Science.gov

Sample records for model dental multilayer

  1. Development of a multi-layered virtual tooth model for the haptic dental training system.

    PubMed

    Yoshida, Yoshinori; Yamaguchi, Satoshi; Kawamoto, Yusuke; Noborio, Hiroshi; Murakami, Shinya; Sohmura, Taiji

    2011-01-01

    A virtual reality (VR) haptic dental training system could be a promising tool for future dental education. One major challenge is to develop a virtual tooth model which similarly reflected a real tooth having multiple layers with different mechanical hardness in each layer. The multi-layered virtual tooth model was successfully constructed in our virtual system. The constructed model allows us to feel tooth cutting which is similar to that with a real tooth. Through a cutting experiment by using the real tooth, a spring coefficient and a damping coefficient of a dental hard tissue were determined 0.8 N/mm and 1.79 Nsec/mm respectively. The feedback force smoothly altered when crossing the border of regions having different mechanical hardnesses. The constructed model introduced in this study could be a promising tool for acquiring dental hand skills in a virtual learning system.

  2. Substrate Creep on The Fatigue Life of A Model Dental Multilayer Structure

    SciTech Connect

    Zhou, J; Huang, M; Niu, X; soboyejo, W

    2006-10-09

    In this paper, we investigated the effects of substrate creep on the fatigue behavior of a model dental multilayer structure, in which a top glass layer was bonded to a polycarbonate substrate through a dental adhesive. The top glass layers were ground using 120 grit or 600 grit sand papers before bonding to create different sub-surface crack sizes and morphologies. The multilayer structures were tested under cyclic Hertzian contact loading to study crack growth and obtain fatigue life curves. The experiment results showed that the fatigue lives of the multilayer structures were impaired by increasing crack sizes in the sub-surfaces. They were also significantly reduced by the substrate creep when tested at relatively low load levels i.e. P{sub m} < 60 N (Pm is the maximum magnitude of cyclic load). But at relatively high load levels i.e. P{sub m} > 65 N, slow crack growth (SCG) was the major failure mechanisms. A modeling study was then carried out to explore the possible failure mechanisms over a range of load levels. It is found that fatigue life at relatively low load levels can be better estimated by considering the substrate creep effect (SCE).

  3. Bio-inspired dental multilayers: effects of layer architecture on the contact-induced deformation.

    PubMed

    Du, J; Niu, X; Rahbar, N; Soboyejo, W

    2013-02-01

    The ceramic crown structures under occlusal contact are idealized as flat multilayered structures that are deformed under Hertzian contact loading. Those multilayers consist of a crown-like ceramic top layer, an adhesive layer and the dentin-like substrate. Bio-inspired design of the adhesive layer proposed functionally graded multilayers (FGM) that mimic the dentin-enamel junction in natural teeth. This paper examines the effects of FGM layer architecture on the contact-induced deformation of bio-inspired dental multilayers. Finite element modeling was used to explore the effects of thickness and architecture on the contact-induced stresses that are induced in bio-inspired dental multilayers. A layered nanocomposite structure was then fabricated by the sequential rolling of micro-scale nanocomposite materials with local moduli that increase from the side near the soft dentin-like polymer composite foundation to the side near the top ceramic layer. The loading rate dependence of the critical failure loads is shown to be well predicted by a slow crack growth model, which integrates the actual mechanical properties that are obtained from nanoindentation experiments.

  4. Modeling multilayer woven fabrics

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Mäkinen, J. P.; Timonen, J.

    2001-07-01

    A numerical algorithm for nonlinear elastic relaxation of a multilayer woven fabric is introduced and tested. The equilibrium solutions are compared with real samples. An excellent result is obtained in spite of two simplifications: Bending stiffness of the fibers and friction between the fibers are both neglected. The numerical simulation is very fast and cost efficient in the search for optimal fabrics.

  5. Creep-assisted slow crack growth in bio-inspired dental multilayers.

    PubMed

    Du, Jing; Niu, Xinrui; Soboyejo, Wole

    2015-06-01

    Ceramic crown structures under occlusal contact are often idealized as flat multilayered structures that are deformed under Hertzian contact loading. Previous models treated each layer as linear elastic materials and resulted in differences between the measured and predicted critical loads. This paper examines the combined effects of creep (in the adhesive and substrate layers) and creep-assisted slow crack growth (in the ceramic layer) on the contact-induced deformation of bio-inspired, functionally graded multilayer (FGM) structures and the conventional tri-layers. The time-dependent moduli of each of the layers were determined from constant load creep tests. The resulting modulus-time characteristics were modeled using Prony series. These were then incorporated into a finite element model for the computation of stress distributions in the sub-surface regions of the top ceramic layer, in which sub-surface radial cracks, are observed as the clinical failure mode. The time-dependent stresses are incorporated into a slow crack growth (SCG) model that is used to predict the critical loads of the dental multilayers under Hertzian contact loading. The predicted loading rate dependence of the critical loads is shown to be consistent with experimental results. The implications of the results are then discussed for the design of robust dental multilayers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  7. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  8. A continuum model of a multilayer nanosheet

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Tovstik, P. E.; Tovstik, T. P.

    2016-11-01

    A continuum model for describing the bending and free vibrations of a crystalline graphite sheet consisting of graphene layers is proposed. Graphene is modeled by a two-dimensional layer having a finite rigidity under extension and bending. The interval between graphene layers through which their Van-der-Waals interaction occurs is modeled by a fictitious layer with relatively low rigidity. In the solution, formulas describing the bending of a multilayer sheet with alternating rigid and soft layers are used.

  9. Zirconia-parylene multilayer thin films for enhanced fracture resistance of dental ceramics.

    PubMed

    Teixeira, E C; Piascik, J R; Stoner, B R; Thompson, J Y

    2009-10-01

    Recent research has shown that the application of specific thin films can enhance the material properties of a laminate construct. In this study, the effect of different mono/multilayered films on the strength of a ceramic specimen is demonstrated. It is well established that cracks can initiate and/or propagate from the internal surfaces of all-ceramic dental restorations. Modifying that surface by thin-film deposition might help increase clinical longevity and applicability. Specimens were divided into the following groups according to different surface treatments received: uncoated (control group), 10 microm yttria-stabilized zirconia (YSZ) thin film, 10 microm parylene thin film, 9.75 microm YSZ + 0.25 microm parylene film, and a multilayered film (five layers of 1.25 microm YSZ + 0.75 microm parylene). Depositions were performed using a radio-frequency magnetron sputter system (working pressure 15 mT, 150 degrees C, 30:1 Ar/O2 gas ratio) to produce the YSZ layers, and a vapour deposition process was used to produce the parylene layers. Flexural strength measurements were carried out by three-point bending (span = 10 mm) in a servo-electric material testing system in deioinized (DI) water (37 degrees C). The results showed that the strength of the specimen significantly increased with the deposition of all types of coating, showing the greatest increase with the multilayered film (approximately 32 per cent). It is hypothesized that a multilayer thin film (brittle/ductile) can promote crack deflection, causing strength enhancement of the brittle construct.

  10. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  11. Multilayered temporal modeling for the clinical domain.

    PubMed

    Lin, Chen; Dligach, Dmitriy; Miller, Timothy A; Bethard, Steven; Savova, Guergana K

    2016-03-01

    To develop an open-source temporal relation discovery system for the clinical domain. The system is capable of automatically inferring temporal relations between events and time expressions using a multilayered modeling strategy. It can operate at different levels of granularity--from rough temporality expressed as event relations to the document creation time (DCT) to temporal containment to fine-grained classic Allen-style relations. We evaluated our systems on 2 clinical corpora. One is a subset of the Temporal Histories of Your Medical Events (THYME) corpus, which was used in SemEval 2015 Task 6: Clinical TempEval. The other is the 2012 Informatics for Integrating Biology and the Bedside (i2b2) challenge corpus. We designed multiple supervised machine learning models to compute the DCT relation and within-sentence temporal relations. For the i2b2 data, we also developed models and rule-based methods to recognize cross-sentence temporal relations. We used the official evaluation scripts of both challenges to make our results comparable with results of other participating systems. In addition, we conducted a feature ablation study to find out the contribution of various features to the system's performance. Our system achieved state-of-the-art performance on the Clinical TempEval corpus and was on par with the best systems on the i2b2 2012 corpus. Particularly, on the Clinical TempEval corpus, our system established a new F1 score benchmark, statistically significant as compared to the baseline and the best participating system. Presented here is the first open-source clinical temporal relation discovery system. It was built using a multilayered temporal modeling strategy and achieved top performance in 2 major shared tasks. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Multilayered temporal modeling for the clinical domain

    PubMed Central

    Dligach, Dmitriy; Miller, Timothy A; Bethard, Steven; Savova, Guergana K

    2016-01-01

    Objective To develop an open-source temporal relation discovery system for the clinical domain. The system is capable of automatically inferring temporal relations between events and time expressions using a multilayered modeling strategy. It can operate at different levels of granularity—from rough temporality expressed as event relations to the document creation time (DCT) to temporal containment to fine-grained classic Allen-style relations. Materials and Methods We evaluated our systems on 2 clinical corpora. One is a subset of the Temporal Histories of Your Medical Events (THYME) corpus, which was used in SemEval 2015 Task 6: Clinical TempEval. The other is the 2012 Informatics for Integrating Biology and the Bedside (i2b2) challenge corpus. We designed multiple supervised machine learning models to compute the DCT relation and within-sentence temporal relations. For the i2b2 data, we also developed models and rule-based methods to recognize cross-sentence temporal relations. We used the official evaluation scripts of both challenges to make our results comparable with results of other participating systems. In addition, we conducted a feature ablation study to find out the contribution of various features to the system’s performance. Results Our system achieved state-of-the-art performance on the Clinical TempEval corpus and was on par with the best systems on the i2b2 2012 corpus. Particularly, on the Clinical TempEval corpus, our system established a new F1 score benchmark, statistically significant as compared to the baseline and the best participating system. Conclusion Presented here is the first open-source clinical temporal relation discovery system. It was built using a multilayered temporal modeling strategy and achieved top performance in 2 major shared tasks. PMID:26521301

  13. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION

    EPA Science Inventory

    The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...

  14. Epidemic Model with Isolation in Multilayer Networks

    NASA Astrophysics Data System (ADS)

    Zuzek, L. G. Alvarez; Stanley, H. E.; Braunstein, L. A.

    2015-07-01

    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the isolation of infected individuals is disregarded. Hence we focus our study in an epidemic model in a two-layer network, and we use an isolation parameter w to measure the effect of quarantining infected individuals from both layers during an isolation period tw. We call this process the Susceptible-Infected-Isolated-Recovered (SIIR) model. Using the framework of link percolation we find that isolation increases the critical epidemic threshold of the disease because the time in which infection can spread is reduced. In this scenario we find that this threshold increases with w and tw. When the isolation period is maximum there is a critical threshold for w above which the disease never becomes an epidemic. We simulate the process and find an excellent agreement with the theoretical results.

  15. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10(7)) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10(16) elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10(6)), which causes low solution accuracy; and the number of elements is still very large (10(6)). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  16. A multilayer biochemical dry deposition model. 1. Model formulation

    NASA Astrophysics Data System (ADS)

    Wu, Yihua; Brashers, Bart; Finkelstein, Peter L.; Pleim, Jonathan E.

    2003-01-01

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM; [1998]) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration was improved, and an aerodynamic resistance based on Monin-Obukhov theory was added. An appropriate parameterization for the leaf boundary layer resistance was chosen. A biochemical stomatal resistance model was chosen based on comparisons of four different existing stomatal resistance schemes. It describes photosynthesis and respiration and their coupling with stomatal resistance for sunlit and shaded leaves separately. Various aspects of the photosynthetic process in both C3 and C4 plants are considered in the model. To drive the photosynthesis model, the canopy radiation scheme has been updated. Leaf area index measurements are adjusted to account for stem area index. A normalized soil water stress factor was applied to potential photosynthesis to account for plant response to both drought and water-logging stresses. A new cuticle resistance model was derived based on membrane passive transport theory and Fick's first law. It accounts for the effects of diffusivity and solubility of specific gases in the cuticle membrane, as well as the thickness of the cuticle membrane. The model is designed for use in the nationwide dry deposition networks, for example, the Clean Air Status And Trends Network (CASTNet), and mesoscale models, for example, the Community Multiscale Air Quality model (CMAQ) and even the Weather Research and Forecasting model (WRF).

  17. Photothermal deflection in multilayer coatings: modeling and experiment.

    PubMed

    Gallais, Laurent; Commandré, Mireille

    2005-09-01

    A model of the photothermal deflection signal in multilayer coatings is presented that takes into account optical interference effects and heat flow within the stack. Measurements are then taken of high-reflectivity HfO2/SiO2 ultraviolet mirrors made by plasma ion assisted deposition and compared to calculations. Good agreement is found between the experimental results and the model. Using this model for the calibration and the setup described, one can measure absorption in multilayer coatings accurately down to 10(-7) of the incident power.

  18. Polyelectrolyte multilayer-cushioned fluid lipid bilayers: a parachute model.

    PubMed

    Shao, Jingxin; Wen, Caixia; Xuan, Mingjun; Zhang, Hongyue; Frueh, Johannes; Wan, Mingwei; Gao, Lianghui; He, Qiang

    2017-01-18

    Lipid bilayer membranes supported on polyelectrolyte multilayers are widely used as a new biomembrane model that connects biological and artificial materials since these ultrathin polyelectrolyte supports may mimic the role of the extracellular matrix and cell skeleton in living systems. Polyelectrolyte multilayers were fabricated by a layer-by-layer self-assembly technique. A quartz crystal microbalance with dissipation was used in real time to monitor the interaction between phospholipids and polyelectrolytes in situ on a planar substrate. The surface properties of polyelectrolyte films were investigated by the measurement of contact angles and zeta potential. Phospholipid charge, buffer pH and substrate hydrophilicity were proved to be essential for vesicle adsorption, rupture, fusion and formation of continuous lipid bilayers on the polyelectrolyte multilayers. The results clearly demonstrated that only the mixture of phosphatidylcholine and phosphatidic acid (4 : 1) resulted in fluid bilayers on chitosan and alginate multilayers with chitosan as a top layer at pH 6.5. A coarse-grained molecular simulation study elucidated that the exact mechanism of the formation of fluid lipid bilayers resembles a "parachute" model. As the closest model to the real membrane, polyelectrolyte multilayer-cushioned fluid lipid bilayers can be appropriate candidates for application in biomedical fields.

  19. Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.

    2016-08-01

    We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.

  20. Multilayer Network Modeling of Change Propagation for Engineering Change Management

    DTIC Science & Technology

    2010-06-01

    Engineering change management is a critical and challenging process within product development. One pervasive source of difficulty for this process...rarely more than four, generations of descendants. In all, the multilayer network model’s holistic approach has significant policy implications for engineering change management in industry.

  1. Development and Calibration of Reaction Models for Multilayered Nanocomposites

    NASA Astrophysics Data System (ADS)

    Vohra, Manav

    This dissertation focuses on the development and calibration of reaction models for multilayered nanocomposites. The nanocomposites comprise sputter deposited alternating layers of distinct metallic elements. Specifically, we focus on the equimolar Ni-Al and Zr-Al multilayered systems. Computational models are developed to capture the transient reaction phenomena as well as understand the dependence of reaction properties on the microstructure, composition and geometry of the multilayers. Together with the available experimental data, simulations are used to calibrate the models and enhance the accuracy of their predictions. Recent modeling efforts for the Ni-Al system have investigated the nature of self-propagating reactions in the multilayers. Model fidelity was enhanced by incorporating melting effects due to aluminum [Besnoin et al. (2002)]. Salloum and Knio formulated a reduced model to mitigate computational costs associated with multi-dimensional reaction simulations [Salloum and Knio (2010a)]. However, exist- ing formulations relied on a single Arrhenius correlation for diffusivity, estimated for the self-propagating reactions, and cannot be used to quantify mixing rates at lower temperatures within reasonable accuracy [Fritz (2011)]. We thus develop a thermal model for a multilayer stack comprising a reactive Ni-Al bilayer (nanocalorimeter) and exploit temperature evolution measurements to calibrate the diffusion parameters associated with solid state mixing (≈720 K - 860 K) in the bilayer. The equimolar Zr-Al multilayered system when reacted aerobically is shown to exhibit slow aerobic oxidation of zirconium (in the intermetallic), sustained for about 2-10 seconds after completion of the formation reaction. In a collaborative effort, we aim to exploit the sustained heat release for bio-agent defeat application. A simplified computational model is developed to capture the extended reaction regime characterized by oxidation of Zr-Al multilayers

  2. Numerical modeling of hydrofracturing in a multilayer coal seam

    SciTech Connect

    Nasedkina, A.A.; Trufanov, V.N.

    2006-01-15

    The mathematical model of the process for hydrodynamic fracturing in a multilayer coal seam is proposed. The model is based on the equation of continuity and Darcy's law. The filtration-temperature analogy allows solving the obtained non-linear, non-stationary problem in an axisymmetric statement for the pressure function as the heat-conductivity problem, by the finite-element method. The calculation results yield estimation of the radius of degassing borehole influence zone.

  3. Multilayer neural network models based on grid methods

    NASA Astrophysics Data System (ADS)

    Lazovskaya, T.; Tarkhov, D.

    2016-11-01

    The article discusses building hybrid models relating classical numerical methods for solving ordinary and partial differential equations and the universal neural network approach being developed by D Tarkhov and A Vasilyev. The different ways of constructing multilayer neural network structures based on grid methods are considered. The technique of building a continuous approximation using one simple modification of classical schemes is presented. Introduction non-linear relationships into the classic models with and without posterior learning are investigated. The numerical experiments are conducted.

  4. Conventional modeling of the multilayer perceptron using polynomial basis functions

    NASA Technical Reports Server (NTRS)

    Chen, Mu-Song; Manry, Michael T.

    1993-01-01

    A technique for modeling the multilayer perceptron (MLP) neural network, in which input and hidden units are represented by polynomial basis functions (PBFs), is presented. The MLP output is expressed as a linear combination of the PBFs and can therefore be expressed as a polynomial function of its inputs. Thus, the MLP is isomorphic to conventional polynomial discriminant classifiers or Volterra filters. The modeling technique was successfully applied to several trained MLP networks.

  5. A topological multilayer model of the human body.

    PubMed

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  6. Radon diffusion through multilayer earthen covers: Models and simulations

    NASA Astrophysics Data System (ADS)

    Mayer, D. W.; Oster, C. A.; Nelson, R. W.; Gee, G. W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems were investigated. The theoretical basis for modeling radon diffusion and an understanding of the fundamental interactions that influence radon diffusion were developed. The theory was incorporated into three computer models that are used to analyze several tailings and cover configurations. The theoretical basis for modeling radon diffusion and the computer models used to analyze uranium mill tailings and multilayered cover systems are discussed.

  7. Modeling and simulation of multilayered thin films for terahertz detection

    NASA Astrophysics Data System (ADS)

    Martin, Michael F.; Alves, Fabio; Santos, Ricardo A. T.; Grbovic, Dragoslav

    2014-06-01

    In this article we demonstrate a method based on Transfer Matrix (TMM) that can be used to analyze optical properties of multilayered thin films and planar metamaterials for terahertz (THz) detection. Producing and testing such films require host substrates that can be up to 4 orders of magnitude thicker than the THz-sensitive films. Therefore, the ability to efficiently model, simulate and accurately predict the optical properties of multilayered structures, with significant differences in thickness, is crucial to designing sensors with maximized absorption. This method, which provides an analytical tool, less computationally intensive then finite element modeling, can be used for films composed of any number of layers with arbitrary thicknesses, aspect ratios and arbitrary angles of incidence. Homogeneous or patterned (metamaterials) films can be modeled enabling accurate analysis of positive and negative index materials indistinctly. Reflection, transmission and absorption of metallic/dielectric nanolaminates, metallic thin films and planar metamaterial films are analyzed and compared with experimental measurements and FE simulations. Results show good agreement for a wide range of structures, materials and frequencies and indicate that the method has a great potential for design and optimization of sophisticated multilayered structures for THz detection and beyond.

  8. Evaluation of the SEI using a multilayer spectroscopic ellipsometry model

    SciTech Connect

    Eric J. Dufek

    2014-08-01

    A multilayer spectroscopic ellipsometry (SE) model has been developed to characterize SEI formation. The model, which consists of two Cauchy layers, is constructed with an inner layer meant to model primarily inorganic compounds adjacent to an electrode and an outer layer which mirrors polymeric, organic constituents on the exterior of the SEI. Comparison of 1:1 EC:EMC and 1:4 EC:EMC with 1.0 M LiPF6 shows distinct differences in the two modeled layers. The data suggest that the thickness of both layers change over a wide potential range. These changes have been linked with other reports on the growth of the SEI.

  9. Evaluation of the SEI using a multilayer spectroscopic ellipsometry model

    DOE PAGES

    Dufek, Eric J.

    2014-08-28

    A multilayer spectroscopic ellipsometry (SE) model has been developed to characterize SEI formation. The model, which consists of two Cauchy layers, is constructed with an inner layer meant to model primarily inorganic compounds adjacent to an electrode and an outer layer which mirrors polymeric, organic constituents on the exterior of the SEI. Comparison of 1:1 EC:EMC and 1:4 EC:EMC with 1.0 M LiPF₆ shows distinct differences in the two modeled layers. The data suggest that the thickness of both layers change over a wide potential range. These changes have been linked with other reports on the growth of the SEI.

  10. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    NASA Astrophysics Data System (ADS)

    Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.

    2014-07-01

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  11. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    SciTech Connect

    Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.

  12. Synthesis of the Multilayer Cryogenic Insulation Modelling and Measurements

    NASA Astrophysics Data System (ADS)

    Polinski, J.; Chorowski, M.; Choudhury, A.; Datta, T. S.

    2008-03-01

    A thermodynamic approach towards insulation systems in cryogenic engineering is proposed. A mathematical model of the heat transfer through multilayer insulation (MLI) has been developed and experimentally verified. The model comprises both physical and engineering parameters determining the MLI performance and enables a complex optimization of the insulation system including the choice of the insulation location in a vacuum space. The model takes into account an interstitial (interlayer) gas pressure variation with the MLI number of layers and layers density. The paper presents the discussion of MLI performance in different conditions and provides comparison of computation results with experimental reference and measured data.

  13. Modelling of the Peltier effect in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Juarez-Acosta, Isaac; Olivares-Robles, Miguel A.; Bosu, Subrojati; Sakuraba, Yuya; Kubota, Takahide; Takahashi, Saburo; Takanashi, Koki; Bauer, Gerrit E. W.

    2016-02-01

    We model the charge, spin, and heat currents in ferromagnetic metal|normal metal|normal metal trilayer structures in the two current model, taking into account bulk and interface thermoelectric properties as well as Joule heating. The results include the temperature distribution as well as resistance-current curves that reproduce the observed shifted parabolic characteristics. Thin tunneling barriers can enhance the apparent Peltier cooling. The model agrees with the experimental results for wide multilayer pillars, but the giant effects observed for diameters ≲100 nm are still under discussion.

  14. A novel multilayer model with controllable mechanical properties for magnesium-based bone plates.

    PubMed

    Zhou, Juncen; Huang, Wanru; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin

    2015-04-01

    Proper mechanical properties are essential for the clinical application of magnesium-based implants. In the present work, a novel multilayer model composed of three layers with desirable features was developed. The modulus of the multilayer model can be adjusted by changing the thickness of each layer. To combine three layers and improve the corrosion resistance of the whole multilayer model, the polycaprolactone coating was employed. In the immersion test, pH values, the concentration of released magnesium ions, and weight loss indicate that the corrosion rate of multilayer models is considerable lower than that of the one-layer bare substrate. The three-point bending test, which is used to examine models' mechanical properties, shows that the flexural modulus of multilayer models is reduced effectively. In addition, the mechanical degradation of multilayer models is more stable, compared to the one-layer substrate.

  15. Stacked Multilayer Self-Organizing Map for Background Modeling.

    PubMed

    Zhao, Zhenjie; Zhang, Xuebo; Fang, Yongchun

    2015-09-01

    In this paper, a new background modeling method called stacked multilayer self-organizing map background model (SMSOM-BM) is proposed, which presents several merits such as strong representative ability for complex scenarios, easy to use, and so on. In order to enhance the representative ability of the background model and make the parameters learned automatically, the recently developed idea of representative learning (or deep learning) is elegantly employed to extend the existing single-layer self-organizing map background model to a multilayer one (namely, the proposed SMSOM-BM). As a consequence, the SMSOM-BM gains several merits including strong representative ability to learn background model of challenging scenarios, and automatic determination for most network parameters. More specifically, every pixel is modeled by a SMSOM, and spatial consistency is considered at each layer. By introducing a novel over-layer filtering process, we can train the background model layer by layer in an efficient manner. Furthermore, for real-time performance consideration, we have implemented the proposed method using NVIDIA CUDA platform. Comparative experimental results show superior performance of the proposed approach.

  16. Radon diffusion through multilayer earthen covers: models and simulations

    SciTech Connect

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained.

  17. Introduction to Bayesian modelling in dental research.

    PubMed

    Gilthorpe, M S; Maddick, I H; Petrie, A

    2000-12-01

    To explain the concepts and application of Bayesian modelling and how it can be applied to the analysis of dental research data. Methodological in nature, this article introduces Bayesian modelling through hypothetical dental examples. The synthesis of RCT results with previous evidence, including expert opinion, is used to illustrate full Bayesian modelling. Meta-analysis, in the form of empirical Bayesian modelling, is introduced. An example of full Bayesian modelling is described for the synthesis of evidence from several studies that investigate the success of root canal treatment. Hierarchical (Bayesian) modelling is demonstrated for a survey of childhood caries, where surface data is nested within subjects. Bayesian methods enhance interpretation of research evidence through the synthesis of information from multiple sources. Bayesian modelling is now readily accessible to clinical researchers and is able to augment the application of clinical decision making in the development of guidelines and clinical practice.

  18. Finite element modeling of multilayered structures of fish scales.

    PubMed

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus. Published by Elsevier Ltd.

  19. Multilayer Stock Forecasting Model Using Fuzzy Time Series

    PubMed Central

    Javedani Sadaei, Hossein; Lee, Muhammad Hisyam

    2014-01-01

    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS. PMID:24605058

  20. Multilayer stock forecasting model using fuzzy time series.

    PubMed

    Javedani Sadaei, Hossein; Lee, Muhammad Hisyam

    2014-01-01

    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS.

  1. Water adsorption on goethite: Application of multilayer adsorption models

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  2. Generalized Timoshenko-Reissner model for a multilayer plate

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Tovstik, P. E.; Tovstik, T. P.

    2016-09-01

    A multilayer plate with isotropic (or transversally isotropic) layers strongly differing in rigidity is considered. This plate is reduced to an equivalent homogeneous transversally isotropic Timoshenko-Reissner plate whose deflections and free transverse vibration frequencies are close to those of the multilayer plate. By comparison with the exact solution of test three-dimensional problems of elasticity, the error of the proposed method is estimated both for the static problem and for free vibrations. This comparison can readily be carried out for the hinged edges of the plate, and explicit approximate formulas are obtained for the vibration frequencies. The scope of the proposed model turned out to be rather wide (the Young moduli of soft and rigid layers can differ by a factor of 1000). In the case of boundary conditions other than hinged support, a closed-form solution cannot be constructed in general. For rigidly fixed edges, the asymptotic method proposed by V. V. Bolotin is generalized to the case of a Timoshenko-Reissner plate.

  3. Multilayer adsorption model for the protein-ligand interaction

    NASA Astrophysics Data System (ADS)

    Varela, L. M.; Garcia, M.; Perez-Rodriguez, M.; Taboada, P.; Ruso, J. M.; Mosquera, V.

    2001-05-01

    In the present work we present a theoretical formalism based on the combination of the Brunauer-Emmet-Teller multilayer adsorption model with an electrolytic adsorbate, and the results are used to predict binding isotherms of several synthetic penicillin drugs onto human serum albumin. The occurrence of adsorption maxima in these binding processes is correctly predicted by this noncooperative binding model and it is demonstrated to be due to the ionic character of the adsorbate. The effect of the hydrophobic interactions between adsorbate monomers on the value of the maximum number of adsorbed particles is also a matter of study, and it is proven that this number increases with increasing hydrophobic character of the adsorbate.

  4. 3D space analysis of dental models

    NASA Astrophysics Data System (ADS)

    Chuah, Joon H.; Ong, Sim Heng; Kondo, Toshiaki; Foong, Kelvin W. C.; Yong, Than F.

    2001-05-01

    Space analysis is an important procedure by orthodontists to determine the amount of space available and required for teeth alignment during treatment planning. Traditional manual methods of space analysis are tedious and often inaccurate. Computer-based space analysis methods that work on 2D images have been reported. However, as the space problems in the dental arch exist in all three planes of space, a full 3D analysis of the problems is necessary. This paper describes a visualization and measurement system that analyses 3D images of dental plaster models. Algorithms were developed to determine dental arches. The system is able to record the depths of the Curve of Spee, and quantify space liabilities arising from a non-planar Curve of Spee, malalignment and overjet. Furthermore, the difference between total arch space available and the space required to arrange the teeth in ideal occlusion can be accurately computed. The system for 3D space analysis of the dental arch is an accurate, comprehensive, rapid and repeatable method of space analysis to facilitate proper orthodontic diagnosis and treatment planning.

  5. Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models

    NASA Astrophysics Data System (ADS)

    Petrova, Kremena S.; Stoykova, Elena V.

    2006-09-01

    Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.

  6. Single-Tooth Modeling for 3D Dental Model

    PubMed Central

    Yuan, Tianran; Liao, Wenhe; Dai, Ning; Cheng, Xiaosheng; Yu, Qing

    2010-01-01

    An integrated single-tooth modeling scheme is proposed for the 3D dental model acquired by optical digitizers. The cores of the modeling scheme are fusion regions extraction, single tooth shape restoration, and single tooth separation. According to the “valley” shape-like characters of the fusion regions between two adjoining teeth, the regions of the 3D dental model are analyzed and classified based on the minimum curvatures of the surface. The single tooth shape is restored according to the bioinformation along the hole boundary, which is generated after the fusion region being removed. By using the extracted boundary from the blending regions between the teeth and soft tissues as reference, the teeth can be separated from the 3D dental model one by one correctly. Experimental results show that the proposed method can achieve satisfying modeling results with high-degree approximation of the real tooth and meet the requirements of clinical oral medicine. PMID:20689718

  7. Analytical Modeling of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    A unique foam/Multilayer Insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). The MLI was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or heat leak is reduced by about half in comparison with standard MLI. The focus of this paper is on analytical modeling of the Variable Density MLI (VD-MLI) on-orbit performance (i.e. vacuum/low pressure environment). The foam/VD-MLI combination model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three MLI segments with different layer densities. The last segment is considered to be a shroud that surrounds the last MLI layer. Two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the layer separator materials.

  8. Multilayer Control Hierarchy in an Integrated Hydrological Model

    NASA Astrophysics Data System (ADS)

    Park, J.; Obeysekera, J.; Vanzee, R.

    2005-05-01

    Considerable progress has been made in the functionality of integrated hydrological models which can provide evaluation of anthropogenic control and management policies of water resources. Nonetheless, there is still room for improvement in the coupling and expression of water control policies into hydrological models [1]. The Management Simulation Engine (MSE) component of the Regional Simulation Model (RSM) incorporates a multi-level hierarchical control architecture which emphasizes the decoupling of hydrological state information from the management information processing applied to the states. The MSE is intended to allow a flexible, extensible expression of a wide variety anthropogenic water resource control schemes integrated with the hydrological state evaluations of the RSM. Synergy between the multilayer control hierarchy and decoupled hydrologic state and management information facilitates a water resource management feature set not typical of integrated hydrological models. Some of these features include: interoperation and compatibility of diverse management algorithms such as PID, Fuzzy control, LP; and dynamic switching of control processors. This paper describes the MSE control hierarchy with a focus on the aforementioned features and their implementation. [1] Belaineh, G., Peralta, R. C., Hughes, T. C., Simulation/ Optimization Modeling for Water Resources Management, ASCE Journal Water Resources Planning Management, 125(3), p 154-61, 1999

  9. Modeling and numerical simulation of multiflux die in the multilayer co-extrusion process

    NASA Astrophysics Data System (ADS)

    Mun, Jun Ho; Kim, Ju Hyeon; Mun, Sang Ho; Kim, See Jo

    2017-02-01

    It is of great importance to understand the stretching and folding mechanism in the multiflux co-extrusion die to get uniform multilayer distribution at the end of die lip in the multilayer co-extrusion processes. In this work, to understand the mechanism of the layer distribution, modeling and numerical simulation were carried out for three-dimensional flow analysis in the multilayer co-extrusion die. The multilayer flow fields were numerically visualized and analyzed on the arbitrary cross-section of the multiflux die. In addition, numerical results for the multiflux die characteristics were obtained for non-Newtonian fluids in terms of power-law index for the cross model, which will be useful for the optimal design of screw and die, simultaneously, in the multilayer co-extrusion process.

  10. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  11. Modeling of LbL multilayers with controlled thickness, roughness, and specific surface area.

    PubMed

    Batys, Piotr; Weroński, Paweł

    2012-12-07

    We present computer simulation results of the layer by layer self-assembling process of colloidal particles. We have generated five multilayer structures of monodisperse spherical particles according to a generalized model of random sequential adsorption of hard spheres. The multilayers, each created at a different single-layer surface coverage, are of similar thickness. We have compared the transparency of the five multilayers and the structure of their outer layers in terms of the two-dimensional pair-correlation function. We have analyzed the variation of multilayer thickness with the number of adsorbed layers. We have also calculated the root-mean-square roughness of the multilayers as a function of the number of adsorption cycles. Finally, we have determined the specific surface area of the porous films as a function of the distance from the solid substrate. Our results suggest that in the limit of low porosity the multilayer transparency decreases exponentially with its porosity. The multilayer thickness is directly proportional to the number of adsorption cycles. The average single-layer thickness grows asymptotically with the single-layer coverage. We have also found that with the number of adsorbed layers the multilayer roughness increases to an asymptotic value. We have observed oscillatory variations of the multilayer specific surface area, decaying exponentially with the distance from the substrate. The decay length of the oscillation increases exponentially with the surface coverage. We have also determined the particle layer interpenetration for each multilayer and we have found that it decreases exponentially with the increase of the coverage. Our results suggest that all the film characteristics strongly depend on the method of its preparation and can be controlled by manipulating the single-layer surface coverage or deposition time. The results can be useful for efficient designing multilayers with desired properties.

  12. Predictive modeling of dental pain using neural network.

    PubMed

    Kim, Eun Yeob; Lim, Kun Ok; Rhee, Hyun Sill

    2009-01-01

    The mouth is a part of the body for ingesting food that is the most basic foundation and important part. The dental pain predicted by the neural network model. As a result of making a predictive modeling, the fitness of the predictive modeling of dental pain factors was 80.0%. As for the people who are likely to experience dental pain predicted by the neural network model, preventive measures including proper eating habits, education on oral hygiene, and stress release must precede any dental treatment.

  13. NASA/MSFC multilayer diffusion models and computer program for operational prediction of toxic fuel hazards

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.; Bowers, J. F.

    1973-01-01

    The NASA/MSFC multilayer diffusion models are discribed which are used in applying meteorological information to the estimation of toxic fuel hazards resulting from the launch of rocket vehicle and from accidental cold spills and leaks of toxic fuels. Background information, definitions of terms, description of the multilayer concept are presented along with formulas for determining the buoyant rise of hot exhaust clouds or plumes from conflagrations, and descriptions of the multilayer diffusion models. A brief description of the computer program is given, and sample problems and their solutions are included. Derivations of the cloud rise formulas, users instructions, and computer program output lists are also included.

  14. Numerical FEM modeling in dental implantology

    NASA Astrophysics Data System (ADS)

    Roateşi, Iulia; Roateşi, Simona

    2016-06-01

    This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.

  15. Tooth slice/scaffold model of dental pulp tissue engineering.

    PubMed

    Sakai, V T; Cordeiro, M M; Dong, Z; Zhang, Z; Zeitlin, B D; Nör, J E

    2011-07-01

    Multipotency is a defining characteristic of post-natal stem cells. The human dental pulp contains a small subpopulation of stem cells that exhibit multipotency, as demonstrated by their ability to differentiate into odontoblasts, neural cells, and vascular endothelial cells. These discoveries highlight the fundamental role of stem cells in the biology of the dental pulp and suggest that these cells are uniquely suited for dental pulp tissue-engineering purposes. The availability of experimental approaches specifically designed for studies of the differentiation potential of dental pulp stem cells has played an important role in these discoveries. The objective of this review is to describe the development and characterization of the Tooth Slice/Scaffold Model of Dental Pulp Tissue Engineering. In addition, we discuss the multipotency of dental pulp stem cells, focusing on the differentiation of these cells into functional odontoblasts and into vascular endothelial cells.

  16. Dental caries: an updated medical model of risk assessment.

    PubMed

    Kutsch, V Kim

    2014-04-01

    Dental caries is a transmissible, complex biofilm disease that creates prolonged periods of low pH in the mouth, resulting in a net mineral loss from the teeth. Historically, the disease model for dental caries consisted of mutans streptococci and Lactobacillus species, and the dental profession focused on restoring the lesions/damage from the disease by using a surgical model. The current recommendation is to implement a risk-assessment-based medical model called CAMBRA (caries management by risk assessment) to diagnose and treat dental caries. Unfortunately, many of the suggestions of CAMBRA have been overly complicated and confusing for clinicians. The risk of caries, however, is usually related to just a few common factors, and these factors result in common patterns of disease. This article examines the biofilm model of dental caries, identifies the common disease patterns, and discusses their targeted therapeutic strategies to make CAMBRA more easily adaptable for the privately practicing professional.

  17. A thermodynamic model for solid state amorphization: Application to Ni-Ti multilayers of different microstructures

    SciTech Connect

    Boettger, A.; Benedictus, R.; Mittemeijer, E.J.

    1997-07-01

    On the basis of an assessment of both the phase-formation energies and the energies of interfaces and grain boundaries the driving force for solid state amorphization (SSA) in crystalline Ni crystalline Ti and amorphous Ni- crystalline Ti multilayers was calculated. It followed that the structure of the interfaces and grain boundaries, and thus their energies is of crucial importance for the occurrence (or not) of SSA. The SSA behavior of the two types of Ni-Ti multilayers upon annealing was investigated using X-ray diffraction and (high resolution) transmission electron microscopy. The crystalline Ni-crystalline Ti multilayers showed SSA at both the Ni-Ti interfaces and the Ti grain boundaries. The amorphous Ni-crystalline Ti multilayers exhibited SSA at the Ti grain boundaries only. These observations agree with the predictions from the thermodynamic model.

  18. Dental Hygiene Curriculum Model for Transition to Future Roles.

    ERIC Educational Resources Information Center

    Paarmann, Carlene S.; And Others

    1990-01-01

    The establishment of the baccalaureate degree as the minimum entry level for dental hygiene practice centers around three main concerns: changes in health care delivery, awarding of a degree commensurate with students' educational background, and the credibility of dental hygiene as a profession. A curriculum model is discussed. (MLW)

  19. A Model Program for Dental Assisting Education in California.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    Intended to provide assistance for developing new programs and improving existing ones, the guide was constructed by dental assisting instructors and other professional participants in a 196 5 workshop conference. Elements of the model program were derived from a statistical analysis of California junior colleg e programs in dental assisting and…

  20. Dental Health Care Models of Southwest Cultures. Final Report.

    ERIC Educational Resources Information Center

    Pettibone, Timothy J.; Solis, Enrique, Jr.

    The major goal of this research was the development and validation of cultural models of dental health practices. The specific objectives were to determine if 3 cultural groups (American Indians, Mexican Americans, and Anglo Americans) differ in the dental health hygiene indices, characteristics, psychological factors, or social factors; to…

  1. NASA/MSFC multilayer diffusion models and computer programs, version 5

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.

    1975-01-01

    The transport and diffusion models and algorithms developed for use by NASA in predicting concentrations and dosages downwind from normal and abnormal launches of rocket vehicles are described along with the associated computer programs for use in performing the calculations. Topics discussed include: the mathematical specifications and procedures used in the Preprocessor Program to calculate rocket exhaust cloud rise, cloud dimensions, and other input parameters to the transport and diffusion models; the revised mathematical specifications for the Multilayer Diffusion Models; users' instructions for implementing the Preprocessor and Multilayer Diffusion Models Programs; and worked example problems illustrating the use of the models and computer programs.

  2. Interactive Tooth Separation from Dental Model Using Segmentation Field

    PubMed Central

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  3. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  4. Preventive Dental Practices Motivational Model for Elementary Teachers in Training Institutions; Dental Health Instruction Project. Final Report.

    ERIC Educational Resources Information Center

    Dennison, Darwin

    An investigation was conducted to determine the effects of instruction upon the dental health behavior of university students. The experimental group of 68 subjects, all elementary education majors, were exposed to a three--stage dental health motivational model: Dental Health Skills Instruction (four hours of laboratory instruction), Cognitive…

  5. Modeling of light intensification by conical pits within multilayer coatings

    SciTech Connect

    Qiu, S R; Wolfe, J E; Monterrosa, A; Feit, M D; Pistor, T V; Stolz, C J

    2009-11-02

    Removal of laser-induced damage sites provides a possible mitigation pathway to improve damage resistance of coated multilayer dielectric mirrors. In an effort to determine the optimal mitigation geometry which will not generate secondary damage precursors, the electric field distribution within the coating layers for a variety of mitigation shapes under different irradiation angles has been estimated using the finite difference time domain (FDTD) method. The coating consists of twenty-four alternating layers of hafnia and silica with a quarter-wave reflector design. A conical geometrical shape with different cone angles is investigated in the present study. Beam incident angles range from 0{sup o} to 60{sup o} at 5{sup o} increments. We find that light intensification (square of electric field, |E|{sup 2}) within the multilayers depends strongly on the beam incident direction and the cone angle. By comparing the field intensification for each cone angle under all angles of incidence, we find that a 30{sup o} conical pit generates the least field intensification within the multilayer film. Our results suggest that conical pits with shallow cone angles ({le} 30{sup o}) can be used as potential optimal mitigation structures.

  6. Simple solutions of multilayered discs subjected to biaxial moment loading.

    SciTech Connect

    Hsueh, Chun-Hway; Kelly, J R

    2009-01-01

    The purpose of this study was to derive a simple closed-form solution for the stress distribution through the thickness of multilayered discs subjected to biaxial moment loading, such that it can be used readily to evaluate the biaxial strength of multilayered dental ceramics using biaxial flexure tests. Methods A simple analytical model was developed to derive the stress distribution through the thickness of multilayered discs subjected to biaxial moment loading. The accuracy of the solution was verified by comparing with previous rigorous analytical solutions and finite element results. The results obtained from Roark's formulas for bilayered discs were also included for comparison.

  7. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    NASA Astrophysics Data System (ADS)

    Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.

    2013-08-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.

  8. Method for ion beam etching in angles with multi-layers model

    NASA Astrophysics Data System (ADS)

    Zeng, Siwei; Wu, Lixiang; Qiu, Keqiang; Liu, Zhengkun; Hong, Yilin; Fu, Shaojun

    2016-10-01

    A new method for controlling the groove profiles of diffraction gratings which changes the etching angle and etching time, meanwhile divides the etching area in the substrate into multi-layers to have a good approximation for the theory is introduced. We put forward a multi-layers etching model on the base of the ion bean sputtering (IBS) which can calculate the etching time and etching angle. We test the curved grooves profiles and get the optimizations for the number of the multi-layers, etching time and etching time in this model. Also a photoresist grating is applied for the etching experiment. The results indicate that the optimized parameters such as the number of the multi-layers result in a smaller root mean square deviation (RMSD) between the theory and the real etching result which show good agreement with the theoretical groove within the variation of ±6% of the etching rate. The simulation predictions and experimental results show that the multi-layers etching model to control the groove profiles of diffraction gratings is available.

  9. Multilayer Cloud Detection Using MODIS: Sensitivity Tests Using a Forward Model

    NASA Astrophysics Data System (ADS)

    Wind, G.; Platnick, S.; King, M. D.

    2008-05-01

    The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 stream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. In order to investigate further the performance of the multilayer cloud detection algorithm we have run a set of forward models of multilayer clouds of varying layer separation, thermodynamic phase, optical and microphysical properties and varying surface and atmospheric conditions using the DISORT radiative transfer code. The model output, in the form of equivalent reflectances in the MODIS bands is then used as input to the operational MODIS cloud optical and microphysical properties retrieval algorithm and results are compared to the known truth of the DISORT input. We will present the results of this investigation with an emphasis on the applicability and skill of the MODIS multilayer cloud detection algorithm.

  10. Hybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures

    SciTech Connect

    T.F. Eibert; J.L. Volakis; Y.E. Erdemli

    2002-03-03

    Hybrid finite element (FE)--boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green's functions. In this manner, a portion of the volumetric dielectric region can be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green's function. As such, thick uniform substrates can be modeled without loss of efficiency and accuracy. The multilayered Green's function is analytically computed in the spectral domain and the resulting BI matrix-vector products are evaluated via the fast spectral domain algorithm (FSDA). As a result, the computational cost of the matrix-vector products is kept at O(N). Furthermore, the number of Floquet modes in the expansion are kept very few by placing the BI surfaces within the computational unit cell. Examples of frequency selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy and capability of the approach. One example involves complicated multilayered substrates above and below an inhomogeneous filter element and the other is an optical ring-slot array on a substrate several hundred wavelengths in thickness. Comparisons with measurements are included.

  11. Multilayered Word Structure Model for Assessing Spelling of Finnish Children in Shallow Orthography

    ERIC Educational Resources Information Center

    Kulju, Pirjo; Mäkinen, Marita

    2017-01-01

    This study explores Finnish children's word-level spelling by applying a linguistically based multilayered word structure model for assessing spelling performance. The model contributes to the analytical qualitative assessment approach in order to identify children's spelling performance for enhancing writing skills. The children (N = 105)…

  12. Modelling community, family, and individual determinants of childhood dental caries.

    PubMed

    Duijster, Denise; van Loveren, Cor; Dusseldorp, Elise; Verrips, Gijsbert H W

    2014-04-01

    This cross-sectional study empirically tested a theoretical model of pathways and inter-relationships among community, family, and individual determinants of childhood dental caries in a sample of 630, 6-year-old children from the Netherlands. Children's decayed, missing, and filled teeth (dmft) scores were extracted from dental records. A validated parental questionnaire was used to collect data on sociodemographic characteristics, psychosocial factors, and oral hygiene behaviours. Data on neighbourhood quality were obtained from the Dutch Central Bureau of Statistics. Structural equation modelling indicated that the model was valid after applying a few modifications. In the revised model, lower maternal education level was related to poorer family organization, lower levels of social support, lower dental self-efficacy, and an external dental health locus of control. These, in turn, were associated with poorer oral hygiene behaviours, which were linked to higher levels of childhood dental caries. In addition, lower maternal education level and poorer neighbourhood quality were directly associated with higher caries levels in children. This model advances our understanding of determinants of childhood dental caries and the pathways in which they operate. Conception of these pathways is essential for guiding the development of caries-preventive programmes for children. Clues for further development of the model are suggested. © 2014 Eur J Oral Sci.

  13. Dental Care Coverage and Use: Modeling Limitations and Opportunities

    PubMed Central

    Moeller, John F.; Chen, Haiyan

    2014-01-01

    Objectives. We examined why older US adults without dental care coverage and use would have lower use rates if offered coverage than do those who currently have coverage. Methods. We used data from the 2008 Health and Retirement Study to estimate a multinomial logistic model to analyze the influence of personal characteristics in the grouping of older US adults into those with and those without dental care coverage and dental care use. Results. Compared with persons with no coverage and no dental care use, users of dental care with coverage were more likely to be younger, female, wealthier, college graduates, married, in excellent or very good health, and not missing all their permanent teeth. Conclusions. Providing dental care coverage to uninsured older US adults without use will not necessarily result in use rates similar to those with prior coverage and use. We have offered a model using modifiable factors that may help policy planners facilitate programs to increase dental care coverage uptake and use. PMID:24328635

  14. Modeling and characterization of multilayered d 15 mode piezoelectric energy harvesters in series and parallel connections

    NASA Astrophysics Data System (ADS)

    Zhu, Y. K.; Yu, Y. G.; Li, L.; Jiang, T.; Wang, X. Y.; Zheng, X. J.

    2016-07-01

    A Timoshenko beam model combined with piezoelectric constitutive equations and an electrical model was proposed to describe the energy harvesting performances of multilayered d 15 mode PZT-51 piezoelectric bimorphs in series and parallel connections. The effect of different clamped conditions was considered for non-piezoelectric and piezoelectric layers in the theoretical model. The frequency dependences of output peak voltage and power at different load resistances and excitation voltages were studied theoretically, and the results were verified by finite element modeling (FEM) simulation and experimental measurements. Results show that the theoretical model considering different clamped conditions for non-piezoelectric and piezoelectric layers could make a reliable prediction for the energy harvesting performances of multilayered d 15 mode piezoelectric bimorphs. The multilayered d 15 mode piezoelectric bimorph in a series connection exhibits a higher output peak voltage and power than that of a parallel connection at a load resistance of 1 MΩ. A criterion for choosing a series or parallel connection for a multilayered d 15 mode piezoelectric bimorph is dependent on the comparison of applied load resistance with the critical resistance of about 55 kΩ. The proposed model may provide some useful guidelines for the design and performance optimization of d 15 mode piezoelectric energy harvesters.

  15. Models of practice organisation using dental therapists: English case studies.

    PubMed

    Sun, N; Harris, R V

    2011-08-12

    A new dental remuneration system based on bands of activity has changed the reward system operating in dental practices and influenced practitioner behaviour in relation to the delegation of tasks to English dental therapists (DTs). Since dental practitioners operate as independent contractors they are free to innovate. A variety of models incorporating DTs in general practice teams exist, some of which may overcome the apparent delegation constraints embedded within this system of remuneration. To describe the way different practices are organised to take account of DTs in their teams and identify whether any of these models address delegation disincentives arising from the system of remuneration. A purposive sample of six dental practices was identified, comprising two small, two medium and two large dental practices, including a variety of models of practice organisation. Semi-structured interviews were carried out with principal dentists, associate dentists, DTs, practice managers and dental hygienists (35 participants in total). A thematic analysis was applied to interview transcripts. The six dental practices demonstrated six different models of practice organisation which could be grouped into 'practice payment' and 'dentist payment' models according to whether the salary costs of the DT were met by a central practice fund or from the income of individual dentists in the team. In both of the large practices only some of the dentists in the team referred work to the DT because of reimbursement issues. In two practices the system was perceived to be satisfactory to all parties, one of these being a single-handed practice with two DTs. Although the remuneration system contained some potential disincentives to DT delegation, some practices innovated in their organisations to overcome these issues.

  16. [Polarization Modeling and Analysis of Light Scattering Properties of Multilayer Films on Slightly Rough Substrate].

    PubMed

    Gao, Hui; Gao, Jun; Wang, Ling-mei; Wang, Chi

    2016-03-01

    To satisfy the demand of multilayer films on polarization detection, polarized bidirectional reflectance distribution function of multilayer films on slightly rough substrate is established on the basis of first-order vector perturbation theory and polarization transfer matrix. Due to the function, light scattering polarization properties are studied under multi-factor impacts of two typical targets-monolayer anti-reflection film and multilayer high-reflection films. The result shows that for monolayer anti-reflection film, observing positions have a great influence on the degree of polarization, for the left of the peak increased and right decreased compared with the substrate target. Film target and bare substrate can be distinguished by the degree of polarization in different observation angles. For multilayer high-reflection films, the degree of polarization is significantly associated with the number and optical thickness of layers at different wavelengths of incident light and scattering angles. With the increase of the layer number, the degree of polarization near the mirror reflection area decreases. It reveals that the calculated results coincide with the experimental data, which validates the correctness and rationality of the model. This paper provides a theoretical method for polarization detection of multilayer films target and reflection stealth technology.

  17. The research Of Multilayer Thermal Insulation With Mechanical Properties Based On Model Analysis Test

    NASA Astrophysics Data System (ADS)

    Lianhua, Yin

    The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.

  18. Model Teacher - School Dental Hygiene Program.

    ERIC Educational Resources Information Center

    Smith, Lowell W.

    The purpose of this study, which was carried out during the 1972-73 school year at three parochial schools in the Houston area, was to determine the effectiveness of the Toothkeeper Program, a multimedia program of oral hygiene training carefully developed and packaged to establish effective long-term dental hygiene practice. The study population…

  19. Monte Carlo model of light transport in multi-layered tubular organs

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Zhang, Ning

    2017-02-01

    We present a Monte Carlo static light migration model (Endo-MCML) to simulate endoscopic optical spectroscopy for tubular organs such as esophagus and colon. The model employs multi-layered hollow cylinder which emitting and receiving light both from the inner boundary to meet the conditions of endoscopy. Inhomogeneous sphere can be added in tissue layers to model cancer or other abnormal changes. The 3D light distribution and exit angle would be recorded as results. The accuracy of the model has been verified by Multi-layered Monte Carlo(MCML) method and NIRFAST. This model can be used for the forward modeling of light transport during endoscopically diffuse optical spectroscopy, light scattering spectroscopy, reflectance spectroscopy and other static optical detection or imaging technologies.

  20. Beam-tracing model for predicting sound fields in rooms with multilayer bounding surfaces

    NASA Astrophysics Data System (ADS)

    Wareing, Andrew; Hodgson, Murray

    2005-10-01

    This paper presents the development of a wave-based room-prediction model for predicting steady-state sound fields in empty rooms with specularly reflecting, multilayer surfaces. A triangular beam-tracing model with phase, and a transfer-matrix approach to model the surfaces, were involved. Room surfaces were modeled as multilayers of fluid, solid, or porous materials. Biot theory was used in the transfer-matrix formulation of the porous layer. The new model consisted of the transfer-matrix model integrated into the beam-tracing algorithm. The transfer-matrix model was validated by comparing predictions with those by theory, and with experiment. The test surfaces were a glass plate, double drywall panels, double steel panels, a carpeted floor, and a suspended-acoustical ceiling. The beam-tracing model was validated in the cases of three idealized room configurations-a small office, a corridor, and a small industrial workroom-with simple boundary conditions. The number of beams, the reflection order, and the frequency resolution required to obtain accurate results were investigated. Beam-tracing predictions were compared with those by a method-of-images model with phase. The model will be used to study sound fields in rooms with local- or extended-reaction multilayer surfaces.

  1. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  2. Thermal analysis of power cables in multi-layered soil part 1: Theoretical model

    SciTech Connect

    Hanna, M.A.; Chikhani, A.Y. . Dept. of Electrical and Computer Engineering); Salama, M.M.A. . Dept. of Electrical Engineering)

    1993-07-01

    The heat dissipation and temperature distribution in multi-layered soil surrounding a buried cable is calculated using the finite difference method and the energy conservation principle. The unrealistic simplifying assumptions, used in the published models for calculating the heat dissipation from the underground cable system, are not needed in the proposed model. The numerical technique proposed in this paper is very suitable to model any real cable installation configuration in multi-layered soil. The development of the model, and the effect of the parameters that influence the conversion and the stability of the numerical solution of the heat dissipation from the underground cable system, is studied in this paper. The application of the model is given in the second part of this work submitted at the same time for publication.

