A Study on Phase Changes of Heterogeneous Composite Materials
NASA Astrophysics Data System (ADS)
Hirasawa, Yoshio; Saito, Akio; Takegoshi, Eisyun
In this study, a phase change process in heterogeneous composite materials which consist of water and coiled copper wires as conductive solid is investigated by four kinds of typical calculation models : 1) model-1 in which the effective thermal conductivity of the composite material is used, 2) model-2 in which a fin metal acts for many conductive solids, 3) model-3 in which the effective thermal conductivities between nodes are estimated and three-dimensional calculation is performed, 4) model-4 proposed by authors in the previous paper in which effective thermal conductivity is not needed. Consequently, model-1 showed the phase change rate considerably lower than the experimental results. Model-2 gave the larger amount of the phase change rate. Model-3 agreed well with the experiment in the case of small coil diameter and relatively large Vd. Model-4 showed a very well agreement with the experiment in the range of this study.
2014-12-01
Simulated Solute Transport in a Numerical Replication of Britt’s 2005 Experiment Figure 44 In-Well Flow Inhibitor Figure 45 Results of a Preliminary Dye ...Tracer Experiment Conducted at INL Figure 46 Results Horizontally-Oriented Dye Tracer Experiment Conducted at INL ER-1704 Final Report 2014 vii...possible sources of well convection and mixing. Specifically, the modeling explored: • 2D and 3D physical tank models. Dye tracer testing was conducted
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
NASA Astrophysics Data System (ADS)
Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.
2016-03-01
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.
NASA Astrophysics Data System (ADS)
Blanchard, J. P.; Tesche, F. M.; McConnell, B. W.
1987-09-01
An experiment to determine the interaction of an intense electromagnetic pulse (EMP), such as that produced by a nuclear detonation above the Earth's atmosphere, was performed in March, 1986 at Kirtland Air Force Base near Albuquerque, New Mexico. The results of that experiment have been published without analysis. Following an introduction of the corona phenomenon, the reason for interest in it, and a review of the experiment, this paper discusses five different analytic corona models that may model corona formation on a conducting line subjected to EMP. The results predicted by these models are compared with measured data acquired during the experiment to determine the strengths and weaknesses of each model.
Logical fallacies in animal model research.
Sjoberg, Espen A
2017-02-15
Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.
Modelling the evolution of complex conductivity during calcite precipitation on glass beads
NASA Astrophysics Data System (ADS)
Leroy, Philippe; Li, Shuai; Jougnot, Damien; Revil, André; Wu, Yuxin
2017-04-01
When pH and alkalinity increase, calcite frequently precipitates and hence modifies the petrophysical properties of porous media. The complex conductivity method can be used to directly monitor calcite precipitation in porous media because it is sensitive to the evolution of the mineralogy, pore structure and its connectivity. We have developed a mechanistic grain polarization model considering the electrochemical polarization of the Stern and diffuse layers surrounding calcite particles. Our complex conductivity model depends on the surface charge density of the Stern layer and on the electrical potential at the onset of the diffuse layer, which are computed using a basic Stern model of the calcite/water interface. The complex conductivity measurements of Wu et al. on a column packed with glass beads where calcite precipitation occurs are reproduced by our surface complexation and complex conductivity models. The evolution of the size and shape of calcite particles during the calcite precipitation experiment is estimated by our complex conductivity model. At the early stage of the calcite precipitation experiment, modelled particles sizes increase and calcite particles flatten with time because calcite crystals nucleate at the surface of glass beads and grow into larger calcite grains. At the later stage of the calcite precipitation experiment, modelled sizes and cementation exponents of calcite particles decrease with time because large calcite grains aggregate over multiple glass beads and only small calcite crystals polarize.
ERIC Educational Resources Information Center
Hirça, Necati
2013-01-01
In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…
A Biopsychosocial Model of the Development of Chronic Conduct Problems in Adolescence
Dodge, Kenneth A.; Pettit, Gregory S.
2009-01-01
A biopsychosocial model of the development of adolescent chronic conduct problems is presented and supported through a review of empirical findings. This model posits that biological dispositions and sociocultural contexts place certain children at risk in early life but that life experiences with parents, peers, and social institutions increment and mediate this risk. A transactional developmental model is best equipped to describe the emergence of chronic antisocial behavior across time. Reciprocal influences among dispositions, contexts, and life experiences lead to recursive iterations across time that exacerbate or diminish antisocial development. Cognitive and emotional processes within the child, including the acquisition of knowledge and social-information-processing patterns, mediate the relation between life experiences and conduct problem outcomes. Implications for prevention research and public policy are noted. PMID:12661890
NASA Astrophysics Data System (ADS)
Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M. R.; Mills, G.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat ( r2=0.83) and potato ( r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AF st6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m -2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.
NASA Astrophysics Data System (ADS)
Bowers, Peter; Rosowski, John J.
2018-05-01
An air-conduction circuit model that will serve as the basis for a model of bone-conduction hearing is developed for chinchilla. The lumped-element model is based on the classic Zwislocki model of the human middle ear. Model parameters are fit to various measurements of chinchilla middle-ear transfer functions and impedances. The model is in agreement with studies of the effects of middle-ear cavity holes in experiments that require access to the middle-ear air space.
USDA-ARS?s Scientific Manuscript database
The data set reported here includes the part of a Hot Serial Cereal Experiment (HSC) experiment recently used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat models and quantify their response to temperature. The HSC experiment was conducted in an open-field in a semiarid environme...
NASA Astrophysics Data System (ADS)
McGuire, C. P.; Rainey, E.; Kavner, A.
2016-12-01
The high-pressure, high-temperature thermal conductivities of lower mantle oxides and silicates play an important role in governing the heat flow across the core-mantle boundary, and the thermal conductivity of core materials determines, at first order, the power required to run the geodynamo. Uncertainties in the pressure-dependence and compositional-dependence of thermal conductivities has complicated our understanding of the heat flow in the deep earth and has implications for the geodynamo mechanism (Buffett, 2012). The goal of this study is to measure how thermal conductivity varies with pressure and composition using a technique that combines temperature measurements as a function of power input in the laser-heated diamond anvil cell (LHDAC) with a model of three-dimensional heat flow (Rainey & Kavner, 2014). In one set of experiments, we measured temperature versus laser-power for iron, iron silicide, and stainless steel (Fe:Cr:Ni = 70:19:11 wt%), using a variety of insulating layers. In another set of experiments, we measured temperature vs. laser power for a series of Fe-bearing periclase (Mg1-x,FexO) samples, with compositions ranging from x = .24 to x = .78. These experiments were conducted up to pressures of 25 GPa and temperatures of 2800 K. A numerical model for heat conduction in the LHDAC is used to forward model the temperature versus laser power curves at successive pressures, solving for the change in thermal conductivity of the material required to best reproduce the measurements. The heat flow model is implemented using a finite element full-approximation storage (FAS) multi-grid solver, which allows for efficient computation with flexible inputs for geometry and material properties in the diamond anvil cell (Rainey et al., 2013). We use the results of our experiments and model to extract pressure and compositional dependencies of thermal conductivity for the materials described herein. The results are used to help constrain models of the thermal properties of core and mantle materials.
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L
2006-05-05
Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.
An analysis of electrical conductivity model in saturated porous media
NASA Astrophysics Data System (ADS)
Cai, J.; Wei, W.; Qin, X.; Hu, X.
2017-12-01
Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.
Thermal modeling with solid/liquid phase change of the thermal energy storage experiment
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee
1991-01-01
A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.
Conceptual-level workflow modeling of scientific experiments using NMR as a case study
Verdi, Kacy K; Ellis, Heidi JC; Gryk, Michael R
2007-01-01
Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment. PMID:17263870
Conceptual-level workflow modeling of scientific experiments using NMR as a case study.
Verdi, Kacy K; Ellis, Heidi Jc; Gryk, Michael R
2007-01-30
Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment.
Sannino, Annalisa
2016-03-01
This study explores what human conduct looks like when research embraces uncertainty and distance itself from the dominant methodological demands of control and predictability. The context is the waiting experiment originally designed in Kurt Lewin's research group, discussed by Vygotsky as an instance among a range of experiments related to his notion of double stimulation. Little attention has been paid to this experiment, despite its great heuristic potential for charting the terrain of uncertainty and agency in experimental settings. Behind the notion of double stimulation lays Vygotsky's distinctive view of human beings' ability to intentionally shape their actions. Accordingly, human beings in situations of uncertainty and cognitive incongruity can rely on artifacts which serve the function of auxiliary motives and which help them undertake volitional actions. A double stimulation model depicting how such actions emerge is tested in a waiting experiment conducted with collectives, in contrast with a previous waiting experiment conducted with individuals. The model, validated in the waiting experiment with individual participants, applies only to a limited extent to the collectives. The analysis shows the extent to which double stimulation takes place in the waiting experiment with collectives, the differences between the two experiments, and what implications can be drawn for an expanded view on experiments.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1994-01-01
Electrohydrodynamic sample distortion during continuous flow electrophoresis is an experiment to be conducted during the second International Microgravity Laboratory (IML-2) in July 1994. The specific objective of this experiment is the distortion caused by the difference in dielectric constant between the sample and surrounding buffer. Although the role of sample conductivity in electrohydrodynamic has been the subject of both flight and ground experiments, the separate role of dielectric constant, independent of sample conductivity, has not been measured. This paper describes some of the laboratory research and model development that will support the flight experiment on IML-2.
Assimilative modeling of low latitude ionosphere
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Wang, Chunining; Hajj, George A.; Rosen, I. Gary; Wilson, Brian D.; Mannucci, Anthony J.
2004-01-01
In this paper we present an observation system simulation experiment for modeling low-latitude ionosphere using a 3-dimensional (3-D) global assimilative ionospheric model (GAIM). The experiment is conducted to test the effectiveness of GAIM with a 4-D variational approach (4DVAR) in estimation of the ExB drift and thermospheric wind in the magnetic meridional planes simultaneously for all longitude or local time sectors. The operational Global Positioning System (GPS) satellites and the ground-based global GPS receiver network of the International GPS Service are used in the experiment as the data assimilation source. 'The optimization of the ionospheric state (electron density) modeling is performed through a nonlinear least-squares minimization process that adjusts the dynamical forces to reduce the difference between the modeled and observed slant total electron content in the entire modeled region. The present experiment for multiple force estimations reinforces our previous assessment made through single driver estimations conducted for the ExB drift only.
NASA Astrophysics Data System (ADS)
Swanson, Ryan David
The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to hydraulic conductivity fields estimated through ordinary kriging and sequential Gaussian simulation. Time-lapse electrical measurements are used to verify or dismiss aspects of breakthrough curves for different hydraulic conductivity fields. Our results quantify the potential for geophysical measurements to infer on single-rate DDMT parameters, show site-specific relations between hydraulic and electrical conductivity, and track solute exchange into and out of less-mobile domains.
A Generalized Quantum-Inspired Decision Making Model for Intelligent Agent
Loo, Chu Kiong
2014-01-01
A novel decision making for intelligent agent using quantum-inspired approach is proposed. A formal, generalized solution to the problem is given. Mathematically, the proposed model is capable of modeling higher dimensional decision problems than previous researches. Four experiments are conducted, and both empirical experiments results and proposed model's experiment results are given for each experiment. Experiments showed that the results of proposed model agree with empirical results perfectly. The proposed model provides a new direction for researcher to resolve cognitive basis in designing intelligent agent. PMID:24778580
NASA Technical Reports Server (NTRS)
Arya, L. M. (Principal Investigator)
1980-01-01
Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.
Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper
Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...
2016-03-11
The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less
Influence of defects on the thermal conductivity of compressed LiF
Jones, R. E.; Ward, D. K.
2018-02-08
We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less
Influence of defects on the thermal conductivity of compressed LiF
NASA Astrophysics Data System (ADS)
Jones, R. E.; Ward, D. K.
2018-02-01
Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.
Influence of defects on the thermal conductivity of compressed LiF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R. E.; Ward, D. K.
We report defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this model to predict the conductivity of a largemore » sample of defective LiF resulting from a direct simulation of ramp compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF window used in an experiment, the model can be used to correct the observations of thermal energy through the window. Also, the methodology we develop is extensible to modeling, with quantified uncertainty, the effects of a variety of defects on the thermal conductivity of solid materials.« less
NASA Technical Reports Server (NTRS)
Grodzka, P.; Facemire, B.
1977-01-01
Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.
Goals and Status of the NASA Juncture Flow Experiment
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Morrison, Joseph H.
2016-01-01
The NASA Juncture Flow experiment is a new effort whose focus is attaining validation data in the juncture region of a wing-body configuration. The experiment is designed specifically for the purpose of CFD validation. Current turbulence models routinely employed by Reynolds-averaged Navier-Stokes CFD are inconsistent in their prediction of corner flow separation in aircraft juncture regions, so experimental data in the near-wall region of such a configuration will be useful both for assessment as well as for turbulence model improvement. This paper summarizes the Juncture Flow effort to date, including preliminary risk-reduction experiments already conducted and planned future experiments. The requirements and challenges associated with conducting a quality validation test are discussed.
Development of a Portable Motor Learning Laboratory (PoMLab)
Shinya, Masahiro
2016-01-01
Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place. PMID:27348223
Development of a Portable Motor Learning Laboratory (PoMLab).
Takiyama, Ken; Shinya, Masahiro
2016-01-01
Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place.
DOT National Transportation Integrated Search
2000-11-09
In 1997, the 5 ITS ministries and the agency committee laid out the ITS model experiment plan as a strategy for the Comprehensive ITS Plan, and decided to conduct a feasibility study (FS) of the experiment plan in the 3 years from 1997 to 1999. : The...
Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M
2015-12-01
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. © 2015 American Society of Plant Biologists. All Rights Reserved.
Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón
2015-01-01
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705
Pun, S H; Gao, Y M; Mou, P A; Mak, P U; Vai, M I; Du, M
2010-01-01
Intra-body communication (IBC) is a new, emerging, short-range and human body based communication methodology. It is a technique to network various devices on human body, by utilizing the conducting properties of human tissues. For currently fast developed Body area network(BAN)/Body sensor network(BSN), IBC is believed to have advantages in power consumption, electromagnetic radiation, interference from external electromagnetic noise, security, and restriction in spectrum resource. In this article, the authors propose an improved mathematical model, which includes both electrical properties and proportion of human tissues, for IBC on a human limb. By solving the mathematical model analytically on four-layer system (skin, fat, muscle, and bone) and conducting in-vivo experiment, a comparison has been conducted.
Influence of surface conductivity on the apparent zeta potential of calcite.
Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe
2016-04-15
Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparison of Fire Model Predictions with Experiments Conducted in a Hangar With a 15 Meter Ceiling
NASA Technical Reports Server (NTRS)
Davis, W. D.; Notarianni, K. A.; McGrattan, K. B.
1996-01-01
The purpose of this study is to examine the predictive capabilities of fire models using the results of a series of fire experiments conducted in an aircraft hangar with a ceiling height of about 15 m. This study is designed to investigate model applicability at a ceiling height where only a limited amount of experimental data is available. This analysis deals primarily with temperature comparisons as a function of distance from the fire center and depth beneath the ceiling. Only limited velocity measurements in the ceiling jet were available but these are also compared with those models with a velocity predictive capability.
Cassidy conducts BASS Experiment Test Operations
2013-04-05
ISS035-E-015081 (5 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, Cassidy conducted a run of the experiment, which examined the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Exploring a Comprehensive Model for Early Childhood Vocabulary Instruction: A Design Experiment
ERIC Educational Resources Information Center
Wang, X. Christine; Christ, Tanya; Chiu, Ming Ming
2014-01-01
Addressing a critical need for effective vocabulary practices in early childhood classrooms, we conducted a design experiment to achieve three goals: (1) developing a comprehensive model for early childhood vocabulary instruction, (2) examining the effectiveness of this model, and (3) discerning the contextual conditions that hinder or facilitate…
NASA Astrophysics Data System (ADS)
Merkel, S.; Langrand, C.; Hilairet, N.; Konopkova, Z.; Andrault, D.
2016-12-01
The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.
NASA Astrophysics Data System (ADS)
McGuire, C. P.; Sawchuk, K. L. S.; Kavner, A.
2017-12-01
The thermal conductivity of lower mantle minerals depends on crystal structure and phase, with important implications for the style of convection in the mantle and the heat flow across the core-mantle boundary. In this study, we demonstrate how measurements of temperature in the laser-heated diamond anvil cell (LHDAC) can be used to determine relative changes in thermal conductivity across a pressure-induced phase change. A finite-element 3D heat flow model of the LHDAC is used to simulate experimental conditions. Results from modeling show that the peak temperature in the cell is primarily controlled by the geometry, sample thermal conductivity and heat input due to laser heating. Controlling for geometry, the model can output expected temperature versus laser-power curves for an increase or decrease in thermal conductivity with pressure. The modeled temperature differences indicate that we can experimentally distinguish the sign and magnitude of a thermal conductivity change due to a pressure-induced phase change. We perform a series of experiments to test our models. In one set of experiments, we measure temperature versus laser-power as a function of pressure for the NaCl B1-B2 phase transition, over the pressure range 18 to 54 GPa. A decrease in thermal conductivity across the NaCl B1-B2 phase transition (dκ/dP = -1.6 +/- 0.2 W/(mK GPa)) is needed to explain our measurements. This result is consistent with thermal conductivity measurements of other ionic salts, which undergo the B1-B2 phase transition at much lower pressure. We apply this experiment design to investigate the effect of spin transition on an iron-bearing magnesium oxide sample. In a series of experiments, we measure temperature vs. laser power for (Mg,Fe)O with 24 mol% Fe, loaded in Ne, over a pressure range from 22 to 60 GPa. We observe an increase in thermal conductivity between 22 and 42 GPa. But between 42 and 60 GPa, a pressure range consistent with previously reported mixed-spin state phase of (Mg,Fe)O, we observe a decrease in thermal conductivity. This result suggests that there may be a broad zone, in the depth range of 1000 - 1500 km, of reduced thermal transport properties in the mantle.
