5% to +5% for a radiotherapy plan secondary check.

  11. Program Model Checking as a New Trend

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper introduces a special section of STTT (International Journal on Software Tools for Technology Transfer) containing a selection of papers that were presented at the 7th International SPIN workshop, Stanford, August 30 - September 1, 2000. The workshop was named SPIN Model Checking and Software Verification, with an emphasis on model checking of programs. The paper outlines the motivation for stressing software verification, rather than only design and model verification, by presenting the work done in the Automated Software Engineering group at NASA Ames Research Center within the last 5 years. This includes work in software model checking, testing like technologies and static analysis.

  12. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  13. UTP and Temporal Logic Model Checking

    NASA Astrophysics Data System (ADS)

    Anderson, Hugh; Ciobanu, Gabriel; Freitas, Leo

    In this paper we give an additional perspective to the formal verification of programs through temporal logic model checking, which uses Hoare and He Unifying Theories of Programming (UTP). Our perspective emphasizes the use of UTP designs, an alphabetised relational calculus expressed as a pre/post condition pair of relations, to verify state or temporal assertions about programs. The temporal model checking relation is derived from a satisfaction relation between the model and its properties. The contribution of this paper is that it shows a UTP perspective to temporal logic model checking. The approach includes the notion of efficiency found in traditional model checkers, which reduced a state explosion problem through the use of efficient data structures

  14. 75 FR 28480 - Airworthiness Directives; Airbus Model A300 Series Airplanes; Model A300 B4-600, B4-600R, F4-600R...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... pressurise the hydraulic reservoirs, due to leakage of the Crissair reservoir air pressurisation check valves. * * * The leakage of the check valves was caused by an incorrect spring material. The affected Crissair check valves * * * were then replaced with improved check valves P/N [part number] 2S2794-1 * * *. More...

  15. Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations

    NASA Astrophysics Data System (ADS)

    Tak, Hyung Suk

    The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. Frequency coverage properties of several hyper-prior distributions are also investigated to see when and whether Bayesian interval estimates of random effects meet their nominal confidence levels. The second chapter deals with a time delay estimation problem in astrophysics. When the gravitational field of an intervening galaxy between a quasar and the Earth is strong enough to split light into two or more images, the time delay is defined as the difference between their travel times. The time delay can be used to constrain cosmological parameters and can be inferred from the time series of brightness data of each image. To estimate the time delay, we construct a Gaussian hierarchical model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of the time delay as an approximation of its marginal posterior distribution. The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov chain Monte Carlo method to explore multi-modal distributions in a simple and fast manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal that consists of a downhill move in density that aims to make local modes repelling, followed by an uphill move in density that aims to make local modes attracting. The downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers downward movement. The uphill move does the opposite using the standard Metropolis ratio which prefers upward movement. This down-up movement in density increases the probability of a proposed move to a different mode.

  16. Bayesian spatiotemporal model of fMRI data using transfer functions.

    PubMed

    Quirós, Alicia; Diez, Raquel Montes; Wilson, Simon P

    2010-09-01

    This research describes a new Bayesian spatiotemporal model to analyse BOLD fMRI studies. In the temporal dimension, we describe the shape of the hemodynamic response function (HRF) with a transfer function model. The spatial continuity and local homogeneity of the evoked responses are modelled by a Gaussian Markov random field prior on the parameter indicating activations. The proposal constitutes an extension of the spatiotemporal model presented in a previous approach [Quirós, A., Montes Diez, R. and Gamerman, D., 2010. Bayesian spatiotemporal model of fMRI data, Neuroimage, 49: 442-456], offering more flexibility in the estimation of the HRF and computational advantages in the resulting MCMC algorithm. Simulations from the model are performed in order to ascertain the performance of the sampling scheme and the ability of the posterior to estimate model parameters, as well as to check the model sensitivity to signal to noise ratio. Results are shown on synthetic data and on a real data set from a block-design fMRI experiment. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Real-Time Reliability Verification for UAV Flight Control System Supporting Airworthiness Certification.

    PubMed

    Xu, Haiyang; Wang, Ping

    2016-01-01

    In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.

  18. Real-Time Reliability Verification for UAV Flight Control System Supporting Airworthiness Certification

    PubMed Central

    Xu, Haiyang; Wang, Ping

    2016-01-01

    In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system. PMID:27918594

  19. SU-F-T-268: A Feasibility Study of Independent Dose Verification for Vero4DRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, M; Kokubo, M; Institute of Biomedical Research and Innovation, Kobe, Hyogo

    2016-06-15

    Purpose: Vero4DRT (Mitsubishi Heavy Industries Ltd.) has been released for a few years. The treatment planning system (TPS) of Vero4DRT is dedicated, so the measurement is the only method of dose verification. There have been no reports of independent dose verification using Clarksonbased algorithm for Vero4DRT. An independent dose verification software program of the general-purpose linac using a modified Clarkson-based algorithm was modified for Vero4DRT. In this study, we evaluated the accuracy of independent dose verification program and the feasibility of the secondary check for Vero4DRT. Methods: iPlan (Brainlab AG) was used as the TPS. PencilBeam Convolution was used formore » dose calculation algorithm of IMRT and X-ray Voxel Monte Carlo was used for the others. Simple MU Analysis (SMU, Triangle Products, Japan) was used as the independent dose verification software program in which CT-based dose calculation was performed using a modified Clarkson-based algorithm. In this study, 120 patients’ treatment plans were collected in our institute. The treatments were performed using the conventional irradiation for lung and prostate, SBRT for lung and Step and shoot IMRT for prostate. Comparison in dose between the TPS and the SMU was done and confidence limits (CLs, Mean ± 2SD %) were compared to those from the general-purpose linac. Results: As the results of the CLs, the conventional irradiation (lung, prostate), SBRT (lung) and IMRT (prostate) show 2.2 ± 3.5% (CL of the general-purpose linac: 2.4 ± 5.3%), 1.1 ± 1.7% (−0.3 ± 2.0%), 4.8 ± 3.7% (5.4 ± 5.3%) and −0.5 ± 2.5% (−0.1 ± 3.6%), respectively. The CLs for Vero4DRT show similar results to that for the general-purpose linac. Conclusion: The independent dose verification for the new linac is clinically available as a secondary check and we performed the check with the similar tolerance level of the general-purpose linac. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  20. A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen

    In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.

  1. Optimal message log reclamation for independent checkpointing

    NASA Technical Reports Server (NTRS)

    Wang, Yi-Min; Fuchs, W. Kent

    1993-01-01

    Independent (uncoordinated) check pointing for parallel and distributed systems allows maximum process autonomy but suffers from possible domino effects and the associated storage space overhead for maintaining multiple checkpoints and message logs. In most research on check pointing and recovery, it was assumed that only the checkpoints and message logs older than the global recovery line can be discarded. It is shown how recovery line transformation and decomposition can be applied to the problem of efficiently identifying all discardable message logs, thereby achieving optimal garbage collection. Communication trace-driven simulation for several parallel programs is used to show the benefits of the proposed algorithm for message log reclamation.

  2. Assessment of check-dam groundwater recharge with water-balance calculations

    NASA Astrophysics Data System (ADS)

    Djuma, Hakan; Bruggeman, Adriana; Camera, Corrado; Eliades, Marinos

    2017-04-01

    Studies on the enhancement of groundwater recharge by check-dams in arid and semi-arid environments mainly focus on deriving water infiltration rates from the check-dam ponding areas. This is usually achieved by applying simple water balance models, more advanced models (e.g., two dimensional groundwater models) and field tests (e.g., infiltrometer test or soil pit tests). Recharge behind the check-dam can be affected by the built-up of sediment as a result of erosion in the upstream watershed area. This natural process can increase the uncertainty in the estimates of the recharged water volume, especially for water balance calculations. Few water balance field studies of individual check-dams have been presented in the literature and none of them presented associated uncertainties of their estimates. The objectives of this study are i) to assess the effect of a check-dam on groundwater recharge from an ephemeral river; and ii) to assess annual sedimentation at the check-dam during a 4-year period. The study was conducted on a check-dam in the semi-arid island of Cyprus. Field campaigns were carried out to measure water flow, water depth and check-dam topography in order to establish check-dam water height, volume, evaporation, outflow and recharge relations. Topographic surveys were repeated at the end of consecutive hydrological years to estimate the sediment built up in the reservoir area of the check dam. Also, sediment samples were collected from the check-dam reservoir area for bulk-density analyses. To quantify the groundwater recharge, a water balance model was applied at two locations: at the check-dam and corresponding reservoir area, and at a 4-km stretch of the river bed without check-dam. Results showed that a check-dam with a storage capacity of 25,000 m3 was able to recharge to the aquifer, in four years, a total of 12 million m3 out of the 42 million m3 of measured (or modelled) streamflow. Recharge from the analyzed 4-km long river section without check-dam was estimated to be 1 million m3. Upper and lower limits of prediction intervals were computed to assess the uncertainties of the results. The model was rerun with these values and resulted in recharge values of 0.4 m3 as lower and 38 million m3 as upper limit. The sediment survey in the check-dam reservoir area showed that the reservoir area was filled with 2,000 to 3,000 tons of sediment after one rainfall season. This amount of sediment corresponds to 0.2 to 2 t h-1 y-1 sediment yield at the watershed level and reduces the check-dam storage capacity by approximately 10%. Results indicate that check-dams are valuable structures for increasing groundwater resources, but special attention should be given to soil erosion occurring in the upstream area and the resulting sediment built-up in the check-dam reservoir area. This study has received funding from the EU FP7 RECARE Project (GA 603498)

  3. Efficient model checking of network authentication protocol based on SPIN

    NASA Astrophysics Data System (ADS)

    Tan, Zhi-hua; Zhang, Da-fang; Miao, Li; Zhao, Dan

    2013-03-01

    Model checking is a very useful technique for verifying the network authentication protocols. In order to improve the efficiency of modeling and verification on the protocols with the model checking technology, this paper first proposes a universal formalization description method of the protocol. Combined with the model checker SPIN, the method can expediently verify the properties of the protocol. By some modeling simplified strategies, this paper can model several protocols efficiently, and reduce the states space of the model. Compared with the previous literature, this paper achieves higher degree of automation, and better efficiency of verification. Finally based on the method described in the paper, we model and verify the Privacy and Key Management (PKM) authentication protocol. The experimental results show that the method of model checking is effective, which is useful for the other authentication protocols.

  4. A voice-actuated wind tunnel model leak checking system

    NASA Technical Reports Server (NTRS)

    Larson, William E.

    1989-01-01

    A computer program has been developed that improves the efficiency of wind tunnel model leak checking. The program uses a voice recognition unit to relay a technician's commands to the computer. The computer, after receiving a command, can respond to the technician via a voice response unit. Information about the model pressure orifice being checked is displayed on a gas-plasma terminal. On command, the program records up to 30 seconds of pressure data. After the recording is complete, the raw data and a straight line fit of the data are plotted on the terminal. This allows the technician to make a decision on the integrity of the orifice being checked. All results of the leak check program are stored in a database file that can be listed on the line printer for record keeping purposes or displayed on the terminal to help the technician find unchecked orifices. This program allows one technician to check a model for leaks instead of the two or three previously required.

  5. Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates

    PubMed Central

    Chambert, Thierry; Rotella, Jay J; Higgs, Megan D

    2014-01-01

    The investigation of individual heterogeneity in vital rates has recently received growing attention among population ecologists. Individual heterogeneity in wild animal populations has been accounted for and quantified by including individually varying effects in models for mark–recapture data, but the real need for underlying individual effects to account for observed levels of individual variation has recently been questioned by the work of Tuljapurkar et al. (Ecology Letters, 12, 93, 2009) on dynamic heterogeneity. Model-selection approaches based on information criteria or Bayes factors have been used to address this question. Here, we suggest that, in addition to model-selection, model-checking methods can provide additional important insights to tackle this issue, as they allow one to evaluate a model's misfit in terms of ecologically meaningful measures. Specifically, we propose the use of posterior predictive checks to explicitly assess discrepancies between a model and the data, and we explain how to incorporate model checking into the inferential process used to assess the practical implications of ignoring individual heterogeneity. Posterior predictive checking is a straightforward and flexible approach for performing model checks in a Bayesian framework that is based on comparisons of observed data to model-generated replications of the data, where parameter uncertainty is incorporated through use of the posterior distribution. If discrepancy measures are chosen carefully and are relevant to the scientific context, posterior predictive checks can provide important information allowing for more efficient model refinement. We illustrate this approach using analyses of vital rates with long-term mark–recapture data for Weddell seals and emphasize its utility for identifying shortfalls or successes of a model at representing a biological process or pattern of interest. We show how posterior predictive checks can be used to strengthen inferences in ecological studies. We demonstrate the application of this method on analyses dealing with the question of individual reproductive heterogeneity in a population of Antarctic pinnipeds. PMID:24834335

  6. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking

    PubMed Central

    Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178

  7. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    PubMed

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.

  8. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    PubMed

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. 2010 Elsevier Ltd. All rights reserved.

  9. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.

    2016-01-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230

  10. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C

    2015-03-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.

  11. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  12. Model Checking Temporal Logic Formulas Using Sticker Automata

    PubMed Central

    Feng, Changwei; Wu, Huanmei

    2017-01-01

    As an important complex problem, the temporal logic model checking problem is still far from being fully resolved under the circumstance of DNA computing, especially Computation Tree Logic (CTL), Interval Temporal Logic (ITL), and Projection Temporal Logic (PTL), because there is still a lack of approaches for DNA model checking. To address this challenge, a model checking method is proposed for checking the basic formulas in the above three temporal logic types with DNA molecules. First, one-type single-stranded DNA molecules are employed to encode the Finite State Automaton (FSA) model of the given basic formula so that a sticker automaton is obtained. On the other hand, other single-stranded DNA molecules are employed to encode the given system model so that the input strings of the sticker automaton are obtained. Next, a series of biochemical reactions are conducted between the above two types of single-stranded DNA molecules. It can then be decided whether the system satisfies the formula or not. As a result, we have developed a DNA-based approach for checking all the basic formulas of CTL, ITL, and PTL. The simulated results demonstrate the effectiveness of the new method. PMID:29119114

  13. Foundations of the Bandera Abstraction Tools

    NASA Technical Reports Server (NTRS)

    Hatcliff, John; Dwyer, Matthew B.; Pasareanu, Corina S.; Robby

    2003-01-01

    Current research is demonstrating that model-checking and other forms of automated finite-state verification can be effective for checking properties of software systems. Due to the exponential costs associated with model-checking, multiple forms of abstraction are often necessary to obtain system models that are tractable for automated checking. The Bandera Tool Set provides multiple forms of automated support for compiling concurrent Java software systems to models that can be supplied to several different model-checking tools. In this paper, we describe the foundations of Bandera's data abstraction mechanism which is used to reduce the cardinality (and the program's state-space) of data domains in software to be model-checked. From a technical standpoint, the form of data abstraction used in Bandera is simple, and it is based on classical presentations of abstract interpretation. We describe the mechanisms that Bandera provides for declaring abstractions, for attaching abstractions to programs, and for generating abstracted programs and properties. The contributions of this work are the design and implementation of various forms of tool support required for effective application of data abstraction to software components written in a programming language like Java which has a rich set of linguistic features.

  14. Full implementation of a distributed hydrological model based on check dam trapped sediment volumes

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Francés, Félix

    2014-05-01

    Lack of hydrometeorological data is one of the most compelling limitations to the implementation of distributed environmental models. Mediterranean catchments, in particular, are characterised by high spatial variability of meteorological phenomena and soil characteristics, which may prevents from transferring model calibrations from a fully gauged catchment to a totally o partially ungauged one. For this reason, new sources of data are required in order to extend the use of distributed models to non-monitored or low-monitored areas. An important source of information regarding the hydrological and sediment cycle is represented by sediment deposits accumulated at the bottom of reservoirs. Since the 60s, reservoir sedimentation volumes were used as proxy data for the estimation of inter-annual total sediment yield rates, or, in more recent years, as a reference measure of the sediment transport for sediment model calibration and validation. Nevertheless, the possibility of using such data for constraining the calibration of a hydrological model has not been exhaustively investigated so far. In this study, the use of nine check dam reservoir sedimentation volumes for hydrological and sedimentological model calibration and spatio-temporal validation was examined. Check dams are common structures in Mediterranean areas, and are a potential source of spatially distributed information regarding both hydrological and sediment cycle. In this case-study, the TETIS hydrological and sediment model was implemented in a medium-size Mediterranean catchment (Rambla del Poyo, Spain) by taking advantage of sediment deposits accumulated behind the check dams located in the catchment headwaters. Reservoir trap efficiency was taken into account by coupling the TETIS model with a pond trap efficiency model. The model was calibrated by adjusting some of its parameters in order to reproduce the total sediment volume accumulated behind a check dam. Then, the model was spatially validated by obtaining the simulated sedimentation volume at the other eight check dams and comparing it to the observed sedimentation volumes. Lastly, the simulated water discharge at the catchment outlet was compared with observed water discharge records in order to check the hydrological sub-model behaviour. Model results provided highly valuable information concerning the spatial distribution of soil erosion and sediment transport. Spatial validation of the sediment sub-model provided very good results at seven check dams out of nine. This study shows that check dams can be a useful tool also for constraining hydrological model calibration, as model results agree with water discharge observations. In fact, the hydrological model validation at a downstream water flow gauge obtained a Nash-Sutcliffe efficiency of 0.8. This technique is applicable to all catchments with presence of check dams, and only requires rainfall and temperature data and soil characteristics maps.

  15. Self-recovery fragile watermarking algorithm based on SPHIT

    NASA Astrophysics Data System (ADS)

    Xin, Li Ping

    2015-12-01

    A fragile watermark algorithm is proposed, based on SPIHT coding, which can recover the primary image itself. The novelty of the algorithm is that it can tamper location and Self-restoration. The recovery has been very good effect. The first, utilizing the zero-tree structure, the algorithm compresses and encodes the image itself, and then gained self correlative watermark data, so as to greatly reduce the quantity of embedding watermark. Then the watermark data is encoded by error correcting code, and the check bits and watermark bits are scrambled and embedded to enhance the recovery ability. At the same time, by embedding watermark into the latter two bit place of gray level image's bit-plane code, the image after embedded watermark can gain nicer visual effect. The experiment results show that the proposed algorithm may not only detect various processing such as noise adding, cropping, and filtering, but also recover tampered image and realize blind-detection. Peak signal-to-noise ratios of the watermark image were higher than other similar algorithm. The attack capability of the algorithm was enhanced.

  16. Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.

    PubMed

    Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio

    2018-02-21

    Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.

  17. Pseudo-radar algorithms with two extremely wet months of disdrometer data in the Paris area

    NASA Astrophysics Data System (ADS)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D.

    2018-05-01

    Disdrometer data collected during the two extremely wet months of May and June 2016 at the Ecole des Ponts ParisTech are used to get insights on radar algorithms. The rain rate and pseudo-radar quantities (horizontal and vertical reflectivity, specific differential phase shift) are all estimated over several durations with the help of drop size distributions (DSD) collected at 30 s time steps. The pseudo-radar quantities are defined with simplifying hypotheses, in particular on the DSD homogeneity. First it appears that the parameters of the standard radar relations Zh - R, R - Kdp and R - Zh - Zdr for these pseudo-radar quantities exhibit strong variability between events and even within an event. Second an innovative methodology that relies on checking the ability of a given algorithm to reproduce the good scale invariant multifractal behaviour (on scales 30 s - few h) observed on rainfall time series is implemented. In this framework, the classical hybrid model (Zh - R for low rain rates and R - Kdp for great ones) performs best, as well as the local estimates of the radar relations' parameters. However, we emphasise that due to the hypotheses on which they rely these observations cannot be straightforwardly extended to real radar quantities.

  18. Expectation-maximization algorithm for determining natural selection of Y-linked genes through two-sex branching processes.

    PubMed

    González, M; Gutiérrez, C; Martínez, R

    2012-09-01

    A two-dimensional bisexual branching process has recently been presented for the analysis of the generation-to-generation evolution of the number of carriers of a Y-linked gene. In this model, preference of females for males with a specific genetic characteristic is assumed to be determined by an allele of the gene. It has been shown that the behavior of this kind of Y-linked gene is strongly related to the reproduction law of each genotype. In practice, the corresponding offspring distributions are usually unknown, and it is necessary to develop their estimation theory in order to determine the natural selection of the gene. Here we deal with the estimation problem for the offspring distribution of each genotype of a Y-linked gene when the only observable data are each generation's total numbers of males of each genotype and of females. We set out the problem in a non parametric framework and obtain the maximum likelihood estimators of the offspring distributions using an expectation-maximization algorithm. From these estimators, we also derive the estimators for the reproduction mean of each genotype and forecast the distribution of the future population sizes. Finally, we check the accuracy of the algorithm by means of a simulation study.