  3. A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.

    PubMed

    Merks, E J W; Borsboom, J M G; Bom, N; van der Steen, A F W; de Jong, N

    2006-12-22

    In a preceding study a new technique to non-invasively measure the bladder volume on the basis of non-linear wave propagation was validated. It was shown that the harmonic level generated at the posterior bladder wall increases for larger bladder volumes. A dedicated transducer is needed to further verify and implement this approach. This transducer must be capable of both transmission of high-pressure waves at fundamental frequency and reception of up to the third harmonic. For this purpose, a multi-layer transducer was constructed using a single element PZT transducer for transmission and a PVDF top-layer for reception. To determine feasibility of the multi-layer concept for bladder volume measurements, and to ensure optimal performance, an equivalent mathematical model on the basis of KLM-circuit modeling was generated. This model was obtained in two subsequent steps. Firstly, the PZT transducer was modeled without PVDF-layer attached by means of matching the model with the measured electrical input impedance. It was validated using pulse-echo measurements. Secondly, the model was extended with the PVDF-layer. The total model was validated by considering the PVDF-layer as a hydrophone on the PZT transducer surface and comparing the measured and simulated PVDF responses on a wave transmitted by the PZT transducer. The obtained results indicated that a valid model for the multi-layer transducer was constructed. The model showed feasibility of the multi-layer concept for bladder volume measurements. It also allowed for further optimization with respect to electrical matching and transmit waveform. Additionally, the model demonstrated the effect of mechanical loading of the PVDF-layer on the PZT transducer.

  4. A Reproducible Oral Microcosm Biofilm Model for Testing Dental Materials

    PubMed Central

    Rudney, J.D.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.S.; Reilly, C.; Fok, A.S.; Aparicio, C.

    2012-01-01

    Aims Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite disks were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms were analyzed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose-pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veilonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. PMID:22925110

  5. Analytical Modeling for the Bending Resonant Frequency of Multilayered Microresonators with Variable Cross-Section

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; Plascencia-Mora, Hector; Rodríguez-Morales, Ángel L.; Lu, Jian

    2011-01-01

    Multilayered microresonators commonly use sensitive coating or piezoelectric layers for detection of mass and gas. Most of these microresonators have a variable cross-section that complicates the prediction of their fundamental resonant frequency (generally of the bending mode) through conventional analytical models. In this paper, we present an analytical model to estimate the first resonant frequency and deflection curve of single-clamped multilayered microresonators with variable cross-section. The analytical model is obtained using the Rayleigh and Macaulay methods, as well as the Euler-Bernoulli beam theory. Our model is applied to two multilayered microresonators with piezoelectric excitation reported in the literature. Both microresonators are composed by layers of seven different materials. The results of our analytical model agree very well with those obtained from finite element models (FEMs) and experimental data. Our analytical model can be used to determine the suitable dimensions of the microresonator’s layers in order to obtain a microresonator that operates at a resonant frequency necessary for a particular application. PMID:22164071

  6. Bayesian model selection for analysis and design of multilayer sound absorbers

    NASA Astrophysics Data System (ADS)

    Fackler, Cameron Jeff

    New methods for the analysis and design of multilayer sound absorbers, utilizing a model-based Bayesian inference approach, are proposed. Additionally, a Bayesian method for calibrating impedance tubes, widely used to measure the acoustic properties of sound absorbing materials, is developed. Impedance tubes provide a convenient way to characterize the normal-incidence acoustic properties of materials. These measurements rely on accurately knowing the positions of microphones sensing the sound field inside the tube; these positions must be determined acoustically since the physical dimensions of the microphones are larger than the required precision. Using a calibration measurement of the empty tube, the method developed here determines the acoustic positions and their uncertainties for the microphones of an impedance tube. Microperforated panel absorbers are an exciting, relatively new type of sound absorber, requiring no traditional fibrous materials. The provided absorption, however, has a narrow frequency bandwidth. To provide a more broadband absorption, multiple microperforated panels may be combined into a multilayer absorber, but this yields a difficult design challenge. Here, the Bayesian framework is used to design such multilayer microperforated panels. This provides a method that automatically determines the minimum number of layers required and the design parameters for each layer of a multilayer arrangement yielding a desired acoustic absorption profile. Traditional porous materials are widely used as sound absorbers. Additionally, other substances such as soils or sediments may be modeled as porous materials. When studying and attempting to predict the acoustic properties of such materials, knowing the physical properties of the material is essential. A Bayesian approach to infer these physical parameters from an acoustic measurement is developed. In addition to determining the values and associated uncertainties of the physical material parameters

  7. Comparing thin-sheet models with 3-D multilayer models for continental collision

    NASA Astrophysics Data System (ADS)

    Lechmann, S. M.; May, D. A.; Kaus, B. J. P.; Schmalholz, S. M.

    2011-10-01

    Various models have been proposed to explain tectonic deformations during continent collision. A frequently applied model is the thin viscous sheet model which is however not fully 3-D and assumes a priori diffuse thickening as the dominant deformation style. We compare a fully 3-D multilayer numerical model with a corresponding thin viscous sheet numerical model for the scenario of continent indentation. In our comparison we focus on the three basic viscous deformation styles thickening, buckling (folding) and lateral crustal flow. Both numerical models are based on the finite element method (FEM) and employ either a linear or power-law viscous rheology. The 3-D model consists of four layers representing a simplified continental lithosphere: strong upper crust, weak lower crust, strong upper mantle and weak lower mantle. The effective viscosity depth-profile in the 3-D model is used to calculate the depth-averaged effective viscosity used in the thin-sheet model allowing a direct comparison of both models. We quantify the differences in the strain rate and velocity fields, and investigate the evolution of crustal thickening, buckling and crustal flow resulting from the two models for two different phases of deformation: (1) indentation with a constant velocity and (2) gravitational collapse after a decrease of the indenting velocity by a factor of 5. The results indicate that thin-sheet models approximate well the overall large-scale lithospheric deformation, especially during indentation and for a linear viscous rheology. However, in the 3-D model, additional processes such as multilayer buckling and lower crustal flow emerge, which are ignored in the thin-sheet model but dominate the deformation style in the 3-D model within a range of a few hundreds of kilometres around the collision zone and indenter corner. Differences between the 3-D and thin-sheet model are considerably larger for a power-law viscous than for a linear viscous rheology. Buckling and lower

  8. Dynamo currents representing geomagnetic L variation demonstrated by a multi-layer ionospheric model

    NASA Astrophysics Data System (ADS)

    Xu, W.-Y.; Tschu, K.-K.; Matsushita, S.

    1984-05-01

    A multi-layer ionospheric model and lunar (2,2) tidal mode have been used to calculate dynamo current systems representing lunar geomagnetic semidiurnal variations. Since both the height variation of the ionospheric conductivities and latitudinal dependence of the height of the conductivity peaks have been taken into account, the dynamo current systems agree with equivalent ones (estimated from geomagnetic data) better than those for a thin shell model of the ionospheric conductivity, especially in the polar region.

  9. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  10. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material for potential space project applications requires an in-depth understanding of their reliability. A general reliability model for Ni-BaTiO3 MLCC is developed and discussed. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitor's reliability life responds to the external stresses, and an empirical function that defines contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  11. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation for potential space project applications of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material requires an in-depth understanding of the MLCCs reliability. A general reliability model for Ni-BaTiO3 MLCCs is developed and discussed in this paper. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitors reliability life responds to external stresses; and an empirical function that defines the contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  12. Assessing risk factors for dental caries: a statistical modeling approach.

    PubMed

    Trottini, Mario; Bossù, Maurizio; Corridore, Denise; Ierardo, Gaetano; Luzzi, Valeria; Saccucci, Matteo; Polimeni, Antonella

    2015-01-01

    The problem of identifying potential determinants and predictors of dental caries is of key importance in caries research and it has received considerable attention in the scientific literature. From the methodological side, a broad range of statistical models is currently available to analyze dental caries indices (DMFT, dmfs, etc.). These models have been applied in several studies to investigate the impact of different risk factors on the cumulative severity of dental caries experience. However, in most of the cases (i) these studies focus on a very specific subset of risk factors; and (ii) in the statistical modeling only few candidate models are considered and model selection is at best only marginally addressed. As a result, our understanding of the robustness of the statistical inferences with respect to the choice of the model is very limited; the richness of the set of statistical models available for analysis in only marginally exploited; and inferences could be biased due the omission of potentially important confounding variables in the model's specification. In this paper we argue that these limitations can be overcome considering a general class of candidate models and carefully exploring the model space using standard model selection criteria and measures of global fit and predictive performance of the candidate models. Strengths and limitations of the proposed approach are illustrated with a real data set. In our illustration the model space contains more than 2.6 million models, which require inferences to be adjusted for 'optimism'.

  13. Integrated Medical-Dental Delivery Systems: Models in a Changing Environment and Their Implications for Dental Education.

    PubMed

    Jones, Judith A; Snyder, John J; Gesko, David S; Helgeson, Michael J

    2017-09-01

    Models and systems of the dental care delivery system are changing. Solo practice is no longer the only alternative for graduating dentists. Over half of recent graduates are employees, and more than ever before, dentists are practicing in groups. This trend is expected to increase over the next 25 years. This article examines various models of dental care delivery, explains why it is important to practice in integrated medical-dental teams, and defines person-centered care, contrasting it with patient-centered care. Systems of care in which teams are currently practicing integrated oral health care delivery are described, along with speculation on the future of person-centered care and the team approach. Critical steps in the education of dental and other health care professionals and the development of clinical models of care in moving forward are considered. This article was written as part of the project "Advancing Dental Education in the 21(st) Century."

  14. Biological characteristic effects of human dental pulp stem cells on poly-ε-caprolactone-biphasic calcium phosphate fabricated scaffolds using modified melt stretching and multilayer deposition.

    PubMed

    Wongsupa, Natkrita; Nuntanaranont, Thongchai; Kamolmattayakul, Suttatip; Thuaksuban, Nuttawut

    2017-02-01

    Craniofacial bone defects such as alveolar cleft affect the esthetics and functions that need bone reconstruction. The advanced techniques of biomaterials combined with stem cells have been a challenging role for maxillofacial surgeons and scientists. PCL-coated biphasic calcium phosphate (PCL-BCP) scaffolds were created with the modified melt stretching and multilayer deposition (mMSMD) technique and merged with human dental pulp stem cells (hDPSCs) to fulfill the component of tissue engineering for bone substitution. In the present study, the objective was to test the biocompatibility and biofunctionalities that included cell proliferation, cell viability, alkaline phosphatase activity, osteocalcin, alizarin red staining for mineralization, and histological analysis. The results showed that mMSMD PCL-BCP scaffolds were suitable for hDPSCs viability since the cells attached and spread onto the scaffold. Furthermore, the constructs of induced hDPSCs and scaffolds performed ALP activity and produced osteocalcin and mineralized nodules. The results indicated that mMSMD PCL-BCP scaffolds with hDPSCs showed promise in bone regeneration for treatment of osseous defects.

  15. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction

  16. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    SciTech Connect

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L. Marra, F.

    2015-12-17

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction

  17. Theory analysis of the Dental Hygiene Human Needs Conceptual Model.

    PubMed

    MacDonald, L; Bowen, D M

    2016-11-09

    Theories provide a structural knowing about concept relationships, practice intricacies, and intuitions and thus shape the distinct body of the profession. Capturing ways of knowing and being is essential to any professions' practice, education and research. This process defines the phenomenon of the profession - its existence or experience. Theory evaluation is a systematic criterion-based assessment of a specific theory. This study presents a theory analysis of the Dental Hygiene Human Needs Conceptual Model (DH HNCM). Using the Walker and Avant Theory Analysis, a seven-step process, the DH HNCM, was analysed and evaluated for its meaningfulness and contribution to dental hygiene. The steps include the following: (i) investigate the origins; (ii) examine relationships of the theory's concepts; (iii) assess the logic of the theory's structure; (iv) consider the usefulness to practice; (v) judge the generalizability; (vi) evaluate the parsimony; and (vii) appraise the testability of the theory. Human needs theory in nursing and Maslow's Hierarchy of Need Theory prompted this theory's development. The DH HNCM depicts four concepts based on the paradigm concepts of the profession: client, health/oral health, environment and dental hygiene actions, and includes validated eleven human needs that evolved overtime to eight. It is logical, simplistic, allows scientific predictions and testing, and provides a unique lens for the dental hygiene practitioner. With this model, dental hygienists have entered practice, knowing they enable clients to meet their human needs. For the DH HNCM, theory analysis affirmed that the model is reasonable and insightful and adds to the dental hygiene professions' epistemology and ontology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Numerical analysis of the chimera states in the multilayered network model

    NASA Astrophysics Data System (ADS)

    Goremyko, Mikhail V.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Ghosh, Dibakar; Bera, Bidesh K.; Dana, Syamal K.; Hramov, Alexander E.

    2017-03-01

    We numerically study the interaction between the ensembles of the Hindmarsh-Rose (HR) neuron systems, arranged in the multilayer network model. We have shown that the fully identical layers, demonstrated individually different chimera due to the initial mismatch, come to the identical chimera state with the increase of inter-layer coupling. Within the multilayer model we also consider the case, when the one layer demonstrates chimera state, while another layer exhibits coherent or incoherent dynamics. It has been shown that the interactions chimera-coherent state and chimera-incoherent state leads to the both excitation of chimera as from the ensemble of fully coherent or incoherent oscillators, and suppression of initially stable chimera state

  19. Investigating the structural bases of voltage-gating model channels by using perfectly aligned multilayer samples

    NASA Astrophysics Data System (ADS)

    Huang, Huey W.

    1988-09-01

    One dimensional quasi crystals of perfect multilayers, in which ion channels are uniformly oriented within parallel membranes, can be used to study the structural base of channel conductivities. We have developed 1) the techniques for preparing such multilayer samples and 2) the spectroscopic methods (circular dichroism and x-ray diffraction) for extracting structural information from these samples. The sample variables include electric field, water content, ion concentrations, etc. We have observed conformation changes of alamethicin with water content, a result in favor of the barrel model (rather than the flip-flop model) for the channel. Our goal is to probe the conformation changes of the channels as we vary the sample variables, in order to elucidate the molecular mechanisms of voltage gating.

  20. Childhood dental injuries: a resiliency model of adaptation.

    PubMed

    Porritt, Jenny M; Rodd, Helen D; Baker, Sarah R

    2015-07-01

    There is a paucity of research examining how children and their families adapt to traumatic dental injuries. This study examined how clinical and psychosocial factors influence adaptation to this oral stressor using a theoretical framework of resiliency and adaptation. Children with traumatised permanent teeth, who were attending a UK dental hospital, completed questionnaires at baseline and at a 6 month follow-up. Child questionnaires assessed coping styles, social support, and quality of life outcomes. Parents were also asked to complete questionnaires, which assessed previous stressors/strains on the family, social support, healthcare satisfaction, and family impacts. Data related to the child's dental injury were collected from clinical notes. Structural equation modelling and regression analyses were employed to analyse data. One hundred and eight children and 113 parents participated at baseline. Children's gender, coping style, social support, and family functioning significantly predicted children's oral health-related quality of life. Parents' satisfaction with their children's dental care significantly predicted parental quality of life outcomes. Children's close friend support and healthcare satisfaction remained significant predictors of positive outcomes at follow-up. The findings revealed important psychosocial factors that influence child and family adaptation to childhood dental trauma. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. An evaluation of the PALS after treatment modelling intervention to reduce dental anxiety in child dental patients.

    PubMed

    Howard, Karen E; Freeman, Ruth

    2009-07-01

    The aim of this study was to assess the effectiveness of the passivity to activity through live symbolic (PALS) after treatment modelling intervention to reduce child dental anxiety. A convenience sample of consecutive 5- to 10-year-old dental patients were randomly assigned to intervention or control groups. Self-reported child dental anxiety was assessed at the start of each visit. At the end of each visit, children in the intervention group were introduced to a glove puppet, which acted as the PALS model. The intervention group children re-enacted the treatment they had just received on the puppet's teeth. At the end of each visit, the control children received motivational rewards only. The change in dental anxiety scores was examined by t-tests and analysis of covariance. The final analysis included 27 intervention children and 26 control children. For the intervention group, there were no statistically significant changes in dental anxiety over a course of treatment, between first and second preventive visits, between first and second invasive treatment visits, or between first attendance and subsequent recall attendance. For the control group, a statistically significant decrease in dental anxiety was observed between the first and second invasive dental treatment visits. The PALS after treatment modelling intervention was ineffective in reducing child dental anxiety.

  2. Models for Delivering School-Based Dental Care.

    ERIC Educational Resources Information Center

    Albert, David A.; McManus, Joseph M.; Mitchell, Dennis A.

    2005-01-01

    School-based health centers (SBHCs) often are located in high-need schools and communities. Dental service is frequently an addition to existing comprehensive services, functioning in a variety of models, configurations, and locations. SBHCs are indicated when parents have limited financial resources or inadequate health insurance, limiting…

  3. Models for Delivering School-Based Dental Care.

    ERIC Educational Resources Information Center

    Albert, David A.; McManus, Joseph M.; Mitchell, Dennis A.

    2005-01-01

    School-based health centers (SBHCs) often are located in high-need schools and communities. Dental service is frequently an addition to existing comprehensive services, functioning in a variety of models, configurations, and locations. SBHCs are indicated when parents have limited financial resources or inadequate health insurance, limiting…

  4. The Humanistic Approach: A Model For Dental Health Curriculums.

    ERIC Educational Resources Information Center

    Beall, Sue; Hurley, Robert S.

    1982-01-01

    A special dental health curriculum, called the Tattletooth Curriculum, demonstrates the use of the humanistic model in health education and its concern for the learner as a total person. The main concept in the development of this curriculum is that the prospect for changing behavior is unlikely unless the health information is personally…

  5. Buckling analysis of multi-layered graphene sheets based on a continuum mechanics model

    NASA Astrophysics Data System (ADS)

    Jandaghian, A. A.; Rahmani, O.

    2017-05-01

    In this paper, buckling analysis of biaxially compressed multi-layered graphene sheets with a continuum plate model is reported. The equations of motion are analytically solved to obtain closed-form solution for buckling loads of all edges simply supported multi-layered graphene sheets. The interaction of van der Waals (vdWs) pressure between the layers is incorporated in the formulation to determine the buckling behavior of simply supported MLGSs. Explicit formulae are derived for predicting the critical buckling loads of double- and triple-layered graphene sheets, and they clearly indicate the effect of vdW interaction on the critical buckling loads. The critical buckling loads are calculated for various numbers of layered graphene sheets, and the obtained results show that the vdW force has no effect on the first critical buckling load of an MLGS, but plays a significant role in all higher first critical buckling loads for all combinations of m and n.

  6. Modeling of organic light-emitting diodes with graded concentration in the emissive multilayer

    NASA Astrophysics Data System (ADS)

    Gusso, A.; Ma, Dongge; Hümmelgen, I. A.; da Luz, M. G. E.

    2004-02-01

    We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq3) and a hole transporting material, N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq3 concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices.

  7. Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Yi; Juang, Jia-Yang

    2016-07-01

    The standard collinear four-point probe method is an indispensable tool and has been extensively used for characterizing conductive thin films with homogeneous and isotropic electrical properties. In this paper, we conduct three-dimensional (3D) finite element simulations on conductive multilayer films to study the relationship between the reading of the four-point probe and the conductivity of the individual layers. We find that a multilayer film may be modeled as a simple equivalent circuit with multiple resistances, connected in parallel for a wide range of resistivity and thickness ratios, as long as its total thickness is smaller than approximately half of the probe spacing. As a result, we may determine the resistivity of each layer sequentially by applying the four-point probe, with the original correction factor π/ln(2), after deposition of each layer.

  8. Experimental validation of CFD model of thermal fluxes through a multilayer wall

    NASA Astrophysics Data System (ADS)

    Bianco, N.; Musto, M.; Rotondo, G.

    2017-01-01

    The evaluation of thermal losses through building envelope is complex due to the presence of different components such as geometrical and structural thermal bridges, multilayer walls, windows and shadow areas. In particular, in presence of material and/or shape discontinuities, the heat flux becomes two-dimensional or three-dimensional and loses its one-dimensionality. Thermal bridges are weak points of the building envelope; the measurement of heat losses through the walls is quite complicated and in particular the detection of bi-tridimensional thermal flux. The integration between the cfd analysis and the experimental study aims the improvement of the measurement technique and the assessment of the dispersion of heat fluxes through multi-layer walls both in the steady and unsteady measurement conditions. The numerical study has been directed for modelling, by means of the commercial numerical code Fluent, of the experimental test section consisting of a multi-layer wall, in which a structural thermal bridge has been inserted in order to make accurate measurements of the three-dimensional heat flux in steady state condition. The study has been developed to validate the CFD model by the experimental set-up, with the aim to investigate possible measurement methodologies of heat fluxes.

  9. Modeling of Multi-Layered Protection Systems for Chloride Penetration in Concrete Bridge Decks

    NASA Astrophysics Data System (ADS)

    Harajli, Ali A.

    Modeling of Multi-Layered Protection Systems for Chloride Penetration in Concrete Bridge Decks. This paper covers the development of a new methodology for predicting the chloride concentration and corrosion initiation times for a multi-layer protection overlay system. The first topic will be presenting an innovative method to predict the chloride concentrations using different diffusion coefficients for each protective layer. The new method covers the cases where the applied surface chloride concentrations are either a constant or linear functions with time. The second topic will implement the results from field data about the chloride variations due to the presence of applied topical layers for comparison with the theoretical models. This section will also apply damage factors that are time-dependent to simulate external factors such as traffic loading or vibrations. The third topic will investigate the sensitivity of the single and multi-layer systems due to diffusivity parameter changes. The fourth topic will analyze the random variation of the diffusivity values to predict the mean and standard deviation of chloride concentrations. The diffusivity values are selected from published values by NIST and are based on certain water cement (w/c) ratios.

  10. Ferromagnetic resonance of an heterogeneous multilayer system with interlayer exchange coupling: an accessible model

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2016-09-01

    We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.

  11. Pyrolysis Model Development for a Multilayer Floor Covering

    PubMed Central

    McKinnon, Mark B.; Stoliarov, Stanislav I.

    2015-01-01

    Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty. PMID:28793556

  12. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  13. Distinct Element Modelling of Landslides in Mechanical Multilayers on Mars

    NASA Astrophysics Data System (ADS)

    Sims, D. W.; Smart, K. J.; Hooper, D. M.

    2008-12-01

    Mass wasting events such as landslides are an important component of the processes that have shaped the surface of Mars. Landslides are interpreted to have been active during much of the geologic history of Mars including the very recent past. The main scarp and displaced materials of landslides can tell us much about the mechanical nature of the surface and shallow subsurface of Mars. We use vertical two-dimensional distinct element models parallel with the slide direction to examine the effects of mechanical layering upon the morphology of slip surfaces and scarps that form as a result of slope failure on Mars. Bulk layer mechanical properties incorporated into the models and scaled to values likely be present on Mars include density, tensile strength, Young's modulus, Poisson's ratio, internal friction angle, cohesive strength, and unconfined compressive strength. Here we model horizontal layers with thickness range of 100 m to 500 m for a total thickness of 2500 m. Initial geometry is a 5 km long rectangle under conditions of Mars gravity where the top surface and one lateral boundary are free surfaces, and the horizontal base and opposing lateral boundary are rigid surfaces with friction coefficient of 0.5. Each layer represents one of five rock strengths, with strongest (strong basalt) to weakest (unconsolidated deposits) unconfined compressive strengths of 83, 44, 25, 8, and 2 MPa, respectively. Our models show that an initial slip surface forms some distance from the lateral free surface and subsequently migrates away from the free surface in discrete increments with concomitant decreasing slope of successive failure surfaces. Relative and absolute layer strength, thickness, and order control the morphology of the failure surfaces, the location and shape of the initial failure surface, and the kinematics of displaced material. In general, the size of coherent blocks and tendency towards sliding and spreading of displaced blocks increases with layer strength

  14. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.

    PubMed

    Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas

    2012-04-01

    Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.

  15. Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization

    NASA Astrophysics Data System (ADS)

    Monier-Vinard, Eric; Laraqi, Najib; Dia, Cheikh-Tidiane; Nguyen, Minh-Nhat; Bissuel, Valentin

    2015-01-01

    Electronic components are continuously getting smaller and embedding more and more powered functions which exacerbate the temperature rise in component/board interconnect areas. For still air conditions, the heat spreading of the component power is mainly done through the surrounding metallic planes of its electronic board. Their design optimization is henceforth mandatory to control the temperature and to preserve component reliability. To allow the electronic designer to early analyze the limits of the power dissipation of miniaturized devices, an analytical model of a multi-layered electronic board was established with the purpose to assess the validity of conventional board modeling approach. For decades, numerous authors have been promoting a homogenous single layer model that summed up the layers of the board using effective orthotropic thermal properties. The derived compact model depends on thermal properties approximation which is commonly based on parallel conduction model given a linear rule of mixture. The work presents the thermal behavior comparison of a detailed multi-layer representation to its deducted compact model for an extensive set of variable parameters, such as heat transfer coefficients, effective thermal conductivities calculation models, number of trace layers, trace coverage or source size. The results highlight the fact that the conventional practices for PCB modeling can dramatically underestimate source temperatures when their size is getting very small.

  16. A standard model eye with micro scale multilayer structure for ophthalmic optical coherence tomography equipment

    NASA Astrophysics Data System (ADS)

    Cao, Zhenggang; Ding, Zengqian; Hu, Zhixiong; Wen, Tao; Qiao, Wen; Liu, Wenli

    2016-10-01

    Optical coherence tomography (OCT) has been widely applied in diagnosis of eye diseases during the last 20 years. Differing from traditional two-dimension imaging technologies, OCT could also provide cross-sectional information of target tissues simultaneously and precisely. As well known, axial resolution is one of the most critical parameters impacting the OCT image quality, which determines whether an accurate diagnosis could be obtained. Therefore, it is important to evaluate the axial resolution of an OCT equipment. Phantoms always play an important role in the standardization and validation process. Here, a standard model eye with micro-scale multilayer structure was custom designed and manufactured. Mimicking a real human eye, analyzing the physical characteristic of layer structures of retina and cornea in-depth, appropriate materials were selected by testing the scattering coefficient of PDMS phantoms with difference concentration of TiO2 or BaSO4 particles. An artificial retina and cornea with multilayer-films which have a thickness of 10 to 60 micrometers for each layer were fabricated using spin coating technology. Considering key parameters of the standard model eye need to be traceable as well as accurate, the optical refractive index and layer structure thicknesses of phantoms were verified by utilizing Thickness Monitoring System. Consequently, a standard OCT model eye was obtained after the retinal or corneal phantom was embedded into a water-filled model eye which has been fabricated by 3D printing technology to simulate ocular dispersion and emmetropic refraction. The eye model was manufactured with a transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. By investigating with a research and a clinical OCT system respectively, the OCT model eye was demonstrated with similar physical properties as natural eye, and the multilayer film measurement

  17. Perspectives on evolving dental care payment and delivery models.

    PubMed

    Rubin, Marcie S; Edelstein, Burton L

    2016-01-01

    Health care reform is well under way in the United States as reflected in evolving delivery, financing, and payment approaches that are affecting medicine ahead of dentistry. The authors explored health systems changes under way, distinguished historical and organizational differences between medicine and dentistry, and developed alternative models to characterize the relationships between these professions. The authors explored a range of medical payment approaches, including those tied to objective performance metrics, and their potential application to dentistry. Advances in understanding the essential role of oral health in general health have pulled dentistry into the broader discussion of care integration and payment reform. Dentistry's fit with primary and specialty medical care may take a variety of forms. Common provider payment approaches in dentistry-fee-for-service, capitation, and salary-are tied insufficiently to performance when measured as either health processes or health outcomes. Dentistry can anticipate potential payment reforms by observing changes already under way in medicine and by understanding alternative payment approaches that are tied to performance metrics, such as those now in development by the Dental Quality Alliance and others. Novel forms of dental practice may be expected to evolve continuously as medical-dental integration and payment reforms that promote accountability evolve. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  18. Improving the dental fitness of the British Army by changing the strategy for dental care provision for recruits from a vertically equitable model to a horizontally equitable model.

    PubMed

    Hurley, Sara Jane; Tuck, Jeremy

    2007-11-01

    BACKGROUNDd: The dental health of the British Army has been reported as being in decline for the past 10 years, and this is having a significant impact on operations. One of the major factors in the decline is the increasing number of recruits who enlist with outstanding dental treatment needs. The current policy for provision of routine dental care to recruits targets resources toward those with the worst dental health and provides only emergency dental care for the remainder.AIMSs: The goal was to review recruit dental care provision, to determine whether improvements in the overall dental health of the trained Army could be made during recruit training.RESULTSs: It was found that >85% of recruit dental treatment need could be met with the routine provision of 2 hours of dental treatment during training.CONCLUSIONn: A horizontally equitable model of recruit dental care, whereby all recruits access routine dental care during training, has been recommended to and accepted by the chain of command.

  19. Experimentally verified model of viscoelastic behavior of multilayer unimorph dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kadooka, Kevin; Imamura, Hiroya; Taya, Minoru

    2016-10-01

    This work presents a linear viscoelastic model to describe the time-dependent actuation behavior of multilayer unimorph dielectric elastomer actuators (MUDEA), with experimental validation by actuators produced by a robotic dispenser system. MUDEA are a type of soft actuator which can produce large bending deformation without prestretch typically required by dielectric elastomer actuators. Current analytical and finite element models of MUDEA do not consider material viscoelasticity and cannot predict the change over time of performance metrics such as tip displacement and blocking force. The linear viscoelastic model presented in this work is based on a linear elastic model for the MUDEA extended to account for viscous effects by the elastic-viscoelastic correspondence principle. The model is easily implemented because it is based on explicit expressions which can be evaluated numerically by any computer algebra system. The model was used to predict the tip displacement and blocking force of MUDEAs consisting of two, four, six, eight, and ten layers of dielectric elastomer material. The model predictions agreed well with experimental data obtained from MUDEA produced by a robotic dispenser system, which was capable of producing multilayered structures of thin layers of dielectric elastomer and carbon nanotube based electrode material.

  20. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    NASA Astrophysics Data System (ADS)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  1. Arcjet Testing and Thermal Model Development for Multilayer Felt Reusable Surface Insulation

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Scott, Carl Douglas; Papa, Steven V.

    2012-01-01

    Felt Reusable Surface Insulation was used extensively on leeward external surfaces of the Shuttle Orbiter, where the material is reusable for temperatures up to 670 K. For application on leeward surfaces of the Orion Multi-Purpose Crew Vehicle, where predicted temperatures reach 1620 K, the material functions as a pyrolyzing conformal ablator. An arcjet test series was conducted to assess the performance of multilayer Felt Reusable Surface Insulation at high temperatures, and a thermal-response, pyrolysis, and ablation model was developed. Model predictions compare favorably with the arcjet test data

  2. Numerical models for the prediction of failure for multilayer fusion Al-alloy sheets

    SciTech Connect

    Gorji, Maysam; Berisha, Bekim; Hora, Pavel; Timm, Jürgen

    2013-12-16

    Initiation and propagation of cracks in monolithic and multi-layer aluminum alloys, called “Fusion”, is investigated. 2D plane strain finite element simulations are performed to model deformation due to bending and to predict failure. For this purpose, fracture strains are measured based on microscopic pictures of Nakajima specimens. In addition to, micro-structure of materials is taken into account by introducing a random grain distribution over the sheet thickness as well as a random distribution of the measured yield curve. It is shown that the performed experiments and the introduced FE-Model are appropriate methods to highlight the advantages of the Fusion material, especially for bending processes.

  3. Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.

    2009-01-01

    Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.

  4. FPGA Implementation of Multilayer Perceptron for Modeling of Photovoltaic panel

    NASA Astrophysics Data System (ADS)

    Mekki, H.; Mellit, A.; Salhi, H.; Belhout, K.

    2008-06-01

    The Number of electronic applications using artificial neural network-based solutions has increased considerably in the last few years. However, their applications in photovoltaic systems are very limited. This paper introduces the preliminary result of the modeling and simulation of photovoltaic panel based on neural network and VHDL-language. In fact, an experimental database of meteorological data (irradiation, temperature) and output electrical generation signals of the PV-panel (current and voltage) has been used in this study. The inputs of the ANN-PV-panel are the daily total irradiation and mean average temperature while the outputs are the current and voltage generated from the panel. Firstly, a dataset of 4x364 have been used for training the network. Subsequently, the neural network (MLP) corresponding to PV-panel is simulated using VHDL language based on the saved weights and bias of the network. Simulation results of the trained MLP-PV panel based on Matlab and VHDL are presented. The proposed PV-panel model based ANN and VHDL permit to evaluate the performance PV-panel using only the environmental factors and involves less computational efforts, and it can be used for predicting the output electrical energy from the PV-panel.

  5. FPGA Implementation of Multilayer Perceptron for Modeling of Photovoltaic panel

    SciTech Connect

    Mekki, H.; Belhout, K.; Mellit, A.; Salhi, H.

    2008-06-12

    The Number of electronic applications using artificial neural network-based solutions has increased considerably in the last few years. However, their applications in photovoltaic systems are very limited. This paper introduces the preliminary result of the modeling and simulation of photovoltaic panel based on neural network and VHDL-language. In fact, an experimental database of meteorological data (irradiation, temperature) and output electrical generation signals of the PV-panel (current and voltage) has been used in this study. The inputs of the ANN-PV-panel are the daily total irradiation and mean average temperature while the outputs are the current and voltage generated from the panel. Firstly, a dataset of 4x364 have been used for training the network. Subsequently, the neural network (MLP) corresponding to PV-panel is simulated using VHDL language based on the saved weights and bias of the network. Simulation results of the trained MLP-PV panel based on Matlab and VHDL are presented. The proposed PV-panel model based ANN and VHDL permit to evaluate the performance PV-panel using only the environmental factors and involves less computational efforts, and it can be used for predicting the output electrical energy from the PV-panel.

  6. Modeling of the photodetector based on the multilayer graphene nanoribbons

    SciTech Connect

    Liu, Haiyue; Niu, Yanxiong; Yin, Yiheng; Liu, Shuai

    2016-07-15

    Graphene nanoribbon (GNR), which has unique properties and advantages, is a crucial component of nanoelectornic devices, especially in the development of photoelectric detectors. In this work, an infrared photodetector based on the structure of stacked multiple-GNRs, which is separated by a little thick barrier layers (made of tungsten disulfide or related materials) to prevent tunneling current, is proposed and modeled. Operation of photoelectric detector is related to the electron cascaded radiative transition in the adjacent GNRs strengthened by the electrons heated due to the incident light. With a developed model, the working principle is analyzed and the relationships for the photocurrent and dark current as functions of the intensity of the incident radiation are derived. The spectral dependence of the responsivity and detectivity for graphene nanoribbons photodetector (GNRs-PT) with different Fermi energy, band gaps and numbers of GNRs layers are analyzed as well. The results demonstrate that the spectral characteristics depend on the GNRs band gap, which shows a potential on GNRs-PT application in the multi-wavelength systems. In addition, GNRs-PT has a better spectrum property and higher responsivity compared to photodetectors based on In{sub x}Ga{sub x}As in room temperature.

  7. Realistic electric field modeling of multilayered nanostructures by classic electrodynamics and first principles theory

    NASA Astrophysics Data System (ADS)

    Il'chenko, L. G.; Il'chenko, V. V.; Gavrilenko, A. V.; Gavrilenko, V. I.

    2013-09-01

    Efficient engineering of metamaterials involves modeling of electric field profiles around these structures. Realistic modeling of the electric field in metamaterials requires accurate knowledge of optical constants of the compo- nents for which traditionally the bulk values are taken. Further progress in the developing of metamaterials is characterized by a reduction of the pattern size, dimensions of single layers in multilayered structures etc. It has been understood that optical functions in low-dimensional and nano-sized materials substantially differ from their bulk values increasingly affecting by quantum processes. In this work we develop a complex method for analytical modeling of electric field profiles in metamaterials including quantum processes in nano-sized multi-layered structures. In particular based on first principles density functional theory we obtained simple analytical functions allowing predictions the optical functions variations with the size reduction of single metamaterial components over a wide spectral region. It is shown that optical functions of nano-sized films substantially (by 50 percent and more) differ from those in bulk. The new calculated optical functions of the components are used for electric field profile modeling of nano-sized multilayered structures by nonlocal Green function technique including effects of spatial dispersion. Silicon, silicon dioxide, and water layers are used as an example. The method effectively incorporates real atomic structure reconstruction on surfaces and inner interfaces thus providing with a more realistic picture for modeling. By comparison with experiment it is demonstrated that our method predicts image potential of the nanostructures in better agreement with experiment than if using traditional classic electrodynamics approach neglecting the quantum effects. The results are discussed in comparison with literature.

  8. Multilayered aquifer modeling in the coastal sedimentary basin of Togo

    NASA Astrophysics Data System (ADS)

    Gnazou, M. D. T.; Sabi, B. E.; Lavalade, J. L.; Schwartz, J.; Akakpo, W.; Tozo, A.

    2017-01-01

    This work is a follow up to the hydrogeological synthesis done in 2012 on the coastal sedimentary basin of Togo. That synthesis notably emphasized the lack of piezometric monitoring in the last thirty years. This has kept us from learning about the dynamics and evolution of the resource in the context of rapidly increasing demand. We are therefore presenting a model for understanding flows, and its main objectives are to provide an initial management tool that should evolve with time as new data (piezometric monitoring, pumping tests, etc.) become available, and to determine what new information can be obtained that will help policy makers to manage the resource better. The results of steady state flow calibration have shown that the aquifer of the Continental Terminal overexploited in the West, can still be exploited in the East of the basin, the Maastrichtian on the whole basin. On the other hand, exploitation of Paleocene aquifers should be done with care.

  9. A model for asymmetric magnetoimpedance effect in multilayered bimagnetic films

    NASA Astrophysics Data System (ADS)

    Buznikov, N. A.; Antonov, A. S.

    2016-12-01

    The magnetoimpedance in three-layered bimagnetic film structure is studied theoretically. The structure consists of the soft and hard magnetic films separated by highly conductive non-magnetic layer. A model to describe the magnetoimpedance effect in the film structure based on a simultaneous solution of linearized Maxwell equations and Landau-Lifshitz equation is proposed. It is shown that magnetostatic coupling between the magnetic layers results in the asymmetry in the field dependence of the film impedance. The magnetostatic coupling is described in terms of an effective bias field appearing in the soft magnetic layer. The calculated field and frequency dependences of the film impedance are shown to be in a qualitative agreement with previous results of experimental studies of the asymmetric magnetoimpedance in NiFe/Cu/Co film structures. The results obtained may be useful for development of weak magnetic-field sensors.

  10. Model Hamiltonian for the conductivity oscillations of magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Weissmann, Mariana; Llois, Ana Maria; Kiwi, Miguel; Ramirez, Ricardo

    1997-03-01

    The behavior of the electrical conductivity as a function of layer thickness of the superlattice systems Ni/Co, Ni/Cu and Pd/Ag is studied. Experimentally an oscillatory dependence was found for the first two, while the latter exhibited a monotonous behavior. In our previous calculations we found that, in these superlattices, the current is carried by the sp--character electrons, which are quite insensitive to the interfaces. Therefore, to interpret the experimentally observed resistivity oscillations, we suggest a scattering mechanism of these carriers against d--character quantum well states that are present in only one of the superlattice materials, when the well state energy is close to E_F. To explore the validity of this mechanism we have put forward a model Hamiltonian which, for reasonable values of the parameters, leads to results in good agreement with experiments.

  11. Robust estimation of cerebral hemodynamics in neonates using multilayered diffusion model for normal and oblique incidences.

    PubMed

    Steinberg, Idan; Harbater, Osnat; Gannot, Israel

    2014-07-01

    The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neonates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially, the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spatiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the limitations of such approaches are discussed thoroughly.

  12. Density functional theory modeling of multilayer "epitaxial" graphene oxide.

    PubMed

    Zhou, Si; Bongiorno, Angelo

    2014-11-18

    CONSPECTUS: Graphene oxide (GO) is a complex material of both fundamental and applied interest. Elucidating the structure of GO is crucial to achieve control over its properties and technological applications. GO is a nonstoichiometric and hygroscopic material with a lamellar structure, and its physical chemical properties depend critically on synthesis procedures and postsynthesis treatments. Numerous efforts are in place to both understand and exploit this versatile layered carbon material. This Account reports on recent density functional theory (DFT) studies of "epitaxial" graphene oxide (hereafter EGO), a type of GO obtained by oxidation of graphene films grown epitaxially on silicon carbide. Here, we rely on selected X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), and X-ray diffraction (XRD) measurements of EGO, and we discuss in great detail how we utilized DFT-based techniques to project out from the experimental data basic atomistic information about the chemistry and structure of these films. This Account provides an example as to how DFT modeling can be used to elucidate complex materials such as GO from a limited set of experimental information. EGO exhibits a uniform layered structure, consisting of a stack of graphene planes hosting predominantly epoxide and hydroxyl groups, and water molecules intercalated between the oxidized carbon layers. Here, we first focus on XPS measurements of EGO, and we use DFT to generate realistic model structures, calculate core-level chemical shifts, and through the comparison with experiment, gain insight on the chemical composition and metastability characteristics of EGO. DFT calculations are then used to devise a simplistic but accurate simulation scheme to study thermodynamic and kinetic stability and to predict the intralayer structure of EGO films aged at room temperature. Our simulations show that aged EGO encompasses layers with nanosized oxidized domains presenting a high concentration of

  13. [Experimental evaluation of the spraying disinfection efficiency on dental models].

    PubMed

    Zhang, Yi; Fu, Yuan-fei; Xu, Kan

    2013-08-01

    To evaluate the disinfect effect after spraying a new kind of disinfectant on the dental plaster models. The germ-free plaster samples, which were smeared with bacteria compound including Staphylococcus aureus, Escherichia coli, Saccharomyces albicans, Streptococcus mutans and Actinomyces viscosus were sprayed with disinfectants (CaviCide) and glutaraldehyde individually. In one group(5 minutes later) and another group(15 minutes later), the colonies were counted for statistical analysis after sampling, inoculating, and culturing which were used for evaluation of disinfecting efficiency. ANOVA was performed using SPSS12.0 software package. All sample bacteria were eradicated after spraying disinfectants(CaviCide) within 5 minutes and effective bacteria control was retained after 15 minutes. There was significant difference between the disinfecting efficiency of CaviCide and glutaraldehyde. The effect of disinfection with spraying disinfectants (CaviCide) on dental models is quick and effective.

  14. Multilayer Markov Random Field models for change detection in optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Benedek, Csaba; Shadaydeh, Maha; Kato, Zoltan; Szirányi, Tamás; Zerubia, Josiane

    2015-09-01

    In this paper, we give a comparative study on three Multilayer Markov Random Field (MRF) based solutions proposed for change detection in optical remote sensing images, called Multicue MRF, Conditional Mixed Markov model, and Fusion MRF. Our purposes are twofold. On one hand, we highlight the significance of the focused model family and we set them against various state-of-the-art approaches through a thematic analysis and quantitative tests. We discuss the advantages and drawbacks of class comparison vs. direct approaches, usage of training data, various targeted application fields and different ways of Ground Truth generation, meantime informing the Reader in which roles the Multilayer MRFs can be efficiently applied. On the other hand we also emphasize the differences between the three focused models at various levels, considering the model structures, feature extraction, layer interpretation, change concept definition, parameter tuning and performance. We provide qualitative and quantitative comparison results using principally a publicly available change detection database which contains aerial image pairs and Ground Truth change masks. We conclude that the discussed models are competitive against alternative state-of-the-art solutions, if one uses them as pre-processing filters in multitemporal optical image analysis. In addition, they cover together a large range of applications, considering the different usage options of the three approaches.

  15. A model for forensic dental education in the predoctoral dental school curriculum.

    PubMed

    Hermsen, Kenneth P; Johnson, J Dane

    2012-05-01

    Forensic odontologists play an important role locally and nationally in assisting in the identification of the victims of mass fatality incidents, whether natural or human-made. With the recent passage of legislation by Congress identifying dentists as a first-responder resource, knowledge of their expanding role in disaster response is particularly important. The purpose of this article is to describe the forensic dental course being taught at Creighton University School of Dentistry in Omaha, Nebraska, as a model for providing a fundamental education in forensic dentistry and disaster preparedness at the predoctoral dental level. This model is designed to 1) provide students with a broad view of forensic odontology; 2) give them a functional knowledge of the tools and techniques of the modern forensic dentist; 3) provide basic knowledge of their potential role in disaster preparedness and response; and 4) encourage students to pursue further forensic education, become active in national forensic organizations, and get involved in disaster preparedness/response in their home communities following graduation. This article includes lecture topics, demonstrations, and hands-on exercises being used at Creighton to teach students the fundamentals of forensic odontology and disaster preparedness.

  16. The modeling of the temperature field formed inside multilayered biological tissue under laser emission

    NASA Astrophysics Data System (ADS)

    Kulikov, Kirill

    2009-07-01

    The mathematical model the hyperthermy of the multilayer biological structure under the effect of laser emission is proposed. One allows to variate the electrophysical parameters of the biological structure (complex parameter of refraction of the blood and blood corpuscles, epidermis, the upper layer of derma, the lower layer of derma), the significant dimensions of the regular elements of the blood and to establish dependencies between them and by the biophysical properties of the blood taking into account heating biological tissue under the influence on its surface flow of the nonpolarized monochromatic radiation for the case in vivo.

  17. Reconstruction of multilayered dielectric models using oblique transverse electric or transverse magnetic incidence

    NASA Astrophysics Data System (ADS)

    Hashish, Essam A.; Raafat, Hazem

    1995-04-01

    Subsurface probing of inhomogeneous dielectric media has received considerable attention from the research community. Extensive work in this area has been presented either in the time of frequency domain. However, most of the algorithms presented are mainly devoted to continuous dielectric profile inversion. The fast Fourier transform (FFT) inversion method is newly introduced for discrete multilayer inversion. This method has the advantages of simplicity, a short computation time, and robustness with respect to noise. The FFT inversion method is applied to a discrete homogeneous multilayer dielectric model using oblique incidence and a limited bandwidth, provided that all dielectric media are lossless and nondispersive. For a given model, a uniform plane wave is obliquely incident on the top of its surface, with its polarization being either a transverse electric or a transverse magnetic wave. In each case, the corresponding reflection coefficient is sampled over a finite frequency range. The time-domain spectrum of the reflection coefficient is obtained by applying the FFT algorithm to its samples. An algorithm is developed for the deduction of the height and permittivity of each layer. The algorithm is tested by using the simulated data of a three-layer half-space dielectric model. The resulting relative errors in the inversion process are almost less than 10-4 for all of the model parameters. When a random noise signal is superimposed on the sampled input data, the relative errors are comparable to the noise-to-level ratio.

  18. A multi-layered thermal model of backup structures for mm-wavelength radio telescopes

    NASA Astrophysics Data System (ADS)

    Greve, A.; Smith, D. R.; Bremer, M.

    2006-06-01

    An unfavourable influence that degrades the performance of any millimeter wavelength radio telescope is the deformation of the reflector surface due to temperature differences in the supporting backup structure. To avoid, or at least reduce this influence, the backup structures are typically protected by a rear side cladding, insulation at the panel inner side, and ventilation or climatization of the air inside the backup structure. During the design of a mm-wavelength telescope, the layout of a thermal protection system is made, based on experience gained on other telescopes, and on thermal model calculations of the complete backup structure. The available thermal programs allow today the construction of a multi-layered backup structure model, consisting of the backup structure tube network, without and with ventilation/climatization, the panels, insulation behind the panels, and the rear side cladding. We provide a guideline for the construction of such a multi-layered thermal model, and demonstrate that realistic temperature gradients across and through a backup structure can be calculated. These gradients can be used in a finite element model to calculate the reflector surface deformations, which can be used in a diffraction program to calculate the radio beam pattern.

  19. Nonlinear numerical modelling and experimental validation of multilayer piezoelectric vibration energy scavengers

    NASA Astrophysics Data System (ADS)

    Blažević, D.; Zelenika, S.

    2015-05-01

    Scavenging of low-level ambient vibrations i.e. the conversion of kinetic into electric energy, is proven as effective means of powering low consumption electronic devices such as wireless sensor nodes. Cantilever based scavengers are characterised by several advantages and thus thoroughly investigated; analytical models based on a distributed parameter approach, Euler-Bernoulli beam theory and eigenvalue analysis have thus been developed and experimentally verified. Finite element models (FEM) have also been proposed employing different modelling approaches and commercial software packages with coupled analysis capabilities. An approach of using a FEM analysis of a piezoelectric cantilever bimorph under harmonic excitation is used in this work. Modal, harmonic and linear and nonlinear transient analyses are performed. Different complex dynamic effects are observed and compared to the results obtained by using a distributed parameter model. The influence of two types of finite elements and three mesh densities is also investigated. A complex bimorph cantilever, based on commercially available Midé Technology® Volture energy scavengers, is then considered. These scavengers are characterised by an intricate multilayer structure not investigated so far in literature. An experimental set-up is developed to evaluate the behaviour of the considered class of devices. The results of the modal and the harmonic FEM analyses of the behaviour of the multilayer scavengers are verified experimentally for three different tip masses and 12 different electrical load values. A satisfying agreement between numerical and experimental results is achieved.

  20. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  1. A new causal model of dental diseases associated with endocarditis.

    PubMed

    Drangsholt, M T

    1998-07-01

    Infective endocarditis (IE) is a serious disease that is associated with dental diseases and treatment. The objective of this study was to summarize the epidemiological information about IE and reevaluate previous causal models in light of this evidence. The world biomedical literature was searched from 1930 to 1996 for descriptive and analytic epidemiological studies of IE. Multiple searching strategies were performed on 9 databases, including MEDLINE, CATLINE, and WORLDCAT. Results show that: 1) the incidence of IE varies between 0.70 to 6.8 per 100,000 person-years: 2) the incidence of IE increases 20 fold with advancing age: 3) over 50% of all IE cases are not associated with either an obvious procedural or infectious event 3 months prior to developing symptoms; 4) about 8% of all IE cases are associated with periodontal or dental disease without a dental procedure: 5) the time from the diagnosis of heart valve deformities to the development of IE approaches 20 years: 6) the median time from identifiable procedures to the onset of IE symptoms is about 2 to 4 weeks: 7) the risk of IE after a dental procedure is probably in the range of 1 per 3,000 to 5,000 procedures: and 8) over 80% of all IE cases are acquired in the community, and the bacteria are part of the host's endogenous flora. The synthesis of these data demonstrates that IE is a disorder with the epidemiological picture of a chronic disease such as cancer, instead of an acute infectious disease, with a long latent period and possibly several definable intermediates or stages. A new causal model is proposed that includes early bacteremias that may "prime" the endothelial surface of the heart valves over many years, and a late bacteremia over days to weeks that allows adherence and colonization of the valve, resulting in the characteristic fulminant infection.

  2. Architecture and statistical model of a pulse-mode digital multilayer neural network.

    PubMed

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A new architecture and a statistical model for a pulse-mode digital multilayer neural network (DMNN) are presented. Algebraic neural operations are replaced by stochastic processes using pseudo-random pulse sequences. Synaptic weights and neuron states are represented as probabilities and estimated as average rates of pulse occurrences in corresponding pulse sequences. A statistical model of error (or noise) is developed to estimate relative accuracy associated with stochastic computing in terms of mean and variance. The stochastic computing technique is implemented with simple logic gates as basic computing elements leading to a high neuron-density on a chip. Furthermore, the use of simple logic gates for neural operations, the pulse-mode signal representation, and the modular design techniques lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Any size of a feedforward network can be configured where processing speed is independent of the network size. Multilayer feedforward networks are modeled and applied to pattern classification problems such as encoding and character recognition.

  3. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components

    NASA Astrophysics Data System (ADS)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A.

    2016-10-01

    The present paper lies to study the coupled heat, air and moisture transfer in multi-layer building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, by developing a macroscopic model that incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of several multilayer walls configurations. The experimental procedure consists to follow the temperature and relative humidity evolutions within the samples thickness, submitted to controlled and fixed boundary conditions. This procedure points out diverging conclusion between different testing materials combinations (e.g. red-brick and polystyrene). In fact, the hygrothermal behavior of the tested configurations is completely dependent on both materials selection and their thermophysical properties. Finally, comparison between numerical and experimental results showed good agreement with acceptable errors margins with an average of 3 %.

  4. Smoothing based model for images of buried EUV multilayer defects near absorber features

    NASA Astrophysics Data System (ADS)

    Clifford, Chris H.; Neureuther, Andrew R.

    2008-10-01

    A modification has been made to the fast simulator RADICAL which allows it to simulate the reflected field from an EUV mask with a buried defect 15,000 times faster than the finite difference time domain method (FDTD). This new version uses an advanced single surface approximation (SSA) instead of ray tracing to model the defective multilayer stack. RADICAL with SSA can simulate a 32nm line space pattern with a buried defect in 4.0s. The accuracy of this method is verified with comparisons to FDTD simulations and good agreement is shown. The ability of this method to simulate large layouts with arbitrary defects is demonstrated. A 1.5μm x 1.5μm layout with an arbitrary buried defect and multilayer surface roughness is simulated in 75s. An alternative algebraic fast model for buried defects near absorber lines is also investigated based on the linear relationship between the surface height of isolated buried defects and the aerial image dip strength. However, the interaction is shown to be too complicated for accurate representation with the model proposed.

  5. Fundamental studies of interfacial rheology at multilayered model polymers for coextrusion process

    NASA Astrophysics Data System (ADS)

    Zhang, Huagui; Lamnawar, Khalid; Maazouz, Abderrahim

    2015-05-01

    Fundamental studies have been devoted to the interfacial phenomena at multilayered systems based on two model compatible polymers of PVDF and PMMA with varying molar masses. Linear and nonlinear rheology are demonstrated to be sensitive to the presence of diffuse interphase triggered at polymer/polymer interface. Firstly, the interdiffusion kinetics as well as the interphase development have been investigated using SAOS measurements with results analyzed under Doi-Edwards theory. The PMMA/PVDF mixture, has been examined to own close component monomeric friction coefficients. Based on this physics, a new rheological model was developed to quantify the interdiffusion coefficients. Thereby, rheological and geometrical properties of the interphase have been quantified, as validated by SEM-EDX. Secondly, step strain, shear and uniaxial extension startup were carried out to investigate their sensitivity to the diffuse interphase. An original model was proposed for the stress relaxation of multilayer and that of the interphase. Entanglement lack and weak entanglement intensity at the interface/diffuse interphase make them to be subsequently readily to suffer from interfacial yielding under large deformations. Finally, the interphase development coupled to flow in coextrusion has been considered. Net result between negative effect of chain orientation and favorable effect of flow has been shown to broaden the interphase. Its presence during coextrusion process was demonstrated to significantly weaken the interfacial instabilities.

  6. Analysis of the Degradation of a Model Dental Composite

    PubMed Central

    Koin, P.J.; Kilislioglu, A.; Zhou, M.; Drummond, J.L.; Hanley, L.