Microwave scattering models and basic experiments
NASA Technical Reports Server (NTRS)
Fung, Adrian K.
1989-01-01
Progress is summarized which has been made in four areas of study: (1) scattering model development for sparsely populated media, such as a forested area; (2) scattering model development for dense media, such as a sea ice medium or a snow covered terrain; (3) model development for randomly rough surfaces; and (4) design and conduct of basic scattering and attenuation experiments suitable for the verification of theoretical models.
Solute transport along preferential flow paths in unsaturated fractures
Su, Grace W.; Geller, Jil T.; Pruess, Karsten; Hunt, James R.
2001-01-01
Laboratory experiments were conducted to study solute transport along preferential flow paths in unsaturated, inclined fractures. Qualitative aspects of solute transport were identified in a miscible dye tracer experiment conducted in a transparent replica of a natural granite fracture. Additional experiments were conducted to measure the breakthrough curves of a conservative tracer introduced into an established preferential flow path in two different fracture replicas and a rock‐replica combination. The influence of gravity was investigated by varying fracture inclination. The relationship between the travel times of the solute and the relative influence of gravity was substantially affected by two modes of intermittent flow that occurred: the snapping rivulet and the pulsating blob modes. The measured travel times of the solute were evaluated with three transfer function models: the axial dispersion, the reactors‐in‐series, and the lognormal models. The three models described the solute travel times nearly equally well. A mechanistic model was also formulated to describe transport when the pulsating blob mode occurred which assumed blobs of water containing solute mixed with residual pools of water along the flow path.
The Virtual Extension Annual Conference: Addressing Contemporary Professional Development Needs
ERIC Educational Resources Information Center
Franz, Nancy K.; Brekke, Robin; Coates, Deb; Kress, Cathann; Hlas, Julie
2014-01-01
Extension systems are experimenting with new models for conducting professional development to enhance staff competence and other returns on professional development investments. The ISUEO virtual annual conference provides a successful flipped classroom model of asynchronous and synchronous learning events for conducting an Extension annual…
An experiment with interactive planning models
NASA Technical Reports Server (NTRS)
Beville, J.; Wagner, J. H.; Zannetos, Z. S.
1970-01-01
Experiments on decision making in planning problems are described. Executives were tested in dealing with capital investments and competitive pricing decisions under conditions of uncertainty. A software package, the interactive risk analysis model system, was developed, and two controlled experiments were conducted. It is concluded that planning models can aid management, and predicted uses of the models are as a central tool, as an educational tool, to improve consistency in decision making, to improve communications, and as a tool for consensus decision making.
NASA Astrophysics Data System (ADS)
Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.
2016-12-01
Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
ERIC Educational Resources Information Center
Carroll, Susanne E.
1995-01-01
Criticizes the computer modelling experiments conducted by Sokolik and Smith (1992), which involved the learning of French gender attribution using connectionist architecture. The article argues that the experiments greatly oversimplified the complexity of gender learning, in that they were designed in such a way that knowledge that must be…
ERIC Educational Resources Information Center
Baeten, Marlies; Simons, Mathea
2016-01-01
This study investigates team teaching between student teachers and mentors during student teachers' field experiences. A systematic literature search was conducted, which resulted into a narrative review. Three team teaching models could be distinguished: (1) the co-planning and co-evaluation model, (2) the assistant teaching model, and (3) the…
Early Phases of Business Model Innovation: An Ideation Experience Workshop in the Classroom
ERIC Educational Resources Information Center
Hoveskog, M.; Halila, F.; Danilovic, M.
2015-01-01
As the mantra "innovate your business model or die" increases in popularity among practitioners and academics, so does the need for novel and feasible business models. In this article, we describe an ideation experience workshop, conducted in an undergraduate business course, in which students, guided by their lecturers and two industry…
Research on numerical simulation technology about regional important pollutant diffusion of haze
NASA Astrophysics Data System (ADS)
Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan
2018-02-01
In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Flaherty, Julia E.
2007-08-01
This report provides an experimental plan for a proposed Asian long-range tracer study as part of the international Tracer Experiment and Atmospheric Modeling (TEAM) Project. The TEAM partners are China, Japan, South Korea and the United States. Optimal times of year to conduct the study, meteorological measurements needed, proposed tracer release locations, proposed tracer sampling locations and the proposed durations of tracer releases and subsequent sampling are given. Also given are the activities necessary to prepare for the study and the schedule for completing the preparation activities leading to conducting the actual field operations. This report is intended to providemore » the TEAM members with the information necessary for planning and conducting the Asian long-range tracer study. The experimental plan is proposed, at this time, to describe the efforts necessary to conduct the Asian long-range tracer study, and the plan will undoubtedly be revised and refined as the planning goes forward over the next year.« less
Peak Communication Experiences: Concept, Structure, and Sex Differences.
ERIC Educational Resources Information Center
Gordon, Ron; Dulaney, Earl
A study was conducted to test a "peak communication experience" (PCE) scale developed from Abraham Maslow's theory of PCE's, a model of one's highest interpersonal communication moments in terms of perceived mutual understanding, happiness, and personal fulfillment. Nineteen items, extrapolated from Maslow's model but rendered more…
The use of conduction model in laser weld profile computation
NASA Astrophysics Data System (ADS)
Grabas, Bogusław
2007-02-01
Profiles of joints resulting from deep penetration laser beam welding of a flat workpiece of carbon steel were computed. A semi-analytical conduction model solved with Green's function method was used in computations. In the model, the moving heat source was attenuated exponentially in accordance with Beer-Lambert law. Computational results were compared with those in the experiment.
Lux, Slawomir A.; Wnuk, Andrzej; Vogt, Heidrun; Belien, Tim; Spornberger, Andreas; Studnicki, Marcin
2016-01-01
The paper reports application of a Markov-like stochastic process agent-based model and a “virtual farm” concept for enhancement of site-specific Integrated Pest Management. Conceptually, the model represents a “bottom-up ethological” approach and emulates behavior of the “primary IPM actors”—large cohorts of individual insects—within seasonally changing mosaics of spatiotemporally complex faming landscape, under the challenge of the local IPM actions. Algorithms of the proprietary PESTonFARM model were adjusted to reflect behavior and ecology of R. cerasi. Model parametrization was based on compiled published information about R. cerasi and the results of auxiliary on-farm experiments. The experiments were conducted on sweet cherry farms located in Austria, Germany, and Belgium. For each farm, a customized model-module was prepared, reflecting its spatiotemporal features. Historical data about pest monitoring, IPM treatments and fruit infestation were used to specify the model assumptions and calibrate it further. Finally, for each of the farms, virtual IPM experiments were simulated and the model-generated results were compared with the results of the real experiments conducted on the same farms. Implications of the findings for broader applicability of the model and the “virtual farm” approach—were discussed. PMID:27602000
Lux, Slawomir A; Wnuk, Andrzej; Vogt, Heidrun; Belien, Tim; Spornberger, Andreas; Studnicki, Marcin
2016-01-01
The paper reports application of a Markov-like stochastic process agent-based model and a "virtual farm" concept for enhancement of site-specific Integrated Pest Management. Conceptually, the model represents a "bottom-up ethological" approach and emulates behavior of the "primary IPM actors"-large cohorts of individual insects-within seasonally changing mosaics of spatiotemporally complex faming landscape, under the challenge of the local IPM actions. Algorithms of the proprietary PESTonFARM model were adjusted to reflect behavior and ecology of R. cerasi. Model parametrization was based on compiled published information about R. cerasi and the results of auxiliary on-farm experiments. The experiments were conducted on sweet cherry farms located in Austria, Germany, and Belgium. For each farm, a customized model-module was prepared, reflecting its spatiotemporal features. Historical data about pest monitoring, IPM treatments and fruit infestation were used to specify the model assumptions and calibrate it further. Finally, for each of the farms, virtual IPM experiments were simulated and the model-generated results were compared with the results of the real experiments conducted on the same farms. Implications of the findings for broader applicability of the model and the "virtual farm" approach-were discussed.
A fault injection experiment using the AIRLAB Diagnostic Emulation Facility
NASA Technical Reports Server (NTRS)
Baker, Robert; Mangum, Scott; Scheper, Charlotte
1988-01-01
The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.
Fate and transport of phenol in a packed bed reactor containing simulated solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saquing, Jovita M., E-mail: jmsaquing@gmail.com; Knappe, Detlef R.U., E-mail: knappe@ncsu.edu; Barlaz, Morton A., E-mail: barlaz@ncsu.edu
Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictivemore » models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.« less
Reprint: Good laboratory practice: preventing introduction of bias at the bench
Macleod, Malcolm R; Fisher, Marc; O’Collins, Victoria; Sena, Emily S; Dirnagl, Ulrich; Bath, Philip MW; Buchan, Alistair; van der Worp, H Bart; Traystman, Richard J; Minematsu, Kazuo; Donnan, Geoffrey A; Howells, David W
2009-01-01
As a research community, we have failed to show that drugs, which show substantial efficacy in animal models of cerebral ischemia, can also improve outcome in human stroke. Accumulating evidence suggests this may be due, at least in part, to problems in the design, conduct, and reporting of animal experiments which create a systematic bias resulting in the overstatement of neuroprotective efficacy. Here, we set out a series of measures to reduce bias in the design, conduct and reporting of animal experiments modeling human stroke. PMID:18797473
Fuel-Air Mixing and Combustion in Scramjets
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.
2002-01-01
Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.
NASA Astrophysics Data System (ADS)
Tang, Junyao; Sagdighpour, Sepehr; Behringer, Robert
2008-11-01
Flow in a hopper is both a fertile testing ground for understanding models for granular flow and industrially highly relevant. However, the formation of arches in the hopper opening, which halts the hopper flow unpredictably, is still poorly understood. In this work, we conduct a two-dimension hopper experiments, using photoelastic particles, and characterize these experiments in terms of a statistical model that considers the probability of jamming. The distribution of the hopper flow times exhibits an exponential decay, which shows the existence of a characteristic ``mean flow time.'' We then conduct further experiments to examine the connection between the mean flow time, the hopper geometry, the local density, and geometric structures and forces at the particle scale.
Sediment-transport experiments in zero-gravity
NASA Technical Reports Server (NTRS)
Iversen, James D.; Greeley, Ronald
1987-01-01
One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.
Sediment-transport experiments in zero-gravity
NASA Technical Reports Server (NTRS)
Iversen, J. D.; Greeley, R.
1986-01-01
One of the important parameters in the analysis of sediment entrainment and transport is gravitational attraction. The availability of a laboratory in Earth orbit would afford an opportunity to conduct experiments in zero and variable gravity environments. Elimination of gravitational attraction as a factor in such experiments would enable other critical parameters (such as particle cohesion and aerodynamic forces) to be evaluated much more accurately. A Carousel Wind Tunnel (CWT) is proposed for use in conducting experiments concerning sediment particle entrainment and transport in a space station. In order to test the concept of this wind tunnel design a one third scale model CWT was constructed and calibrated. Experiments were conducted in the prototype to determine the feasibility of studying various aeolian processes and the results were compared with various numerical analysis. Several types of experiments appear to be feasible utilizing the proposed apparatus.
Test of the Behavioral Perspective Model in the Context of an E-Mail Marketing Experiment
ERIC Educational Resources Information Center
Sigurdsson, Valdimar; Menon, R. G. Vishnu; Sigurdarson, Johannes Pall; Kristjansson, Jon Skafti; Foxall, Gordon R.
2013-01-01
An e-mail marketing experiment based on the behavioral perspective model was conducted to investigate consumer choice. Conversion e-mails were sent to two groups from the same marketing database of registered consumers interested in children's books. The experiment was based on A-B-A-C-A and A-C-A-B-A withdrawal designs and consisted of sending B…
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less
NASA Astrophysics Data System (ADS)
Watanabe, S.; Kim, H.; Utsumi, N.
2017-12-01
This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.
Trichloroethylene toxicity in a human hepatoma cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thevenin, E.; McMillian, J.
1994-12-31
The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.
Modeling a High Explosive Cylinder Experiment
NASA Astrophysics Data System (ADS)
Zocher, Marvin A.
2017-06-01
Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.
Aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Mongia, H. C.; Patankar, S. V.; Murthy, S. N. B.; Sullivan, J. P.; Samuelsen, G. S.
1985-01-01
The main objectives of the Aerothermal Modeling Program, Phase 2 are: to develop an improved numerical scheme for incorporation in a 3-D combustor flow model; to conduct a benchmark quality experiment to study the interaction of a primary jet with a confined swirling crossflow and to assess current and advanced turbulence and scalar transport models; and to conduct experimental evaluation of the air swirler interaction with fuel injectors, assessments of current two-phase models, and verification the improved spray evaporation/dispersion models.
Linking Family Characteristics with Poor Peer Relations: The Mediating Role of Conduct Problems
Bierman, Karen Linn; Smoot, David L.
2012-01-01
Parent, teacher, and peer ratings were collected for 75 grade school boys to test the hypothesis that certain family interaction patterns would be associated with poor peer relations. Path analyses provided support for a mediational model, in which punitive and ineffective discipline was related to child conduct problems in home and school settings which, in turn, predicted poor peer relations. Further analyses suggested that distinct subgroups of boys could be identified who exhibited conduct problems at home only, at school only, in both settings, or in neither setting. Boys who exhibited cross-situational conduct problems were more likely to experience multiple concurrent problems (e.g., in both home and school settings) and were more likely than any other group to experience poor peer relations. However, only about one-third of the boys with poor peer relations in this sample exhibited problem profiles consistent with the proposed model (e.g., experienced high rates of punitive/ineffective home discipline and exhibited conduct problems in home and school settings), suggesting that the proposed model reflects one common (but not exclusive) pathway to poor peer relations. PMID:1865049
2015-09-30
hired to conduct WRF model experiments. • We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with... WRF simulations under different synoptic conditions will help to more 10 clearly identify the deficiencies in the representation of these processes
NASA Astrophysics Data System (ADS)
Bonura, A.; Capizzo, M. C.; Fazio, C.; Guastella, I.
2008-05-01
In this paper we present a pedagogic approach aimed at modeling electric conduction in semiconductors, built by using NetLogo, a programmable modeling environment for building and exploring multi-agent systems. `Virtual experiments' are implemented to confront predictions of different microscopic models with real measurements of electric properties of matter, such as resistivity. The relations between these electric properties and other physical variables, like temperature, are, then, analyzed.
A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution
NASA Astrophysics Data System (ADS)
Durner, W.; Diamantopoulos, E.
2014-12-01
Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Ghanbarian, Behzad; Horton, Robert
2018-02-01
Thermal conductivity is an essential component in multiphysics models and coupled simulation of heat transfer, fluid flow, and solute transport in porous media. In the literature, various empirical, semiempirical, and physical models were developed for thermal conductivity and its estimation in partially saturated soils. Recently, Ghanbarian and Daigle (GD) proposed a theoretical model, using the percolation-based effective-medium approximation, whose parameters are physically meaningful. The original GD model implicitly formulates thermal conductivity λ as a function of volumetric water content θ. For the sake of computational efficiency in numerical calculations, in this study, we derive an explicit λ(θ) form of the GD model. We also demonstrate that some well-known empirical models, e.g., Chung-Horton, widely applied in the HYDRUS model, as well as mixing models are special cases of the GD model under specific circumstances. Comparison with experiments indicates that the GD model can accurately estimate soil thermal conductivity.
The role of man in flight experiment payload missions. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Malone, T. B.
1973-01-01
In the study to determine the role of man in Sortie Lab operations, a functional model of a generalized experiment system was developed. The results are presented of a requirements analysis which was conducted to identify performance requirements, information requirements, and interface requirements associated with each function in the model.
Fisher, Celia B.; Fried, Adam L.; Feldman, Lindsay G.