  19. Automatic Multi-sensor Data Quality Checking and Event Detection for Environmental Sensing

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Zhang, Y.; Zhao, Y.; Gao, D.; Gallaher, D. W.; Lv, Q.; Shang, L.

    2017-12-01

    With the advances in sensing technologies, large-scale environmental sensing infrastructures are pervasively deployed to continuously collect data for various research and application fields, such as air quality study and weather condition monitoring. In such infrastructures, many sensor nodes are distributed in a specific area and each individual sensor node is capable of measuring several parameters (e.g., humidity, temperature, and pressure), providing massive data for natural event detection and analysis. However, due to the dynamics of the ambient environment, sensor data can be contaminated by errors or noise. Thus, data quality is still a primary concern for scientists before drawing any reliable scientific conclusions. To help researchers identify potential data quality issues and detect meaningful natural events, this work proposes a novel algorithm to automatically identify and rank anomalous time windows from multiple sensor data streams. More specifically, (1) the algorithm adaptively learns the characteristics of normal evolving time series and (2) models the spatial-temporal relationship among multiple sensor nodes to infer the anomaly likelihood of a time series window for a particular parameter in a sensor node. Case studies using different data sets are presented and the experimental results demonstrate that the proposed algorithm can effectively identify anomalous time windows, which may resulted from data quality issues and natural events.

  20. A general program to compute the multivariable stability margin for systems with parametric uncertainty

    NASA Technical Reports Server (NTRS)

    Sanchez Pena, Ricardo S.; Sideris, Athanasios

    1988-01-01

    A computer program implementing an algorithm for computing the multivariable stability margin to check the robust stability of feedback systems with real parametric uncertainty is proposed. The authors present in some detail important aspects of the program. An example is presented using lateral directional control system.

  1. Simulation and Verification of Synchronous Set Relations in Rewriting Logic

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Munoz, Cesar A.

    2011-01-01

    This paper presents a mathematical foundation and a rewriting logic infrastructure for the execution and property veri cation of synchronous set relations. The mathematical foundation is given in the language of abstract set relations. The infrastructure consists of an ordersorted rewrite theory in Maude, a rewriting logic system, that enables the synchronous execution of a set relation provided by the user. By using the infrastructure, existing algorithm veri cation techniques already available in Maude for traditional asynchronous rewriting, such as reachability analysis and model checking, are automatically available to synchronous set rewriting. The use of the infrastructure is illustrated with an executable operational semantics of a simple synchronous language and the veri cation of temporal properties of a synchronous system.

  2. SU-E-T-117: Analysis of the ArcCHECK Dosimetry Gamma Failure Using the 3DVH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, S; Choi, W; Lee, H

    2015-06-15

    Purpose: To evaluate gamma analysis failure for the VMAT patient specific QA using ArcCHECK cylindrical phantom. The 3DVH system(Sun Nuclear, FL) was used to analyze the dose difference statistic between measured dose and treatment planning system calculated dose. Methods: Four case of gamma analysis failure were selected retrospectively. Our institution gamma analysis indexes were absolute dose, 3%/3mm and 90%pass rate in the ArcCHECK dosimetry. The collapsed cone convolution superposition (CCCS) dose calculation algorithm for VMAT was used. Dose delivery was performed with Elekta Agility. The A1SL(standard imaging, WI) and cavity plug were used for point dose measurement. Delivery QA plansmore » and images were used for 3DVH Reference data instead of patient plan and image. The measured data of ‘.txt’ file was used for comparison at diodes to acquire a global dose level. The,.acml’ file was used for AC-PDP and to calculated point dose. Results: The global dose of 3DVH was calculated as 1.10 Gy, 1.13, 1.01 and 0.2 Gy respectively. The global dose of 0.2 Gy case was induced by distance discrepancy. The TPS calculated point dose of was 2.33 Gy to 2.77 Gy and 3DVH calculated dose was 2.33 Gy to 2.68 Gy. The maximum dose differences were −2.83% and −3.1% for TPS vs. measured dose and TPS vs. 3DVH calculated respectively in the same case. The difference between measured and 3DVH was 0.1% in that case. The 3DVH gamma pass rate was 98% to 99.7%. Conclusion: We found the TPS calculation error by 3DVH calculation using ArcCHECK measured dose. It seemed that our CCCS algorithm RTP system over estimated at the central region and underestimated scattering at the peripheral diode detector point. The relative gamma analysis and point dose measurement would be recommended for VMAT DQA in the gamma failure case of ArcCHECK dosimetry.« less

  3. Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige

    Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.

  4. Information Extraction for Clinical Data Mining: A Mammography Case Study

    PubMed Central

    Nassif, Houssam; Woods, Ryan; Burnside, Elizabeth; Ayvaci, Mehmet; Shavlik, Jude; Page, David

    2013-01-01

    Breast cancer is the leading cause of cancer mortality in women between the ages of 15 and 54. During mammography screening, radiologists use a strict lexicon (BI-RADS) to describe and report their findings. Mammography records are then stored in a well-defined database format (NMD). Lately, researchers have applied data mining and machine learning techniques to these databases. They successfully built breast cancer classifiers that can help in early detection of malignancy. However, the validity of these models depends on the quality of the underlying databases. Unfortunately, most databases suffer from inconsistencies, missing data, inter-observer variability and inappropriate term usage. In addition, many databases are not compliant with the NMD format and/or solely consist of text reports. BI-RADS feature extraction from free text and consistency checks between recorded predictive variables and text reports are crucial to addressing this problem. We describe a general scheme for concept information retrieval from free text given a lexicon, and present a BI-RADS features extraction algorithm for clinical data mining. It consists of a syntax analyzer, a concept finder and a negation detector. The syntax analyzer preprocesses the input into individual sentences. The concept finder uses a semantic grammar based on the BI-RADS lexicon and the experts’ input. It parses sentences detecting BI-RADS concepts. Once a concept is located, a lexical scanner checks for negation. Our method can handle multiple latent concepts within the text, filtering out ultrasound concepts. On our dataset, our algorithm achieves 97.7% precision, 95.5% recall and an F1-score of 0.97. It outperforms manual feature extraction at the 5% statistical significance level. PMID:23765123

  5. Information Extraction for Clinical Data Mining: A Mammography Case Study.

    PubMed

    Nassif, Houssam; Woods, Ryan; Burnside, Elizabeth; Ayvaci, Mehmet; Shavlik, Jude; Page, David

    2009-01-01

    Breast cancer is the leading cause of cancer mortality in women between the ages of 15 and 54. During mammography screening, radiologists use a strict lexicon (BI-RADS) to describe and report their findings. Mammography records are then stored in a well-defined database format (NMD). Lately, researchers have applied data mining and machine learning techniques to these databases. They successfully built breast cancer classifiers that can help in early detection of malignancy. However, the validity of these models depends on the quality of the underlying databases. Unfortunately, most databases suffer from inconsistencies, missing data, inter-observer variability and inappropriate term usage. In addition, many databases are not compliant with the NMD format and/or solely consist of text reports. BI-RADS feature extraction from free text and consistency checks between recorded predictive variables and text reports are crucial to addressing this problem. We describe a general scheme for concept information retrieval from free text given a lexicon, and present a BI-RADS features extraction algorithm for clinical data mining. It consists of a syntax analyzer, a concept finder and a negation detector. The syntax analyzer preprocesses the input into individual sentences. The concept finder uses a semantic grammar based on the BI-RADS lexicon and the experts' input. It parses sentences detecting BI-RADS concepts. Once a concept is located, a lexical scanner checks for negation. Our method can handle multiple latent concepts within the text, filtering out ultrasound concepts. On our dataset, our algorithm achieves 97.7% precision, 95.5% recall and an F 1 -score of 0.97. It outperforms manual feature extraction at the 5% statistical significance level.

  6. Poster — Thur Eve — 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräfe, James; Khan, Rao; Meyer, Tyler

    2014-08-15

    In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields weremore » evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.« less

  7. Compositional schedulability analysis of real-time actor-based systems.

    PubMed

    Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan

    2017-01-01

    We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.

  8. Multi-modal low cost mobile indoor surveillance system on the Robust Artificial Intelligence-based Defense Electro Robot (RAIDER)

    NASA Astrophysics Data System (ADS)

    Nair, Binu M.; Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    We present an autonomous system capable of performing security check routines. The surveillance machine, the Clearpath Husky robotic platform, is equipped with three IP cameras with different orientations for the surveillance tasks of face recognition, human activity recognition, autonomous navigation and 3D reconstruction of its environment. Combining the computer vision algorithms onto a robotic machine has given birth to the Robust Artificial Intelligencebased Defense Electro-Robot (RAIDER). The end purpose of the RAIDER is to conduct a patrolling routine on a single floor of a building several times a day. As the RAIDER travels down the corridors off-line algorithms use two of the RAIDER's side mounted cameras to perform a 3D reconstruction from monocular vision technique that updates a 3D model to the most current state of the indoor environment. Using frames from the front mounted camera, positioned at the human eye level, the system performs face recognition with real time training of unknown subjects. Human activity recognition algorithm will also be implemented in which each detected person is assigned to a set of action classes picked to classify ordinary and harmful student activities in a hallway setting.The system is designed to detect changes and irregularities within an environment as well as familiarize with regular faces and actions to distinguish potentially dangerous behavior. In this paper, we present the various algorithms and their modifications which when implemented on the RAIDER serves the purpose of indoor surveillance.

  9. Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudin, Pablo, E-mail: baudin.pablo@gmail.com; qLEAP – Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C; Marín, José Sánchez

    2014-03-14

    A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well asmore » the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.« less

  10. Sentiment analysis of Arabic tweets using text mining techniques

    NASA Astrophysics Data System (ADS)

    Al-Horaibi, Lamia; Khan, Muhammad Badruddin

    2016-07-01

    Sentiment analysis has become a flourishing field of text mining and natural language processing. Sentiment analysis aims to determine whether the text is written to express positive, negative, or neutral emotions about a certain domain. Most sentiment analysis researchers focus on English texts, with very limited resources available for other complex languages, such as Arabic. In this study, the target was to develop an initial model that performs satisfactorily and measures Arabic Twitter sentiment by using machine learning approach, Naïve Bayes and Decision Tree for classification algorithms. The datasets used contains more than 2,000 Arabic tweets collected from Twitter. We performed several experiments to check the performance of the two algorithms classifiers using different combinations of text-processing functions. We found that available facilities for Arabic text processing need to be made from scratch or improved to develop accurate classifiers. The small functionalities developed by us in a Python language environment helped improve the results and proved that sentiment analysis in the Arabic domain needs lot of work on the lexicon side.

  11. Mining Hesitation Information by Vague Association Rules

    NASA Astrophysics Data System (ADS)

    Lu, An; Ng, Wilfred

    In many online shopping applications, such as Amazon and eBay, traditional Association Rule (AR) mining has limitations as it only deals with the items that are sold but ignores the items that are almost sold (for example, those items that are put into the basket but not checked out). We say that those almost sold items carry hesitation information, since customers are hesitating to buy them. The hesitation information of items is valuable knowledge for the design of good selling strategies. However, there is no conceptual model that is able to capture different statuses of hesitation information. Herein, we apply and extend vague set theory in the context of AR mining. We define the concepts of attractiveness and hesitation of an item, which represent the overall information of a customer's intent on an item. Based on the two concepts, we propose the notion of Vague Association Rules (VARs). We devise an efficient algorithm to mine the VARs. Our experiments show that our algorithm is efficient and the VARs capture more specific and richer information than do the traditional ARs.

  12. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  13. Performance issues for iterative solvers in device simulation

    NASA Technical Reports Server (NTRS)

    Fan, Qing; Forsyth, P. A.; Mcmacken, J. R. F.; Tang, Wei-Pai

    1994-01-01

    Due to memory limitations, iterative methods have become the method of choice for large scale semiconductor device simulation. However, it is well known that these methods still suffer from reliability problems. The linear systems which appear in numerical simulation of semiconductor devices are notoriously ill-conditioned. In order to produce robust algorithms for practical problems, careful attention must be given to many implementation issues. This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix solver on a variety of problems.

  14. Solid Rocket Fuel Constitutive Theory and Polymer Cure

    NASA Technical Reports Server (NTRS)

    Ream, Robert

    2006-01-01

    Solid Rocket Fuel is a complex composite material for which no general constitutive theory, based on first principles, has been developed. One of the principles such a relation would depend on is the morphology of the binder. A theory of polymer curing is required to determine this morphology. During work on such a theory an algorithm was developed for counting the number of ways a polymer chain could assemble. The methods used to develop and check this algorithm led to an analytic solution to the problem. This solution is used in a probability distribution function which characterizes the morphology of the polymer.

  15. Padé approximations for Painlevé I and II transcendents

    NASA Astrophysics Data System (ADS)

    Novokshenov, V. Yu.

    2009-06-01

    We use a version of the Fair-Luke algorithm to find the Padé approximate solutions of the Painlevé I and II equations. We find the distributions of poles for the well-known Ablowitz-Segur and Hastings-McLeod solutions of the Painlevé II equation. We show that the Boutroux tritronquée solution of the Painleé I equation has poles only in the critical sector of the complex plane. The algorithm allows checking other analytic properties of the Painlevé transcendents, such as the asymptotic behavior at infinity in the complex plane.

  16. Error floor behavior study of LDPC codes for concatenated codes design

    NASA Astrophysics Data System (ADS)

    Chen, Weigang; Yin, Liuguo; Lu, Jianhua

    2007-11-01

    Error floor behavior of low-density parity-check (LDPC) codes using quantized decoding algorithms is statistically studied with experimental results on a hardware evaluation platform. The results present the distribution of the residual errors after decoding failure and reveal that the number of residual error bits in a codeword is usually very small using quantized sum-product (SP) algorithm. Therefore, LDPC code may serve as the inner code in a concatenated coding system with a high code rate outer code and thus an ultra low error floor can be achieved. This conclusion is also verified by the experimental results.

  17. A self-testing dynamic RAM chip

    NASA Astrophysics Data System (ADS)

    You, Y.; Hayes, J. P.

    1985-02-01

    A novel approach to making very large dynamic RAM chips self-testing is presented. It is based on two main concepts: on-chip generation of regular test sequences with very high fault coverage, and concurrent testing of storage-cell arrays to reduce overall testing time. The failure modes of a typical 64 K RAM employing one-transistor cells are analyzed to identify their test requirements. A comprehensive test generation algorithm that can be implemented with minimal modification to a standard cell layout is derived. The self-checking peripheral circuits necessary to implement this testing algorithm are described, and the self-testing RAM is briefly evaluated.

  18. Application of modified Martinez-Silva algorithm in determination of net cover

    NASA Astrophysics Data System (ADS)

    Stefanowicz, Łukasz; Grobelna, Iwona

    2016-12-01

    In the article we present the idea of modifications of Martinez-Silva algorithm, which allows for determination of place invariants (p-invariants) of Petri net. Their generation time is important in the parallel decomposition of discrete systems described by Petri nets. Decomposition process is essential from the point of view of discrete system design, as it allows for separation of smaller sequential parts. The proposed modifications of Martinez-Silva method concern the net cover by p-invariants and are focused on two important issues: cyclic reduction of invariant matrix and cyclic checking of net cover.

  19. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KL Gaustad; DD Turner

    2007-09-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) microwave radiometer (MWR) RETrievel (MWRRET) Value-Added Product (VAP) algorithm. This algorithm utilizes complimentary physical and statistical retrieval methods and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  20. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system.

    PubMed

    Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M

    2014-05-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.

  1. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system

    PubMed Central

    Mohamed, Ahmed F.; Elarini, Mahdi M.; Othman, Ahmed M.

    2013-01-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507

  2. General advancing front packing algorithm for the discrete element method

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán

    2018-01-01

    A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.

  3. Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.

    PubMed

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2011-08-01

    Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.

  4. Unequal-area, fixed-shape facility layout problems using the firefly algorithm

    NASA Astrophysics Data System (ADS)

    Ingole, Supriya; Singh, Dinesh

    2017-07-01

    In manufacturing industries, the facility layout design is a very important task, as it is concerned with the overall manufacturing cost and profit of the industry. The facility layout problem (FLP) is solved by arranging the departments or facilities of known dimensions on the available floor space. The objective of this article is to implement the firefly algorithm (FA) for solving unequal-area, fixed-shape FLPs and optimizing the costs of total material handling and transportation between the facilities. The FA is a nature-inspired algorithm and can be used for combinatorial optimization problems. Benchmark problems from the previous literature are solved using the FA. To check its effectiveness, it is implemented to solve large-sized FLPs. Computational results obtained using the FA show that the algorithm is less time consuming and the total layout costs for FLPs are better than the best results achieved so far.

  5. Topological properties of the limited penetrable horizontal visibility graph family

    NASA Astrophysics Data System (ADS)

    Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene

    2018-05-01

    The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.

  6. A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.

    PubMed

    Singh, Narinder; Singh, S B

    2017-01-01

    A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.

  7. Pharmacist and Technician Perceptions of Tech-Check-Tech in Community Pharmacy Practice Settings.

    PubMed

    Frost, Timothy P; Adams, Alex J

    2018-04-01

    Tech-check-tech (TCT) is a practice model in which pharmacy technicians with advanced training can perform final verification of prescriptions that have been previously reviewed for appropriateness by a pharmacist. Few states have adopted TCT in part because of the common view that this model is controversial among members of the profession. This article aims to summarize the existing research on pharmacist and technician perceptions of community pharmacy-based TCT. A literature review was conducted using MEDLINE (January 1990 to August 2016) and Google Scholar (January 1990 to August 2016) using the terms "tech* and check," "tech-check-tech," "checking technician," and "accuracy checking tech*." Of the 7 studies identified we found general agreement among both pharmacists and technicians that TCT in community pharmacy settings can be safely performed. This agreement persisted in studies of theoretical TCT models and in studies assessing participants in actual community-based TCT models. Pharmacists who had previously worked with a checking technician were generally more favorable toward TCT. Both pharmacists and technicians in community pharmacy settings generally perceived TCT to be safe, in both theoretical surveys and in surveys following actual TCT demonstration projects. These perceptions of safety align well with the actual outcomes achieved from community pharmacy TCT studies.

  8. A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation

    NASA Astrophysics Data System (ADS)

    Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.

    2018-03-01

    We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.

  9. A Self-Stabilizing Hybrid Fault-Tolerant Synchronization Protocol

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2015-01-01

    This paper presents a strategy for solving the Byzantine general problem for self-stabilizing a fully connected network from an arbitrary state and in the presence of any number of faults with various severities including any number of arbitrary (Byzantine) faulty nodes. The strategy consists of two parts: first, converting Byzantine faults into symmetric faults, and second, using a proven symmetric-fault tolerant algorithm to solve the general case of the problem. A protocol (algorithm) is also present that tolerates symmetric faults, provided that there are more good nodes than faulty ones. The solution applies to realizable systems, while allowing for differences in the network elements, provided that the number of arbitrary faults is not more than a third of the network size. The only constraint on the behavior of a node is that the interactions with other nodes are restricted to defined links and interfaces. The solution does not rely on assumptions about the initial state of the system and no central clock nor centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. A mechanical verification of a proposed protocol is also present. A bounded model of the protocol is verified using the Symbolic Model Verifier (SMV). The model checking effort is focused on verifying correctness of the bounded model of the protocol as well as confirming claims of determinism and linear convergence with respect to the self-stabilization period.

  10. Optical proximity correction for anamorphic extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Clifford, Chris; Lam, Michael; Raghunathan, Ananthan; Jiang, Fan; Fenger, Germain; Adam, Kostas

    2017-10-01

    The change from isomorphic to anamorphic optics in high numerical aperture (NA) extreme ultraviolet (EUV) scanners necessitates changes to the mask data preparation flow. The required changes for each step in the mask tape out process are discussed, with a focus on optical proximity correction (OPC). When necessary, solutions to new problems are demonstrated, and verified by rigorous simulation. Additions to the OPC model include accounting for anamorphic effects in the optics, mask electromagnetics, and mask manufacturing. The correction algorithm is updated to include awareness of anamorphic mask geometry for mask rule checking (MRC). OPC verification through process window conditions is enhanced to test different wafer scale mask error ranges in the horizontal and vertical directions. This work will show that existing models and methods can be updated to support anamorphic optics without major changes. Also, the larger mask size in the Y direction can result in better model accuracy, easier OPC convergence, and designs which are more tolerant to mask errors.