    2008-01-01

    Dental composites undergo material property changes during exposure to the oral environment and may release compounds of potential toxicity, such as bisphenol A. Degradation of dental composites was studied in a simplified overlayer model in which bisphenol A diglycidyl methacrylate (BisGMA) was covalently bound to a porous silicon oxide surface. It was hypothesized that the chemical structure of this overlayer would allow release of bisphenol A, BisGMA, and the decomposition products thereof, upon exposure to water for an extended period. Liquid chromatography mass spectrometry found leaching of intact BisGMA and several degradation products that contained the bisphenol A moiety from the overlayer into distilled water after 2 wks of aging. The absence of bisphenol A release from the overlayer reduces concerns regarding its potential health risk in dental composites. Nevertheless, health concerns might arise with respect to BisGMA and the leached degradation products, since they all contain the bisphenol A moiety. Abbreviations: BisGMA, bisphenol A diglycidyl methacrylate; HPLC, high-performance liquid chromatography; LCMS, liquid chromatography mass spectrometry; MA, methacrylic acid; MPS, 3-(trimethoxysilyl) propyl methacrylate; m/z, mass-to-charge ratio; and TIC, total ion chromatogram. PMID:18573987

  7. Computational models for high-temperature multilayered composite plates and shells

    SciTech Connect

    Noor, A.K.; Burton, W.S.

    1992-12-01

    The focus of this review is on the hierarchy of composite models, predictor-corrector procedures, the effect of temperature-dependence of material properties on the response, and the sensitivity of the thermomechanical response to variations in material parameters. The literature reviewed is devoted to the following eight application areas: heat transfer; thermal stresses; curing, processing and residual stresses; bifurcation buckling; vibrations of heated plates and shells; large deflection and postbuckling problems; and sandwich plates and shells. Extensive numerical results are presented showing the effects of variation in the lamination and geometric parameters of temperature-sensitive angle-ply composite plates on the accuracy of thermal buckling response, and the sensitivity derivatives predicted by nine different modeling approaches (based on two-dimensional theories). The standard of comparison is taken to be the exact three-dimensional thermoelasticity solutions. Some future directions for research on the modeling of high-temperature multilayered composites are outlined. 448 ref., 16 figs., 11 tabs.

  8. The HIDEP model--a straightforward dental health care model for prevention-based practice management.

    PubMed

    Sandberg, Hans C H; Fors, Uno G H

    2007-01-01

    With the ambition of continuously improving the effectiveness of oral health care, the concept of minimal invasive dentistry has become an issue within modern dentistry. The ultimate goal of this concept is to preserve dental tissues (teeth and their attachment). To preserve oral tissue, effective methods for management and resource allocation are needed. Involving the patient within the dental team as a member and not as a customer might also increase the effectiveness. To achieve this, a dedicated tool for managing the actions of all parties involved towards the desired goals is needed. This paper describes the development and use of a special management tool, the HIDEP model (Health Improvement in Dental Practice). The model is used to measure, steer and evaluate the actions within a dental clinic involving patients as well as professionals.

  9. Analgesic agents and strategies in the dental pain model.

    PubMed

    Urquhart, E

    1994-12-01

    Pain following removal of impacted third molar teeth has proven to be a useful clinical model for evaluating oral analgesics. Moreover, as the underlying pathophysiology becomes elucidated the model serves as a tool for monitoring the relative contributions of different pain events, including peripheral and central sensitization. Non-steroidal anti-inflammatory drugs (NSAIDs) demonstrate high potency in this model, reflecting the large contribution that peripheral prostaglandins may make to the pathophysiology of postoperative pain. However, other analgesic agents, with weak activity against peripheral prostaglandin synthesis (e.g. paracetamol, opioid analgesics), may also provide pain relief in the dental pain model. The activity of these agents is dependent on the time and method of administration, and may be related to more centrally located analgesic activity, or to peripheral actions other than inhibition of prostaglandin synthesis. In single dose studies it is possible to enhance pain relief by combining analgesic agents of different activities, e.g. ibuprofen 400 mg and codeine 20 mg. Such enhanced activity is also demonstrated by higher doses of certain NSAIDs, e.g. ketoprofen 100 mg. This may reflect the existence of complimentary analgesic activities within a single therapeutic agent. As a clinical research tool the dental pain model has several attributes which suggest that it will continue to be of value in identifying potentially improved analgesic strategies for postoperative pain.

  10. Structural equation modeling to assess gender differences in the relationship between psychological symptoms and dental visits after dental check-ups for university students.

    PubMed

    Mizutani, Shinsuke; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Azuma, Tetsuji; Iwasaki, Yoshiaki; Morita, Manabu

    2015-07-01

    Some studies have shown a relationship between psychological symptoms and oral health behaviors. However, it is unknown whether gender differences affect the relationship between psychological symptoms and oral health behaviors. In addition, gender differences in the relationship between dental anxiety and dental visits for treatment or regular check-up are unclear. The objective of the present study was to explain the relationships among gender differences, psychological symptoms, oral health behaviors, dental anxiety and 'expectation of dental visit', evaluated as 'dental visits when treatments are recommended' in university students. A total of 607 students (311 males, 296 females) aged 18-38 years old were examined. The information was collected via questionnaire regarding gender, psychological symptoms and oral health behaviors. Psychological symptoms were assessed using the Hopkins Symptom Checklist. Structural equation modeling was used to test pathways from these factors to 'expectation of dental visit'. Multiple-group modeling was also conducted to test for gender differences. Psychological symptoms were related to low expectation of dental visit in females, but there was no such relationship in males. Oral health behaviors were related to expectation of dental visit in both genders. Psychological symptoms were directly related to expectation of dental visit in females and oral health behaviors were related to expectation of dental visit in both genders. To promote dental visits after dental check-ups at school, it might be necessary to improve oral health behaviors in both genders and to evaluate psychological symptoms, especially in females.

  11. Assessment of coastal management options by means of multilayered ecosystem models

    NASA Astrophysics Data System (ADS)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  12. A Corrected Formulation of the Multilayer Model (MLM) for Inferring Gaseous Dry Deposition to Vegetated Surfaces

    NASA Technical Reports Server (NTRS)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-01-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  13. Optical response of cylindrical multilayers in the context of hydrodynamic convection-diffusion model

    NASA Astrophysics Data System (ADS)

    Dong, Tianyu; Shi, Yi; Lu, Lizhen; Chen, Feng; Ma, Xikui; Mittra, Raj

    2016-09-01

    In this work, we generalize the cascading scattering matrix algorithm for calculating the optical response of concentric multilayered structures comprised of either plasmonic metal or dielectric, within the framework of hydrodynamic convection-diffusion model of electrodynamics. Two additional boundary conditions, namely, the continuity of first order pressure of free electron density and the continuity of normal components of free charge velocity, respectively, are adopted in order to handle the behaviour at interfaces involving metals. Scattering matrices at interfaces can be readily obtained and cascaded to obtain the modal coefficients in each layer by expanding electromagnetic waves in harmonic modes with cylindrical vector wave functions. We have validated the proposed method by analyzing the optical responses of several configurations of nanostructures, including a bi-metallic nanocylinder and a hyperlens. We found that nonlocal effects can be important for small structures, when the characteristic size is comparable to the Fermi wavelength. The proposed method shows its capability and flexibility to solve hybrid metal-dielectric multilayer structures even when the number of layers is large. Although we have discussed our method in the context of the retarded radiation regime, it can be applied in quasi-static scenarios without any difficulties. Furthermore, it may be extended to solve similar problems in other areas of physics, such as acoustics.

  14. A corrected formulation of the Multilayer Model (MLM) for inferring gaseous dry deposition to vegetated surfaces

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-08-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (<3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  15. Theory and modeling of the mechanical behavior of nanoscale and finescale multilayer thin films

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    In this work, a 3D Dislocation Cellular Automaton (CA) model is developed and calibrated first; then the model is applied to study the mechanical properties of nanoscale and finescale multilayer thin films. In the 3D dislocation model, the study object has a FCC structure. To calibrate this model, three examples involving operation of a Frank-Read source are chosen. These examples also highlight the benefits and drawbacks of the method. A benefit to discretization is that dislocation evolution may be analyzed via spatial averaging over collections of patches, so that the discrete versus continuum nature of the results may be studied. Further, dislocation reactions and cross slip are accommodated easily and, in principle, Monte-Carlo schemes can be integrated into the evolution formalism. Overall, the discrete nature of the method is attractive for incorporating the kinetics of thermally activated states and for simplifying the range of geometries and threshold criteria associated with dislocation reactions. This 3D Dislocation Cellular Automaton model is employed to simulate yield and hardening in nanostructured metallic multilayer thin films. Threading and interfacial dislocation sources are studied. The films are composed of 2 types of alternating single crystalline FCC layers with a (001) epitaxy, a mismatch in stress-free lattice parameter, but no elastic modulus mismatch. Interfaces are assigned no additional strength except that from lattice parameter mismatch and interfacial dislocation arrays. Three regimes of tensile plastic response are identified based on the evolution of interfaces during tensile deformation. For smaller individual layer thickness, interfaces are coherent initially and remain so up to bulk yield (Regime I). For intermediate layer thickness, interfaces are coherent initially but become semi-coherent prior to bulk yield (Regime IIa). For larger layer thickness, interfaces are semi-coherent initially and acquire additional dislocation

  16. A multi-layer integral model for locally-heated thin film flow

    NASA Astrophysics Data System (ADS)

    Kay, E. D.; Hibberd, S.; Power, H.

    2017-05-01

    Based on an approach used to model environmental flows such as rivers and estuaries, we develop a new multi-layered model for thin liquid film flow on a locally-heated inclined plane. The film is segmented into layers of equal thickness with the velocity and temperature of each governed by a momentum and energy equation integrated across each layer individually. Matching conditions applied between the layers ensure the continuity of down-plane velocity, temperature, stress and heat flux. Variation in surface tension of the liquid with temperature is considered so that local heating induces a surface shear stress which leads to variation in the film height profile (the Marangoni effect). Moderate inertia and heat convection effects are also included. In the absence of Marangoni effects, when the film height is uniform, we test the accuracy of the model by comparing it against a solution of the full heat equation using finite differences. The multi-layer model offers significant improvements over that of a single layer. Notably, with a sufficient number of layers, the solution does not exhibit local regions of negative temperature often predicted using a single-layer model. With Marangoni effects included the film height varies however we find heat convection can mitigate this variation by reducing the surface temperature gradient and hence the surface shear stress. Numerical results corresponding to the flow of water on a vertical plane show that very thin films are dominated by the Marangoni shear stress which can be sufficiently strong to overcome gravity leading to a recirculation in the velocity field. This effect reduces with increasing film thickness and the recirculation eventually disappears. In this case heating is confined entirely to the interior of the film leading to a uniform height profile.

  17. A model for critical thinking measurement of dental student performance.

    PubMed

    Johnsen, David C; Finkelstein, Michael W; Marshall, Teresa A; Chalkley, Yvonne M

    2009-02-01

    The educational application of critical thinking has increased in the last twenty years with programs like problem-based learning. Performance measurement related to the dental student's capacity for critical thinking remains elusive, however. This article offers a model now in use to measure critical thinking applied to patient assessment and treatment planning across the four years of the dental school curriculum and across clinical disciplines. Two elements of the model are described: 1) a critical thinking measurement "cell," and 2) a list of minimally essential steps in critical thinking for patient assessment and treatment planning. Issues pertaining to this model are discussed: adaptations on the path from novice to expert, the role of subjective measurement, variations supportive of the model, and the correlation of individual and institutional assessment. The critical thinking measurement cell consists of interacting performance tasks and measures. The student identifies the step in the process (for example, chief complaint) with objective measurement; the student then applies the step to a patient or case with subjective measurement; the faculty member then combines the objective and subjective measurements into an evaluation on progress toward competence. The activities in the cell are then repeated until all the steps in the process have been addressed. A next task is to determine consistency across the four years and across clinical disciplines.

  18. Digital modeling technology for full dental crown tooth preparation.

    PubMed

    Dai, Ning; Zhong, Yicheng; Liu, Hao; Yuan, Fusong; Sun, Yuchun

    2016-04-01

    A dental defect is one of the most common oral diseases, and it often requires a full crown restoration. In this clinical operation, the dentist must manually prepare the affected tooth for the full crown so that it has a convergence angle between 4° and 10°, no undercuts, and uniform and even shoulder widths and depths using a high speed diamond bur in the patient׳s mouth within one hour, which is a difficult task that requires visual-manual operation. The quality of the tooth preparation has an important effect on the success rate of the subsequent prosthodontic treatment. This study involved research into digital modeling technology for full dental crown tooth preparation. First, the margin line of the tooth preparation was designed using a semi-automatic interactive process. Second, the inserting direction was automatically computed. Then, the characteristic parameters and the constraints on the tooth preparation were defined for the model. Next, the shoulder and axial surface of the tooth preparation were formed using parametric modeling. Finally, the implicit surface of a radial basis function was used to construct the tooth preparation׳s occlusal surface. The experimental results verified that the method of digital modeling for full crown preparation proposed in this study can quickly and accurately implement personalized designs of various parameters, such as the shoulder width and the convergence angle; it provides a digital design tool for full crown preparation.

  19. Continuum damage modeling and simulation of hierarchical dental enamel

    NASA Astrophysics Data System (ADS)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  20. A generalized voter model with time-decaying memory on a multilayer network

    NASA Astrophysics Data System (ADS)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Zhong, Chen-Yang; Qiu, Tian; Shi, Yong-Dong; Wang, Li-Liang

    2016-09-01

    By incorporating a multilayer network and time-decaying memory into the original voter model, we investigate the coupled effects of spatial and temporal accumulation of peer pressure on the consensus. Heterogeneity in peer pressure and the time-decaying mechanism are both shown to be detrimental to the consensus. We find the transition points below which a consensus can always be reached and above which two opposed opinions are more likely to coexist. Our mean-field analysis indicates that the phase transitions in the present model are governed by the cumulative influence of peer pressure and the updating threshold. We find a functional relation between the consensus threshold and the decay rate of the influence of peer is found. As to the pressure. The time required to reach a consensus is governed by the coupling of the memory length and the decay rate. An intermediate decay rate may greatly reduce the time required to reach a consensus.

  1. Attenuation characteristics of monolayer graphene by Pi- and T-networks modeling of multilayer microstrip line

    NASA Astrophysics Data System (ADS)

    Sharma, Pulkit; Pratap Singh, Sumit; Patel, Kamlesh

    2017-09-01

    The impedances of Pi- and T- networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator. The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges. With graphene on glass and graphene on quartz loadings, the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling. This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz. A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz. The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.

  2. Discrete-layered damping model of multilayer plate with account of internal damping

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Gazizullin, R. K.

    2016-11-01

    Construction of discrete-layered damping model of multilayer plate in small displacement and deformations with account of internal damping of layers of Thompson- Kelvin-Voight model is presented. Based on derived equations, analytical solution is given to the static damping problem of simply supported single-layer rectangular plate subjected to uniformly distributed pressure, which is applied to one of its boundary planes. Convergence to the three-dimensional case is analysed for the obtained solution with respect to the dependence on dimension of mesh in the thickness direction of plate. For thin plates, dimension reduction of the formulated problem is set on the basis of simplifying hypothesis applied for each layer.

  3. A multilayer model of time dependent deformation following an earthquake on a strike-slip fault

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1981-01-01

    A multilayer model of the Earth to calculate finite element of time dependent deformation and stress following an earthquake on a strike slip fault is discussed. The model involves shear properties of an elastic upper lithosphere, a standard viscoelastic linear solid lower lithosphere, a Maxwell viscoelastic asthenosphere and an elastic mesosphere. Systematic variations of fault and layer depths and comparisons with simpler elastic lithosphere over viscoelastic asthenosphere calculations are analyzed. Both the creep of the lower lithosphere and astenosphere contribute to the postseismic deformation. The magnitude of the deformation is enhanced by a short distance between the bottom of the fault (slip zone) and the top of the creep region but is less sensitive to the thickness of the creeping layer. Postseismic restressing is increased as the lower lithosphere becomes more viscoelastic, but the tendency for the width of the restressed zone to growth with time is retarded.

  4. Multilayered tissues model for wave propagation loss assessment in cochlear implants

    NASA Astrophysics Data System (ADS)

    Paun, Maria-Alexandra; Dehollain, Catherine

    2017-05-01

    In this paper, a study of the power loss attenuation of the plane wave travelling through the tissue layers, from the outside to the inside of the skull within a cochlear implant, is performed. Different implantation depths of the internal antenna from 10 to 30 mm are considered. To this purpose, the gain and attenuation in dB are studied. A multilayer tissue model is developed, consisting of mainly skin, mastoid bone and brain. An s-parameter analysis is also carried out, using loop antennas and simulated head tissue. Ansoft Ansys® HFSS software is used for electro-magnetic simulations of the antennas, placed in different types of human tissues. Smith charts for antenna placed in both skin and multi-tissue model are included.

  5. Finite Element Modeling of Multilayer Orthogonal Auxetic Composites under Low-Velocity Impact

    PubMed Central

    Jiang, Lili; Hu, Hong

    2017-01-01

    The multilayer orthogonal auxetic composites have been previously developed and tested to prove that they own excellent energy absorption and impact protection characteristics in a specific strain range under low-velocity impact. In this study, a three dimensional finite element (FE) model in ANSYS LS-DYNA was established to simulate the mechanical behavior of auxetic composites under low-velocity drop-weight impact. The simulation results including the Poisson’s ratio versus compressive strain curves and the contact stress versus compressive strain curves were compared with those in the experiments. The clear deformation pictures of the FE models have provided a simple and effective way for investigating the damage mechanism and optimizing the material, as well as structure design. PMID:28783054

  6. Numerical modelling of snow and frozen soil processes for a multi-layer atmosphere-soil-vegetation model

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Mauder, Matthias

    2014-05-01

    Snowcover plays an important role in Earth's climate system because of its high albedo, low thermal conductivity, roughness length, and ability to store water. A sophisticated process-based snow model is useful for representing the complex snow physics. In the present study, an existing multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors was modified to simulate snow and frozen soil processes. The schemes of a multi-layer snow structure for heat and liquid water transports in snow and freeze-thaw processes of soil moisture were incorporated into the model. In the snow scheme, the liquid water transfer in snow was modeled based on the processes of both capillary rise and gravitational drainage in order to accurately simulate water movement in unsaturated snow. The performance of the modified model was tested at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany. The modified model overall reproduced the temporal changes in observations of surface energy fluxes, albedo, snow depth and surface temperature, and soil temperature and moisture. The measured increases of soil water content due to infiltration of melted snow to the soil were simulated by the modified model. The observed large negative sensible and positive latent heat fluxes associated with the typical south foehn, a warm and dry downslope wind of the Alps, were also reproduced in the simulation.

  7. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    SciTech Connect

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H.; Antusek, Andrej; Parlinska-Wojtan, Magdalena; Bissig, Vinzenz

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  8. A regression model analysis of longitudinal dental caries data.

    PubMed

    Ringelberg, M L; Tonascia, J A

    1976-03-01

    Longitudinal data on caries experience were derived from the reexamination and interview of a cohort of 306 subjects with an average follow-up period of 33 years after the baseline examination. Analysis of the data was accomplished by the use of contingency tables utilizing enumeration statistics compared with a multiple regression analysis. The analyses indicated a strong association of caries experience at one point in time with the caries experience of that same person earlier in life. The regression model approach offers adjustment of any given independent variable for the effect of all other independent variables, providing a powerful means of bias reduction. The model is also useful in separating out the specific effect of an independent variable over and above the contribution of other variables. The model used explained 35% of the variability in the DMFS scores recorded. Similar models could be useful adjuncts in the analyses of dental epidemiologic data.

  9. Beginning the socialization to a new workforce model: dental students' preliminary knowledge of and attitudes about the role of the dental therapist.

    PubMed

    Blue, Christine; Phillips, Robert; Born, David; Lopez, Naty

    2011-11-01

    The purpose of the study reported here was to assess first- and second-year dental students' knowledge of and attitudes about the role of the dental therapist in the oral health care delivery system. The results of this study are informing the continued development and implementation of a new dental workforce training model at the University of Minnesota. Dental students at the university (Classes of 2012 and 2013) were surveyed in 2009, with follow-up surveys planned for the subsequent five years. Multiple-choice questions and statements to be ranked using a Likert scale were used to determine what the students knew and thought about dental therapists' scope of practice, care delivery, work quality, cost-effectiveness, and role in reducing disparities in oral health care access. The results suggest that the students had generally neutral or uncertain attitudes about dental therapy, based on minimal knowledge about the role of dental therapists. In addition, we found little difference in attitudes between the two classes, the only exception being that the first-year students less often perceived the therapists as a solution to access problems. These baseline data are guiding the intraprofessional training of dental, dental hygiene, and dental therapy students toward the goal of positive socialization to a new workforce model and affirmation of the dental therapist as a member of the oral health care team.

  10. Hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with tumor-like heterogeneities.

    PubMed

    Zhu, Caigang; Liu, Quan

    2012-01-01

    We present a hybrid method that combines a multilayered scaling method and a perturbation method to speed up the Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with finite-size tumor-like heterogeneities. The proposed method consists of two steps. In the first step, a set of photon trajectory information generated from a baseline Monte Carlo simulation is utilized to scale the exit weight and exit distance of survival photons for the multilayered tissue model. In the second step, another set of photon trajectory information, including the locations of all collision events from the baseline simulation and the scaling result obtained from the first step, is employed by the perturbation Monte Carlo method to estimate diffuse reflectance from the multilayered tissue model with tumor-like heterogeneities. Our method is demonstrated to shorten simulation time by several orders of magnitude. Moreover, this hybrid method works for a larger range of probe configurations and tumor models than the scaling method or the perturbation method alone.

  11. A Program for Calculating and Plotting Synthetic Common-Source Seismic-Reflection Traces for Multilayered Earth Models.

    ERIC Educational Resources Information Center

    Ramananantoandro, Ramanantsoa

    1988-01-01

    Presented is a description of a BASIC program to be used on an IBM microcomputer for calculating and plotting synthetic seismic-reflection traces for multilayered earth models. Discusses finding raypaths for given source-receiver offsets using the "shooting method" and calculating the corresponding travel times. (Author/CW)

  12. A Program for Calculating and Plotting Synthetic Common-Source Seismic-Reflection Traces for Multilayered Earth Models.

    ERIC Educational Resources Information Center

    Ramananantoandro, Ramanantsoa

    1988-01-01

    Presented is a description of a BASIC program to be used on an IBM microcomputer for calculating and plotting synthetic seismic-reflection traces for multilayered earth models. Discusses finding raypaths for given source-receiver offsets using the "shooting method" and calculating the corresponding travel times. (Author/CW)

  13. Climate studies with a multilayer energy balance model. III - Climatic impact of stratospheric volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Chou, M.-D.; Arking, A.; Peng, L.

    1984-01-01

    A multilayer energy balance model is applied in an examination of the sensitivity of climate to stratospheric aerosols induced by volcanic eruptions. Zonally and annually averaged quantities are considered, with ocean and land temperatures computed separately and the atmosphere below the 200 mb level divided into eight layers of 24 sublayers each. The aerosol is assumed to form in the 150-200 mb range. Aerosol parameters for radiative transfer calculations are reflection in the solar spectral region and absorption in the solar and IR regions. A 75 percent aqueous solution of sulfuric acid is assumed for the aerosols. The sensitivity of the hemispherically averaged surface temperature is enhanced 37 percent, with a 20 percent uncertainty, when the thermal IR radiation is excluded. The solar radiation enhances the surface temperatures to a higher degree than the thermal radiation. The maximum response to the evenly distributed aerosols is in the 60-70 deg N latitudes and propagates, weakening, to lower latitudes.

  14. Geometric modeling of multilayer structures with the application of curves and surfaces Bezier

    NASA Astrophysics Data System (ADS)

    Ayusheev, T. V.; Pavlova, S. V.; Bulychev, R. N.; Panchuk, K. L.; Lyashkov, A. A.; Yurkov, V. Yu

    2017-06-01

    In the article is reported a method of constructing the model of three-dimensional parametric solids free-form and their description using Bezier curves and surfaces. There are shown the equations of solid patch that bounded curves and surfaces cubic Bezier. The experiment was carried on an octagonal carcass of curved solid patch. Computer experiment showed that the method works well and correctly determines the position of the external and internal surfaces of both the initial condition, and under deformation of the solid shape’s with the aid of control points. This method makes easyly controlling the shape and completely describes the behavior of the intermediate surfaces inside of the simulated object’s solid. The proposed method can be used for numerical simulation of multilayer structures.

  15. A model for assessing ignition, flame spread, and burn hazard potential of a multilayered jacket.

    PubMed

    Ezekoye, Ofodike A; Diller, Kenneth R

    2006-01-01

    An analysis is presented of ignition, flame spread, and skin burn associated with the ignition and burning of a multilayered jacket. The important physical processes can all be detailed based on simple thermophysical modeling. The ignition process associated with proximity to a radiant heat source is analyzed to see how a change in external (outer) fabric could have diminished the likelihood of ignition. Once the composite jacket has been ignited, the flame spread process is responsible for the heat transfer to the skin that causes the burn. We analyze the effects of the jacket innermost material on flame spread and on possible burn damage. We show how available thermophysical property data can be used to estimate the effect of inner layer material on burn event duration. Finally, given best-available data on the heat transfer rates between a burning inner layer and skin, we examine the kinetics of skin burn damage to determine the most likely injury that would result.

  16. Development and evaluation of a new dental model at Tokyo Medical and Dental University for the practice of periodontal pocket probing.

    PubMed

    Sunaga, Masayo; Kondo, Keiko; Adachi, Toshiko; Miura, Yoshiko; Kinoshita, Atsuhiro

    2013-09-01

    Dental and dental hygiene students must acquire the skill of measuring periodontal pockets and learn to identify the bottom of a pocket, especially of deep periodontal pockets. A new dental model that would enable students to practice measuring deep periodontal pockets was developed at the Tokyo Medical and Dental University. The purpose of this study was to evaluate the feasibility and effectiveness of this model. Twenty dental hygiene students in their third year at the school and twenty-four instructors or dental hygienists of the University Hospital measured periodontal pockets on the newly designed dental model. Feasibility and effectiveness of the model were evaluated based on periodontal probing by the students and instructors, as well as results of a questionnaire. The results demonstrated an intraexaminer agreement (within ±1 mm) averaging 91 percent. The mean percentages of correct answers of the students and instructors were 82 percent and 80 percent, respectively. More than 90 percent of the instructors and students reported that the new model would be suitable for pocket probing training. In the questionnaire, they responded that this practice using the new model would contribute to students' future and that they wanted to try other dental models with various probing depths. The new dental model designed for periodontal pocket probing training was reported to be feasible and effective for student practice.

  17. Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshiaki; Iida, Hideaki; Nitta, Muneto

    2016-09-01

    Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel N -1 domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The N -1 domain walls behave as insulators separating N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors separated by two insulators, we find for the former case that the interaction between two Josephson vortices on different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls. In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the domain walls. Our predictions should be verified in multilayered Josephson junctions.

  18. An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification

    NASA Astrophysics Data System (ADS)

    Couderc, F.; Duran, A.; Vila, J.-P.

    2017-08-01

    We present an explicit scheme for a two-dimensional multilayer shallow water model with density stratification, for general meshes and collocated variables. The proposed strategy is based on a regularized model where the transport velocity in the advective fluxes is shifted proportionally to the pressure potential gradient. Using a similar strategy for the potential forces, we show the stability of the method in the sense of a discrete dissipation of the mechanical energy, in general multilayer and non-linear frames. These results are obtained at first-order in space and time and extended using a second-order MUSCL extension in space and a Heun's method in time. With the objective of minimizing the diffusive losses in realistic contexts, sufficient conditions are exhibited on the regularizing terms to ensure the scheme's linear stability at first and second-order in time and space. The other main result stands in the consistency with respect to the asymptotics reached at small and large time scales in low Froude regimes, which governs large-scale oceanic circulation. Additionally, robustness and well-balanced results for motionless steady states are also ensured. These stability properties tend to provide a very robust and efficient approach, easy to implement and particularly well suited for large-scale simulations. Some numerical experiments are proposed to highlight the scheme efficiency: an experiment of fast gravitational modes, a smooth surface wave propagation, an initial propagating surface water elevation jump considering a non-trivial topography, and a last experiment of slow Rossby modes simulating the displacement of a baroclinic vortex subject to the Coriolis force.

  19. Canopy Carbon Discrimination in a Dense Forest Estimated From a Multi-Layer Biophysical Model

    NASA Astrophysics Data System (ADS)

    Knohl, A.; Baldocchi, D. D.

    2005-12-01

    Carbon isotope discrimination during photosynthesis of plant canopies has been used to constrain global carbon models and to partition ecosystem fluxes into its components. Often carbon discrimination is estimated based on a big-leaf model assuming constant environmental forcing for the entire canopy. In dense and tall forest canopies, however, microclimatic conditions and therefore stomata control on discrimination can strongly vary vertically within the canopy. Numerous studies found a large vertical gradient in bulk leaf carbon isotope values indicating the importance of microclimate on discrimination. It remains unclear how well big-leaf models represent actual canopy discrimination considering microclimatic variations throughout the canopy. Here we use a multi-layered biophysical canopy model to estimate discrimination for each layer and to obtain flux-weighted canopy discrimination for the entire canopy. The model consists of 40 layers, each distinguishing sunlit and shaded leaves. Leaf energy balance, leaf transpiration and photosynthesis are calculated for each layer based on turbulence inside the canopy and light penetration through the canopy. The model showed very good agreement with carbon, water and energy fluxes measured with the eddy covariance technique. The modeled vertical gradient in carbon discrimination matches well with observations made in bulk material and sugars from leaves indicating the importance of microclimatic gradients on canopy discrimination in dense forests.

  20. Teledentistry-assisted, affiliated practice for dental hygienists: an innovative oral health workforce model.

    PubMed

    Summerfelt, Fred F

    2011-06-01

    The 2010 U.S. Patient Protection and Affordable Care Act (PPACA) calls for training programs to develop mid-level dental health care providers to work in areas with underserved populations. In 2004, legislation was passed in Arizona allowing qualified dental hygienists to enter into an affiliated practice relationship with a dentist to provide oral health care services for underserved populations without general or direct supervision in public health settings. In response, the Northern Arizona University (NAU) Dental Hygiene Department developed a teledentistry-assisted, affiliated practice dental hygiene model that places a dental hygienist in the role of the mid-level practitioner as part of a digitally linked oral health care team. Utilizing current technologies, affiliated practice dental hygienists can digitally acquire and transmit diagnostic data to a distant dentist for triage, diagnosis, and patient referral in addition to providing preventive services permitted within the dental hygiene scope of practice. This article provides information about the PPACA and the Arizona affiliated practice dental hygiene model, defines teledentistry, identifies the digital equipment used in NAU's teledentistry model, give an overview of NAU's teledentistry training, describes NAU's first teledentistry clinical experience, presents statistical analyses and evaluation of NAU students' ability to acquire diagnostically efficacious digital data from remote locations, and summarizes details of remote applications of teledentistry-assisted, affiliated practice dental hygiene workforce model successes.

  1. Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

    PubMed Central

    Jiang, Tingting; Lee, Sang-Mi; Hou, Yanan; Chang, Xin

    2016-01-01

    Objective To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken. PMID:27226958

  2. Effective action and phase structure of multi-layer sine-Gordon type models

    SciTech Connect

    Jentschura, U.D. . E-mail: jentschura@mpi-hd.mpg.de; Nandori, I.; Zinn-Justin, J.

    2006-11-15

    We analyze the effective action and the phase structure of N-layer sine-Gordon type models, generalizing the results obtained for the two-layer sine-Gordon model found in [I. Nandori, S. Nagy, K. Sailer, U.D. Jentschura, Nucl. Phys. B, 725 (2005) 467-492]. Besides the obvious field theoretical interest, the layered sine-Gordon model has been used to describe the vortex properties of high transition temperature superconductors, and the extension of the previous analysis to a general N-layer model is necessary for a description of the critical behaviour of vortices in realistic multi-layer systems. The distinction of the Lagrangians in terms of mass eigenvalues is found to be the decisive parameter with respect to the phase structure of the N-layer models, with neighboring layers being coupled by quadratic terms in the field variables. By a suitable rotation of the field variables, we identify the periodic modes (without explicit mass terms) in the N-layer structure, calculate the effective action and determine their Kosterlitz-Thouless type phase transitions to occur at a coupling parameter {beta}{sub c,N}{sup 2}=8N{pi}, where N is the number of layers (or flavors in terms of the multi-flavor Schwinger model)

  3. Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.

    2016-10-01

    The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.

  4. A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2004-01-01

    This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.

  5. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    NASA Astrophysics Data System (ADS)

    Ryder, J.; Polcher, J.; Peylin, P.; Ottlé, C.; Chen, Y.; van Gorsel, E.; Haverd, V.; McGrath, M. J.; Naudts, K.; Otto, J.; Valade, A.; Luyssaert, S.

    2016-01-01

    In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has been based on a big-leaf approach, with averaging schemes that represent in-canopy processes. Furthermore, to be stable, that is to say, over large time steps and without large iterations, a surface layer model should be capable of implicit coupling to the atmospheric model. Surface models with large time steps, however, have difficulties in reproducing consistently the energy balance in field observations. Here we outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy). This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multi-layer long-wave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare-soil flux within the canopy space. Significantly, it avoids iterations over the height of the canopy and so maintains implicit coupling to the atmospheric model LMDz (Laboratoire de Météorologie Dynamique Zoomed model). As a first test, the model is evaluated against data from both an intensive measurement campaign and longer-term eddy-covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of energy and water fluxes, as well as the vertical gradients of temperature and of sensible heat fluxes.

  6. An in vitro model of human dental pulp repair.

    PubMed

    Magloire, H; Joffre, A; Bleicher, F

    1996-12-01

    Pulp tissue responds to dentin injury by laying down reactionary dentin secreted by existing odontoblasts or reparative dentin elaborated by odontoblast-like cells that differentiated from precursor cells in the absence of inner dental epithelium and basement membrane. Furthermore, growth factors or active dentin matrix components are fundamental signals involved in odontoblast differentiation. In vitro, dental pulp cells cultured under various conditions are able to express typical markers of differentiation, but no culture system can re-create pulp response to dentin drilling. This paper reports the behavior of thick slices from human teeth drilled immediately after extraction and cultured from 3 days to 1 month. Results show that the damaged pulp beneath the cavity is able to develop, in vitro, some typical aspects correlated to tissue healing, evidenced by cell proliferation (BrdU-positive cells), neovascularization (positive with antitype-IV collagen antibodies), and the presence of functional (3H proline-positive) cuboidal cells close to the injured area. After 30 days of culture, elongated spindle-shaped cells can be seen aligned along the edges of the relevant dentin walls, whereas sound functional odontoblasts are well-preserved beneath healthy areas. This tissue recovery leads us to believe that such a culture model will be a useful system for testing factors regulating pulp repair.

  7. Decision, Sensation, and Habituation: A Multi-Layer Dynamic Field Model for Inhibition of Return

    PubMed Central

    Ibáñez-Gijón, Jorge; Jacobs, David M.

    2012-01-01

    Inhibition of Return (IOR) is one of the most consistent and widely studied effects in experimental psychology. The effect refers to a delayed response to visual stimuli in a cued location after initial priming at that location. This article presents a dynamic field model for IOR. The model describes the evolution of three coupled activation fields. The decision field, inspired by the intermediate layer of the superior colliculus, receives endogenous input and input from a sensory field. The sensory field, inspired by earlier sensory processing, receives exogenous input. Habituation of the sensory field is implemented by a reciprocal coupling with a third field, the habituation field. The model generates IOR because, due to the habituation of the sensory field, the decision field receives a reduced target-induced input in cue-target-compatible situations. The model is consistent with single-unit recordings of neurons of monkeys that perform IOR tasks. Such recordings have revealed that IOR phenomena parallel the activity of neurons in the intermediate layer of the superior colliculus and that neurons in this layer receive reduced input in cue-target-compatible situations. The model is also consistent with behavioral data concerning temporal expectancy effects. In a discussion, the multi-layer dynamic field account of IOR is used to illustrate the broader view that behavior consists of a tuning of the organism to the environment that continuously and concurrently takes place at different spatiotemporal scales. PMID:22427980

  8. Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Hedayat, A.; Brown, T. M.

    2004-01-01

    A unique foam/multilayer insulation (MLI) combination concept for orbital cryogenic storage was experimentally evaluated using a large-scale hydrogen tank. The foam substrate insulates for ground-hold periods and enables a gaseous nitrogen purge as opposed to helium. The MLI, designed for an on-orbit storage period for 45 days, includes several unique features including a variable layer density and larger but fewer perforations for venting during ascent to orbit. Test results with liquid hydrogen indicated that the MLI weight or tank heat leak is reduced by about half in comparison with standard MLI. The focus of this effort is on analytical modeling of the variable density MLI (VD-MLI) on-orbit performance. The foam/VD-MLI model is considered to have five segments. The first segment represents the optional foam layer. The second, third, and fourth segments represent three different MLI layer densities. The last segment is an environmental boundary or shroud that surrounds the last MLI layer. Two approaches are considered: a variable density MLI modeled layer by layer and a semiempirical model or "modified Lockheed equation." Results from the two models were very comparable and were within 5-8 percent of the measured data at the 300 K boundary condition.

  9. A multiple degree of freedom modeling approach of piezoelectret foam in a multilayer stack configuration

    NASA Astrophysics Data System (ADS)

    Tefft, Edward C.; Anton, Steven R.

    2016-04-01

    As electronic devices become both ubiquitous and more energy efficient, powering them with energy harvested from, for example, piezoelectric materials has become a subject of much interest. The field does indeed show promise, as harvesting energy from smart materials has the potential to replace batteries completely in some low-power applications. This paper presents modeling of piezo-electret foam assembled in a multilayer stack configuration, with the required adhesives and conductors, as a multiple degree of freedom (MDOF) system. The benefits of using the foam over some piezo-ceramics include its high flexibility, its light weight, and its lead-free composition. This model predicts the mechanical and electromechanical response to base excitation for any number of layers of piezo-electret foam. Building upon previous work which modeled the piezo-electret stack as a single degree of freedom (SDOF) system, the MDOF model provides information concerning the response of internal stack layers. The MDOF model is validated against the experimentally determined mechanical and electrical responses of a 20-layer piezo-electret foam stack. Also, the internal stack dynamics at higher order vibration modes suggest that charge cancellation is a serious outcome of vibration at these modes that designers need to consider.

  10. Analytical Models for Variable Density Multilayer Insulation Used in Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.

    2001-01-01

    A unique multilayer insulation concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). A combination of foam/Multi layer Insulation (MLI) was used. The MLI (45 layers of Double Aluminized Mylar (DAM) with Dacron net spacers) was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer DAM perforations for venting during ascent to orbit. The focus of this paper is on analytical modeling of the variable density MLI performance during orbital coast periods. The foam/MLI combination model is considered to have five segments. The first segment represents the foam layer. The second, third, and fourth segments represent the three layers of MLI with different layer densities and number of shields. Finally, the last segment is considered to be a shroud that surrounds the last MLI layer. The hot boundary temperature is allowed to vary from 164 K to 305 K. To simulate MLI performance, two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the separator materials. The heat flux values predicted by each approach are compared for different boundary temperatures and MLI systems with 30, 45, 60, and 75 layers.

  11. Analytical Models for Variable Density Multilayer Insulation Used in Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Hastings, L. J.; Brown, T.

    2001-01-01

    A unique multilayer insulation concept for orbital cryogenic storage was experimentally evaluated at NASA Marshall Space Flight Center (MSFC) using the Multipurpose Hydrogen Test Bed (MHTB). A combination of foam/Multi layer Insulation (MLI) was used. The MLI (45 layers of Double Aluminized Mylar (DAM) with Dacron net spacers) was designed for an on-orbit storage period of 45 days and included several unique features such as: a variable layer density and larger but fewer DAM perforations for venting during ascent to orbit. The focus of this paper is on analytical modeling of the variable density MLI performance during orbital coast periods. The foam/MLI combination model is considered to have five segments. The first segment represents the foam layer. The second, third, and fourth segments represent the three layers of MLI with different layer densities and number of shields. Finally, the last segment is considered to be a shroud that surrounds the last MLI layer. The hot boundary temperature is allowed to vary from 164 K to 305 K. To simulate MLI performance, two approaches are considered. In the first approach, the variable density MLI is modeled layer by layer while in the second approach, a semi-empirical model is applied. Both models account for thermal radiation between shields, gas conduction, and solid conduction through the separator materials. The heat flux values predicted by each approach are compared for different boundary temperatures and MLI systems with 30, 45, 60, and 75 layers.

  12. Hybrid diffusion and two-flux approximation for multilayered tissue light propagation modeling

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-07-01

    Accurate and rapid estimation of fluence, reflectance, and absorbance in multilayered biological media has been essential in many biophotonics applications that aim to diagnose, cure, or model in vivo tissue. The radiative transfer equation (RTE) rigorously models light transfer in absorbing and scattering media. However, analytical solutions to the RTE are limited even in simple homogeneous or plane media. Monte Carlo simulation has been used extensively to solve the RTE. However, Monte Carlo simulation is computationally intensive and may not be practical for applications that demand real-time results. Instead, the diffusion approximation has been shown to provide accurate estimates of light transport in strongly scattering tissue. The diffusion approximation is a greatly simplified model and produces analytical solutions for the reflectance and absorbance in tissue. However, the diffusion approximation breaks down if tissue is strongly absorbing, which is common in the visible part of the spectrum or in applications that involve darkly pigmented skin and/or high local volumes of blood such as port-wine stain therapy or reconstructive flap monitoring. In these cases, a model of light transfer that can accommodate both strongly and weakly absorbing regimes is required. Here we present a model of light transfer through layered biological media that represents skin with two strongly scattering and one strongly absorbing layer.

  13. Modeling blood flow as a fluid- multilayered structure interaction problem consisting of poroelastic materials

    NASA Astrophysics Data System (ADS)

    Bukac, Martina; Zunino, Paolo; Yotov, Ivan

    2013-11-01

    We model arterial blood flow as an incompressible Newtonian fluid confined by a multilayered poroelastic wall. We consider a two layer model for the arterial wall, where the inner layers (the endothelium and the intima) behave as a thin structure modeled as a linearly elastic Koiter membrane, while the outer part of the artery (the media and adventitia) is described by the Biot model. The fluid, membrane, and poroelastic structure are two-way coupled via kinematic and dynamic coupling conditions. We propose and analyze a splitting strategy based on the Lie operator splitting method, which allows solving the Navier-Stokes and Biot equations separately. In this way, we uncouple the original problem into two problems defined on separate subregions, the lumen and the wall. We show that the proposed scheme is stable under mild restriction of the time approximation step. Numerically, we investigate the effects of porosity to the structure displacement. We distinguish a high storativity and a high permeability case in the Darcy equations, and compare them to the results obtained using a purely elastic model. Depending on the regime, we observe significantly different behaviors in response to perturbations of each parameter.

  14. Positive influence of a dental anaesthesia simulation model on the perception of learning by Mexican dental students.

    PubMed

    López-Cabrera, C; Hernández-Rivas, E J; Komabayashi, T; Galindo-Reyes, E L; Tallabs-López, D; Cerda-Cristerna, B I

    2016-09-19

    This study evaluated the influence of three-repetition training with a dental anaesthesia simulation model (DASM) on the perception of learning by dental students. Dental students who had never used a dental anaesthesia technique were randomly divided into two groups that were taught the anterior superior alveolar nerve infiltrative anaesthesia technique. Group 1 (G1; N = 10) followed a three-stage learning method: (i) theoretical lecture, (ii) clinical demonstration and (iii) DASM training, including three repetitions of the anaesthesia technique. Group 2 (G2; N = 10) followed only the 1st and 2nd stages. The students in both groups then performed the anaesthesia technique. The perception of the students was evaluated by four learning concepts. Each was evaluated with a 5-point Likert scale questionnaire. The average score of each item of the questionnaire for G1 was compared with that of G2. Statistically significant differences were identified with the Mann-Whitney test. The average working time of each group was timed and compared by Student's t-test to identify possible statistically significant differences. Students in G1 showed higher average scores of perception in controlling the handling of the dental syringe and confidence in performing the injection (P < 0.05) and showed an average working time shorter than that of the students in G2 (P < 0.05). The DASM positively influenced the perception learning of the dental students; it increased their confidence and syringe handling ability, as well as skills to perform the injection of anaesthesia more quickly. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

    NASA Astrophysics Data System (ADS)

    Ryder, J.; Polcher, J.; Peylin, P.; Ottlé, C.; Chen, Y.; van Gorsel, E.; Haverd, V.; McGrath, M. J.; Naudts, K.; Otto, J.; Valade, A.; Luyssaert, S.

    2014-12-01

    In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has long been based on a "big-leaf approach", with averaging schemes that represent in-canopy processes. Such models have difficulties in reproducing consistently the energy balance in field observations. We here outline a newly developed numerical model for energy budget simulation, as a component of the land surface model ORCHIDEE-CAN (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy). This new model implements techniques from single-site canopy models in a practical way. It includes representation of in-canopy transport, a multilayer longwave radiation budget, height-specific calculation of aerodynamic and stomatal conductance, and interaction with the bare soil flux within the canopy space. Significantly, it avoids iterations over the height of tha canopy and so maintains implicit coupling to the atmospheric model LMDz. As a first test, the model is evaluated against data from both an intensive measurement campaign and longer term eddy covariance measurements for the intensively studied Eucalyptus stand at Tumbarumba, Australia. The model performs well in replicating both diurnal and annual cycles of fluxes, as well as the gradients of sensible heat fluxes. However, the model overestimates sensible heat flux against an underestimate of the radiation budget. Improved performance is expected through the implementation of a more detailed calculation of stand albedo and a more up-to-date stomatal conductance calculation.

  16. Wideband dynamic behavioral modeling of reflective semiconductor optical amplifiers using a tapped-delay multilayer perceptron.

    PubMed

    Liu, Zhansheng; Violas, Manuel Alberto; Carvalho, Nuno Borges

    2013-02-11

    In this paper, we propose a wideband dynamic behavioral model for a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in colorless radio over fiber (RoF) systems using a tapped-delay multilayer perceptron (TDMLP). 64 quadrature amplitude modulation (QAM) signals with 20 Msymbol/s were used to train, validate and test the model. Nonlinear distortion and dynamic effects induced by the RSOA modulator are demonstrated. The parameters of the model such as the number of nodes in the hidden layer and memory depth were optimized to ensure the generality and accuracy. The normalized mean square error (NMSE) is used as a figure of merit. The NMSE was up to -44.33 dB when the number of nodes in the hidden layer and memory depth were set to 20 and 3, respectively. The TDMLP model can accurately approximate to the dynamic characteristics of the RSOA modulator. The dynamic AM-AM and dynamic AM-PM distortions of the RSOA modulator are drawn. The results show that the single hidden layer TDMLP can provide accurate approximation for behaviors of the RSOA modulator.

  17. A mixture model for robust point matching under multi-layer motion.

    PubMed

    Ma, Jiayi; Chen, Jun; Ming, Delie; Tian, Jinwen

    2014-01-01

    This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers). Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS). MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion.

  18. A Mixture Model for Robust Point Matching under Multi-Layer Motion

    PubMed Central

    Ma, Jiayi; Chen, Jun; Ming, Delie; Tian, Jinwen

    2014-01-01

    This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers). Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP) estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS). MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value) is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation). We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion. PMID:24658087

  19. A Multilayer Naïve Bayes Model for Analyzing User's Retweeting Sentiment Tendency

    PubMed Central

    Wang, Mengmeng; Zuo, Wanli; Wang, Ying

    2015-01-01

    Today microblogging has increasingly become a means of information diffusion via user's retweeting behavior. Since retweeting content, as context information of microblogging, is an understanding of microblogging, hence, user's retweeting sentiment tendency analysis has gradually become a hot research topic. Targeted at online microblogging, a dynamic social network, we investigate how to exploit dynamic retweeting sentiment features in retweeting sentiment tendency analysis. On the basis of time series of user's network structure information and published text information, we first model dynamic retweeting sentiment features. Then we build Naïve Bayes models from profile-, relationship-, and emotion-based dimensions, respectively. Finally, we build a multilayer Naïve Bayes model based on multidimensional Naïve Bayes models to analyze user's retweeting sentiment tendency towards a microblog. Experiments on real-world dataset demonstrate the effectiveness of the proposed framework. Further experiments are conducted to understand the importance of dynamic retweeting sentiment features and temporal information in retweeting sentiment tendency analysis. What is more, we provide a new train of thought for retweeting sentiment tendency analysis in dynamic social networks. PMID:26417367

  20. [Constructing 3-dimensional colorized digital dental model assisted by digital photography].

    PubMed

    Ye, Hong-qiang; Liu, Yu-shu; Liu, Yun-song; Ning, Jing; Zhao, Yi-jiao; Zhou, Yong-sheng

    2016-02-18

    To explore a method of constructing universal 3-dimensional (3D) colorized digital dental model which can be displayed and edited in common 3D software (such as Geomagic series), in order to improve the visual effect of digital dental model in 3D software. The morphological data of teeth and gingivae were obtained by intra-oral scanning system (3Shape TRIOS), constructing 3D digital dental models. The 3D digital dental models were exported as STL files. Meanwhile, referring to the accredited photography guide of American Academy of Cosmetic Dentistry (AACD), five selected digital photographs of patients'teeth and gingivae were taken by digital single lens reflex camera (DSLR) with the same exposure parameters (except occlusal views) to capture the color data. In Geomagic Studio 2013, after STL file of 3D digital dental model being imported, digital photographs were projected on 3D digital dental model with corresponding position and angle. The junctions of different photos were carefully trimmed to get continuous and natural color transitions. Then the 3D colorized digital dental model was constructed, which was exported as OBJ file or WRP file which was a special file for software of Geomagic series. For the purpose of evaluating the visual effect of the 3D colorized digital model, a rating scale on color simulation effect in views of patients'evaluation was used. Sixteen patients were recruited and their scores on colored and non-colored digital dental models were recorded. The data were analyzed using McNemar-Bowker test in SPSS 20. Universal 3D colorized digital dental model with better color simulation was constructed based on intra-oral scanning and digital photography. For clinical application, the 3D colorized digital dental models, combined with 3D face images, were introduced into 3D smile design of aesthetic rehabilitation, which could improve the patients' cognition for the esthetic digital design and virtual prosthetic effect. Universal 3D colorized

  1. Multilayer Perceptron Model for Nowcasting Visibility from Surface Observations: Results and Sensitivity to Dissimilar Station Altitudes

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Das, Debanjana; Sarkar, Ishita; Goswami, Sayantika

    2015-10-01

    The reduction in the visibility during fog significantly influences surface as well as air transport operations. The prediction of fog remains difficult despite improvements in numerical weather prediction models. The present study aims at identifying a suitable neural network model with proper architecture to provide precise nowcast of the horizontal visibility during fog over the airports of three significantly affected metropolises of India, namely: Kolkata (22°32'N; 88°20'E), Delhi (28°38'N; 77°12'E) and Bengaluru (12°95'N; 77°72'E). The investigation shows that the multilayer perceptron (MLP) model provides considerably less error in nowcasting the visibility during fog over the said metropolises than radial basis function network, generalized regression neural network or linear neural network. The MLP models of different architectures are trained with the data and records from 2000 to 2010. The model results are validated with observations from 2011 to 2014. Our results reveal that MLP models with different configurations (1) four input layers, three hidden layers with three hidden nodes in each layer and a single output; (2) four input layers with two hidden layers having one hidden node in the first hidden layer and two hidden nodes in the second hidden layer, and a single output layer; and (3) four input layers with two hidden layers having two hidden nodes in each hidden layer and a single output layer] provide minimum error in nowcasting the visibility during fog over the airports of Kolkata, Delhi and Bengaluru, respectively. The results show that the MLP model is well suited for nowcasting visibility during fog with 6 h lead time, however, the study reveals that the MLP model sensitive to dissimilar station altitudes in nowcasting visibility, as the minimum prediction error for the three metropolises having dissimilar mean sea level altitudes is observed through different configurations of the model.

  2. A Model for Two-Year and Baccalaureate Clinical Dental Hygiene Education.

    ERIC Educational Resources Information Center

    Gluch-Scranton, Joan; Gurenlian, JoAnn Rigolizzo

    1985-01-01

    Models for associate and bachelors degree programs training dental hygienists are proposed as a step in eliminating technical training for dental hygiene education and in delineating roles for the graduates of two- and four-year programs. They outline clinical and professional skills, practice settings, and supervision levels for each group. (MSE)

  3. Analytic Element Modeling of Steady Interface Flow in Multilayer Aquifers Using AnAqSim.

    PubMed

    Fitts, Charles R; Godwin, Joshua; Feiner, Kathleen; McLane, Charles; Mullendore, Seth

    2015-01-01

    This paper presents the analytic element modeling approach implemented in the software AnAqSim for simulating steady groundwater flow with a sharp fresh-salt interface in multilayer (three-dimensional) aquifer systems. Compared with numerical methods for variable-density interface modeling, this approach allows quick model construction and can yield useful guidance about the three-dimensional configuration of an interface even at a large scale. The approach employs subdomains and multiple layers as outlined by Fitts (2010) with the addition of discharge potentials for shallow interface flow (Strack 1989). The following simplifying assumptions are made: steady flow, a sharp interface between fresh- and salt water, static salt water, and no resistance to vertical flow and hydrostatic heads within each fresh water layer. A key component of this approach is a transition to a thin fixed minimum fresh water thickness mode when the fresh water thickness approaches zero. This allows the solution to converge and determine the steady interface position without a long transient simulation. The approach is checked against the widely used numerical codes SEAWAT and SWI/MODFLOW and a hypothetical application of the method to a coastal wellfield is presented.

  4. A Multi-layered Model for the Shape, Zonal Winds and Gravitational Field of Jupiter

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Zhang, K.; Kong, D.

    2016-12-01

    We have developed a three-dimensional, finite-element, multi-layered, non-spheroidal model of Jupiter consisting of an inner core, a metallic dynamo region and an outer molecular electrically insulating envelope. Different polytropic equations of state are used in the metallic and molecular regions. The zonal winds are on cylinders parallel to the rotation axis and are confined within the molecular envelope by magnetic braking. The effect of rotational distortion is fully accounted for; it is not treated as simply a small perturbation on a spherically symmetric state. The model determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter. It produces the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 with an accuracy of a few percent. The variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted Jupiter is also determined. Different cases, ranging from a deep wind profile to a very shallow profile, are considered. The model enables accurate interpretation of the zonal gravitational coefficients expected from the Juno mission.