2013-01-01
Little is known about the mechanisms by which psychology graduate programs transmit responsible conduct of research (RCR) values. A national sample of 968 current students and recent graduates of mission-diverse doctoral psychology programs, completed a web-based survey on their research ethics challenges, perceptions of RCR mentoring and department climate, their ability to conduct research responsibility, and whether they believed psychology as a discipline promotes scientific integrity. Research experience, mentor RCR instruction and modeling, and department RCR policies predicted student RCR preparedness. Mentor RCR instruction, department RCR policies, and faculty modeling of RCR behaviors predicted confidence in the RCR integrity of the discipline. Implications for training are discussed. PMID:23641128
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-10-01
are modeled using SPH elements. Model validation runs with monolithic SiC tiles are conducted based on the DoP experiments described in reference...TERMS ,30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets, AutoDyn Simulations, Tile Gap 16. SECURITY...range 700 m/s to 1000 m/s are modeled using SPH elements. □ Model validation runs with monolithic SiC tiles are conducted based on the DoP
1989-07-21
formulation of physiologically-based pharmacokinetic models. Adult male Sprague-Dawley rats and male beagle dogs will be administered equal doses...experiments in the 0 dog . Physiologically-based pharmacokinetic models will be developed and validated for oral and inhalation exposures to halocarbons...of conducting experiments in dogs . The original physiolo ic model for the rat will be scaled up to predict halocarbon pharmacokinetics in the dog . The
2015-09-30
to conduct WRF model experiments. We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with the...level winds might be more important forcing for sea ice. In addition, evaluation of Polar- WRF simulations under different synoptic conditions will help
Students' Design of Experiments: An Inquiry Module on the Conduction of Heat
ERIC Educational Resources Information Center
Hatzikraniotis, E.; Kallery, M.; Molohidis, A.; Psillos, D.
2010-01-01
This article examines secondary students' design of experiments after engagement in an innovative and inquiry-oriented module on heat transfer. The module consists of an integration of hands-on experiments, simulated experiments and microscopic model simulations, includes a structured series of guided investigative tasks and was implemented for a…
Casper, T. A.; Meyer, W. H.; Jackson, G. L.; ...
2010-12-08
We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less
The effect of data structures on INGRES performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creighton, J.R.
1987-01-01
Computer experiments were conducted to determine the effect of using Heap, ISAM, Hash and B-tree data structures for INGRES relations. Average times for retrieve, append and update were determined for searches by unique key and non-key data. The experiments were conducted on relations of approximately 1000 tuples of 332 byte width. Multiple operations were performed, where appropriate, to obtain average times. Simple models of the data structures are presented and shown to be consistent with experimental results. The models can be used to predict performance, and to select the appropriate data structure for various applications.
Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A
2017-01-01
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.
Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy
NASA Astrophysics Data System (ADS)
Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji
An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.
An Environmental Experience. Man: Steward of His Environment.
ERIC Educational Resources Information Center
New York State Education Dept., Albany.
Environmental awareness experiences described in this guide are designed to serve as models or suggestions for teachers conducting activities directed toward environmental improvement. "Man: Steward of His Environment" is the theme of the 14 experiences utilizing behavior profiles, audio-visual exhibits, area studies, service projects, mass…
Wave-Sediment Interaction in Muddy Environments: A Field Experiment
2007-01-01
in Years 1 and 2 (2007-2008) and a data analysis and modeling effort in Year 3 (2009). 2. “A System for Monitoring Wave-Sediment Interaction in...project was to conduct a pilot field experiment to test instrumentation and data analysis procedures for the major field experiment effort scheduled in...Chou et al., 1993; Foda et al., 1993). With the exception of liquefaction processes, these models assume a single, well- defined mud phase
Jayasuriya-Illesinghe, Vathsala; Nazeer, Ishra; Athauda, Lathika; Perera, Jennifer
2016-02-09
Medical education research in general, and those focusing on clinical settings in particular, have been a low priority in South Asia. This explorative study from 3 medical schools in Sri Lanka, a South Asian country, describes undergraduate medical students' experiences during their final year clinical training with the aim of understanding the teaching-learning experiences. Using qualitative methods we conducted an exploratory study. Twenty eight graduates from 3 medical schools participated in individual interviews. Interview recordings were transcribed verbatim and analyzed using qualitative content analysis method. Emergent themes reveled 2 types of teaching-learning experiences, role modeling, and purposive teaching. In role modelling, students were expected to observe teachers while they conduct their clinical work, however, this method failed to create positive learning experiences. The clinical teachers who predominantly used this method appeared to be 'figurative' role models and were not perceived as modelling professional behaviors. In contrast, purposeful teaching allowed dedicated time for teacher-student interactions and teachers who created these learning experiences were more likely to be seen as 'true' role models. Students' responses and reciprocations to these interactions were influenced by their perception of teachers' behaviors, attitudes, and the type of teaching-learning situations created for them. Making a distinction between role modeling and purposeful teaching is important for students in clinical training settings. Clinical teachers' awareness of their own manifest professional characterizes, attitudes, and behaviors, could help create better teaching-learning experiences. Moreover, broader systemic reforms are needed to address the prevailing culture of teaching by humiliation and subordination.
ERIC Educational Resources Information Center
Campbell, William James
2017-01-01
This dissertation describes a mathematics curriculum and instruction design experiment involving a series of embodied mathematical activities conducted in two Colorado elementary schools Activities designed for this experiment include multi-scalar number line models focused on supporting students' understanding of elementary mathematics. Realistic…
Modeling Hidden Circuits: An Authentic Research Experience in One Lab Period
ERIC Educational Resources Information Center
Moore, J. Christopher; Rubbo, Louis J.
2016-01-01
Two wires exit a black box that has three exposed light bulbs connected together in an unknown configuration. The task for students is to determine the circuit configuration without opening the box. In the activity described in this paper, we navigate students through the process of making models, developing and conducting experiments that can…
ERIC Educational Resources Information Center
Anderson, G. Ernest, Jr.
The mission of the simulation team of the Model Elementary Teacher Education Project, 1968-71, was to develop simulation tools and conduct appropriate studies of the anticipated operation of that project. The team focused on the experiences of individual students and on the resources necessary for these experiences to be reasonable. This report…
Posttest analysis of LOFT LOCE L2-3 using the ESA RELAP4 blowdown model. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, J.L.; Samuels, T.K.; Cooper, C.H.
A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.
Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work
NASA Technical Reports Server (NTRS)
Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.
1996-01-01
This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.
Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work
NASA Technical Reports Server (NTRS)
Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.
1996-01-01
This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.
Parallel Energy Transport in Detached DIII-D Divertor Plasmas
NASA Astrophysics Data System (ADS)
Leonard, A. W.; Lore, J. D.; Canik, J. M.; McLean, A. G.; Makowski, M. A.
2017-10-01
A comparison of experiment and modeling of detached divertor plasmas is examined in the context of parallel energy transport. Experimental estimates of power carried by electron thermal conduction versus plasma convection are experimentally inferred from power balance measurements of radiated power and target plate heat flux combined with Thomson scattering measurements of the Te profile along the divertor leg. Experimental profiles of Te exhibit relatively low gradients with Te < 15 eV from the X-point to the target implying transport dominated by convection. In contrast, fluid modeling with SOLPS produces sharp Te gradients for Te > 3 eV, characteristic of transport dominated by electron conduction through the bulk of the divertor. This discrepancy with experimental transport dominated by convection and modeling by conduction has significant implications for the radiative capacity of divertor plasmas and may explain at least part of the difficulty for fluid modeling to obtain the experimentally observed radiative losses. Comparisons are also made for helium plasmas where the match between experiment and modeling is much better. Work supported by the US DOE under DE-FC02-04ER54698.
DEM Calibration Approach: design of experiment
NASA Astrophysics Data System (ADS)
Boikov, A. V.; Savelev, R. V.; Payor, V. A.
2018-05-01
The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.
Modeling the Effect of Polychromatic Light in Quantitative Absorbance Spectroscopy
ERIC Educational Resources Information Center
Smith, Rachel; Cantrell, Kevin
2007-01-01
Laboratory experiment is conducted to give the students practical experience with the principles of electronic absorbance spectroscopy. This straightforward approach creates a powerful tool for exploring many of the aspects of quantitative absorbance spectroscopy.
Modal identification experiment
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
The Modal Identification Experiment (MIE) is a proposed on-orbit experiment being developed by NASA's Office of Aeronautics and Space Technology wherein a series of vibration measurements would be made on various configurations of Space Station Freedom (SSF) during its on-orbit assembly phase. The experiment is to be conducted in conjunction with station reboost operations and consists of measuring the dynamic responses of the spacecraft produced by station-based attitude control system and reboost thrusters, recording and transmitting the data, and processing the data on the ground to identify the natural frequencies, damping factors, and shapes of significant vibratory modes. The experiment would likely be a part of the Space Station on-orbit verification. Basic research objectives of MIE are to evaluate and improve methods for analytically modeling large space structures, to develop techniques for performing in-space modal testing, and to validate candidate techniques for in-space modal identification. From an engineering point of view, MIE will provide the first opportunity to obtain vibration data for the fully-assembled structure because SSF is too large and too flexible to be tested as a single unit on the ground. Such full-system data is essential for validating the analytical model of SSF which would be used in any engineering efforts associated with structural or control system changes that might be made to the station as missions evolve over time. Extensive analytical simulations of on-orbit tests, as well exploratory laboratory simulations using small-scale models, have been conducted in-house and under contract to develop a measurement plan and evaluate its potential performance. In particular, performance trade and parametric studies conducted as part of these simulations were used to resolve issues related to the number and location of the measurements, the type of excitation, data acquisition and data processing, effects of noise and nonlinearities, selection of target vibration modes, and the appropriate type of data analysis scheme. The purpose of this talk is to provide an executive-summary-type overview of the modal identification experiment which has emerged from the conceptual design studies conducted to-date. Emphasis throughout is on those aspects of the experiment which should be of interest to those attending the subject utilization conference. The presentation begins with some preparatory remarks to provide background and motivation for the experiment, describe the experiment in general terms, and cite the specific technical objectives. This is followed by a summary of the major results of the conceptual design studies conducted to define the baseline experiment. The baseline experiment which has resulted from the studies is then described.
NASA Astrophysics Data System (ADS)
Diamantopoulos, Efstathios; Durner, Wolfgang
2013-09-01
The description of soil water movement in the unsaturated zone requires the knowledge of the soil hydraulic properties, i.e. the water retention and the hydraulic conductivity function. A great amount of parameterizations for this can be found in the literature, the majority of which represent the complex pore space of soils as a bundle of cylindrical capillary tubes of various sizes. The assumption of zero contact angles between water and surface of the grains is also made. However, these assumptions limit the predictive capabilities of these models, leading often to errors in the prediction of water dynamics in soils. We present a pore-scale analysis for equilibrium liquid configuration in angular pores taking pore-scale hysteresis and the effect of contact angle into account. Furthermore, we propose a derivation of the hydraulic conductivity function, again as a function of the contact angle. An additional parameter was added to the conductivity function in order take into account effects which are not included in the analysis. Finally, we upscale our model from the pore to the sample scale by assuming a gamma statistical distribution of the pore sizes. Closed-form expressions are derived for both water retention and conductivity functions. The new model was tested against experimental data from multistep inflow/outflow (MSI/MSO) experiments for a sandy material. They were conducted using ethanol and water as the wetting liquid. Ethanol was assumed to form a zero contact angle with the soil grains. By keeping constant the parameters fitted from the ethanol MSO experiment we could predict the ethanol MSI dynamics based on our theory. Furthermore, by keeping constant the pore size distribution parameters from the ethanol experiments we could also predict very well the water dynamics for the MSO experiment. Lastly, we could predict the imbibition dynamics for the water MSI experiment by introducing a finite value of the contact angle. Most importantly, the predictions for both ethanol and water MSI/MSO dynamics were made by assuming a unique pore-size distribution.
Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution
NASA Astrophysics Data System (ADS)
Choudhury, Soud Farhan; Ladani, Leila
2016-07-01
As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Waiss, Richard D.
1988-01-01
A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.
Investigation of Mechanisms Associated with Nucleate Boiling Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Dhir, Vijay K.
1996-01-01
The focus of the present work is to experimentally study and to analytically/numerically model the mechanisms of growth of bubbles attached to, and sliding along, a heated surface. To control the location of the active cavities, the number, the spacing, and the nucleation superheat, artificial cavities will be formed on silicon wafers. In order to study the effect of magnitude of components of gravitational acceleration acting parallel to, and normal to the surface, experiments will be conducted on surfaces inclined at different angles including a downward facing surface. Information on the temperature field around bubbles, bubble shape and size, and bubble induced liquid velocities will be obtained through the use of holography, video/high speed photography and hydrogen bubble techniques, respectively. Analytical/numerical models will be developed to describe the heat transfer including that through the micro-macro layer underneath and around a bubble. In the micro layer model capillary and disjoining pressures will be included. Evolution of the interface along with induced liquid motion will be modelled. Subsequent to the world at normal gravity, experiments will be conducted in the KC-135 or the Lear jet especially to learn about bubble growth/detachment under low gravity conditions. Finally, an experiment will be defined to be conducted under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide microgravity data on bubble growth and detachment and will lead to a validation of the nucleate boiling heat transfer model developed from the preceding studies performed at normal and low gravity (KC-135 or Lear jet) conditions.
Contributions to workload of rotational optical transformations
NASA Technical Reports Server (NTRS)
Atkinson, R. P.; Harrington, T. L.
1985-01-01
An investigation of visuomotor adaptation to optical rotation and optical inversion was conducted. Experiment 1 examined the visuomotor adaptability of subjects to an optically rotating visual world with a univariate repeated measures design. Experiment 1A tested one major prediction of a model of adaptation put forth by Welch who predicted that the aversive drive state that triggers adaptation would be habituated to fairly rapidly. Experiment 2 was conducted to investigate the role of motor activity in adaptation to optical rotation. Specifically, this experiment contrasted the reafference hypothesis and the proprioceptive change hypothesis. Experiment 3 examined the role of cognition, error-corrective feedback, and proprioceptive and/or reafferent feedback in visuomotor adaptation to optical inversion. Implications for research and implications for practice were suggested for all experiments.
NASA Astrophysics Data System (ADS)
Wang, Da-Lin; Qi, Hong
Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N. D.; Aldridge, D. F.; Preston, L. A.; Ober, C.
2012-12-01
In support of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS), we have conducted two cross-borehole seismic experiments in the Climax Stock. The first experiment was conducted prior to the third shot in this multi-detonation program using two available boreholes and the shot hole, while the second experiment was conducted after the shot using four of the available boreholes. The first study focused on developing a well-characterized 2D pre-explosion Vp model including two VSPs and a seismic refraction survey, as well as quantifying baseline waveform similarity at reoccupied sites. This was accomplished by recording both "sparker" and accelerated weight drop sources on a hydrophone string and surface geophones. In total more than 18,500 unique source-receiver pairs were acquired during this testing. In the second experiment, we reacquired aproximately 8,800 source-receiver pairs and performed a cross-line survey allowing for a 3D post-explosion Vp model. The data acquired from the reoccupied sites was processed using cross-correlation methods and change detection methodologies, including comparison of the tomographic images. The survey design and subsequent processing provided an opportunity to investigate seismic wave propagation through damaged rock. We also performed full waveform forward modelling for a granitic body hosting a perched aquifer. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modeling the effects of high-G stress on pilots in a tracking task
NASA Technical Reports Server (NTRS)
Korn, J.; Kleinman, D. L.
1978-01-01
Air-to-air tracking experiments were conducted at the Aerospace Medical Research Laboratories using both fixed and moving base dynamic environment simulators. The obtained data, which includes longitudinal error of a simulated air-to-air tracking task as well as other auxiliary variables, was analyzed using an ensemble averaging method. In conjunction with these experiments, the optimal control model is applied to model a human operator under high-G stress.
Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study
NASA Astrophysics Data System (ADS)
Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.
2018-05-01
Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.
2014-07-03
ISS040-E-032827 (3 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2014-07-03
ISS040-E-032825 (3 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2014-07-03
ISS040-E-032820 (3 July 2014) --- NASA astronaut Steve Swanson, Expedition 40 commander, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
A Wavelet Model for Vocalic Speech Coarticulation
1994-10-01
control vowel’s signal as the mother wavelet. A practical experiment is conducted to evaluate the coarticulation channel using samples 01 real speech...transformation from a control speech state (input) to an effected speech state (output). Specifically, a vowel produced in isolation is transformed into an...the wavelet transform of the effected vowel’s signal, using the control vowel’s signal as the mother wavelet. A practical experiment is conducted to
Application of classical thermodynamics to the conductivity in non-polar media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gourdin-Bertin, S.; Chassagne, C.
Electrical conductivity in non-polar media is a subject which recently regained interest. If most of experiments and theoretical developments were done more than 50 years ago, new experiments and theories have been recently published. As the electrical conductivity describes, at low field, the equilibrium state of a system, it is natural to apply theories based on equilibrium thermodynamics. In this article, well-established classical thermodynamics and solvations models are applied to recently published data. This enables to get a new insight in intriguing phenomena, such as the linear dependence of the conductivity on the concentration of ionic surfactant and the evaluationmore » of conductivity for the mixture of two miscible fluids, such as alcohol and alcane, which have very different conductivities.« less
Electrical conductivity modeling in fractal non-saturated porous media
NASA Astrophysics Data System (ADS)
Wei, W.; Cai, J.; Hu, X.; Han, Q.
2016-12-01
The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.
NASA Astrophysics Data System (ADS)
Anders, R.; Chrysikopoulos, C. V.