  11. RHydro - Hydrological models and tools to represent and analyze hydrological data in R

    NASA Astrophysics Data System (ADS)

    Reusser, Dominik; Buytaert, Wouter

    2010-05-01

    In hydrology, basic equations and procedures keep being implemented from scratch by scientist, with the potential for errors and inefficiency. The use of libraries can overcome these problems. Other scientific disciplines such as mathematics and physics have benefited significantly from such an approach with freely available implementations for many routines. As an example, hydrological libraries could contain: Major representations of hydrological processes such as infiltration, sub-surface runoff and routing algorithms. Scaling functions, for instance to combine remote sensing precipitation fields with rain gauge data Data consistency checks Performance measures. Here we present a beginning for such a library implemented in the high level data programming language R. Currently, Top-model, data import routines for WaSiM-ETH as well basic visualization and evaluation tools are implemented. The design is such, that a definition of import scripts for additional models is sufficient to have access to the full set of evaluation and visualization tools.

  12. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  13. LDPC Codes--Structural Analysis and Decoding Techniques

    ERIC Educational Resources Information Center

    Zhang, Xiaojie

    2012-01-01

    Low-density parity-check (LDPC) codes have been the focus of much research over the past decade thanks to their near Shannon limit performance and to their efficient message-passing (MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding, which manifests itself as an abrupt change in the slope of the error-rate curve,…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuazon, B; Narayanasamy, G; Kirby, N

    Purpose: The purpose of this study was to evaluate and compare the accuracy of dose calculation algorithms in the second check software programs Radcalc, Diamond, IMSure, and MUcheck, against the Pinnacle3 treatment planning system (TPS). Methods: Baseline accuracy of the second check software was established by comparison against Pinnacle TPS data using open square fields of 5, 10, 20, 30 and 40cm in a SAD setup. 18 previously treated patients’ files were exported from the Pinnacle3 TPS to each of the four second check softwares, consisting of 146 step and shoot intensity modulated radiotherapy (IMRT) beams and 60 Smart Arcs.more » Monitor unit (MU) calculated in each of the software were compared with the TPS and the values were represented as a percent difference. Open fields were calculated as a baseline for each software’s accuracy using 5×5, 10×10, 20×20, 30×30, and 40×40 fields. Box plots, Pearson correlation, and Bland-Altman analysis were used for comparison of the results. Results: The baseline accuracy was established to within 0.6%, −1.4%, −0.2%, and −1.0% for Diamond, IMSure,MUcheck, and Radcalc, respectively. In the clinical data, the dose difference represented as mean ± 1 standard deviation were 0.7%±0.1%, −0.3%±0.1%, −1.5%±0.1%, and 0.4%±0.0% for Diamond, IMSure, MUcheck, and Radcalc, respectively Conclusion: The implementation of Clarkson algorithm for the dose calculation between each of the software in question can vary considerably. The currently used second check software, Radcalc has shown the best agreement on average, variance, and smallest percent range from Pinnacle3 TPS values. The closest in average percent difference from the TPS data was the IMSure software, but has significantly larger variance and percent range. The mean percent differences in Diamond and MUcheck were significantly larger than Radcalc and IMSure.« less

  15. SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachibana, H; Tachibana, R

    2015-06-15

    Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification softwaremore » program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction.« less

  16. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    NASA Astrophysics Data System (ADS)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are presented and show distinct differences from those in the Tropics.

  17. Model Checking the Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)

    2001-01-01

    This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.

  18. Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration

    NASA Technical Reports Server (NTRS)

    Groce, Alex; Joshi, Rajeev

    2008-01-01

    Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.

  19. A knowledge-based framework for image enhancement in aviation security.

    PubMed

    Singh, Maneesha; Singh, Sameer; Partridge, Derek

    2004-12-01

    The main aim of this paper is to present a knowledge-based framework for automatically selecting the best image enhancement algorithm from several available on a per image basis in the context of X-ray images of airport luggage. The approach detailed involves a system that learns to map image features that represent its viewability to one or more chosen enhancement algorithms. Viewability measures have been developed to provide an automatic check on the quality of the enhanced image, i.e., is it really enhanced? The choice is based on ground-truth information generated by human X-ray screening experts. Such a system, for a new image, predicts the best-suited enhancement algorithm. Our research details the various characteristics of the knowledge-based system and shows extensive results on real images.

  20. CheckMATE 2: From the model to the limit

    NASA Astrophysics Data System (ADS)

    Dercks, Daniel; Desai, Nishita; Kim, Jong Soo; Rolbiecki, Krzysztof; Tattersall, Jamie; Weber, Torsten

    2017-12-01

    We present the latest developments to the CheckMATE program that allows models of new physics to be easily tested against the recent LHC data. To achieve this goal, the core of CheckMATE now contains over 60 LHC analyses of which 12 are from the 13 TeV run. The main new feature is that CheckMATE 2 now integrates the Monte Carlo event generation via MadGraph5_aMC@NLO and Pythia 8. This allows users to go directly from a SLHA file or UFO model to the result of whether a model is allowed or not. In addition, the integration of the event generation leads to a significant increase in the speed of the program. Many other improvements have also been made, including the possibility to now combine signal regions to give a total likelihood for a model.

  1. Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma.

    PubMed

    Sawle, Lucas; Ghosh, Kingshuk

    2016-02-09

    All-atom molecular dynamics simulations need convergence tests to evaluate the quality of data. The notion of "true" convergence is elusive, and one can only hope to satisfy self-consistency checks (SCC). There are multiple SCC criteria, and their assessment of all-atom simulations of the native state for real globular proteins is sparse. Here, we present a systematic study of different SCC algorithms, both in terms of their ability to detect the lack of self-consistency and their computational demand, for the all-atom native state simulations of four globular proteins (CSP, CheA, CheW, and BPTI). Somewhat surprisingly, we notice some of the most stringent SCC criteria, e.g., the criteria demanding similarity of the cluster probability distribution between the first and the second halves of the trajectory or the comparison of fluctuations between different blocks using covariance overlap measure, can require tens of microseconds of simulation even for proteins with less than 100 amino acids. We notice such long simulation times can sometimes be associated with traps, but these traps cannot be detected by some of the common SCC methods. We suggest an additional, and simple, SCC algorithm to quickly detect such traps by monitoring the constancy of the cluster entropy (CCE). CCE is a necessary but not sufficient criteria, and additional SCC algorithms must be combined with it. Furthermore, as seen in the explicit solvent simulation of 1 ms long trajectory of BPTI,1 passing self-consistency checks at an earlier stage may be misleading due to conformational changes taking place later in the simulation, resulting in different, but segregated regions of SCC. Although there is a hierarchy of complex SCC algorithms, caution must be exercised in their application with the knowledge of their limitations and computational expense.

  2. Coverage Metrics for Model Checking

    NASA Technical Reports Server (NTRS)

    Penix, John; Visser, Willem; Norvig, Peter (Technical Monitor)

    2001-01-01

    When using model checking to verify programs in practice, it is not usually possible to achieve complete coverage of the system. In this position paper we describe ongoing research within the Automated Software Engineering group at NASA Ames on the use of test coverage metrics to measure partial coverage and provide heuristic guidance for program model checking. We are specifically interested in applying and developing coverage metrics for concurrent programs that might be used to support certification of next generation avionics software.

  3. JOURNAL CLUB: Plagiarism in Manuscripts Submitted to the AJR: Development of an Optimal Screening Algorithm and Management Pathways.

    PubMed

    Taylor, Donna B

    2017-04-01

    The objective of this study was to investigate the incidence of plagiarism in a sample of manuscripts submitted to the AJR using CrossCheck, develop an algorithm to identify significant plagiarism, and formulate management pathways. A sample of 110 of 1610 (6.8%) manuscripts submitted to AJR in 2014 in the categories of Original Research or Review were analyzed using CrossCheck and manual assessment. The overall similarity index (OSI), highest similarity score from a single source, whether duplication was from single or multiple origins, journal section, and presence or absence of referencing the source were recorded. The criteria outlined by the International Committee of Medical Journal Editors were the reference standard for identifying manuscripts containing plagiarism. Statistical analysis was used to develop a screening algorithm to maximize sensitivity and specificity for the detection of plagiarism. Criteria for defining the severity of plagiarism and management pathways based on the severity of the plagiarism were determined. Twelve manuscripts (10.9%) contained plagiarism. Nine had an OSI excluding quotations and references of less than 20%. In seven, the highest similarity score from a single source was less than 10%. The highest similarity score from a single source was the work of the same author or authors in nine. Common sections for duplication were the Materials and Methods, Discussion, and abstract. Referencing the original source was lacking in 11. Plagiarism was undetected at submission in five of these 12 articles; two had been accepted for publication. The most effective screening algorithm was to average the OSI including quotations and references and the highest similarity score from a single source and to submit manuscripts with an average value of more than 12% for further review. The current methods for detecting plagiarism are suboptimal. A new screening algorithm is proposed.

  4. Modal characterization of the ASCIE segmented optics testbed: New algorithms and experimental results

    NASA Technical Reports Server (NTRS)

    Carrier, Alain C.; Aubrun, Jean-Noel

    1993-01-01

    New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.

  5. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  6. Analyzing the cost of screening selectee and non-selectee baggage.

    PubMed

    Virta, Julie L; Jacobson, Sheldon H; Kobza, John E

    2003-10-01

    Determining how to effectively operate security devices is as important to overall system performance as developing more sensitive security devices. In light of recent federal mandates for 100% screening of all checked baggage, this research studies the trade-offs between screening only selectee checked baggage and screening both selectee and non-selectee checked baggage for a single baggage screening security device deployed at an airport. This trade-off is represented using a cost model that incorporates the cost of the baggage screening security device, the volume of checked baggage processed through the device, and the outcomes that occur when the device is used. The cost model captures the cost of deploying, maintaining, and operating a single baggage screening security device over a one-year period. The study concludes that as excess baggage screening capacity is used to screen non-selectee checked bags, the expected annual cost increases, the expected annual cost per checked bag screened decreases, and the expected annual cost per expected number of threats detected in the checked bags screened increases. These results indicate that the marginal increase in security per dollar spent is significantly lower when non-selectee checked bags are screened than when only selectee checked bags are screened.

  7. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new analyzer that has an ambient pressure or “soft vacuum” reaction chamber prior to initial use. Additionally...

  8. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new analyzer that has an ambient pressure or “soft vacuum” reaction chamber prior to initial use. Additionally...

  9. A novel decoding algorithm based on the hierarchical reliable strategy for SCG-LDPC codes in optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong

    2013-11-01

    An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.

  10. Efficient Algorithms for Handling Nondeterministic Automata

    NASA Astrophysics Data System (ADS)

    Vojnar, Tomáš

    Finite (word, tree, or omega) automata play an important role in different areas of computer science, including, for instance, formal verification. Often, deterministic automata are used for which traditional algorithms for important operations such as minimisation and inclusion checking are available. However, the use of deterministic automata implies a need to determinise nondeterministic automata that often arise during various computations even when the computations start with deterministic automata. Unfortunately, determinisation is a very expensive step since deterministic automata may be exponentially bigger than the original nondeterministic automata. That is why, it appears advantageous to avoid determinisation and work directly with nondeterministic automata. This, however, brings a need to be able to implement operations traditionally done on deterministic automata on nondeterministic automata instead. In particular, this is the case of inclusion checking and minimisation (or rather reduction of the size of automata). In the talk, we review several recently proposed techniques for inclusion checking on nondeterministic finite word and tree automata as well as Büchi automata. These techniques are based on using the so called antichains, possibly combined with a use of suitable simulation relations (and, in the case of Büchi automata, the so called Ramsey-based or rank-based approaches). Further, we discuss techniques for reducing the size of nondeterministic word and tree automata using quotienting based on the recently proposed notion of mediated equivalences. The talk is based on several common works with Parosh Aziz Abdulla, Ahmed Bouajjani, Yu-Fang Chen, Peter Habermehl, Lisa Kaati, Richard Mayr, Tayssir Touili, Lorenzo Clemente, Lukáš Holík, and Chih-Duo Hong.

  11. Non-steady state modelling of wheel-rail contact problem

    NASA Astrophysics Data System (ADS)

    Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.

    2013-01-01

    Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.

  12. Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking

    NASA Technical Reports Server (NTRS)

    Turgeon, Gregory; Price, Petra

    2010-01-01

    A feasibility study was performed on a representative aerospace system to determine the following: (1) the benefits and limitations to using SCADE , a commercially available tool for model checking, in comparison to using a proprietary tool that was studied previously [1] and (2) metrics for performing the model checking and for assessing the findings. This study was performed independently of the development task by a group unfamiliar with the system, providing a fresh, external perspective free from development bias.

  13. MPST Software: grl_pef_check

    NASA Technical Reports Server (NTRS)

    Call, Jared A.; Kwok, John H.; Fisher, Forest W.

    2013-01-01

    This innovation is a tool used to verify and validate spacecraft sequences at the predicted events file (PEF) level for the GRAIL (Gravity Recovery and Interior Laboratory, see http://www.nasa. gov/mission_pages/grail/main/index. html) mission as part of the Multi-Mission Planning and Sequencing Team (MPST) operations process to reduce the possibility for errors. This tool is used to catch any sequence related errors or issues immediately after the seqgen modeling to streamline downstream processes. This script verifies and validates the seqgen modeling for the GRAIL MPST process. A PEF is provided as input, and dozens of checks are performed on it to verify and validate the command products including command content, command ordering, flight-rule violations, modeling boundary consistency, resource limits, and ground commanding consistency. By performing as many checks as early in the process as possible, grl_pef_check streamlines the MPST task of generating GRAIL command and modeled products on an aggressive schedule. By enumerating each check being performed, and clearly stating the criteria and assumptions made at each step, grl_pef_check can be used as a manual checklist as well as an automated tool. This helper script was written with a focus on enabling the user with the information they need in order to evaluate a sequence quickly and efficiently, while still keeping them informed and active in the overall sequencing process. grl_pef_check verifies and validates the modeling and sequence content prior to investing any more effort into the build. There are dozens of various items in the modeling run that need to be checked, which is a time-consuming and errorprone task. Currently, no software exists that provides this functionality. Compared to a manual process, this script reduces human error and saves considerable man-hours by automating and streamlining the mission planning and sequencing task for the GRAIL mission.

  14. Practical Formal Verification of Diagnosability of Large Models via Symbolic Model Checking

    NASA Technical Reports Server (NTRS)

    Cavada, Roberto; Pecheur, Charles

    2003-01-01

    This document reports on the activities carried out during a four-week visit of Roberto Cavada at the NASA Ames Research Center. The main goal was to test the practical applicability of the framework proposed, where a diagnosability problem is reduced to a Symbolic Model Checking problem. Section 2 contains a brief explanation of major techniques currently used in Symbolic Model Checking, and how these techniques can be tuned in order to obtain good performances when using Model Checking tools. Diagnosability is performed on large and structured models of real plants. Section 3 describes how these plants are modeled, and how models can be simplified to improve the performance of Symbolic Model Checkers. Section 4 reports scalability results. Three test cases are briefly presented, and several parameters and techniques have been applied on those test cases in order to produce comparison tables. Furthermore, comparison between several Model Checkers is reported. Section 5 summarizes the application of diagnosability verification to a real application. Several properties have been tested, and results have been highlighted. Finally, section 6 draws some conclusions, and outlines future lines of research.

  15. GSFC Technology Development Center Report

    NASA Technical Reports Server (NTRS)

    Himwich, Ed; Gipson, John

    2013-01-01

    This report summarizes the activities of the GSFC Technology Development Center (TDC) for 2012 and forecasts planned activities for 2013. The GSFC TDC develops station software including the Field System (FS), scheduling software (SKED), hardware including tools for station timing and meteorology, scheduling algorithms, and operational procedures. It provides a pool of individuals to assist with station implementation, check-out, upgrades, and training.

  16. 99aa/99ac data sets

    Science.gov Websites

    -redshifted), Observed Flux, Statistical Error (Based on the optimal extraction algorithm of the IRAF packages were acquired using different instrumental settings for the blue and red parts of the spectrum to avoid extracted for systematics checks of the wavelength calibration. Wavelength and flux calibration were applied

  17. A novel construction scheme of QC-LDPC codes based on the RU algorithm for optical transmission systems

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-03-01

    A novel lower-complexity construction scheme of quasi-cyclic low-density parity-check (QC-LDPC) codes for optical transmission systems is proposed based on the structure of the parity-check matrix for the Richardson-Urbanke (RU) algorithm. Furthermore, a novel irregular QC-LDPC(4 288, 4 020) code with high code-rate of 0.937 is constructed by this novel construction scheme. The simulation analyses show that the net coding gain ( NCG) of the novel irregular QC-LDPC(4 288,4 020) code is respectively 2.08 dB, 1.25 dB and 0.29 dB more than those of the classic RS(255, 239) code, the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code at the bit error rate ( BER) of 10-6. The irregular QC-LDPC(4 288, 4 020) code has the lower encoding/decoding complexity compared with the LDPC(32 640, 30 592) code and the irregular QC-LDPC(3 843, 3 603) code. The proposed novel QC-LDPC(4 288, 4 020) code can be more suitable for the increasing development requirements of high-speed optical transmission systems.

  18. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231

  19. Wavelet Monte Carlo dynamics: A new algorithm for simulating the hydrodynamics of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Dyer, Oliver T.; Ball, Robin C.

    2017-03-01

    We develop a new algorithm for the Brownian dynamics of soft matter systems that evolves time by spatially correlated Monte Carlo moves. The algorithm uses vector wavelets as its basic moves and produces hydrodynamics in the low Reynolds number regime propagated according to the Oseen tensor. When small moves are removed, the correlations closely approximate the Rotne-Prager tensor, itself widely used to correct for deficiencies in Oseen. We also include plane wave moves to provide the longest range correlations, which we detail for both infinite and periodic systems. The computational cost of the algorithm scales competitively with the number of particles simulated, N, scaling as N In N in homogeneous systems and as N in dilute systems. In comparisons to established lattice Boltzmann and Brownian dynamics algorithms, the wavelet method was found to be only a factor of order 1 times more expensive than the cheaper lattice Boltzmann algorithm in marginally semi-dilute simulations, while it is significantly faster than both algorithms at large N in dilute simulations. We also validate the algorithm by checking that it reproduces the correct dynamics and equilibrium properties of simple single polymer systems, as well as verifying the effect of periodicity on the mobility tensor.

  20. Non-equilibrium dog-flea model

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  1. A Selfish Constraint Satisfaction Genetic Algorithms for Planning a Long-Distance Transportation Network

    NASA Astrophysics Data System (ADS)

    Onoyama, Takashi; Maekawa, Takuya; Kubota, Sen; Tsuruta, Setuso; Komoda, Norihisa

    To build a cooperative logistics network covering multiple enterprises, a planning method that can build a long-distance transportation network is required. Many strict constraints are imposed on this type of problem. To solve these strict-constraint problems, a selfish constraint satisfaction genetic algorithm (GA) is proposed. In this GA, each gene of an individual satisfies only its constraint selfishly, disregarding the constraints of other genes in the same individuals. Moreover, a constraint pre-checking method is also applied to improve the GA convergence speed. The experimental result shows the proposed method can obtain an accurate solution in a practical response time.

  2. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  3. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Datasets May 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaustad, KL; Turner, DD

    2009-05-30

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) microwave radiometer (MWR) RETrievel (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  4. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  5. Fast linear feature detection using multiple directional non-maximum suppression.

    PubMed

    Sun, C; Vallotton, P

    2009-05-01

    The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.

  6. Optimal Aerosol Parameterization for Remote Sensing Retrievals

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.