  5. Interfacial effects in multilayers

    SciTech Connect

    Barbee, T W

    1999-06-28

    There are many physical characterization approaches which evaluate a limited set of structural elements in multilayers: they study a single interface; they study a single layer of material; they study a very small sample of a multilayer. On a broader basis, the interference phenomena on which the performance of x-ray optic multilayers is based integrates over the full area/volume of the multilayer illuminated. In order to gain understanding of the impact of imperfections on multilayer performance it is necessary to develop an experimental approach that provides detailed information about the effects of interfaces in the multilayer obtained when the multilayer is being applied in a manner directly related to application. Additionally, it is also of interest to determine the breadth of application of any such experimental approach to the general study of interfaces in solids. The primary goal in this research was to develop an experimental methodology to quantitatively characterize both the physical and electronic characteristics of interfaces in multilayer structures. The approach was to fabricate multilayers from three elements so that one monolayer or less thick ''marker layers'' were selectively deposited on a given set interfaces in the multilayer. These ''marker layers'' could then interrogated by scattering and fluorescence techniques for their distribution, for their atomic arrangements relative to the thicker layers and for their electronic state at the interfaces as affected by the thicker layer materials. WC/C multilayers with one monolayer (2.33 {angstrom}) of tantalum at the WC on C and the C on WC interfaces were fabricated and studied. Ta was selected as the marker layer material as its L{sub 3} absorption edge is at 9879 eV, more than 300 eV less than the W L{sub 3} edge at 10200 eV. Reflectivities at 9850 eV, 9879 eV and 9950 eV were measured: Ta layers standing wave fluorescence on the multilayer Bragg peak at these energies and fluorescence EXAFS

  6. Synthetic, Multi-Layer, Self-Oscillating Vocal Fold Model Fabrication

    PubMed Central

    Murray, Preston R.; Thomson, Scott L.

    2011-01-01

    , however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds 1 that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages 3,6,8 such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers 1. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave. PMID:22157812

  7. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.

    PubMed

    Murray, Preston R; Thomson, Scott L

    2011-12-02

    been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.

  8. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.

    PubMed

    Ashraf, Ali; Wu, Yanbin; Wang, Michael C; Aluru, Narayana R; Dastgheib, Seyed A; Nam, SungWoo

    2014-11-04

    We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for <5 min and the absence of these impurities in the bulk. X-ray photoelectron spectroscopy analyses of the sample surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.

  9. Investigating the Structural Bases of Voltage-Gating Model Channels by Using Perfectly Aligned Multilayer Samples

    DTIC Science & Technology

    1988-09-20

    UNLIMITED ] SAME AS RPT 0 DTIC USERS (U) 22a. NAME OF RESPONSIBLE INOIVIOUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Dr. Igor Vodyanoy 1 202-696...of gramicidin, alamethicin and melittin, and experimenting the variations of their chemical conditions. 2. Circular dichroism (CD) of multilayer...substrata are used depending on the type of experiment . The thickness of multilayers can be varied between 1 and 100 gi. The sample variables include

  10. Applying the Cognitive Vulnerability Model to the analysis of cognitive and family influences on children's dental fear.

    PubMed

    Crego, Antonio; Carrillo-Diaz, Maria; Armfield, Jason M; Romero, Martin

    2013-06-01

    Negative experiences, cognitions, and family variables are involved in the etiology of child dental fear, but previous research has frequently considered them separately. This study uses the Cognitive Vulnerability Model to explore the influence of negative dental experiences and family members on children's dental anxiety. The participants were 185 children who completed a questionnaire comprising measures of dental fear and cognitive vulnerability-related perceptions. Measures were obtained for 88 of the participants' fathers and for 97 of the participants' mothers. Cognitive vulnerability perceptions had the strongest association with children's dental fear (β = 0.40), explaining 14-21% of the variance in dental fear scores beyond that explained by other variables. Furthermore, vulnerability perceptions mediated the relationship between negative dental experiences and dental fear. Children's dental fear and cognitive vulnerability perceptions were significantly associated with those of their fathers (r = 0.23 and r = 0.40, respectively) and mothers (r = 0.28 and r = 0.35, respectively). Moreover, fathers' (β = 0.24) and mothers' (β = 0.31) levels of cognitive vulnerability significantly predicted the children's levels of dental fear. The Cognitive Vulnerability Model offers a framework to understand child dental fear. Furthermore, this cognitive approach may help explain why some children develop dental fear problems after suffering a negative dental experience and how dental anxiety is passed on from parents to children. © 2013 Eur J Oral Sci.

  11. Multilayer in-place learning networks for modeling functional layers in the laminar cortex.

    PubMed

    Weng, Juyang; Luwang, Tianyu; Lu, Hong; Xue, Xiangyang

    2008-01-01

    Currently, there is a lack of general-purpose in-place learning networks that model feature layers in the cortex. By "general-purpose" we mean a general yet adaptive high-dimensional function approximator. In-place learning is a biological concept rooted in the genomic equivalence principle, meaning that each neuron is fully responsible for its own learning in its environment and there is no need for an external learner. Presented in this paper is the Multilayer In-place Learning Network (MILN) for this ambitious goal. Computationally, in-place learning provides unusually efficient learning algorithms whose simplicity, low computational complexity, and generality are set apart from typical conventional learning algorithms. Based on the neuroscience literature, we model the layer 4 and layer 2/3 as the feature layers in the 6-layer laminar cortex, with layer 4 using unsupervised learning and layer 2/3 using supervised learning. As a necessary requirement for autonomous mental development, MILN generates invariant neurons in different layers, with increasing invariance from earlier to later layers and the total invariance in the last motor layer. Such self-generated invariant representation is enabled mainly by descending (top-down) connections. The self-generated invariant representation is used as intermediate representations for learning later tasks in open-ended development.

  12. Modeling of the self-propagating reactions of nickel and aluminum multilayered foils

    NASA Astrophysics Data System (ADS)

    Gunduz, Ibrahim Emre; Fadenberger, Konrad; Kokonou, Maria; Rebholz, Claus; Doumanidis, Charalabos C.; Ando, Teiichi

    2009-04-01

    In this study, we performed simulations of self-propagating reactions of nanoscale nickel-aluminum multilayers using numerical methods. The model employs two-dimensional heat transfer equations coupled with heat generation terms from, (1) 1D parabolic growth of intermetallic phases Ni2Al3 and NiAl in the thickness direction and (2) phase transformations such as melting and peritectic reactions. The model uses temperature dependent physical and chemical data, such as interdiffusion coefficients, specific heat capacities, and enthalpy of reactions obtained from previous independent work. The equations are discretized using a lagged Crank-Nicolson method. The results show that initially, the reaction front velocity is determined by the rapid growth of Ni2Al3 and the front temperature is limited by the peritectic reaction at ˜1406 K. After the front completely traverses the foil and the temperature reaches the peritectic point, the reaction slows down and the temperature rises by the growth of NiAl which is the only stable phase at these temperatures. The reaction is completed when the initial constituents are consumed and the temperature reaches the melting point of NiAl. Subsequently, the foil cools and solidifies to the final phase dictated by the overall composition. The computational results show excellent fit to experimental velocity and temperature measurements.

  13. A model describing the microwave emission from a multi-layer snowpack at 37 GHz

    NASA Technical Reports Server (NTRS)

    Abdelrazik, M.; Ulaby, F.; Stiles, H.

    1981-01-01

    A multilayer emission model is described and applied to emission measurements obtained at 37 GHz and H polarization using a microwave radiometer attached to a truck-mounted boom in Steamboat Springs, Colorado in 1977. Estimated absorption and scattering coefficients and their dependence on wetness were obtained using calculated values of the dielectric constant at 37 GHz along with the model. It was found that the scattering coefficient is comparable in value to the absorption coefficient for dry snow however, the absorption coefficient increases linearly with increasing snow wetness while the scattering coefficient decreases linearly with increasing wetness. The emission from each layer of the snowpack was also calculated using the estimated coefficients. It is shown that for dry snow, the ground underneath the snowpack contributes about 45% of all measured emission while the rest is due to emission from all the layers within the snowpack. When the wetness of the top 5 cm layer of snowpack increases to about 2% by volume, this top 5 cm snowlayer contributes more than 90% of all the measured emission.

  14. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry.

    PubMed

    Fredriksson, Ingemar; Burdakov, Oleg; Larsson, Marcus; Strömberg, Tomas

    2013-12-01

    The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF). The DRS spectra (450 to 850 nm) are assessed at two source-detector separations (0.4 and 1.2 mm), allowing for a relative calibration routine, whereas LDF spectra are assessed at 1.2 mm in the same fiber-optic probe. Data are analyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayered tissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information. Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluate the method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1 percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and 23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations are presented. The method offers several advantages such as simultaneous quantification of RBC tissue fraction and oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speed resolved, absolute (% RBC×mm/s), and more accurate due to the combination with DRS.

  15. Inverse Monte Carlo in a multilayered tissue model: merging diffuse reflectance spectroscopy and laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Fredriksson, Ingemar; Burdakov, Oleg; Larsson, Marcus; Strömberg, Tomas

    2013-12-01

    The tissue fraction of red blood cells (RBCs) and their oxygenation and speed-resolved perfusion are estimated in absolute units by combining diffuse reflectance spectroscopy (DRS) and laser Doppler flowmetry (LDF). The DRS spectra (450 to 850 nm) are assessed at two source-detector separations (0.4 and 1.2 mm), allowing for a relative calibration routine, whereas LDF spectra are assessed at 1.2 mm in the same fiber-optic probe. Data are analyzed using nonlinear optimization in an inverse Monte Carlo technique by applying an adaptive multilayered tissue model based on geometrical, scattering, and absorbing properties, as well as RBC flow-speed information. Simulations of 250 tissue-like models including up to 2000 individual blood vessels were used to evaluate the method. The absolute root mean square (RMS) deviation between estimated and true oxygenation was 4.1 percentage units, whereas the relative RMS deviations for the RBC tissue fraction and perfusion were 19% and 23%, respectively. Examples of in vivo measurements on forearm and foot during common provocations are presented. The method offers several advantages such as simultaneous quantification of RBC tissue fraction and oxygenation and perfusion from the same, predictable, sampling volume. The perfusion estimate is speed resolved, absolute (% RBC×mm/s), and more accurate due to the combination with DRS.

  16. Examining the impact of multi-layer graphene using cellular and amphibian models

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Mouchet, Florence; Cadarsi, Stéphanie; Janowska, Izabela; Russier, Julie; Ménard-Moyon, Cécilia; Risuleo, Gianfranco; Soula, Brigitte; Galibert, Anne-Marie; Flahaut, Emmanuel; Pinelli, Eric; Gauthier, Laury; Bianco, Alberto

    2016-06-01

    In the last few years, graphene has been defined as the revolutionary material showing an incredible expansion in industrial applications. Different graphene forms have been applied in several contexts, spreading from energy technologies and electronics to food and agriculture technologies. Graphene showed promises also in the biomedical field. Hopeful results have been already obtained in diagnostic, drug delivery, tissue regeneration and photothermal cancer ablation. In view of the enormous development of graphene-based technologies, a careful assessment of its impact on health and environment is demanded. It is evident how investigating the graphene toxicity is of fundamental importance in the context of medical purposes. On the other hand, the nanomaterial present in the environment, likely to be generated all along the industrial life-cycle, may have harmful effects on living organisms. In the present work, an important contribution on the impact of multi-layer graphene (MLG) on health and environment is given by using a multifaceted approach. For the first purpose, the effect of the material on two mammalian cell models was assessed. Key cytotoxicity parameters were considered such as cell viability and inflammatory response induction. This was combined with an evaluation of MLG toxicity towards Xenopus laevis, used as both in vivo and environmental model organism.

  17. A mathematical simulation approach to testing innovative models of dental education.

    PubMed

    Tennant, Marc; Kruger, Estie

    2010-03-01

    A combination of the increasing costs associated with providing a complex clinical program and an ever-reducing education-based income finds dental schools throughout Australia continuing to face serious financial risk. Even more important is the growing workforce crisis in academic staffing faced in almost all dental schools as the impact of the widening gap between private practice incomes and academic remuneration takes effect. This study developed a model of core variables and their relationship that was then transformed into a mathematical simulation tool that can be applied to test various scenarios and variable changes. The simulation model was tested against a theoretical dental education arrangement and found that this arrangement was a commercially viable pathway for new providers to enter the dental education market. This type of mathematical simulation approach is an important technique for analysis of the complex financial and operational management of modern dental schools.

  18. Achieving student diversity in dental schools: a model that works.

    PubMed

    Lacy, Ernestine S; McCann, Ann L; Miller, Barbara H; Solomon, Eric; Reuben, Jayne S

    2012-05-01

    It is well known that there is a large disparity between the proportions of African Americans, Hispanics, and American Indians in the general U.S. population and in the nation's dental profession. While these underrepresented minorities (URMs) together make up almost 30 percent of the population, they comprise only about 6 percent of U.S. dentists. For years, the American Dental Education Association has been diligently working with U.S. dental schools to reduce this disparity by increasing the diversity of their student bodies. However, with approximately 13 percent of first-year dental students coming from URM groups, the proportion of URM students entering dental school continues to remain significantly below that of the general population. Diversifying the dental profession is important for improving access to care for underrepresented groups, and student diversity provides better educational experiences for all students. Texas A&M Health Science Center Baylor College of Dentistry's strategy for increasing the number of URM dentists was to create a series of initiatives that together form a successful comprehensive program addressing students' awareness of and attraction to a dental career, academic enrichment, admissions, and graduation. The cumulative impact of this program is that the college enrolled greater numbers and proportions of URM students than any other non-minority U.S. dental school from 2006 to 2009. This article describes the program that led to these successes.

  19. Use and Application of Structural Models in Dental Education Research.

    ERIC Educational Resources Information Center

    Potter, Rosario H. Yap; McDonald, Ralph E.

    1985-01-01

    Latent abilities of dental students were analyzed as causes and professional achievements as effects, with preadmission performances as indicators of latent abilities. The results demonstrate that structural analysis focuses on the direct impact of the quality of dental school education. (Author/MLW)

  20. A Multi-layer Radiation Model for Urban Neighbourhoods with Trees

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Christen, A.; Martilli, A.; Oke, T. R.

    2014-04-01

    A neighbourhood-scale multi-layer urban canopy model of shortwave and longwave radiation exchange that explicitly includes the radiative effects of tall vegetation (trees) is presented. Tree foliage is permitted both between and above buildings, and mutual shading, emission and reflection between buildings and trees are included. The basic geometry is a two-dimensional canyon with leaf area density profiles and probabilistic variation of building height. Furthermore, the model accounts for three-dimensional path lengths through the foliage. Ray tracing determines the receipt of direct shortwave irradiance by building and foliage elements. View factors for longwave and shortwave diffuse radiation exchange are computed once at the start of the simulation using a Monte Carlo ray tracing approach; for subsequent model timesteps, matrix inversion rapidly solves infinite reflections and interception of emitted longwave between all elements. The model is designed to simulate any combination of shortwave and longwave radiation frequency bands, and to be portable to any neighbourhood-scale urban canopy geometry based on the urban canyon. Additionally, the model is sufficiently flexible to represent forest and forest-clearing scenarios. Model sensitivity tests demonstrate the model is robust and computationally feasible, and highlight the importance of vertical resolution to the performance of urban canopy radiation models. Full model evaluation is limited by the paucity of within-canyon radiation measurements in urban neighbourhoods with trees. Where appropriate model components are tested against analytic relations and results from an independent urban radiation transfer model. Furthermore, system response tests demonstrate the ability of the model to realistically distribute shortwave radiation among urban elements as a function of built form, solar angle and tree foliage height, density and clumping. Separate modelling of photosynthetically-active and near

  1. Recent Advances in Modeling Stress Distributions in Multilayers Subjected to Biaxial Flexure Tests

    SciTech Connect

    Hsueh, Chun-Hway; Luttrell, Claire Roberta

    2007-01-01

    Although biaxial flexure tests have been used extensively to measure the strength of brittle materials, the tests and analyses have been limited to materials of uniform properties. Despite the increasing applications of multilayered structures, characterization of their strengths using biaxial flexure tests has been difficult because the analytical description of the strength-fracture load relation for multilayers subjected to biaxial flexure tests is unavailable. The newly derived closed-form solutions for the elastic stress distributions in multilayered discs subjected to ring-on-ring tests are summarized here. These solutions are obtained by (i) finding the correlation between monolayered and multilayered discs subjected to biaxial bending moment and (ii) conversion from the existing solutions for monolayers. Using this methodology, the closed-form solutions for multilayers subjected to other biaxial flexure tests can also be obtained. Finite element results for ring-on-rings tests performed on (i) porcelain/zirconia bilayered discs and (ii) solid oxide fuel cells trilayered discs are also presented to validate the closed-form solutions. The closed-form solutions hence provide a basis for evaluating biaxial strength of multilayers using biaxial flexure tests.

  2. Modeling and finite element analysis of the nonstationary action on a multi-layer poroelastic seam with nonlinear geomechanical properties

    SciTech Connect

    Nasedkina, A.A.; Nasedkin, A.V.; Iovane, G.

    2009-07-15

    The paper discusses modeling of a multi-layer coal seam under hydrodynamic action based on the coupled equations of poroelasticity and filtration with the nonlinear relationship of permeability and porous pressure. The calculations by the finite element method use correspondence between the poroelasticity and thermoelasticity equations. The influence of input data on the size of a degassing hole area is analyzed for the couple problem and pure filtration problem.

  3. Model independent x-ray standing wave analysis of periodic multilayer structures

    SciTech Connect

    Yakunin, S. N.; Pashaev, E. M.; Subbotin, I. A.; Makhotkin, I. A.; Kruijs, R. W. E. van de; Zoethout, E.; Chuev, M. A.; Louis, E.; Seregin, S. Yu.; Novikov, D. V.; Bijkerk, F.; Kovalchuk, M. V.

    2014-04-07

    We present a model independent approach for the analysis of X-ray fluorescence yield modulated by an X-ray standing wave (XSW), that allow a fast reconstruction of the atomic distribution function inside a sample without fitting procedure. The approach is based on the direct regularized solution of the system of linear equations that characterizes the fluorescence yield. The suggested technique was optimized for, but not limited to, the analysis of periodic layered structures where the XSW is formed under Bragg conditions. The developed approach was applied to the reconstruction of the atomic distribution function for LaN/BN multilayers with 50 periods of 43 Å thick layers. The object is especially difficult to analyze with traditional methods, as the estimated thickness of the interface region between the constituent materials is comparable to the individual layer thicknesses. However, using the suggested technique, it was possible to reconstruct width of the La atomic distribution showing that the La atoms stay localized within the LaN layers and interfaces and do not diffuse into the BN layer. The analysis of the reconstructed profiles showed that the positions of the center of the atomic distribution function can be estimated with an accuracy of 1 Å.

  4. Dynamics of multilayer, multidisc viscoelastic rotor - An operator based higher order classical model

    NASA Astrophysics Data System (ADS)

    Roy, H.; Chandraker, S.; Dutt, J. K.; Roy, T.

    2016-05-01

    Inherent material damping plays a very significant role on dynamic behaviour of rotors. The material damping in a spinning rotor produces a tangential force along the whirl direction and its magnitude being proportional to spin speed. After certain value of spin speed, decided by the characteristic of the system, the tangential force becomes strong enough to throw the rotor centre out of the whirl orbit by inflating it progressively. This leads to destabilization of the system and corresponding speed is known as stability limit of spin speed. Stability limit of spin speed for Jeffcott rotor, by using viscous form of material damping model is straight forward and has been reported by several researchers, however the same analysis for viscoelastic material characteristics is not reported much. This analysis is very relevant for industrial requirements to replace bulky and heavy metal rotor by light but strong rotors. This is achieved either by reinforcing fibre or multi layering arrangements. Both of which are represented by viscoelastic constitutive behaviour. This paper gives mathematical derivation of equations of motion for multi-disc, multi-layered rotor-shaft-system. Both lumped mass and discretized approach (finite element) are presented here mathematically and numerical simulation results are compared. The lumped mass approach gives a concise yet acceptable accuracy of the results.

  5. Simulations of the Peregrine Breather with a Multi-Layer Non-Hydrostatic Model

    NASA Astrophysics Data System (ADS)

    Alberello, Alberto; Vyzikas, Thomas; Chabchoub, Amin; Toffoli, Alessandro

    2017-04-01

    In ocean engineering, wave focusing techniques are routinely adopted to deterministically reproduce rogue waves in numerical and physical wave experiments. The nonlinear Schrödinger Equation (NLSE), that accounts for the nonlinear dynamical evolution of a wave envelope, accurately describes the physical mechanism leading to the formation of rogue waves in the ocean. Here, we use the Peregrine breather solution of the NLSE to generate a doubly-localised rogue wave, i.e. one single extreme event at a specific time and position. A comparison is performed to validate numerical simulations with physical experiments. The physical experiments have been conducted in the Extreme Air-Sea Interaction (EASI) facility at The University of Melbourne, while numerical simulations have been performed in a nonlinear multi-layer numerical wave tank (NWT), designed using the non-hydrostatic model SWASH. We discuss the performance of SWASH with respect to number of layers, initial boundary conditions, time-stepping technique and numerical propagation schemes via a thorough convergence study. We show that the propagation of steep non-breaking wave in a high-resolution NWT in SWASH is in good agreement with the surface elevation, measured in the physical experiments. Satisfactory agreement is achieved for computational time, that is considerably lower than the one required by traditional Navier-Stokes simulations. This opens the possibility to investigate the propagation of extreme waves over complicated bathymetries as well as their interaction with marine structures

  6. Reconstruction of Layer Densities in a Multilayer Snowpack using a Bayesian Approach to Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Aguayo, M.; Marshall, H.; McNamara, J. P.; Mead, J.; Flores, A. N.

    2013-12-01

    Estimation of snowpack parameters such as depth, density and grain structure is a central focus of hydrology in seasonally snow-covered lands. These parameters are directly estimated by field observations, indirectly estimated from other parameters using statistical correlations, or simulated with a model. Difficulty in sampling thin layers and uncertainty in the transition between layers can cause significant uncertainty in measurements of these parameters. Snow density is one of the most important parameters to measure because it is strictly related with snow water content, an important component of the global water balance. We develop a mathematical framework to estimate snow density from measurements of temperature and thickness of snowpack layers over a particular time period, in conjunction with a physics-based model of snowpack evolution. We formulate a Bayesian approach to estimate the snowpack density profile, using a full range of possible simulations that incorporate key sources of uncertainty to build in prior snowpack knowledge. The posterior probability density function of the snow density, conditioned on snowpack temperature measurements, is computed by multiplying the likelihoods and assumed prior distribution function. Random sampling is used to generate a range of densities with same probability when prior uniform probability function is assumed. A posterior probability density function calculated directly via Bayes' theorem is used to calculate the probability of every sample generated. The forward model is a 1D, multilayer snow energy and mass balance model, which solves for snow temperature, density, and liquid water content on a finite element mesh. The surface and ground temperature data of snowpack (boundary conditions), are provided by the Center for Snow and Avalanche Studies (CSAS), Silverton CO, from snow pits made at Swamp Angel and Senator Beck study plot sites. Standard errors between field observations and results computed denote the

  7. Multi-layer coarse-graining polarization model for treating electrostatic interactions of solvated α-conotoxin peptides

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Ma, Jing

    2012-04-01

    A multi-layer coarse-graining (CG) model is presented for treating the electrostatic interactions of solvated α-conotoxin peptides. According to the sensitivity to the electrostatic environment, a hybrid set of electrostatic parameters, such as secondary-structure- and residue-based dipoles, and atom-centered partial charges, are adopted. For the polarization "inert" secondary-structures and residues, the fragment dipole moments are distributed within narrow ranges with the magnitude close to zero. The coarse-graining fragment dipoles are parameterized from a large training set (10 000 configurations) to reproduce the electrostatic features of molecular fragments. In contrast, the electrostatically "sensitive" atoms exhibit large fluctuations of charges with the varied environments. The environment-dependent variable charges are updated in each energetic calculation. The electrostatic interaction of the whole chemical system is hence partitioned into several sub-terms coming from the fragment dipole-dipole, (fragment) dipole-(atom) charge, and atom charge-charge interactions. A large number of test calculations on the relative energies of cyclo-peptide conformers have demonstrated that the multi-layer CG electrostatic model presents better performance than the non-polarized force fields, in comparison with the density-functional theory and the fully polarized force field model. The selection of CG fragment centers, mass or geometric center, has little influence on the fragment-based dipole-dipole interactions. The multi-layer partition of electrostatic polarization is expected to be applied to many biologically interesting and complicated phenomena.

  8. A one-dimensional numerical model of acoustic wave propagation in a multilayered structure of a resistance spot weld.

    PubMed

    Chertov, Andriy M; Maev, Roman Gr

    2005-10-01

    A one-dimensional model of acoustic wave propagation in a multilayered structure of a spot weld is developed. The inhomogeneity of the material properties due to the thermal inhomogeneity is included in the equation of motion. The model enables us to deal with arbitrary spatial distributions of Lamé constants and density. The model allows analysis of travel time, multiple reflections, and interference in a given geometry. Use of this model could provide information to help predict behavior of the waves in the transmission (reflection) mode at different plate thicknesses and welding settings.

  9. Dental Abnormalities in a Mouse Model for Craniometaphyseal Dysplasia

    PubMed Central

    Dutra, E.H.; Chen, I.-P.; Reichenberger, E.J.

    2012-01-01

    Mice carrying a knock-in mutation (Phe377del) in the Ank gene replicate many skeletal characteristics of human craniometaphyseal dysplasia, including hyperostotic mandibles. AnkKI/KI mice have normal morphology of erupted molars and incisors but excessive cementum deposition with increased numbers of Ibsp- and Dmp1-positive cells on root surfaces. The cervical loops of adult AnkKI/KI lower incisors are at the level of the third molars, while they are close to the mandibular foramen in Ank+/+ mice. Furthermore, AnkKI/KI incisors show decreased eruption rates, decreased proliferation of odontoblast precursors, and increased cell apoptosis in the stellate reticulum. However, their capability for continuous elongation is not compromised. Quantification of TRAP-positive cells in the apical ends of AnkKI/KI incisors revealed decreased osteoclast numbers and osteoclast surfaces. Bisphosphonate injections in Ank+/+ mice replicate the AnkKI/KI incisor phenotype. These results and a comparison with the dental phenotype of Ank loss-of-function mouse models suggest that increased cementum thickness may be caused by decreased extracellular PPi levels and that the incisor phenotype is likely due to hyperostosis of mandibles, which distinguishes AnkKI/KI mice from the other Ank mouse models. PMID:23160629

  10. A model-based, Bayesian characterization of subsurface corrosion parameters in composite multi-layered structures

    NASA Astrophysics Data System (ADS)

    Reed, Heather; Hoppe, Wally

    2016-02-01

    Thermographic NDE approaches to detect subsurface corrosion defects of multi-layered structures with composite top layers have proven difficult due to the fact that the thermal conductivity of composite materials is larger in lateral directions (the plane parallel to the surface) than in the through-thickness directions. This causes heat to dissipate faster laterally than through the thickness when a heat source is applied to the surface of the structure, making it difficult for subsurface damage effects to manifest on the surface, where the heat source and inspection typically occur. To address this, a heat induction approach is presented that excites the damaged, metallic bottom layer directly by Joule heating, resulting in more observable damage effects on the surface than what could be expected for traditional thermographic methods on this type of structure. To characterize the subsurface damage parameters (defect location, diameter, and depth), Bayesian inversion of numerically-simulated noisy data, using a high-fidelity, coupled electromagnetic-heat transfer model is employed. Stochastic estimation methods such as Markov chain Monte Carlo (MCMC) allow for quantification of uncertainty surrounding the damage parameters, which is important as this directly translates into uncertainty surrounding the component reliability. However, because thousands of high-fidelity finite element models are computationally costly to evaluate, as is typical in most MCMC methods, the use of Bayesian inversion is rarely feasible in real-time. To address this, a projection-based reduced order modeling (ROM) tracking and interpolation scheme is formulated within the MCMC sampling method for the multi-physics problem, resulting in significant speedup of solution time with little loss of accuracy, enabling near-real time stochastic estimation of damage.

  11. Multilayer Perceptrons for Classification

    DTIC Science & Technology

    1992-03-01

    retention/ separation rates fu, input to force projection models. The second application concerns the classification of Armor Piercing Incendiary (API...Air Force pilot reten- tion/ separation rates for input to force projection models. The second application concerns the classification of Armor...methodologies for predicting pilot retention/ separation rates for input to personnel inventory projection models were e::plored. Specifically, the multilayer

  12. An Evaluation of in Vivo Desensitization and Video Modeling to Increase Compliance with Dental Procedures in Persons with Mental Retardation

    ERIC Educational Resources Information Center

    Conyers, Carole; Miltenberger, Raymond G.; Peterson, Blake; Gubin, Amber; Jurgens, Mandy; Selders, Andrew; Dickinson, Jessica; Barenz, Rebecca

    2004-01-01

    Fear of dental procedures deters many individuals with mental retardation from accepting dental treatment. This study was conducted to assess the effectiveness of two procedures, in vivo desensitization and video modeling, for increasing compliance with dental procedures in participants with severe or profound mental retardation. Desensitization…

  13. Modelling the Longevity of Dental Restorations by means of a CBR System

    PubMed Central

    Aliaga, Ignacio J.; Vera, Vicente; García, Alvaro E.

    2015-01-01

    The lifespan of dental restorations is limited. Longevity depends on the material used and the different characteristics of the dental piece. However, it is not always the case that the best and longest lasting material is used since patients may prefer different treatments according to how noticeable the material is. Over the last 100 years, the most commonly used material has been silver amalgam, which, while very durable, is somewhat aesthetically displeasing. Our study is based on the collection of data from the charts, notes, and radiographic information of restorative treatments performed by Dr. Vera in 1993, the analysis of the information by computer artificial intelligence to determine the most appropriate restoration, and the monitoring of the evolution of the dental restoration. The data will be treated confidentially according to the Organic Law 15/1999 on 13 December on the Protection of Personal Data. This paper also presents a clustering technique capable of identifying the most significant cases with which to instantiate the case-base. In order to classify the cases, a mixture of experts is used which incorporates a Bayesian network and a multilayer perceptron; the combination of both classifiers is performed with a neural network. PMID:25866792

  14. Modelling the longevity of dental restorations by means of a CBR system.

    PubMed

    Aliaga, Ignacio J; Vera, Vicente; De Paz, Juan F; García, Alvaro E; Mohamad, Mohd Saberi

    2015-01-01

    The lifespan of dental restorations is limited. Longevity depends on the material used and the different characteristics of the dental piece. However, it is not always the case that the best and longest lasting material is used since patients may prefer different treatments according to how noticeable the material is. Over the last 100 years, the most commonly used material has been silver amalgam, which, while very durable, is somewhat aesthetically displeasing. Our study is based on the collection of data from the charts, notes, and radiographic information of restorative treatments performed by Dr. Vera in 1993, the analysis of the information by computer artificial intelligence to determine the most appropriate restoration, and the monitoring of the evolution of the dental restoration. The data will be treated confidentially according to the Organic Law 15/1999 on 13 December on the Protection of Personal Data. This paper also presents a clustering technique capable of identifying the most significant cases with which to instantiate the case-base. In order to classify the cases, a mixture of experts is used which incorporates a Bayesian network and a multilayer perceptron; the combination of both classifiers is performed with a neural network.

  15. A Fully Self-consistent Multi-layered Model of Jupiter

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-08-01

    We construct a three-dimensional, fully self-consistent, multi-layered, non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region, and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. We also assume that the location of the molecular-metallic interface is characterized by its equatorial radius {{HR}}e, where R e is the equatorial radius of Jupiter at the 1 bar pressure level and H is treated as a parameter of the model. We solve the relevant mathematical problem via a perturbation approach. The leading-order problem determines the density, size, and shape of the inner core, the irregular shape of the 1 bar pressure level, and the internal structure of Jupiter that accounts for the full effect of rotational distortion, but without the influence of the zonal winds; the next-order problem determines the variation of the gravitational field solely caused by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. The leading-order solution produces the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J 2 of Jupiter within their error bars; it also yields the coefficients J 4 and J 6 within about 5% accuracy, the core equatorial radius 0.09{R}e and the core density {ρ }c=2.0× {10}4 {{kg}} {{{m}}}-3 corresponding to 3.73 Earth masses; the next-order solution yields the wind-induced variation of the zonal gravitational coefficients of Jupiter.

  16. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    NASA Astrophysics Data System (ADS)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  17. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Fan, Ting-Bo; Liu, Zhen-Bo; Zhang, Zhe; Zhang, Dong; Gong, Xiu-Fen

    2009-08-01

    A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.

  18. Friendship Network and Dental Brushing Behavior among Middle School Students: An Agent Based Modeling Approach

    PubMed Central

    Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman

    2017-01-01

    By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals’ dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network’s nodes’ in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students’ brushing frequency was demonstrated by simulation results. PMID:28103260

  19. Friendship Network and Dental Brushing Behavior among Middle School Students: An Agent Based Modeling Approach.

    PubMed

    Sadeghipour, Maryam; Khoshnevisan, Mohammad Hossein; Jafari, Afshin; Shariatpanahi, Seyed Peyman

    2017-01-01

    By using a standard questionnaire, the level of dental brushing frequency was assessed among 201 adolescent female middle school students in Tehran. The initial assessment was repeated after 5 months, in order to observe the dynamics in dental health behavior level. Logistic Regression model was used to evaluate the correlation among individuals' dental health behavior in their social network. A significant correlation on dental brushing habits was detected among groups of friends. This correlation was further spread over the network within the 5 months period. Moreover, it was identified that the average brushing level was improved within the 5 months period. Given that there was a significant correlation between social network's nodes' in-degree value, and brushing level, it was suggested that the observed improvement was partially due to more popularity of individuals with better tooth brushing habit. Agent Based Modeling (ABM) was used to demonstrate the dynamics of dental brushing frequency within a sample of friendship network. Two models with static and dynamic assumptions for the network structure were proposed. The model with dynamic network structure successfully described the dynamics of dental health behavior. Based on this model, on average, every 43 weeks a student changes her brushing habit due to learning from her friends. Finally, three training scenarios were tested by these models in order to evaluate their effectiveness. When training more popular students, considerable improvement in total students' brushing frequency was demonstrated by simulation results.

  20. [Pay for performance in dental care: A systematic narrative review of quality P4P models in dental care].

    PubMed

    Chenot, Regine

    2017-08-21

    Pay for performance (P4P) links reimbursement to the achievement of quality objectives. Experiences with P4P instruments and studies on their effects are available for the inpatient sector. A systematic narrative review brings together findings concerning the use and the effects of P4P, especially in dental care. A systematic literature search in PubMed and the Cochrane Library for reimbursement models using quality indicators provided 77 publications. Inclusion criteria were: year of publication not older than 2007, dental sector, models of quality-oriented remuneration, quality of care, quality indicators. 27 publications met the inclusion criteria and were evaluated with regard to the instruments and effects of P4P. The database search was supplemented by a free search on the Internet as well as a search in indicator databases and portals. The results of the included studies were extracted and summarized narratively. 27 studies were included in the review. Performance-oriented remuneration is an instrument of quality competition. In principle, P4P is embedded in an existing remuneration system, i.e., it does not occur in isolation. In the United States, England and Scandinavia, models are currently being tested for quality-oriented remuneration in dental care, based on quality indicators. The studies identified by the literature search are very heterogeneous and do not yield comparable endpoints. Difficulties are seen in the reproducibility of the quality of dental care with regard to certain characteristics which still have to be defined as quality-promoting properties. Risk selection cannot be ruled out, which may have an impact on structural quality (access to care, coordination). There were no long-term effects of P4P on the quality of care. In the short and medium term, adverse effects on the participants' motivation as well as shifting effects towards the private sector are described. A prerequisite for the functioning of P4P is the definition of clear

  1. Multilayer Perceptron applied to Data Assimilation for the Global FSU Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Cocke, S.; Cintra, R. S.; Campos Velho, H. F.

    2015-12-01

    The better quality of forecasts is given the more accurate of the initial conditions. Data assimilation (DA) is the process by which short-forecast and observations are combined to obtain an accurate representation of the state of the modeled system, e.g. is a technique to generate an initial condition to a weather forecasts. This paper shows the results of a DA technique using artificial neural networks (NN) to obtain the analysis to the atmospheric model for the Florida State University. The Local Ensemble Transform Kalman filter (LETKF) is implemented with Florida State University Global Spectral Model (FSUGSM). The ANN data assimilation is made to emulate the initial condition from LETKF to run the FSUGSM. LETKF is a version of Kalman filter with Monte-Carlo ensembles of short-term forecasts to solve the data assimilation problem. The model FSUGSM is a multilevel spectral primitive equation model with vertical sigma coordinates, at resolution T63L27. The data assimilation experiments are based in simulated observations data and FSUGSM 6-hours forecasts. For the NN data assimilation, we use Multilayer Perceptron (MLP) with supervised training algorithm where NN receives input vectors with their corresponding response from LETKF data assimilation. The surface pressure, absolute temperature, zonal component wind, meridional component wind and humidity results are presented. A self-configuration method finds the optimal NN and configures a set of 52 MLPs to DA experiment, referred as MLP-DA. A methodology developed with self-configuration using a meta-heuristic called the Multiple Particle Collision Algorithm to compute the optimal topology for NN. The MLP presents four input nodes, two nodes coordinates vector, one for the 6-hours forecast vector and one node for observation vector; one output node for the analysis vector results. The vector represents the values for one grid model point. The ANNs were trained with data from each month of 2001, 2002, and 2003. The

  2. Modelling dental implant extraction by pullout and torque procedures.

    PubMed

    Rittel, D; Dorogoy, A; Shemtov-Yona, K

    2017-07-01

    Dental implants extraction, achieved either by applying torque or pullout force, is used to estimate the bone-implant interfacial strength. A detailed description of the mechanical and physical aspects of the extraction process in the literature is still missing. This paper presents 3D nonlinear dynamic finite element simulations of a commercial implant extraction process from the mandible bone. Emphasis is put on the typical load-displacement and torque-angle relationships for various types of cortical and trabecular bone strengths. The simulations also study of the influence of the osseointegration level on those relationships. This is done by simulating implant extraction right after insertion when interfacial frictional contact exists between the implant and bone, and long after insertion, assuming that the implant is fully bonded to the bone. The model does not include a separate representation and model of the interfacial layer for which available data is limited. The obtained relationships show that the higher the strength of the trabecular bone the higher the peak extraction force, while for application of torque, it is the cortical bone which might dictate the peak torque value. Information on the relative strength contrast of the cortical and trabecular components, as well as the progressive nature of the damage evolution, can be revealed from the obtained relations. It is shown that full osseointegration might multiply the peak and average load values by a factor 3-12 although the calculated work of extraction varies only by a factor of 1.5. From a quantitative point of view, it is suggested that, as an alternative to reporting peak load or torque values, an average value derived from the extraction work be used to better characterize the bone-implant interfacial strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transient thermal behavior of multilayer media: Modeling and application to stratified moulds

    NASA Astrophysics Data System (ADS)

    Lazard, M.

    2006-07-01

    Transient and steady-state heat transfer in multilayer media is investigated by the thermal quadrupole method. A semi-analytical solution is proposed for the cases of layers parallel or orthogonal to the main heat-flux direction. The principal application is the study of the effect of the brazing metal used in stratified steel moulds.

  4. Implementation of a 3d numerical model of a folded multilayer carbonate aquifer

    NASA Astrophysics Data System (ADS)

    Di Salvo, Cristina; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Preziosi, Elisabetta

    2016-04-01

    The main objective of this research is to present a case study of the numerical model implementation of a complex carbonate, structurally folded aquifer, with a finite difference, porous equivalent model. The case study aquifer (which extends over 235 km2 in the Apennine chain, Central Italy) provides a long term average of 3.5 m3/s of good quality groundwater to the surface river network, sustaining the minimum vital flow, and it is planned to be exploited in the next years for public water supply. In the downstream part of the river in the study area, a "Site of Community Importance" include the Nera River for its valuable aquatic fauna. However, the possible negative effects of the foreseen exploitation on groundwater dependent ecosystems are a great concern and model grounded scenarios are needed. This multilayer aquifer was conceptualized as five hydrostratigraphic units: three main aquifers (the uppermost unconfined, the central and the deepest partly confined), are separated by two locally discontinuous aquitards. The Nera river cuts through the two upper aquifers and acts as the main natural sink for groundwater. An equivalent porous medium approach was chosen. The complex tectonic structure of the aquifer requires several steps in defining the conceptual model; the presence of strongly dipping layers with very heterogeneous hydraulic conductivity, results in different thicknesses of saturated portions. Aquifers can have both unconfined or confined zones; drying and rewetting must be allowed when considering recharge/discharge cycles. All these characteristics can be included in the conceptual and numerical model; however, being the number of flow and head target scarce, the over-parametrization of the model must be avoided. Following the principle of parsimony, three steady state numerical models were developed, starting from a simple model, and then adding complexity: 2D (single layer), QUASI -3D (with leackage term simulating flow through aquitards) and

  5. [Orthognathic surgery and stereolithographic models. A new technic of dental occlusion transfer].

    PubMed

    Taha, F; Testelin, S; Deschepper, B; Devauchelle, B

    2000-04-01

    Use of stereolithographic models in orthognathic surgery is limited by the difficult in considering the facial osteotomies and the dental occlusion at the same time. Different techniques allow the surgeon to perform the simulation using composite prototypes after including the dental casts on the models. These techniques require complex "stereotaxic" systems or a surgical approach before CT scanning in order to insert the reference screws. They cannot overcome the problem of mandibular movement during the CT session. Our technique is a simple way to include the dental casts in the stereolithographic model with high precision. This can easily be done in a maxillo-facial environment and does not require any further special knowledge other than that which can be aquired in a classical dental laboratory. The occlusion transfer is achieved with a silicon cast of the teeth and the bony structures of the sterolithographic model on which we include the plaster dental casts. The silicone cast of the dental occlusion can also be used to decrease the mandibular movement during CT scanning.

  6. Light distribution in plant canopies: A comparison between 1-D multi-layer modeling approach and 3-D ray tracing

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Yiwen, X.; Ellis, A.; Christensen, A.; Borkiewic, K.; Cox, D.; Hart, J.; Long, S.; Marshall-Colon, A.

    2016-12-01

    The distribution of absorbed solar radiation in the photosynthetically active region wavelength (PAR) within plant canopies plays a critical role in determining photosynthetic carbon uptake and its associated transpiration. The vertical distribution of leaf area, leaf angles, leaf absorptivity and reflectivity within the canopy, affect the distribution of PAR absorbed throughout the canopy. While the upper canopy sunlit leaves absorb most of the incoming PAR and hence contribute most towards total canopy carbon uptake, the lower canopy shaded leaves which receive mostly lower intensity diffuse PAR make significant contributions towards plant carbon uptake. Most detailed vegetation models use a 1-D vertical multi-layer approach to model the sunlight and shaded canopy leaf fractions, and quantify the direct and diffuse radiation absorbed by the respective leaf fractions. However, this approach is only applicable under canopy closure conditions, and furthermore it fails to accurately capture the effects of diurnally varying leaf angle distributions in some plant canopies. Here, we show by using a 3-D ray tracing model which uses an explicit 3-D canopy structure that enforces no conditions about canopy closure, that the effects of diurnal variation of canopy leaf angle distributions better match with observed data. Our comparative analysis performed on soybean crop canopies between 3-D ray tracing model and the multi-layer model shows that the distribution of absorbed direct PAR is not exponential while, the distribution of absorbed diffuse PAR radiation within plant canopies is exponential. These results show the multi-layer model to significantly over-predict canopy PAR absorbed, and in turn significantly overestimate photosynthetic carbon uptake by up to 13% and canopy transpiration by 7% under mid-day sun conditions as verified through our canopy chamber experiments. Our results indicate that current detailed 1-D multi-layer canopy radiation attenuation models

  7. A model of psychosocial work environment, stress, and satisfaction among dental students in Sweden.

    PubMed

    Schéle, Ingrid A; Hedman, Leif R; Hammarström, Anne

    2012-09-01

    Dental students are often described as stressed. The stress has, among other things, been connected to stressors in their psychosocial environment and inconsistent feedback. The hypothesis of this study was that the psychosocial work environment in dental schools leads to stress and affects the satisfaction of dental students and that tolerance for ambiguity shields students from stress. A web-based survey was sent to the entire Swedish dental student population in clinical training (N=805); the response rate was 40 percent. Structural equation modeling used in the analyses contains four main constructs: psychosocial work environment, tolerance for ambiguity, perceived stress, and student satisfaction (χ(2)=267.437, d.f.=174, p<0.001, Normed χ(2)=1.537, RMSEA= 0.041, CFI=0.98). Psychosocial work environment influenced both perceived stress and satisfaction: it accounted for almost all of the explained variance in perceived stress for women, while about half of the variance for the men was explained by tolerance for ambiguity. This study concluded that about 40 percent of the total perceived stress of these female dental students was related to their psychosocial work environment. Tolerance for ambiguity shielded men but not women from stress. An improved psychosocial work environment in dental schools would decrease the stress of both male and female dental students.

  8. First Principles Modeling of Metal/Ceramic Multilayer Nano-heterostructures.

    SciTech Connect

    Yadav, Satyesh K.; Wang, Jian; Misra, Amit; Liu, Xiang-Yang; Ramprasad, Ramamurthy

    2012-07-31

    Nanoscaled multilayer films composed of metals and ceramics have been explored for their potential applications as ductile, yet strong, materials. It is believed that at the nanoscale, the interfaces between the two materials constituting the multilayer assume an increasingly important role in determining the properties, as they comprise a more significant volume fraction of the multilayer with decreasing layer thickness. In this ab initio work, density functional theory was used to calculate the ideal shear strengths of pure Al, pure TiN, the Al/TiN interfacial region, and Al/TiN multilayers. The ideal shear strength of the Al/TiN interface was found to vary from very low (on the order of the ideal shear strength of Al) to very high (on the order of the ideal shear strength of TiN), depending on whether the TiN at the interface was Ti- or N-terminated, respectively. The results suggest that the shear properties of Al/TiN depend strongly on the chemistry of the interface, Al:N versus Al:Ti terminations. Nevertheless, for the Al/TiN multilayers, the ideal shear strength was limited by shear in the Al layer away from the interface, even when the individual layer thickness is less than a nanometer. Further we found an unusual structural rotation of bulk single-crystal Al under uniaxial compressive strains. It was found that under strains either along the <11-2> or the <111> directions, beyond a critical stress of about 13 GPa, the Al crystal can rotate through shear in the Shockley partial direction (i.e.,<11-2>) on the {l_brace}111{r_brace} plane, in an attempt to relieve internal stresses. This phenomenon reveals a possible mechanism leading to the onset of homogeneous dislocation nucleation in Al under high uniaxial compressions.

  9. Refinement of three-dimensional multilayer models of basins and crustal environments by inversion of gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Gallardo, Luis A.; Pérez-Flores, M. A.; Gómez-Treviño, E.

    2005-03-01

    The sensitivity of gravity and magnetic data to deep structures and the broad availability of regional data sets and surveys of high resolution make them suitable for determining detailed three-dimensional (3D) models of the subsurface. However, the sole consideration of gravity and magnetic information cannot properly resolve heterogeneous 3D environments. Advocated to solve this problem, we present an automated refinement technique for three-dimensional multilayer models as conditioned by gravity and magnetic data and by meaningful geometrical and physical constraints. We construct our model by an aggregate of rectangular prisms and aim to estimate their bottom depths, which define the geological layers. We summarize mathematically our concept of refinement in an objective function that includes the misfit to the data, the similitude to an a priori geological-geophysical model, and the smoothness of the relief of the layers. Importantly, our objective function also includes inequality constraints that prevent the superposition of layers and integrate the surface and borehole geology with the multilayer deep model. The objective function is solved using quadratic programming in a stable iterative scheme. The resulting algorithm is tested on synthetic data and applied to crustal and sedimentary basin environments from southern Baja California, Mexico. The assimilation of the geological and geometrical constraints to the inversion process produces models that correlate with the surface geology and reveal the three-dimensional features of the subsurface.

  10. Model study of the effect of pore structure and condensation on multilayer adsorbate transport in porous media.

    PubMed

    Papadopoulos, George K; Petropoulos, John H

    2007-12-18

    A single-pore model approach to multilayer adsorbate transport in mesoporous media, previously shown to be capable of interpreting the observed behavior of relative vapor permeability PHs/PHL (or of the corresponding surface diffusion coefficient Ds), has been incorporated in a model pore network. The resulting more sophisticated model can simulate realistically the effect on PHs/PHL or Ds (i) of salient structural features of the porous medium (notably pore size dispersion and network connectivity) and (ii) of vapor condensation, which inevitably accompanies multilayer adsorbate transport in reality. An extensive generic parametric study of these effects has been performed on this basis. The results indicate that the aforementioned effects are ordinarily unlikely to induce substantial deviations of observed PHs/PHL behavior from the single-pore model benchmark. Thus, the utility of this simple model as a good basis for data analysis is confirmed, while the network model offers the possibility of exploiting external structural and other available information for a more refined interpretation of PHs/PHL behavior in particular mesoporous solid-vapor systems.

  11. Evaluating components of dental care utilization among adults with diabetes and matched controls via hurdle models

    PubMed Central

    2012-01-01

    Background About one-third of adults with diabetes have severe oral complications. However, limited previous research has investigated dental care utilization associated with diabetes. This project had two purposes: to develop a methodology to estimate dental care utilization using claims data and to use this methodology to compare utilization of dental care between adults with and without diabetes. Methods Data included secondary enrollment and demographic data from Washington Dental Service (WDS) and Group Health Cooperative (GH), clinical data from GH, and dental-utilization data from WDS claims during 2002–2006. Dental and medical records from WDS and GH were linked for enrolees continuously and dually insured during the study. We employed hurdle models in a quasi-experimental setting to assess differences between adults with and without diabetes in 5-year cumulative utilization of dental services. Propensity score matching adjusted for differences in baseline covariates between the two groups. Results We found that adults with diabetes had lower odds of visiting a dentist (OR = 0.74, p < 0.001). Among those with a dental visit, diabetes patients had lower odds of receiving prophylaxes (OR = 0.77), fillings (OR = 0.80) and crowns (OR = 0.84) (p < 0.005 for all) and higher odds of receiving periodontal maintenance (OR = 1.24), non-surgical periodontal procedures (OR = 1.30), extractions (OR = 1.38) and removable prosthetics (OR = 1.36) (p < 0.001 for all). Conclusions Patients with diabetes are less likely to use dental services. Those who do are less likely to use preventive care and more likely to receive periodontal care and tooth-extractions. Future research should address the possible effectiveness of additional prevention in reducing subsequent severe oral disease in patients with diabetes. PMID:22776352

  12. A model for a children's dental health carnival.

    PubMed

    Harn, S D; Kuster, C G

    1991-01-01

    A children's dental health carnival can yield many benefits. Some of these are: The general public becomes better informed regarding the importance of dentistry for children; children are presented with preventive-dentistry information in an entertaining environment; and students gain experience in organizing and participating in a community service project. The Children's Dental Health Carnivals have provided the children of Lincoln, Nebraska and the University of Nebraska Medical Center College of Dentistry with these benefits. The authors would be pleased to share additional information with interested parties.

  13. Towards automated 3D finite element modeling of direct fiber reinforced composite dental bridge.

    PubMed

    Li, Wei; Swain, Michael V; Li, Qing; Steven, Grant P

    2005-07-01

    An automated 3D finite element (FE) modeling procedure for direct fiber reinforced dental bridge is established on the basis of computer tomography (CT) scan data. The model presented herein represents a two-unit anterior cantilever bridge that includes a maxillary right incisor as an abutment and a maxillary left incisor as a cantilever pontic bonded by adhesive and reinforced fibers. The study aims at gathering fundamental knowledge for design optimization of this type of innovative composite dental bridges. To promote the automatic level of numerical analysis and computational design of new dental biomaterials, this report pays particular attention to the mathematical modeling, mesh generation, and validation of numerical models. To assess the numerical accuracy and to validate the model established, a convergence test and experimental verification are also presented.

  14. Using a multi-layered transducer model to estimate the properties of paraffin wax deposited on steel.

    PubMed

    Rommetveit, Tarjei; Johansen, Tonni F; Johnsen, Roy

    2011-01-01

    When using ultrasound for detecting low impedance materials on the surface of high impedance materials, a major challenge is the contrast difference between the strong reverberations from the high impedance material and the weak echoes received from the low impedance material. The purpose of this work is to present the theoretical and experimental validation of an ultrasonic methodology for estimating the acoustical properties of paraffin wax on the surface of steel. The method is based on modeling and inversion of the complete electro-acoustic channel from the transmitted voltage over the active piezoelectric element, to the received voltage resulting from the acoustic reverberations in the multilayered structure. In the current work, two conceptually different models of the same multi-layer transducer structure attached to steel is developed and compared with measurements. A method is then suggested for suppressing the strong reverberations in steel, hence isolating the wax signals. This contrast enhancement method is fitted to the model of the structure, facilitating parameter inversion from the wax layer. The results show that the models agree well with measurements and that up to three parameters (travel time, impedance and attenuation) can be inverted from the wax simultaneously. Hence, given one of the three parameters, density, sound speed or thickness, the other two can be estimated in addition to the attenuation.

  15. Modelling ice layer formation using a preferential flow formulation in the physics based multi-layer SNOWPACK model

    NASA Astrophysics Data System (ADS)

    Wever, Nander; Würzer, Sebastian; Fierz, Charles; Lehning, Michael

    2016-04-01

    For physics based snow cover models, simulating the formation of dense ice layers inside the snowpack has been a long time challenge. In spite of their small vertical extend, the presence of ice lenses inside the snowpack can have a profound impact on vapor, heat and liquid water flow. These effects may ultimately influence processes on larger scales when, for example, looking at hydrological processes or wet snow avalanche formation. Also microwave emission signals from the snowpack are strongly influenced by the presence of ice layers. Recent laboratory experiments and modelling techniques of liquid water flow in snow have advanced the understanding of liquid water flow in snow, in particular the formation of preferential flow paths. We present a modelling approach in the one-dimensional, multi-layer snow cover model SNOWPACK for preferential flow that is based on a dual-domain approach (i.e., separation into a matrix flow and a preferential flow domain) and solving Richards equation for both. In recently published laboratory experiments, water ponding inside the snowpack has been identified to initiate preferential flow. Those studies also quantified the part of the snowpack involved in preferential flow as a function of grain size. By combining these concepts with an empirical function to determine refreezing of preferential flow water inside the snowpack, we are able to simulate preferential water flow in the model. We found that preferential flow paths arriving at a layer transition in the snowpack may lead to ponding conditions. Subsequent refreezing then may form dense ice layers (>700 kg/m3). We compare the simulations to 14 years of biweekly snow profiles made at the Weissfluhjoch study plot at 2540m altitude in the Eastern Swiss Alps. We show that we are able to reproduce several ice lenses that were observed in the field, whereas some profiles remain challenging to simulate.

  16. The development of a composite bone model for training on placement of dental implants

    PubMed Central

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-01-01

    Objectives It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. Methodology This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. Results The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. Conclusion The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane. PMID:26309434

  17. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    NASA Technical Reports Server (NTRS)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  18. Modelling the Flow Stress of Alloy 316L using a Multi-Layered Feed Forward Neural Network with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Abiriand Bhekisipho Twala, Olufunminiyi

    2017-08-01

    In this paper, a multilayer feedforward neural network with Bayesian regularization constitutive model is developed for alloy 316L during high strain rate and high temperature plastic deformation. The input variables are strain rate, temperature and strain while the output value is the flow stress of the material. The results show that the use of Bayesian regularized technique reduces the potential of overfitting and overtraining. The prediction quality of the model is thereby improved. The model predictions are in good agreement with experimental measurements. The measurement data used for the network training and model comparison were taken from relevant literature. The developed model is robust as it can be generalized to deformation conditions slightly below or above the training dataset.