2003-12-01
As the use of tertiary-treated municipal wastewater (recycled water) for replenishment purposes continues to increase, provisions are being established to protect ground-water resources by ensuring that adequate soil-retention time and distance requirements are met for pathogen removal. However, many of the factors controlling virus fate and transport (e.g. hydraulic conditions, ground-water chemistry, and sediment mineralogy) are interrelated and poorly understood. Therefore, conducting field-scale experiments using surrogates for human enteric viruses at an actual recharge basin that uses recycled water may represent the best approach for establishing adequate setback requirements. Three field-scale infiltration experiments were conducted at such a basin using bacterial viruses (bacteriophage) MS2 and PRD1 as surrogates for human viruses, bromide as a conservative tracer, and recycled water. The specific research site consists of a test basin constructed adjacent to a large recharge facility (spreading grounds) located in the Montebello Forebay of Los Angeles County, California. The soil beneath the test basin is predominantly medium to coarse, moderately sorted, grayish-brown sand. The first experiment was conducted over a 2-day period to determine the feasibility of conducting field-scale infiltration experiments using recycled water seeded with high concentrations of bacteriophage and bromide as tracers. Based on the results of the first experiment, a second experiment was completed when similar hydraulic conditions existed at the test basin. The third infiltration experiment was conducted to confirm the results obtained from the second experiment. Data were obtained for samples collected during the second and third field-scale infiltration experiments from the test basin itself and from depths of 0.3, 0.6, 1.0, 1.5, 3.0, and 7.6 m below the bottom of the test basin. These field-scale tracer experiments indicate bacteriophage are attenuated by removal and (or) inactivation during subsurface transport. To simulate the transport and fate of viruses during infiltration, a nonlinear least-squares regression program was used to fit a one-dimensional virus transport model to the experimental data. The model simulates virus transport in homogeneous, saturated porous media with first-order adsorption (or filtration) and inactivation. Furthermore, the model obtains a semi-analytical solution for the special case of a broad pulse and time-dependent source concentration using the principle of superposition. The fitted parameters include the clogging and declogging rate constants and the inactivation constants of suspended and adsorbed viruses. Preliminary results show a reasonable match of the first arrival of bacteriophage and bromide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passamai, V.; Saravia, L.
1997-05-01
Drying of red pepper under solar radiation was investigated, and a simple model related to water evaporation was developed. Drying experiments at constant laboratory conditions were undertaken where solar radiation was simulated by a 1,000 W lamp. In this first part of the work, water evaporation under radiation is studied and laboratory experiments are presented with two objectives: to verify Penman`s model of evaporation under radiation, and to validate the laboratory experiments. Modifying Penman`s model of evaporation by introducing two drying conductances as a function of water content, allows the development of a drying model under solar radiation. In themore » second part of this paper, the model is validated by applying it to red pepper open air solar drying experiments.« less
Temporal Expectation and Information Processing: A Model-Based Analysis
ERIC Educational Resources Information Center
Jepma, Marieke; Wagenmakers, Eric-Jan; Nieuwenhuis, Sander
2012-01-01
People are able to use temporal cues to anticipate the timing of an event, enabling them to process that event more efficiently. We conducted two experiments, using the fixed-foreperiod paradigm (Experiment 1) and the temporal-cueing paradigm (Experiment 2), to assess which components of information processing are speeded when subjects use such…
NASA Astrophysics Data System (ADS)
Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.
2012-04-01
In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).
Cassidy conducts BASS Flame Test
2013-04-09
ISS035-E-16429 (9 April 2013) --- Astronaut Chris Cassidy, Expedition 35 flight engineer, conducts a session of the Burning and Suppression of Solids (BASS) experiment located in the U.S. lab Destiny onboard the Earth-orbiting International Space Station. Cassidy over a period of several days, has conducted several "runs" of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity and will guide strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Adelman, Robert W; Castonguay, Louis G; Kraus, David R; Zack, Sanno E
2015-01-01
This paper describes the experience of clinicians in conducting research and collaborating with academic researchers. As part of clinical routine of a residential program for adolescent substance abusers, empirical data have been collected to assess client's needs before and after treatment, improve clinical practice, and identify barriers to change. Some of the challenges faced and the benefits learned in conducting these studies are presented. In addition to highlighting the convergence of research interests between clinicians and academicians, the conclusion offers general recommendations to foster these partnerships and solidify the scientific-practitioner model.
Liu, Gaisheng; Zheng, Chunmiao; Gorelick, Steven M.
2007-01-01
This paper evaluates the dual‐domain mass transfer (DDMT) model to represent transport processes when small‐scale high‐conductivity (K) preferential flow paths (PFPs) are present in a homogenous porous media matrix. The effects of PFPs upon solute transport were examined through detailed numerical experiments involving different realizations of PFP networks, PFP/matrix conductivity contrasts varying from 10:1 to 200:1, different magnitudes of effective conductivities, and a range of molecular diffusion coefficients. Results suggest that the DDMT model can reproduce both the near‐source peak and the downstream low‐concentration spreading observed in the embedded dendritic network when there are large conductivity contrasts between high‐K PFPs and the low‐K matrix. The accuracy of the DDMT model is also affected by the geometry of PFP networks and by the relative significance of the diffusion process in the network‐matrix system.
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations.
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2013-10-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios.
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Princevac, Marko; Venkatram, Akula
2012-08-01
Field and laboratory studies have been conducted to investigate the effect of surrounding buildings on the plume rise from low-level buoyant sources, such as distributed power generators. The field experiments were conducted in Palm Springs, California, USA in November 2010 and plume rise from a 9.3 m stack was measured. In addition to the field study, a laboratory study was conducted in a water channel to investigate the effects of surrounding buildings on plume rise under relatively high wind-speed conditions. Different building geometries and source conditions were tested. The experiments revealed that plume rise from low-level buoyant sources is highly affected by the complex flows induced by buildings stationed upstream and downstream of the source. The laboratory results were compared with predictions from a newly developed numerical plume-rise model. Using the flow measurements associated with each building configuration, the numerical model accurately predicted plume rise from low-level buoyant sources that are influenced by buildings. This numerical plume rise model can be used as a part of a computational fluid dynamics model.
Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.
2013-01-01
This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.
FEDS - An experiment with a microprocessor-based orbit determination system using TDRS data
NASA Technical Reports Server (NTRS)
Shank, D.; Pajerski, R.
1986-01-01
An experiment in microprocessor-based onboard orbit determination has been conducted at NASA's Goddard Space Flight Center. The experiment collected forward-link observation data in real time from a prototype transponder and performed orbit estimation on a typical low-earth scientific satellite. This paper discusses the hardware and organizational configurations of the experiment, the structure of the onboard software, the mathematical models, and the experiment results.
A Three-State Multi-Ion Kinetic Model for Conduction Properties of ClC-0 Chloride Channel
Wang, Xiao-Qing; Yu, Tao; Sang, Jian-Ping; Zou, Xian-Wu; Chen, Tsung-Yu; Bolser, Diana; Zou, Xiaoqin
2010-01-01
Abstract A three-state, multiion kinetic model was proposed to enable the conduction properties of the mammalian channel ClC-0 to be well characterized. Using this rate-theory based model, the current-voltage and conductance-concentration relations were obtained. The five parameters needed were determined by fitting the data of conduction experiments of the wild-type ClC-0 and its K519C mutant. The model was then tested against available calculation and simulation data, and the energy differences between distinct chloride-occupancy states computed agreed with an independent calculation on the binding free energies solved by using the Poisson-Boltzmann equation. The average ion number of conduction and the ion passing duration calculated closely resembled the values obtained from Brownian dynamics simulations. According to the model, the decrease of conductance caused by mutating residue K519 to C519 can be attributed to the effect of K519C mutation on translocation rate constants. Our study sets up a theoretical model for ion permeation and conductance in ClC-0. It provides a starting point for experimentalists to test the three-state model, and would help in understanding the conduction mechanism of ClC-0. PMID:20643064
Simulating Bioremediation of Chloroethenes in a Fractured Rock Aquifer.
NASA Astrophysics Data System (ADS)
Curtis, G. P.
2016-12-01
Reactive transport simulations are being conducted to synthesize the results of a field experiment on the enhanced bioremediation of chloroethenes in a heterogeneous fractured-rock aquifer near West Trenton, NJ. The aquifer consists of a sequence of dipping mudstone beds, with water-conducting bedding-plane fractures separated by low-permeability rock where transport is diffusion-limited. The enhanced bioremediation experiment was conducted by injecting emulsified vegetable oil as an electron donor (EOS™) and a microbial consortium (KB1™) that contained dehalococcoides ethenogenes into a fracture zone that had maximum trichloroethene (TCE) concentrations of 84µM. TCE was significantly biodegraded to dichloroethene, chloroethene and ethene or CO2 at the injection well and at a downgradient well. The results also show the concomitant reduction of Fe(III) and S(6) and the production of methane . The results were used to calibrate transport models for quantifying the dominant mass-removal mechanisms. A nonreactive transport model was developed to simulate advection, dispersion and matrix diffusion of bromide and deuterium tracers present in the injection solution. This calibrated model matched tracer concentrations at the injection well and a downgradient observation well and demonstrated that matrix diffusion was a dominant control on tracer transport. A reactive transport model was developed to extend the nonreactive transport model to simulate the microbially mediated sequential dechlorination reactions, reduction of Fe(III) and S(6), and methanogenesis. The reactive transport model was calibrated to concentrations of chloride, chloroethenes, pH, alkalinity, redox-sensitive species and major ions, to estimate key biogeochemical kinetic parameters. The simulation results generally match the diverse set of observations at the injection and observation wells throughout the three year experiment. In addition, the observations and model simulations indicate that a significant pool of TCE that was initially sorbed to either the fracture surfaces or in the matrix was degraded during the field experiment. The calibrated reactive transport model will be used to quantify the extent of chloroethene mass removal from a range of hypothetical aquifers.
On-orbit technology experiment facility definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.
1988-01-01
A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.
Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.
2015-01-01
We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.
Modeling and Simulation of Ceramic Arrays to Improve Ballaistic Performance
2013-09-09
targets with .30cal AP M2 projectile using SPH elements. -Model validation runs were conducted based on the DoP experiments described in reference...effect of material properties on DoP 15. SUBJECT TERMS .30cal AP M2 Projectile, 762x39 PS Projectile, SPH , Aluminum 5083, SiC, DoP Expeminets...and ceramic-faced aluminum targets with „30cal AP M2 projectile using SPH elements. □ Model validation runs were conducted based on the DoP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zocher, Marvin Anthony; Hammerberg, James Edward
The experiments of Juanicotena and Szarynski, namely T101, T102, and T105 are modeled for purposes of gaining a better understanding of the FLAG friction model frictmultiscale2. This exercise has been conducted as a first step toward model validation. It is shown that with inclusion of the friction model in the numerical analysis, the results of Juanicotena and Szarynski are predicted reasonably well. Without the friction model, simulation results do not match the experimental data nearly as well. Suggestions for follow-on work are included.
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire
NASA Astrophysics Data System (ADS)
Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi
2017-11-01
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.
Seasonal Parameterizations of the Tau-Omega Model Using the ComRAD Ground-Based SMAP Simulator
NASA Technical Reports Server (NTRS)
O'Neill, P.; Joseph, A.; Srivastava, P.; Cosh, M.; Lang, R.
2014-01-01
NASA's Soil Moisture Active Passive (SMAP) mission is scheduled for launch in November 2014. In the prelaunch time frame, the SMAP team has focused on improving retrieval algorithms for the various SMAP baseline data products. The SMAP passive-only soil moisture product depends on accurate parameterization of the tau-omega model to achieve the required accuracy in soil moisture retrieval. During a field experiment (APEX12) conducted in the summer of 2012 under dry conditions in Maryland, the Combined Radar/Radiometer (ComRAD) truck-based SMAP simulator collected active/passive microwave time series data at the SMAP incident angle of 40 degrees over corn and soybeans throughout the crop growth cycle. A similar experiment was conducted only over corn in 2002 under normal moist conditions. Data from these two experiments will be analyzed and compared to evaluate how changes in vegetation conditions throughout the growing season in both a drought and normal year can affect parameterizations in the tau-omega model for more accurate soil moisture retrieval.
Gd uptake experiments for preliminary set of functionalized adsorbents (with content model)
Clinton Noack
2015-03-16
These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.
Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.
1999-01-01
The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.
Acousto-thermometric recovery of the deep temperature profile using heat conduction equations
NASA Astrophysics Data System (ADS)
Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.
2012-09-01
In a model experiment using the acousto-thermographic method, deep temperature profiles varying in time are recovered. In the recovery algorithm, we used a priori information in the form of a requirement that the calculated temperature must satisfy the heat conduction equation. The problem is reduced to determining two parameters: the initial temperature and the temperature conductivity coefficient of the object under consideration (the plasticine band). During the experiment, there was independent inspection using electronic thermometers mounted inside the plasticine. The error in the temperature conductivity coefficient was about 17% and the error in initial temperature determination was less than one degree. Such recovery results allow application of this approach to solving a number of medical problems. It is experimentally proved that acoustic irregularities influence the acousto-thermometric results as well. It is shown that in the chosen scheme of experiment (which corresponds to measurements of human muscle tissue), this influence can be neglected.
Causal Superlearning Arising from Interactions Among Cues
Urushihara, Kouji; Miller, Ralph R.
2017-01-01
Superconditioning refers to supernormal responding to a conditioned stimulus (CS) that sometimes occurs in classical conditioning when the CS is paired with an unconditioned stimulus (US) in the presence of a conditioned inhibitor for that US. In the present research, we conducted four experiments to investigate causal superlearning, a phenomenon in human causal learning analogous to superconditioning. Experiment 1 demonstrated superlearning relative to appropriate control conditions. Experiment 2 showed that superlearning wanes when the number of cues used in an experiment is relatively large. Experiment 3 determined that even when relatively many cues are used, superlearning can be observed provided testing is conducted immediately after training, which is problematic for explanations by most contemporary learning theories. Experiment 4 found that ratings of a superlearning cue are weaker than those to the training excitor which gives basis to the conditioned inhibitor-like causal preventor used during causal superlearning training. This is inconsistent with the prediction by propositional reasoning accounts of causal cue competition, but is readily explained by associative learning models. In sum, the current experiments revealed some weaknesses of both the associative and propositional reasoning models with respect to causal superlearning. PMID:28383940
Physical Phenomena in Containerless Glass Processing
NASA Technical Reports Server (NTRS)
Subramanian, R. S.; Cole, R.
1985-01-01
An investigation into the various physical phenomena of importance in the space experiments is under way. Theoretical models of thermocapillary flow in drops, thermal migration of bubbles and droplets, the motion of bubbles inside drops, and the migration of bubbles in rotating liquid bodies are being developed. Experiments were conducted on the migration of bubbles and droplets to the axis of a rotating liquid body, and the rise of bubbles in molten glass. Also, experiments on thermocapillary motion in silicone oils as well as glass melts were performed. Experiments are currently being conducted on the migration of bubbles in a thermal gradient, and on their motion inside unconstrained liquid drops in a rotating liquid.
Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.
Mafé, Salvador; Pellicer, Julio
2005-02-01
We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumpaty, S.K.; Subramanian, K.; Darboe, A.
1997-12-31
Several experiments were conducted during this quarter to study the NO{sub x} reduction effectiveness of lignite coal, activated carbon and catalytic sites such as calcium sulfide and calcium carbide. While some of the coals/chemicals could be fed easily, some needed the mixing with silica gel to result in a uniform flow through the feeder. Several trial runs were performed to ensure proper feeding of the material before conducting the actual experiment to record NO{sub x} reduction. The experimental approach has been the same as presented in the past two quarterly reports with the coal reburning experiments. Partial reduction is achievedmore » through methane addition for SR2=0.95 conditions and then coal or the catalyst is introduced to see if there is further reduction. Presented below are the results of the experiments conducted during this quarter.« less
Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments
NASA Technical Reports Server (NTRS)
LeVan, M. Douglas; Finn, John E.
1997-01-01
The goal of this research was to develop a dynamic model which can predict the effect of humidity swings on activated carbon adsorption beds used to remove trace contaminants from the atmosphere in spacecraft. Specifically, the model was to be incorporated into a computer simulation to predict contaminant concentrations exiting the bed as a function of time after a humidity swing occurs. Predicted breakthrough curves were to be compared to experimentally measured results. In all respects the research was successful. The two major aspects of this research were the mathematical model and the experiments. Experiments were conducted by Mr. Appel using a fixed-bed apparatus at NASA-Ames Research Center during the summers of 1994 and 1995 and during the first 8 months of 1996. Mr. Appel conducted most of his mathematical modeling work at the University of Virginia. The simulation code was used to predict breakthrough curves using adsorption equilibrium correlations developed previously by M. D. LeVan's research group at the University of Virginia. These predictions were compared with the experimental measurements, and this led to improvements in both the simulation code and the apparatus.