    2004-01-01

    We have developed a new algorithm for the retrieval of aerosol and gases from SAGE It1 solar transmission measurements. This algorithm improves upon the NASA operational algorithm in several key aspects, including solving the problem non-linearly and incorporating a new methodology for separating the contribution of aerosols and gases. In order to extract aerosol information we have built a huge database of aerosol models for both stratospheric and tropospheric aerosols, and polar stratospheric cloud particles. This set of models allows us to calculate a vast range of possible extinction spectra for aerosols. and from these, derive a set of eigenvectors which then provide the basis set used in our inversion algorithm. Our aerosol algorithm and retrievals are described in several articles (listed in References Section) published under this grant. In particular they allow us to analyze the spectral properties of aerosols and PSCs and ultimately derive their microphysical properties. We have found some considerable differences between our spectra and the ones derived from the SAGE III operational algorithm. These are interesting as they provide an independent check on the validity of published aerosol data and, in particular, on their associated uncertainties. In order to understand these differences, we are assembling independent aerosol data from other sources with which to make comparisons. We have carried out extensive comparisons of our ozone retrievals with both SAGE III and independent lidar, ozonesonde, and satellite measurements (Polyakov et al., 2004). These show very good agreement throughout the stratosphere and help to quantify differences which can be attributed to natural variation in ozone versus that produced by algorithmic differences. In the mid - upper stratosphere, agreement with independent data was generally within 5 - 20%. but in the lower stratosphere the differences were considerably larger. We believe that a large proportion of this discrepancy in the lower stratosphere is attributable to natural variation, and is also seen in comparisons between lidar and ozonesonde measurements. NO2 profiles obtained with our algorithm were compared to those obtained through the SAGE III operational algorithm and exhibited differences of 20 - 40%. Our retrieved profiles agree with the HALOE NO2 measurements significantly better than those of the operational retrieval. In other work (described below), we are extending our aerosol retrievals into the infrared regime and plan to perform retrievals from combined uv-visible-infrared spectra. This work will allow us to use the spectra to derive the size and composition of aerosols, and we plan to employ our algorithms in the analysis of PSC spectra. We are presently also developing a limb-scattering algorithm to retrieve aerosol data from limb measurements of solar scattered radiation.

  7. Post-OPC verification using a full-chip pattern-based simulation verification method

    NASA Astrophysics Data System (ADS)

    Hung, Chi-Yuan; Wang, Ching-Heng; Ma, Cliff; Zhang, Gary

    2005-11-01

    In this paper, we evaluated and investigated techniques for performing fast full-chip post-OPC verification using a commercial product platform. A number of databases from several technology nodes, i.e. 0.13um, 0.11um and 90nm are used in the investigation. Although it has proven that for most cases, our OPC technology is robust in general, due to the variety of tape-outs with complicated design styles and technologies, it is difficult to develop a "complete or bullet-proof" OPC algorithm that would cover every possible layout patterns. In the evaluation, among dozens of databases, some OPC databases were found errors by Model-based post-OPC checking, which could cost significantly in manufacturing - reticle, wafer process, and more importantly the production delay. From such a full-chip OPC database verification, we have learned that optimizing OPC models and recipes on a limited set of test chip designs may not provide sufficient coverage across the range of designs to be produced in the process. And, fatal errors (such as pinch or bridge) or poor CD distribution and process-sensitive patterns may still occur. As a result, more than one reticle tape-out cycle is not uncommon to prove models and recipes that approach the center of process for a range of designs. So, we will describe a full-chip pattern-based simulation verification flow serves both OPC model and recipe development as well as post OPC verification after production release of the OPC. Lastly, we will discuss the differentiation of the new pattern-based and conventional edge-based verification tools and summarize the advantages of our new tool and methodology: 1). Accuracy: Superior inspection algorithms, down to 1nm accuracy with the new "pattern based" approach 2). High speed performance: Pattern-centric algorithms to give best full-chip inspection efficiency 3). Powerful analysis capability: Flexible error distribution, grouping, interactive viewing and hierarchical pattern extraction to narrow down to unique patterns/cells.

  8. Program Instrumentation and Trace Analysis

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Goldberg, Allen; Filman, Robert; Rosu, Grigore; Koga, Dennis (Technical Monitor)

    2002-01-01

    Several attempts have been made recently to apply techniques such as model checking and theorem proving to the analysis of programs. This shall be seen as a current trend to analyze real software systems instead of just their designs. This includes our own effort to develop a model checker for Java, the Java PathFinder 1, one of the very first of its kind in 1998. However, model checking cannot handle very large programs without some kind of abstraction of the program. This paper describes a complementary scalable technique to handle such large programs. Our interest is turned on the observation part of the equation: How much information can be extracted about a program from observing a single execution trace? It is our intention to develop a technology that can be applied automatically and to large full-size applications, with minimal modification to the code. We present a tool, Java PathExplorer (JPaX), for exploring execution traces of Java programs. The tool prioritizes scalability for completeness, and is directed towards detecting errors in programs, not to prove correctness. One core element in JPaX is an instrumentation package that allows to instrument Java byte code files to log various events when executed. The instrumentation is driven by a user provided script that specifies what information to log. Examples of instructions that such a script can contain are: 'report name and arguments of all called methods defined in class C, together with a timestamp'; 'report all updates to all variables'; and 'report all acquisitions and releases of locks'. In more complex instructions one can specify that certain expressions should be evaluated and even that certain code should be executed under various conditions. The instrumentation package can hence be seen as implementing Aspect Oriented Programming for Java in the sense that one can add functionality to a Java program without explicitly changing the code of the original program, but one rather writes an aspect and compiles it into the original program using the instrumentation. Another core element of JPaX is an observation package that supports the analysis of the generated event stream. Two kinds of analysis are currently supported. In temporal analysis the execution trace is evaluated against formulae written in temporal logic. We have implemented a temporal logic evaluator on finite traces using the Maude rewriting system from SRI International, USA. Temporal logic is defined in Maude by giving its syntax as a signature and its semantics as rewrite equations. The resulting semantics is extremely efficient and can handle event streams of hundreds of millions events in few minutes. Furthermore, the implementation is very succinct. The second form of even stream analysis supported is error pattern analysis where an execution trace is analyzed using various error detection algorithms that can identify error-prone programming practices that may potentially lead to errors in some different executions. Two such algorithms focusing on concurrency errors have been implemented in JPaX, one for deadlocks and the other for data races. It is important to note, that a deadlock or data race potential does not need to occur in order for its potential to be detected with these algorithms. This is what makes them very scalable in practice. The data race algorithm implemented is the Eraser algorithm from Compaq, however adopted to Java. The tool is currently being applied to a code base for controlling a spacecraft by the developers of that software in order to evaluate its applicability.

  9. Extremely accurate sequential verification of RELAP5-3D

    DOE PAGES

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less

  10. Incremental checking of Master Data Management model based on contextual graphs

    NASA Astrophysics Data System (ADS)

    Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan

    2015-10-01

    The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.

  11. A Multidimensional Item Response Model: Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive Checks.

    ERIC Educational Resources Information Center

    Hoijtink, Herbert; Molenaar, Ivo W.

    1997-01-01

    This paper shows that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. Parameters of this latent class model are estimated using an application of the Gibbs sampler, and model fit is investigated using posterior predictive checks. (SLD)

  12. A complex symbol signal-to-noise ratio estimator and its performance

    NASA Technical Reports Server (NTRS)

    Feria, Y.

    1994-01-01

    This article presents an algorithm for estimating the signal-to-noise ratio (SNR) of signals that contain data on a downconverted suppressed carrier or the first harmonic of a square-wave subcarrier. This algorithm can be used to determine the performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz) mission by measuring the input and output symbol SNR. A performance analysis of the algorithm shows that the estimator can estimate the complex symbol SNR using 10,000 symbols at a true symbol SNR of -5 dB with a mean of -4.9985 dB and a standard deviation of 0.2454 dB, and these analytical results are checked by simulations of 100 runs with a mean of -5.06 dB and a standard deviation of 0.2506 dB.

  13. Refraction law and Fermat principle: a project using the ant colony optimization algorithm for undergraduate students in physics

    NASA Astrophysics Data System (ADS)

    Vuong, Q. L.; Rigaut, C.; Gossuin, Y.

    2018-07-01

    A programming project for undergraduate students in physics is proposed in this work. Its goal is to check the Snell–Descartes law of refraction using the Fermat principle and the ant colony optimization algorithm. The project involves basic mathematics and physics and is adapted to students with basic programming skills. More advanced tools can be used (but are not mandatory) as parallelization or object-oriented programming, which makes the project also suitable for more experienced students. We propose two tests to validate the program. Our algorithm is able to find solutions which are close to the theoretical predictions. Two quantities are defined to study its convergence and the quality of the solutions. It is also shown that the choice of the values of the simulation parameters is important to efficiently obtain precise results.

  14. High performance reconciliation for continuous-variable quantum key distribution with LDPC code

    NASA Astrophysics Data System (ADS)

    Lin, Dakai; Huang, Duan; Huang, Peng; Peng, Jinye; Zeng, Guihua

    2015-03-01

    Reconciliation is a significant procedure in a continuous-variable quantum key distribution (CV-QKD) system. It is employed to extract secure secret key from the resulted string through quantum channel between two users. However, the efficiency and the speed of previous reconciliation algorithms are low. These problems limit the secure communication distance and the secure key rate of CV-QKD systems. In this paper, we proposed a high-speed reconciliation algorithm through employing a well-structured decoding scheme based on low density parity-check (LDPC) code. The complexity of the proposed algorithm is reduced obviously. By using a graphics processing unit (GPU) device, our method may reach a reconciliation speed of 25 Mb/s for a CV-QKD system, which is currently the highest level and paves the way to high-speed CV-QKD.

  15. Optimal integer resolution for attitude determination using global positioning system signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn

    1998-01-01

    In this paper, a new motion-based algorithm for GPS integer ambiguity resolution is derived. The first step of this algorithm converts the reference sightline vectors into body frame vectors. This is accomplished by an optimal vectorized transformation of the phase difference measurements. The result of this transformation leads to the conversion of the integer ambiguities to vectorized biases. This essentially converts the problem to the familiar magnetometer-bias determination problem, for which an optimal and efficient solution exists. Also, the formulation in this paper is re-derived to provide a sequential estimate, so that a suitable stopping condition can be found during the vehicle motion. The advantages of the new algorithm include: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can sequentially estimate the ambiguities during the vehicle motion. The only disadvantage of the new algorithm is that it requires at least three non-coplanar baselines. The performance of the new algorithm is tested on a dynamic hardware simulator.

  16. A similarity based agglomerative clustering algorithm in networks

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  17. Construct validity and reliability of the Single Checking Administration of Medications Scale.

    PubMed

    O'Connell, Beverly; Hawkins, Mary; Ockerby, Cherene

    2013-06-01

    Research indicates that single checking of medications is as safe as double checking; however, many nurses are averse to independently checking medications. To assist with the introduction and use of single checking, a measure of nurses' attitudes, the thirteen-item Single Checking Administration of Medications Scale (SCAMS) was developed. We examined the psychometric properties of the SCAMS. Secondary analyses were conducted on data collected from 503 nurses across a large Australian health-care service. Analyses using exploratory and confirmatory factor analyses supported by structural equation modelling resulted in a valid twelve-item SCAMS containing two reliable subscales, the nine-item Attitudes towards single checking and three-item Advantages of single checking subscales. The SCAMS is recommended as a valid and reliable measure for monitoring nurses' attitudes to single checking prior to introducing single checking medications and after its implementation. © 2013 Wiley Publishing Asia Pty Ltd.

  18. Simulation-based model checking approach to cell fate specification during Caenorhabditis elegans vulval development by hybrid functional Petri net with extension.

    PubMed

    Li, Chen; Nagasaki, Masao; Ueno, Kazuko; Miyano, Satoru

    2009-04-27

    Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules - Rule I and Rule II - to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested. The quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.

  19. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  20. Design of Installing Check Dam Using RAMMS Model in Seorak National Park of South Korea

    NASA Astrophysics Data System (ADS)

    Jun, K.; Tak, W.; JUN, B. H.; Lee, H. J.; KIM, S. D.

    2016-12-01

    Design of Installing Check Dam Using RAMMS Model in Seorak National Park of South Korea Kye-Won Jun*, Won-Jun Tak*, Byong-Hee Jun**, Ho-Jin Lee***, Soung-Doug Kim* *Graduate School of Disaster Prevention, Kangwon National University, 346 Joogang-ro, Samcheok-si, Gangwon-do, Korea **School of Fire and Disaster Protection, Kangwon National University, 346 Joogang-ro, Samcheok-si, Gangwon-do, Korea ***School of Civil Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Korea Abstract As more than 64% of the land in South Korea is mountainous area, so many regions in South Korea are exposed to the danger of landslide and debris flow. So it is important to understand the behavior of debris flow in mountainous terrains, the various methods and models are being presented and developed based on the mathematical concept. The purpose of this study is to investigate the regions that experienced the debris flow due to typhoon called Ewiniar and to perform numerical modeling to design and layout of the Check dam for reducing the damage by the debris flow. For the performance of numerical modeling, on-site measurement of the research area was conducted including: topographic investigation, research on bridges in the downstream, and precision LiDAR 3D scanning for composed basic data of numerical modeling. The numerical simulation of this study was performed using RAMMS (Rapid Mass Movements Simulation) model for the analysis of the debris flow. This model applied to the conditions of the Check dam which was installed in the upstream, midstream, and downstream. Considering the reduction effect of debris flow, the expansion of debris flow, and the influence on the bridges in the downstream, proper location of the Check dam was designated. The result of present numerical model showed that when the Check dam was installed in the downstream section, 50 m above the bridge, the reduction effect of the debris flow was higher compared to when the Check dam were installed in other sections. Key words: Debris flow, LiDAR, Check dam, RAMMSAcknowledgementsThis research was supported by a grant [MPSS-NH-2014-74] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government

  1. Model building strategy for logistic regression: purposeful selection.

    PubMed

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  2. Chaotic particle swarm optimization with mutation for classification.

    PubMed

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  3. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    NASA Astrophysics Data System (ADS)

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  4. HiVy automated translation of stateflow designs for model checking verification

    NASA Technical Reports Server (NTRS)

    Pingree, Paula

    2003-01-01

    tool set enables model checking of finite state machines designs. This is acheived by translating state-chart specifications into the input language of the Spin model checker. An abstract syntax of hierarchical sequential automata (HSA) is provided as an intermediate format tool set.

  5. Metaheuristic optimisation methods for approximate solving of singular boundary value problems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong

    2017-07-01

    This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.

  6. Petri Net and Probabilistic Model Checking Based Approach for the Modelling, Simulation and Verification of Internet Worm Propagation

    PubMed Central

    Razzaq, Misbah; Ahmad, Jamil

    2015-01-01

    Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework. PMID:26713449

  7. Petri Net and Probabilistic Model Checking Based Approach for the Modelling, Simulation and Verification of Internet Worm Propagation.

    PubMed

    Razzaq, Misbah; Ahmad, Jamil

    2015-01-01

    Internet worms are analogous to biological viruses since they can infect a host and have the ability to propagate through a chosen medium. To prevent the spread of a worm or to grasp how to regulate a prevailing worm, compartmental models are commonly used as a means to examine and understand the patterns and mechanisms of a worm spread. However, one of the greatest challenge is to produce methods to verify and validate the behavioural properties of a compartmental model. This is why in this study we suggest a framework based on Petri Nets and Model Checking through which we can meticulously examine and validate these models. We investigate Susceptible-Exposed-Infectious-Recovered (SEIR) model and propose a new model Susceptible-Exposed-Infectious-Recovered-Delayed-Quarantined (Susceptible/Recovered) (SEIDQR(S/I)) along with hybrid quarantine strategy, which is then constructed and analysed using Stochastic Petri Nets and Continuous Time Markov Chain. The analysis shows that the hybrid quarantine strategy is extremely effective in reducing the risk of propagating the worm. Through Model Checking, we gained insight into the functionality of compartmental models. Model Checking results validate simulation ones well, which fully support the proposed framework.

  8. Immediate Effects of Body Checking Behaviour on Negative and Positive Emotions in Women with Eating Disorders: An Ecological Momentary Assessment Approach.

    PubMed

    Kraus, Nicole; Lindenberg, Julia; Zeeck, Almut; Kosfelder, Joachim; Vocks, Silja

    2015-09-01

    Cognitive-behavioural models of eating disorders state that body checking arises in response to negative emotions in order to reduce the aversive emotional state and is therefore negatively reinforced. This study empirically tests this assumption. For a seven-day period, women with eating disorders (n = 26) and healthy controls (n = 29) were provided with a handheld computer for assessing occurring body checking strategies as well as negative and positive emotions. Serving as control condition, randomized computer-emitted acoustic signals prompted reports on body checking and emotions. There was no difference in the intensity of negative emotions before body checking and in control situations across groups. However, from pre- to post-body checking, an increase in negative emotions was found. This effect was more pronounced in women with eating disorders compared with healthy controls. Results are contradictory to the assumptions of the cognitive-behavioural model, as body checking does not seem to reduce negative emotions. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. Direct estimates of national neonatal and child cause–specific mortality proportions in Niger by expert algorithm and physician–coded analysis of verbal autopsy interviews

    PubMed Central

    Kalter, Henry D.; Roubanatou, Abdoulaye–Mamadou; Koffi, Alain; Black, Robert E.

    2015-01-01

    Background This study was one of a set of verbal autopsy investigations undertaken by the WHO/UNCEF–supported Child Health Epidemiology Reference Group (CHERG) to derive direct estimates of the causes of neonatal and child deaths in high priority countries of sub–Saharan Africa. The objective of the study was to determine the cause distributions of neonatal (0–27 days) and child (1–59 months) mortality in Niger. Methods Verbal autopsy interviews were conducted of random samples of 453 neonatal deaths and 620 child deaths from 2007 to 2010 identified by the 2011 Niger National Mortality Survey. The cause of each death was assigned using two methods: computerized expert algorithms arranged in a hierarchy and physician completion of a death certificate for each child. The findings of the two methods were compared to each other, and plausibility checks were conducted to assess which is the preferred method. Comparison of some direct measures from this study with CHERG modeled cause of death estimates are discussed. Findings The cause distributions of neonatal deaths as determined by expert algorithms and the physician were similar, with the same top three causes by both methods and all but two other causes within one rank of each other. Although child causes of death differed more, the reasons often could be discerned by analyzing algorithmic criteria alongside the physician’s application of required minimal diagnostic criteria. Including all algorithmic (primary and co–morbid) and physician (direct, underlying and contributing) diagnoses in the comparison minimized the differences, with kappa coefficients greater than 0.40 for five of 11 neonatal diagnoses and nine of 13 child diagnoses. By algorithmic diagnosis, early onset neonatal infection was significantly associated (χ2 = 13.2, P < 0.001) with maternal infection, and the geographic distribution of child meningitis deaths closely corresponded with that for meningitis surveillance cases and deaths. Conclusions Verbal autopsy conducted in the context of a national mortality survey can provide useful estimates of the cause distributions of neonatal and child deaths. While the current study found reasonable agreement between the expert algorithm and physician analyses, it also demonstrated greater plausibility for two algorithmic diagnoses and validation work is needed to ascertain the findings. Direct, large–scale measurement of causes of death complement, can strengthen, and in some settings may be preferred over modeled estimates. PMID:25969734

  10. Alanine/EPR dosimetry applied to the verification of a total body irradiation protocol and treatment planning dose calculation using a humanoid phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeken, B.; Lelie, S.; Meijnders, P.

    2010-12-15

    Purpose: To avoid complications in total body irradiation (TBI), it is important to achieve a homogeneous dose distribution throughout the body and to deliver a correct dose to the lung which is an organ at risk. The purpose of this work was to validate the TBI dose protocol and to check the accuracy of the 3D dose calculations of the treatment planning system. Methods: Dosimetry based on alanine/electron paramagnetic resonance (EPR) was used to measure dose at numerous locations within an anthropomorphic phantom (Alderson) that was irradiated in a clinical TBI beam setup. The alanine EPR dosimetry system was calibratedmore » against water calorimetry in a Co-60 beam and the absorbed dose was determined by the use of ''dose-normalized amplitudes'' A{sub D}. The dose rate of the TBI beam was checked against a Farmer ionization chamber. The phantom measurements were compared to 3D dose calculations from a treatment planning system (Pinnacle) modeled for standard dose calculations. Results: Alanine dosimetry allowed accurate measurements which were in accordance with ionization chamber measurements. The combined relative standard measurement uncertainty in the Alderson phantom was U{sub r}(A{sub D})=0.6%. The humanoid phantom was irradiated to a reference dose of 10 Gy, limiting the lung dose to 7.5 Gy. The ratio of the average measured dose midplane in the craniocaudal direction to the reference dose was 1.001 with a spread of {+-}4.7% (1 sd). Dose to the lung was measured in 26 locations and found, in average, 1.8% lower than expected. Lung dose was homogeneous in the ventral-dorsal direction but a dose gradient of 0.10 Gy cm{sup -1} was observed in the craniocaudal direction midline within the lung lobe. 3D dose calculations (Pinnacle) were found, in average, 2% lower compared to dose measurements on the body axis and 3% lower for the lungs. Conclusions: The alanine/EPR dosimetry system allowed accurate dose measurements which enabled the authors to validate their TBI dose protocol. Dose calculations based on a collapsed cone convolution dose algorithm modeled for regular treatments are accurate within 3% and can further be improved when the algorithm is modeled for TBI.« less

  11. Multiparty Quantum English Auction Scheme Using Single Photons as Message Carrier

    NASA Astrophysics Data System (ADS)

    Liu, Ge; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-03-01

    In this paper, a secure and economic multiparty english auction protocol using the single photons as message carrier of bids is proposed. In order to achieve unconditional security, fairness, undeniability and so on, we adopt the decoy photon checking technique and quantum encryption algorithm. Analysis result shows that our protocol satisfies all the characteristics of traditional english auction, meanwhile, it can resist malicious attacks.