  19. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    NASA Technical Reports Server (NTRS)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  20. New Dental Accreditation Standard on Critical Thinking: A Call for Learning Models, Outcomes, Assessments.

    PubMed

    Johnsen, David C; Williams, John N; Baughman, Pauletta Gay; Roesch, Darren M; Feldman, Cecile A

    2015-10-01

    This opinion article applauds the recent introduction of a new dental accreditation standard addressing critical thinking and problem-solving, but expresses a need for additional means for dental schools to demonstrate they are meeting the new standard because articulated outcomes, learning models, and assessments of competence are still being developed. Validated, research-based learning models are needed to define reference points against which schools can design and assess the education they provide to their students. This article presents one possible learning model for this purpose and calls for national experts from within and outside dental education to develop models that will help schools define outcomes and assess performance in educating their students to become practitioners who are effective critical thinkers and problem-solvers.

  1. Child's dental fear: cause related factors and the influence of audiovisual modeling.

    PubMed

    Mungara, Jayanthi; Injeti, Madhulika; Joseph, Elizabeth; Elangovan, Arun; Sakthivel, Rajendran; Selvaraju, Girija

    2013-01-01

    Delivery of effective dental treatment to a child patient requires thorough knowledge to recognize dental fear and its management by the application of behavioral management techniques. Children's Fear Survey Schedule - Dental Subscale (CFSS-DS) helps in identification of specific stimuli which provoke fear in children with regard to dental situation. Audiovisual modeling can be successfully used in pediatric dental practice. To assess the degree of fear provoked by various stimuli in the dental office and to evaluate the effect of audiovisual modeling on dental fear of children using CFSS-DS. Ninety children were divided equally into experimental (group I) and control (group II) groups and were assessed in two visits for their degree of fear and the effect of audiovisual modeling, with the help of CFSS-DS. The most fear-provoking stimulus for children was injection and the least was to open the mouth and having somebody look at them. There was no statistically significant difference in the overall mean CFSS-DS scores between the two groups during the initial session (P > 0.05). However, in the final session, a statistically significant difference was observed in the overall mean fear scores between the groups (P < 0.01). Significant improvement was seen in group I, while no significant change was noted in case of group II. Audiovisual modeling resulted in a significant reduction of overall fear as well as specific fear in relation to most of the items. A significant reduction of fear toward dentists, doctors in general, injections, being looked at, the sight, sounds, and act of the dentist drilling, and having the nurse clean their teeth was observed.

  2. An evaluation of in vivo desensitization and video modeling to increase compliance with dental procedures in persons with mental retardation.

    PubMed Central

    Conyers, Carole; Miltenberger, Raymond G; Peterson, Blake; Gubin, Amber; Jurgens, Mandy; Selders, Andrew; Dickinson, Jessica; Barenz, Rebecca

    2004-01-01

    Fear of dental procedures deters many individuals with mental retardation from accepting dental treatment. This study was conducted to assess the effectiveness of two procedures, in vivo desensitization and video modeling, for increasing compliance with dental procedures in participants with severe or profound mental retardation. Desensitization increased compliance for all 5 participants, whereas video modeling increased compliance for only 1 of 3 participants. PMID:15293644

  3. Empirical Modeling of Physiochemical Immune Response of Multilayer Zinc Oxide Nanomaterials under UV Exposure to Melanoma and Foreskin Fibroblasts

    NASA Astrophysics Data System (ADS)

    Fakhar-E-Alam, Muhammad; Akram, M. Waseem; Iqbal, Seemab; Alimgeer, K. S.; Atif, M.; Sultana, K.; Willander, M.; Wang, Zhiming M.

    2017-04-01

    Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.

  4. SSIC model: A multi-layer model for intervention of online rumors spreading

    NASA Astrophysics Data System (ADS)

    Tian, Ru-Ya; Zhang, Xue-Fu; Liu, Yi-Jun

    2015-06-01

    SIR model is a classical model to simulate rumor spreading, while the supernetwork is an effective tool for modeling complex systems. Based on the Opinion SuperNetwork involving Social Sub-network, Environmental Sub-network, Psychological Sub-network, and Viewpoint Sub-network, drawing from the modeling idea of SIR model, this paper designs super SIC model (SSIC model) and its evolution rules, and also analyzes intervention effects on public opinion of four elements of supernetwork, which are opinion agent, opinion environment, agent's psychology and viewpoint. Studies show that, the SSIC model based on supernetwork has effective intervention effects on rumor spreading. It is worth noting that (i) identifying rumor spreaders in Social Sub-network and isolating them can achieve desired intervention results, (ii) improving environmental information transparency so that the public knows as much information as possible to reduce the rumors is a feasible way to intervene, (iii) persuading wavering neutrals has better intervention effects than clarifying rumors already spread everywhere, so rumors should be intervened in properly in time by psychology counseling.

  5. Use of dental adhesives as modeler liquid of resin composites.

    PubMed

    Münchow, Eliseu Aldrighi; Sedrez-Porto, José Augusto; Piva, Evandro; Pereira-Cenci, Tatiana; Cenci, Maximiliano Sergio

    2016-04-01

    Resin adhesives (RA) have been applied between resin composite (RC) increments, but there is no consensus on the impact of this technique on the properties of the final restoration. This study evaluated the effect of the presence of RA between RC layers on physical properties, translucency and long-term color stability of the restorative material. Scotchbond™ Multi-Purpose (bond, 3M ESPE) and Adper™ Single Bond 2 (3M ESPE) were used as RA, and Filtek™ Z350 (3M ESPE) as RC. Specimens containing RA were prepared by applying 3 layers of the adhesive between 4 increments of RC; adhesive-free specimens were also used (control). Tests of water sorption and solubility, mechanical performance (microtensile cohesive strength, flexural strength, and flexural modulus, after immediate and long-term water storage), and translucency and color stability (after immediate and 1, 7, 90, and 180 days of water or wine storage) were performed. Scanning electron microscopy (SEM) images were also taken from the fractured specimens (flexural strength test). Data were analyzed using ANOVA and Tukey test (p<0.05). Scotchbond (SBMP) showed lower water sorption and solubility than the control (p<0.001), and an overall similar (p≥0.198, immediate tests) or higher (p≤0.019, long-term tests) mechanical performance. SBMP exhibited a rougher cross-sectional surface compared to the other groups. Translucency remained unaltered after 180 days of storage (p≥0.313), except for single bond that had increased translucency with wine storage (p<0.045). After 180 days, all groups changed color (p≤0.002), although more intensively when immersed in wine. The presence of RA within RC increments increased the physical stability of the material, being this effect more evident by using the hydrophobic unfilled adhesive resin (SBMP). This study is the first to show positive results from the use of resin adhesives as modeler liquid of resin composite, which is common in clinical practice. Copyright

  6. A Model for Dental Practice in the 21st Century

    PubMed Central

    Eaves, Kayleigh

    2011-01-01

    The dental profession is responsible for the prevention, diagnosis, and treatment of diseases and disorders of the oral cavity and related structures. Although the majority of the US population receives excellent oral health care, a significant portion is unable to access regular care. Along with proposals to develop midlevel providers, the scope of practice for dentists needs to be reconceptualized and expanded. A broad number of primary health care activities may be conducted in the dental office, such as screening for hypertension, diabetes mellitus, and dermatopathology; smoking prevention and cessation activities; and obesity interventions. More than 70% of adults saw a dentist in the past year, which represents an unrealized opportunity to improve both oral health and general health. PMID:21852631

  7. Multi-layer photonics modeling framework for the design, analysis, and optimization of devices, links, and networks

    NASA Astrophysics Data System (ADS)

    Richter, André; Louchet, Hadrien; Arellano, Cristina; Farina, Jim; Koltchanov, Igor

    2011-01-01

    Requirements on photonics modeling vary significantly when aiming to design, analyze and optimize a single device, a complete transmission link or a complex network. Depending on the task at hand, different levels of detail for emulating the underlying physical characteristics and signal interactions are necessary. We present a multi-layer photonics modeling framework that addresses the different design challenges of devices, links and networks. Our discussed methodology is based on flexible optical signal representations, equipment models ranging from very detailed to high-level parametric, sophisticated numerical algorithms and means for automated parameter and technology variation and optimization. We discuss applications such as the detailed modeling on photonics integrated circuit level, the characterization of a high-speed transmission link utilizing multilevel modulation and coherent detection, the parametric analysis of transmission links and network dynamics, and the cost-optimized placement of equipment in moderately complex networks.

  8. 2-1/2-D electromagnetic modeling of nodular defects in high-power multilayer optical coatings

    SciTech Connect

    Molau, N.E.; Brand, H.R.; Kozlowski, M.R.; Shang, C.C.

    1996-07-01

    Advances in the design and production of high damage threshold optical coatings for use in mirrors and polarizers have been driven by the design requirements of high-power laser systems such as the proposed 1.8-MJ National Ignition Facility (NIF) and the prototype 12- kJ Beamlet laser system. The present design of the NIF will include 192 polarizers and more than 1100 mirrors. Currently, the material system of choice for high-power multilayer optical coatings with high damage threshold applications near 1.06 {mu}m are e-beam deposited HfO{sub 2}/Si0{sub 2} coatings. However, the optical performance and laser damage thresholds of these coatings are limited by micron-scale defects and insufficient control over layer thickness. In this report, we will discuss the results of our 2-1/2-D finite-element time- domain (FDTD) EM modeling effort for rotationally-symmetric nodular defects in multilayer dielectric HR coatings. We have added a new diagnostic to the 2-1/2-D FDTD EM code, AMOS, that enables us to calculate the peak steady-state electric fields throughout a 2-D planar region containing a 2-D r-z cross-section of the axisymmetric nodular defect and surrounding multilayer dielectric stack. We have also generated a series of design curves to identify the range of loss tangents for Si0{sub 2} and HfO{sub 2} consistent with the experimentally determined power loss of the HR coatings. In addition, we have developed several methods to provide coupling between the EM results and the thermal-mechanical simulation effort.

  9. The Embedded Counseling Model: An Application to Dental Students.

    PubMed

    Adams, David Francis

    2017-01-01

    Prior research has suggested that dental students experience high rates of stress, anxiety, and mood concerns, which have been linked to poor academic performance, health concerns, and substance abuse. The aim of this study was to evaluate the impact of an embedded counseling office at the University of Iowa College of Dentistry & Dental Clinics in its first three academic semesters. Data were gathered from students attending appointments, and two inventories were used to monitor students' counseling progress and gather psychological outcomes data: the Counseling Center Assessment of Psychological Symptoms-34 (CCAPS-34) and the Outcome Rating Scale (ORS). In the three semesters, 55 students attended 251 counseling appointments, with an average of 4.5 appointments per student. Their presenting psychological concerns included academic concerns, time management, test anxiety, study skills, low self-esteem, self-care, interpersonal conflicts, anxiety, depression, stress management, sexual concerns, substance abuse, eating/body image concerns, work-life balance, and financial issues. The CCAPS-34 data showed that, at initial clinical assessment, students experienced moderate levels of depression, generalized anxiety, social anxiety, academic distress, and overall psychological distress; 45 (82%) showed clinically significant symptoms on at least one CCAPS-34 subscale. The ORS data further showed that the students entered counseling experiencing high levels of psychological distress. A positive relationship was found between number of counseling appointments and increased overall functioning. These results suggest that an embedded counseling office can help dental schools meet the needs of their students.

  10. Solid-state crystal-to-amorphous transition in metal-metal multilayers and its thermodynamic and atomistic modelling

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Lai, W. S.; Zhang, Z. J.

    2001-06-01

    In this review article, first a brief summary is presented concerning the formation of amorphous alloys (or metallic glasses) in binary metal systems by solid-state reaction of metallic multilayers. Secondly, under the framework of Miedema's model, thermodynamic modelling of crystal-to-amorphous transition is developed with special consideration of the excess interfacial free energy in metallic multilayers. Thirdly, the results of molecular dynamics simulations in some representative systems are presented, revealing the detailed kinetics of the crystal-to-amorphous transition on the atomic scale, such as the temperature/time dependence of interfacial reactions, the asymmetric growth of amorphous interlayers, and the nucleation and/or presence of growth barriers resulting from the interfacial texture. Fourthly, the critical solid solubilities of some representative systems are directly determined from the inter-atomic potentials through molecular dynamics simulations and then correlated with the metallic-glass-forming ability of the systems as well as their asymmetric growth during solid-state amorphization observed in experiments and/or simulations.

  11. Cost savings from a teledentistry model for school dental screening: an Australian health system perspective.

    PubMed

    Estai, Mohamed; Bunt, Stuart; Kanagasingam, Yogesan; Tennant, Marc

    2017-06-05

    Objective The aim of the present study was to compare the costs of teledentistry and traditional dental screening approaches in Australian school children.Methods A cost-minimisation analysis was performed from the perspective of the oral health system, comparing the cost of dental screening in school children using a traditional visual examination approach with the cost of mid-level dental practitioners (MLDPs), such as dental therapists, screening the same cohort of children remotely using teledentistry. A model was developed to simulate the costs (over a 12-month period) of the two models of dental screening for all school children (2.7million children) aged 5-14 years across all Australian states and territories. The fixed costs and the variable costs, including staff salary, travel and accommodation costs, and cost of supply were calculated. All costs are given in Australian dollars.Results The total estimated cost of the teledentistry model was $50million. The fixed cost of teledentistry was $1million and that of staff salaries (tele-assistants, charters and their supervisors, as well as information technology support was estimated to be $49million. The estimated staff salary saved with the teledentistry model was $56million, and the estimated travel allowance and supply expenses avoided were $16million and $14million respectively; an annual reduction of $85million in total.Conclusions The present study shows that the teledentistry model of dental screening can minimise costs. The estimated savings were due primarily to the low salaries of dental therapists and the avoidance of travel and accommodation costs. Such savings could be redistributed to improve infrastructure and oral health services in rural or other underserved areas.What is known about the topic? Caries is a preventable disease, which, if it remains untreated, can cause significant morbidity requiring costly treatment. Regular dental screening and oral health education have the great potential

  12. Patient Anxiety Reduction Through Mediated Role Modeling in a Dental Setting.

    ERIC Educational Resources Information Center

    Logan, Henrietta; And Others

    This investigation was conducted to determine the effect of video-taped role modeling on patient-reported level of anxiety at the beginning of dental treatment and the long term effects of the modeling tape as evidenced by appointment cancellations and failure rate. Subjects completed the state portion of the State-Trait Anxiety Inventory (STAI)…

  13. Modeling Dental Health Care Workers' Risk of Occupational Infection from Bloodborne Pathogens.

    ERIC Educational Resources Information Center

    Capilouto, Eli; And Others

    1990-01-01

    The brief paper offers a model which permits quantification of the dental health care workers' risk of occupationally acquiring infection from bloodborne pathogens such as human immunodeficiency virus and hepatitis B virus. The model incorporates five parameters such as the probability that any individual patient is infected and number of patients…

  14. Puerto Rico Experimental Model Dental Auxiliary Training Program. The Comprehensive Report, Exhibits A to F.

    ERIC Educational Resources Information Center

    Puerto Rico Univ., San Juan. School of Dentistry.

    This annex supplements the Puerto Rico Experimental Model Dental Training Program Comprehensive Report (CE 028 213) and is comprised of exhibits A through F. Among the information included in the exhibits is the experimental model schedule, the schematic representation, the content display, and the course outlines for all courses in the program.…

  15. Modeling Dental Health Care Workers' Risk of Occupational Infection from Bloodborne Pathogens.

    ERIC Educational Resources Information Center

    Capilouto, Eli; And Others

    1990-01-01

    The brief paper offers a model which permits quantification of the dental health care workers' risk of occupationally acquiring infection from bloodborne pathogens such as human immunodeficiency virus and hepatitis B virus. The model incorporates five parameters such as the probability that any individual patient is infected and number of patients…

  16. Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data

    NASA Astrophysics Data System (ADS)

    WöHling, Thomas; Vrugt, Jasper A.

    2011-04-01

    In the past two decades significant progress has been made toward the application of inverse modeling to estimate the water retention and hydraulic conductivity functions of the vadose zone at different spatial scales. Many of these contributions have focused on estimating only a few soil hydraulic parameters, without recourse to appropriately capturing and addressing spatial variability. The assumption of a homogeneous medium significantly simplifies the complexity of the resulting inverse problem, allowing the use of classical parameter estimation algorithms. Here we present an inverse modeling study with a high degree of vertical complexity that involves calibration of a 25 parameter Richards'-based HYDRUS-1D model using in situ measurements of volumetric water content and pressure head from multiple depths in a heterogeneous vadose zone in New Zealand. We first determine the trade-off in the fitting of both data types using the AMALGAM multiple objective evolutionary search algorithm. Then we adopt a Bayesian framework and derive posterior probability density functions of parameter and model predictive uncertainty using the recently developed differential evolution adaptive metropolis, DREAMZS adaptive Markov chain Monte Carlo scheme. We use four different formulations of the likelihood function each differing in their underlying assumption about the statistical properties of the error residual and data used for calibration. We show that AMALGAM and DREAMZS can solve for the 25 hydraulic parameters describing the water retention and hydraulic conductivity functions of the multilayer heterogeneous vadose zone. Our study clearly highlights that multiple data types are simultaneously required in the likelihood function to result in an accurate soil hydraulic characterization of the vadose zone of interest. Remaining error residuals are most likely caused by model deficiencies that are not encapsulated by the multilayer model and can not be accessed by the

  17. Anisotropic viscoelastic shell modeling technique of copper patterns/photoimageable solder resist composite for warpage simulation of multi-layer printed circuit boards

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyoung; Joo, Sung-Jun; Kwak, Dong-Ok; Kim, Hak-Sung

    2015-10-01

    In this study, the warpage simulation of a multi-layer printed circuit board (PCB) was performed as a function of various copper (Cu) patterns/photoimageable solder resist (PSR) composite patterns and their anisotropic viscoelastic properties. The thermo-mechanical properties of Cu/PSR patterns were obtained from finite element analysis (virtual test) and homogenized with anisotropic composite shell models that considered the viscoelastic properties. The multi-layer PCB model was simplified based on the unit Cu/PSR patterns and the warpage simulation during the reflow process was performed by using ABAQUS combined with a user-defined subroutine. From these results, it was demonstrated that the proposed anisotropic viscoelastic composite shell simulation technique can be successfully used to predict warpage of multi-layer PCBs during the reflow process.

  18. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Aspects of Integrating Functional Electroceramic Material in Multilayer Thin Films for Image Sensing: Modeling and Experiment

    NASA Astrophysics Data System (ADS)

    Matin, M. A.; Oishi, K.; Katsuta, A.; Akai, D.; Sawada, K.; Ishida, M.

    2015-07-01

    Using combined experimental and simulation techniques, this study addresses the critical stress for peeling off crucial layer(s) in multilayered epitaxial functional thin films on n-Si(001) substrate. The thickness of platinum (Pt) and PZT thin films was varied from 22 nm to 142 nm and 90 nm to 450 nm, respectively. Residual stresses were measured by analyzing captured fringes using Newton's rings technique. Advanced finite element computation was next conducted to predict the evolution of residual stresses. Induced stresses in Pt thin film were found to be decreased with decreasing the thickness of film from 72 nm to 40 nm. In contrast, stresses are shown to be decreased with increasing the thickness of PZT film from 240 nm to 450 nm. The design of the pyroelectric multilayered sensors was thus optimized employing finite element (FE) simulation. Computed stresses were found to correlate well with that observed in experiments. FE simulations can thus be used as a tool to a priori predict the evolution of residual stresses, which may allow a fail-safe design before the fabrication of pyroelectric image sensors.

  20. Modeling and optimization of adjustable multifrequency axially polarized multilayer composite cylindrical transducer

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Shi, Zhifei; Song, Gangbing

    2015-04-01

    A novel adjustable multifrequency axially polarized multilayer composite cylindrical transducer is developed in this paper. The transducer is composed of two parts: an actuator part and a sensor part. Each part is considered as a multilayer piezoelectric/elastic composite structure. The actuator part is utilized to actuate the transducer, while the senor part is used to adjust its dynamic characteristics through connecting to an external electric resistance. Based on the plane stress assumption, the radial vibration of this new kind of transducer is analyzed, and its input electric admittance is derived analytically. Comparisons with the earlier works are conducted to validate the theoretical solution. Furthermore, numerical analysis is performed to study the effects of the external electric resistance on the transducer’s dynamic characteristics, such as resonance and anti-resonance frequencies, as well as the corresponding electromechanical coupling factor. Numerical results show that the multifrequency cylindrical transducer can be designed through adjusting the external electric resistance and the ratio of piezoelectric layer numbers between the actuator part and the sensor part. In addition, the optimized transducer can be proposed at the matching electric resistance. The proposed cylindrical transducer plays an important role in designing the cymbal transducer, which can be used in underwater sound projectors and ultrasonic radiators.

  1. Theoretical modeling of epitaxial growth and properties of Mn/Ge (001) multilayers

    NASA Astrophysics Data System (ADS)

    Medvedeva, J. E.

    2005-03-01

    As part of the search for useful dilute magnetic semiconductors, structural, electronic and magnetic properties of Mn/Ge (001) digital alloys and multilayers are determined using our highly precise full-potential linearized augmented plane wave (FLAPW) methodootnotetextE.Wimmer, H.Krakauer, M.Weinert, A.J.Freeman, PRB 24, 864 (1981). First, the calculated formation energies of the fully relaxed structures with different Mn and Ge site locations (both substitutional and interstitial), predict the lowest-energy structure in an epitaxial growth process. We found that (i) substitutional positions are energetically more favorable for one (001) monolayer of Mn in the supercell and (ii) when the number of Mn layers increased, the magnetic atoms prefer a second-layer interstitial site and form a 45^o-rotated fcc structure on the Ge diamond structure. For the Mn/Ge (001) multilayers, which consist of 8 layers of Ge and 1 or 4 layers of fcc Mn, we found that the experimental ferromagnetic coupling between Mn atoms can be reproduced only when Coulomb interactions are taken into account; indeed, LDA+U estimates of Tc as a function of the Mn layer thickness are in good agreement with experimentootnotetextJ.J.Lee, J.E.Medvedeva, J.H.Song, Y.Cui, A.J.Freeman, J.B.Ketterson (to be published).

  2. Full-wave model and numerical study of electromagnetic plane wave scattering by multilayered, fiber-based periodic composites

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Lesselier, D.; Zhong, Y.

    2015-07-01

    The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.

  3. Characterization of thin-film multilayers using magnetization curves and modeling of low-angle X-ray diffraction data

    SciTech Connect

    Lane, M.; Chaiken, A.; Michel, R.P.

    1994-12-01

    We have characterized thin-film multilayers grown by ion-beam sputtering using magnetization curves and modeling of low-angle x-ray diffraction data. In our films, we use ferromagnetic layer = Co, Fe, and NiFe and spacer layer = Si, Ge, FeSi{sub 2}, and CoSi{sub 2}. We have studied the effects of (1) deposition conditions; (2) thickness of layers; (3) different layer materials; and (4) annealing. We find higher magnetization in films grown at 1000V rather than 500V and in films with spacer layers of 50{angstrom} rather than 100{angstrom}. We find higher coercivity in films with cobalt grown on germanium rather than silicon, metal grown on gold underlayers rather than on glass substrates, and when using thinner spacer layers. Finally, modeling reveals that films grown with disilicide layers are more thermally stable than films grown with silicon spacer layers.

  4. Determining the optimal model for role-substitution in NHS dental services in the United Kingdom.

    PubMed

    Brocklehurst, Paul; Birch, Stephen; McDonald, Ruth; Tickle, Martin

    2013-09-24

    Role-substitution describes a model of dental care where Dental Care Professionals (DCPs) provide some of the clinical activity previously undertaken by General Dental Practitioners. This has the potential to increase technical efficiency, the capacity to care and reduce costs. Technical efficiency is defined as the production of the maximum amount of output from a given amount of input so that the service operates at the production frontier i.e. optimal level of productivity. Academic research into technical efficiency is becoming increasingly utilised in health care, although no studies have investigated the efficiency of NHS dentistry or role-substitution in high-street dental practices. The aim of this study is to examine the barriers and enablers that exist for role-substitution in general dental practices in the NHS and to determine the most technically efficient model for role-substitution. A screening questionnaire will be sent to DCPs to determine the type and location of role-substitutive models employed in NHS dental practices in the United Kingdom (UK). Semi-structured interviews will then be conducted with practice owners, DCPs and patients at selected sites identified by the questionnaire. Detail will be recorded about the organisational structure of the dental team, the number of NHS hours worked and the clinical activity undertaken. The interviews will continue until saturation and will record the views and attitudes of the members of the dental team. Final numbers of interviews will be determined by saturation.The second work-stream will examine the technical efficiency of the selected practices using Data Envelopment Analysis and Stochastic Frontier Modeling. The former is a non-parametric technique and is considered to be a highly flexible approach for applied health applications. The latter is parametric and is based on frontier regression models that estimate a conventional cost function. Maximising health for a given level and mix of resources

  5. Ultrasonic NDE of Multilayered Structures

    SciTech Connect

    Quarry, M J; Fisher, K A; Lehman, S K

    2005-02-14

    This project developed ultrasonic nondestructive evaluation techniques based on guided and bulk waves in multilayered structures using arrays. First, a guided wave technique was developed by preferentially exciting dominant modes with energy in the layer of interest via an ultrasonic array. Second, a bulk wave technique uses Fermat's principle of least time as well as wave-based properties to reconstruct array data and image the multilayered structure. The guided wave technique enables the inspection of inaccessible areas of a multilayered structure without disassembling it. Guided waves propagate using the multilayer as a waveguide into the inaccessible areas from an accessible position. Inspecting multi-layered structures with a guided wave relies on exciting modes with sufficient energy in the layer of interest. Multilayered structures are modeled to determine the possible modes and their distribution of energy across the thickness. Suitable modes were determined and excited by designing arrays with the proper element spacing and frequency. Bulk wave imaging algorithms were developed to overcome the difficulties of multiple reflections and refractions at interfaces. Reconstruction algorithms were developed to detect and localize flaws. A bent-ray algorithm incorporates Fermat's principle to correct time delays in the ultrasonic data that result from the difference in wave speeds in each layer and refractions at the interfaces. A planar wave-based algorithm was developed using the Green function for the multilayer structure to enhance focusing on reception for improved imaging.

  6. JERM model of care: an in-principle model for dental health policy.

    PubMed

    Lam, Raymond; Kruger, Estie; Tennant, Marc

    2014-01-01

    Oral diseases are the most prevalent conditions in the community. Their economic burden is high and their impact on quality of life is profound. There is an increasing body of evidence indicating that oral diseases have wider implications beyond the confines of the mouth. The importance of oral health has not been unnoticed by the government. The Commonwealth (Federal) government under the Howard-led Coalition in 2004 had broken tradition by placing dentistry in its universal health insurance scheme, Medicare. Known as the Chronic Disease Dental Scheme (CDDS), the program aimed to manage patients with chronic conditions as part of the Enhanced Primary Care initiative. This scheme was a landmark policy for several reasons. Besides being the first major dental policy under Medicare, the program proved to be the most expensive and controversial. Unfortunately, cost containment and problems with service provision led to its cessation in 2012 by the Gillard Labor Government. Despite being seen as a failure, the CDDS provided a unique opportunity to assess national policy in practice. By analysing the policy-relevant effects of the CDDS, important lessons can be learnt for policy development. This paper discusses these lessons and has formulated a set of principles recommended for effective oral health policy. The JERM model represents the principles of a justified, economical and research-based model of care.

  7. Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: case study from lower Charles River buoy, USA.

    PubMed

    Heddam, Salim

    2016-09-01

    This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.

  8. Study on phosphor sedimentation effect in white light-emitting diode packages by modeling multi-layer phosphors with the modified Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Hu, Run; Wang, Yiman; Zou, Yong; Chen, Xing; Liu, Sheng; Luo, Xiaobing

    2013-02-01

    In this study, we studied the phosphor sedimentation effect in white phosphor-converted light-emitting diode packages by modeling the multi-layer phosphors with gradient concentrations. The essence of phosphor sedimentation can attribute to the variation of phosphor concentrations. By modifying the Kubelka-Munk theory, we built a multi-layer phosphor model with considering the light scattering, light absorption, and light conversion process simultaneously. With a brief review of Kubelka-Munk theory, multi-layer phosphors were modeled on the basis of single-layer phosphor model. The phosphor sedimentation effect was characterized by modeling multi-layer phosphors with gradient concentrations, whereas keeping the total amount of phosphors at the same level. It is found from the five calculation cases that phosphor sedimentation will cause the drop of light extraction efficiency (LEE) by 13.04%. Furthermore, the phosphor layer with inverse-gradient concentrations will enhance the LEE 16.56%. To figure out the reasons, the light losses were calculated, and it is proved that the light loss is enhanced when phosphor sedimentation happens.

  9. An Articulation Model in Dental Assisting for the Commonwealth of Pennsylvania. A Continuation.

    ERIC Educational Resources Information Center

    Sylves, Jane M.; Boody, Sandra

    A curriculum development project was conducted to generate additional competency-based modules to be used within the articulation model for Pennsylvania dental assisting programs, established in 1988. Project activities included reviewing, modifying, and providing parallel competency-based structure for the courses at the A.W. Beattie Technical…

  10. Puerto Rico Experimental Model Dental Auxiliary Training Program. The Comprehensive Report, Exhibits G to L.

    ERIC Educational Resources Information Center

    Puerto Rico Univ., San Juan. School of Dentistry.

    This annex supplements the Puerto Rico Experimental Model Dental Training Program Comprehensive Report (CE 028 213) and is comprised of exhibits G through L. Among the information included in the exhibits is the evaluation reports of the commission on accreditation, the detailed curriculum, and the accredited program's scope, sequence, and course…

  11. Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results.

    PubMed

    Naghshine, Babak B; Kiani, Amirkianoosh

    2017-01-01

    In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs).

  12. A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging

    PubMed Central

    Valentín, A.; Humphrey, J.D.; Holzapfel, G.A.

    2011-01-01

    Arterial responses to diverse pathologies and insults likely occur via similar mechanisms. For example, many studies suggest that the natural process of aging and isolated systolic hypertension share many characteristics in arteries, including loss of functional elastin, decreased smooth muscle tone, and altered rates of deposition and/or cross-linking of fibrillar collagen. Our aim is to show computationally how these coupled effects can impact evolving aortic geometry and mechanical behavior. Employing a thick-walled, multi-layered constrained mixture model, we suggest that a coupled loss of elastin and vasoactive function are fundamental mechanisms by which aortic aging occurs. Moreover, it is suggested that collagenous stiffening, although itself generally an undesirable process, can play a key role in attenuating excessive dilatation, perhaps including the enlargement of abdominal aortic aneurysms. PMID:21380570

  13. Effectiveness of a Specially Designed Dental Model for Training, Evaluation, and Standardization of Pocket Probing.

    PubMed

    Sunaga, Masayo; Minabe, Masato; Inagaki, Koji; Kinoshita, Atsuhiro

    2016-12-01

    The aim of this study was to evaluate the effectiveness of a dental model in training, evaluation, and standardization of examiners in pocket probing and to determine the appropriate thresholds of accuracy and measuring time when using this model for evaluation of probing skills without measuring patients' pockets repeatedly. In 2011-12, a total of 66 dental professionals and 20 dental students in Japan measured the probing depths of 24 artificial teeth using the six-point method on a dental model. All examiners measured the probing depths of six tooth groups and then checked the correct depths in each group. Each examiner measured four groups in a group-by-group manner. For each group, the measuring time and examiner's accuracy were recorded. Receiver operating characteristic (ROC) curves for various thresholds of measuring time were drawn for thresholds of accuracies to determine the passing mark as a skilled examiner. The accuracy significantly increased from the first to the fourth measurements, and the measuring time was significantly reduced for both the professionals and students. The total measuring time was significantly longer for the students than the professionals. The students' accuracy was significantly lower than that of the professionals in the first measurement group. The increasing rate of accuracy was significantly higher for the students than the professionals. These results and ROC curves suggested that the dental model is effective for periodontal pocket probing training and for the evaluation and standardization of examiners' probing skill at a preclinical level. An examiner having accuracy ≥80% within four minutes for six tooth measurements in this model could be considered a skilled examiner.

  14. Video modelling and reducing anxiety related to dental injections - a randomised clinical trial.

    PubMed

    Al-Namankany, A; Petrie, A; Ashley, P

    2014-06-01

    This study was part of a successfully completed PhD and was presented at the IADR/AADR General Session (2013) in Seattle, Washington, USA. The report of this clinical trial conforms to the CONSORT statement. A randomised controlled trial to investigate if video modelling can influence a child's anxiety before the administration of local anaesthesia (LA). A sample of 180 (6- to 12-year-old) children due to have dental treatments under LA were randomly allocated to the modelling video or the control video (oral hygiene instruction). The level of anxiety was recorded before and after watching the video on the Abeer Children Dental Anxiety Scale (ACDAS) and the child's ability to cope with the subsequent procedure was assessed on the visual analogue scale (VAS). A two group chi-square test was used as the basis for the sample size calculation; a significance level of 0.025 was chosen rather than the conventional 0.05 to avoid spurious results arising from multiple testing. Children in the test group had significantly less anxiety after watching the video than children in the control group throughout the subsequent dental procedure; in particular at the time of the LA administration (p <0.001). Video modelling appeared to be effective at reducing dental anxiety and has a significant impact on needle phobia in children.

  15. Longitudinal evaluation of dental arch asymmetry in Class II subdivision malocclusion with 3-dimensional digital models.

    PubMed

    Veli, Ilknur; Yuksel, Burcin; Uysal, Tancan

    2014-06-01

    Class II subdivision malocclusions with their asymmetric occlusal relationships often pose treatment difficulties. The aim of this study was to evaluate the longitudinal changes of dental arch asymmetry in untreated subjects with Class II subdivision malocclusion. From 706 files from the University of Michigan Growth Study, longitudinal records of 17 untreated subjects with Class II subdivision malocclusion were included this study. Dental arch changes at 3 consecutive longitudinal intervals, defined by the cervical vertebral maturation method, were analyzed on digital dental models. The average ages of the subjects were 12.4, 15.1, and 19.1 years at the 3 time periods, respectively. Maxillary and mandibular reference lines were constructed and used for the intra-arch asymmetry measurements. The Friedman test and analysis of variance with repeated measures were used to determine dental arch asymmetries at the P <0.05 level. All subjects were found to have a type 1 Class II subdivision malocclusion characterized by distal positioning of the mandibular first molar on the Class II side. No statistically significant intra-arch asymmetry changes were found for the maxillary and mandibular dental arches in any time period. Between the baseline and the final follow-up, the data indicated decreases in maxillary and mandibular intercanine arch widths and arch lengths symmetrically. The results of this study indicate that the dental arch asymmetry in patients with Class II subdivision malocclusions did not improve or worsen with growth. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Comparing human resource planning models in dentistry: A case study using Canadian Armed Forces dental clinics.

    PubMed

    Shaw, Jodi L; Farmer, Julie W; Coyte, Peter C; Lawrence, Herenia P

    2017-06-01

    To compare two methods of allocating general dentists to Canadian Armed Forces (CAF) dental detachments: a dentist-to-population ratio model and a needs-based model. Data obtained from CAF sources were analysed to compare models. Times assigned to treatment plan procedures were used as a proxy for treatment needs. Full-time equivalents (FTEs) were used as an indicator for the number of dentists allocated to each detachment. FTE values were adjusted for military dentists to account for time spent on compulsory nonclinical duties. The paired-samples t test was used to assess differences between the models for all clinics (dental detachments) and by clinic size. The dentist-to-population ratio model for the CAF population (n=68 183) estimated an allocation of 83.25 FTE general dentists to CAF dental detachments. Based on a systematic sample of the CAF population (n=2226), the needs-based model estimated the requirement for 64.71 FTE general dentists. The average difference between models was 0.71 FTE (SE=0.273), which was statistically significant (P=0.015). In terms of differences by clinic size, differences were more pronounced in clinics serving more than 4000 CAF personnel (2.63 FTEs, SE=0.613, P=0.008). The findings reveal differences between estimation models of <1 FTE, with higher estimates produced from the dentist-to-population ratio model. A larger difference was found in clinics with larger populations. The perceived overestimation of dental human resource requirements suggests that changing to a needs-based model may result in cost savings. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Influence of standardization on the precision (reproducibility) of dental cast analysis with virtual 3-dimensional models.

    PubMed

    Hayashi, Kazuo; Chung, Onejune; Park, Seojung; Lee, Seung-Pyo; Sachdeva, Rohit C L; Mizoguchi, Itaru

    2015-03-01

    Virtual 3-dimensional (3D) models obtained by scanning of physical casts have become an alternative to conventional dental cast analysis in orthodontic treatment. If the precision (reproducibility) of virtual 3D model analysis can be further improved, digital orthodontics could be even more widely accepted. The purpose of this study was to clarify the influence of "standardization" of the target points for dental cast analysis using virtual 3D models. Physical plaster models were also measured to obtain additional information. Five sets of dental casts were used. The dental casts were scanned with R700 (3Shape, Copenhagen, Denmark) and REXCAN DS2 3D (Solutionix, Seoul, Korea) scanners. In this study, 3 system and software packages were used: SureSmile (OraMetrix, Richardson, Tex), Rapidform (Inus, Seoul, Korea), and I-DEAS (SDRC, Milford, Conn). Without standardization, the maximum differences were observed between the SureSmile software and the Rapidform software (0.39 mm ± 0.07). With standardization, the maximum differences were observed between the SureSmile software and measurements with a digital caliper (0.099 mm ± 0.01), and this difference was significantly greater (P <0.05) than the 2 other mean difference values. Furthermore, the results of this study showed that the mean differences "WITH" standardization were significantly lower than those "WITHOUT" standardization for all systems, software packages, or methods. The results showed that elimination of the influence of usability or habituation is important for improving the reproducibility of dental cast analysis. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2017-03-21

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  19. Magnetic multilayer structure

    SciTech Connect

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  20. Immortalized gingival fibroblasts as a cytotoxicity test model for dental materials.

    PubMed

    Illeperuma, Rasika P; Park, Young J; Kim, Jin M; Bae, Jung Y; Che, Zhong M; Son, Hwa K; Han, Mi R; Kim, Kwang M; Kim, Jin

    2012-03-01

    In vitro cytotoxicity test is an initial step to identify the harmful effects of new dental materials. Aim of this study was to develop a stable human cell line derived from normal gingival fibroblasts (hNOF) and to assess its feasibility in in vitro cytotoxicity testing. Immortalized human gingival fibroblasts (hTERT-hNOF) were successfully established with human telomerase reverse transcriptase gene transfection, preserving its phenotypical characteristics, replicative potential and biological properties. Utilizing standard cytotoxicity test modeling and dental materials, hTERT-hNOF were evaluated for their feasibility in cytotoxicity testing, compared with hNOF and L929 cells. Similar pattern of cytotoxic response was observed among hNOF, hTERT-hNOF and L929 cells. Cytotoxicity response of hTERT-hNOF was significantly similar to hNOF, moreover hTERT-hNOF and hNOF were found to be more sensitive towards the tested dental materials compared to L929 cells. This study suggested that hTERT-hNOF is an effective cytotoxic test model for dental materials.

  1. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  2. High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures

    NASA Astrophysics Data System (ADS)

    Chan, Henry; Masserey, Bernard; Fromme, Paul

    2015-02-01

    Especially for ageing aircraft the development of fatigue cracks at fastener holes due to stress concentration and varying loading conditions constitutes a significant maintenance problem. High frequency guided waves offer a potential compromise between the capabilities of local bulk ultrasonic measurements with proven defect detection sensitivity and the large area coverage of lower frequency guided ultrasonic waves. High frequency guided waves have energy distributed through all layers of the specimen thickness, allowing in principle hidden (2nd layer) fatigue damage monitoring. For the integration into structural health monitoring systems the sensitivity for the detection of hidden fatigue damage in inaccessible locations of the multi-layered components from a stand-off distance has to be ascertained. The multi-layered model structure investigated consists of two aluminium plate-strips with an epoxy sealant layer. During cyclic loading fatigue crack growth at a fastener hole was monitored. Specific guided wave modes (combination of fundamental A0 and S0 Lamb modes) were selectively excited above the cut-off frequencies of higher modes using a standard ultrasonic wedge transducer. Non-contact laser measurements close to the defect were performed to qualify the influence of a fatigue crack in one aluminium layer on the guided wave scattering. Fatigue crack growth monitoring using laser interferometry showed good sensitivity and repeatability for the reliable detection of small, quarter-elliptical cracks. Standard ultrasonic pulse-echo equipment was employed to monitor hidden fatigue damage from a stand-off distance without access to the damaged specimen layer. Sufficient sensitivity for the detection of fatigue cracks located in the inaccessible aluminium layer was verified, allowing in principle practical in situ ultrasonic monitoring of fatigue crack growth.

  3. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques.

    PubMed

    Hazeveld, Aletta; Huddleston Slater, James J R; Ren, Yijin

    2014-01-01

    Rapid prototyping is a fast-developing technique that might play a significant role in the eventual replacement of plaster dental models. The aim of this study was to investigate the accuracy and reproducibility of physical dental models reconstructed from digital data by several rapid prototyping techniques. Twelve mandibular and maxillary conventional plaster models from randomly chosen subjects were selected and served as the gold standard. The plaster models were scanned to form high-resolution 3-dimensional surface models in .stl files. These files were converted into physical models using 3 rapid prototyping techniques: digital light processing, jetted photopolymer, and 3-dimensional printing. Linear measurements on the plaster models were compared with linear measurements on the rapid prototyping models. One observer measured the height and width of the clinical crowns of all teeth (first molar to first molar) on all models (plaster and replicas) using a digital caliper. All models were measured 5 times with a 2-week interval between measurements. The intraobserver agreement was high (intraclass correlation coefficient >0.94). The mean systematic differences for the measurements of the height of the clinical crowns were -0.02 mm for the jetted photopolymer models, 0.04 mm for the digital light processing models, and 0.25 mm for the 3-dimensional printing models. For the width of the teeth, the mean systematic differences were -0.08 mm for the jetted photopolymer models, -0.05 mm for the digital light processing models, and -0.05 mm for the 3-dimensional printing models. Dental models reconstructed by the tested rapid prototyping techniques are considered clinically acceptable in terms of accuracy and reproducibility and might be appropriate for selected applications in orthodontics. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle

    NASA Astrophysics Data System (ADS)

    Caniven, Y.; Dominguez, S.; Soliva, R.; Cattin, R.; Peyret, M.; Marchandon, M.; Romano, C.; Strak, V.

    2015-02-01

    Nowadays, technological advances in satellite imagery measurements as well as the development of dense geodetic and seismologic networks allow for a detailed analysis of surface deformation associated with active fault seismic cycle. However, the study of earthquake dynamics faces several limiting factors related to the difficulty to access the deep source of earthquake and to integrate the characteristic time scales of deformation processes that extend from seconds to thousands of years. To overcome part of these limitations and better constrain the role and couplings between kinematic and mechanical parameters, we have developed a new experimental approach allowing for the simulation of strike-slip fault earthquakes and analyze in detail hundreds of successive seismic cycle. Model rheology is made of multilayered visco-elasto-plastic analog materials to account for the mechanical behavior of the upper and lower crust and to allow simulating brittle/ductile coupling, postseismic deformation phase and far-field stress transfers. The kinematic evolution of the model surface is monitored using an optical system, based on subpixel spectral correlation of high-resolution digital images. First, results show that the model succeed in reproducing the deformation mechanisms and surface kinematics associated to the main phases of the seismic cycle indicating that model scaling is satisfactory. These results are comforted by using numerical algorithms to study the strain and stress distribution at the surface and at depth, along the fault plane. Our analog modeling approach appears, then, as an efficient complementary approach to investigate earthquake dynamics.

  5. A dynamic model of the fate of organic chemicals in a multilayered air/soil system: development and illustrative application.

    PubMed

    Ghirardello, Davide; Morselli, Melissa; Semplice, Matteo; Di Guardo, Antonio

    2010-12-01

    A new site-specific, dynamic model (SoilPlus) was developed to simulate the fate of nonionized organic chemicals in the air/litter/soil system; key features of the model are the double-layered air compartment interacting dynamically with multilayered litter and soil compartments, with seasonal dissolved organic carbon (DOC) fluxes. The model describes the soil environment calculating separate mass balances for water, chemical, and organic matter. SoilPlus underwent a process of benchmarking and evaluation in order to reach a satisfying confirmation of its predictive capability. Several simulations were performed to estimate the role of litter and DOC in affecting the fate of a model contaminant for POPs (hexachlorobenzene). The model shows that litter can behave as a buffer in the process of transferring hexachlorobenzene from air to the mineral soil and as a trap when hexachlorobenzene tends to move from a contaminated field toward clean air. DOC seems to behave as a leaching-enhancer in certain climatic conditions (heavy rainfall, high DOC concentrations), but it does not appear to move significant amounts of HCB in a year calculation.

  6. Modeling of the Light Speckle Field Structure Inside a Multilayer Human Skin Tissue

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Dik, S. K.; Ivanov, A. P.; Abramovich, N. D.

    2013-11-01

    We present an analytic method and the results of investigating the characteristics of the interference pattern formed by multiply scattered light in a multilayer biological tissue of the type of human skin at the wavelengths of the visible and neat IR spectral regions under laser irradiation. Calculations were performed with the use of the known solutions of the equations of radiation transfer in the biotissue and the relation between the theory of propagation of light in a scattering medium and the coherence theory. The radial structure of the light field in the depth of the human skin formed by coherent and incoherent radiation depending on its biophysical parameters has been investigated. The characteristic sizes of speckles in each layer of the skin have been estimated. The biophysical factors connected with the volume concentration of blood in the dermis and the degree of its oxygenation influencing the contrast of the speckle pattern in the dermis have been discussed. The possibility of formulating and solving inverse problems of biomedical optics on the restoration of blood parameters from measurements of speckle characteristics has been shown.

  7. Modeling Hydrogeological and Geomenchanical Processes Related toCO2 Injection in a Faulted Multilayer System

    SciTech Connect

    Rutqvist, Jonny; Birkholzer, Jens; Tsang, Chin-Fu

    2006-01-01

    This paper presents a numerical study of coupled hydrological and geomechanical processes during a deep underground injection of supercritical CO{sub 2} in a hypothetical brine aquifer. We consider a multilayer system in which the injection zone is situated below a sequence of caprock and aquifer layers that are intersected by a vertical fault zone. The fault zone consists of highly fractured shale across the first caprock layers that are located just above the injection zone. Initially, the fractured shale zones are considered sealed with minerals, but we allow fractures (and the fractured zones) to open as a result of injection induced reductions in effective stresses. Our results indicate that even when assuming a very sensitive relationship between effective stress and fractured-zone permeability, the injection-induced changes in permeability across are only moderate with largest changes occurring in the first caprock layer, just above the injection zone. As a result, the upward leakage rate remains relatively small and therefore changes in fluid pressure and hydromechanical effects in overlying zones are also relatively small for the case studied in this paper.

  8. Identification of the best architecture of a multilayer perceptron in modeling daily total ozone concentration over Kolkata, India

    NASA Astrophysics Data System (ADS)

    De, Syam; De, Barin; Chattopadhyay, Goutami; Paul, Suman; Haldar, Dilip; Chakrabarty, Dipak

    2011-04-01

    Autoregressive neural network (AR-NN) models of various orders have been generated in this work for the daily total ozone (TO) time series over Kolkata (22.56°N, 88.5°E). Artificial neural network in the form of multilayer perceptron (MLP) is implemented in order to generate the AR-NN models of orders varying from 1 to 13. An extensive variable selection method through multiple linear regression (MLR) is implemented while developing the AR-NNs. The MLPs are characterized by sigmoid non-linearity. The optimum size of the hidden layer is identified in each model and prediction are produced by validating it over the test cases using the coefficient of determination (R 2) and Willmott's index (WI). It is observed that AR-NN model of order 7 having 6 nodes in the hidden layer has maximum prediction capacity. It is further observed that any increase in the orders of AR-NN leads to less accurate prediction.

  9. Modeling of a three-source perfusion and blood oxygenation sensor for transplant monitoring using multilayer Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Ibey, Bennett L.; Lee, Seungjoon; Ericson, M. Nance; Wilson, Mark A.; Cote, Gerard L.

    2004-06-01

    A Multi-Layer Monte Carlo (MLMC) model was developed to predict the results of in vivo blood perfusion and oxygenation measurement of transplanted organs as measured by an indwelling optical sensor. A sensor has been developed which uses three-source excitation in the red and infrared ranges (660, 810, 940 nm). In vitro data was taken using this sensor by changing the oxygenation state of whole blood and passing it through a single-tube pump system wrapped in bovine liver tissue. The collected data showed that the red signal increased as blood oxygenation increased and infrared signal decreased. The center wavelength of 810 nanometers was shown to be quite indifferent to blood oxygenation change. A model was developed using MLMC code that sampled the wavelength range from 600-1000 nanometers every 6 nanometers. Using scattering and absorption data for blood and liver tissue within this wavelength range, a five-layer model was developed (tissue, clear tubing, blood, clear tubing, tissue). The theoretical data generated from this model was compared to the in vitro data and showed good correlation with changing blood oxygenation.

  10. Adaptive Weibull Multiplicative Model and Multilayer Perceptron neural networks for dark-spot detection from SAR imagery.

    PubMed

    Taravat, Alireza; Oppelt, Natascha

    2014-12-02

    Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates poor accuracies.

  11. 3D-VAR multilayer assimilation of X-band SAR data into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.

    2013-10-01

    We introduce a variational data assimilation scheme to assimilate X-band Synthetic Aperture Radar (SAR) data into a snowpack evolution model. The structure properties of a snowpack, such as snow density and grain optical diameter of each layer, are simulated over a period of time by the snow metamorphism model Crocus, fed by the local reanalysis SAFRAN at a French alpine location. These parameters are used as inputs of an Electromagnetic Backscattering Model (EBM) based on Dense Media Radiative Transfer (DMRT) theory, which calculates the simulated total backscattering coefficient. Next, 3D-VAR data assimilation is implemented in order to minimize the discrepancies between model simulations and observations obtained from SAR acquisitions, by modifying the parameters of a multilayer snowpack calculated by Crocus. The algorithm then reinitializes Crocus with the optimized snowpack structure properties, and therefore allows it to continue the simulation of snowpack evolution where adjustments based on remote sensing data has been taken into account. Results obtained using TerraSAR-X acquisitions on Argentière Glacier (Mont-Blanc massif, French Alps) show the high potential of this method for improving snow cover simulation.

  12. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  13. A material model for internal stress of dental composites caused by the curing process.

    PubMed

    Koplin, Christof; Jaeger, Raimund; Hahn, Petra

    2009-03-01

    To compare the build-up of internal stresses in four different dental composites (Venus, Tetric Ceram, Ceram X mono and Filtek Supreme) during the curing reaction, based on the results of a former paper on polymerization kinetics, and to characterize the developing mechanical behavior for different modes of activation using experimental methods and simulation tools. A four-parameter viscoelastic model combined with a curing model and a kinetic model was developed to simulate the mechanical behavior in three dimensions using the finite element software ABAQUS. In order to study the influence of slow polymerization behavior on the mechanical properties, the length of the activation period was doubled at half intensity of the curing light. Using a model which describes the complex interplay of stiffness, flowability, curing speed and activation intensity during the curing process gives deeper insight into the spatial and temporal build-up of stresses. An advantageous reaction kinetic or a lower stiffness can compensate for the effect of a higher polymerization shrinkage on the resulting peak stress. The evolution of stress is not directly proportional to the level of shrinkage of the composites. A material model which includes the developing mechanical characteristics of a curing dental composite can be used to develop and optimize dental materials and to assess the effect of different treatment strategies (i.e. mode of photo-polymerization, filling geometries, interfacial strength).

  14. Numerical modeling of mechanical behavior of multilayered composite plates with defects under static loading

    NASA Astrophysics Data System (ADS)

    Korepanov, V. V.; Serovaev, G. S.

    2017-06-01

    Evaluation of the mechanical state of a structure or its components in the process of operation based on detection of internal damages (damage detection) becomes especially important in such rapidly developing spheres of production as machine building, aerospace industry, etc. One of the most important features of these industries is the application of new types of materials among which polymer based composite materials occupy a significant position. Hence, they must have sufficient operational rigidity and strength. However, defects of various kinds may arise during the manufacture. Delamination is the most common defect in structures made from composite materials and represents a phenomenon that involves the complex fracture of layers and interlayer compounds. Among the reasons of delamination occurrence are: disposition of anti-adhesive lubricants, films; insufficient content of binder, high content of volatile elements; violation of the molding regime; poor quality of anti-adhesive coating on the surface of the tooling. One of the effective methods for analyzing the influence of defects is numerical simulation. With the help of numerical methods, it is possible to track the evolution of various parameters when the defect size and quantity change. In the paper, a multilayered plate of an equally resistant carbon fiber reinforced plastic was considered, with a thickness of each layer equal to 0.2 mm. Various static loading cases are studied: uniaxial tension, three and four-point bending. For each type of loading, a numerical calculation of the stress-strain state was performed for healthy and delaminated plates, with different number and size of the defects. Contact interaction between adjacent surfaces in the zone of delamination was taken into account.

  15. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    PubMed

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (P<0.05) between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS(®) (1,806±165 N) and e.max(®) ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM(®) 9 (1,849±150 N) demonstrated the highest mean fracture values. The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of

  16. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    PubMed Central

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    Aim To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results There was a significant difference (P<0.05) between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS® (1,806±165 N) and e.max® ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM® 9 (1,849±150 N) demonstrated the highest mean fracture values. Conclusion The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass–ceramics are, with a great safety margin, sufficient for clinical use

  17. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    SciTech Connect

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.; Eersel, H. van

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  18. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  19. Model-based study for evaluating the sensitivity of eddy current GMR probe inspection of multilayer structures

    NASA Astrophysics Data System (ADS)

    Su, Zhiyi; Rosell, Anders; Udpa, Lalita; Tamburrino, Antonello

    2017-02-01

    In eddy current nondestructive testing (EC-NDT) of a multilayer riveted structure, rotating current excitation, generated by orthogonal coils, is advantageous in providing sensitivity to defects of all orientations. The signal of a defect is not only a function of its size but also of the geometrical features in vicinity to the rivet such as edges, adjacent rivets and properties of the layered structure. Numerical models can be used to provide fast and accurate estimates of defect signals. In this paper the sensitivity of the eddy current system with rotating current excitation and GMR sensors is evaluated by considering the effect of rivet permeability, lift-off, thickness of first layer as well as defect orientation related to adjacent rivets and edges on the signal measured. A numerical model capable of simulating these combinations of defect and test geometry parameters at an acceptable computation time is used. A meta-model is developed based on these simulation results and utilized for sensitivity evaluation.