A three-dimensional finite element model of near-field scanning microwave microscopy
NASA Astrophysics Data System (ADS)
Balusek, Curtis; Friedman, Barry; Luna, Darwin; Oetiker, Brian; Babajanyan, Arsen; Lee, Kiejin
2012-10-01
A three-dimensional finite element model of an experimental near-field scanning microwave microscope (NSMM) has been developed and compared to experiment on non conducting samples. The microwave reflection coefficient S11 is calculated as a function of frequency with no adjustable parameters. There is qualitative agreement with experiment in that the resonant frequency can show a sizable increase with sample dielectric constant; a result that is not obtained with a two-dimensional model. The most realistic model shows a semi-quantitative agreement with experiment. The effect of different sample thicknesses and varying tip sample distances is investigated numerically and shown to effect NSMM performance in a way consistent with experiment. Visualization of the electric field indicates that the field is primarily determined by the shape of the coupling hooks.
Tissue Modeling and Analyzing with Finite Element Method: A Review for Cranium Brain Imaging
Yue, Xianfang; Wang, Li; Wang, Ruonan
2013-01-01
For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications. PMID:23476630
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.; Steuber, G. D.; Yeh, F. C.
1993-01-01
Experiments were conducted to determine the effects of model orientation as well as buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. Turbine blades have internal coolant passage surfaces at the leading and trailing edges of the airfoil with surfaces at angles which are as large as +/- 50 to 60 degrees to the axis of rotation. Most of the previously-presented, multiple-passage, rotating heat transfer experiments have focused on radial passages aligned with the axis of rotation. Results from serpentine passages with orientations 0 and 45 degrees to the axis of rotation which simulate the coolant passages for the mid chord and trailing edge regions of the rotating airfoil are compared. The experiments were conducted with rotation in both directions to simulate serpentine coolant passages with the rearward flow of coolant or with the forward flow of coolant. The experiments were conducted for passages with smooth surfaces and with 45 degree trips adjacent to airfoil surfaces for the radial portion of the serpentine passages. At a typical flow condition, the heat transfer on the leading surfaces for flow outward in the first passage with smooth walls was twice as much for the model at 45 degrees compared to the model at 0 degrees. However, the differences for the other passages and with trips were less. In addition, the effects of buoyancy and Coriolis forces on heat transfer in the rotating passage were decreased with the model at 45 degrees, compared to the results at 0 degrees. The heat transfer in the turn regions and immediately downstream of the turns in the second passage with flow inward and in the third passage with flow outward was also a function of model orientation with differences as large as 40 to 50 percent occurring between the model orientations with forward flow and rearward flow of coolant.
Phonological Activation in Multi-Syllabic Sord Recognition
ERIC Educational Resources Information Center
Lee, Chang H.
2007-01-01
Three experiments were conducted to test the phonological recoding hypothesis in visual word recognition. Most studies on this issue have been conducted using mono-syllabic words, eventually constructing various models of phonological processing. Yet in many languages including English, the majority of words are multi-syllabic words. English…
Studies have been conducted specifically to investigate the hypothesis that N-nitrosodimethylamine (NDMA) can be produced by reactions involving monochloramine. Experiments were conducted using dimethylamine (DMA) as a model precursor. NDMA was formed from the reaction ...
Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B
2008-01-01
Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.
Staghorn: An Automated Large-Scale Distributed System Analysis Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabert, Kasimir; Burns, Ian; Elliott, Steven
2016-09-01
Conducting experiments on large-scale distributed computing systems is becoming significantly easier with the assistance of emulation. Researchers can now create a model of a distributed computing environment and then generate a virtual, laboratory copy of the entire system composed of potentially thousands of virtual machines, switches, and software. The use of real software, running at clock rate in full virtual machines, allows experiments to produce meaningful results without necessitating a full understanding of all model components. However, the ability to inspect and modify elements within these models is bound by the limitation that such modifications must compete with the model,more » either running in or alongside it. This inhibits entire classes of analyses from being conducted upon these models. We developed a mechanism to snapshot an entire emulation-based model as it is running. This allows us to \\freeze time" and subsequently fork execution, replay execution, modify arbitrary parts of the model, or deeply explore the model. This snapshot includes capturing packets in transit and other input/output state along with the running virtual machines. We were able to build this system in Linux using Open vSwitch and Kernel Virtual Machines on top of Sandia's emulation platform Firewheel. This primitive opens the door to numerous subsequent analyses on models, including state space exploration, debugging distributed systems, performance optimizations, improved training environments, and improved experiment repeatability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Liange; Rutqvist, Jonny; Xu, Hao
The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat.more » This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full-Scale Engineered Barrier Experiment Dismantling Project (FEBEX-DP). The data collected in the test after almost two decades of heating and two dismantling events provide a unique opportunity of validating coupled THMC models and enhancing our understanding of coupled THMC process in EBS bentonite. Section 5 presents a planned large in-situ test, “HotBENT,” at Grimsel Test Site, Switzerland. In this test, bentonite backfilled EBS in granite will be heated up to 200 °C, where the most relevant features of future emplacement conditions can be adequately reproduced. Lawrence Berkeley National Laboratory (LBNL) has very actively participated in the project since the very beginning and have conducted scoping calculations in FY17 to facilitate the final design of the experiment. Section 6 presents present LBNL’s activities for modeling gas migration in clay related to Task A of the international DECOVALEX-2019 project. This is an international collaborative activity in which DOE and LBNL gain access to unique laboratory and field data of gas migration that are studied with numerical modeling to better understand the processes, to improve numerical models that could eventually be applied in the performance assessment for nuclear waste disposal in clay host rocks and bentonite backfill. Section 7 summarizes the main research accomplishments for FY17 and proposes future work activities.« less
ATLOG Modeling of Aerial Cable from the November 2016 HERMES Electromagnetic Pulse Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
campione, salvatore; Warne, Larry K.; Yee, Benjamin Tong
2017-09-01
This report details the comparison of ATLOG modeling results for the response of a finite-length dissipative aerial conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG time-domain method based on transmission line theory. Good agreement is observed between simulations and experiments. Intentionally Left Blank
The Evaluation of HOMER as a Marine Corps Expeditionary Energy Predeployment Tool
2010-09-01
experiment was used to ensure the HOMER models were accurate. Following the calibration, the concept of expeditionary energy density as it pertains to power ...Brigade–Afghanistan xvi MEP Mobile Electric Power MPP Maximum Power Point MPPT Maximum Power Point Tracker NASA National Aeronautics and...process was used to analyze HOMER’s modeling capability: • Conduct photovoltaic (PV) experiment, • Develop a calibration process to match the HOMER
Emission models developed using small chamber data were combined with an Indoor Air Quality (IAQ) model to analyze the impact of volatile organic compound (VOC) emissions from latex paint on indoor environments. Test house experiments were conducted to verify the IAQ model's pred...
Kim, Hea-Won; Park, Taekyung; Quiring, Stephanie; Barrett, Diana
2018-01-01
A coalition model is often used to serve victims of human trafficking but little is known about whether the model is adequately meeting the needs of the victims. The purpose of this study was to examine anti-human trafficking collaboration model in terms of its impact and the collaborative experience, including challenges and lessons learned from the service providers' perspective. Mixed methods study was conducted to evaluate the impact of a citywide anti-trafficking coalition model from the providers' perspectives. Web-based survey was administered with service providers (n = 32) and focus groups were conducted with Core Group members (n = 10). Providers reported the coalition model has made important impacts in the community by increasing coordination among the key agencies, law enforcement, and service providers and improving quality of service provision. Providers identified the improved and expanded partnerships among coalition members as the key contributing factor to the success of the coalition model. Several key strategies were suggested to improve the coalition model: improved referral tracking, key partner and protocol development, and information sharing.
NASA Astrophysics Data System (ADS)
Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens
2017-11-01
This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
MODELING FINE SEDIMENT TRANSPORT IN ESTUARIES
A sediment transport model (SEDIMENT IIIA) was developed to assist in predicting the fate of chemical pollutants sorbed to cohesive sediments in rivers and estuaries. Laboratory experiments were conducted to upgrade an existing two-dimensional, depth-averaged, finite element, coh...
A review of active learning approaches to experimental design for uncovering biological networks
2017-01-01
Various types of biological knowledge describe networks of interactions among elementary entities. For example, transcriptional regulatory networks consist of interactions among proteins and genes. Current knowledge about the exact structure of such networks is highly incomplete, and laboratory experiments that manipulate the entities involved are conducted to test hypotheses about these networks. In recent years, various automated approaches to experiment selection have been proposed. Many of these approaches can be characterized as active machine learning algorithms. Active learning is an iterative process in which a model is learned from data, hypotheses are generated from the model to propose informative experiments, and the experiments yield new data that is used to update the model. This review describes the various models, experiment selection strategies, validation techniques, and successful applications described in the literature; highlights common themes and notable distinctions among methods; and identifies likely directions of future research and open problems in the area. PMID:28570593
Automatic Parameterization Strategy for Cardiac Electrophysiology Simulations
Costa, Caroline Mendonca; Hoetzl, Elena; Rocha, Bernardo Martins; Prassl, Anton J; Plank, Gernot
2014-01-01
Driven by recent advances in medical imaging, image segmentation and numerical techniques, computer models of ventricular electrophysiology account for increasingly finer levels of anatomical and biophysical detail. However, considering the large number of model parameters involved parameterization poses a major challenge. A minimum requirement in combined experimental and modeling studies is to achieve good agreement in activation and repolarization sequences between model and experiment or patient data. In this study, we propose basic techniques which aid in determining bidomain parameters to match activation sequences. An iterative parameterization algorithm is implemented which determines appropriate bulk conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy ratios. PMID:24729986
NASA Astrophysics Data System (ADS)
Machrafi, Hatim; Lebon, Georgy
2014-11-01
The purpose of this work is to study heat conduction in systems that are composed out of spherical micro-and nanoparticles dispersed in a bulk matrix. Special emphasis will be put on the dependence of the effective heat conductivity on various selected parameters as dimension and density of particles, interface interaction with the matrix. This is achieved by combining the effective medium approximation and extended irreversible thermodynamics, whose main feature is to elevate the heat flux vector to the status of independent variable. The model is illustrated by three examples: Silicium-Germanium, Silica-epoxy-resin and Copper-Silicium systems. Predictions of our model are in good agreement with other theoretical models, Monte-Carlo simulations and experimental data.
NASA Technical Reports Server (NTRS)
Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)
2001-01-01
The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.
2003-01-01
A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.
Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulmer, B.M.
This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less
Teaching through Modeling: Four Schools' Experiences in Sustainability Education
ERIC Educational Resources Information Center
Higgs, Amy Lyons; McMillan, Victoria M.
2006-01-01
In this article, the authors examine how 4 innovative secondary schools model sustainable practices to their students. During school visits, the authors conducted interviews, observed daily life, and reviewed school documents. They found that modeling is a valuable approach to sustainability education, promoting both learning about sustainability…
Some advances in experimentation supporting development of viscoplastic constitutive models
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Robinson, D. N.
1985-01-01
The development of a biaxial extensometer capable of measuring axial, torsion, and diametral strains to near-microstrain resolution at elevated temperatures is discussed. An instrument with this capability was needed to provide experimental support to the development of viscoplastic constitutive models. The advantages gained when torsional loading is used to investigate inelastic material response at elevated temperatures are highlighted. The development of the biaxial extensometer was conducted in two stages. The first involved a series of bench calibration experiments performed at room temperature. The second stage involved a series of in-place calibration experiments conducted at room and elevated temperature. A review of the calibration data indicated that all performance requirements regarding resolution, range, stability, and crosstalk had been met by the subject instrument over the temperature range of interest, 21 C to 651 C. The scope of the in-place calibration experiments was expanded to investigate the feasibility of generating stress relaxation data under torsional loading.
OZARKS ISOPRENE EXPERIMENT (OZIE): MEASUREMENTS AND MODELING OF THE ISOPRENE VOLCANO
The Ozarks Isoprene Experiment (OZIE) was conducted in July 1998 in Missouri, Illinois, Indiana, and Oklahoma. OZIE was designed to investigate the presumed strong isoprene emission rates from the Missouri Ozarks, where there is a high density of oak trees that are efficient isop...
OZARK ISOPRENE EXPERIMENT ( OZIE ): MEASUREMENTS AND MODELING OF THE "ISOPRENE VOLCANO"
The Ozarks Isoprene Experiment (OZIE) was conducted in July 1998 in Missouri, Illinois, Indiana, and Oklahoma. OZIE was designed to investigate the presumed strong isoprene emission rates from the Missouri Ozarks, where there is a high density of oak trees that are efficient isop...
ATMOSPHERIC TRACER EXPERIMENTS IN A DEEP NARROW VALLEY
A set of three atmospheric tracer experiments was conducted in the Brush Creek Valley of western Colorado in the summer of 1982 as part of the U.S. Environmental Protection Agency Green River Ambient Model Assessment (GRAMA) program in conjunction with the U.S. Department of Ener...
FULL SCALE PLUME STUDY: A SUMMARY OF DATA COLLECTED AND PHENOMENA OBSERVED
The paper briefly describes the field tracer studies that were conducted in support of EPA's Complex Terrain Model Development project. A more detailed description is given of the last field study, conducted from the Tracy Power Plant near Reno, Nevada. During 14 experiment perio...
Delta Pi Epsilon National Research Conference Proceedings (Columbus, Ohio, November 15-17, 1990).
ERIC Educational Resources Information Center
Delta Pi Epsilon Society, Little Rock, AR.
These conference proceedings consist of 25 presentations: "Conducting Experimental Research" (Miller) "Conducting Research Overseas: Some Thoughts Based upon Experiences in the United Kingdom" (Scott); "Applying Research to the Classroom" (Wayne); "DACUM: A Competency-Based Curriculum Tool" (Norton); "A Doctoral Research Model" (Bronner); "The…
Characterization of beryllium deformation using in-situ x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnuson, Eric Alan; Brown, Donald William; Clausen, Bjorn
2015-08-24
Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advancedmore » Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.« less
A new statistical dispersion model for tracer tests and contaminant spread in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ates, H.; Kasap, E.
Dispersion of solutes moving in permeable media is an essential control to describe fluid flow in permeable media. Dispersion can be thought of as a spreading of a solute caused by the presence of microscopic inhomogeneities. An accurate model for dispersion is needed for accurate estimation of oil recovery efficiencies and clean up costs of subsurface contaminants. Current approaches utilizing the fickian assumption fall short in describing the real physics of spreading during a solute transport process. Numerous field investigations have shown that dispersivities measured in the field are much larger than those measured in the lab for the samemore » type of porous material. Moreover, field measured dispersivities have been shown to be scale dependent, that is, a tracer test conducted over a longer travel path will yield a larger dispersivity value than a tracer test conducted in the same geologic formation over a shorter travel path. Numerous approaches to address this problem have been developed yet none attempted to go beyond the Fickian dispersion assumption. In this study, a convective dispersivity is introduced. New model assumes that dispersion is dimensionless and mainly determined by pore size distribution. The new model results in a spread that increases linearly with time contrary to conventional model, which predicts a mixing zone length that increases with square root of time. Therefore, new model explains the field test results that indicate increasing dispersivity with distance. The model validations are in perfect agreement with experimental results, which include; Ganapathy et al.`s slug experiment on Antolini sandstone, Handy`s radioactive tracer experiment on Alhambra sandstone, and CT experiment conducted at BDM-OK/NIPER facilities on Tallant sandstone.« less
Numerical modeling of NI-monitored 3D infiltration experiment
NASA Astrophysics Data System (ADS)
Dohnal, Michal; Dusek, Jaromir; Snehota, Michal; Sacha, Jan; Vogel, Tomas; Votrubova, Jana
2014-05-01
It is well known that the temporal changes of saturated hydraulic conductivity caused by the occurrence of air phase discontinuities often play an important role in water flow and solute transport experiments. In the present study, a series of infiltration-outflow experiments was conducted to test several working hypotheses about the mechanism of air phase trapping. The experiments were performed on a porous sample with artificial internal structure, using three sandy materials with contrasting hydraulic properties. The sample was axially symmetric with continuous preferential pathways and separate porous matrix blocks (the sample was 3.4 cm in diameter and 8.8 cm high). The infiltration experiments were monitored by neutron imaging (NI). The NI data were then used to quantify the water content of the selected sample regions. The flow regime in the sample was studied using a three-dimensional model based on Richards' equation. The equation was solved by the finite element method. The results of the numerical simulations of the infiltration experiments were compared with the measured outflow rates and with the spatial distribution of water content determined by NI. The research was supported by the Czech Science Foundation Project No. 14-03691S.
OGUMI—A new mobile application to conduct common-pool resource experiments in continuous time
Nissen, Dennis
2017-01-01
OGUMI is an Android-based open source mobile application for conducting Common-Pool Resource Experiments, Choice Experiments, and Questionnaires in the field, in the laboratory, and online. A main feature of OGUMI is its capacity to capture real-time changes in human behaviour in response to a dynamically varying resource. OGUMI is simple (for example, likewise other existing software, it does not require expertise in behavioural game theory), stable, and extremely flexible with respect to the user-resource model running in the background. Here we present the motivation for the development of OGUMI and we discuss its main features with an example application. PMID:28582457
OGUMI-A new mobile application to conduct common-pool resource experiments in continuous time.