  12. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-14

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  13. Best Practices and Controls for Mitigating Insider Threats

    DTIC Science & Technology

    2013-08-08

    for plagiarism in academic papers, the process is virtually identical Solution: Managing The Insider Threat: What Every Organization Should Know...University Plagiarism Detection & DLP Managing The Insider Threat: What Every Organization Should Know Twitter #CERTinsiderthreat © 2013 Carnegie...How do we test document similarity? •  Cosine similarity algorithms •  Laymen’s terms: Plagiarism Detection •  Even though we’re not checking

  14. Model Diagnostics for Bayesian Networks

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  15. Multiprocessing the Sieve of Eratosthenes

    NASA Technical Reports Server (NTRS)

    Bokhari, S.

    1986-01-01

    The Sieve of Eratosthenes for finding prime numbers in recent years has seen much use as a benchmark algorithm for serial computers while its intrinsically parallel nature has gone largely unnoticed. The implementation of a parallel version of this algorithm for a real parallel computer, the Flex/32, is described and its performance discussed. It is shown that the algorithm is sensitive to several fundamental performance parameters of parallel machines, such as spawning time, signaling time, memory access, and overhead of process switching. Because of the nature of the algorithm, it is impossible to get any speedup beyond 4 or 5 processors unless some form of dynamic load balancing is employed. We describe the performance of our algorithm with and without load balancing and compare it with theoretical lower bounds and simulated results. It is straightforward to understand this algorithm and to check the final results. However, its efficient implementation on a real parallel machine requires thoughtful design, especially if dynamic load balancing is desired. The fundamental operations required by the algorithm are very simple: this means that the slightest overhead appears prominently in performance data. The Sieve thus serves not only as a very severe test of the capabilities of a parallel processor but is also an interesting challenge for the programmer.

  16. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD?

    PubMed Central

    Eagle, Dawn M.; Noschang, Cristie; d’Angelo, Laure-Sophie Camilla; Noble, Christie A.; Day, Jacob O.; Dongelmans, Marie Louise; Theobald, David E.; Mar, Adam C.; Urcelay, Gonzalo P.; Morein-Zamir, Sharon; Robbins, Trevor W.

    2014-01-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an ‘observing’ lever for information about the location of an ‘active’ lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5 mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be beneficial. PMID:24406720

  17. Sampling ARG of multiple populations under complex configurations of subdivision and admixture.

    PubMed

    Carrieri, Anna Paola; Utro, Filippo; Parida, Laxmi

    2016-04-01

    Simulating complex evolution scenarios of multiple populations is an important task for answering many basic questions relating to population genomics. Apart from the population samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a plethora of interdependent parameters making even the scenario-specification highly non-trivial. We present an algorithm SimRA that simulates generic multiple population evolution model with admixture. It is based on random graphs that improve dramatically in time and space requirements of the classical algorithm of single populations.Using the underlying random graphs model, we also derive closed forms of expected values of the ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and population diversity in terms of its defining parameters. This is crucial in aiding the user to specify meaningful parameters for the complex scenario simulations, not through trial-and-error based on raw compute power but intelligent parameter estimation. To the best of our knowledge this is the first time closed form expressions have been computed for the ARG properties. We show that the expected values closely match the empirical values through simulations.Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising any accuracy. We demonstrate the compactness and accuracy through extensive experiments. SimRA (Simulation based on Random graph Algorithms) source, executable, user manual and sample input-output sets are available for downloading at: https://github.com/ComputationalGenomics/SimRA CONTACT: : parida@us.ibm.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Perpetual Model Validation

    DTIC Science & Technology

    2017-03-01

    models of software execution, for example memory access patterns, to check for security intrusions. Additional research was performed to tackle the...considered using indirect models of software execution, for example memory access patterns, to check for security intrusions. Additional research ...deterioration for example , no longer corresponds to the model used during verification time. Finally, the research looked at ways to combine hybrid systems

  19. The Quality Control Algorithms Used in the Creation of NASA Kennedy Space Center Lightning Protection System Towers Meteorological Database

    NASA Technical Reports Server (NTRS)

    Orcutt, John M.; Brenton, James C.

    2016-01-01

    An accurate database of meteorological data is essential for designing any aerospace vehicle and for preparing launch commit criteria. Meteorological instrumentation were recently placed on the three Lightning Protection System (LPS) towers at Kennedy Space Center (KSC) launch complex 39B (LC-39B), which provide a unique meteorological dataset existing at the launch complex over an extensive altitude range. Data records of temperature, dew point, relative humidity, wind speed, and wind direction are produced at 40, 78, 116, and 139 m at each tower. The Marshall Space Flight Center Natural Environments Branch (EV44) received an archive that consists of one-minute averaged measurements for the period of record of January 2011 - April 2015. However, before the received database could be used EV44 needed to remove any erroneous data from within the database through a comprehensive quality control (QC) process. The QC process applied to the LPS towers' meteorological data is similar to other QC processes developed by EV44, which were used in the creation of meteorological databases for other towers at KSC. The QC process utilized in this study has been modified specifically for use with the LPS tower database. The QC process first includes a check of each individual sensor. This check includes removing any unrealistic data and checking the temporal consistency of each variable. Next, data from all three sensors at each height are checked against each other, checked against climatology, and checked for sensors that erroneously report a constant value. Then, a vertical consistency check of each variable at each tower is completed. Last, the upwind sensor at each level is selected to minimize the influence of the towers and other structures at LC-39B on the measurements. The selection process for the upwind sensor implemented a study of tower-induced turbulence. This paper describes in detail the QC process, QC results, and the attributes of the LPS towers meteorological database.

  20. Simultaneous planning of the project scheduling and material procurement problem under the presence of multiple suppliers

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Ghaderi, Seyed Farid

    2016-09-01

    Simultaneous planning of project scheduling and material procurement can improve the project execution costs. Hence, the issue has been addressed here by a mixed-integer programming model. The proposed model facilitates the procurement decisions by accounting for a number of suppliers offering a distinctive discount formula from which to purchase the required materials. It is aimed at developing schedules with the best net present value regarding the obtained benefit and costs of the project execution. A genetic algorithm is applied to deal with the problem, in addition to a modified version equipped with a variable neighbourhood search. The underlying factors of the solution methods are calibrated by the Taguchi method to obtain robust solutions. The performance of the aforementioned methods is compared for different problem sizes, in which the utilized local search proved efficient. Finally, a sensitivity analysis is carried out to check the effect of inflation on the objective function value.

  1. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  2. SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less

  3. Random lattice structures. Modelling, manufacture and FEA of their mechanical response

    NASA Astrophysics Data System (ADS)

    Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.

    2016-11-01

    The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.

  4. Statistical correlations and risk analyses techniques for a diving dual phase bubble model and data bank using massively parallel supercomputers.

    PubMed

    Wienke, B R; O'Leary, T R

    2008-05-01

    Linking model and data, we detail the LANL diving reduced gradient bubble model (RGBM), dynamical principles, and correlation with data in the LANL Data Bank. Table, profile, and meter risks are obtained from likelihood analysis and quoted for air, nitrox, helitrox no-decompression time limits, repetitive dive tables, and selected mixed gas and repetitive profiles. Application analyses include the EXPLORER decompression meter algorithm, NAUI tables, University of Wisconsin Seafood Diver tables, comparative NAUI, PADI, Oceanic NDLs and repetitive dives, comparative nitrogen and helium mixed gas risks, USS Perry deep rebreather (RB) exploration dive,world record open circuit (OC) dive, and Woodville Karst Plain Project (WKPP) extreme cave exploration profiles. The algorithm has seen extensive and utilitarian application in mixed gas diving, both in recreational and technical sectors, and forms the bases forreleased tables and decompression meters used by scientific, commercial, and research divers. The LANL Data Bank is described, and the methods used to deduce risk are detailed. Risk functions for dissolved gas and bubbles are summarized. Parameters that can be used to estimate profile risk are tallied. To fit data, a modified Levenberg-Marquardt routine is employed with L2 error norm. Appendices sketch the numerical methods, and list reports from field testing for (real) mixed gas diving. A Monte Carlo-like sampling scheme for fast numerical analysis of the data is also detailed, as a coupled variance reduction technique and additional check on the canonical approach to estimating diving risk. The method suggests alternatives to the canonical approach. This work represents a first time correlation effort linking a dynamical bubble model with deep stop data. Supercomputing resources are requisite to connect model and data in application.

  5. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    PubMed

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  6. Transformation and model choice for RNA-seq co-expression analysis.

    PubMed

    Rau, Andrea; Maugis-Rabusseau, Cathy

    2018-05-01

    Although a large number of clustering algorithms have been proposed to identify groups of co-expressed genes from microarray data, the question of if and how such methods may be applied to RNA sequencing (RNA-seq) data remains unaddressed. In this work, we investigate the use of data transformations in conjunction with Gaussian mixture models for RNA-seq co-expression analyses, as well as a penalized model selection criterion to select both an appropriate transformation and number of clusters present in the data. This approach has the advantage of accounting for per-cluster correlation structures among samples, which can be strong in RNA-seq data. In addition, it provides a rigorous statistical framework for parameter estimation, an objective assessment of data transformations and number of clusters and the possibility of performing diagnostic checks on the quality and homogeneity of the identified clusters. We analyze four varied RNA-seq data sets to illustrate the use of transformations and model selection in conjunction with Gaussian mixture models. Finally, we propose a Bioconductor package coseq (co-expression of RNA-seq data) to facilitate implementation and visualization of the recommended RNA-seq co-expression analyses.

  7. Mathematical models for space shuttle ground systems

    NASA Technical Reports Server (NTRS)

    Tory, E. G.

    1985-01-01

    Math models are a series of algorithms, comprised of algebraic equations and Boolean Logic. At Kennedy Space Center, math models for the Space Shuttle Systems are performed utilizing the Honeywell 66/80 digital computers, Modcomp II/45 Minicomputers and special purpose hardware simulators (MicroComputers). The Shuttle Ground Operations Simulator operating system provides the language formats, subroutines, queueing schemes, execution modes and support software to write, maintain and execute the models. The ground systems presented consist primarily of the Liquid Oxygen and Liquid Hydrogen Cryogenic Propellant Systems, as well as liquid oxygen External Tank Gaseous Oxygen Vent Hood/Arm and the Vehicle Assembly Building (VAB) High Bay Cells. The purpose of math modeling is to simulate the ground hardware systems and to provide an environment for testing in a benign mode. This capability allows the engineers to check out application software for loading and launching the vehicle, and to verify the Checkout, Control, & Monitor Subsystem within the Launch Processing System. It is also used to train operators and to predict system response and status in various configurations (normal operations, emergency and contingent operations), including untried configurations or those too dangerous to try under real conditions, i.e., failure modes.

  8. Algorithm for personal identification in distance learning system based on registration of keyboard rhythm

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Sivandaev, S. V.

    2018-05-01

    The article describes the method of identifying a person in distance learning systems based on a keyboard rhythm. An algorithm for the organization of access control is proposed, which implements authentication, identification and verification of a person using the keyboard rhythm. Authentication methods based on biometric personal parameters, including those based on the keyboard rhythm, due to the inexistence of biometric characteristics without a particular person, are able to provide an advanced accuracy and inability to refuse authorship and convenience for operators of automated systems, in comparison with other methods of conformity checking. Methods of permanent hidden keyboard monitoring allow detecting the substitution of a student and blocking the key system.

  9. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  10. Redundant and fault-tolerant algorithms for real-time measurement and control systems for weapon equipment.

    PubMed

    Li, Dan; Hu, Xiaoguang

    2017-03-01

    Because of the high availability requirements from weapon equipment, an in-depth study has been conducted on the real-time fault-tolerance of the widely applied Compact PCI (CPCI) bus measurement and control system. A redundancy design method that uses heartbeat detection to connect the primary and alternate devices has been developed. To address the low successful execution rate and relatively large waste of time slices in the primary version of the task software, an improved algorithm for real-time fault-tolerant scheduling is proposed based on the Basic Checking available time Elimination idle time (BCE) algorithm, applying a single-neuron self-adaptive proportion sum differential (PSD) controller. The experimental validation results indicate that this system has excellent redundancy and fault-tolerance, and the newly developed method can effectively improve the system availability. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Authenticity techniques for PACS images and records

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.

    1995-05-01

    Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.

  12. Transmission over UWB channels with OFDM system using LDPC coding

    NASA Astrophysics Data System (ADS)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  13. The analysis of convolutional codes via the extended Smith algorithm

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Onyszchuk, I.

    1993-01-01

    Convolutional codes have been the central part of most error-control systems in deep-space communication for many years. Almost all such applications, however, have used the restricted class of (n,1), also known as 'rate 1/n,' convolutional codes. The more general class of (n,k) convolutional codes contains many potentially useful codes, but their algebraic theory is difficult and has proved to be a stumbling block in the evolution of convolutional coding systems. In this article, the situation is improved by describing a set of practical algorithms for computing certain basic things about a convolutional code (among them the degree, the Forney indices, a minimal generator matrix, and a parity-check matrix), which are usually needed before a system using the code can be built. The approach is based on the classic Forney theory for convolutional codes, together with the extended Smith algorithm for polynomial matrices, which is introduced in this article.

  14. The challenge of computer mathematics.

    PubMed

    Barendregt, Henk; Wiedijk, Freek

    2005-10-15

    Progress in the foundations of mathematics has made it possible to formulate all thinkable mathematical concepts, algorithms and proofs in one language and in an impeccable way. This is not in spite of, but partially based on the famous results of Gödel and Turing. In this way statements are about mathematical objects and algorithms, proofs show the correctness of statements and computations, and computations are dealing with objects and proofs. Interactive computer systems for a full integration of defining, computing and proving are based on this. The human defines concepts, constructs algorithms and provides proofs, while the machine checks that the definitions are well formed and the proofs and computations are correct. Results formalized so far demonstrate the feasibility of this 'computer mathematics'. Also there are very good applications. The challenge is to make the systems more mathematician-friendly, by building libraries and tools. The eventual goal is to help humans to learn, develop, communicate, referee and apply mathematics.

  15. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    USGS Publications Warehouse

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  16. New Results in Software Model Checking and Analysis

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2010-01-01

    This introductory article surveys new techniques, supported by automated tools, for the analysis of software to ensure reliability and safety. Special focus is on model checking techniques. The article also introduces the five papers that are enclosed in this special journal volume.

  17. Constructing LDPC Codes from Loop-Free Encoding Modules

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher; Thorpe, Jeremy; Andrews, Kenneth

    2009-01-01

    A method of constructing certain low-density parity-check (LDPC) codes by use of relatively simple loop-free coding modules has been developed. The subclasses of LDPC codes to which the method applies includes accumulate-repeat-accumulate (ARA) codes, accumulate-repeat-check-accumulate codes, and the codes described in Accumulate-Repeat-Accumulate-Accumulate Codes (NPO-41305), NASA Tech Briefs, Vol. 31, No. 9 (September 2007), page 90. All of the affected codes can be characterized as serial/parallel (hybrid) concatenations of such relatively simple modules as accumulators, repetition codes, differentiators, and punctured single-parity check codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. These codes can also be characterized as hybrid turbolike codes that have projected graph or protograph representations (for example see figure); these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The present method comprises two related submethods for constructing LDPC codes from simple loop-free modules with circulant permutations. The first submethod is an iterative encoding method based on the erasure-decoding algorithm. The computations required by this method are well organized because they involve a parity-check matrix having a block-circulant structure. The second submethod involves the use of block-circulant generator matrices. The encoders of this method are very similar to those of recursive convolutional codes. Some encoders according to this second submethod have been implemented in a small field-programmable gate array that operates at a speed of 100 megasymbols per second. By use of density evolution (a computational- simulation technique for analyzing performances of LDPC codes), it has been shown through some examples that as the block size goes to infinity, low iterative decoding thresholds close to channel capacity limits can be achieved for the codes of the type in question having low maximum variable node degrees. The decoding thresholds in these examples are lower than those of the best-known unstructured irregular LDPC codes constrained to have the same maximum node degrees. Furthermore, the present method enables the construction of codes of any desired rate with thresholds that stay uniformly close to their respective channel capacity thresholds.

  18. Modeling of adipose/blood partition coefficient for environmental chemicals.

    PubMed

    Papadaki, K C; Karakitsios, S P; Sarigiannis, D A

    2017-12-01

    A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict the adipose/blood partition coefficient of environmental chemical compounds. The first step of QSAR modeling was the collection of inputs. Input data included the experimental values of adipose/blood partition coefficient and two sets of molecular descriptors for 67 organic chemical compounds; a) the descriptors from Linear Free Energy Relationship (LFER) and b) the PaDEL descriptors. The datasets were split to training and prediction set and were analysed using two statistical methods; Genetic Algorithm based Multiple Linear Regression (GA-MLR) and Artificial Neural Networks (ANN). The models with LFER and PaDEL descriptors, coupled with ANN, produced satisfying performance results. The fitting performance (R 2 ) of the models, using LFER and PaDEL descriptors, was 0.94 and 0.96, respectively. The Applicability Domain (AD) of the models was assessed and then the models were applied to a large number of chemical compounds with unknown values of adipose/blood partition coefficient. In conclusion, the proposed models were checked for fitting, validity and applicability. It was demonstrated that they are stable, reliable and capable to predict the values of adipose/blood partition coefficient of "data poor" chemical compounds that fall within the applicability domain. Copyright © 2017. Published by Elsevier Ltd.

  19. Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions

    NASA Astrophysics Data System (ADS)

    Wrench, Alan A.

    Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).

  20. Short- and Long-Term Earthquake Forecasts Based on Statistical Models

    NASA Astrophysics Data System (ADS)

    Console, Rodolfo; Taroni, Matteo; Murru, Maura; Falcone, Giuseppe; Marzocchi, Warner

    2017-04-01

    The epidemic-type aftershock sequences (ETAS) models have been experimentally used to forecast the space-time earthquake occurrence rate during the sequence that followed the 2009 L'Aquila earthquake and for the 2012 Emilia earthquake sequence. These forecasts represented the two first pioneering attempts to check the feasibility of providing operational earthquake forecasting (OEF) in Italy. After the 2009 L'Aquila earthquake the Italian Department of Civil Protection nominated an International Commission on Earthquake Forecasting (ICEF) for the development of the first official OEF in Italy that was implemented for testing purposes by the newly established "Centro di Pericolosità Sismica" (CPS, the seismic Hazard Center) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). According to the ICEF guidelines, the system is open, transparent, reproducible and testable. The scientific information delivered by OEF-Italy is shaped in different formats according to the interested stakeholders, such as scientists, national and regional authorities, and the general public. The communication to people is certainly the most challenging issue, and careful pilot tests are necessary to check the effectiveness of the communication strategy, before opening the information to the public. With regard to long-term time-dependent earthquake forecast, the application of a newly developed simulation algorithm to Calabria region provided typical features in time, space and magnitude behaviour of the seismicity, which can be compared with those of the real observations. These features include long-term pseudo-periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the moderate and higher magnitude range.

  1. Plasma spectroscopy analysis technique based on optimization algorithms and spectral synthesis for arc-welding quality assurance.

    PubMed

    Mirapeix, J; Cobo, A; González, D A; López-Higuera, J M

    2007-02-19

    A new plasma spectroscopy analysis technique based on the generation of synthetic spectra by means of optimization processes is presented in this paper. The technique has been developed for its application in arc-welding quality assurance. The new approach has been checked through several experimental tests, yielding results in reasonably good agreement with the ones offered by the traditional spectroscopic analysis technique.