  20. Implementation of a flipped classroom educational model in a predoctoral dental course.

    PubMed

    Park, Sang E; Howell, T Howard

    2015-05-01

    This article describes the development and implementation of a flipped classroom model to promote student-centered learning as part of a predoctoral dental course. This model redesigns the traditional lecture-style classroom into a blended learning model that combines active learning pedagogy with instructional technology and "flips" the sequence so that students use online resources to learn content ahead of class and then use class time for discussion. The dental anatomy portion of a second-year DMD course at Harvard School of Dental Medicine was redesigned using the flipped classroom model. The 36 students in the course viewed online materials before class; then, during class, small groups of students participated in peer teaching and team discussions based on learning objectives under the supervision of faculty. The utilization of pre- and post-class quizzes as well as peer assessments were critical motivating factors that likely contributed to the increase in student participation in class and helped place learning accountability on the students. Student feedback from a survey after the experience was generally positive with regard to the collaborative and interactive aspects of this form of blended learning.

  1. Evaluation of a Local Anesthesia Simulation Model with Dental Students as Novice Clinicians.

    PubMed

    Lee, Jessica S; Graham, Roseanna; Bassiur, Jennifer P; Lichtenthal, Richard M

    2015-12-01

    The aim of this study was to evaluate the use of a local anesthesia (LA) simulation model in a facilitated small group setting before dental students administered an inferior alveolar nerve block (IANB) for the first time. For this pilot study, 60 dental students transitioning from preclinical to clinical education were randomly assigned to either an experimental group (N=30) that participated in a small group session using the simulation model or a control group (N=30). After administering local anesthesia for the first time, students in both groups were given questionnaires regarding levels of preparedness and confidence when administering an IANB and level of anesthesia effectiveness and pain when receiving an IANB. Students in the experimental group exhibited a positive difference on all six questions regarding preparedness and confidence when administering LA to another student. One of these six questions ("I was prepared in administering local anesthesia for the first time") showed a statistically significant difference (p<0.05). Students who received LA from students who practiced on the simulation model also experienced fewer post-injection complications one day after receiving the IANB, including a statistically significant reduction in trismus. No statistically significant difference was found in level of effectiveness of the IANB or perceived levels of pain between the two groups. The results of this pilot study suggest that using a local anesthesia simulation model may be beneficial in increasing a dental student's level of comfort prior to administering local anesthesia for the first time.

  2. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    PubMed Central

    Ha, Jung-Yun; Chun, Ju-Na; Son, Jun Sik; Kim, Kyo-Han

    2014-01-01

    Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA) resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control). The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes) were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P > 0.05) or significantly larger (P < 0.05) than that of the control resin and were related to the polymerization kinetics (P < 0.05) rather than the PMMA bead size (P = 0.335). Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins. PMID:24779020

  3. Rapid calculation of diffuse reflectance from a multilayered model by combination of the white Monte Carlo and adding-doubling methods

    PubMed Central

    Yoshida, Kenichiro; Nishidate, Izumi

    2014-01-01

    To rapidly derive a result for diffuse reflectance from a multilayered model that is equivalent to that of a Monte-Carlo simulation (MCS), we propose a combination of a layered white MCS and the adding-doubling method. For slabs with various scattering coefficients assuming a certain anisotropy factor and without absorption, we calculate the transition matrices for light flow with respect to the incident and exit angles. From this series of precalculated transition matrices, we can calculate the transition matrices for the multilayered model with the specific anisotropy factor. The relative errors of the results of this method compared to a conventional MCS were less than 1%. We successfully used this method to estimate the chromophore concentration from the reflectance spectrum of a numerical model of skin and in vivo human skin tissue. PMID:25426319

  4. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  5. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  6. Possibility of reconstruction of dental plaster cast from 3D digital study models.

    PubMed

    Kasparova, Magdalena; Grafova, Lucie; Dvorak, Petr; Dostalova, Tatjana; Prochazka, Ales; Eliasova, Hana; Prusa, Josef; Kakawand, Soroush

    2013-05-31

    To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options--source system RepRap and commercially available 3D printing. A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price.

  7. Evaluation of an integrative model for professional development and research in a dental curriculum.

    PubMed

    Ditmyer, Marcia M; Mobley, Connie C; Davenport, William D

    2014-03-01

    The purpose of this project was to evaluate a Research, Professional Development, and Critical Thinking Integrative Model developed for use in a dental curriculum. This article outlines strategies used in developing a competency-based pedagogical model designed to provide a tailored student learning environment with objective, measurable, and calibrated assessment outcomes. The theoretical model integrated elements of critical thinking, professionalism, and evidence-based dentistry across dental school disciplines; implementation was based on consensus of dental faculty and student representatives about course content, faculty allocation, and curriculum alignment. Changes introduced included the following: 1) conversion and integration of previously siloed course content taught in Years 1 and 2 to sequential two-year combined courses; 2) reduction of course and content redundancies; 3) delivery of courses by teams of faculty members in biomedical, behavioral, and clinical sciences; and 4) reduction of total curriculum credit/contact hours from 13.5 (201 contact hours) to 5.0 (60 contact hours), allowing the Curriculum Committee to accommodate additional courses. These changes resulted in improvement in student satisfaction.

  8. APPRAISAL OF ACCESS TO DENTAL SERVICES IN SOUTH EAST OF IRAN USING FIVE AS MODEL

    PubMed Central

    Moosazadeh, Mahmood; Amiresmaili, Mohammadreza; Karimi, Sara; Arabpoor, Mahboobeh; Afshari, Mahdi

    2016-01-01

    Background: Access to dental services not only refers to utilization but also to the extent by which the utilization is judged according to professional norms. This study aimed to study the access to dental services using the Five As model. Methods: This cross sectional study was conducted in southeast of Iran. A sample of 400 subjects participated in the study according to a multistage sampling method. A questionnaire was used for data collection. Data were analyzed using independent T test, ANOVA and multivariate linear regression models by means of SPSS V.20 software. Findings: Affordability, availability, accessibility, accommodation and acceptability mean scores were 58.2±12.2, 53.9±12.9, 59.4±15.7, 60.2±8.6, 70±11.5 and 60.3±7.4 respectively. According to multivariate linear regression models, there was significant associations between affordability and age, education level, having basic insurance and family income. Moreover, total accessibility was significantly correlated with education and monthly family income. Conclusion: This study showed that access to dental services was at the moderate level among the studied population. It also revealed that age, basic insurance coverage, family income and level of education, are determinants of this accessibility. PMID:27482161

  9. An integral test of FLUKA nuclear models with 160 MeV proton beams in multi-layer Faraday cups

    NASA Astrophysics Data System (ADS)

    Rinaldi, I.; Ferrari, A.; Mairani, A.; Paganetti, H.; Parodi, K.; Sala, P.

    2011-07-01

    Monte Carlo (MC) codes are useful tools to simulate the complex processes of proton beam interactions with matter. In proton therapy, nuclear reactions influence the dose distribution. Therefore, the validation of nuclear models adopted in MC codes is a critical requisite for their use in this field. A simple integral test can be performed using a multi-layer Faraday cup (MLFC). This method allows separation of the nuclear and atomic interaction processes, which are responsible for secondary particle emission and the finite primary proton range, respectively. In this work, the propagation of 160 MeV protons stopping in two MLFCs made of polyethylene and copper has been simulated by the FLUKA MC code. The calculations have been performed with and without secondary electron emission and transport, as well as charge sharing in the dielectric layers. Previous results with other codes neglected those two effects. The impact of this approximation has been investigated and found to be relevant only in the proximity of the Bragg peak. Longitudinal charge distributions computed with FLUKA with both approaches have been compared with experimental data from the literature. Moreover, the contribution of different processes to the measurable signal has been addressed. A thorough analysis of the results has demonstrated that the nuclear and electromagnetic models of FLUKA reproduce the two sets of experimental data reasonably well.

  10. Comparison of dimensional accuracy of digital dental models produced from scanned impressions and scanned stone casts

    NASA Astrophysics Data System (ADS)

    Subeihi, Haitham

    Introduction: Digital models of dental arches play a more and more important role in dentistry. A digital dental model can be generated by directly scanning intraoral structures, by scanning a conventional impression of oral structures or by scanning a stone cast poured from the conventional impression. An accurate digital scan model is a fundamental part for the fabrication of dental restorations. Aims: 1. To compare the dimensional accuracy of digital dental models produced by scanning of impressions versus scanning of stone casts. 2. To compare the dimensional accuracy of digital dental models produced by scanning of impressions made of three different materials (polyvinyl siloxane, polyether or vinyl polyether silicone). Methods and Materials: This laboratory study included taking addition silicone, polyether and vinyl polyether silicone impressions from an epoxy reference model that was created from an original typodont. Teeth number 28 and 30 on the typodont with a missing tooth number 29 were prepared for a metal-ceramic three-unit fixed dental prosthesis with tooth #29 being a pontic. After tooth preparation, an epoxy resin reference model was fabricated by duplicating the typodont quadrant that included the tooth preparations. From this reference model 12 polyvinyl siloxane impressions, 12 polyether impressions and 12 vinyl polyether silicone impressions were made. All 36 impressions were scanned before pouring them with dental stone. The 36 dental stone casts were, in turn, scanned to produce digital models. A reference digital model was made by scanning the reference model. Six groups of digital models were produced. Three groups were made by scanning of the impressions obtained with the three different materials, the other three groups involved the scanning of the dental casts that resulted from pouring the impressions made with the three different materials. Groups of digital models were compared using Root Mean

  11. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    NASA Astrophysics Data System (ADS)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  12. Development and Evaluation of an Endodontic Simulation Model for Dental Students.

    PubMed

    Wolgin, Michael; Wiedemann, Paul; Frank, Wilhelm; Wrbas, Karl-Thomas; Kielbassa, Andrej M

    2015-11-01

    The aims of this study were to develop an endodontic simulation model able to implement the electronic method of working length determination (electronic apex locators, EALs) in a dental school, to evaluate the practicality of this tool for dental students, and to compare the accuracy of working length measurements achieved by the EAL and the radiographic method. A new simulation model was constructed by embedding extracted human teeth in a self-cured resin, along with a conductive medium. After radiographic and electronic working length determinations, root canal instrumentation was performed by students at a dental school in Austria according to the working lengths obtained from the EAL. Subsequently, root apices (n=44) were longitudinally sectioned using a diamond coated bur. Measurements of the distance between the anatomical root apex (ARA) and the apical constriction (AC) as well as between ARA and the ascertained apical point of endodontic instrumentation were performed using digital photography and a 3D computer-assisted design software. The distance between ARA and the radiologic (ARA-R) or electrometric (ARA-EL) readings of the apical point of endodontic instrumentation was compared with the actual distance ARA-AC. The accuracy of both methods was determined. The difference between the actual distance ARA-AC and the targeted radiological distance was statistically significant (p=0.0001), as was the measured distance between ARA-R and ARA-EL (p=0.016). The electronic method seems to be more precisely referring to the AC (R(2)=0.0198) than the radiographic method (R(2)=0.0019). These results suggest that the endodontic simulation model described in this study can be successfully used in preclinical dental education.

  13. Numerical evaluation of bulk material properties of dental composites using two-phase finite element models.

    PubMed

    Li, Jianying; Li, Haiyan; Fok, Alex S L; Watts, David C

    2012-09-01

    The aim of this study was to numerically evaluate the effects of filler contents and resin properties on the material properties of dental composites utilizing realistic 3D micromechanical finite element models. 3D micromechanical finite element models of dental composites containing irregular fillers with non-uniform sizes were created based on a large-scale, surrogate mixture fabricated from irregularly shaped stones and casting resin. The surrogate mixture was first scanned with a micro-CT scanner, and the images reassembled to produce a 3D finite element model. Different filler fractions were achieved by adjusting the matrix volume while keeping the fillers unchanged. Polymerization shrinkage, Young's modulus, Poisson's ratio and viscosity of the model composites were predicted using the finite element models, and their dependence on the filler fraction and material properties of the resin matrix were considered. Comparison of the numerical predictions with available experimental data and analytical models from the literature was performed. Increased filler fraction resulted in lower material shrinkage, higher Young's modulus, lower Poisson's ratio and higher viscosity in the composite. Predicted shrinkage and Young's modulus agreed well with the experimental data and analytical predictions. The McGee-McCullough model best fit the shrinkage and Young's modulus predicted by the finite element method. However, a new parameter, used as the exponent of the filler fraction, had to be introduced to the McGee-McCullough model to better match the predicted viscosity and Poisson's ratio with those from the finite element analysis. Realistic micro-structural finite element models were successfully applied to study the effects of filler fraction and matrix properties on a wide range of mechanical properties of dental composites with irregular fillers. The results can be used to direct the design of such materials to achieve the desired mechanical properties. Published by

  14. Multilayered modeling of particulate matter removal by a growing forest over time, from plant surface deposition to washoff via rainfall.

    PubMed

    Schaubroeck, Thomas; Deckmyn, Gaby; Neirynck, Johan; Staelens, Jeroen; Adriaenssens, Sandy; Dewulf, Jo; Muys, Bart; Verheyen, Kris

    2014-09-16

    Airborne fine particulate matter (PM) is responsible for the most severe health effects induced by air pollution in Europe. Vegetation, and forests in particular, can play a role in mitigating this pollution since they have a large surface area to filter PM out of the air. Many studies have solely focused on dry deposition of PM onto the tree surface, but deposited PM can be resuspended to the air or may be washed off by precipitation dripping from the plants to the soil. It is only the latter process that represents a net-removal from the atmosphere. To quantify this removal all these processes should be accounted for, which is the case in our modeling framework. Practically, a multilayered PM removal model for forest canopies is developed. In addition, the framework has been integrated into an existing forest growth model in order to account for changes in PM removal efficiency during forest growth. A case study was performed on a Scots pine stand in Belgium (Europe), resulting for 2010 in a dry deposition of 31 kg PM2.5 (PM < 2.5 μm) ha(-1) yr(-1) from which 76% was resuspended and 24% washed off. For different future emission reduction scenarios from 2010 to 2030, with altering PM2.5 air concentration, the avoided health costs due to PM2.5 removal was estimated to range from 915 to 1075 euro ha(-1) yr(-1). The presented model could even be used to predict nutrient input via particulate matter though further research is needed to improve and better validate the model.

  15. Multi-layer model vs. single-layer model for N and P doped poly layers in etch bias modeling

    NASA Astrophysics Data System (ADS)

    Li, Jianliang; Vidal-Russell, Ezequiel; Beale, Daniel; Wang, Chunqing; Melvin, Lawrence S., III

    2010-09-01

    In modern photolithography, ever smaller critical dimension (CD) budgets require tighter control over the entire process, demanding more accurate practice of optical proximity correction (OPC). In last decade, the model based OPC (MBOPC) has outpaced the rule based OPC (RBOPC) and become widely adopted in semiconductor industry. During the MBOPC process, the physical models are called to compute the signal values at the evaluation points and the design patterns are perturbed such that the final model contours are as close to the targets as possible. It has been demonstrated that in addition to simulating the optics and resist effects, the physical models must accommodate the pattern distortion due to etch process as well. While the etch process may be lumped with optics and resist processes into one model for the 65nm and above nodes, it can no longer be treated as small perturbations on photolithographic effects for more advanced nodes and it is highly desired to build a physics-based etch model formulations that differ from the conventional convolution-based process models used to simulate the optical and resist effect. Our previous studies proposed a novel non-linear etch modeling object in combination with conventional convolution kernels, which simulates the non-optics and non-resist proximity effect successfully. This study examines further the non-linear etch modeling method by checking the different behaviors of N and p doped layers which physically have different etching rates and should be represented differently in etch modeling. The experimental results indicate that the fitting accuracy is significantly improved when the data points are split into N and P groups and calibrated separately. The N and P layer etch models are used in staged MBOPCs and the results are compared with single-layer model as well.

  16. Multilayer adsorption on fractal surfaces.

    PubMed

    Vajda, Péter; Felinger, Attila

    2014-01-10

    Multilayer adsorption is often observed in liquid chromatography. The most frequently employed model for multilayer adsorption is the BET isotherm equation. In this study we introduce an interpretation of multilayer adsorption measured on liquid chromatographic stationary phases based on the fractal theory. The fractal BET isotherm model was successfully used to determine the apparent fractal dimension of the adsorbent surface. The nonlinear fitting of the fractal BET equation gives us the estimation of the adsorption equilibrium constants and the monolayer saturation capacity of the adsorbent as well. In our experiments, aniline and proline were used as test molecules on reversed phase and normal phase columns, respectively. Our results suggest an apparent fractal dimension 2.88-2.99 in the case of reversed phase adsorbents, in the contrast with a bare silica column with a fractal dimension of 2.54. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A Multilayered Cell Culture Model for Transport Study in Solid Tumors: Evaluation of Tissue Penetration of Polyethyleneimine Based Cationic Micelles

    PubMed Central

    Miura, Seiji; Suzuki, Hidenori; Bae, You Han

    2014-01-01

    Limited drug distribution is partially responsible for the efficacy gap between preclinical and clinical studies of nano-sized drug carriers for cancer therapy. In this study, we examined the transport behavior of cationic micelles formed from a triblock copolymer of poly(D,L-lactide-co-glycolide)-block-branched polyethyleneimine-block-poly(D,L-lactide-co-glycolide) using a unique in vitro tumor model composed of a multilayered cell culture (MCC) and an Ussing chamber system. The Cy3-labeled cationic micelles showed remarkable Cy3 distribution in the MCC whereas charge-shielded micelles with a poly(ethylene glycol) surface accumulated on the surface of the MCC. Penetration occurred against convectional flow caused by a hydraulic pressure gradient. The study using fluorescence resonance energy transfer (FRET) showed that the cationic micelles dissociate at the interface between the culture media and the MCC or possibly inside of the first-layer cells and penetrates into the MCC as unimers. The penetration and distribution were energy-dependent and suppressed by various endocytic inhibitors. These suggest that cationic unimers mainly utilized clathrin-mediated endocytosis and macropinocytosis for cellular entry and a significant fraction were exocytosed by an unknown mechanism. PMID:25866552

  18. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors.

    PubMed

    Neumann, Julia E; Wefers, Annika K; Lambo, Sander; Bianchi, Edoardo; Bockstaller, Marie; Dorostkar, Mario M; Meister, Valerie; Schindler, Pia; Korshunov, Andrey; von Hoff, Katja; Nowak, Johannes; Warmuth-Metz, Monika; Schneider, Marlon R; Renner-Müller, Ingrid; Merk, Daniel J; Shakarami, Mehdi; Sharma, Tanvi; Chavez, Lukas; Glass, Rainer; Chan, Jennifer A; Taketo, M Mark; Neumann, Philipp; Kool, Marcel; Schüller, Ulrich

    2017-10-01

    Embryonal tumors with multilayered rosettes (ETMRs) have recently been described as a new entity of rare pediatric brain tumors with a fatal outcome. We show here that ETMRs are characterized by a parallel activation of Shh and Wnt signaling. Co-activation of these pathways in mouse neural precursors is sufficient to induce ETMR-like tumors in vivo that resemble their human counterparts on the basis of histology and global gene-expression analyses, and that point to apical radial glia cells as the possible tumor cell of origin. Overexpression of LIN28A, which is a hallmark of human ETMRs, augments Sonic-hedgehog (Shh) and Wnt signaling in these precursor cells through the downregulation of let7-miRNA, and LIN28A/let7a interaction with the Shh pathway was detected at the level of Gli mRNA. Finally, human ETMR cells that were transplanted into immunocompromised host mice were responsive to the SHH inhibitor arsenic trioxide (ATO). Our work provides a novel mouse model in which to study this tumor type, demonstrates the driving role of Wnt and Shh activation in the growth of ETMRs and proposes downstream inhibition of Shh signaling as a therapeutic option for patients with ETMRs.

  19. Time series modeling with pruned multi-layer perceptron and 2-stage damped least-squares method

    NASA Astrophysics Data System (ADS)

    Voyant, Cyril; Tamas, Wani; Paoli, Christophe; Balu, Aurélia; Muselli, Marc; Nivet, Marie-Laure; Notton, Gilles

    2014-03-01

    A Multi-Layer Perceptron (MLP) defines a family of artificial neural networks often used in TS modeling and forecasting. Because of its "black box" aspect, many researchers refuse to use it. Moreover, the optimization (often based on the exhaustive approach where "all" configurations are tested) and learning phases of this artificial intelligence tool (often based on the Levenberg-Marquardt algorithm; LMA) are weaknesses of this approach (exhaustively and local minima). These two tasks must be repeated depending on the knowledge of each new problem studied, making the process, long, laborious and not systematically robust. In this paper a pruning process is proposed. This method allows, during the training phase, to carry out an inputs selecting method activating (or not) inter-nodes connections in order to verify if forecasting is improved. We propose to use iteratively the popular damped least-squares method to activate inputs and neurons. A first pass is applied to 10% of the learning sample to determine weights significantly different from 0 and delete other. Then a classical batch process based on LMA is used with the new MLP. The validation is done using 25 measured meteorological TS and cross-comparing the prediction results of the classical LMA and the 2-stage LMA.

  20. Homology modeling and virtual screening of inhibitors against TEM- and SHV-type-resistant mutants: A multilayer filtering approach.

    PubMed

    Baig, Mohammad H; Balaramnavar, Vishal M; Wadhwa, Gulshan; Khan, Asad U

    2015-01-01

    TEM and SHV are class-A-type β-lactamases commonly found in Escherichia coli and Klebsiella pneumoniae. Previous studies reported S130G and K234R mutations in SHVs to be 41- and 10-fold more resistant toward clavulanic acid than SHV-1, respectively, whereas TEM S130G and R244S also showed the same level of resistance. These selected mutants confer higher level of resistance against clavulanic acid. They also show little susceptibility against other commercially available β-lactamase inhibitors. In this study, we have used docking-based virtual screening approach in order to screen potential inhibitors against some of the major resistant mutants of SHV and TEM types β-lactamase. Two different inhibitor-resistant mutants from SHV and TEM were selected. Moreover, we have retained the active site water molecules within each enzyme. Active site water molecules were placed within modeled structure of the mutant whose structure was unavailable with protein databank. The novelty of this work lies in the use of multilayer virtual screening approach for the prediction of best and accurate results. We are reporting five inhibitors on the basis of their efficacy against all the selected resistant mutants. These inhibitors were selected on the basis of their binding efficacies and pharmacophore features. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  1. Modeling RHEED intensity oscillations in multilayer epitaxy: Determination of the Ehrlich-Schwoebel barrier in Ge(001) homoepitaxy

    SciTech Connect

    Shin, Byungha; Aziz, Michael J.

    2007-10-15

    We report the study of submonolayer growth of Ge(001) homoepitaxy by molecular beam epitaxy at low temperatures, 100-150 deg. C, using reflection high energy electron diffraction (RHEED) intensity oscillations obtained for a range of low incidence angles, where the influence of the dynamical nature of electron scattering such as the Kikuchi features is minimized. We develop a model for the RHEED specular intensity in multilayer growth that includes the diffuse scattering off surface steps and the layer interference between terraces of different heights using the kinematic approximation. The model describes the measured RHEED intensity oscillations very well for the entire range of incidence angles studied. We show that the first intensity minimum occurs well above 0.5 ML (monolayer) of the total deposited coverage, which contradicts the common practice of assigning the intensity minimum to 0.5 ML. By using the model to interpret the measured RHEED intensity, we find the evolution of the coverage of the first 1-2 ML. We find that second-layer nucleation takes place at low coverage, 0.3 ML, implying a substantial Ehrlich-Schwoebel (ES) barrier. The value inferred for the ES barrier height, 0.084{+-}0.019 eV, includes an analysis of the beam steering effect by step edges. Comparison is made with the value of the barrier height inferred from other measurements. The model for RHEED intensity and the method of inferring the ES barrier height can be applied to any system for which RHEED measurements can be obtained without interference from Kikuchi features.

  2. Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran

    NASA Astrophysics Data System (ADS)

    Ghorbani, M. A.; Deo, Ravinesh C.; Yaseen, Zaher Mundher; H. Kashani, Mahsa; Mohammadi, Babak

    2017-08-01

    An accurate computational approach for the prediction of pan evaporation over daily time horizons is a useful decisive tool in sustainable agriculture and hydrological applications, particularly in designing the rural water resource systems, water use allocations, utilization and demand assessments, and the management of irrigation systems. In this study, a hybrid predictive model (Multilayer Perceptron-Firefly Algorithm (MLP-FFA)) based on the FFA optimizer that is embedded within the MLP technique is developed and evaluated for its suitability for the prediction of daily pan evaporation. To develop the hybrid MLP-FFA model, the pan evaporation data measured between 2012 and 2014 for two major meteorological stations (Talesh and Manjil) located at Northern Iran are employed to train and test the predictive model. The ability of the hybrid MLP-FFA model is compared with the traditional MLP and support vector machine (SVM) models. The results are evaluated using five performance criteria metrics: root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NS), and the Willmott's Index (WI). Taylor diagrams are also used to examine the similarity between the observed and predicted pan evaporation data in the test period. Results show that an optimal MLP-FFA model outperforms the MLP and SVM model for both tested stations. For Talesh, a value of WI = 0.926, NS = 0.791, and RMSE = 1.007 mm day-1 is obtained using MLP-FFA model, compared with 0.912, 0.713, and 1.181 mm day-1 (MLP) and 0.916, 0.726, and 1.153 mm day-1 (SVM), whereas for Manjil, a value of WI = 0.976, NS = 0.922, and 1.406 mm day-1 is attained that contrasts 0.972, 0.901, and 1.583 mm day-1 (MLP) and 0.971, 0.893, and 1.646 mm day-1 (SVM). The results demonstrate the importance of the Firefly Algorithm applied to improve the performance of the MLP-FFA model, as verified through its better predictive performance compared to the MLP and SVM model.

  3. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  4. Dental Amalgam

    MedlinePlus

    ... Pin it Email Print Dental amalgam is a dental filling material which is used to fill cavities caused by ... tooth structure. Dental amalgam is one type of dental filling material used to repair tooth structure that has been ...

  5. Financial planning and computer modeling in dental practice.

    PubMed

    Feldman, C A

    1986-10-01

    The financial plan describes the practice's financial strategy, projects the strategy's future effect on the practice, and establishes goals by which the practice's manager can measure subsequent performance. The act of putting together a financial plan is called the financial planning process. It is a process that consists of analyzing the practice; projecting future outcomes of decisions that have to be made regarding finances, investments, and day to day operations; deciding which alternatives to undertake; and measuring performance against goals that are established in the financial plan. Computer financial planning models can aid the practice manager in projecting future outcomes of various financial, investment, and operational decisions. These models can be created inexpensively by noncomputer programmers with the aid of computer software on the market today. The financial planning process for a hypothetical practice was summarized, and the financial model used to test out various alternatives available to the practice was described.

  6. A BAYESIAN HIERARCHICAL SPATIAL MODEL FOR DENTAL CARIES ASSESSMENT USING NON-GAUSSIAN MARKOV RANDOM FIELDS

    PubMed Central

    Jin, Ick Hoon; Yuan, Ying; Bandyopadhyay, Dipankar

    2016-01-01

    Research in dental caries generates data with two levels of hierarchy: that of a tooth overall and that of the different surfaces of the tooth. The outcomes often exhibit spatial referencing among neighboring teeth and surfaces, i.e., the disease status of a tooth or surface might be influenced by the status of a set of proximal teeth/surfaces. Assessments of dental caries (tooth decay) at the tooth level yield binary outcomes indicating the presence/absence of teeth, and trinary outcomes at the surface level indicating healthy, decayed, or filled surfaces. The presence of these mixed discrete responses complicates the data analysis under a unified framework. To mitigate complications, we develop a Bayesian two-level hierarchical model under suitable (spatial) Markov random field assumptions that accommodates the natural hierarchy within the mixed responses. At the first level, we utilize an autologistic model to accommodate the spatial dependence for the tooth-level binary outcomes. For the second level and conditioned on a tooth being non-missing, we utilize a Potts model to accommodate the spatial referencing for the surface-level trinary outcomes. The regression models at both levels were controlled for plausible covariates (risk factors) of caries, and remain connected through shared parameters. To tackle the computational challenges in our Bayesian estimation scheme caused due to the doubly-intractable normalizing constant, we employ a double Metropolis-Hastings sampler. We compare and contrast our model performances to the standard non-spatial (naive) model using a small simulation study, and illustrate via an application to a clinical dataset on dental caries. PMID:27807470

  7. Synchronous Chaos and Broad Band Gamma Rhythm in a Minimal Multi-Layer Model of Primary Visual Cortex

    PubMed Central

    Battaglia, Demian; Hansel, David

    2011-01-01

    Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity. However, analysis of Local Field Potentials (LFPs) across different experiments reveals considerable diversity in the degree of oscillatory behavior of this induced activity. Contrast-dependent power enhancements can indeed occur over a broad band in the gamma frequency range and spectral peaks may not arise at all. Furthermore, even when oscillations are observed, they undergo temporal decorrelation over very few cycles. This is not easily accounted for in previous network modeling of gamma oscillations. We argue here that interactions between cortical layers can be responsible for this fast decorrelation. We study a model of a V1 hypercolumn, embedding a simplified description of the multi-layered structure of the cortex. When the stimulus contrast is low, the induced activity is only weakly synchronous and the network resonates transiently without developing collective oscillations. When the contrast is high, on the other hand, the induced activity undergoes synchronous oscillations with an irregular spatiotemporal structure expressing a synchronous chaotic state. As a consequence the population activity undergoes fast temporal decorrelation, with concomitant rapid damping of the oscillations in LFPs autocorrelograms and peak broadening in LFPs power spectra. We show that the strength of the inter-layer coupling crucially affects this spatiotemporal structure. We predict that layer VI inactivation should induce global changes in the spectral properties of induced LFPs, reflecting their slower temporal decorrelation in the absence of inter-layer feedback. Finally, we argue that the mechanism underlying the emergence of synchronous chaos in our model is in fact very general. It stems from the fact that gamma oscillations induced by local delayed

  8. A multi-layer vertically integrated model with vertical dynamics and heterogeneity for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Bandilla, K.; Keilegavlen, E.; Doster, F.; Celia, M. A.

    2014-12-01

    Mathematical models with different level of complexity are needed to address a range of engineering questions on security issues of CO2 sequestration, which has been proposed as a promising strategy for carbon mitigation. Among this wide range of mathematical models, a family of vertically integrated models has been developed. These models are usually based on a vertical equilibrium (VE) assumption, which states that due to strong buoyancy, CO2 and brine segregate instantaneously and reach a hydrostatic pressure distribution in the vertical dimension. Such VE models are accurate and computationally efficient as long as the VE assumption is valid. By comparing VE models with a full three-dimensional model for a series of practical problems, Court et al. (2012) found that there are a number of cases for which the VE model is not applicable, especially when the geological formations have relatively low vertical permeability, on the order of 10 milliDarcy or lower. To overcome the VE limitation, Guo et al. (2014) have developed a vertically integrated model for homogeneous formations that relaxes the VE assumption and accounts for vertical dynamics of CO2 and brine. Though, limited to homogeneous formations, this model has a much wider applicability compared to VE models while maintains much of the VE model's computational efficiency. In this contribution, we extend the vertically integrated model of Guo et al. (2014) to deal with the horizontally layered systems to include vertical heterogeneities. Each layer of the system can have different material properties but is assumed to be homogeneous within the layer. Such horizontally layered systems are of high practical relevance because of the depositional history of the geological formations. We develop coupling conditions between the layers and use a similar algorithm of Guo et al. (2014) to solve the individual layers. The end result is a model capable of dealing with vertical geological heterogeneities while still

  9. The reorganization of the city of Toronto dental services: a community development model.

    PubMed

    Lee, J

    1991-01-01

    The dental program of the Department of Public Health, City of Toronto, is over 75 years old. Recently, the department engaged in extensive community-based planning, which culminated in the closing of forty-eight school-based clinics and the opening of eight community clinics. A geriatric dental program also was established. This paper will describe the data utilized, the analysis of which enabled the department to focus its efforts on those at high risk for dental disease. These groups included immigrants and institutionalized seniors. This analysis also enabled the department to locate its clinics in those areas of the city with greatest need. The community development model, quite unique to major reorganizations, is also described. It was this wide support that resulted in the unanimous approval by the city council of the reorganization and gave impetus to personnel changes resulting in the ability of staff to communicate in the major languages of a city where over 50 percent speak a language other than English or French.

  10. Flaw detection in multi-layer, multi-material composites by resonance imaging: Utilizing Air-coupled Ultrasonics and Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Livings, Richard Andrew

    2011-12-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  11. XCT Study of Cone Crack Damage in Multilayered Transparent Panel Structures and Comparison to Modeling

    DTIC Science & Technology

    2012-08-01

    ANSYS/ AUTODYN commercial package (13). The geometry of the two-dimensional (2-D) and 3-D axisymmetric modeled laminates was identical to the actual...models used for all materials were obtained from the AUTODYN material library (13). The PC was modeled using a shock equation of state (EOS...with Surfacer: Training Guide; pp 326–327 and 336–337, March 1999. 13. Century Dynamics Inc. ANSYS/ AUTODYN manual; Vol. 12.0, Concord, CA, 2009

  12. Dental students' reflections about long-term care experiences through an existing model of oral health.

    PubMed

    Brondani, Mario; Pattanaporn, Komkham

    2017-09-01

    The aim of this study was to explore students' reflective thinking about long-term care experiences from the perspective of a model of oral health. A total of 186 reflections from 193 second-year undergraduate dental students enrolled between 2011/12 and 2014/15 at the University of British Columbia were explored qualitatively. Reflections had a word limit of 300, and students were asked to relate an existing model of oral health to their long-term care experiences. We have identified the main ideas via a thematic analysis related to the geriatric dentistry experience in long-term care. The thematic analysis revealed that students attempted to demystify their pre-conceived ideas about older people and long-term care facilities, to think outside the box, for example away from a typical dental office, and to consider caring for elderly people from an interprofessional lens. According to some students, not all domains from the existing model of oral health were directly relevant to their geriatric experience while other domains, including interprofessionalism and cognition, were missing. While some participants had a positive attitude towards caring for this cohort of the population, others did not take this educational activity as a constructive experience. The nature of most students' reflective thinking within a long-term care experience showed to be related to an existing model of oral health. This model can help to give meaning to the dental geriatric experience of an undergraduate curriculum. Such experience has been instrumental in overcoming potential misconceptions about long-term care and geriatric dentistry. © 2017 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  13. Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 1. Model calibration, boundary conditions, and selected results

    NASA Astrophysics Data System (ADS)

    SchöPfer, Martin P. J.; Childs, Conrad; Walsh, John J.

    2007-10-01

    The distinct element method is used for modeling the growth of normal faults in layered sequences. The models consist of circular particles that can be bonded together with breakable cement. Size effects of the model mechanical properties were studied for a constant average particle size and various sample widths. The study revealed that the bulk strength of the model material decreases with increasing sample size. Consequently, numerical lab tests and the associated construction of failure envelopes were performed for the specific layer width to particle diameter ratios used in the multilayer models. The normal faulting models are composed of strong layers (bonded particles) and weak layers (nonbonded particles) that are deformed in response to movement on a predefined fault at the base of the sequence. The modeling reproduces many of the geometries observed in natural faults, including (1) changes in fault dip due to different modes of failure in the strong and weak layers, (2) fault bifurcation (splaying), (3) the flexure of strong layers and the rotation of associated blocks to form normal drag, and (4) the progressive linkage of fault segments. The model fault zone geometries and their growth are compared to natural faults from Kilve foreshore (Somerset, United Kingdom). Both the model and natural faults provide support for the well-known general trend that fault zone width increases with increasing displacement.

  14. Comparison of linear and zero-inflated negative binomial regression models for appraisal of risk factors associated with dental caries.

    PubMed

    Batra, Manu; Shah, Aasim Farooq; Rajput, Prashant; Shah, Ishrat Aasim

    2016-01-01

    Dental caries among children has been described as a pandemic disease with a multifactorial nature. Various sociodemographic factors and oral hygiene practices are commonly tested for their influence on dental caries. In recent years, a recent statistical model that allows for covariate adjustment has been developed and is commonly referred zero-inflated negative binomial (ZINB) models. To compare the fit of the two models, the conventional linear regression (LR) model and ZINB model to assess the risk factors associated with dental caries. A cross-sectional survey was conducted on 1138 12-year-old school children in Moradabad Town, Uttar Pradesh during months of February-August 2014. Selected participants were interviewed using a questionnaire. Dental caries was assessed by recording decayed, missing, or filled teeth (DMFT) index. To assess the risk factor associated with dental caries in children, two approaches have been applied - LR model and ZINB model. The prevalence of caries-free subjects was 24.1%, and mean DMFT was 3.4 ± 1.8. In LR model, all the variables were statistically significant. Whereas in ZINB model, negative binomial part showed place of residence, father's education level, tooth brushing frequency, and dental visit statistically significant implying that the degree of being caries-free (DMFT = 0) increases for group of children who are living in urban, whose father is university pass out, who brushes twice a day and if have ever visited a dentist. The current study report that the LR model is a poorly fitted model and may lead to spurious conclusions whereas ZINB model has shown better goodness of fit (Akaike information criterion values - LR: 3.94; ZINB: 2.39) and can be preferred if high variance and number of an excess of zeroes are present.

  15. Comparison of measured reactive trace gas profiles with a multi-layer canopy chemical exchange model in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Pöhlker, Christopher; de Abreu Sá, Leonardo Deane; Ocimar Manzi, Antonio; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2016-04-01

    In 2011, an 80 m high walk up tower for atmospheric research was erected at the ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) in the remote Amazonian rainforest. The nearly pristine environment allows biosphere-atmosphere studies within an ecosystem far away from large anthropogenic emission sources. Since April 2012 vertical mixing ratio profiles of H2O, CO2 and O3 were measured at 8 different heights between 0.05 m and 79.3 m. During five intensive campaigns (Oct-Dec 2012, Oct-Nov 2013, Mar 2014, Aug-Sep 2014, Oct-Dec 2015) nitric oxide (NO) and nitrogen dioxide (NO2) were also measured. We applied the Multi-layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. This includes inferring bi-directional surface-atmosphere exchange fluxes as well as the role of the canopy interactions between the emissions, dry deposition, chemistry and turbulent transport of trace gases. During our investigation of diurnal and seasonal differences between model and measurements, we conducted a set of sensitivity studies to analyse the effects of changes in NOx-soil emissions, in-canopy turbulence and resistances for O3 and NO2 uptake on wet surfaces. These analyses suggest some modification in the representation of some of the poorly constrained canopy processes resulting in a significantly better comparison between the simulated and measured exchange fluxes and concentrations.

  16. Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model

    NASA Astrophysics Data System (ADS)

    Schubert, Gerald; Kong, Dali; Zhang, Keke

    2016-10-01

    We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.

  17. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells

    PubMed Central

    Omi, Rei; Gingery, Anne; Steinmann, Scott P.; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng

    2016-01-01

    Hypothesis A composite of multilayer tendon slices (COMTS) seeded with bone marrow stromal cells (BMSCs) may impart mechanical and biologic augmentation effects on supraspinatus tendon repair under tension, thereby improving the healing process after surgery in rats. Methods Adult female Lewis rats (n = 39) underwent transection of the supraspinatus tendon and a 2-mm tendon resection at the distal end, followed by immediate repair to its bony insertion site under tension. Animals received 1 of 3 treatments at the repair site: (1) no augmentation, (2) COMTS augmentation alone, or (3) BMSC-seeded COMTS augmentation. BMSCs were labeled with a fluorescent cell marker. Animals were euthanized 6 weeks after surgery, and the extent of healing of the repaired supraspinatus tendon was evaluated with biomechanical testing and histologic analysis. Results Histologic analysis showed gap formation between the repaired tendon and bone in all specimens, regardless of treatment. Robust fibrous tissue was observed in rats with BMSC-seeded COMTS augmentation; however, fibrous tissue was scarce within the gap in rats with no augmentation or COMTS-only augmentation. Labeled transplanted BMSCs were observed throughout the repair site. Biomechanical analysis showed that the repairs augmented with BMSC-seeded COMTS had significantly greater ultimate load to failure and stiffness compared with other treatments. However, baseline (time 0) data showed that COMTS-only augmentation did not increase mechanical strength of the repair site. Conclusion Although the COMTS scaffold did not increase the initial repair strength, the BMSC-seeded scaffold increased healing strength and stiffness 6 weeks after rotator cuff repair in a rat model. Level of evidence Basic Science Study, Animal Model. PMID:26387915

  18. Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products

    NASA Astrophysics Data System (ADS)

    Uysal, Gökçen; Şensoy, Aynur; Şorman, A. Arda

    2016-12-01

    This paper investigates the contribution of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Snow Cover Area (SCA) product and in-situ snow depth measurements to Artificial Neural Network model (ANN) based daily streamflow forecasting in a mountainous river basin. In order to represent non-linear structure of the snowmelt process, Multi-Layer Perceptron (MLP) Feed-Forward Backpropagation (FFBP) architecture is developed and applied in Upper Euphrates River Basin (10,275 km2) of Turkey where snowmelt constitutes approximately 2/3 of total annual volume of runoff during spring and early summer months. Snowmelt season is evaluated between March and July; 7 years (2002-2008) seasonal daily data are used during training while 3 years (2009-2011) seasonal daily data are split for forecasting. One of the fastest ANN training algorithms, the Levenberg-Marquardt, is used for optimization of the network weights and biases. The consistency of the network is checked with four performance criteria: coefficient of determination (R2), Nash-Sutcliffe model efficiency (ME), root mean square error (RMSE) and mean absolute error (MAE). According to the results, SCA observations provide useful information for developing of a neural network model to predict snowmelt runoff, whereas snow depth data alone are not sufficient. The highest performance is experienced when total daily precipitation, average air temperature data are combined with satellite snow cover data. The data preprocessing technique of Discrete Wavelet Analysis (DWA) is coupled with MLP modeling to further improve the runoff peak estimates. As a result, Nash-Sutcliffe model efficiency is increased from 0.52 to 0.81 for training and from 0.51 to 0.75 for forecasting. Moreover, the results are compared with that of a conceptual model, Snowmelt Runoff Model (SRM), application using SCA as an input. The importance and the main contribution of this study is to use of satellite snow products and data

  19. A multiple degree of freedom model of piezoelectret foam in an updated multilayer stack configuration

    NASA Astrophysics Data System (ADS)

    Tefft, Edward C.; Anton, Steven R.

    2017-04-01

    Piezoelectric polymers, such as the Emfit polypropylene piezoelectret foam investigated in this study, have distinct advantages over traditional piezoceramics. Although piezopolymers have a smaller piezoelec tric coupling coefficient when compared to piezoceramics, they are well suited for in vivo applications , having a lead - free composition, for applications with curved or flexible surfaces, being flexible, or where weight or large shocks are factors, being l ight weight and r esilient. Presented here is an improved electromechanical multiple degree of freedom (MDOF) model of a mult ilayer piezoelectret foam stack that implements a complex stiffness damping model as a function of measureable material properties , as well as an updated stack configuration which makes use of lighter and more fle xible materials than the author's previous configuration. The model predicts the energy harvesting performance of the stack at varying excitation frequencies and for varying s tack properties. Finally, the stack model parameters are validated with experimentally determined foam material properties .

  20. Model investigations of caries inhibition by fluoride-releasing dental materials.

    PubMed

    Erickson, R L; Glasspoole, E A

    1995-11-01

    Fluoride-releasing dental materials are generally believed to reduce or prevent secondary caries. The evidence for this is largely anecdotal and centers on clinical experience with silicate cements and, more recently, with glass-ionomer cements. Unfortunately, corroborating evidence from controlled clinical trials is inadequate to establish precisely how effective these materials are or under what conditions they might be effective. Even less is known about the clinical effectiveness of newer materials that, often, release less fluoride. In vitro model systems have been used to study the effects of dental materials on de/remineralization of surrounding tooth structure. Fluoride-releasing materials have been shown in these models to reduce demineralization of both enamel and dentin compared with a material that does not release fluoride. This is useful from a mechanistic standpoint, but without clinical "standards" to guide model results, it is not possible to define an acceptable level of fluoride release or the length of time such release is required. A limited number of in situ model studies has been conducted, and some fluoride dose-response information has been obtained. These models are closer to the real situation and perhaps provide the best means to define required levels of fluoride release from materials in the absence of adequate clinical information.

  1. The use of the BDA Case Mix Model to assess the need for referral of patients to specialist dental services.

    PubMed

    AlKindi, N A; Nunn, J

    2016-04-22

    Access to health services is a right for every individual. However, there is evidence that people with disabilities face barriers in accessing dental health. One of the reasons associated with this is the unclear referral pathway existing in the Irish dental health service. The appropriate assignment of patients to relevant services is an important issue to ensure better access to healthcare. This is all the more pertinent because there are only a few trained dental practitioners to provide dental treatment for people with disabilities, as well as even fewer qualified specialists in special care dentistry. The aim of this part of the study was to assess the use of the BDA Case Mix Model to determine the need for referral of patients to specialist dental services, and to determine any association between patient complexity and the need for adjunct measures, such as sedation and general anaesthesia for the management of people with disabilities and complex needs. A retrospective analysis of dental records using the BDA Case Mix Model.Results The results showed that patients with different levels of complexities were being referred to the special care dentistry clinic at the Dublin Dental University Hospital. The results also showed that the need for supportive adjunct measures such as sedation and general anaesthesia was not necessarily the main reason for referring patients to specialist services. The assessment with the BDA Case Mix Model was comprehensive as it looked at many factors contributing to the cases' complexity. Not all categories in the Case Mix Model had significant association with the need for an adjunct.Conclusion The BDA Case Mix Model can be used to measure the need for supportive adjunct measures, such as sedation and general anaesthesia.

  2. A multilayer self-organizing model for convex-hull computation.

    PubMed

    Pal, S; Datta, A; Pal, N R

    2001-01-01

    A self-organizing neural-network model is proposed for computation of the convex-hull of a given set of planar points. The network evolves in such a manner that it adapts itself to the hull-vertices of the convex-hull. The proposed network consists of three layers of processors. The bottom layer computes some angles which are passed to the middle layer. The middle layer is used for computation of the minimum angle (winner selection). These information are passed to the topmost layer as well as fed back to the bottom layer. The network in the topmost layer self-organizes by labeling the hull-processors in an orderly fashion so that the final convex-hull is obtained from the topmost layer. Time complexity of the proposed model is analyzed and is compared with existing models of similar nature.

  3. Nonlinear continuum growth model of multiscale reliefs as applied to rigorous analysis of multilayer short-wave scattering intensity. I. Gratings

    PubMed Central

    Goray, Leonid; Lubov, Maxim

    2013-01-01

    It is shown that taking into proper account certain terms in the nonlinear continuum equation of thin-film growth makes it applicable to the simulation of the surface of multilayer gratings with large boundary profile heights and/or gradient jumps. The proposed model describes smoothing and displacement of Mo/Si and Al/Zr boundaries of gratings grown on Si substrates with a blazed groove profile by magnetron sputtering and ion-beam deposition. Computer simulation of the growth of multilayer Mo/Si and Al/Zr gratings has been conducted. Absolute diffraction efficiencies of Mo/Si and Al/Zr gratings in the extreme UV range have been found within the framework of boundary integral equations applied to the calculated boundary profiles. It has been demonstrated that the integrated approach to the calculation of boundary profiles and of the intensity of short-wave scattering by multilayer gratings developed here opens up a way to perform studies comparable in accuracy to measurements with synchrotron radiation, at least for known materials and growth techniques. PMID:24046500

  4. Thermal-mechanical modeling of nodular defect embedded within multilayer coatings

    SciTech Connect

    Ling Xiulan; Shao Jianda; Fan Zhengxiu

    2009-03-15

    The initiation of laser damage within optical coatings can be better understood by thermal-mechanical modeling of coating defects. The result of this modeling shows that a high-temperature rise and thermal stress can be seen just inside the nodular defect compared to surrounding coating layers. The temperature rise and thermal stress tend to increase with seed diameter. Shallower seed tend to cause higher temperature rise and greater thermal stress. There is a critical seed depth at which thermal stress is largest. The composition of the seed resulting from different coating-material emission during evaporation can affect the temperature rise and thermal stress distribution.

  5. A Double-Canyon Radiation Scheme for Multi-Layer Urban Canopy Models

    NASA Astrophysics Data System (ADS)

    Schubert, Sebastian; Grossman-Clarke, Susanne; Martilli, Alberto

    2012-12-01

    We develop a double-canyon radiation scheme (DCEP) for urban canopy models embedded in mesoscale numerical models based on the Building Effect Parametrization (BEP). The new scheme calculates the incoming and outgoing longwave and shortwave radiation for roof, wall and ground surfaces for an urban street canyon characterized by its street and building width, canyon length, and the building height distribution. The scheme introduces the radiative interaction of two neighbouring urban canyons allowing the full inclusion of roofs into the radiation exchange both inside the canyon and with the sky. In contrast to BEP, we also treat direct and diffuse shortwave radiation from the sky independently, thus allowing calculation of the effective parameters representing the urban diffuse and direct shortwave radiation budget inside the mesoscale model. Furthermore, we close the energy balance of incoming longwave and diffuse shortwave radiation from the sky, so that the new scheme is physically more consistent than the BEP scheme. Sensitivity tests show that these modifications are important for urban regions with a large variety of building heights. The evaluation against data from the Basel Urban Boundary Layer Experiment indicates a good performance of the DCEP when coupled with the regional weather and climate model COSMO-CLM.

  6. Ex Vivo Modeling of Multidomain Peptide Hydrogels with Intact Dental Pulp

    PubMed Central

    Moore, A.N.; Perez, S.C.; Hartgerink, J.D.; D’Souza, R.N.; Colombo, J.S.

    2015-01-01

    Preservation of a vital dental pulp is a central goal of restorative dentistry. Currently, there is significant interest in the development of tissue engineering scaffolds that can serve as biocompatible and bioactive pulp-capping materials, driving dentin bridge formation without causing cytotoxic effects. Our earlier in vitro studies described the biocompatibility of multidomain peptide (MDP) hydrogel scaffolds with dental pulp–derived cells but were limited in their ability to model contact with intact 3-dimensional pulp tissues. Here, we utilize an established ex vivo mandible organ culture model to model these complex interactions. MDP hydrogel scaffolds were injected either at the interface of the odontoblasts and the dentin or into the pulp core of mandible slices and subsequently cultured for up to 10 d. Histology reveals minimal disruption of tissue architecture adjacent to MDP scaffolds injected into the pulp core or odontoblast space. Additionally, the odontoblast layer is structurally preserved in apposition to the MDP scaffold, despite being separated from the dentin. Alizarin red staining suggests mineralization at the periphery of MDP scaffolds injected into the odontoblast space. Immunohistochemistry reveals deposition of dentin sialophosphoprotein by odontoblasts into the adjacent MDP hydrogel, indicating continued functionality. In contrast, no mineralization or dentin sialophosphoprotein deposition is evident around MDP scaffolds injected into the pulp core. Collagen III expression is seen in apposition to gels at all experimental time points. Matrix metalloproteinase 2 expression is observed associated with centrally injected MDP scaffolds at early time points, indicating proteolytic digestion of scaffolds. Thus, MDP scaffolds delivered centrally and peripherally within whole dental pulp tissue are shown to be biocompatible, preserving local tissue architecture. Additionally, odontoblast function and pulp vitality are sustained when MDP

  7. Osteopontin Reduces Biofilm Formation in a Multi-Species Model of Dental Biofilm

    PubMed Central

    Schlafer, Sebastian; Raarup, Merete K.; Wejse, Peter L.; Nyvad, Bente; Städler, Brigitte M.; Sutherland, Duncan S.; Birkedal, Henrik; Meyer, Rikke L.

    2012-01-01

    Background Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms. Methodology/Principal Findings Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically. Conclusions/Significance OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures. PMID:22879891

  8. Modeling of pulse-echo inspections of multi-layer panels containing delaminations

    NASA Astrophysics Data System (ADS)

    Richter, Nathaniel Lawrence

    To meet the needs of counter insurgency operations the armor of tanks need to be lighter. This is accomplished by using a combination of materials: metals, composites, and ceramics. This multi-material composite armor using any combination of the above materials will need to be inspected for manufacturing error, shipping damage, and combat damage. Nondestructive inspection, particularly ultrasonic inspection, has a long history of successfully inspecting thick composite structures. To more easily develop inspection plans for many layered composites a computational model would be of use. A model of this type would need to have the ability to account for multiple material types and flaws that are larger than the beam size. Also, as a result of armor thickness any model would need to consider attenuation and effects of focused transducers. This was accomplishing by extending the Thompson-Gray Measurement Model for use with multiple layers at normal incidence to the transducer and large planar defects parallel to the layers. Material values of the armor and the characteristics of the transducers were determined for use in the model. The model results are compared to experimentally collected data to show agreement. The model is then used to determine the requirements of a new inspection plan through varying the frequency and focal length of the transducers. The defect reflection amplitudes for 5 MHz with the focal lengths in water of 7.5, 8.5, and 9.5 inches are 0.55178, 0.75270, and 0.44836. The same for 10 MHz are 0.12474, 0.21425, and 0.10637. The 8.5 in focal length also is the equivilent thickness in water for the material leading to the defect interface. This focal length would, from theory, cause the greatest amplitude from the defect. This is supported by the results in that the highest amplitude occurs at 8.5 inches for both sets of frequencies. It is also evident that the response at 5 MHz is greater than that at 10 MHz. As such, the 5 MHz transducer with an 8

  9. Fracture toughness determination of dental materials by laboratory testing and finite element models.

    PubMed

    Pidaparti, R M; Beatty, M W

    1995-03-01

    This study assessed the effectiveness of finite element analysis in predicting the stress intensity factor (KIC) for three types of dental materials: a glass ionomer, a dental amalgam, and a composite resin. Laboratory tests were conducted on small single-edge notch specimens loaded in three-point bending to determine values for fracture toughness (KQ). Using the dimensions measured for each laboratory specimen, a J integral approach was employed to calculate KIC using finite element analysis. Both two-dimensional plane strain and three-dimensional models were used in determining KIC for each specimen, and these values were compared to the KQ values obtained from laboratory tests. The results indicated that no significant differences existed between laboratory results and those obtained from both two- and three-dimensional finite element models (P > .85). For the three-dimensional model, values for KIC were found to vary across the specimen thickness, with the values at the center of the specimen closely paralleling those obtained from the two-dimensional plane strain model. It was concluded that the two-dimensional plane strain J integral technique was as effective as the three-dimensional technique in calculating values for KIC.