Brandt, Gunnar; Kulesz, Micaela M; Nissen, Dennis; Merico, Agostino
2017-01-01
OGUMI is an Android-based open source mobile application for conducting Common-Pool Resource Experiments, Choice Experiments, and Questionnaires in the field, in the laboratory, and online. A main feature of OGUMI is its capacity to capture real-time changes in human behaviour in response to a dynamically varying resource. OGUMI is simple (for example, likewise other existing software, it does not require expertise in behavioural game theory), stable, and extremely flexible with respect to the user-resource model running in the background. Here we present the motivation for the development of OGUMI and we discuss its main features with an example application.
Study and Design of High G Augmentation Devices for Flight Simulators
1981-12-01
experiments . Non-invasive blood pressure moni- toring devices ave discussed in a following section (4.2.4). itI may be useful to conduct these experiments ...have experience in pressure suits and space suits. They also built a collapsible LBNP for Cooper and Ord (51) for their LBNP experiments . USE OF LBNP...the target illumination approaches the 42 mL level used in his dial reading experiments . Consequently, the model requires illumination level as an
Real-time remote scientific model validation
NASA Technical Reports Server (NTRS)
Frainier, Richard; Groleau, Nicolas
1994-01-01
This paper describes flight results from the use of a CLIPS-based validation facility to compare analyzed data from a space life sciences (SLS) experiment to an investigator's preflight model. The comparison, performed in real-time, either confirms or refutes the model and its predictions. This result then becomes the basis for continuing or modifying the investigator's experiment protocol. Typically, neither the astronaut crew in Spacelab nor the ground-based investigator team are able to react to their experiment data in real time. This facility, part of a larger science advisor system called Principal Investigator in a Box, was flown on the space shuttle in October, 1993. The software system aided the conduct of a human vestibular physiology experiment and was able to outperform humans in the tasks of data integrity assurance, data analysis, and scientific model validation. Of twelve preflight hypotheses associated with investigator's model, seven were confirmed and five were rejected or compromised.
Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator
NASA Astrophysics Data System (ADS)
Hutsel, B. T.; Corcoran, P. A.; Cuneo, M. E.; Gomez, M. R.; Hess, M. H.; Hinshelwood, D. D.; Jennings, C. A.; Laity, G. R.; Lamppa, D. C.; McBride, R. D.; Moore, J. K.; Myers, A.; Rose, D. V.; Slutz, S. A.; Stygar, W. A.; Waisman, E. M.; Welch, D. R.; Whitney, B. A.
2018-03-01
We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.
Prediction of silicon oxynitride plasma etching using a generalized regression neural network
NASA Astrophysics Data System (ADS)
Kim, Byungwhan; Lee, Byung Teak
2005-08-01
A prediction model of silicon oxynitride (SiON) etching was constructed using a neural network. Model prediction performance was improved by means of genetic algorithm. The etching was conducted in a C2F6 inductively coupled plasma. A 24 full factorial experiment was employed to systematically characterize parameter effects on SiON etching. The process parameters include radio frequency source power, bias power, pressure, and C2F6 flow rate. To test the appropriateness of the trained model, additional 16 experiments were conducted. For comparison, four types of statistical regression models were built. Compared to the best regression model, the optimized neural network model demonstrated an improvement of about 52%. The optimized model was used to infer etch mechanisms as a function of parameters. The pressure effect was noticeably large only as relatively large ion bombardment was maintained in the process chamber. Ion-bombardment-activated polymer deposition played the most significant role in interpreting the complex effect of bias power or C2F6 flow rate. Moreover, [CF2] was expected to be the predominant precursor to polymer deposition.
A shared-world conceptual model for integrating space station life sciences telescience operations
NASA Technical Reports Server (NTRS)
Johnson, Vicki; Bosley, John
1988-01-01
Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.
NASA Astrophysics Data System (ADS)
Nagatomo, Hideo; Matsuo, Kazuki; Nicolai, Pilippe; Asahina, Takashi; Fujioka, Shinsuke
2017-10-01
In laser plasma physics, application of an external magnetic field is an attractive method for various research of high energy density physics including fast ignition. Meanwhile, in the high intense laser plasma the behavior of hot electron cannot be ignored. In the radiation hydrodynamic simulation, a classical electron conduction model, Spitzer-Harm model has been used in general. However the model has its limit, and modification of the model is necessary if it is used beyond the application limit. Modified SNB model, which considering the influence of magnetic field is applied to 2-D radiation magnetohydrodynamic code PINOCO. Some experiments related the non-local model are carried out at GXII, Osaka University. In this presentation, these experimental results are shown briefly. And comparison between simulation results considering the non-local electron heat conduction mode are discussed. This study was supported JSPS KAKENHI Grant No. 17K05728.
Oncology Modeling for Fun and Profit! Key Steps for Busy Analysts in Health Technology Assessment.
Beca, Jaclyn; Husereau, Don; Chan, Kelvin K W; Hawkins, Neil; Hoch, Jeffrey S
2018-01-01
In evaluating new oncology medicines, two common modeling approaches are state transition (e.g., Markov and semi-Markov) and partitioned survival. Partitioned survival models have become more prominent in oncology health technology assessment processes in recent years. Our experience in conducting and evaluating models for economic evaluation has highlighted many important and practical pitfalls. As there is little guidance available on best practices for those who wish to conduct them, we provide guidance in the form of 'Key steps for busy analysts,' who may have very little time and require highly favorable results. Our guidance highlights the continued need for rigorous conduct and transparent reporting of economic evaluations regardless of the modeling approach taken, and the importance of modeling that better reflects reality, which includes better approaches to considering plausibility, estimating relative treatment effects, dealing with post-progression effects, and appropriate characterization of the uncertainty from modeling itself.
Simple Climate Model Evaluation Using Impulse Response Tests
NASA Astrophysics Data System (ADS)
Schwarber, A.; Hartin, C.; Smith, S. J.
2017-12-01
Simple climate models (SCMs) are central tools used to incorporate climate responses into human-Earth system modeling. SCMs are computationally inexpensive, making them an ideal tool for a variety of analyses, including consideration of uncertainty. Despite their wide use, many SCMs lack rigorous testing of their fundamental responses to perturbations. Here, following recommendations of a recent National Academy of Sciences report, we compare several SCMs (Hector-deoclim, MAGICC 5.3, MAGICC 6.0, and the IPCC AR5 impulse response function) to diagnose model behavior and understand the fundamental system responses within each model. We conduct stylized perturbations (emissions and forcing/concentration) of three different chemical species: CO2, CH4, and BC. We find that all 4 models respond similarly in terms of overall shape, however, there are important differences in the timing and magnitude of the responses. For example, the response to a BC pulse differs over the first 20 years after the pulse among the models, a finding that is due to differences in model structure. Such perturbation experiments are difficult to conduct in complex models due to internal model noise, making a direct comparison with simple models challenging. We can, however, compare the simplified model response from a 4xCO2 step experiment to the same stylized experiment carried out by CMIP5 models, thereby testing the ability of SCMs to emulate complex model results. This work allows an assessment of how well current understanding of Earth system responses are incorporated into multi-model frameworks by way of simple climate models.
Cool in the kitchen: Radiation, conduction, and the Newton ``hot block'' experiment
NASA Astrophysics Data System (ADS)
Silverman, Mark P.; Silverman, Christopher R.
2000-02-01
Despite frequent reference to Newton's law of cooling in physics and math books, the paper in which Newton reported this law is quite obscure and rarely cited. We have managed to acquire a copy of this paper and discuss the interesting experiment that Newton did in his kitchen. Surprisingly, the paper contains no procedural details or data of any experiments measuring the rate at which a hot object cools. We have performed our own kitchen experiments to investigate the cooling of (a) the burner of an electric range and (b) a block of Styrofoam. Newton's law provides a poor model for both systems, whose th! ! ermal energy loss we can much better understand by examining closely the effects of radiation and conduction.
Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Rhode, Matthew N.; DeLoach, Richard
2005-01-01
A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.
Psychometric Properties of Work-Related Behavior and Experience Patterns (AVEM) Scale
ERIC Educational Resources Information Center
Gencer, R. Timucin; Boyacioglu, Hayal; Kiremitci, Olcay; Dogan, Birol
2010-01-01
"Work-Related Behaviour and Experience Patterns" (AVEM) has been developed with the intention of determining the occupation related behaviour and lifestyle models of professionals. This study has been conducted to test the validity and reliability of MEDYAM, the abbreviated Turkish equivalent of AVEM. 373 teachers from 10 different…
An Agitation Experiment with Multiple Aspects
ERIC Educational Resources Information Center
Spencer, Jordan L.
2006-01-01
This paper describes a multifaceted agitation and mixing experiment. The relatively inexpensive apparatus includes a variable-speed stirrer motor, two polycarbonate tanks, and an instrumented torque table. Students measure torque as a function of stirrer speed, and use conductive tracer data to estimate two parameters of a flow model. The effect…
Yellow sticky, PHP software for an electronic brainstorming experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dornburg, Courtney C.; Stevens, Susan Marie; Davidson, George S.
A web-based brainstorm was conducted in the summer of 2007 within the Sandia Restricted Network. This brainstorming experiment was modeled around the 'yellow sticky' brainstorms that are used in many face-to-face meetings at Sandia National Laboratories. This document discusses the implementation and makes suggestions for future implementations.
Remote sensing from the desktop up, a students's personal stairway to space (Invited)
NASA Astrophysics Data System (ADS)
Church, W.
2013-12-01
Doing science with real-time quantitative experiments is becoming more and more affordable and accessible. Because lab equipment is more affordable and accessible, many universities are using lab class models wherein students conduct their experiments in informal settings such as the dorm, outside, or other places throughout the campus. Students are doing real-time measurements homework outside of class. By liberating experiments from facilities, the hope is to give students more experimental science opportunities. The challenge is support. In lab settings, instructors and peers can help students if they have trouble with the steps of assembling their experimental set-up, configuring the data acquisition software, conducting the real-time measurement and doing the analysis. Students working on their own in a dorm do not benefit from this support. Furthermore, when students are given the open ended experimental task of designing their own measurement system, they may need more guidance. In this poster presentation, I will articulate a triangle model to support students through the task of finding the necessary resources to design and build a mission to space. In the triangle model, students have access to base layer concept and skill resources to help them build their experiment. They then have access to middle layer mini-experiments to help them configure and test their experimental set-up. Finally, they have a motivating real-time experiment. As an example of this type of resource used in practice, I will have a balloon science remote sensing project as a stand-in for a balloon mission to 100,000 feet. I will use an Arduino based DAQ system and XBee modules for wireless data transmission to a LabVIEW front-panel. I will attach the DAQ to a tethered balloon to conduct a real-time microclimate experiment in the Moscone Center. Expanded microclimate studies can be the capstone project or can be a stepping-stone to space wherein students prepare a sensor package for a weather balloon launch to 100,000 feet.
Aerogel Algorithm for Shrapnel Penetration Experiments
NASA Astrophysics Data System (ADS)
Tokheim, R. E.; Erlich, D. C.; Curran, D. R.; Tobin, M.; Eder, D.
2004-07-01
To aid in assessing shrapnel produced by laser-irradiated targets, we have performed shrapnel collection "BB gun" experiments in aerogel and have developed a simple analytical model for deceleration of the shrapnel particles in the aerogel. The model is similar in approach to that of Anderson and Ahrens (J. Geophys. Res., 99 El, 2063-2071, Jan. 1994) and accounts for drag, aerogel compaction heating, and the velocity threshold for shrapnel ablation due to conductive heating. Model predictions are correlated with the BB gun results at impact velocities up to a few hundred m/s and with NASA data for impact velocities up to 6 km/s. The model shows promising agreement with the data and will be used to plan and interpret future experiments.
Flow-induced Flutter of Heart Valves: Experiments with Canonical Models
NASA Astrophysics Data System (ADS)
Dou, Zhongwang; Seo, Jung-Hee; Mittal, Rajat
2017-11-01
For the better understanding of hemodynamics associated with valvular function in health and disease, the flow-induced flutter of heart valve leaflets is studied using benchtop experiments with canonical valve models. A simple experimental model with flexible leaflets is constructed and a pulsatile pump drives the flow through the leaflets. We quantify the leaflet dynamics using digital image analysis and also characterize the dynamics of the flow around the leaflets using particle imaging velocimetry. Experiments are conducted over a wide range of flow and leaflet parameters and data curated for use as a benchmark for validation of computational fluid-structure interaction models. The authors would like to acknowledge Supported from NSF Grants IIS-1344772, CBET-1511200 and NSF XSEDE Grant TG-CTS100002.
Lievens, Filip; Sanchez, Juan I
2007-05-01
A quasi-experiment was conducted to investigate the effects of frame-of-reference training on the quality of competency modeling ratings made by consultants. Human resources consultants from a large consulting firm were randomly assigned to either a training or a control condition. The discriminant validity, interrater reliability, and accuracy of the competency ratings were significantly higher in the training group than in the control group. Further, the discriminant validity and interrater reliability of competency inferences were highest among an additional group of trained consultants who also had competency modeling experience. Together, these results suggest that procedural interventions such as rater training can significantly enhance the quality of competency modeling. 2007 APA, all rights reserved
Piloting Changes to Changing Aircraft Dynamics: What Do Pilots Need to Know?
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2011-01-01
An experiment was conducted to quantify the effects of changing dynamics on a subject s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. The data will be used to identify primary aircraft dynamics variables that influence changes in pilot s response and produce a simplified pilot model that incorporates this relationship. Each run incorporated a different set of second-order aircraft dynamics representing short period transfer function pitch attitude response: damping ratio, frequency, gain, zero location, and time delay. The subject s ability to conduct the tracking task was the greatest source of root mean square error tracking variability. As for the aircraft dynamics, the factors that affected the subjects ability to conduct the tracking were the time delay, frequency, and zero location. In addition to creating a simplified pilot model, the results of the experiment can be utilized in an advisory capacity. A situation awareness/prediction aid based on the pilot behavior and aircraft dynamics may help tailor pilot s inputs more quickly so that PIO or an upset condition can be avoided.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo
2017-06-01
We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.
NASA Astrophysics Data System (ADS)
Werisch, Stefan; Müller, Marius
2017-04-01
Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are possible with this approach. Furthermore, the apparatus allows a convenient quantification of temperature effects on both hydraulic properties and first results demonstrate impressively the important role of temperature on hydraulic conductivity, which is notoriously underestimated.
NASA Astrophysics Data System (ADS)
Dünser, Simon; Meyer, Daniel W.
2016-06-01
In most groundwater aquifers, dispersion of tracers is dominated by flow-field inhomogeneities resulting from the underlying heterogeneous conductivity or transmissivity field. This effect is referred to as macrodispersion. Since in practice, besides a few point measurements the complete conductivity field is virtually never available, a probabilistic treatment is needed. To quantify the uncertainty in tracer concentrations from a given geostatistical model for the conductivity, Monte Carlo (MC) simulation is typically used. To avoid the excessive computational costs of MC, the polar Markovian velocity process (PMVP) model was recently introduced delivering predictions at about three orders of magnitude smaller computing times. In artificial test cases, the PMVP model has provided good results in comparison with MC. In this study, we further validate the model in a more challenging and realistic setup. The setup considered is derived from the well-known benchmark macrodispersion experiment (MADE), which is highly heterogeneous and non-stationary with a large number of unevenly scattered conductivity measurements. Validations were done against reference MC and good overall agreement was found. Moreover, simulations of a simplified setup with a single measurement were conducted in order to reassess the model's most fundamental assumptions and to provide guidance for model improvements.
In-flight simulation investigation of rotorcraft pitch-roll cross coupling
NASA Technical Reports Server (NTRS)
Watson, Douglas C.; Hindson, William S.
1988-01-01
An in-flight simulation experiment investigating the handling qualities effects of the pitch-roll cross-coupling characteristic of single-main-rotor helicopters is described. The experiment was conducted using the NASA/Army CH-47B variable stability helicopter with an explicit-model-following control system. The research is an extension of an earlier ground-based investigation conducted on the NASA Ames Research Center's Vertical Motion Simulator. The model developed for the experiment is for an unaugmented helicopter with cross-coupling implemented using physical rotor parameters. The details of converting the model from the simulation to use in flight are described. A frequency-domain comparison of the model and actual aircraft responses showing the fidelity of the in-flight simulation is described. The evaluation task was representative of nap-of-the-Earth maneuvering flight. The results indicate that task demands are important in determining allowable levels of coupling. In addition, on-axis damping characteristics influence the frequency-dependent characteristics of coupling and affect the handling qualities. Pilot technique, in terms of learned control crossfeeds, can improve performance and lower workload for particular types of coupling. The results obtained in flight corroborated the simulation results.
Emulator-assisted data assimilation in complex models
NASA Astrophysics Data System (ADS)
Margvelashvili, Nugzar Yu; Herzfeld, Mike; Rizwi, Farhan; Mongin, Mathieu; Baird, Mark E.; Jones, Emlyn; Schaffelke, Britta; King, Edward; Schroeder, Thomas
2016-09-01
Emulators are surrogates of complex models that run orders of magnitude faster than the original model. The utility of emulators for the data assimilation into ocean models is still not well understood. High complexity of ocean models translates into high uncertainty of the corresponding emulators which may undermine the quality of the assimilation schemes based on such emulators. Numerical experiments with a chaotic Lorenz-95 model are conducted to illustrate this point and suggest a strategy to alleviate this problem through the localization of the emulation and data assimilation procedures. Insights gained through these experiments are used to design and implement data assimilation scenario for a 3D fine-resolution sediment transport model of the Great Barrier Reef (GBR), Australia.