  2. Combining Risk Analysis and Slicing for Test Reduction in Open Architecture

    DTIC Science & Technology

    2014-04-30

    collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...full-system testing, whose purpose is to check that all the parts work harmoniously together. This part of the effort cannot be reduced unless it is...that eliminates program statements irrelevant to a given slicing criterion. Slicing algorithms detect and follow dependencies of the kinds described

  3. Reduction of image-based ADI-to-AEI overlay inconsistency with improved algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Liang; Lin, Shu-Hong; Chen, Kai-Hsiung; Ke, Chih-Ming; Gau, Tsai-Sheng

    2013-04-01

    In image-based overlay (IBO) measurement, the measurement quality of various measurement spectra can be judged by quality indicators and also the ADI-to-AEI similarity to determine the optimum light spectrum. However we found some IBO measured results showing erroneous indication of wafer expansion from the difference between the ADI and the AEI maps, even after their measurement spectra were optimized. To reduce this inconsistency, an improved image calculation algorithm is proposed in this paper. Different gray levels composed of inner- and outer-box contours are extracted to calculate their ADI overlay errors. The symmetry of intensity distribution at the thresholds dictated by a range of gray levels is used to determine the particular gray level that can minimize the ADI-to-AEI overlay inconsistency. After this improvement, the ADI is more similar to AEI with less expansion difference. The same wafer was also checked by the diffraction-based overlay (DBO) tool to verify that there is no physical wafer expansion. When there is actual wafer expansion induced by large internal stress, both the IBO and the DBO measurements indicate similar expansion results. The scanning white-light interference microscope was used to check the variation of wafer warpage during the ADI and AEI stages. It predicts a similar trend with the overlay difference map, confirming the internal stress.

  4. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  5. Query Language for Location-Based Services: A Model Checking Approach

    NASA Astrophysics Data System (ADS)

    Hoareau, Christian; Satoh, Ichiro

    We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.

  6. Topological Relations-Based Detection of Spatial Inconsistency in GLOBELAND30

    NASA Astrophysics Data System (ADS)

    Kang, S.; Chen, J.; Peng, S.

    2017-09-01

    Land cover is one of the fundamental data sets on environment assessment, land management and biodiversity protection, etc. Hence, data quality control of land cover is extremely critical for geospatial analysis and decision making. Due to the similar remote-sensing reflectance for some land cover types, omission and commission errors occurred in preliminary classification could result to spatial inconsistency between land cover types. In the progress of post-classification, this error checking mainly depends on manual labour to assure data quality, by which it is time-consuming and labour intensive. So a method required for automatic detection in post-classification is still an open issue. From logical inconsistency point of view, an inconsistency detection method is designed. This method consist of a grids extended 4-intersection model (GE4IM) for topological representation in single-valued space, by which three different kinds of topological relations including disjoint, touch, contain or contained-by are described, and an algorithm of region overlay for the computation of spatial inconsistency. The rules are derived from universal law in nature between water body and wetland, cultivated land and artificial surface. Through experiment conducted in Shandong Linqu County, data inconsistency can be pointed out within 6 minutes through calculation of topological inconsistency between cultivated land and artificial surface, water body and wetland. The efficiency evaluation of the presented algorithm is demonstrated by Google Earth images. Through comparative analysis, the algorithm is proved to be promising for inconsistency detection in land cover data.

  7. Consensus-Based Sorting of Neuronal Spike Waveforms

    PubMed Central

    Fournier, Julien; Mueller, Christian M.; Shein-Idelson, Mark; Hemberger, Mike

    2016-01-01

    Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained “ground truth” data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data. PMID:27536990

  8. Consensus-Based Sorting of Neuronal Spike Waveforms.

    PubMed

    Fournier, Julien; Mueller, Christian M; Shein-Idelson, Mark; Hemberger, Mike; Laurent, Gilles

    2016-01-01

    Optimizing spike-sorting algorithms is difficult because sorted clusters can rarely be checked against independently obtained "ground truth" data. In most spike-sorting algorithms in use today, the optimality of a clustering solution is assessed relative to some assumption on the distribution of the spike shapes associated with a particular single unit (e.g., Gaussianity) and by visual inspection of the clustering solution followed by manual validation. When the spatiotemporal waveforms of spikes from different cells overlap, the decision as to whether two spikes should be assigned to the same source can be quite subjective, if it is not based on reliable quantitative measures. We propose a new approach, whereby spike clusters are identified from the most consensual partition across an ensemble of clustering solutions. Using the variability of the clustering solutions across successive iterations of the same clustering algorithm (template matching based on K-means clusters), we estimate the probability of spikes being clustered together and identify groups of spikes that are not statistically distinguishable from one another. Thus, we identify spikes that are most likely to be clustered together and therefore correspond to consistent spike clusters. This method has the potential advantage that it does not rely on any model of the spike shapes. It also provides estimates of the proportion of misclassified spikes for each of the identified clusters. We tested our algorithm on several datasets for which there exists a ground truth (simultaneous intracellular data), and show that it performs close to the optimum reached by a support vector machine trained on the ground truth. We also show that the estimated rate of misclassification matches the proportion of misclassified spikes measured from the ground truth data.

  9. Abstraction Techniques for Parameterized Verification

    DTIC Science & Technology

    2006-11-01

    approach for applying model checking to unbounded systems is to extract finite state models from them using conservative abstraction techniques. Prop...36 2.5.1 Multiple Reference Processes . . . . . . . . . . . . . . . . . . . 36 2.5.2 Adding Monitor Processes...model checking to complex pieces of code like device drivers depends on the use of abstraction methods. An abstraction method extracts a small finite

  10. The Automation of Nowcast Model Assessment Processes

    DTIC Science & Technology

    2016-09-01

    that will automate real-time WRE-N model simulations, collect and quality control check weather observations for assimilation and verification, and...domains centered near White Sands Missile Range, New Mexico, where the Meteorological Sensor Array (MSA) will be located. The MSA will provide...observations and performing quality -control checks for the pre-forecast data assimilation period. 2. Run the WRE-N model to generate model forecast data

  11. HIV point of care diagnosis: preventing misdiagnosis experience from a pilot of rapid test algorithm implementation in selected communes in Vietnam.

    PubMed

    Nguyen, Van Thi Thuy; Best, Susan; Pham, Hong Thang; Troung, Thi Xuan Lien; Hoang, Thi Thanh Ha; Wilson, Kim; Ngo, Thi Hong Hanh; Chien, Xuan; Lai, Kim Anh; Bui, Duc Duong; Kato, Masaya

    2017-08-29

    In Vietnam, HIV testing services had been available only at provincial and district health facilities, but not at the primary health facilities. Consequently, access to HIV testing services had been limited especially in rural areas. In 2012, Vietnam piloted decentralization and integration of HIV services at commune health stations (CHSs). As a part of this pilot, a three-rapid test algorithm was introduced at CHSs. The objective of this study was to assess the performance of a three-rapid test algorithm and the implementation of quality assurance measures to prevent misdiagnosis, at primary health facilities. The three-rapid test algorithm (Determine HIV-1/2, followed by ACON HIV 1/2 and DoubleCheckGold HIV 1&2 in parallel) was piloted at CHSs from August 2012 to December 2013. Commune health staff were trained to perform HIV testing. Specimens from CHSs were sent to the provincial confirmatory laboratory (PCL) for confirmatory and validation testing. Quality assurance measures were undertaken including training, competency assessment, field technical assistance, supervision and monitoring and external quality assessment (EQA). Data on HIV testing were collected from the testing logbooks at commune and provincial facilities. Descriptive analysis was conducted. Sensitivity and specificity of the rapid testing algorithm were calculated. A total of 1,373 people received HIV testing and counselling (HTC) at CHSs. Eighty people were diagnosed with HIV infection (5.8%). The 755/1244 specimens reported as HIV negative at the CHS were sent to PCL and confirmed as negative, and all 80 specimens reported as HIV positive at CHS were confirmed as positive at the PCL. Forty-nine specimens that were reactive with Determine but negative with ACON and DoubleCheckGold at the CHSs were confirmed negative at the PCL. The results show this rapid test algorithm to be 100% sensitive and 100% specific. Of 21 CHSs that received two rounds of EQA panels, 20 CHSs submitted accurate results. Decentralization of HIV confirmatory testing to CHS is feasible in Vietnam. The results obtained from this pilot provided strong evidence of the feasibility of HIV testing at primary health facilities. Quality assurance measures including training, competency assessment, regular monitoring and supervision and an EQA scheme are essential for prevention of misdiagnosis.

  12. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including comparisons against ICESat altimetry for selected regions with tall vegetation and high relief. The extensive verification effort by the Receiver Algorithm team at GSFC is aimed at assuring that the onboard databases are sufficiently accurate. We will present the results of those assessments and verification tests, along with measures taken to implement modifications to the databases to optimize their use by the receiver algorithms. Companion presentations by McGarry et al. and Leigh et al. describe the details on the ATLAS Onboard Receiver Algorithms and databases development, respectively.

  13. A prediction model based on artificial neural network for surface temperature simulation of nickel-metal hydride battery during charging

    NASA Astrophysics Data System (ADS)

    Fang, Kaizheng; Mu, Daobin; Chen, Shi; Wu, Borong; Wu, Feng

    2012-06-01

    In this study, a prediction model based on artificial neural network is constructed for surface temperature simulation of nickel-metal hydride battery. The model is developed from a back-propagation network which is trained by Levenberg-Marquardt algorithm. Under each ambient temperature of 10 °C, 20 °C, 30 °C and 40 °C, an 8 Ah cylindrical Ni-MH battery is charged in the rate of 1 C, 3 C and 5 C to its SOC of 110% in order to provide data for the model training. Linear regression method is adopted to check the quality of the model training, as well as mean square error and absolute error. It is shown that the constructed model is of excellent training quality for the guarantee of prediction accuracy. The surface temperature of battery during charging is predicted under various ambient temperatures of 50 °C, 60 °C, 70 °C by the model. The results are validated in good agreement with experimental data. The value of battery surface temperature is calculated to exceed 90 °C under the ambient temperature of 60 °C if it is overcharged in 5 C, which might cause battery safety issues.

  14. An Image-Based Algorithm for Precise and Accurate High Throughput Assessment of Drug Activity against the Human Parasite Trypanosoma cruzi

    PubMed Central

    Moraes, Carolina Borsoi; Yang, Gyongseon; Kang, Myungjoo; Freitas-Junior, Lucio H.; Hansen, Michael A. E.

    2014-01-01

    We present a customized high content (image-based) and high throughput screening algorithm for the quantification of Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the number of infected cells divided by the total number of cells). Accurate and precise estimation of these parameters allow for both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the algorithm provides the expected half maximal effective concentration (EC50) of the anti-T. cruzi activity. PMID:24503652

  15. Chaotic Particle Swarm Optimization with Mutation for Classification

    PubMed Central

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937

  16. Crater Identification Algorithm for the Lost in Low Lunar Orbit Scenario

    NASA Technical Reports Server (NTRS)

    Hanak, Chad; Crain, TImothy

    2010-01-01

    Recent emphasis by NASA on returning astronauts to the Moon has placed attention on the subject of lunar surface feature tracking. Although many algorithms have been proposed for lunar surface feature tracking navigation, much less attention has been paid to the issue of navigational state initialization from lunar craters in a lost in low lunar orbit (LLO) scenario. That is, a scenario in which lunar surface feature tracking must begin, but current navigation state knowledge is either unavailable or too poor to initiate a tracking algorithm. The situation is analogous to the lost in space scenario for star trackers. A new crater identification algorithm is developed herein that allows for navigation state initialization from as few as one image of the lunar surface with no a priori state knowledge. The algorithm takes as inputs the locations and diameters of craters that have been detected in an image, and uses the information to match the craters to entries in the USGS lunar crater catalog via non-dimensional crater triangle parameters. Due to the large number of uncataloged craters that exist on the lunar surface, a probability-based check was developed to reject false identifications. The algorithm was tested on craters detected in four revolutions of Apollo 16 LLO images, and shown to perform well.

  17. Using medication list--problem list mismatches as markers of potential error.

    PubMed Central

    Carpenter, James D.; Gorman, Paul N.

    2002-01-01

    The goal of this project was to specify and develop an algorithm that will check for drug and problem list mismatches in an electronic medical record (EMR). The algorithm is based on the premise that a patient's problem list and medication list should agree, and a mismatch may indicate medication error. Successful development of this algorithm could mean detection of some errors, such as medication orders entered into a wrong patient record, or drug therapy omissions, that are not otherwise detected via automated means. Additionally, mismatches may identify opportunities to improve problem list integrity. To assess the concept's feasibility, this study compared medications listed in a pharmacy information system with findings in an online nursing adult admission assessment, serving as a proxy for the problem list. Where drug and problem list mismatches were discovered, examination of the patient record confirmed the mismatch, and identified any potential causes. Evaluation of the algorithm in diabetes treatment indicates that it successfully detects both potential medication error and opportunities to improve problem list completeness. This algorithm, once fully developed and deployed, could prove a valuable way to improve the patient problem list, and could decrease the risk of medication error. PMID:12463796

  18. Acoustic computer tomographic pyrometry for two-dimensional measurement of gases taking into account the effect of refraction of sound wave paths

    NASA Astrophysics Data System (ADS)

    Lu, J.; Wakai, K.; Takahashi, S.; Shimizu, S.

    2000-06-01

    The algorithm which takes into account the effect of refraction of sound wave paths for acoustic computer tomography (CT) is developed. Incorporating the algorithm of refraction into ordinary CT algorithms which are based on Fourier transformation is very difficult. In this paper, the least-squares method, which is capable of considering the refraction effect, is employed to reconstruct the two-dimensional temperature distribution. The refraction effect is solved by writing a set of differential equations which is derived from Fermat's theorem and the calculus of variations. It is impossible to carry out refraction analysis and the reconstruction of temperature distribution simultaneously, so the problem is solved using the iteration method. The measurement field is assumed to take the shape of a circle and 16 speakers, also serving as the receivers, are set around it isometrically. The algorithm is checked through computer simulation with various kinds of temperature distributions. It is shown that the present method which takes into account the algorithm of the refraction effect can reconstruct temperature distributions with much greater accuracy than can methods which do not include the refraction effect.

  19. Combining constraint satisfaction and local improvement algorithms to construct anaesthetists' rotas

    NASA Technical Reports Server (NTRS)

    Smith, Barbara M.; Bennett, Sean

    1992-01-01

    A system is described which was built to compile weekly rotas for the anaesthetists in a large hospital. The rota compilation problem is an optimization problem (the number of tasks which cannot be assigned to an anaesthetist must be minimized) and was formulated as a constraint satisfaction problem (CSP). The forward checking algorithm is used to find a feasible rota, but because of the size of the problem, it cannot find an optimal (or even a good enough) solution in an acceptable time. Instead, an algorithm was devised which makes local improvements to a feasible solution. The algorithm makes use of the constraints as expressed in the CSP to ensure that feasibility is maintained, and produces very good rotas which are being used by the hospital involved in the project. It is argued that formulation as a constraint satisfaction problem may be a good approach to solving discrete optimization problems, even if the resulting CSP is too large to be solved exactly in an acceptable time. A CSP algorithm may be able to produce a feasible solution which can then be improved, giving a good, if not provably optimal, solution.

  20. 76 FR 35344 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... retraction/extension ground checks performed on the P2006T, a loose Seeger ring was found on the nose landing... specified products. The MCAI states: During Landing Gear retraction/extension ground checks performed on the... airworthiness information (MCAI) states: During Landing Gear retraction/extension ground checks performed on the...

  1. SMOS first results over land

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Waldteufel, Philippe; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Bitar, Ahmad Al; Mamhoodi, Ali; Delwart, Steven; Wigneron, Jean-Pierre

    2010-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission is ESA's (European Space Agency ) second Earth Explorer Opportunity mission, launched in November 2009. It is a joint programme between ESA CNES (Centre National d'Etudes Spatiales) and CDTI (Centro para el Desarrollo Tecnologico Industrial). SMOS carries a single payload, an L-band 2D interferometric radiometer in the 1400-1427 MHz protected band. This wavelength penetrates well through the atmosphere and hence the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea surface salinity over ocean. In order to prepare the data use and dissemination, the ground segment will produce level 1 and 2 data. Level 1 consists mainly of angular brightness temperatures while level 2 consists of geophysical products. In this context, a group of institutes prepared the soil moisture and ocean salinity Algorithm Theoretical Basis documents (ATBD) to be used to produce the operational algorithm. The principle of the soil moisture retrieval algorithm is based on an iterative approach which aims at minimizing a cost function given by the sum of the squared weighted differences between measured and modelled brightness temperature (TB) data, for a variety of incidence angles. This is achieved by finding the best suited set of the parameters which drive the direct TB model, e.g. soil moisture (SM) and vegetation characteristics. Despite the simplicity of this principle, the main reason for the complexity of the algorithm is that SMOS "pixels" can correspond to rather large, inhomogeneous surface areas whose contribution to the radiometric signal is difficult to model. Moreover, the exact description of pixels, given by a weighting function which expresses the directional pattern of the SMOS interferometric radiometer, depends on the incidence angle. The goal is to retrieve soil moisture over fairly large and thus inhomogeneous areas. The retrieval is carried out at nodes of a fixed Earth surface grid. To achieve this purpose, after checking input data quality and ingesting auxiliary data, the retrieval process per se can be initiated. This cannot be done blindly as the direct model will be dependent upon surface characteristics. It is thus necessary to first assess what is the dominant land use of a node. For this, an average weighing function (MEAN_WEF) which takes into account the "antenna"pattern is run over the high resolution land use map to assess the dominant cover type. This is used to drive the decision tree which, step by step, selects the type of model to be used as per surface conditions. All this being said and done the retrieval procedure starts if all the conditions are satisfied, ideally to retrieve 3 parameters over the dominant class (the so-called rich retrieval). If the algorithm does not converge satisfactorily, a new trial is made with less floating parameters ("poorer retrieval") until either results are satisfactory or the algorithm is considered to fail. The retrieval algorithm also delivers whenever possible a dielectric constant parameter (using the-so called cardioid approach). Finally, once the retrieval converged, it is possible to compute the brightness temperature at a given fixed angle (42.5°) using the selected forward models applied to the set of parameters obtained at the end of the retrieval process. So the output product of the level 2 soil moisture algorithm should be node position, soil moisture, dielectric constants, computed brightness temperature at 42.5°, flags and quality indices. During the presentation we will describe in more details the algorithm and accompanying work in particular decision tree principle and characteristics, the auxiliary data used and the special and "exotic"cases. We will also be more explicit on the algorithm validation and verification through the data collected during the commissioning phase. The main hurdle being working in spite of spurious signals (RFI) on some areas of the globe.

  2. Sediment trapping efficiency of adjustable check dam in laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui

    2014-05-01

    Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.

  3. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD.

    PubMed

    Eagle, Dawn M; Noschang, Cristie; d'Angelo, Laure-Sophie Camilla; Noble, Christie A; Day, Jacob O; Dongelmans, Marie Louise; Theobald, David E; Mar, Adam C; Urcelay, Gonzalo P; Morein-Zamir, Sharon; Robbins, Trevor W

    2014-05-01

    Excessive checking is a common, debilitating symptom of obsessive-compulsive disorder (OCD). In an established rodent model of OCD checking behaviour, quinpirole (dopamine D2/3-receptor agonist) increased checking in open-field tests, indicating dopaminergic modulation of checking-like behaviours. We designed a novel operant paradigm for rats (observing response task (ORT)) to further examine cognitive processes underpinning checking behaviour and clarify how and why checking develops. We investigated i) how quinpirole increases checking, ii) dependence of these effects on D2/3 receptor function (following treatment with D2/3 receptor antagonist sulpiride) and iii) effects of reward uncertainty. In the ORT, rats pressed an 'observing' lever for information about the location of an 'active' lever that provided food reinforcement. High- and low-checkers (defined from baseline observing) received quinpirole (0.5mg/kg, 10 treatments) or vehicle. Parametric task manipulations assessed observing/checking under increasing task demands relating to reinforcement uncertainty (variable response requirement and active-lever location switching). Treatment with sulpiride further probed the pharmacological basis of long-term behavioural changes. Quinpirole selectively increased checking, both functional observing lever presses (OLPs) and non-functional extra OLPs (EOLPs). The increase in OLPs and EOLPs was long-lasting, without further quinpirole administration. Quinpirole did not affect the immediate ability to use information from checking. Vehicle and quinpirole-treated rats (VEH and QNP respectively) were selectively sensitive to different forms of uncertainty. Sulpiride reduced non-functional EOLPs in QNP rats but had no effect on functional OLPs. These data have implications for treatment of compulsive checking in OCD, particularly for serotonin-reuptake-inhibitor treatment-refractory cases, where supplementation with dopamine receptor antagonists may be beneficial. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations

    NASA Astrophysics Data System (ADS)

    Chua, A. J. K.; Hee, S.; Handley, W. J.; Higson, E.; Moore, C. J.; Gair, J. R.; Hobson, M. P.; Lasenby, A. N.