  10. Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey; van Pelt, Ward J. J.; Claremar, Björn; Pohjola, Veijo; Pettersson, Rickard; Machguth, Horst; Reijmer, Carleen

    2017-03-01

    Deep preferential percolation of melt water in snow and firn brings water lower along the vertical profile than a laterally homogeneous wetting front. This widely recognized process is an important source of uncertainty in simulations of subsurface temperature, density and water content in seasonal snow and in firn packs on glaciers and ice sheets. However, observation and quantification of preferential flow is challenging and therefore it is not accounted for by most of the contemporary snow/firn models. Here we use temperature measurements in the accumulation zone of Lomonosovfonna, Svalbard, done in April 2012 - 2015 using multiple thermistor strings to describe the process of water percolation in snow and firn. Effects of water flow through the snow and firn profile are further explored using a coupled surface energy balance - firn model forced by the output of the regional climate model WRF. In situ air temperature, radiation and surface height change measurements are used to constrain the surface energy and mass fluxes. To account for the effects of preferential water flow in snow and firn we test a set of depth-dependent functions allocating a certain fraction of the melt water available at the surface to each snow/firn layer. Experiments are performed for a range of characteristic percolation depths and results indicate a reduction in root mean square difference between the modeled and measured temperature by up to a factor of two compared to the results from the default water infiltration scheme. This illustrates the significance of accounting for preferential water percolation to simulate subsurface conditions. The suggested approach to parameterization of the preferential water flow requires low additional computational cost and can be implemented in layered snow/firn models applied both at local and regional scales, for distributed domains with multiple mesh points.

  11. Antibacterial Efficacy of Silver-Impregnated Polyelectrolyte Multilayers Immobilized on a Biological Dressing in a Murine Wound Infection Model

    PubMed Central

    Guthrie, Kathleen M.; Agarwal, Ankit; Tackes, Dana S.; Johnson, Kevin W.; Abbott, Nicholas L.; Murphy, Christopher J.; Czuprynski, Charles J.; Kierski, Patricia R.; Schurr, Michael J.; McAnulty, Jonathan F.

    2012-01-01

    Objective To investigate the antibacterial effect of augmenting a biological dressing with polymer films containing silver nanoparticles. Background Biological dressings, such as Biobrane, are commonly used for treating partial-thickness wounds and burn injuries. Biological dressings have several advantages over traditional wound dressings. However, as many as 19% of wounds treated with Biobrane become infected, and, once infected, the Biobrane must be removed and a traditional dressing approach should be employed. Silver is a commonly used antimicrobial in wound care products, but current technology uses cytotoxic concentrations of silver in these dressings. We have developed a novel and facile technology that allows immobilization of bioactive molecules on the surfaces of soft materials, demonstrated here by augmentation of Biobrane with nanoparticulate silver. Surfaces modified with nanometer-thick polyelectrolyte multilayers (PEMs) impregnated with silver nanoparticles have been shown previously to result in in vitro antibacterial activity against Staphylococcus epidermidis at loadings of silver that are noncytotoxic. Methods We demonstrated that silver-impregnated PEMs can be nondestructively immobilized onto the surface of Biobrane (Biobrane-Ag) and determined the in vitro antibacterial activity of Biobrane-Ag with Staphylococcus aureus. In this study, we used an in vivo wound infection model in mice induced by topical inoculation of S aureus onto full-thickness 6-mm diameter wounds. After 72 hours, bacterial quantification was performed. Results Wounds treated with Biobrane-Ag had significantly (P < 0.001) fewer colony-forming units than wounds treated with unmodified Biobrane (more than 4 log10 difference). Conclusions The results of our study indicate that immobilizing silver-impregnated PEMs on the wound-contact surface of Biobrane significantly reduces bacterial bioburden in full-thickness murine skin wounds. Further research will investigate whether

  12. Three-dimensional multilayers of smooth muscle cells as a new experimental model for vascular elastic fiber formation studies.

    PubMed

    Ishiwata, Ryo; Yokoyama, Utako; Matsusaki, Michiya; Asano, Yoshiya; Kadowaki, Koji; Ichikawa, Yasuhiro; Umemura, Masanari; Fujita, Takayuki; Minamisawa, Susumu; Shimoda, Hiroshi; Akashi, Mitsuru; Ishikawa, Yoshihiro

    2014-04-01

    Elastic fiber formation is disrupted with age and by health conditions including aneurysms and atherosclerosis. Despite considerable progress in the understanding of elastogenesis using the planar culture system and genetically modified animals, it remains difficult to restore elastic fibers in diseased vessels. To further study the molecular mechanisms, in vitro three-dimensional vascular constructs need to be established. We previously fabricated vascular smooth muscle cells (SMCs) into three-dimensional cellular multilayers (3DCMs) using a hierarchical cell manipulation technique, in which cells were coated with fibronectin-gelatin nanofilms to provide adhesive nano-scaffolds. Since fibronectin is known to assemble and activate elastic fiber-related molecules, we further optimized culture conditions. Elastica stain, immunofluorescence, and electron microscopic analysis demonstrated that 3DCMs, which consisted of seven layers of neonatal rat aortic SMCs cultured in 1% fetal bovine serum (FBS) in Dulbecco's modified Eagle's medium, exhibited layered elastic fibers within seven days of being in a static culture condition. In contrast, the application of adult SMCs, 10% FBS, ε-poly(lysine) as an alternative adhesive for fibronectin, or four-layered SMCs, failed to generate layered elastic fiber formation. Radioimmunoassay using [(3)H]valine further confirmed the greater amount of cross-linked elastic fibers in 3DCMs than in monolayered SMCs. Layered elastic fiber formation in 3DCMs was inhibited by the lysyl oxidase inhibitor β-aminopropionitrile, or prostaglandin E2. Furthermore, infiltration of THP-1-derived macrophages decreased the surrounding elastic fiber formation in 3DCMs. 3DCMs may offer a new experimental vascular model to explore pharmacological therapeutic strategies for disordered elastic fiber homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells.

    PubMed

    Omi, Rei; Gingery, Anne; Steinmann, Scott P; Amadio, Peter C; An, Kai-Nan; Zhao, Chunfeng

    2016-03-01

    A composite of multilayer tendon slices (COMTS) seeded with bone marrow stromal cells (BMSCs) may impart mechanical and biologic augmentation effects on supraspinatus tendon repair under tension, thereby improving the healing process after surgery in rats. Adult female Lewis rats (n = 39) underwent transection of the supraspinatus tendon and a 2-mm tendon resection at the distal end, followed by immediate repair to its bony insertion site under tension. Animals received 1 of 3 treatments at the repair site: (1) no augmentation, (2) COMTS augmentation alone, or (3) BMSC-seeded COMTS augmentation. BMSCs were labeled with a fluorescent cell marker. Animals were euthanized 6 weeks after surgery, and the extent of healing of the repaired supraspinatus tendon was evaluated with biomechanical testing and histologic analysis. Histologic analysis showed gap formation between the repaired tendon and bone in all specimens, regardless of treatment. Robust fibrous tissue was observed in rats with BMSC-seeded COMTS augmentation; however, fibrous tissue was scarce within the gap in rats with no augmentation or COMTS-only augmentation. Labeled transplanted BMSCs were observed throughout the repair site. Biomechanical analysis showed that the repairs augmented with BMSC-seeded COMTS had significantly greater ultimate load to failure and stiffness compared with other treatments. However, baseline (time 0) data showed that COMTS-only augmentation did not increase mechanical strength of the repair site. Although the COMTS scaffold did not increase the initial repair strength, the BMSC-seeded scaffold increased healing strength and stiffness 6 weeks after rotator cuff repair in a rat model. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Dental age assessment on panoramic radiographs in a Swiss population: a validation study of two prediction models.

    PubMed

    Birchler, Flavia A; Kiliaridis, Stavros; Combescure, Christophe; Vazquez, Lydia

    2016-01-01

    Dental age assessment methods are widely used for age estimation. This study aimed to analyse the accuracy of a meta-analysis method to estimate dental age in Swiss individuals and to detect potential limitations of the method. Precision of repeated tooth staging using Demirjian's classification on maxillary and mandibular teeth was also assessed. Panoramic radiographs of 50 Swiss white healthy children were analysed. Developing teeth on the left maxilla and mandible and all third permanent molars were staged following Demirjian's classification. Dental age was calculated for each subject, using a random effects model and a fixed effect model, and compared with chronological age. The mean error of the dental age ranged between -3 and +1 months for both the calculation models. Dental age calculated with the fixed effect model overestimated the age of the subjects (average + 0.10 y, ranging from -1.95 y to +2.16 y) compared with their chronological age, whereas the random effects model underestimated the age (average -0.32 y, ranging from -2.24 y to +1.61 y). Demirjian's method allowed a precise repeated staging of maxillary and mandibular developing teeth. For both calculation models, dental age correlated well, on average, with chronological age of Swiss subjects younger than 12 years. The random effects model showed a better accuracy for these subjects than the fixed effect model. However, both models underestimated the chronological age in subjects older than 12 years.

  15. Teaching dental students how to deliver bad news: S-P-I-K-E-S model.

    PubMed

    Curtin, Sharon; McConnell, Mary

    2012-03-01

    Delivering bad news has traditionally been associated with life-threatening illness, the imminence of death, or communicating about the death of a loved one to a family member. The delivery of bad news in dentistry is rarely about life-threatening circumstances. However, the impact of the bad news such as the loss of an anterior tooth can be devastating for the patient. This article outlines the S-P-I-K-E-S protocol and discusses the teaching aims and methodology in applying the model in an undergraduate dental program in Ireland.

  16. Multilayer limb quasi-static electromagnetic modeling with experiments for Galvanic coupling type IBC.

    PubMed

    Pun, S H; Gao, Y M; Mou, P A; Mak, P U; Vai, M I; Du, M

    2010-01-01

    Intra-body communication (IBC) is a new, emerging, short-range and human body based communication methodology. It is a technique to network various devices on human body, by utilizing the conducting properties of human tissues. For currently fast developed Body area network(BAN)/Body sensor network(BSN), IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, the authors propose an improved mathematical model, which includes both electrical properties and proportion of human tissues, for IBC on a human limb. By solving the mathematical model analytically on four-layer system (skin, fat, muscle, and bone) and conducting in-vivo experiment, a comparison has been conducted.

  17. Computer modelling of aluminum-gallium arsenide/gallium arsenide multilayer photovoltaics. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wagner, Michael Broderick

    1987-01-01

    The modeled cascade cells offer an alternative to conventional series cascade designs that require a monolithic intercell ohmic contact. Selective electrodes provide a simple means of fabricating three-terminal devices, which can be configured in complementary pairs to circumvent the attendant losses and fabrication complexities of intercell ohmic contacts. Moreover, selective electrodes allow incorporation of additional layers in the upper subcell which can improve spectral response and increase radiation tolerance. Realistic simulations of such cells operating under one-sun AMO conditions show that the seven-layer structure is optimum from the standpoint of beginning-of-life efficiency and radiation tolerance. Projected efficiencies exceed 26 percent. Under higher concentration factors, it should be possible to achieve efficiencies beyond 30 percent. However, to simulate operation at high concentration will require a model for resistive losses. Overall, these devices appear to be a promising contender for future space applications.

  18. Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces.

    PubMed

    Bhattarai, Khagendra; Silva, Sinhara; Song, Kun; Urbas, Augustine; Lee, Sang Jun; Ku, Zahyun; Zhou, Jiangfeng

    2017-09-05

    We demonstrate that the metamaterial perfect absorber behaves as a meta-cavity bounded between a resonant metasurface and a metallic thin-film reflector. The perfect absorption is achieved by the Fabry-Perot cavity resonance via multiple reflections between the "quasi-open" boundary of resonator and the "close" boundary of reflector. The characteristic features including angle independence, ultra-thin thickness and strong field localization can be well explained by this meta-cavity model. With this model, metamaterial perfect absorber can be redefined as a meta-cavity exhibiting high Q-factor, strong field enhancement and extremely high photonic density of states, thereby promising novel applications for high performance sensor, infrared photodetector and cavity quantum electrodynamics devices.

  19. Magnetization and ferromagnetic resonance in a Fe/Gd multilayer: experiment and modelling.

    PubMed

    Drovosekov, A B; Kreines, N M; Savitsky, A O; Kravtsov, E A; Ryabukhina, M V; Proglyado, V V; Ustinov, V V

    2017-03-22

    Static and dynamic magnetic properties of a [Fe(35 Å)/Gd(50 Å)]12 superlattice are investigated experimentally in the temperature range 5-295 K using SQUID magnetometery and the ferromagnetic resonance (FMR) technique at frequencies 7-38 GHz. The obtained magnetization curves and FMR spectra are analysed theoretically using numerical simulation on the basis of the effective field model. At every given temperature, both static and resonance experimental data can be approximated well within the proposed model. However, a considerable temperature dependence of the effective field parameter in gadolinium layers has to be taken into account to achieve reasonable agreement with the experimental data in the entire temperature range studied. To describe the peculiarities of experimental FMR spectra, a non-local diffusion-type absorption term in Landau-Lifshitz equations is considered in addition to the Gilbert damping term. Possible reasons for the observed effects are discussed.

  20. Magnetization and ferromagnetic resonance in a Fe/Gd multilayer: experiment and modelling

    NASA Astrophysics Data System (ADS)

    Drovosekov, A. B.; Kreines, N. M.; Savitsky, A. O.; Kravtsov, E. A.; Ryabukhina, M. V.; Proglyado, V. V.; Ustinov, V. V.

    2017-03-01

    Static and dynamic magnetic properties of a [Fe(35 Å)/Gd(50 Å)]12 superlattice are investigated experimentally in the temperature range 5–295 K using SQUID magnetometery and the ferromagnetic resonance (FMR) technique at frequencies 7–38 GHz. The obtained magnetization curves and FMR spectra are analysed theoretically using numerical simulation on the basis of the effective field model. At every given temperature, both static and resonance experimental data can be approximated well within the proposed model. However, a considerable temperature dependence of the effective field parameter in gadolinium layers has to be taken into account to achieve reasonable agreement with the experimental data in the entire temperature range studied. To describe the peculiarities of experimental FMR spectra, a non-local diffusion-type absorption term in Landau–Lifshitz equations is considered in addition to the Gilbert damping term. Possible reasons for the observed effects are discussed.

  1. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    SciTech Connect

    Starkov, A. S. Pakhomov, O. V.; Starkov, I. A.

    2013-06-15

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

  2. Detection of object motion regions in aerial image pairs with a multilayer markovian model.

    PubMed

    Benedek, Csaba; Szirányi, Tamás; Kato, Zoltan; Zerubia, Josiane

    2009-10-01

    We propose a new Bayesian method for detecting the regions of object displacements in aerial image pairs. We use a robust but coarse 2-D image registration algorithm. Our main challenge is to eliminate the registration errors from the extracted change map. We introduce a three-layer Markov random field (L(3)MRF) model which integrates information from two different features, and ensures connected homogenous regions in the segmented images. Validation is given on real aerial photos.

  3. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils.

    PubMed

    Jeong, Jaehak; Charbeneau, Randall J

    2014-01-01

    An analytical model was developed for estimating the distribution and recovery of light nonaqueous phase liquids (LNAPL) in heterogeneous aquifers. Various scenarios of LNAPL recovery may be simulated using LDRM for LNAPL recovery systems such as skimmer wells, water-enhanced wells, air-enhanced wells, and trenches from heterogeneous aquifers. LDRM uses multiple horizontal soil layers to model a heterogeneous aquifer. Up to three soil layers may be configured with unique soil properties for each layer. Simulation results suggest that LNAPL distribution and its recovery volume are highly affected by soil properties. In sandy soils LNAPL can be highly mobile and the recovery efficiency can be high. In contrast, even at high LNAPL saturations, LNAPL mobility is typically low in fine-grained soils. This characteristic of LNAPL with respect to soil texture has to be carefully accounted for in the model to better predict the recovery of LNAPL from heterogeneous soils. The impact of vertical hydraulic gradient in fine grain zone was assessed. A sensitivity analysis suggests that the formation LNAPL volume can be significantly affected by a downward vertical hydraulic gradient if the magnitude is near a critical amount (=ρr-1). Sensitivity of input parameters with respect to LNAPL formation in soils and LNAPL recovery volume were identified through a sensitivity analysis. The performance of LDRM on predicting the distribution and recovery of LNAP was reasonably accurate for a short-term analysis as demonstrated in a case study. However, further validation is needed to ascertain the model's performance in long-term simulations. © 2013.

  4. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  5. A multilayer micromechanical model of the cuticle of Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae).

    PubMed

    Andrew Jansen, M; Singh, Sudhanshu S; Chawla, Nikhilesh; Franz, Nico M

    2016-08-01

    Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae), is a weevil species common throughout the southwestern United States that uses its rostrum - a very slender, curved, beak-like projection of the head - to excavate tunnels in plant organs (such as acorns) for egg laying (oviposition). Once the apical portion of the rostrum has been inserted into the preferred substrate for oviposition, the female begins rotating around the perimeter of the hole, elevating her head by extending the fore-legs, and rotating the head in place in a drilling motion. This action causes significant elastic deformation of the rostrum, which will bend until it becomes completely straight. To better understand the mechanical behavior of the cuticle as it undergoes deformation during the preparation of oviposition sites, we develop a comprehensive micro/macro model of the micromechanical structure and properties of the cuticle, spanning across all cuticular regions, and reliably mirroring the resultant macroscale properties of the cuticle. Our modeling approach relies on the use of multi-scale, hierarchical biomaterial representation, and employs various micromechanical schemata - e.g., Mori-Tanaka, effective field, and Maxwell - to calculate the homogenized properties of representative volume elements at each level in the hierarchy. We describe the configuration and behavior of this model in detail, and discuss the theoretical implications and limitations of this approach with emphasis on future biomechanical and comparative evolutionary research. Our detailed account of this approach can thereby serve as a methodological template for exploring the biomechanical behavior of new insect structures.

  6. Verification of the multi-layer SNOWPACK model with different water transport schemes

    NASA Astrophysics Data System (ADS)

    Wever, N.; Schmid, L.; Heilig, A.; Eisen, O.; Fierz, C.; Lehning, M.

    2015-12-01

    The widely used detailed SNOWPACK model has undergone constant development over the years. A notable recent extension is the introduction of a Richards equation (RE) solver as an alternative for the bucket-type approach for describing water transport in the snow and soil layers. In addition, continuous updates of snow settling and new snow density parameterizations have changed model behavior. This study presents a detailed evaluation of model performance against a comprehensive multiyear data set from Weissfluhjoch near Davos, Switzerland. The data set is collected by automatic meteorological and snowpack measurements and manual snow profiles. During the main winter season, snow height (RMSE: < 4.2 cm), snow water equivalent (SWE, RMSE: < 40 mm w.e.), snow temperature distributions (typical deviation with measurements: < 1.0 °C) and snow density (typical deviation with observations: < 50 kg m-3) as well as their temporal evolution are well simulated in the model and the influence of the two water transport schemes is small. The RE approach reproduces internal differences over capillary barriers but fails to predict enough grain growth since the growth routines have been calibrated using the bucket scheme in the original SNOWPACK model. However, the agreement in both density and grain size is sufficient to parameterize the hydraulic properties successfully. In the melt season, a pronounced underestimation of typically 200 mm w.e. in SWE is found. The discrepancies between the simulations and the field data are generally larger than the differences between the two water transport schemes. Nevertheless, the detailed comparison of the internal snowpack structure shows that the timing of internal temperature and water dynamics is adequately and better represented with the new RE approach when compared to the conventional bucket scheme. On the contrary, the progress of the meltwater front in the snowpack as detected by radar and the temporal evolution of the vertical

  7. Analysis of the factors that affect dental health behaviour and attendance at scheduled dental check-ups using the PRECEDE-PROCEED Model.

    PubMed

    Sato, Kimiko; Oda, Megumi

    2011-04-01

    A questionnaire survey was administered to 317 parents who attended infant health check-ups in City B, Okayama Prefecture between October, 2008 and March, 2009. The questionnaire survey studied 7 factors based on the PRECEDE-PROCEED Model. We analysed factors that affected oral health behaviour and attendance at scheduled dental health check-ups. The survey containing 22 items concerning matters such as 'QOL' and 'health problems' was posted to parents and guardians in advance, and then collected on the day of the medical check-up. The collected data was analysed using the t-test and Pearson's correlation coefficient, following which we conducted a covariance structure analysis. The results showed that dental health behaviour was directly affected by reinforcing factors, and indirectly associated with enabling and predisposing factors influenced by reinforcing factors. It was also shown that predisposing factors and oral health behaviour were associated with attendance at scheduled oral health check-ups. The results indicated that strengthening oral health education by sharing knowledge that acts as predisposing factors and introducing adaptations of oral health behaviour that that fit individual lives will lead to improved attendance at scheduled dental health check-ups.

  8. A Two-Stream Multilayer, Spectral Radiative Transfer Model for Sea Ice,

    DTIC Science & Technology

    1989-07-01

    lassified -c DECASS,. CA7:0ON DCWNGAD NG SCHEDJcE Approved for public releais(- Cist: Iitlol is_ unlimilted. ZE>\\ G RGA:Z O EOR NMEE~ S CON.;TOCNG CG...0N 6.1102 AT24 SS 05 Inckcoe Secur> CIassit’caofin. A Two-Stream, Multilaver, Spectral Radiative Transfer Model for Sea Ice 12 D2RSCNAL AUTHCO 1( S ...radiation fields is demonstrated., 20 DIST~i? BTION/AVAIABILITY OF ABSTRACT 2i ABSTRACT SEC dRJY : 4? S F N uNCLASSIFIED/ UNLIMITED [3 SAME AS RPT 0 DTIC

  9. A comparative study of the effect of probiotics on cariogenic biofilm model for preventing dental caries.

    PubMed

    Lee, Sung-Hoon; Kim, Young-Jae

    2014-08-01

    Dental caries is induced by oral biofilm containing Streptococcus mutans. Probiotic bacteria were mainly studied for effect on the gastrointestinal tract and have been known to promote human health. However, the information of probiotics for oral health has been lack yet. In this study, we investigated influence of various probiotics on oral bacteria or cariogenic biofilm and evaluated candidate probiotics for dental caries among them. The antimicrobial activity of the spent culture medium of probiotics for oral streptococci was performed. Probiotics were added during the biofilm formation with salivary bacteria including S. mutans. The oral biofilms were stained with a fluorescent dye and observed using the confocal laser scanning microscope. To count bacteria in the biofilm, the bacteria were plated on MSB and BHI agar plates after disrupting the biofilm and cultivated. Glucosyltransferases (gtfs) expression of S. mutans and integration of lactobacilli into the biofilm were evaluated by real-time RT-PCR. Among probiotics, Lactobacillus species strongly inhibited growth of oral streptococci. Moreover, Lactobacillus species strongly inhibited formation of cariogenic biofilm model. The expression of gtfs was significantly reduced by Lactobacillus rhamnosus. The integration of L. rhamnosus into the biofilm model did not exhibit. However, L. acidophilus and L casei integrated into the biofilm model. These results suggest that L. rhamnosus may inhibit oral biofilm formation by decreasing glucan production of S. mutans and antibacterial activity and did not integrate into oral biofilm, which can be a candidate for caries prevention strategy.

  10. Perceived Stress Latent Factors and the Burnout Subtypes: A Structural Model in Dental Students

    PubMed Central

    Montero-Marín, Jesús; Piva Demarzo, Marcelo Marcos; Stapinski, Lexine; Gili, Margarita; García-Campayo, Javier

    2014-01-01

    Background Students of health-professions suffer high levels of stress and burnout. The aim of the present study was to evaluate the relationship between perceived stress latent factors (‘tenseness’ and ‘frustration’) and the features (‘overload’, ‘lack of development’ and ‘neglect’) of the three burnout subtypes (‘frenetic’, ‘under-challenged’ and ‘worn-out’, respectively), in a sample of Spanish dental students. Methods The study employed a cross-sectional design. A sample of Spanish dental students (n = 314) completed the ‘Perceived Stress Questionnaire’ and the ‘Burnout Clinical Subtype Questionnaire Student Survey’. The associations among variables were observed by means of structural equation modelling using the unweighted least squares method from polychoric correlations. Results Strong associations among perceived stress factors and the burnout characteristics were observed, although a distinct pattern of relations was observed for each burnout subtype. The ‘overload’ was moderately and positively associated with both ‘tenseness’ (0.45), and ‘frustration’ (0.38) dimensions of perceived stress; the ‘lack of development’ was positively associated with the ‘frustration’ dimension (0.72), but negatively associated with ‘tenseness’ (−0.69); the ‘neglect’ showed a weaker positive associated with ‘frustration’ (0.41), and a small negative association with ‘tenseness’ (−0.20). The model was a very good fit to the data (GFI  =  0.96; RSMR  =  0.07; AGFI = 0.96; NFI = 0.95; RFI = 0.95). Conclusions The stress factors of ‘frustration’ and ‘tenseness’ seems to be related in a distinct way to the burnout subtypes in Spanish dental students. This finding suggests that intervention programs specifically tailored to these subtypes may be a promising future direction. PMID:24927260

  11. Effects of Xylitol and Sucrose Mint Products on Streptococcus mutans Colonization in a Dental Simulator Model.

    PubMed

    Salli, Krista M; Gürsoy, Ulvi K; Söderling, Eva M; Ouwehand, Arthur C

    2017-07-17

    Few laboratory methods exist for evaluating the cariogenicity of food ingredients. In this study, a dental simulator was used to determine the effects of commercial sucrose and xylitol mint products on the adherence and planktonic growth of Streptococcus mutans. Solutions (3% w/v) of sucrose, xylitol, sucrose mints, xylitol mints, xylitol with 0.02% peppermint oil (PO), and 0.02% PO alone were used to test the levels of planktonic and adhered S. mutans. A dental simulator with continuous artificial saliva flow, constant temperature, and mixing was used as a test environment and hydroxyapatite (HA) discs were implemented into the model to simulate the tooth surface. Bacterial content was quantified by qPCR. Compared with the artificial saliva alone, sucrose and sucrose mints increased the numbers of HA-attached S. mutans, whereas xylitol decreased them. Similarly, planktonic S. mutans quantities rose with sucrose and declined with xylitol and xylitol mints. Versus sucrose mints, xylitol mints significantly reduced the counts of HA-bound and planktonic S. mutans. Similar results were observed with the main ingredients of both types of mints separately. PO-supplemented artificial saliva did not influence the numbers of S. mutans that attached to HA or planktonic S. mutans compared with artificial saliva control. In our dental simulator model, xylitol reduced the counts of adhering and planktonic S.mutans. The mints behaved similarly as their pure, main ingredients-sucrose or xylitol, respectively. PO, which has been suggested to have antimicrobial properties, did not influence S. mutans colonization.

  12. A Multilayered Box Model for Calculating Preliminary RemediationGoals in Soil Screening

    SciTech Connect

    Shan, Chao; Javandel, Iraj

    2004-05-21

    In the process of screening a soil against a certain contaminant, we define the health-risk based preliminary remediation goal (PRG) as the contaminant concentration above which some remedial action may be required. PRG is thus the first standard (or guidance) for judging a site. An over-estimated PRG (a too-large value) may cause us to miss some contaminated sites that can threaten human health and the environment. An under-estimated PRG (a too-small value), on the other hand, may lead to unnecessary cleanup and waste tremendous resources. The PRGs for soils are often calculated on the assumption that the contaminant concentration in soil does not change with time. However, that concentration usually decreases with time as a result of different chemical and transport mechanisms. The static assumption thus exaggerates the long-term exposure dose and results in a too-small PRG. We present a box model that considers all important transport processes and obeys the law of mass conservation. We can use the model as a tool to estimate the transient contaminant concentrations in air, soil and groundwater. Using these concentrations in conjunction with appropriate health risk parameters, we may estimate the PRGs for different contaminants. As an example, we calculated the tritium PRG for residential soils. The result is quite different from, but within the range of, the two versions of the corresponding PRG previously recommended by the U.S. EPA.

  13. A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation

    NASA Technical Reports Server (NTRS)

    Toure, Ally M.; Goita, Kalifa; Royer, Alain; Kim, Edward J.; Durand, Michael; Margulis, Steven A.; Lu, Huizhong

    2011-01-01

    A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snowpack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to-7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ.

  14. A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation

    NASA Technical Reports Server (NTRS)

    Toure, Ally M.; Goita, Kalifa; Royer, Alain; Kim, Edward J.; Durand, Michael; Margulis, Steven A.; Lu, Huizhong

    2011-01-01

    A microwave radiance assimilation (RA) scheme for the retrieval of snow physical state variables requires a snowpack physical model (SM) coupled to a radiative transfer model. In order to assimilate microwave brightness temperatures (Tbs) at horizontal polarization (h-pol), an SM capable of resolving melt-refreeze crusts is required. To date, it has not been shown whether an RA scheme is tractable with the large number of state variables present in such an SM or whether melt-refreeze crust densities can be estimated. In this paper, an RA scheme is presented using the CROCUS SM which is capable of resolving melt-refreeze crusts. We assimilated both vertical (v) and horizontal (h) Tbs at 18.7 and 36.5 GHz. We found that assimilating Tb at both h-pol and vertical polarization (v-pol) into CROCUS dramatically improved snow depth estimates, with a bias of 1.4 cm compared to-7.3 cm reported by previous studies. Assimilation of both h-pol and v-pol led to more accurate results than assimilation of v-pol alone. The snow water equivalent (SWE) bias of the RA scheme was 0.4 cm, while the bias of the SWE estimated by an empirical retrieval algorithm was -2.9 cm. Characterization of melt-refreeze crusts via an RA scheme is demonstrated here for the first time; the RA scheme correctly identified the location of melt-refreeze crusts observed in situ.

  15. Utilization of Non-Dentist Providers and Attitudes Toward New Provider Models: Findings from The National Dental Practice-Based Research Network

    PubMed Central

    Blue, Christine M.; Funkhouser, D. Ellen; Riggs, Sheila; Rindal, D. Brad; Worley, Donald; Pihlstrom, Daniel J.; Benjamin, Paul; Gilbert, Gregg H.

    2014-01-01

    Objectives The purpose of this study was to quantify within The National Dental Practice-Based Research Network current utilization of dental hygienists and assistants with expanded functions and quantify network dentists’ attitudes toward a new non-dentist provider model - the dental therapist. Methods Dental practice-based research network practitioner-investigators participated in a single, cross-sectional administration of a questionnaire. Results Current non-dentist providers are not being utilized by network practitioner-investigators to the fullest extent allowed by law. Minnesota practitioners, practitioners in large group practices, and those with prior experience with expanded function non-dentist providers delegate at a higher rate and had more-positive perceptions of the new dental therapist model. Conclusions Expanding scopes of practice for dental hygienists and assistants has not translated to the maximal delegation allowed by law among network practices. This finding may provide insight into dentists’ acceptance of newer non-dentist provider models. PMID:23668892

  16. Multilayer modeling of the aureole photometry during the Venus transit: comparison between SDO/HMI and VEx/SOIR data

    NASA Astrophysics Data System (ADS)

    Pere, C.; Tanga, P.; Widemann, Th.; Bendjoya, Ph.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.

    2016-11-01

    Context. The mesosphere of Venus is a critical range of altitudes in which complex temperature variability has been extensively studied by the space mission Venus Express (VEx) during its eight-year mission (2006-2014). In particular, the Solar Occultation in the InfraRed (SOIR) instrument probed the morning and evening terminator in the 70-170 km altitude region, at latitudes extending from pole to pole, using spectroscopic multiband observations collected during occultations of the Sun at the limb. Data collected at different epochs and latitudes show evidence of short and medium timescale variability as well as latitudinal differences. Spatial and temporal variability is also predicted in mesospheric and thermospheric terminator models with lower boundary conditions at 70 km near cloud tops. Aims: The Venus transit on June 5-6, 2012 was the first to occur with a spacecraft in orbit around Venus. It has been shown that sunlight refraction in the mesosphere of Venus is able to provide useful constraints on mesospheric temperatures at the time of the transit. The European Space Agency's Venus Express provided space-based observations of Venus during the transit. Simultaneously, the Venus aureole photometry was observed using ground-based facilities and solar telescopes orbiting Earth (NASA's Solar Dynamic Observatory, JAXA's HINODE). As the properties of spatial and temporal variability of the mesosphere are still debated, the opportunity of observing it at all latitudes at the same time, offered by the transit, is rather unique. In this first paper, we establish new methods for analyzing the photometry of the so-called aureole that is produced by refraction of the solar light, and we investigate the choice of physical models that best reproduce the observations. Methods: We compared the refractivity profile obtained by SOIR at the time of the June 2012 transit to the aureole photometry. For this goal, we explored isothermal and multilayered refraction models of

  17. Casimir piston of real materials and its application to multilayer models

    SciTech Connect

    Teo, L. P.

    2010-03-15

    In this article, we derive the formula for the Casimir force acting on a piston made of real material moving inside a perfectly conducting rectangular box. It is shown that by taking suitable limits, one recovers the formula for the Casimir force acting on a perfectly conducting piston or an infinitely permeable piston. The Lifshitz formula for finite temperature Casimir force acting on parallel plates made of real materials is re-derived by considering the five-layer model in the context of the piston approach. It is observed that the divergences of the Casimir force will only cancel under certain conditions, for example, when the regions separated by the plates are filled with media of the same refractive index.

  18. Multivariate Geostatistical Analysis of Uncertainty for the Hydrodynamic Model of a Geological Trap for Carbon Dioxide Storage. Case study: Multilayered Geological Structure Vest Valcele, ROMANIA

    NASA Astrophysics Data System (ADS)

    Scradeanu, D.; Pagnejer, M.

    2012-04-01

    The purpose of the works is to evaluate the uncertainty of the hydrodynamic model for a multilayered geological structure, a potential trap for carbon dioxide storage. The hydrodynamic model is based on a conceptual model of the multilayered hydrostructure with three components: 1) spatial model; 2) parametric model and 3) energy model. The necessary data to achieve the three components of the conceptual model are obtained from: 240 boreholes explored by geophysical logging and seismic investigation, for the first two components, and an experimental water injection test for the last one. The hydrodinamic model is a finite difference numerical model based on a 3D stratigraphic model with nine stratigraphic units (Badenian and Oligocene) and a 3D multiparameter model (porosity, permeability, hydraulic conductivity, storage coefficient, leakage etc.). The uncertainty of the two 3D models was evaluated using multivariate geostatistical tools: a)cross-semivariogram for structural analysis, especially the study of anisotropy and b)cokriging to reduce estimation variances in a specific situation where is a cross-correlation between a variable and one or more variables that are undersampled. It has been identified important differences between univariate and bivariate anisotropy. The minimised uncertainty of the parametric model (by cokriging) was transferred to hydrodynamic model. The uncertainty distribution of the pressures generated by the water injection test has been additional filtered by the sensitivity of the numerical model. The obtained relative errors of the pressure distribution in the hydrodynamic model are 15-20%. The scientific research was performed in the frame of the European FP7 project "A multiple space and time scale approach for the quantification of deep saline formation for CO2 storage(MUSTANG)".

  19. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed Central

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-01-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  20. Associative Account of Self-Cognition: Extended Forward Model and Multi-Layer Structure

    PubMed Central

    Sugiura, Motoaki

    2013-01-01

    The neural correlates of “self” identified by neuroimaging studies differ depending on which aspects of self are addressed. Here, three categories of self are proposed based on neuroimaging findings and an evaluation of the likely underlying cognitive processes. The physical self, representing self-agency of action, body-ownership, and bodily self-recognition, is supported by the sensory and motor association cortices located primarily in the right hemisphere. The interpersonal self, representing the attention or intentions of others directed at the self, is supported by several amodal association cortices in the dorsomedial frontal and lateral posterior cortices. The social self, representing the self as a collection of context-dependent social-values, is supported by the ventral aspect of the medial prefrontal cortex and the posterior cingulate cortex. Despite differences in the underlying cognitive processes and neural substrates, all three categories of self are likely to share the computational characteristics of the forward model, which is underpinned by internal schema or learned associations between one’s behavioral output and the consequential input. Additionally, these three categories exist within a hierarchical layer structure based on developmental processes that updates the schema through the attribution of prediction error. In this account, most of the association cortices critically contribute to some aspect of the self through associative learning while the primary regions involved shift from the lateral to the medial cortices in a sequence from the physical to the interpersonal to the social self. PMID:24009578

  1. Modeling of Temperature Field Evolution During Multilayered Direct Laser Metal Deposition

    NASA Astrophysics Data System (ADS)

    Zhang, DongYun; Feng, Zhe; Wang, ChengJie; Liu, Zhen; Dong, DongDong; Zhou, Yan; Wu, Rui

    2017-06-01

    It is of great importance to thoroughly explore the evolving temperature fields of direct laser metal deposition (abbreviated as LMD) in vertical thin wall manufacturing. It is helpful to control the temperature gradient, and even to adjust to forming microstructures and accumulation of residual stress. In this paper, a comprehensive three-dimensional transient model is developed for evolving temperature fields. The manufactured material is DS superalloy Rene80. The laser-powder interaction during the powder flowing process is simulated first, and its possible effect on the temperature field of the melting pool is analyzed. Then a 3D numerical simulation for the evolving temperature field is carried out based on considering transport phenomena during LMD such as the change in phase, powder injection and liquid flow. The applied deposition parameters are derived from experimental investigation with optimized vertical wall manufacturing. The simulated results explain why a balance between heat input and dissipation could form inside the vertical thin wall. These reconstruct the instability at an early phase of the building process without any temperature control unit and exhibit the influence of parameters such as laser power, deposition velocity and laser beam deposition pattern. The simulation results of temperature evolution are consistent with experimental investigation.

  2. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    NASA Astrophysics Data System (ADS)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  3. YASEIS: Yet Another computer program to calculate synthetic SEISmograms for a spherically multi-layered Earth model

    NASA Astrophysics Data System (ADS)

    Ma, Yanlu

    2013-04-01

    Although most researches focus on the lateral heterogeneity of 3D Earth nowadays, a spherically multi-layered model where the parameters depend only on depth still represents a good first order approximation of real Earth. Such 1D models could be used as starting models for seismic tomographic inversion or as background model where the source mechanisms are inverted. The problem of wave propagation in a spherically layered model had been solved theoretically long time ago (Takeuchi and Saito, 1972). The existing computer programs such as Mineos (developed by G. Master, J. Woodhouse and F. Gilbert), Gemini (Friederich and Dalkolmo 1995), DSM (Kawai et. al. 2006) and QSSP (Wang 1999) tackled the computational aspects of the problem. A new simple and fast program for computing the Green's function of a stack of spherical dissipative layers is presented here. The analytical solutions within each homogeneous spherical layer are joined through the continuous boundary conditions and propagated from the center of model up to the level of source depth. Another solution is built by propagating downwardly from the free surface of model to the source level. The final solution is then constructed in frequency domain from the previous two solutions to satisfy the discontinuities of displacements and stresses at the source level which are required by the focal mechanism. The numerical instability in the propagator approach is solved by complementing the matrix propagating with an orthonormalization procedure (Wang 1999). Another unstable difficulty due to the high attenuation in the upper mantle low velocity zone is overcome by switching the bases of solutions from the spherical Bessel functions to the spherical Hankel functions when necessary. We compared the synthetic seismograms obtained from the new program YASEIS with those computed by Gemini and QSSP. In the range of near distances, the synthetics by a reflectivity code for the horizontally layers are also compared with

  4. Multilayer Insulation Material Guidelines

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Dooling, D.

    1999-01-01

    Multilayer Insulation Material Guidelines provides data on multilayer insulation materials used by previous spacecraft such as Spacelab and the Long-Duration Exposure Facility and outlines other concerns. The data presented in the document are presented for information only. They can be used as guidelines for multilayer insulation design for future spacecraft provided the thermal requirements of each new design and the environmental effects on these materials are taken into account.

  5. Dental education and dental practice.

    PubMed Central

    Moore, J R

    1984-01-01

    This paper relates recent modes of dental practice to changes that the public and government are likely to ask the health care professions to make in the future. As usual they are asking for the best of all worlds. First, that we maintain the clinical model to the highest standards of personal dental care based and tested against the best research at our disposal, whilst we ensure there is no reduction in the high technical standards for which british dentists have a reputation. Second, that the profession is required to consider ways of providing care on the medicosocial model for the whole community at an economic level the country will afford. The broad changes in dental education have been reviewed, from the technical apprenticeship to the establishment of strong university departments in teaching hospitals. The importance of a sound biomedical foundation and of research both to education and the credibility of dental practice as a primary health care profession is stressed if the profession is to retain its position as a sister to medicine and not slide down to that of a technical ancillary. PMID:6374141

  6. Fabrication of multilayer nanowires

    SciTech Connect

    Kaur, Jasveer Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-06

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  7. Core curricula for postdoctoral dental students: recent problems, potential solutions, and a model for the future.

    PubMed

    Iacopino, Anthony M; Taft, Thomas B

    2007-11-01

    Development of common core curricula for the graduate advanced education/specialty programs in dental schools presents significant challenges. Similarities in graduate education accreditation standards justify such an approach, yet a core curriculum is difficult to achieve for a variety of reasons including scheduling constraints and the capacity of a common, single pathway curriculum to address the specific educational needs of postgraduate students in different disciplines. Additionally, many dental schools are experiencing severe shortages of qualified faculty to provide graduate program instruction. There are no previous reports regarding graduate core curricula and the definition/delivery of such core curricula in advanced education programs in dentistry although there are several reports in the medical literature that support the educational value of a unified core curriculum implemented in a modular format. Graduate curricula are typically designed to provide residents with advanced education/training beyond what is acquired during their predoctoral dental school experience. Advanced education programs must emphasize knowledge and skills that are discipline-specific; however, there is a large amount of common foundational material within the early phases of these programs. Dental schools have attempted to identify and present this common material within the context of an organized shared set of courses/seminars where residents from each advanced education program are scheduled simultaneously. However, there have been problems with the implementation of a shared core curricula including the following: 1) dissimilar educational backgrounds/abilities among residents; 2) relevance of material to all residents; 3) lack of central management; 4) scheduling conflicts; and 5) lack of adequate and consistent program evaluation. In an attempt to resolve these problems, a new comprehensive graduate core curriculum was implemented at the Marquette University School of

  8. Evaluation of a novel periodontal risk assessment model in patients presenting for dental care.

    PubMed

    Chandra, R Viswa

    2007-01-01

    The present study was designed to develop a new periodontal risk assessment model based on the periodontal risk assessment (PRA) model by Lang and Tonetti, and to evaluate the risk assessment capability of the proposed model. Twenty-six patients diagnosed with chronic periodontitis were selected randomly and a thorough examination and charting of the periodontal status was performed. An intra-oral periapical radiograph of the area with the deepest probing depth was also taken. The following parameters were recorded: percentage of sites with BOP, number of sites with pocket depths > or = 5mm, number of teeth lost, bone loss/age ratio, attachment loss/age ratio, diabetic and smoking status, dental status, other systemic factors and risk determinants. Using Microsoft Excel, the parameters were plotted on the radar chart as per the original and the proposed model. Of the cases identified by the original model, 42.3% were high-risk cases and 30.8% of the cases were low-risk cases. In the proposed model, 46.2% of high-risk cases and 46.2% of low-risk cases were identified. Only 7.7% of the cases identified with the new model were moderate-risk cases. Statistical analysis demonstrated that there was no significant difference between the risk scores of the two models. The results suggest that risk assessment by this model does not vary significantly as compared to the original model, and both are equally adept at detecting potential risk groups.

  9. Quantitative analysis of electron energy loss spectra and modelling of optical properties of multilayer systems for extreme ultraviolet radiation regime

    SciTech Connect

    Gusenleitner, S.; Hauschild, D.; Reinert, F.; Handick, E.

    2014-03-28

    Ruthenium capped multilayer coatings for use in the extreme ultraviolet (EUV) radiation regime have manifold applications in science and industry. Although the Ru cap shall protect the reflecting multilayers, the surface of the heterostructures suffers from contamination issues and surface degradation. In order to get a better understanding of the effects of these impurities on the optical parameters, reflection electron energy loss spectroscopy (REELS) measurements of contaminated and H cleaned Ru multilayer coatings were taken at various primary electron beam energies. Experiments conducted at low primary beam energies between 100 eV and 1000 eV are very surface sensitive due to the short inelastic mean free path of the electrons in this energy range. Therefore, influences of the surface condition on the above mentioned characteristics can be appraised. In this paper, it can be shown that carbon and oxide impurities on the mirror surface decrease the transmission of the Ru cap by about 0.75% and the overall reflectance of the device is impaired as the main share of the non-transmitted EUV light is absorbed in the contamination layer.

  10. Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin.

    PubMed

    Huclova, Sonja; Baumann, Dirk; Talary, Mark S; Fröhlich, Jürg

    2011-12-21

    The sensitivity and specificity of dielectric spectroscopy for the detection of dielectric changes inside a multi-layered structure is investigated. We focus on providing a base for sensing physiological changes in the human skin, i.e. in the epidermal and dermal layers. The correlation between changes of the human skin's effective permittivity and changes of dielectric parameters and layer thickness of the epidermal and dermal layers is assessed using numerical simulations. Numerical models include fringing-field probes placed directly on a multi-layer model of the skin. The resulting dielectric spectra in the range from 100 kHz up to 100 MHz for different layer parameters and sensor geometries are used for a sensitivity and specificity analysis of this multi-layer system. First, employing a coaxial probe, a sensitivity analysis is performed for specific variations of the parameters of the epidermal and dermal layers. Second, the specificity of this system is analysed based on the roots and corresponding sign changes of the computed dielectric spectra and their first and second derivatives. The transferability of the derived results is shown by a comparison of the dielectric spectra of a coplanar probe and a scaled coaxial probe. Additionally, a comparison of the sensitivity of a coaxial probe and an interdigitated probe as a function of electrode distance is performed. It is found that the sensitivity for detecting changes of dielectric properties in the epidermal and dermal layers strongly depends on frequency. Based on an analysis of the dielectric spectra, changes in the effective dielectric parameters can theoretically be uniquely assigned to specific changes in permittivity and conductivity. However, in practice, measurement uncertainties may degrade the performance of the system.

  11. Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin

    NASA Astrophysics Data System (ADS)

    Huclova, Sonja; Baumann, Dirk; Talary, Mark S.; Fröhlich, Jürg

    2011-12-01

    The sensitivity and specificity of dielectric spectroscopy for the detection of dielectric changes inside a multi-layered structure is investigated. We focus on providing a base for sensing physiological changes in the human skin, i.e. in the epidermal and dermal layers. The correlation between changes of the human skin's effective permittivity and changes of dielectric parameters and layer thickness of the epidermal and dermal layers is assessed using numerical simulations. Numerical models include fringing-field probes placed directly on a multi-layer model of the skin. The resulting dielectric spectra in the range from 100 kHz up to 100 MHz for different layer parameters and sensor geometries are used for a sensitivity and specificity analysis of this multi-layer system. First, employing a coaxial probe, a sensitivity analysis is performed for specific variations of the parameters of the epidermal and dermal layers. Second, the specificity of this system is analysed based on the roots and corresponding sign changes of the computed dielectric spectra and their first and second derivatives. The transferability of the derived results is shown by a comparison of the dielectric spectra of a coplanar probe and a scaled coaxial probe. Additionally, a comparison of the sensitivity of a coaxial probe and an interdigitated probe as a function of electrode distance is performed. It is found that the sensitivity for detecting changes of dielectric properties in the epidermal and dermal layers strongly depends on frequency. Based on an analysis of the dielectric spectra, changes in the effective dielectric parameters can theoretically be uniquely assigned to specific changes in permittivity and conductivity. However, in practice, measurement uncertainties may degrade the performance of the system.

  12. Experimental model to measure the increase of dental pulp temperature in vivo during laser application

    NASA Astrophysics Data System (ADS)

    Nicola, Ester M. D.; Junqueira, Silvio L. M.; Busato, Mara S.

    1994-09-01

    Carbon dioxide laser has been used in dental surgery. The existence of healthy teeth, which have pulp vitality needing to be preserved, is observed in a great number of cases. In this work we describe an experimental model which provides the measurement of temperature in pulp chamber `in vivo,' during oral surgeries in which the CO2 laser beam is applied to gingival tissue. The problems met during the search for the best way to place the thermal probe regarding the diameter and depth of pulp chamber and the thickness of the tissue layer formed by gum and maxillary bone are discussed. We use a thermocouple placed in the pulp chamber of superior canine teeth in dogs. After that, the probe was also placed between gum and dental root. Since the temperature at gingival surface was known, it was easy to determine the rise in temperature at pulp chamber and also to observe the thermal gradient from gum to tissue to bone, thus avoiding pulp damage during laser applications.

  13. Modeling dental composite shrinkage by digital image correlation and finite element methods

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  14. Use of an action learning model to create a dental faculty development program.

    PubMed

    McAndrew, Maureen

    2010-05-01

    Dental educators are often talented practitioners who may have little knowledge of educational concepts and current teaching modalities. Dental schools have recognized the need to offer instruction in teaching skills to their clinical faculty members to support their roles as educators. Since 2005, New York University College of Dentistry (NYUCD) Office of Professional Development has sponsored the Excellence in Clinical Teaching Program, an introductory program in pedagogy and teaching skills. The Action Learning model was used to drive development and implementation of Class ACTS (Advanced Clinical Teaching Scholars), a new advanced teaching skills program. Action Learning is a collaborative educational approach that has its origins in the business world. The learning is problem-driven and occurs in a supportive and reflective environment. The Action Learning approach culminated in a seminar series, Class ACTS, that offers an in-depth opportunity for faculty members to sustain and improve their teaching skills in a small-group setting. Class ACTS is open to NYUCD faculty members who have successfully completed NYUCD's Excellence in Clinical Teaching Program or a comparable program and have a basic background in pedagogy.

  15. Framework for e-learning assessment in dental education: a global model for the future.

    PubMed

    Arevalo, Carolina R; Bayne, Stephen C; Beeley, Josie A; Brayshaw, Christine J; Cox, Margaret J; Donaldson, Nora H; Elson, Bruce S; Grayden, Sharon K; Hatzipanagos, Stylianos; Johnson, Lynn A; Reynolds, Patricia A; Schönwetter, Dieter J

    2013-05-01

    The framework presented in this article demonstrates strategies for a global approach to e-curricula in dental education by considering a collection of outcome assessment tools. By combining the outcomes for overall assessment, a global model for a pilot project that applies e-assessment tools to virtual learning environments (VLE), including haptics, is presented. Assessment strategies from two projects, HapTEL (Haptics in Technology Enhanced Learning) and UDENTE (Universal Dental E-learning), act as case-user studies that have helped develop the proposed global framework. They incorporate additional assessment tools and include evaluations from questionnaires and stakeholders' focus groups. These measure each of the factors affecting the classical teaching/learning theory framework as defined by Entwistle in a standardized manner. A mathematical combinatorial approach is proposed to join these results together as a global assessment. With the use of haptic-based simulation learning, exercises for tooth preparation assessing enamel and dentine were compared to plastic teeth in manikins. Equivalence for student performance for haptic versus traditional preparation methods was established, thus establishing the validity of the haptic solution for performing these exercises. Further data collected from HapTEL are still being analyzed, and pilots are being conducted to validate the proposed test measures. Initial results have been encouraging, but clearly the need persists to develop additional e-assessment methods for new learning domains.

  16. Prediction of Corrosion Resistance of Some Dental Metallic Materials with an Adaptive Regression Model

    NASA Astrophysics Data System (ADS)

    Chelariu, Romeu; Suditu, Gabriel Dan; Mareci, Daniel; Bolat, Georgiana; Cimpoesu, Nicanor; Leon, Florin; Curteanu, Silvia

    2015-04-01

    The aim of this study is to investigate the electrochemical behavior of some dental metallic materials in artificial saliva for different pH (5.6 and 3.4), NaF content (500 ppm, 1000 ppm, and 2000 ppm), and with albumin protein addition (0.6 wt.%) for pH 3.4. The corrosion resistance of the alloys was quantitatively evaluated by polarization resistance, estimated by electrochemical impedance spectroscopy method. An adaptive k-nearest-neighbor regression method was applied for evaluating the corrosion resistance of the alloys by simulation, depending on the operation conditions. The predictions provided by the model are useful for experimental practice, as they can replace or, at least, help to plan the experiments. The accurate results obtained prove that the developed model is reliable and efficient.

  17. An accurate and fast forward model of three-dimensional electromagnetic wave scattering in a layered structure with multilayer rough interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Zhang, Xiaojuan; Fang, Guangyou; Shi, Jiancheng; Liu, Shiyin

    2015-03-01

    We develop an accurate and fast forward model for calculating the compact closed-form high-order perturbative solutions of the problem of three-dimensional (3-D) radiation and propagation electromagnetic fields in a layered structure with multilayer rough interfaces. The proposed method for the fast forward model is first demonstrated by strictly theoretical formulas derivation in the framework of classical small perturbation method (SPM) without other else approximation and equivalent process. The kernel functions of high order are proposed for calculating the radar cross sections with more efficiency and clear physical meanings for better use in practice. What is more, we give the clear physical interpretation of the first-order fully polarimetric electromagnetic wave scattering mechanism in the layered structure with multilayer rough interfaces. The proposed forward model is necessary to insure a successful inversion process. Furthermore, the high-order SPM solutions derived by employing the proposed method are validated with existing methods and numerical results. Finally, we study the performance of the high-order fully polarimetric electromagnetic wave scattering according to the numerical results and analyze the scattering enhancement phenomena.

  18. Dental Procedures.

    PubMed

    Ramponi, Denise R

    2016-01-01

    Dental problems are a common complaint in emergency departments in the United States. There are a wide variety of dental issues addressed in emergency department visits such as dental caries, loose teeth, dental trauma, gingival infections, and dry socket syndrome. Review of the most common dental blocks and dental procedures will allow the practitioner the opportunity to make the patient more comfortable and reduce the amount of analgesia the patient will need upon discharge. Familiarity with the dental equipment, tooth, and mouth anatomy will help prepare the practitioner for to perform these dental procedures.

  19. The role of self-efficacy in dental patients' brushing and flossing: testing an extended Health Belief Model.

    PubMed

    Buglar, Maria E; White, Katherine M; Robinson, Natalie G

    2010-02-01

    In an effort to examine the decreasing oral health trend of Australian dental patients, the Health Belief Model (HBM) was utilised to understand the beliefs underlying brushing and flossing self-care. The HBM states that perception of severity and susceptibility to inaction and an estimate of the barriers and benefits of behavioural performance influence people's health behaviours. Self-efficacy, confidence in one's ability to perform oral self-care, was also examined. In dental waiting rooms, a community sample (N=92) of dental patients completed a questionnaire assessing HBM variables and self-efficacy, as well as their performance of the oral hygiene behaviours of brushing and flossing. Partial support only was found for the HBM with barriers emerging as the sole HBM factor influencing brushing and flossing behaviours. Self-efficacy significantly predicted both oral hygiene behaviours also. Support was found for the control factors, specifically a consideration of barriers and self-efficacy, in the context of understanding dental patients' oral hygiene decisions. Dental professionals should encourage patients' self-confidence to brush and floss at recommended levels and discuss strategies that combat barriers to performance, rather than emphasising the risks of inaction or the benefits of oral self-care. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Quantifying spatio-temporal stream-aquifer water exchanges along a multi-layer aquifer system using LOMOS and hydro-thermo modelling

    NASA Astrophysics Data System (ADS)

    Mouhri, Amer; flipo, Nicolas; Rejiba, Fayçal; Bodet, Ludovic; Jost, Anne; Goblet, Patrick

    2014-05-01

    The aim of this work is to understand the spatial and temporal variability of stream-aquifer water exchanges along a 6 km-stream network in a multi-layer aquifer system using both LOcal MOnitoring Stations (LOMOSs) coupled with the optimization of a hydro-thermo model per LOMOS. With an area of 45 km2, the Orgeval experimental basin is located 70 km east from Paris. It drains a multi-layer aquifer system, which is composed of two main geological formations: the Oligocene (upper aquifer unit) and the Eocene (lower aquifer unit). These two aquifer units are separated by a clayey aquitard. The connectivity status between streams and aquifer units has been evaluated using near surface geophysical investigations as well as drill cores. Five LOMOSs of the stream-aquifer exchanges have been deployed along the stream-network to monitor stream-aquifer exchanges over years, based on continuous pressure and temperature measurements (15 min-time step). Each LOMOS is composed of one or two shallow piezometers located 2 to 3 m away from the river edge; one surface water monitoring system; two hyporheic zone temperature profiles located close to each river bank. The five LOMOSs are distributed in two upstream, two intermediate, and one downstream site. The two upstream sites are connected to the upper aquifer unit, and the downstream one is connected to the lower aquifer unit. The 2012-April - 2013-december period of hydrological data are hereafter analyzed. We first focus on the spatial distribution of the stream-aquifer exchanges along the multi-layer aquifer system during the low flow period. Results display an upstream-downstream functional gradient, with upstream gaining stream and downstream losing stream. This spatial distribution is due to the multi-layer nature of the aquifer system, whose lower aquifer unit is depleted. Then it appears that the downstream losing streams temporally switch into gaining ones during extreme hydrological events, while the upstream streams

  1. Modular, Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Liu, Tsuen-Hsi

    1991-01-01

    Combination of proposed modular, multilayer perceptron and algorithm for its operation recognizes new objects after relatively brief retraining sessions. (Perceptron is multilayer, feedforward artificial neural network fully connected and trained via back-propagation learning algorithm.) Knowledge pertaining to each object to be recognized resides in subnetwork of full network, therefore not necessary to retrain full network to recognize each new object.