Modeling hole transport in wet and dry DNA.
Pavanello, Michele; Adamowicz, Ludwik; Volobuyev, Maksym; Mennucci, Benedetta
2010-04-08
We present a DFT/classical molecular dynamics model of DNA charge conductivity. The model involves a temperature-driven, hole-hopping charge transfer and includes the time-dependent nonequilibrium interaction of DNA with its molecular environment. We validate our method against a variety of hole transport experiments. The method predicts a significant hole-transfer slowdown of approximately 35% from dry to wet DNA with and without electric field bias. In addition, in agreement with experiments, it also predicts an insulating behavior of (GC)(N) oligomers for 40 < N < 1000, depending on the experimental setup.
Testing and Analysis of Sensor Ports
NASA Technical Reports Server (NTRS)
Zhang, M.; Frendi, A.; Thompson, W.; Casiano, M. J.
2016-01-01
This Technical Publication summarizes the work focused on the testing and analysis of sensor ports. The tasks under this contract were divided into three areas: (1) Development of an Analytical Model, (2) Conducting a Set of Experiments, and (3) Obtaining Computational Solutions. Results from the experiment using both short and long sensor ports were obtained using harmonic, random, and frequency sweep plane acoustic waves. An amplification factor of the pressure signal between the port inlet and the back of the port is obtained and compared to models. Comparisons of model and experimental results showed very good agreement.
Evaluation of the flame propagation within an SI engine using flame imaging and LES
NASA Astrophysics Data System (ADS)
He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes
2017-11-01
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.
Modelling the EDLC-based Power Supply Module for a Maneuvering System of a Nanosatellite
NASA Astrophysics Data System (ADS)
Kumarin, A. A.; Kudryavtsev, I. A.
2018-01-01
The development of the model of the power supply module of a maneuvering system of a nanosatellite is described. The module is based on an EDLC battery as an energy buffer. The EDLC choice is described. Experiments are conducted to provide data for model. Simulation of the power supply module is made for charging and discharging of the battery processes. The difference between simulation and experiment does not exceed 0.5% for charging and 10% for discharging. The developed model can be used in early design and to adjust charger and load parameters. The model can be expanded to represent the entire power system.
Reduction of Air Pollution Levels Downwind of a Road with an Upwind Noise Barrier
We propose a dispersion model to characterize the impact of an upwind solid noise barrier next to a highway on air pollution concentrations downwind of the road. The model is based on data from wind tunnel experiments conducted by Heist et al. (2009). The model assumes that the...
A mass transfer model of ethanol emission from thin layers of corn silage
USDA-ARS?s Scientific Manuscript database
A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...
Video Self-Modeling and Improving Oral Reading Fluency
ERIC Educational Resources Information Center
Chandler, Wanda Gail
2012-01-01
Self-modeling can take different forms but is described as a process where one observes one's own successful behavior and learns from it without dependence on any particular medium. In this study, two separate experiments were conducted to evaluate a video self-modeling (VSM) feedforward intervention. VSM feedforward (independent variable, IV),…
Applying Bandura's Model to Identifying Sources of Self-Efficacy of Teaching Artists
ERIC Educational Resources Information Center
Snyder, Scott; Fisk, Timarie
2016-01-01
Teaching artists have significant roles within K-12 schools. Although some research has been conducted to describe the characteristics, training, and employment experiences of teaching artists, no study has been conducted concerning the self-efficacy that such individuals have regarding teaching. The purpose of the study was to investigate the…
Special meteorological and atmospheric tracer studies were conducted during a three-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The experiments were conducted by the U.S. Department of Energy's Pacific Northwest Laboratory (PNL) as p...
Collective thermal transport in pure and alloy semiconductors.
Torres, Pol; Mohammed, Amr; Torelló, Àlvar; Bafaluy, Javier; Camacho, Juan; Cartoixà, Xavier; Shakouri, Ali; Alvarez, F Xavier
2018-03-07
Conventional models for predicting thermal conductivity of alloys usually assume a pure kinetic regime as alloy scattering dominates normal processes. However, some discrepancies between these models and experiments at very small alloy concentrations have been reported. In this work, we use the full first principles kinetic collective model (KCM) to calculate the thermal conductivity of Si 1-x Ge x and In x Ga 1-x As alloys. The calculated thermal conductivities match well with the experimental data for all alloy concentrations. The model shows that the collective contribution must be taken into account at very low impurity concentrations. For higher concentrations, the collective contribution is suppressed, but normal collisions have the effect of significantly reducing the kinetic contribution. The study thus shows the importance of the proper inclusion of normal processes even for alloys for accurate modeling of thermal transport. Furthermore, the phonon spectral distribution of the thermal conductivity is studied in the framework of KCM, providing insights to interpret the superdiffusive regime introduced in the truncated Lévy flight framework.
The Role of Air-sea Coupling in the Response of Climate Extremes to Aerosols
NASA Astrophysics Data System (ADS)
Mahajan, S.
2017-12-01
Air-sea interactions dominate the climate of surrounding regions and thus also modulate the climate response to local and remote aerosol forcings. To clearly isolate the role of air-sea coupling in the climate response to aerosols, we conduct experiments with a full complexity atmosphere model that is coupled to a series of ocean models progressively increasing in complexity. The ocean models range from a data ocean model with prescribed SSTs, to a slab ocean model that only allows thermodynamic interactions, to a full dynamic ocean model. In a preliminary study, we have conducted single forcing experiments with black carbon aerosols in an atmosphere GCM coupled to a data ocean model and a slab ocean model. We find that while black carbon aerosols can intensify mean and extreme summer monsoonal precipitation over the Indian sub-continent, air-sea coupling can dramatically modulate this response. Black carbon aerosols in the vicinity of the Arabian Sea result in an increase of sea surface temperatures there in the slab ocean model, which intensify the low-level Somali Jet. The associated increase in moisture transport into Western India enhances the mean as well as extreme precipitation. In prescribed SST experiments, where SSTs are not allowed to respond BC aerosols, the response is muted. We will present results from a hierarchy of GCM simulations that investigate the role of air-sea coupling in the climate response to aerosols in more detail.
Desulfurization by MOFs as Sorbents for Thiophene Sulfides
NASA Astrophysics Data System (ADS)
Xin, Chunling; Wang, Suqing
2018-01-01
Metal-organic frameworks UMCM-150 [Cu3(BHTC)2] and its heterobimetallic analogue Co1Cu2(BHTC)2 based on an asymmetrical ligand, biphenyl-3,4’,5-tricarboxylate (H3BHTC), were studied for desulfurization of model oils. The adsorption experiments were conducted under room temperature and atmospheric pressure. The total sulfur concentration of model oils was 250 ppmw determined by WK-2D coulomb integrated micro-analyzer through adding benzothiophene (BT) and dibenzothiophene (DBT) into liquid alkanes. Adsorptive desulfurization experiments were conducted in a consecutive fixed bed adsorption system. The results indicate that Cu3(BHTC)2 has a higher sulfur-capacity than Co1Cu2(BHTC)2. Taking DBT as an example, Cu3(BHTC)2 and Co1Cu2(BHTC)2 have breakthrough adsorption capacities of 10.6 and 5.8 g S/kg of sorbent for model oils.
Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results
NASA Astrophysics Data System (ADS)
Boutelier, D.; Oncken, O.
2008-12-01
We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.
NASA Astrophysics Data System (ADS)
Butchart, Neal; Anstey, James A.; Hamilton, Kevin; Osprey, Scott; McLandress, Charles; Bushell, Andrew C.; Kawatani, Yoshio; Kim, Young-Ha; Lott, Francois; Scinocca, John; Stockdale, Timothy N.; Andrews, Martin; Bellprat, Omar; Braesicke, Peter; Cagnazzo, Chiara; Chen, Chih-Chieh; Chun, Hye-Yeong; Dobrynin, Mikhail; Garcia, Rolando R.; Garcia-Serrano, Javier; Gray, Lesley J.; Holt, Laura; Kerzenmacher, Tobias; Naoe, Hiroaki; Pohlmann, Holger; Richter, Jadwiga H.; Scaife, Adam A.; Schenzinger, Verena; Serva, Federico; Versick, Stefan; Watanabe, Shingo; Yoshida, Kohei; Yukimoto, Seiji
2018-03-01
The Stratosphere-troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi) aims to improve the fidelity of tropical stratospheric variability in general circulation and Earth system models by conducting coordinated numerical experiments and analysis. In the equatorial stratosphere, the QBO is the most conspicuous mode of variability. Five coordinated experiments have therefore been designed to (i) evaluate and compare the verisimilitude of modelled QBOs under present-day conditions, (ii) identify robustness (or alternatively the spread and uncertainty) in the simulated QBO response to commonly imposed changes in model climate forcings (e.g. a doubling of CO2 amounts), and (iii) examine model dependence of QBO predictability. This paper documents these experiments and the recommended output diagnostics. The rationale behind the experimental design and choice of diagnostics is presented. To facilitate scientific interpretation of the results in other planned QBOi studies, consistent descriptions of the models performing each experiment set are given, with those aspects particularly relevant for simulating the QBO tabulated for easy comparison.
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.
2018-02-01
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
Chlorinated Cyanurates: Method Interferences and Application Implications
Experiments were conducted to investigate method interferences, residual stability, regulated DBP formation, and a water chemistry model associated with the use of Dichlor & Trichlor in drinking water.
Thermal conductivity of a single polymer chain
NASA Astrophysics Data System (ADS)
Freeman, J. J.; Morgan, G. J.; Cullen, C. A.
1987-05-01
Numerical experiments have been performed with use of a fairly realistic model for polyethylene which has enabled the effects of anharmonicity, temperature, and positional disorder on the thermal conductivity to be investigated. It has been shown that the classical conductivity may be substantially increased by both increasing the strength of the anharmonic forces and by decreasing the chain temperature. Although the conductivity of individual chains is found to be high, realistic values for the conductivity of a bulk material may be understood provided that due account is taken of the polymer conformation and interchain coupling.
Report on results of current and future metal casting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unal, Cetin; Carlson, Neil N.
2015-09-28
New modeling capabilities needed to simulate the casting of metallic fuels are added to Truchas code. In this report we summarize improvements we made in FY2015 in three areas; (1) Analysis of new casting experiments conducted with BCS and EFL designs, (2) the simulation of INL’s U-Zr casting experiments with Flow3D computer program, (3) the implementation of surface tension model into Truchas for unstructured mesh required to run U-Zr casting.
Dynamic Fracture Simulations of Explosively Loaded Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Carly W.; Goto, D. M.
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
ERIC Educational Resources Information Center
Hollister, James; Richie, Sam; Weeks, Arthur
2010-01-01
This study investigated the various methods involved in creating an intelligent tutor for the University of Central Florida Web Applets (UCF Web Applets), an online environment where student can perform and/or practice experiments. After conducting research into various methods, two major models emerged. These models include: 1) solving the…
Experimental and numerical investigation of ram extrusion of bread dough
NASA Astrophysics Data System (ADS)
Mohammed, M. A. P.; Wanigasooriya, L.; Charalambides, M. N.
2016-10-01
An experimental and numerical study on ram extrusion of bread dough was conducted. A laboratory ram extrusion rig was designed and manufactured, where dies with different angles and exit radii were employed. Rate dependent behaviour was observed from tests conducted at different extrusion speeds, and higher extrusion pressure was reported for dies with decreasing exit radius. A finite element simulation of extrusion was performed using the adaptive meshing technique in Abaqus. Simulations using a frictionless contact between the billet and die wall showed that the model underestimates the response at high entry angles. On the other hand, when the coefficient of friction value was set to 0.09 as measured from friction experiments, the dough response was overestimated, i.e. the model extrusion pressure was much higher than the experimentally measured values. When a critical shear stress limit, τmax, was used, the accuracy of the model predictions improved. The results showed that higher die angles require higher τmax values for the model and the experiments to agree.
NASA Astrophysics Data System (ADS)
Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.
2015-07-01
Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.
Pagan, Darren C.; Miller, Matthew P.
2014-01-01
A forward modeling diffraction framework is introduced and employed to identify slip system activity in high-energy diffraction microscopy (HEDM) experiments. In the framework, diffraction simulations are conducted on virtual mosaic crystals with orientation gradients consistent with Nye’s model of heterogeneous single slip. Simulated diffraction peaks are then compared against experimental measurements to identify slip system activity. Simulation results compared against diffraction data measured in situ from a silicon single-crystal specimen plastically deformed under single-slip conditions indicate that slip system activity can be identified during HEDM experiments. PMID:24904242
Experiment Design for Complex VTOL Aircraft with Distributed Propulsion and Tilt Wing
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Landman, Drew
2015-01-01
Selected experimental results from a wind tunnel study of a subscale VTOL concept with distributed propulsion and tilt lifting surfaces are presented. The vehicle complexity and automated test facility were ideal for use with a randomized designed experiment. Design of Experiments and Response Surface Methods were invoked to produce run efficient, statistically rigorous regression models with minimized prediction error. Static tests were conducted at the NASA Langley 12-Foot Low-Speed Tunnel to model all six aerodynamic coefficients over a large flight envelope. This work supports investigations at NASA Langley in developing advanced configurations, simulations, and advanced control systems.
NASA Technical Reports Server (NTRS)
Moran, M. S.; Goodrich, D. C.; Kustas, W. P.
1994-01-01
A research and modeling strategy is presented for development of distributed hydrologic models given by a combination of remotely sensed and ground based data. In support of this strategy, two experiments Moonsoon'90 and Walnut Gulch'92 were conducted in a semiarid rangeland southeast of Tucson, Arizona, (U.S.) and a third experiment, the SALSA-MEX (Semi Arid Land Surface Atmospheric Mountain Experiment) was proposed. Results from the Moonsoon'90 experiment substantially advanced the understanding of the hydrologic and atmospheric fluxes in an arid environment and provided insight into the use of remote sensing data for hydrologic modeling. The Walnut Gulch'92 experiment addressed the seasonal hydrologic dynamics of the region and the potential of combined optical microwave remote sensing for hydrologic applications. SALSA-MEX will combine measurements and modeling to study hydrologic processes influenced by surrounding mountains, such as enhanced precipitation, snowmelt and recharge to ground water aquifers. The results from these experiments, along with the extensive experimental data bases, should aid the research community in large scale modeling of mass and energy exchanges across the soil-plant-atmosphere interface.
Accelerating the connection between experiments and models: The FACE-MDS experience
NASA Astrophysics Data System (ADS)
Norby, R. J.; Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.
2014-12-01
The mandate is clear for improving communication between models and experiments to better evaluate terrestrial responses to atmospheric and climatic change. Unfortunately, progress in linking experimental and modeling approaches has been slow and sometimes frustrating. Recent successes in linking results from the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments with ecosystem and land surface models - the FACE Model-Data Synthesis (FACE-MDS) project - came only after a period of slow progress, but the experience points the way to future model-experiment interactions. As the FACE experiments were approaching their termination, the FACE research community made an explicit attempt to work together with the modeling community to synthesize and deliver experimental data to benchmark models and to use models to supply appropriate context for the experimental results. Initial problems that impeded progress were: measurement protocols were not consistent across different experiments; data were not well organized for model input; and parameterizing and spinning up models that were not designed for simulating a specific site was difficult. Once these problems were worked out, the FACE-MDS project has been very successful in using data from the Duke and ORNL FACE experiment to test critical assumptions in the models. The project showed, for example, that the stomatal conductance model most widely used in models was supported by experimental data, but models did not capture important responses such as increased leaf mass per unit area in elevated CO2, and did not appropriately represent foliar nitrogen allocation. We now have an opportunity to learn from this experience. New FACE experiments that have recently been initiated, or are about to be initiated, include a eucalyptus forest in Australia; the AmazonFACE experiment in a primary, tropical forest in Brazil; and a mature oak woodland in England. Cross-site science questions are being developed that will have a strong modeling framework, and modelers and experimentalists will work to establish common measurement protocols and data format. By starting the model-experiment connection early and learning from our past experiences, we expect to significantly shorten the time lags between advances in process-oriented studies and large-scale models.
The propagation of sound in tunnels
NASA Astrophysics Data System (ADS)
Li, Kai Ming; Iu, King Kwong
2002-11-01
The sound propagation in tunnels is addressed theoretically and experimentally. In many previous studies, the image source method is frequently used. However, these early theoretical models are somewhat inadequate because the effect of multiple reflections in long enclosures is often modeled by the incoherent summation of contributions from all image sources. Ignoring the phase effect, these numerical models are unlikely to be satisfactory for predicting the intricate interference patterns due to contributions from each image source. In the present paper, the interference effect is incorporated by summing the contributions from the image sources coherently. To develop a simple numerical model, tunnels are represented by long rectangular enclosures with either geometrically reflecting or impedance boundaries. Scale model experiments are conducted for the validation of the numerical model. In some of the scale model experiments, the enclosure walls are lined with a carpet for simulating the impedance boundary condition. Large-scale outdoor measurements have also been conducted in two tunnels designed originally for road traffic use. It has been shown that the proposed numerical model agrees reasonably well with experimental data. [Work supported by the Research Grants Council, The Industry Department, NAP Acoustics (Far East) Ltd., and The Hong Kong Polytechnic University.