    2018-07-01

    Extreme-mass-ratio-inspiral observations from future space-based gravitational-wave detectors such as LISA will enable strong-field tests of general relativity with unprecedented precision, but at prohibitive computational cost if existing statistical techniques are used. In one such test that is currently employed for LIGO black hole binary mergers, generic deviations from relativity are represented by N deformation parameters in a generalized waveform model; the Bayesian evidence for each of its 2N combinatorial submodels is then combined into a posterior odds ratio for modified gravity over relativity in a null-hypothesis test. We adapt and apply this test to a generalized model for extreme-mass-ratio inspirals constructed on deformed black hole spacetimes, and focus our investigation on how computational efficiency can be increased through an evidence-free method of model selection. This method is akin to the algorithm known as product-space Markov chain Monte Carlo, but uses nested sampling and improved error estimates from a rethreading technique. We perform benchmarking and robustness checks for the method, and find order-of-magnitude computational gains over regular nested sampling in the case of synthetic data generated from the null model.

  5. Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations

    NASA Astrophysics Data System (ADS)

    Chua, A. J. K.; Hee, S.; Handley, W. J.; Higson, E.; Moore, C. J.; Gair, J. R.; Hobson, M. P.; Lasenby, A. N.

    2018-04-01

    Extreme-mass-ratio-inspiral observations from future space-based gravitational-wave detectors such as LISA will enable strong-field tests of general relativity with unprecedented precision, but at prohibitive computational cost if existing statistical techniques are used. In one such test that is currently employed for LIGO black-hole binary mergers, generic deviations from relativity are represented by N deformation parameters in a generalised waveform model; the Bayesian evidence for each of its 2N combinatorial submodels is then combined into a posterior odds ratio for modified gravity over relativity in a null-hypothesis test. We adapt and apply this test to a generalised model for extreme-mass-ratio inspirals constructed on deformed black-hole spacetimes, and focus our investigation on how computational efficiency can be increased through an evidence-free method of model selection. This method is akin to the algorithm known as product-space Markov chain Monte Carlo, but uses nested sampling and improved error estimates from a rethreading technique. We perform benchmarking and robustness checks for the method, and find order-of-magnitude computational gains over regular nested sampling in the case of synthetic data generated from the null model.

  6. A Simulated Annealing based Optimization Algorithm for Automatic Variogram Model Fitting

    NASA Astrophysics Data System (ADS)

    Soltani-Mohammadi, Saeed; Safa, Mohammad

    2016-09-01

    Fitting a theoretical model to an experimental variogram is an important issue in geostatistical studies because if the variogram model parameters are tainted with uncertainty, the latter will spread in the results of estimations and simulations. Although the most popular fitting method is fitting by eye, in some cases use is made of the automatic fitting method on the basis of putting together the geostatistical principles and optimization techniques to: 1) provide a basic model to improve fitting by eye, 2) fit a model to a large number of experimental variograms in a short time, and 3) incorporate the variogram related uncertainty in the model fitting. Effort has been made in this paper to improve the quality of the fitted model by improving the popular objective function (weighted least squares) in the automatic fitting. Also, since the variogram model function (£) and number of structures (m) too affect the model quality, a program has been provided in the MATLAB software that can present optimum nested variogram models using the simulated annealing method. Finally, to select the most desirable model from among the single/multi-structured fitted models, use has been made of the cross-validation method, and the best model has been introduced to the user as the output. In order to check the capability of the proposed objective function and the procedure, 3 case studies have been presented.

  7. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.

    2017-12-01

    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  8. An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space

    NASA Astrophysics Data System (ADS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2017-03-01

    Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.

  9. GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm

    NASA Technical Reports Server (NTRS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-01-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.

  10. Calculation algorithms for breath-by-breath alveolar gas exchange: the unknowns!

    PubMed

    Golja, Petra; Cettolo, Valentina; Francescato, Maria Pia

    2018-06-25

    Several papers (algorithm papers) describe computational algorithms that assess alveolar breath-by-breath gas exchange by accounting for changes in lung gas stores. It is unclear, however, if the effects of the latter are actually considered in literature. We evaluated dissemination of algorithm papers and the relevant provided information. The list of documents investigating exercise transients (in 1998-2017) was extracted from Scopus database. Documents citing the algorithm papers in the same period were analyzed in full text to check consistency of the relevant information provided. Less than 8% (121/1522) of documents dealing with exercise transients cited at least one algorithm paper; the paper of Beaver et al. (J Appl Physiol 51:1662-1675, 1981) was cited most often, with others being cited tenfold less. Among the documents citing the algorithm paper of Beaver et al. (J Appl Physiol 51:1662-1675, 1981) (N = 251), only 176 cited it for the application of their algorithm/s; in turn, 61% (107/176) of them stated the alveolar breath-by-breath gas exchange measurement, but only 1% (1/107) of the latter also reported the assessment of volunteers' functional residual capacity, a crucial parameter for the application of the algorithm. Information related to gas exchange was provided consistently in the methods and in the results in 1 of the 107 documents. Dissemination of algorithm papers in literature investigating exercise transients is by far narrower than expected. The information provided about the actual application of gas exchange algorithms is often inadequate and/or ambiguous. Some guidelines are provided that can help to improve the quality of future publications in the field.

  11. Spacecraft alignment estimation. [for onboard sensors

    NASA Technical Reports Server (NTRS)

    Shuster, Malcolm D.; Bierman, Gerald J.

    1988-01-01

    A numerically well-behaved factorized methodology is developed for estimating spacecraft sensor alignments from prelaunch and inflight data without the need to compute the spacecraft attitude or angular velocity. Such a methodology permits the estimation of sensor alignments (or other biases) in a framework free of unknown dynamical variables. In actual mission implementation such an algorithm is usually better behaved than one that must compute sensor alignments simultaneously with the spacecraft attitude, for example by means of a Kalman filter. In particular, such a methodology is less sensitive to data dropouts of long duration, and the derived measurement used in the attitude-independent algorithm usually makes data checking and editing of outliers much simpler than would be the case in the filter.

  12. Cuba: Multidimensional numerical integration library

    NASA Astrophysics Data System (ADS)

    Hahn, Thomas

    2016-08-01

    The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.

  13. An experimental method to verify soil conservation by check dams on the Loess Plateau, China.

    PubMed

    Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q

    2009-12-01

    A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.

  14. 75 FR 27406 - Airworthiness Directives; Bombardier, Inc. Model BD-100-1A10 (Challenger 300) Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... BD- 100 Time Limits/Maintenance Checks. The actions described in this service information are... Challenger 300 BD-100 Time Limits/Maintenance Checks. (1) For the new tasks identified in Bombardier TR 5-2... Requirements,'' in Part 2 of Chapter 5 of Bombardier Challenger 300 BD-100 Time Limits/ Maintenance Checks...

  15. 75 FR 66655 - Airworthiness Directives; PILATUS Aircraft Ltd. Model PC-7 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... December 3, 2010 (the effective date of this AD), check the airplane maintenance records to determine if... of the airplane. Do this check following paragraph 3.A. of Pilatus Aircraft Ltd. PC-7 Service... maintenance records check required in paragraph (f)(1) of this AD or it is unclear whether or not the left and...

  16. 77 FR 20520 - Airworthiness Directives; Bombardier, Inc. Model BD-100-1A10 (Challenger 300) Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... Bombardier Challenger 300 BD-100 Time Limits/Maintenance Checks Manual. For this task, the initial compliance..., of Part 2, of the Bombardier Challenger 300 BD-100 Time Limits/Maintenance Checks Manual, the general.../Maintenance Checks Manual, provided that the relevant information in the general revision is identical to that...

  17. Cluster analysis of word frequency dynamics

    NASA Astrophysics Data System (ADS)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  18. Fast Formal Analysis of Requirements via "Topoi Diagrams"

    NASA Technical Reports Server (NTRS)

    Menzies, Tim; Powell, John; Houle, Michael E.; Kelly, John C. (Technical Monitor)

    2001-01-01

    Early testing of requirements can decrease the cost of removing errors in software projects. However, unless done carefully, that testing process can significantly add to the cost of requirements analysis. We show here that requirements expressed as topoi diagrams can be built and tested cheaply using our SP2 algorithm, the formal temporal properties of a large class of topoi can be proven very quickly, in time nearly linear in the number of nodes and edges in the diagram. There are two limitations to our approach. Firstly, topoi diagrams cannot express certain complex concepts such as iteration and sub-routine calls. Hence, our approach is more useful for requirements engineering than for traditional model checking domains. Secondly, out approach is better for exploring the temporal occurrence of properties than the temporal ordering of properties. Within these restrictions, we can express a useful range of concepts currently seen in requirements engineering, and a wide range of interesting temporal properties.

  19. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    NASA Astrophysics Data System (ADS)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  20. GPUs benchmarking in subpixel image registration algorithm

    NASA Astrophysics Data System (ADS)

    Sanz-Sabater, Martin; Picazo-Bueno, Jose Angel; Micó, Vicente; Ferrerira, Carlos; Granero, Luis; Garcia, Javier

    2015-05-01

    Image registration techniques are used among different scientific fields, like medical imaging or optical metrology. The straightest way to calculate shifting between two images is using the cross correlation, taking the highest value of this correlation image. Shifting resolution is given in whole pixels which cannot be enough for certain applications. Better results can be achieved interpolating both images, as much as the desired resolution we want to get, and applying the same technique described before, but the memory needed by the system is significantly higher. To avoid memory consuming we are implementing a subpixel shifting method based on FFT. With the original images, subpixel shifting can be achieved multiplying its discrete Fourier transform by a linear phase with different slopes. This method is high time consuming method because checking a concrete shifting means new calculations. The algorithm, highly parallelizable, is very suitable for high performance computing systems. GPU (Graphics Processing Unit) accelerated computing became very popular more than ten years ago because they have hundreds of computational cores in a reasonable cheap card. In our case, we are going to register the shifting between two images, doing the first approach by FFT based correlation, and later doing the subpixel approach using the technique described before. We consider it as `brute force' method. So we will present a benchmark of the algorithm consisting on a first approach (pixel resolution) and then do subpixel resolution approaching, decreasing the shifting step in every loop achieving a high resolution in few steps. This program will be executed in three different computers. At the end, we will present the results of the computation, with different kind of CPUs and GPUs, checking the accuracy of the method, and the time consumed in each computer, discussing the advantages, disadvantages of the use of GPUs.

  1. "I share, therefore I am": personality traits, life satisfaction, and Facebook check-ins.

    PubMed

    Wang, Shaojung Sharon

    2013-12-01

    This study explored whether agreeableness, extraversion, and openness function to influence self-disclosure behavior, which in turn impacts the intensity of checking in on Facebook. A complete path from extraversion to Facebook check-in through self-disclosure and sharing was found. The indirect effect from sharing to check-in intensity through life satisfaction was particularly salient. The central component of check-in is for users to disclose a specific location selectively that has implications on demonstrating their social lives, lifestyles, and tastes, enabling a selective and optimized self-image. Implications on the hyperpersonal model and warranting principle are discussed.

  2. A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Tamai, Tetsuo

    2009-01-01

    Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.

  3. Efficient Translation of LTL Formulae into Buchi Automata

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Lerda, Flavio

    2001-01-01

    Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.

  4. Performance of Low-Density Parity-Check Coded Modulation

    NASA Astrophysics Data System (ADS)

    Hamkins, J.

    2011-02-01

    This article presents the simulated performance of a family of nine AR4JA low-density parity-check (LDPC) codes when used with each of five modulations. In each case, the decoder inputs are codebit log-likelihood ratios computed from the received (noisy) modulation symbols using a general formula which applies to arbitrary modulations. Suboptimal soft-decision and hard-decision demodulators are also explored. Bit-interleaving and various mappings of bits to modulation symbols are considered. A number of subtle decoder algorithm details are shown to affect performance, especially in the error floor region. Among these are quantization dynamic range and step size, clipping degree-one variable nodes, "Jones clipping" of variable nodes, approximations of the min* function, and partial hard-limiting messages from check nodes. Using these decoder optimizations, all coded modulations simulated here are free of error floors down to codeword error rates below 10^{-6}. The purpose of generating this performance data is to aid system engineers in determining an appropriate code and modulation to use under specific power and bandwidth constraints, and to provide information needed to design a variable/adaptive coded modulation (VCM/ACM) system using the AR4JA codes. IPNPR Volume 42-185 Tagged File.txt

  5. Concrete Model Checking with Abstract Matching and Refinement

    NASA Technical Reports Server (NTRS)

    Pasareanu Corina S.; Peianek Radek; Visser, Willem

    2005-01-01

    We propose an abstraction-based model checking method which relies on refinement of an under-approximation of the feasible behaviors of the system under analysis. The method preserves errors to safety properties, since all analyzed behaviors are feasible by definition. The method does not require an abstract transition relation to he generated, but instead executes the concrete transitions while storing abstract versions of the concrete states, as specified by a set of abstraction predicates. For each explored transition. the method checks, with the help of a theorem prover, whether there is any loss of precision introduced by abstraction. The results of these checks are used to decide termination or to refine the abstraction, by generating new abstraction predicates. If the (possibly infinite) concrete system under analysis has a finite bisimulation quotient, then the method is guaranteed to eventually explore an equivalent finite bisimilar structure. We illustrate the application of the approach for checking concurrent programs. We also show how a lightweight variant can be used for efficient software testing.

  6. Logic Model Checking of Unintended Acceleration Claims in Toyota Vehicles

    NASA Technical Reports Server (NTRS)

    Gamble, Ed

    2012-01-01

    Part of the US Department of Transportation investigation of Toyota sudden unintended acceleration (SUA) involved analysis of the throttle control software, JPL Laboratory for Reliable Software applied several techniques including static analysis and logic model checking, to the software; A handful of logic models were build, Some weaknesses were identified; however, no cause for SUA was found; The full NASA report includes numerous other analyses

  7. Logic Model Checking of Unintended Acceleration Claims in the 2005 Toyota Camry Electronic Throttle Control System

    NASA Technical Reports Server (NTRS)

    Gamble, Ed; Holzmann, Gerard

    2011-01-01

    Part of the US DOT investigation of Toyota SUA involved analysis of the throttle control software. JPL LaRS applied several techniques, including static analysis and logic model checking, to the software. A handful of logic models were built. Some weaknesses were identified; however, no cause for SUA was found. The full NASA report includes numerous other analyses

  8. Model selection and assessment for multi­-species occupancy models

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.

    2016-01-01

    While multi-species occupancy models (MSOMs) are emerging as a popular method for analyzing biodiversity data, formal checking and validation approaches for this class of models have lagged behind. Concurrent with the rise in application of MSOMs among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive model comparison approaches are experiencing a resurgence. Unlike single-species occupancy models that use integrated likelihoods, MSOMs are usually couched in a Bayesian framework and contain multiple levels. Standard model checking and selection methods are often unreliable in this setting and there is only limited guidance in the ecological literature for this class of models. We examined several different contemporary Bayesian hierarchical approaches for checking and validating MSOMs and applied these methods to a freshwater aquatic study system in Colorado, USA, to better understand the diversity and distributions of plains fishes. Our findings indicated distinct differences among model selection approaches, with cross-validation techniques performing the best in terms of prediction.

  9. 76 FR 53348 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... Maintenance Manual (AMM) includes chapters 05-10 ``Time Limits'', 05-15 ``Critical Design Configuration... 05, ``Time Limits/Maintenance Checks,'' of BAe 146 Series/AVRO 146-RJ Series Aircraft Maintenance... Chapter 05, ``Time Limits/ Maintenance Checks,'' of the BAE SYSTEMS (Operations) Limited BAe 146 Series...

  10. 78 FR 40063 - Airworthiness Directives; Erickson Air-Crane Incorporated Helicopters (Type Certificate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... Sikorsky Model S-64E helicopters. The AD requires repetitive checks of the Blade Inspection Method (BIM... and check procedures for BIM blades installed on the Model S-64F helicopters. Several blade spars with a crack emanating from corrosion pits and other damage have been found because of BIM pressure...

  11. 75 FR 42585 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 and ERJ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... (Low Stage Bleed Check Valve) specified in Section 1 of the EMBRAER 170 Maintenance Review Board Report...-11-02-002 (Low Stage Bleed Check Valve), specified in Section 1 of the EMBRAER 170 Maintenance Review... Task 36-11-02-002 (Low Stage Bleed Check Valve) specified in Section 1 of the EMBRAER 170 Maintenance...

  12. 75 FR 9816 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 and ERJ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... maintenance plan to include repetitive functional tests of the low-stage check valve. For certain other... program to include maintenance Task Number 36-11-02- 002 (Low Stage Bleed Check Valve), specified in... Check Valve) in Section 1 of the EMBRAER 170 Maintenance Review Board Report MRB-1621. Issued in Renton...

  13. 75 FR 39811 - Airworthiness Directives; The Boeing Company Model 777 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Service Bulletin 777-57A0064, dated March 26, 2009, it is not necessary to perform the torque check on the... instructions in Boeing Alert Service Bulletin 777-57A0064, dated March 26, 2009, a torque check is redundant... are less than those for the torque check. Boeing notes that it plans to issue a new revision to this...

  14. The Zigbee wireless ECG measurement system design with a motion artifact remove algorithm by using adaptive filter and moving weighted factor

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeokjun; Oh, Sechang; Varadan, Vijay K.

    2012-04-01

    The Electrocardiogram(ECG) signal is one of the bio-signals to check body status. Traditionally, the ECG signal was checked in the hospital. In these days, as the number of people who is interesting with periodic their health check increase, the requirement of self-diagnosis system development is being increased as well. Ubiquitous concept is one of the solutions of the self-diagnosis system. Zigbee wireless sensor network concept is a suitable technology to satisfy the ubiquitous concept. In measuring ECG signal, there are several kinds of methods in attaching electrode on the body called as Lead I, II, III, etc. In addition, several noise components occurred by different measurement situation such as experimenter's respiration, sensor's contact point movement, and the wire movement attached on sensor are included in pure ECG signal. Therefore, this paper is based on the two kinds of development concept. The first is the Zibee wireless communication technology, which can provide convenience and simpleness, and the second is motion artifact remove algorithm, which can detect clear ECG signal from measurement subject. The motion artifact created by measurement subject's movement or even respiration action influences to distort ECG signal, and the frequency distribution of the noises is around from 0.2Hz to even 30Hz. The frequencies are duplicated in actual ECG signal frequency, so it is impossible to remove the artifact without any distortion of ECG signal just by using low-pass filter or high-pass filter. The suggested algorithm in this paper has two kinds of main parts to extract clear ECG signal from measured original signal through an electrode. The first part is to extract motion noise signal from measured signal, and the second part is to extract clear ECG by using extracted motion noise signal and measured original signal. The paper suggests several techniques in order to extract motion noise signal such as predictability estimation theory, low pass filter, a filter including a moving weighted factor, peak to peak detection, and interpolation techniques. In addition, this paper introduces an adaptive filter in order to extract clear ECG signal by using extracted baseline noise signal and measured signal from sensor.

  15. Enhancement of the Automated Quality Control Procedures for the International Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Heer, Elsa; Xaver, Angelika; Dorigo, Wouter; Messner, Romina

    2017-04-01

    In-situ soil moisture observations are still trusted to be the most reliable data to validate remotely sensed soil moisture products. Thus, the quality of in-situ soil moisture observations is of high importance. The International Soil Moisture Network (ISMN; http://ismn.geo.tuwien.ac.at/) provides in-situ soil moisture data from all around the world. The data is collected from individual networks and data providers, measured by different sensors in various depths. The data sets which are delivered in different units, time zones and data formats are then transformed into homogeneous data sets. An erroneous behavior of soil moisture data is very difficult to detect, due to annual and daily changes and most significantly the high influence of precipitation and snow melting processes. Only few of the network providers have a quality assessment for their data sets. Therefore, advanced quality control procedures have been developed for the ISMN (Dorigo et al. 2013). Three categories of quality checks were introduced: exceeding boundary values, geophysical consistency checks and a spectrum based approach. The spectrum based quality control algorithms aim to detect erroneous measurements which occur within plausible geophysical ranges, e.g. a sudden drop in soil moisture caused by a sensor malfunction. By defining several conditions which have to be met by the original soil moisture time series and their first and second derivative, such error types can be detected. Since the development of these sophisticated methods many more data providers shared their data with the ISMN and new types of erroneous measurements were identified. Thus, an enhancement of the automated quality control procedures became necessary. In the present work, we introduce enhancements of the existing quality control algorithms. Additionally, six completely new quality checks have been developed, e.g. detection of suspicious values before or after NAN-values, constant values and values that lie in a spectrum where a high majority of values before and after is flagged and therefore a sensor malfunction is certain. For the evaluation of the enhanced automated quality control system many test data sets were chosen, and manually validated to be compared to the existing quality control procedures and the new algorithms. Improvements will be shown that assure an appropriate assessment of the ISMN data sets, which are used for validations of soil moisture data retrieved by satellite data and are the foundation many other scientific publications.