  2. The structure of observed learning outcome (SOLO) taxonomy: a model to promote dental students' learning.

    PubMed

    Lucander, H; Bondemark, L; Brown, G; Knutsson, K

    2010-08-01

    Selective memorising of isolated facts or reproducing what is thought to be required - the surface approach to learning - is not the desired outcome for a dental student or a dentist in practice. The preferred outcome is a deep approach as defined by an intention to seek understanding, develop expertise and relate information and knowledge into a coherent whole. The aim of this study was to investigate whether the structure of observed learning outcome (SOLO) taxonomy could be used as a model to assist and promote the dental students to develop a deep approach to learning assessed as learning outcomes in a summative assessment. Thirty-two students, participating in course eight in 2007 at the Faculty of Odontology at Malmö University, were introduced to the SOLO taxonomy and constituted the test group. The control group consisted of 35 students participating in course eight in 2006. The effect of the introduction was measured by evaluating responses to a question in the summative assessment by using the SOLO taxonomy. The evaluators consisted of two teachers who performed the assessment of learning outcomes independently and separately on the coded material. The SOLO taxonomy as a model for learning was found to improve the quality of learning. Compared to the control group significantly more strings and structured relations between these strings were present in the test group after the SOLO taxonomy had been introduced (P < 0.01, one tailed test for both results). The SOLO taxonomy is recommended as a model for promoting and developing a deeper approach to learning in dentistry.

  3. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    PubMed

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of < or =0.22 mm (25% percentile), < or =0.44 mm (50% percentile) and < or =1.09 mm (90% percentile) for ICP surface matching. The mean registration error for automatic point-based rigid registration was 0.18+/-0.10 mm (range 0.13-0.26 mm). The results show the potential for a double CBCT scan procedure with a modified wax bite wafer to set-up a 3D virtual augmented model of the skull with detailed dental surface.

  4. Comparison of oral health behavior among dental students, students of other disciplines, and fashion models in Switzerland.

    PubMed

    Kirchhoff, Julien; Filippi, Andreas

    2015-01-01

    Self-reliant oral health behavior exert great influence on the oral health of our society. The aim of the present study was to find out whether there is an occupation-related difference in the oral health behavior between dental students, students of other disciplines, and fashion models in German-speaking Switzerland. The survey comprised 19 questions which were asked using a web-based anonymous questionnaire. The investigation particularly inquired about employed auxiliaries and their application for an improvement of oral hygiene. In addition, the satisfaction with the own teeth and smile as well as the influence of the occupation or the study on oral hygiene were examined. Included in this evaluation were 204 dental students, 257 students of other disciplines, and 117 fashion models aged between 21 and 25 years. The evaluation reveals that the state of knowledge and the professional relationship affect the practice of oral hygiene, in particular among dental students. Fashion models, however, are most intensively concerned with body care and oral hygiene. Their attention is directed particularly to means supposed to improve the smile as well as to ensure fresh breath. Dental students and fashion models constitute a selected minority clearly demarcated from students of other disciplines regarding a higher awareness of self-reliant oral hygiene. The comparatively minor rating of oral health in a group of basically well-trained individuals suggests great need of educational work in the general population.

  5. 78 FR 29157 - Certain Digital Models, Digital Data, and Treatment Plans for Use, in Making Incremental Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Digital Models, Digital Data, and Treatment Plans for Use, in Making Incremental Dental Positioning Adjustment Appliances Made Therefrom, and Methods of Making the Same Investigation No. 337- TA-833...

  6. Numerical modelling of GPR ground-matching enhancement by a chirped multilayer structure - output of cooperation within COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Hovik V.; Knyazyan, Tamara M.; Hovhannisyan, Tamara. T.; Marciniak, Marian; Pajewski, Lara

    2016-04-01

    As is well know, Ground Penetrating Radar (GPR) is an electromagnetic technique for the detection and imaging of buried objects, with resolution ranging from centimeters to few meters [1, 2]. Though this technique is mature enough and different types of GPR devices are already in use, some problems are still waiting for their solution [3]. One of them is to achieve a better matching of transmitting GPR antenna to the ground, that will increase the signal penetration depth and the signal/noise ratio at the receiving end. In the current work, a full-wave electromagnetic modelling of the interaction of a plane wave with a chirped multilayered structure on the ground is performed, via numerical simulation. The method of single expression is used, which is a suitable technique for multi-boundary problems solution [4, 5]. The considered multilayer consists of two different dielectric slabs of low and high permittivity, where the highest value of permittivity doesn't exceed the permittivity of the ground. The losses in the ground are suitably taken into account. Two types of multilayers are analysed. Numerical results are obtained for the reflectance from the structure, as well as for the distributions of electric field components and power flow density in both the considered structures and the ground. The obtained results indicate that, for a better matching with the ground, the layer closer to the ground should be the high-permittivity one. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). Part of this work was developed during the Short-Term Scientific Mission COST-STSM-TU1208-25016, carried out by Prof. Baghdasaryan in the National Institute of Telecommunications in Warsaw, Poland. References [1] H. M. Jol. Ground Penetrating Radar: Theory and Applications. Elsevier, 2009. 509 pp. [2] R. Persico. Introduction to

  7. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    SciTech Connect

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  8. System for the pH-dependent release of a dye in model dental restorations.

    PubMed

    Shen, C; Sarrett, D; Batich, C D; Anusavice, K J

    1994-12-01

    We are developing a system for detecting recurrent caries under dental restorations. The controlled release of dyes under conditions of likely demineralization will alert the dentist to potential secondary caries. Production of acidic species is a characteristic of caries activity; hence, the system uses pH-sensitive polymers to release markers when the pH at the cavity wall of the restored tooth is below 6.5. The objectives of this investigation were to test the hypotheses that (1) the proposed system can be designed to release detectable marker continuously for at least six months in a simulated carious environment, and (2) the transient pH changes in the oral cavity caused by simulated dietary intake will not induce premature marker release from the pH-sensitive polymer placed beneath restorations. Two types of dye-loaded microspheres based on styrene, vinylpyridine, and divinylbenzene were prepared and placed on the floor of model cavity preparations made from an acrylic rod. Each model cavity was restored with a hybrid dental composite, placed in a vial with 5 mL of sodium-lactate/lactic-acid base buffer solution, and stored at 37 degrees C. Solutions of three different pH values were used: 2.86, 4.73, and 6.39. The dye release into storage media was monitored periodically with a UV/VIS spectrophotometer. Results showed that the duration could extend beyond six months for pH > 4.73, and that transient oral pH changes are not likely to result in premature dye release. The data indicate that it would take approximately 21 days for the acidic agent external to the restoration to initiate dye release from restored sites.

  9. Estimating future dental services' demand and supply: a model for Northern Germany.

    PubMed

    Jäger, Ralf; van den Berg, Neeltje; Hoffmann, Wolfgang; Jordan, Rainer A; Schwendicke, Falk

    2016-04-01

    To plan dental services, a spatial estimation of future demands and supply is required. We aimed at estimating demand and supply in 2030 in Northern Germany based on the expected local socio-demography and oral-health-related morbidity, and the predicted number of dentists and their working time. All analyses were performed on zip-code level. Register data were used to determine the number of retiring dentists and to construct regression models for estimating the number of dentists moving into each zip-code area until 2030. Demand was modelled using projected demography and morbidities. Demand-supply ratios were evaluated and spatial analyses applied. Sensitivity analyses were employed to assess robustness of our findings. Compared with 2011, the population decreased (-7% to -11%) and aged (from mean 46 to 51 years) until 2030. Oral-health-related morbidity changed, leading to more periodontal and fewer prosthetic treatments needs, with the overall demand decreasing in all scenarios (-25% to -33%). In contrast, the overall number of dentists did only limitedly change, resulting in moderate decrease in the supplied service quantities (max. -22%). Thus, the demand-supply ratio increased in all but the worst case scenario, but was unequally distributed between spatial units, with several areas being over- and some being under- or none-serviced in 2030. Within the limitations of the underlying data and the required assumptions, this study expects an increasingly polarized ratio of dental services demand and supply in Northern Germany. Our estimation allows to assess the impact of different influence factors on demand or supply and to specifically identify potential challenges for workforce planning and regulation in different spatial units. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A transmission line model for the optical simulation of multilayer structures and its application for oblique illumination of an organic solar cell with anisotropic extinction coefficient

    NASA Astrophysics Data System (ADS)

    Stathopoulos, N. A.; Palilis, L. C.; Yesayan, S. R.; Savaidis, S. P.; Vasilopoulou, M.; Argitis, P.

    2011-12-01

    A transmission line model for the calculation of optical interference phenomena in dielectric multilayered structures is adopted as an alternative option to the transfer matrix model (TMM). The method is based on the transmission line theory and is exact, easy to implement and uses closed iterative forms instead of the TMMs matrix formalism. The proposed model has been appropriately modified and then applied for performance evaluation of a typical organic photovoltaic device under inclined illumination. Optical field distribution, short-circuit photocurrent and reflectivity have been calculated under different angles of light incidence. The theoretical simulations have been discussed and compared with experimental photocurrent measurements, while the influence of the photoactive layer thickness on the device efficiency has been evaluated for different angles of light incidence, taking into account its extinction coefficient anisotropy.

  11. Comparison of conventional study model measurements and 3D digital study model measurements from laser scanned dental impressions

    NASA Astrophysics Data System (ADS)

    Nugrahani, F.; Jazaldi, F.; Noerhadi, N. A. I.

    2017-08-01

    The field of orthodontics is always evolving,and this includes the use of innovative technology. One type of orthodontic technology is the development of three-dimensional (3D) digital study models that replace conventional study models made by stone. This study aims to compare the mesio-distal teeth width, intercanine width, and intermolar width measurements between a 3D digital study model and a conventional study model. Twelve sets of upper arch dental impressions were taken from subjects with non-crowding teeth. The impressions were taken twice, once with alginate and once with polivinylsiloxane. The alginate impressions used in the conventional study model and the polivinylsiloxane impressions were scanned to obtain the 3D digital study model. Scanning was performed using a laser triangulation scanner device assembled by the School of Electrical Engineering and Informatics at the Institut Teknologi Bandung and David Laser Scan software. For the conventional model, themesio-distal width, intercanine width, and intermolar width were measured using digital calipers; in the 3D digital study model they were measured using software. There were no significant differences between the mesio-distal width, intercanine width, and intermolar width measurments between the conventional and 3D digital study models (p>0.05). Thus, measurements using 3D digital study models are as accurate as those obtained from conventional study models

  12. Dental Assistants

    MedlinePlus

    ... the direction of a dentist . They may prepare materials for dental impressions or to create temporary crowns. All dental ... Nursing assistants, sometimes called nursing aides , help provide basic care for patients in hospitals and residents of ... more information about becoming a dental assistant and for a list of accredited dental ...

  13. A model for increasing senior dental student production using private practice principles.

    PubMed

    Pousson, Rebecca G; McDonald, Gary T

    2004-12-01

    Previous dental graduates have reported a lack of confidence in their ability to implement business practices upon graduation. The purpose of the new model was to enable senior students to gain experience using sound business principles in their senior year. This model involves setting and meeting production goals, teamwork, personnel evaluation, and performance incentives. This article reports the findings after implementing this model in the academic year 2003-04. Each student averaged 226 more charged visits than in 2002-03. Total dollars produced increased $7,526 per student, which represented a 63 percent increase in production over the previous year. Total dollars produced by the senior class increased from $713,740 to $1,066,139 over the previous year. A survey of the students' attitudes toward the model showed an increase in acceptance from the beginning of the senior year to the end of the year. The model was successful in achieving most of the desired outcomes but failed to increase seniors' chairtime utilization.

  14. Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation.

    PubMed

    Kenjereš, Saša; de Loor, Alexander

    2014-02-06

    A high concentration of low-density lipoprotein (LDL) is recognized as one of the principal risk factors for development of atherosclerosis. This paper reports on modelling and simulations of the coupled mass (LDL concentration) and momentum transport through the arterial lumen and the multi-layered arterial wall of an anatomically realistic carotid bifurcation. The mathematical model includes equations for conservation of mass, momentum and concentration, which take into account a porous layer structure, the biological membranes and reactive source/sink terms in different layers of the arterial wall, as proposed in Yang & Vafai (2006). A four-layer wall model of an arterial wall with constant thickness is introduced and initially tested on a simple cylinder geometry where realistic layer properties are specified. Comparative assessment with previously published results demonstrated proper implementation of the mathematical model. Excellent agreement for the velocity and LDL concentration distributions in the arterial lumen and in the artery wall are obtained. Then, an anatomically realistic carotid artery bifurcation is studied. This is the main novelty of the presented research. We find a strong dependence between underlying blood flow pattern (and consequently the wall shear stress distributions) and the uptake of the LDL concentration in the artery wall. The radial dependency of interactions between the diffusion, convection and chemical reactions within the multi-layered artery wall is crucial for accurate predictions of the LDL concentration in the media. It is shown that a four-layer wall model produced qualitatively good agreement with the experimental results of Meyer et al. (1996) in predicting levels of LDL within the media of a rabbit aorta under identical transmural pressure conditions. Finally, it is demonstrated that the adopted model represents a good initial platform for future numerical investigations of the initial stage of atherosclerosis for

  15. Modelling and simulation of low-density lipoprotein transport through multi-layered wall of an anatomically realistic carotid artery bifurcation

    PubMed Central

    Kenjereš, Saša; de Loor, Alexander

    2014-01-01

    A high concentration of low-density lipoprotein (LDL) is recognized as one of the principal risk factors for development of atherosclerosis. This paper reports on modelling and simulations of the coupled mass (LDL concentration) and momentum transport through the arterial lumen and the multi-layered arterial wall of an anatomically realistic carotid bifurcation. The mathematical model includes equations for conservation of mass, momentum and concentration, which take into account a porous layer structure, the biological membranes and reactive source/sink terms in different layers of the arterial wall, as proposed in Yang & Vafai (2006). A four-layer wall model of an arterial wall with constant thickness is introduced and initially tested on a simple cylinder geometry where realistic layer properties are specified. Comparative assessment with previously published results demonstrated proper implementation of the mathematical model. Excellent agreement for the velocity and LDL concentration distributions in the arterial lumen and in the artery wall are obtained. Then, an anatomically realistic carotid artery bifurcation is studied. This is the main novelty of the presented research. We find a strong dependence between underlying blood flow pattern (and consequently the wall shear stress distributions) and the uptake of the LDL concentration in the artery wall. The radial dependency of interactions between the diffusion, convection and chemical reactions within the multi-layered artery wall is crucial for accurate predictions of the LDL concentration in the media. It is shown that a four-layer wall model produced qualitatively good agreement with the experimental results of Meyer et al. (1996) in predicting levels of LDL within the media of a rabbit aorta under identical transmural pressure conditions. Finally, it is demonstrated that the adopted model represents a good initial platform for future numerical investigations of the initial stage of atherosclerosis for

  16. Modeling and Validation of Multilayer Poly(Lactide-Co-Glycolide) Scaffolds for In Vitro Directed Differentiation of Juxtaposed Cartilage and Bone.

    PubMed

    Huang, George X; Arany, Praveen R; Mooney, David J

    2015-08-01

    Polymeric scaffolds, which release growth factors in a temporally controlled manner, have successfully directed the differentiation of stem cells into monolithic tissues of a single lineage. However, engineering precise boundaries in multilineage functional tissues, such as the juxtaposed cartilaginous and osseous tissue present in articulated joints, often remains a challenge. This work demonstrates a precise materials system for in vitro reconstruction of the three-dimensional architecture of these types of human tissues. Multilayer poly(lactide-co-glycolide) (PLG) scaffolds were used to produce spatiotemporal gradients to direct the differentiation of an initially uniform population of mesenchymal stem cells (MSCs) into juxtaposed cartilage and bone. Specifically, growth factors (chondrogenic transforming growth factor-β3 and osteogenic bone morphogenetic protein-4) and their neutralizing antibodies were incorporated within distinct layers of the PLG scaffolds to create spatially segregated morphogen fields within the scaffold volume. The multilayer PLG scaffold designs were optimized by mathematical modeling, and generation of spatially segregated morphogen gradients was validated by assessing activity of luciferase reporter cell lines responsive to each growth factor. Scaffolds seeded with MSCs demonstrated production of juxtaposed cartilage and bone, as evaluated by biochemical staining and western blotting for tissue-specific matrix proteins. This work demonstrates a significant advance for the engineering of implantable constructs comprising tissues of multiple lineages, with potential applications in orthopedic regenerative medicine.

  17. Dental arch changes associated with rapid maxillary expansion: A retrospective model analysis study

    PubMed Central

    D’Souza, Ivor M; Kumar, H. C. Kiran; Shetty, K. Sadashiva

    2015-01-01

    Introduction: Transverse deficiency of the maxilla is a common clinical problem in orthodontics and dentofacial orthopedics. Transverse maxillary deficiency, isolated or associated with other dentofacial deformities, results in esthetic and functional impairment giving rise to several clinical manifestations such as asymmetrical facial growth, positional and functional mandibular deviations, altered dentofacial esthetics, adverse periodontal responses, unstable dental tipping, and other functional problems. Orthopedic maxillary expansion is the preferred treatment approach to increase the maxillary transverse dimension in young patients by splitting of the mid palatal suture. This orthopedic procedure has lately been subject of renewed interest in orthodontic treatment mechanics because of its potential for increasing arch perimeter to alleviate crowding in the maxillary arch without adversely affecting facial profile. Hence, the present investigation was conducted to establish a correlation between transverse expansion and changes in the arch perimeter, arch width and arch length. Methods: For this purpose, 10 subjects (five males, five females) were selected who had been treated by rapid maxillary expansion (RME) using hyrax rapid palatal expander followed by fixed mechanotherapy (PEA). Pretreatment (T1), postexpansion (T2), and posttreatment (T3) dental models were compared for dental changes brought about by RME treatment and its stability at the end of fixed mechanotherapy. After model measurements were made, the changes between T1–T2, T2–T3 and T1–T3 were determined for each patient. The mean difference between T1–T2, T2–T3 and T1–T3 were compared to assess the effects of RME on dental arch measurements. Results are expressed as mean ± standard deviation and are compared by repeated measures analysis of variance followed by a post-hoc test. Arch perimeter changes are correlated with changes in arch widths at the canine, premolar and molar regions

  18. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  19. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  20. Interfacial effects in multilayers

    SciTech Connect

    Barbee, T.W., Jr.

    1998-04-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general.

  1. Convergent methods assessing bone growth in an experimental model at dental implants in the minipig.

    PubMed

    Friedmann, Anton; Friedmann, Asisa; Grize, Leticia; Obrecht, Marcel; Dard, Michel

    2014-05-01

    Implant dentistry demonstrated its reliability in treating successfully an increased amount of patients with dental implants exhibiting hydrophilic (modSLA) or non-hydrophilic (SLA) surfaces. Objectives of this minipig study consisted in assessing bone regeneration at both types of dental implants in a new experimental model (lateral bone defects) by implementing a convergent analysis approach combining histology and contact radiography. In six adult female minipigs standardized acute alveolar defects were created, then receiving two implants in the mandibles bilaterally (modSLA and SLA, one of each combined with Guided Bone Regeneration). Animals were sacrificed after 28 days of healing. Mid-crestal specimen were analyzed assessing missing BIC to implant shoulder (fBIC); vertical bone growth upon implant surface, bone:tissue ratio and grafting material area occupied by material remnants for GBR sites. Values obtained from both analyses were compared and statistical correlations scrutinized. Although dimensions of mean differences and adjusted means given by radiographic method were lower than histological ones, comparison of different implants yielded similar results. Statistical analyses of correlation and concordance coefficients used to evaluate radiological method of measurement showed high level of concordance (concordance coefficient=0.912 and correlation coefficient=0.939) for fBIC. Similar results were observed for vertical new bone and for remnants of graft. Discrepancies for new bone and for mineralized tissue resulted in concordance coefficient of 0.182 and 0.054. The results indicate that contact X-rays can be used for morphometric assessments regarding defect fill; however, histological staining remains beneficial if greater resolution for distinguishing qualitative differences in the tissues is required.

  2. Spin Pumping in Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro; Imamura, Hiroshi

    We present a brief review of our recent study on spin pumping in ferromagnetic multilayers. First, we present theoretical models describing spin pumping induced by ferromagnetic resonance (FMR). Then we apply the spin-pumping theory to FMR in ferromagnetic multilayers and show that the line width of the FMR spectrum depends on the thickness of the ferromagnetic metal layer which is not in resonance. We also show that the penetration depths of transverse spin current in ferromagnetic metals can be determined by analyzing the line width of the FMR spectrum. The obtained penetration depths of the transverse spin current were 3.7 nm for Py, 2.5 nm for CoFe, 12.0 nm for CoFeB, and 1.7 nm for Co, respectively.

  3. Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure.

    PubMed

    Scheider, I; Xiao, T; Yilmaz, E; Schneider, G A; Huber, N; Bargmann, S

    2015-03-01

    Dental enamel is a highly anisotropic and heterogeneous material, which exhibits an optimal reliability with respect to the various loads occurring over years. In this work, enamel's microstructure of parallel aligned rods of mineral fibers is modeled and mechanical properties are evaluated in terms of strength and toughness with the help of a multiscale modeling method. The established model is validated by comparing it with the stress-strain curves identified by microcantilever beam experiments extracted from these rods. Moreover, in order to gain further insight in the damage-tolerant behavior of enamel, the size of crystallites below which the structure becomes insensitive to flaws is studied by a microstructural finite element model. The assumption regarding the fiber strength is verified by a numerical study leading to accordance of fiber size and flaw tolerance size, and the debonding strength is estimated by optimizing the failure behavior of the microstructure on the hierarchical level above the individual fibers. Based on these well-grounded properties, the material behavior is predicted well by homogenization of a representative unit cell including damage, taking imperfections (like microcracks in the present case) into account. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Review and Recommendations for Zero-inflated Count Regression Modeling of Dental Caries Indices in Epidemiological Studies

    PubMed Central

    Stamm, John W.; Long, D. Leann; Kincade, Megan E.

    2012-01-01

    Over the past five to ten years, zero-inflated count regression models have been increasingly applied to the analysis of dental caries indices (e.g., DMFT, dfms, etc). The main reason for that is linked to the broad decline in children’s caries experience, such that dmf and DMF indices more frequently generate low or even zero counts. This article specifically reviews the application of zero-inflated Poisson and zero-inflated negative binomial regression models to dental caries, with emphasis on the description of the models and the interpretation of fitted model results given the study goals. The review finds that interpretations provided in the published caries research are often imprecise or inadvertently misleading, particularly with respect to failing to discriminate between inference for the class of susceptible persons defined by such models and inference for the sampled population in terms of overall exposure effects. Recommendations are provided to enhance the use as well as the interpretation and reporting of results of count regression models when applied to epidemiological studies of dental caries. PMID:22710271

  5. Modeling of water absorption induced cracks in resin-based composite supported ceramic layer structures.

    PubMed

    Huang, Min; Thompson, V P; Rekow, E D; Soboyejo, W O

    2008-01-01

    Cracking patterns in the top ceramic layers of the modeled dental multilayers with polymer foundation are observed when they are immersed in water. This article developed a model to understand this cracking mechanism. When water diffuses into the polymer foundation of dental restorations, the foundation will expand; as a result, the stress will build up in the top ceramic layer because of the bending and stretching. A finite element model based on this mechanism is built to predict the stress build-up and the slow crack growth in the top ceramic layers during the water absorption. Our simulations show that the stress build-up by this mechanism is high enough to cause the cracking in the top ceramic layers and the cracking patterns predicted by our model are well consistent with those observed in experiments on glass/epoxy/polymer multilayers. The model is then used to discuss the life prediction of different dental ceramics.

  6. Wedged multilayer Laue Lens.

    SciTech Connect

    Conley, R.; Liu, C.; Qian, J.; Kewish, C. M.; Macrander, A. T.; Yan, H.; Kang, H. C.; Maser, J.; Stephenson, G. B.

    2008-05-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

  7. Accuracy of Dynamic Navigation for Dental Implant Placement-Model-Based Evaluation.

    PubMed

    Emery, Robert W; Merritt, Scott A; Lank, Kathryn; Gibbs, Jason D

    2016-10-01

    The purpose of this model-based study was to determine the accuracy of placing dental implants using a new dynamic navigation system. This investigation focuses on measurements of overall accuracy for implant placement relative to the virtual plan in both dentate and edentulous models, and provides a comparison with a meta-analysis of values reported in the literature for comparable static guidance, dynamic guidance, and freehand placement studies. This study involves 1 surgeon experienced with dynamic navigation placing implants in models under clinical simulation using a dynamic navigation system (X-Guide, X-Nav Technologies, LLC, Lansdale, Pa) based on optical triangulation tracking. Virtual implants were placed into planned sites using the navigation system computer. Post-implant placement cone-beam scans were taken. These scans were mesh overlaid with the virtual plan and used to determine deviations from the virtual plan. The primary outcome variables were platform and angular deviations comparing the actual placement to the virtual plan. The angular accuracy of implants delivered using the tested device was 0.89° ± 0.35° for dentate case types and 1.26° ± 0.66° for edentulous case types, measured relative to the preoperative implant plan. Three-dimensional positional accuracy was 0.38 ± 0.21 mm for dentate and 0.56 ± 0.17 mm for edentulous, measured from the implant apex.

  8. An Overview of the Models in Reporting School Data on Dental Credentialing Examinations.

    PubMed

    Tsai, Tsung-Hsun; Spielman, Andrew I; Kramer, Gene A

    2017-02-01

    The development and dissemination of meaningful and useful performance reports associated with examinations involved in the licensure process are important to the communities of interest, including state boards, candidates, and professional schools. Discussions of performance reporting have been largely neglected however. The authors recognize and reinforce the need for such discussions by providing prototypes of performance reporting in dentistry with examples and recommendations to guide practice. For illustrative purposes, this article reviews and discusses the different reporting models used over the past ten years with Part I and Part II of the National Board Dental Examination (NBDE). These reporting models are distinguished by such features as the following: 1) scores in each discipline covered on the exam (four for Part I and nine for Part II) and an overall average are reported in a standard-score metric; 2) a single overall score in a standard-score metric is reported; and 3) performance on the exam is reported as pass/fail. Standard scores on the NBDE range from 49 to 99, with 75 being a passing score. Sample data, without identifying information, are used to illustrate the reporting models.

  9. Modeling the Elastic and Damping Properties of the Multilayered Torsion Bar-Blade Structure of Rotors of Light Helicopters of the New Generation. 1. Finite-Element Approximation of the Torsion Bar

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.; Shishkin, V. M.

    2015-11-01

    A prismatic semiquadratic element with a nonclassical approximation of its displacements is suggested for modeling the composite and soft layers of a torsion bar and multilayered plate-rod structures. The stiffness, weight, damping, and geometric stiffness matrices of the above-mentioned element are obtained. Expressions for computing stresses in the finite element under the action of static loads and vibrations in the resonance zone are presented. Test examples confirming the validity of the element suggested are given. An example of finite element determination of the dynamic response of a multilayered torsion bar in the resonant mode is considered.

  10. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces.

    PubMed

    Sánchez, M C; Llama-Palacios, A; Fernández, E; Figuero, E; Marín, M J; León, R; Blanc, V; Herrera, D; Sanz, M

    2014-10-01

    The impact of implant surfaces in dental biofilm development is presently unknown. The aim of this investigation was to assess in vitro the development of a complex biofilm model on titanium and zirconium implant surfaces, and to compare it with the same biofilm formed on hydroxyapatite surface. Six standard reference strains were used to develop an in vitro biofilm over sterile titanium, zirconium and hydroxyapatite discs, coated with saliva within the wells of pre-sterilized polystyrene tissue culture plates. The selected species used represent initial (Streptococcus oralis and Actinomyces naeslundii), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late colonizers (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans). The developed biofilms (growth time 1 to 120h) were studied with confocal laser scanning microscopy using a vital fluorescence technique and with low-temperature scanning electron microscopy. The number (colony forming units/biofilm) and kinetics of the bacteria within the biofilm were studied with quantitative PCR (qPCR). As outcome variables, the biofilm thickness, the percentage of cell vitality and the number of bacteria were compared using the analysis of variance. The bacteria adhered and matured within the biofilm over the three surfaces with similar dynamics. Different surfaces, however, demonstrated differences both in the thickness, deposition of the extracellular polysaccharide matrix as well as in the organization of the bacterial cells. While the formation and dynamics of an in vitro biofilm model was similar irrespective of the surface of inoculation (hydroxyapatite, titanium or zirconium), there were significant differences in regards to the biofilm thickness and three-dimensional structure. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Applicability of Willems model for dental age estimations in Brazilian children.

    PubMed

    Franco, Ademir; Thevissen, Patrick; Fieuws, Steffen; Souza, Paulo Henrique Couto; Willems, Guy

    2013-09-10

    Several studies described tooth development as a reliable pathway for age estimations. Depending on the considered life span, the dental age indicators vary. In children, combinations of developing teeth provide the best information about age. In sub adults third molar mineralization is almost exclusively considered. The aim of this study was, firstly, to verify the Willems model in a Brazilian sample. Secondly, to observe differences between the Willems model and a new developed Brazilian model. Thirdly, the information of permanent teeth (PM) and third molar (TM), development was combined for age estimation in children. A sample of 1357 panoramic radiographs of Brazilian males (M) and females (F), with age between 5 and 23 years was collected. The technique of Gleiser and Hunt modified by Kohler (1955) [34] was applied for third molar staging in the entire sample. The Demirjian staging technique was used on the mandibular left permanent teeth (except third molars) of all individuals from 5 to 15 years. Kappa and weighted Kappa statistics were performed to verify inter- and intra-observer reliabilities. Based on the obtained Demirjian scores the Willems model was verified. Next the data were split to develop a new Brazilian model based on the Willems method and to verify the established model. The accuracy in age prediction between the Willems model and the new Brazilian model was compared. Additionally, regression models including PM, TM and PM plus TM information were compared. The Kappa and weighted Kappa statistics revealed high agreement between observers (0.88 Kappa; 0.93 weighted Kappa). The differences between predicted and chronological age for the verified Willems model were expressed in mean errors of -0.17 and -0.38 year for F and M respectively. The differences in mean error between the new developed Brazilian model and the Willems model were 0.02 (F) and 0.20 (M) year. The regression models combining PT and TM information provided only in the age

  12. Modeling of nebula viewing broadband and narrowband filters based on TiO2-SiO2 multilayers

    NASA Astrophysics Data System (ADS)

    Elyutin, V. V.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2017-04-01

    In this work, narrowband pass and broadband pass filters are designed based on TiO2-SiO2 multilayers. These filters are used in observing planetary nebulas and emission nebulas. They are designed by using open source software open filter and optimized by using needle synthesis method (addition of thin layers called needles and analyze transmission till the best result achieved). Also results were cross-checked by using matrix method. The transmission of these filters is in the range of 486-501 nm (Oxygen-III and hydrogen-β) with a maximum transmission of 95%. Also it has a second peak at 656 nm for hydrogen-α where transmission reaches 87%.

  13. History of dental hygiene research.

    PubMed

    Bowen, Denise M

    2013-01-01

    Dental hygiene is defined as the science and practice of the recognition, treatment and prevention of oral diseases. The history of dental hygiene research is considered in the context of the development of the discipline and an emerging infrastructure. Research-related events supporting the growth and maturation of the profession are considered from the early years to the most recent. The benefits of preventive oral health services provided by dental hygienists have been supported by research, and the practice of dental hygiene has expanded as a result of research findings since its inception 100 years ago. Dental hygienists' engagement in research, however, did not begin until the 1960s as research associates or administrators, primarily with dental researchers as primary investigators. The Journal of Dental Hygiene (JDH) has provided information for dental hygiene practice since 1927, and has been the primary venue for dissemination of dental hygiene research since 1945. Graduate education in dental hygiene at the master's degree level and the work of early dental hygiene researchers led to the first conference on dental hygiene research in 1982. Over 30 years later, dental hygiene has established a meta-paradigm and defined conceptual models, built an initial infrastructure to support research endeavors and contributed much to the development of dental hygiene as a unique discipline. A doctoral degree in the discipline, continued theory-based research, initiatives to foster collaborations between dental hygiene and other researchers and enhanced capabilities to attract funding to support large scale studies are goals that must be attained through the efforts of future researchers to address the needs for additional development in the discipline of dental hygiene. Dental hygiene research supports the growing discipline and its value to society.

  14. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, D.; Rusanen, A.; Boy, M.; Swietlicki, E.; Svenningsson, B.; Zelenyuk, A.; Pagels, J.

    2014-01-01

    We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), (2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and (3) the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g). Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on the

  15. Accuracy and reproducibility of dental measurements on tomographic digital models: a systematic review and meta-analysis.

    PubMed

    Ferreira, Jamille B; Christovam, Ilana O; Alencar, David S; da Motta, Andréa F J; Mattos, Claudia T; Cury-Saramago, Adriana

    2017-10-01

    The aim of this systematic review with meta-analysis was to assess the accuracy and reproducibility of dental measurements obtained from digital study models generated from CBCT compared with those acquired from plaster models. The electronic databases Cochrane Library, Medline (via PubMed), Scopus, VHL, Web of Science, and System for Information on Grey Literature in Europe were screened to identify articles from 1998 until February 2016. The inclusion criteria were: prospective and retrospective clinical trials in humans; validation and/or comparison articles of dental study models obtained from CBCT and plaster models; and articles that used dental linear measurements as an assessment tool. The methodological quality of the studies was carried out by Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. A meta-analysis was performed to validate all comparative measurements. The databases search identified a total of 3160 items and 554 duplicates were excluded. After reading titles and abstracts, 12 articles were selected. Five articles were included after reading in full. The methodological quality obtained through QUADAS-2 was poor to moderate. In the meta-analysis, there were statistical differences between the mesiodistal widths of mandibular incisors, maxillary canines and premolars, and overall Bolton analysis. Therefore, the measurements considered accurate were maxillary and mandibular crowding, intermolar width and mesiodistal width of maxillary incisors, mandibular canines and premolars, in both arches for molars. Digital models obtained from CBCT were not accurate for all measures assessed. The differences were clinically acceptable for all dental linear measurements, except for maxillary arch perimeter. Digital models are reproducible for all measurements when intraexaminer assessment is considered and need improvement in interexaminer evaluation.

  16. Scalar Profile Assimilation Into a Multi-Layer Model of Canopy-Atmosphere Exchange: Toward Optimal Estimation of Net Ecosystem Exchange

    NASA Astrophysics Data System (ADS)

    Drewry, D. T.; Albertson, J. D.; Katul, G.

    2003-12-01

    A major focus of current research efforts in land-atmosphere exchange is the modeling and quantification of carbon dioxide, water vapor and energy fluxes between forested ecosystems and the atmosphere. Mechanistic models of the coupled physical and biological processes that determine the magnitude of scalar fluxes have been developed and tested at many sites under a variety of environmental conditions. High frequency eddy covariance measurements of scalar fluxes are often used to test these canopy exchange models. Concurrent observations of carbon dioxide concentration profiles within the canopy airspace are frequently left unutilized in such modeling studies. We explore the assimilation of the information contained in these concentration profile measurements to constrain forward model estimates of net ecosystem exchange (NEE). A high-resolution, one-dimensional multi-layer model of canopy-atmosphere dynamics, including turbulent transport, vertical radiation interception, photosynthesis, stomatal conductance and respiration, is implemented and tested against eddy covariance flux measurements taken at the Duke Forest. A simple assimilation scheme is used to compare the results of forward model integrations both with and without the assimilated profile information. Implications are discussed for the optimal merger of data and models for the estimation of NEE.

  17. Modelling of pain intensity and informative dropout in a dental pain model after naproxcinod, naproxen and placebo administration

    PubMed Central

    Björnsson, Marcus A; Simonsson, Ulrika S H

    2011-01-01

    AIMS To describe pain intensity (PI) measured on a visual analogue scale (VAS) and dropout due to request for rescue medication after administration of naproxcinod, naproxen or placebo in 242 patients after wisdom tooth removal. METHODS Non-linear mixed effects modelling was used to describe the plasma concentrations of naproxen, either formed from naproxcinod or from naproxen itself, and their relationship to PI and dropout. Goodness of fit was assessed by simultaneous simulations of PI and dropout. RESULTS Baseline PI for the typical patient was 52.7 mm. The PI was influenced by placebo effects, using an exponential model, and by naproxen concentrations using a sigmoid Emax model. Typical maximal placebo effect was a decrease in PI by 20.2%, with an onset rate constant of 0.237 h−1. EC50 was 0.135 µmol l−1. A Weibull time-to-event model was used for the dropout, where the hazard was dependent on the predicted PI and by the PI at baseline. Since the dropout was not at random, it was necessary to include the simulated dropout in visual predictive checks (VPC) of PI. CONCLUSIONS This model describes the relationship between drug effects, PI and the likelihood of dropout after naproxcinod, naproxen and placebo administration. The model provides an opportunity to describe the effects of other doses or formulations, after dental extraction. VPC created by simultaneous simulations of PI and dropout provides a good way of assessing the goodness of fit when there is informative dropout. PMID:21272053

  18. Applications of multilayer optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Zhu, Jingtao; Mu, Baozhong; Zhang, Zhong; Wang, Fengli; Xu, Jing; Li, Wenbin; Chen, Lingyan

    2010-11-01

    Recent development of multilayer mirror and its applications in extreme ultraviolet (EUV), soft X-ray ranges in China was reviewed in this paper. Three types of multilayer mirrors were developed with special performance for dense plasma diagnostics, EUV astronomical observation. Firstly, dual-periodic W/B 4C multilayer mirror was designed for Kirkpatrick-Baez (K-B) microscopy working at TiKα line (4.75 keV), which is highly reflective both at hard X-ray (CuKα line at 8.05 keV) and soft X-ray (4.75 keV). Using this mirror, the K-B system can be aligned conveniently in air using hard X-ray instead of in vacuum. The second mirror is aperiodic Mg/SiC multilayer, also a bi-functional mirror with high reflectivity for He-II emission line (30.4 nm) but suppressing He-I emission line (58.4 nm) in astronomy observation, which will replace the traditional combination of periodic multilayer and the fragile film filter. This will be more safe in satellite launching. The third mirror is Mo/Si periodic multilayer, depositing on a parabolic substrate with diameter of 230 mm, which is designed for EUV telescope for imaging of solar corona by selecting Fe-XII emission (19.5 nm). The uniformity of lateral layer thickness distribution is within ±0.3% along the diameter of mirror, measured by X-ray reflectometry. The measured peak reflectivity is 42% at the wavelength of 19.5 nm. All these multilayer mirrors were prepared by using magnetron sputtering system in our group.

  19. Dental radiology.

    PubMed

    Woodward, Tony M

    2009-02-01

    Dental radiology is the core diagnostic modality of veterinary dentistry. Dental radiographs assist in detecting hidden painful pathology, estimating the severity of dental conditions, assessing treatment options, providing intraoperative guidance, and also serve to monitor success of prior treatments. Unfortunately, most professional veterinary training programs provide little or no training in veterinary dentistry in general or dental radiology in particular. Although a technical learning curve does exist, the techniques required for producing diagnostic films are not difficult to master. Regular use of dental x-rays will increase the amount of pathology detected, leading to healthier patients and happier clients who notice a difference in how their pet feels. This article covers equipment and materials needed to produce diagnostic intraoral dental films. A simplified guide for positioning will be presented, including a positioning "cheat sheet" to be placed next to the dental x-ray machine in the operatory. Additionally, digital dental radiograph systems will be described and trends for their future discussed.

  20. Onium salt reduces the inhibitory polymerization effect from an organic solvent in a model dental adhesive resin.

    PubMed

    Ogliari, Fabrício A; Ely, Caroline; Lima, Giana S; Conde, Marcus C M; Petzhold, Cesar L; Demarco, Flávio F; Piva, Evandro

    2008-07-01

    This study evaluated the effect of organic solvent concentration on the polymerization kinetics for a model dental adhesive resin containing a ternary photoinitiator system. A monomer blend based on the bis-GMA, TEGDMA, and HEMA was used as a model dental adhesive resin, which was polymerized using a binary system [camphorquinone (CQ) and ethyl 4-dimethylamine benzoate (EDAB)] and a ternary system [CQ, EDAB, and diphenyliodonium hexafluorphosphate (DPIHFP)]. Additionally, these blends had 0, 10, 20, 30, and 40 wt % ethanol added. Real-time Fourier transform infrared spectroscopy was used to investigate the polymerization reaction over photoactivation time. Data were plotted, and Hill's three-parameter nonlinear regression was performed for curve fitting. The addition of a solvent to the monomer blends decreased the polymerization kinetics, directly affecting the rate of polymerization, delaying vitrification, and attenuating the Trommsdorf effect. The introduction of DPIHFP displayed a strong increase in reaction kinetics, reducing the solvent inhibition effect. After 10 s of photoactivation, the binary system obtained in 0, 10, 20, 30, and 40% of ethanol, a degree of conversion of 44.6, 26.3, 13.4, 1.15, and 0.0%, respectively, whereas when a ternary system was used, the values were 54.6, 40.5, 27.4, 14.5, and 3.4%. An improvement was observed in the polymerization kinetics of a model dental adhesive resin when using a ternary photoinitiation system, making the material less sensitive to the residual presence of a solvent before photoactivation.

  1. DENTAL MATERIALS.

    DTIC Science & Technology

    The study deals with the determination of characteristic physical and mechanical properties of restorative dental materials, and effect of...manipulative variables on these properties. From the study an entirely new dental gold inlay casting technic was developed, based on the principle of...controlled water added hygroscopic technic. The method has had successful dental applications and is a recognized method of dental inlay casting procedure

  2. Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication.

    PubMed

    Mangano, Carlo; Raspanti, Mario; Traini, Tonino; Piattelli, Adriano; Sammons, Rachel

    2009-03-01

    Direct laser fabrication (DLF) allows solids with complex geometry to be produced by sintering metal powder particles in a focused laser beam. In this study, 10 Ti6Al4V alloy model dental root implants were obtained by DLF, and surface characterization was carried out using stereo scanning electron microscopy to produce 3D reconstructions. The surfaces were extremely irregular, with approximately 100 microm deep, narrow intercommunicating crevices, shallow depressions and deep, rounded pits of widely variable shape and size, showing ample scope for interlocking with the host bone. Roughness parameters were as follows: R(t), 360.8 microm; R(z), 358.4 microm; R(a), 67.4 microm; and R(q), 78.0 microm. Disc specimens produced by DLF with an identically prepared surface were used for biocompatibility studies with rat calvarial osteoblasts: After 9 days, cells had attached and spread on the DLF surface, spanning across the crevices, and voids. Cell density was similar to that on a commercial rough microtextured surface but lower than on commercial smooth machined and smooth-textured grit-blasted, acid-etched surfaces. Human fibrin clot extension on the DLF surface was slightly improved by inorganic acid etching to increase the microroughness. With further refinements, DLF could be an economical means of manufacturing implants from titanium alloys. (c) 2008 Wiley Periodicals, Inc.

  3. Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications.

    PubMed

    Bland, M H; Peppas, N A

    1996-06-01

    Polymer networks that can serve as model systems for dental applications were prepared by photopolymerizations of 1,1,1-trimethylolpropane triacrylate, 1,1,1-trimethylolpropane trimethacrylate, 1,1,1-trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, Photomer 2028 and Photomer 3015. The UV polymerizations were initiated by 2,2-dimethoxy-2-phenyl-acetophenone. Volume shrinkage was followed over the course of polymerization using a dilatometric technique. Incident light intensities ranged from 1 mW cm-2 to 20 mW cm-2. The effects of monomer structure on % volume shrinkage, including pendant group size, molecular weight between reactive double bonds, and acrylate versus methacrylate monomers were investigated. In addition, the effect of incident light intensity on % volume shrinkage was studied. Typical volume shrinkage varied from 3.5% to 13.5%. The volume shrinkage decreased with increasing monomer rank and increased pendant group size; the shrinkage for methacrylates was less than that for acrylates. Increased incident light intensity resulted in increased shrinkage rate, but not in statistically significant increases of the volume shrinkage. Conversion was calculated from shrinkage data and compared to data from monomer extraction experiments. Results indicate that although double bond conversion is low, conversion of monomer units is significantly higher.

  4. Numerical modelling of tooth enamel subsurface lesion formation induced by dental plaque.

    PubMed

    Ilie, O; van Turnhout, A G; van Loosdrecht, M C M; Picioreanu, C

    2014-01-01

    Using a one-dimensional mathematical model that couples tooth demineralisation and remineralisation with metabolic processes occurring in the dental plaque, two mechanisms for subsurface lesion formation were evaluated. It was found that a subsurface lesion can develop only as the result of alternating periods of demineralisation (acid attack during sugar consumption) and remineralisation (resting period) in tooth enamel with uniform mineral composition. It was also shown that a minimum plaque thickness that can induce an enamel lesion exists. The subsurface lesion formation can also be explained by assuming the existence of a fluoride-containing layer at the tooth surface that decreases enamel solubility. A nearly constant thickness of the surface layer was obtained with both proposed mechanisms. Sensitivity analysis showed that surface layer formation is strongly dependent on the length of remineralisation and demineralisation cycles. The restoration period is very important and the numerical simulations support the observation that often consumption of sugars is a key factor in caries formation. The calculated profiles of mineral content in enamel are similar to those observed experimentally. Most probably, both studied mechanisms interact in vivo in the process of caries development, but the simplest explanation for subsurface lesion formation remains the alternation between demineralisation and remineralisation cycles without any pre-imposed gradients.

  5. Bi-phase transition diagrams of metallic thin multilayers

    SciTech Connect

    Li, J.C.; Liu, W.; Jiang, Q. . E-mail: jiangq@jlu.edu.cn

    2005-02-01

    Phase transitions of metallic multilayers induced by differences in interface energy are considered thermodynamically, based on a thermodynamic model for interface energy and the Goldschmidt premise for lattice contraction. Bi-phase transition diagrams of Co/Cr, Zr/Nb, Ti/Nb and Ti/Al multilayers are constructed, which are in agreement with experimental results.

  6. Prediction of pressure during evacuation of multilayer insulation.

    NASA Technical Reports Server (NTRS)

    Glassford, A. P. M.

    1972-01-01

    Description of an improved analytical procedure for predicting the pressure time history during evacuation of multilayer-insulation thermal-protection systems. To evaluate the performance of the proposed analysis and to demonstrate its usefulness as a design tool, a comparison is presented of the experimentally measured and predicted evacuation pressure histories for a laboratory-scale model multilayer insulation blanket.

  7. Three-dimensional computer-generated head model reconstructed from cephalograms, facial photographs, and dental cast models.

    PubMed

    Nakasima, Akihiko; Terajima, Masahiko; Mori, Noriko; Hoshino, Yoshihiro; Tokumori, Kenji; Aoki, Yoshimitu; Hashimoto, Shuji

    2005-03-01

    Three-dimensional (3D) computer models of the human craniofacial structure have been constructed with computed tomography (CT). However, the high cost of CT and the radiation exposure are drawbacks to this method. Attempts to create a 3D reconstruction from lateral and frontal cephalograms have failed because of problems with magnification, distortion, and limitations of landmark identification, among others. We introduce a new method that creates a standard head model for a patient from anatomic measurement points extracted from x-ray images, facial stereo photographs, and dental casts. To obtain precise 3D coordinates from cephalograms, several equations were introduced to compensate for radiographic image magnification and distortion. By comparing the constructed model and 3D-CT images, this method proved to be accurate. It is possible to produce a 3D head model on a personal computer and to view it from any desired angle; this will provide easy-to-understand information for patients and establish a diagnostic or therapeutic method for communication with other health care providers.

  8. Developing a model to assess community-level risk of oral diseases for planning public dental services in Australia.

    PubMed

    de Silva, Andrea M; Gkolia, Panagiota; Carpenter, Lauren; Cole, Deborah

    2016-03-31

    Poor oral health is a chronic condition that can be extremely costly to manage. In Australia, publicly funded dental services are provided to community members deemed to be eligible-those who are socio-economically disadvantaged or determined to be at higher risk of dental disease. Historically public dental services have nominally been allocated based on the size of the eligible population in a geographic area. This approach has been largely inadequate for reducing disparities in dental disease, primarily because the approach is treatment-focused, and oral health is influenced by a variety of interacting factors. This paper describes the developmental process of a multi-dimensional community-level risk assessment model, to profile a community's risk of poor oral health. A search of the evidence base was conducted to identify robust frameworks for conceptualisation of risk factors and associated performance indicators. Government and other agency websites were also searched to identify publicly available data assets with items relevant to oral diseases. Data quality and analysis considerations were assessed for the use of mixed data sources. Several frameworks and associated indicator sets (twelve national and eight state-wide data collections with relevant indicators) were identified. Determination of the system inputs for the Model were primarily informed by the World Health Organisation's (WHO) operational model for an Integrated Oral Health-Chronic Disease Prevention System, and Australia's National Oral Health Plan 2004-2013. Data quality and access informed the final selection of indicators. Despite limitations in the quality and regularity of data collections, there are numerous data sources available that provide the required data inputs for community-level risk assessment for oral health. Assessing risk in this way will enhance our ability to deliver appropriate public oral health care services and address the uneven distribution of oral disease across the

  9. Hydroxyapatite induces spontaneous polymerization of model self-etch dental adhesives.

    PubMed

    Zhang, Ying; Wu, Ningjing; Bai, Xinyan; Xu, Changqi; Liu, Yi; Wang, Yong

    2013-10-01

    The objective of this study is to report for the first time the spontaneous polymerization phenomenon of self-etch dental adhesives induced by hydroxylapatite (HAp). Model self-etch adhesives were prepared by using a monomer mixture of bis[2-(methacryloyloxy)ethyl] phosphate (2MP) with 2-hydroxyethyl methacrylate (HEMA). The initiator system consisted of camphorquinone (CQ, 0.022 mmol/g) and ethyl 4-dimethylaminobenzoate (4E, 0.022-0.088 mmol/g). HAp (2-8 wt.%) was added to the neat model adhesive. In a dark environment, the polymerization was monitored in-situ using ATR/FT-IR, and the mechanical properties of the polymerized adhesives were evaluated using nanoindentation technique. Results indicated that spontaneous polymerization was not observed in the absence of HAp. However, as different amounts of HAp were incorporated into the adhesives, spontaneous polymerization was induced. Higher HAp content led to higher degree of conversion (DC), higher rate of polymerization (RP) and shorter induction period (IP). In addition, higher 4E content also elevated DC and RP and reduced IP of the adhesives. Nanoindentation result suggested that the Young's modulus of the polymerized adhesives showed similar dependence on HAp and 4E contents. In summary, interaction with HAp could induce spontaneous polymerization of the model self-etch adhesives. This result provides important information for understanding the initiation mechanism of the self-etch adhesives, and may be of clinical significance to strengthen the adhesive/dentin interface based on the finding. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Dental Pulp Stem Cells Model Early Life and Imprinted DNA Methylation Patterns.

    PubMed

    Dunaway, Keith; Goorha, Sarita; Matelski, Lauren; Urraca, Nora; Lein, Pamela J; Korf, Ian; Reiter, Lawrence T; LaSalle, Janine M

    2017-04-01

    Early embryonic stages of pluripotency are modeled for epigenomic studies primarily with human embryonic stem cells (ESC) or induced pluripotent stem cells (iPSCs). For analysis of DNA methylation however, ESCs and iPSCs do not accurately reflect the DNA methylation levels found in preimplantation embryos. Whole genome bisulfite sequencing (WGBS) approaches have revealed the presence of large partially methylated domains (PMDs) covering 30%-40% of the genome in oocytes, preimplantation embryos, and placenta. In contrast, ESCs and iPSCs show abnormally high levels of DNA methylation compared to inner cell mass (ICM) or placenta. Here we show that dental pulp stem cells (DPSCs), derived from baby teeth and cultured in serum-containing media, have PMDs and mimic the ICM and placental methylome more closely than iPSCs and ESCs. By principal component analysis, DPSC methylation patterns were more similar to two other neural stem cell types of human derivation (EPI-NCSC and LUHMES) and placenta than were iPSCs, ESCs or other human cell lines (SH-SY5Y, B lymphoblast, IMR90). To test the suitability of DPSCs in modeling epigenetic differences associated with disease, we compared methylation patterns of DPSCs derived from children with chromosome 15q11.2-q13.3 maternal duplication (Dup15q) to controls. Differential methylation region (DMR) analyses revealed the expected Dup15q hypermethylation at the imprinting control region, as well as hypomethylation over SNORD116, and novel DMRs over 147 genes, including several autism candidate genes. Together these data suggest that DPSCs are a useful model for epigenomic and functional studies of human neurodevelopmental disorders. Stem Cells 2017;35:981-988. © 2016 AlphaMed Press.

  11. Nonspecular scattering from extreme ultraviolet multilayer coatings

    NASA Astrophysics Data System (ADS)

    Stearns, D. G.; Gullikson, E. M.

    2000-06-01

    We review our recent studies of nonspecular scattering from multilayer coatings designed for high reflectivity in the wavelength range of 1-100 nm. A linear, continuum growth model is used to describe the structure of the interfacial roughness in the multilayer coatings. This model accounts for both the partial replication of the substrate roughness and the intrinsic roughness introduced by the multilayer growth. The scattering of radiation from the roughness is calculated within the distorted-wave Born approximation and is compared to experimental measurements. Observations of particular interest are: (1) enhanced nonspecular scattering from the correlated roughness of the coatings and (2) asymmetry in the measured scattering due to phase effects produced by an off-normal angle of deposition during film growth. As an application of our results we consider the effect of nonspecular scattering in EUV lithography.