  16. Sequential updating of a new dynamic pharmacokinetic model for caffeine in premature neonates.

    PubMed

    Micallef, Sandrine; Amzal, Billy; Bach, Véronique; Chardon, Karen; Tourneux, Pierre; Bois, Frédéric Y

    2007-01-01

    Caffeine treatment is widely used in nursing care to reduce the risk of apnoea in premature neonates. To check the therapeutic efficacy of the treatment against apnoea, caffeine concentration in blood is an important indicator. The present study was aimed at building a pharmacokinetic model as a basis for a medical decision support tool. In the proposed model, time dependence of physiological parameters is introduced to describe rapid growth of neonates. To take into account the large variability in the population, the pharmacokinetic model is embedded in a population structure. The whole model is inferred within a Bayesian framework. To update caffeine concentration predictions as data of an incoming patient are collected, we propose a fast method that can be used in a medical context. This involves the sequential updating of model parameters (at individual and population levels) via a stochastic particle algorithm. Our model provides better predictions than the ones obtained with models previously published. We show, through an example, that sequential updating improves predictions of caffeine concentration in blood (reduce bias and length of credibility intervals). The update of the pharmacokinetic model using body mass and caffeine concentration data is studied. It shows how informative caffeine concentration data are in contrast to body mass data. This study provides the methodological basis to predict caffeine concentration in blood, after a given treatment if data are collected on the treated neonate.

  17. Low Density Parity Check Codes Based on Finite Geometries: A Rediscovery and More

    NASA Technical Reports Server (NTRS)

    Kou, Yu; Lin, Shu; Fossorier, Marc

    1999-01-01

    Low density parity check (LDPC) codes with iterative decoding based on belief propagation achieve astonishing error performance close to Shannon limit. No algebraic or geometric method for constructing these codes has been reported and they are largely generated by computer search. As a result, encoding of long LDPC codes is in general very complex. This paper presents two classes of high rate LDPC codes whose constructions are based on finite Euclidean and projective geometries, respectively. These classes of codes a.re cyclic and have good constraint parameters and minimum distances. Cyclic structure adows the use of linear feedback shift registers for encoding. These finite geometry LDPC codes achieve very good error performance with either soft-decision iterative decoding based on belief propagation or Gallager's hard-decision bit flipping algorithm. These codes can be punctured or extended to obtain other good LDPC codes. A generalization of these codes is also presented.

  18. 13Check_RNA: A tool to evaluate 13C chemical shifts assignments of RNA.

    PubMed

    Icazatti, A A; Martin, O A; Villegas, M; Szleifer, I; Vila, J A

    2018-06-19

    Chemical shifts (CS) are an important source of structural information of macromolecules such as RNA. In addition to the scarce availability of CS for RNA, the observed values are prone to errors due to a wrong re-calibration or miss assignments. Different groups have dedicated their efforts to correct CS systematic errors on RNA. Despite this, there are not automated and freely available algorithms for correct assignments of RNA 13C CS before their deposition to the BMRB or re-reference already deposited CS with systematic errors. Based on an existent method we have implemented an open source python module to correct 13C CS (from here on 13Cexp) systematic errors of RNAs and then return the results in 3 formats including the nmrstar one. This software is available on GitHub at https://github.com/BIOS-IMASL/13Check_RNA under a MIT license. Supplementary data are available at Bioinformatics online.

  19. Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Qin; Huang, Peng; Huang, Duan; Lin, Dakai; Zeng, Guihua

    2017-02-01

    Achieving information theoretic security with practical complexity is of great interest to continuous-variable quantum key distribution in the postprocessing procedure. In this paper, we propose a reconciliation scheme based on the punctured low-density parity-check (LDPC) codes. Compared to the well-known multidimensional reconciliation scheme, the present scheme has lower time complexity. Especially when the chosen punctured LDPC code achieves the Shannon capacity, the proposed reconciliation scheme can remove the information that has been leaked to an eavesdropper in the quantum transmission phase. Therefore, there is no information leaked to the eavesdropper after the reconciliation stage. This indicates that the privacy amplification algorithm of the postprocessing procedure is no more needed after the reconciliation process. These features lead to a higher secret key rate, optimal performance, and availability for the involved quantum key distribution scheme.

  20. The design and implementation of postprocessing for depth map on real-time extraction system.

    PubMed

    Tang, Zhiwei; Li, Bin; Li, Huosheng; Xu, Zheng

    2014-01-01

    Depth estimation becomes the key technology to resolve the communications of the stereo vision. We can get the real-time depth map based on hardware, which cannot implement complicated algorithm as software, because there are some restrictions in the hardware structure. Eventually, some wrong stereo matching will inevitably exist in the process of depth estimation by hardware, such as FPGA. In order to solve the problem a postprocessing function is designed in this paper. After matching cost unique test, the both left-right and right-left consistency check solutions are implemented, respectively; then, the cavities in depth maps can be filled by right depth values on the basis of right-left consistency check solution. The results in the experiments have shown that the depth map extraction and postprocessing function can be implemented in real time in the same system; what is more, the quality of the depth maps is satisfactory.

  1. New techniques for test development for tactical auto-pilots using microprocessors

    NASA Astrophysics Data System (ADS)

    Shemeta, E. H.

    1980-07-01

    This paper reports on a demonstration of the application of the method to generate system level tests for a typical tactical missile autopilot. The test algorithms are based on the autopilot control law. When loaded on the tester with appropriate control information, the complete autopilot is tested to establish if the specified control law requirements are met. Thus, the test procedure not only checks to see if the hardware is functional, but also checks the operational software. The technique also uses a 'learning' mode to allow minor timing or functional deviations from the expected responses to be incorporated in the test procedures. A potential application of this test development technique is the extraction of production test data for the various subassemblies. The technique will 'learn' the input-output patterns forming the basis for developement and production tests. If successful, these new techniques should allow the test development process to keep pace with semiconductor progress.

  2. An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Poltera, Yann; Haefele, Alexander

    2016-07-01

    Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap-corrected lidar signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial in the use of automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or of low cloud. In this study, an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality-check scheme which allows the reliable identification of favourable atmospheric conditions. The algorithm was applied to 2 years of data from a CHM15k ceilometer from the company Lufft. Backscatter signals corrected for background, range and overlap were compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reached up to 45 % in the first 300 m above ground. The amplitude of the correction turned out to be temperature dependent and was larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature was derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable of a high-quality correction of overlap artefacts, in particular those due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient-based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly significant benefit can be expected for the detection of shallow stable layers typical of night-time situations. The algorithm is completely automatic and does not require any on-site intervention but requires the definition of an adequate instrument-specific configuration. It is therefore suited for use in large ceilometer networks.

  3. Research Activities of the Northwest Laboratory for Integrated Systems

    DTIC Science & Technology

    1987-04-06

    table, and composite table (to assist evaluation of objects) are each built. The parse tree is also checked to make sure there are no meaningless...Stan- ford) as well as the Apollo DN series. All of these implementations require eight bit planes for effective use of color. Also supported are AED...time of intersection had not yet passed the queuing of the segment was delayed until that time. This algorithm had the effect of preserving the slope of

  4. Git as an Encrypted Distributed Version Control System

    DTIC Science & Technology

    2015-03-01

    options. The algorithm uses AES- 256 counter mode with an IV derived from SHA -1-HMAC hash (this is nearly identical to the GCM mode discussed earlier...built into the internal structure of Git. Every file in a Git repository is check summed with a SHA -1 hash, a one-way function with arbitrarily long...implementation. Git-encrypt calls OpenSSL cryptography library command line functions. The default cipher used is AES- 256 - Electronic Code Book (ECB), which is

  5. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  6. Poster - Thurs Eve-03: Dose verification using a 2D diode array (Mapcheck) for electron beam modeling, QA and patient customized cutouts.

    PubMed

    Ghasroddashti, E; Sawchuk, S

    2008-07-01

    To assess a diode detector array (MapCheck) for commissioning, quality assurance (QA); and patient specific QA for electrons. 2D dose information was captured for various depths at several square fields ranging from 2×2 to 25×25cm 2 , and 9 patient customized cutouts using both Mapcheck and a scanning water phantom. Beam energies of 6, 9, 12, 16 and 20 MeV produced by Varian linacs were used. The water tank, beam energies and fields were also modeled on the Pinnacle planning system obtaining dose information. Mapcheck, water phantom and Pinnacle results were compared. Relative output factors (ROF) acquired with Mapcheck were compared to an in-house algorithm (JeffIrreg). Inter- and intra-observer variability was also investigated Results: Profiles and %DD data for Mapcheck, water tank, and Pinnacle agree well. High-dose, low-dose-gradient comparisons agree to within 1% between Mapcheck and water phantom. Field size comparisons showed mostly sub-millimeter agreement. ROFs for Mapcheck and JeffIrreg agreed within 2.0% (mean=0.9%±0.6%). The current standard for electron commissioning and QA is the scanning water tank which may be inefficient. Our results demonstrate that MapCheck can potentially be an alternative. Also the dose distributions for patient specific electron treatment require verification. This procedure is particularly challenging when the minimum dimension across the central axis of the cutout is smaller than the range of the electrons in question. Mapcheck offers an easy and efficient way of determining patient dose distributions especially compared to using the alternatives, namely, ion chamber and film. © 2008 American Association of Physicists in Medicine.

  7. Alignment of leading-edge and peak-picking time of arrival methods to obtain accurate source locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roussel-Dupre, R.; Symbalisty, E.; Fox, C.

    2009-08-01

    The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but themore » final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).« less

  8. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1993-01-01

    Research activities performed during the period of 29 June 1993 through 31 Aug. 1993 are summarized. The Robust Stability of Systems where transfer function or characteristic polynomial are multilinear affine functions of parameters of interest in two directions, Algorithmic and Theoretical, was developed. In the algorithmic direction, a new approach that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty is found. This technique is called 'Stability by linear process.' In fact, the 'Stability by linear process' described gives an algorithm. In analysis, we obtained a robustness criterion for the family of polynomials with coefficients of multilinear affine function in the coefficient space and obtained the result for the robust stability of diamond families of polynomials with complex coefficients also. We obtained the limited results for SPR design and we provide a framework for solving ACS. Finally, copies of the outline of our results are provided in the appendix. Also, there is an administration issue in the appendix.

  9. DVD-COOP: Innovative Conjunction Prediction Using Voronoi-filter based on the Dynamic Voronoi Diagram of 3D Spheres

    NASA Astrophysics Data System (ADS)

    Cha, J.; Ryu, J.; Lee, M.; Song, C.; Cho, Y.; Schumacher, P.; Mah, M.; Kim, D.

    Conjunction prediction is one of the critical operations in space situational awareness (SSA). For geospace objects, common algorithms for conjunction prediction are usually based on all-pairwise check, spatial hash, or kd-tree. Computational load is usually reduced through some filters. However, there exists a good chance of missing potential collisions between space objects. We present a novel algorithm which both guarantees no missing conjunction and is efficient to answer to a variety of spatial queries including pairwise conjunction prediction. The algorithm takes only O(k log N) time for N objects in the worst case to answer conjunctions where k is a constant which is linear to prediction time length. The proposed algorithm, named DVD-COOP (Dynamic Voronoi Diagram-based Conjunctive Orbital Object Predictor), is based on the dynamic Voronoi diagram of moving spherical balls in 3D space. The algorithm has a preprocessing which consists of two steps: The construction of an initial Voronoi diagram (taking O(N) time on average) and the construction of a priority queue for the events of topology changes in the Voronoi diagram (taking O(N log N) time in the worst case). The scalability of the proposed algorithm is also discussed. We hope that the proposed Voronoi-approach will change the computational paradigm in spatial reasoning among space objects.

  10. The Stop-Only-While-Shocking algorithm reduces hands-off time by 17% during cardiopulmonary resuscitation - a simulation study.

    PubMed

    Koch Hansen, Lars; Mohammed, Anna; Pedersen, Magnus; Folkestad, Lars; Brodersen, Jacob; Hey, Thomas; Lyhne Christensen, Nicolaj; Carter-Storch, Rasmus; Bendix, Kristoffer; Hansen, Morten R; Brabrand, Mikkel

    2016-12-01

    Reducing hands-off time during cardiopulmonary resuscitation (CPR) is believed to increase survival after cardiac arrests because of the sustaining of organ perfusion. The aim of our study was to investigate whether charging the defibrillator before rhythm analyses and shock delivery significantly reduced hands-off time compared with the European Resuscitation Council (ERC) 2010 CPR guideline algorithm in full-scale cardiac arrest scenarios. The study was designed as a full-scale cardiac arrest simulation study including administration of drugs. Participants were randomized into using the Stop-Only-While-Shocking (SOWS) algorithm or the ERC2010 algorithm. In SOWS, chest compressions were only interrupted for a post-charging rhythm analysis and immediate shock delivery. A Resusci Anne HLR-D manikin and a LIFEPACK 20 defibrillator were used. The manikin recorded time and chest compressions. Sample size was calculated with an α of 0.05 and 80% power showed that we should test four scenarios with each algorithm. Twenty-nine physicians participated in 11 scenarios. Hands-off time was significantly reduced 17% using the SOWS algorithm compared with ERC2010 [22.1% (SD 2.3) hands-off time vs. 26.6% (SD 4.8); P<0.05]. In full-scale cardiac arrest simulations, a minor change consisting of charging the defibrillator before rhythm check reduces hands-off time by 17% compared with ERC2010 guidelines.

  11. Checking Dimensionality in Item Response Models with Principal Component Analysis on Standardized Residuals

    ERIC Educational Resources Information Center

    Chou, Yeh-Tai; Wang, Wen-Chung

    2010-01-01

    Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…

  12. Stress analysis of 27% scale model of AH-64 main rotor hub

    NASA Technical Reports Server (NTRS)

    Hodges, R. V.

    1985-01-01

    Stress analysis of an AH-64 27% scale model rotor hub was performed. Component loads and stresses were calculated based upon blade root loads and motions. The static and fatigue analysis indicates positive margins of safety in all components checked. Using the format developed here, the hub can be stress checked for future application.

  13. Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, E.; LeVine, David M.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial assessments of the salinity retrieved from Aquarius data showed degradation in accuracy at locations where glint from the galactic sky background was important. This was traced to an inaccurate correction for the Sky glint. We present comparisons of the simulator prediction to the Aquarius data in order to assess the performances of the models of various physical processes impacting the measurements, such as the effect of sea surface roughness, the impact of the celestial Sky and the Sun emission scattered at the rough ocean surface. We discuss what components of the simulator appear reliable and which ones need improvements. Improved knowledge on the radiative transfer models at L-band will not only lead to better salinity retrieved from Aquarius data, it will also allow be beneficial for SMOS or the upcoming SMAP mission.

  14. A novel multisensor traffic state assessment system based on incomplete data.

    PubMed

    Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang

    2014-01-01

    A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system.

  15. State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.

    PubMed

    Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo

    2015-11-05

    Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.

  16. A Novel Multisensor Traffic State Assessment System Based on Incomplete Data

    PubMed Central

    Zeng, Yiliang; Lan, Jinhui; Ran, Bin; Jiang, Yaoliang

    2014-01-01

    A novel multisensor system with incomplete data is presented for traffic state assessment. The system comprises probe vehicle detection sensors, fixed detection sensors, and traffic state assessment algorithm. First of all, the validity checking of the traffic flow data is taken as preprocessing of this method. And then a new method based on the history data information is proposed to fuse and recover the incomplete data. According to the characteristics of space complementary of data based on the probe vehicle detector and fixed detector, a fusion model of space matching is presented to estimate the mean travel speed of the road. Finally, the traffic flow data include flow, speed and, occupancy rate, which are detected between Beijing Deshengmen bridge and Drum Tower bridge, are fused to assess the traffic state of the road by using the fusion decision model of rough sets and cloud. The accuracy of experiment result can reach more than 98%, and the result is in accordance with the actual road traffic state. This system is effective to assess traffic state, and it is suitable for the urban intelligent transportation system. PMID:25162055

  17. A New Minimum Trees-Based Approach for Shape Matching with Improved Time Computing: Application to Graphical Symbols Recognition

    NASA Astrophysics Data System (ADS)

    Franco, Patrick; Ogier, Jean-Marc; Loonis, Pierre; Mullot, Rémy

    Recently we have developed a model for shape description and matching. Based on minimum spanning trees construction and specifics stages like the mixture, it seems to have many desirable properties. Recognition invariance in front shift, rotated and noisy shape was checked through median scale tests related to GREC symbol reference database. Even if extracting the topology of a shape by mapping the shortest path connecting all the pixels seems to be powerful, the construction of graph induces an expensive algorithmic cost. In this article we discuss on the ways to reduce time computing. An alternative solution based on image compression concepts is provided and evaluated. The model no longer operates in the image space but in a compact space, namely the Discrete Cosine space. The use of block discrete cosine transform is discussed and justified. The experimental results led on the GREC2003 database show that the proposed method is characterized by a good discrimination power, a real robustness to noise with an acceptable time computing.

  18. Do alcohol compliance checks decrease underage sales at neighboring establishments?

    PubMed

    Erickson, Darin J; Smolenski, Derek J; Toomey, Traci L; Carlin, Bradley P; Wagenaar, Alexander C

    2013-11-01

    Underage alcohol compliance checks conducted by law enforcement agencies can reduce the likelihood of illegal alcohol sales at checked alcohol establishments, and theory suggests that an alcohol establishment that is checked may warn nearby establishments that compliance checks are being conducted in the area. In this study, we examined whether the effects of compliance checks diffuse to neighboring establishments. We used data from the Complying with the Minimum Drinking Age trial, which included more than 2,000 compliance checks conducted at more than 900 alcohol establishments. The primary outcome was the sale of alcohol to a pseudo-underage buyer without the need for age identification. A multilevel logistic regression was used to model the effect of a compliance check at each establishment as well as the effect of compliance checks at neighboring establishments within 500 m (stratified into four equal-radius concentric rings), after buyer, license, establishment, and community-level variables were controlled for. We observed a decrease in the likelihood of establishments selling alcohol to underage youth after they had been checked by law enforcement, but these effects quickly decayed over time. Establishments that had a close neighbor (within 125 m) checked in the past 90 days were also less likely to sell alcohol to young-appearing buyers. The spatial effect of compliance checks on other establishments decayed rapidly with increasing distance. Results confirm the hypothesis that the effects of police compliance checks do spill over to neighboring establishments. These findings have implications for the development of an optimal schedule of police compliance checks.

  19. NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation.

    PubMed

    Qian, Xiangfei; Ye, Cang

    2014-12-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera-SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods.

  20. Colorimetric calibration of wound photography with off-the-shelf devices

    NASA Astrophysics Data System (ADS)

    Bala, Subhankar; Sirazitdinova, Ekaterina; Deserno, Thomas M.

    2017-03-01

    Digital cameras are often used in recent days for photographic documentation in medical sciences. However, color reproducibility of same objects suffers from different illuminations and lighting conditions. This variation in color representation is problematic when the images are used for segmentation and measurements based on color thresholds. In this paper, motivated by photographic follow-up of chronic wounds, we assess the impact of (i) gamma correction, (ii) white balancing, (iii) background unification, and (iv) reference card-based color correction. Automatic gamma correction and white balancing are applied to support the calibration procedure, where gamma correction is a nonlinear color transform. For unevenly illuminated images, non- uniform illumination correction is applied. In the last step, we apply colorimetric calibration using a reference color card of 24 patches with known colors. A lattice detection algorithm is used for locating the card. The least squares algorithm is applied for affine color calibration in the RGB model. We have tested the algorithm on images with seven different types of illumination: with and without flash using three different off-the-shelf cameras including smartphones. We analyzed the spread of resulting color value of selected color patch before and after applying the calibration. Additionally, we checked the individual contribution of different steps of the whole calibration process. Using all steps, we were able to achieve a maximum of 81% reduction in standard deviation of color patch values in resulting images comparing to the original images. That supports manual as well as automatic quantitative wound assessments with off-the-shelf devices.

Top