Large-scale experimental technology with remote sensing in land surface hydrology and meteorology
NASA Technical Reports Server (NTRS)
Brutsaert, Wilfried; Schmugge, Thomas J.; Sellers, Piers J.; Hall, Forrest G.
1988-01-01
Two field experiments to study atmospheric and land surface processes and their interactions are summarized. The Hydrologic-Atmospheric Pilot Experiment, which tested techniques for measuring evaporation, soil moisture storage, and runoff at scales of about 100 km, was conducted over a 100 X 100 km area in France from mid-1985 to early 1987. The first International Satellite Land Surface Climatology Program field experiment was conducted in 1987 to develop and use relationships between current satellite measurements and hydrologic, climatic, and biophysical variables at the earth's surface and to validate these relationships with ground truth. This experiment also validated surface parameterization methods for simulation models that describe surface processes from the scale of vegetation leaves up to scales appropriate to satellite remote sensing.
Perceived Mental Illness Stigma among Youth in Psychiatric Outpatient Treatment
ERIC Educational Resources Information Center
Elkington, Katherine S.; Hackler, Dusty; McKinnon, Karen; Borges, Cristiane; Wright, Eric R.; Wainberg, Milton L.
2012-01-01
This research explores the experiences of mental illness stigma in 24 youth (58.3% male, 13-24 years, 75% Latino) in psychiatric outpatient treatment. Using Link and Phelan's (2001) model of stigmatization, we conducted thematic analysis of the interview texts, examining experiences of stigma at individual and structural levels, in addition to the…
Simplified Models for the Drag Coefficient of a Pitched Baseball
ERIC Educational Resources Information Center
Kagan, David; Nathan, Alan M.
2014-01-01
The classic experiment to measure the drag coefficient involves dropping coffee filters. Wouldn't it be more fun to try something different? In fact, an experiment on the drag force is conducted nearly 4000 times a day during the baseball season and you have free access to this PITCHf/x data!
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) with John Bluck (Ames PAO) and Chuck Cornelison Ames Engineer
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - Wayne Freedman, ABC Channel 7 news inerviews Jeff Brown of Ames
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - Gary Reyes, San Jose mercury New interviews Chuck Cornelison
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
NOAA Atmospheric Sciences Modeling Division support to the US Environmental Protection Agency
NASA Astrophysics Data System (ADS)
Poole-Kober, Evelyn M.; Viebrock, Herbert J.
1991-07-01
During FY-1990, the Atmospheric Sciences Modeling Division provided meteorological research and operational support to the U.S. Environmental Protection Agency. Basic meteorological operational support consisted of applying dispersion models and conducting dispersion studies and model evaluations. The primary research effort was the development and evaluation of air quality simulation models using numerical and physical techniques supported by field studies. Modeling emphasis was on the dispersion of photochemical oxidants and particulate matter on urban and regional scales, dispersion in complex terrain, and the transport, transformation, and deposition of acidic materials. Highlights included expansion of the Regional Acid Deposition Model/Engineering Model family to consist of the Tagged Species Engineering Model, the Non-Depleting Model, and the Sulfate Tracking Model; completion of the Acid-MODES field study; completion of the RADM2.1 evaluation; completion of the atmospheric processes section of the National Acid Precipitation Assessment Program 1990 Integrated Assessment; conduct of the first field study to examine the transport and entrainment processes of convective clouds; development of a Regional Oxidant Model-Urban Airshed Model interface program; conduct of an international sodar intercomparison experiment; incorporation of building wake dispersion in numerical models; conduct of wind-tunnel simulations of stack-tip downwash; and initiation of the publication of SCRAM NEWS.
de Vries, Rob B M; Wever, Kimberley E; Avey, Marc T; Stephens, Martin L; Sena, Emily S; Leenaars, Marlies
2014-01-01
The question of how animal studies should be designed, conducted, and analyzed remains underexposed in societal debates on animal experimentation. This is not only a scientific but also a moral question. After all, if animal experiments are not appropriately designed, conducted, and analyzed, the results produced are unlikely to be reliable and the animals have in effect been wasted. In this article, we focus on one particular method to address this moral question, namely systematic reviews of previously performed animal experiments. We discuss how the design, conduct, and analysis of future (animal and human) experiments may be optimized through such systematic reviews. In particular, we illustrate how these reviews can help improve the methodological quality of animal experiments, make the choice of an animal model and the translation of animal data to the clinic more evidence-based, and implement the 3Rs. Moreover, we discuss which measures are being taken and which need to be taken in the future to ensure that systematic reviews will actually contribute to optimizing experimental design and thereby to meeting a necessary condition for making the use of animals in these experiments justified. © The Author 2014. Published by Oxford University Press.
de Vries, Rob B. M.; Wever, Kimberley E.; Avey, Marc T.; Stephens, Martin L.; Sena, Emily S.; Leenaars, Marlies
2014-01-01
The question of how animal studies should be designed, conducted, and analyzed remains underexposed in societal debates on animal experimentation. This is not only a scientific but also a moral question. After all, if animal experiments are not appropriately designed, conducted, and analyzed, the results produced are unlikely to be reliable and the animals have in effect been wasted. In this article, we focus on one particular method to address this moral question, namely systematic reviews of previously performed animal experiments. We discuss how the design, conduct, and analysis of future (animal and human) experiments may be optimized through such systematic reviews. In particular, we illustrate how these reviews can help improve the methodological quality of animal experiments, make the choice of an animal model and the translation of animal data to the clinic more evidence-based, and implement the 3Rs. Moreover, we discuss which measures are being taken and which need to be taken in the future to ensure that systematic reviews will actually contribute to optimizing experimental design and thereby to meeting a necessary condition for making the use of animals in these experiments justified. PMID:25541545
A new Eulerian model for viscous and heat conducting compressible flows
NASA Astrophysics Data System (ADS)
Svärd, Magnus
2018-09-01
In this article, a suite of physically inconsistent properties of the Navier-Stokes equations, associated with the lack of mass diffusion and the definition of velocity, is presented. We show that these inconsistencies are consequences of the Lagrangian derivation that models viscous stresses rather than diffusion. A new model for compressible and diffusive (viscous and heat conducting) flows of an ideal gas, is derived in a purely Eulerian framework. We propose that these equations supersede the Navier-Stokes equations. A few numerical experiments demonstrate some differences and similarities between the new system and the Navier-Stokes equations.
Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3
NASA Astrophysics Data System (ADS)
Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.
2014-01-01
ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.
NASA Astrophysics Data System (ADS)
Kang, Jingoo; Keinonen, Tuula
2017-08-01
Much research has been conducted to investigate the effects of inquiry-based learning on students' attitude towards science and future involvement in the science field, but few of them conducted in-depth studies including young learners' socio-cognitive background to explore mechanisms which explain how inquiry experiences influence on career choices. Hence, the aim of this study was to investigate in what ways and to what extent the inquiry learning experiences in school science affect students' future career orientation in the context of socio-cognitive mechanisms based on socio-cognitive career theory(SCCT). For the purpose, Programme for International Student Assessment (PISA) 2015 data were used focusing on science literacy, and the sample of Finnish 15-year-old students (N = 5782) was analysed by structural equation modelling with the hypothesised Inquiry-SCCT model. The results of the study showed that inquiry learning experiences were indicated as a positive predictor for the students' career aspiration, and most of its effects were mediated by outcome expectations. Indeed, although self-efficacy and interest in learning science indicated positive correlations with future aspiration, outcome expectation presented the highest correlation with the science-related career. Gender differences were found in the model, but girls indicated higher outcome expectation and career aspiration than boys in Finland.
Attention Gating in Short-Term Visual Memory.
ERIC Educational Resources Information Center
Reeves, Adam; Sperling, George
1986-01-01
An experiment is conducted showing that an attention shift to a stream of numerals presented in rapid serial visual presentation mode produces not a total loss, but a systematic distortion of order. An attention gating model (AGM) is developed from a more general attention model. (Author/LMO)
Aerodynamics of Tracked Ram Air Cushion Vehicles - Effects of Pitch Attitude and Upper Surface Flow
DOT National Transportation Integrated Search
1979-12-01
Three types of experiments were conducted on geometrically similar model of a Tracked Ram Air Cushion Vehicle (TRACV). The first consisted of wind tunnel tests with the vehicle model positioned within a short segment of stationary guideway. In the se...
APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers
USDA-ARS?s Scientific Manuscript database
Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...
Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide
NASA Astrophysics Data System (ADS)
Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian
2017-07-01
Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.
The development of methods for predicting and measuring distribution patterns of aerial sprays
NASA Technical Reports Server (NTRS)
Ormsbee, A. I.; Bragg, M. B.; Maughmer, M. D.
1979-01-01
The capability of conducting scale model experiments which involve the ejection of small particles into the wake of an aircraft close to the ground is developed. A set of relationships used to scale small-sized dispersion studies to full-size results are experimentally verified and, with some qualifications, basic deposition patterns are presented. In the process of validating these scaling laws, the basic experimental techniques used in conducting such studies, both with and without an operational propeller, were developed. The procedures that evolved are outlined. The envelope of test conditions that can be accommodated in the Langley Vortex Research Facility, which were developed theoretically, are verified using a series of vortex trajectory experiments that help to define the limitations due to wall interference effects for models of different sizes.
Global electrodynamics from superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Hu, H.
1995-01-01
Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.
Evaluation of an Infiltration Model with Microchannels
NASA Astrophysics Data System (ADS)
Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.
2015-12-01
This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were implemented to calculate infiltration along with a kinematic wave model for overland flow that accounts for short-circuiting of flow. Additionally, a sensitivity analysis on the parameters implemented in the model has been performed. Finally, the field experiments results have been used to quantify the validity of the coupled model.
Finite Element and Molecular Dynamics Modeling and Simulation of Thermal Properties
2007-06-01
dots represent the experimental results of the normalized conductivity data ke/kf (ke is κ of the composite, kf is κ of the fluid) CNT in oil ...individual Single Walled Nanotube to four centimeters in length. [4] 6 Carbon based materials, in-plane pyrolytic graphite and diamonds, have the...conductivity of nanocomposites has not yet been achieved. A 2001 experiment studied the thermal conductivity of oil with CNT in suspension. The results
Yiqi Luo; Dieter Gerten; Guerric Le Maire; William J. Parton; Ensheng Weng; Xuhui Zhou; Cindy Keough; Claus Beier; Philippe Ciais; Wolfgang Cramer; Jeffrey S. Dukes; Bridget Emmett; Paul J. Hanson; Alan Knapp; Sune Linder; Dan Nepstad; Lindsey. Rustad
2008-01-01
Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive...
The Role of Scientific Modeling Criteria in Advancing Students' Explanatory Ideas of Magnetism
ERIC Educational Resources Information Center
Cheng, Meng-Fei; Brown, David E.
2015-01-01
Student construction of models is a strong focus of current research and practice in science education. In order to study in detail the interactions between students' model generation and evaluation and their development of explanatory ideas to account for magnetic phenomena, a multi-session teaching experiment was conducted with a small number of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, R. E.
This paper provides a simple model for estimating the release of respirable aerosols resulting from an attack on a spent fuel cask using a high energy density device (HEDD). Two primary experiments have provided data on potential releases from spent fuel casks under HEDD attack. Sandia National Laboratories (SNL) conducted the first in the early 1980's and the second was sponsored by Gessellshaft fur Anlagen- and Reaktorsicherheit (GRS) in Germany and conducted in France in 1994. Both used surrogate spent fuel assemblies in real casks. The SNL experiments used un-pressurized fuel pin assemblies in a single element cask while themore » GRS tests used pressurized fuel pin assemblies in a 9-element cask. Data from the two test programs is reasonably consistent, given the differences in the experiments, but the use of the test data for prediction of releases resulting from HEDD attack requires a method for accounting for the effects of pin pressurization release and the ratio of pin plenum gas release to cask free volume (VR). To account for the effects of VR and to link the two data sources, a simple model has been developed that uses both the SNL data and the GRS data as well as recent test data on aerosols produced in experiments with single pellets subjected to HEDD effects conducted under the aegis of the International Consortium's Working Group on Sabotage of Transport and Storage Casks (WGSTSC). (authors)« less
Shanks, Ryan A.; Robertson, Chuck L.; Haygood, Christian S.; Herdliksa, Anna M.; Herdliska, Heather R.; Lloyd, Steven A.
2017-01-01
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads. PMID:28904647
An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Soybean canopy reflectance modeling data sets
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Biehl, L. L.; Daughtry, C. S. T.
1984-01-01
Numerous mathematical models of the interaction of radiation with vegetation canopies have been developed over the last two decades. However, data with which to exercise and validate these models are scarce. During three days in the summer of 1980, experiments are conducted with the objective of gaining insight about the effects of solar illumination and view angles on soybean canopy reflectance. In concert with these experiment, extensive measurements of the soybean canopies are obtained. This document is a compilation of the bidirectional reflectance factors, agronomic, characteristics, canopy geometry, and leaf, stem, and pod optical properties of the soybean canopies. These data sets should be suitable for use with most vegetation canopy reflectance models.
NASA Astrophysics Data System (ADS)
Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.
2009-12-01
A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.
A prospective earthquake forecast experiment in the western Pacific
NASA Astrophysics Data System (ADS)
Eberhard, David A. J.; Zechar, J. Douglas; Wiemer, Stefan
2012-09-01
Since the beginning of 2009, the Collaboratory for the Study of Earthquake Predictability (CSEP) has been conducting an earthquake forecast experiment in the western Pacific. This experiment is an extension of the Kagan-Jackson experiments begun 15 years earlier and is a prototype for future global earthquake predictability experiments. At the beginning of each year, seismicity models make a spatially gridded forecast of the number of Mw≥ 5.8 earthquakes expected in the next year. For the three participating statistical models, we analyse the first two years of this experiment. We use likelihood-based metrics to evaluate the consistency of the forecasts with the observed target earthquakes and we apply measures based on Student's t-test and the Wilcoxon signed-rank test to compare the forecasts. Overall, a simple smoothed seismicity model (TripleS) performs the best, but there are some exceptions that indicate continued experiments are vital to fully understand the stability of these models, the robustness of model selection and, more generally, earthquake predictability in this region. We also estimate uncertainties in our results that are caused by uncertainties in earthquake location and seismic moment. Our uncertainty estimates are relatively small and suggest that the evaluation metrics are relatively robust. Finally, we consider the implications of our results for a global earthquake forecast experiment.
2013-09-30
GEWEX GASS MJO Diabatic Heating Experiment, 2) Intraseasonal Variability Hindcast Experiment (ISVHE) C. Conduct more comprehensive analysis on the...since her Ph.D. study. Key partners include M. Zhao (GFDL) and J. Ridout (NRL). Both Zhao and Ridout are contributors to the MJO multi-model diabatic ...a paper and submitted to the Journal of the Atmospheric Sciences (Guo et al. 2013). We have also begun acquiring model data from the MJO Diabatic
2016-06-01
zones with ice concentrations up to 40%. To achieve this goal, the Navy must determine safe operational speeds as a function of ice concen- tration...and full-scale experience with ice-capable hull forms that have shallow entry angles to promote flexural ice failure preferentially over crushing...plan view) of the proposed large-scale ice–hull impact experiment to be conducted in CRREL’s refrigerated towing basin. Shown here is a side-panel
Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines
NASA Astrophysics Data System (ADS)
Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.
2016-12-01
Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.
A Robust Adaptive Autonomous Approach to Optimal Experimental Design
NASA Astrophysics Data System (ADS)
Gu, Hairong
Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.
Design of Experiments for the Thermal Characterization of Metallic Foam
NASA Technical Reports Server (NTRS)
Crittenden, Paul E.; Cole, Kevin D.
2003-01-01
Metallic foams are being investigated for possible use in the thermal protection systems of reusable launch vehicles. As a result, the performance of these materials needs to be characterized over a wide range of temperatures and pressures. In this paper a radiation/conduction model is presented for heat transfer in metallic foams. Candidates for the optimal transient experiment to determine the intrinsic properties of the model are found by two methods. First, an optimality criterion is used to find an experiment to find all of the parameters using one heating event. Second, a pair of heating events is used to determine the parameters in which one heating event is optimal for finding the parameters related to conduction, while the other heating event is optimal for finding the parameters associated with radiation. Simulated data containing random noise was analyzed to determine the parameters using both methods. In all cases the parameter estimates could be improved by analyzing a larger data record than suggested by the optimality criterion.
Detection of small-size solder ball defects through heat conduction analysis
NASA Astrophysics Data System (ADS)
Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan
2018-02-01
Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.
Feature Extraction with GMDH-Type Neural Networks for EEG-Based Person Identification.
Schetinin, Vitaly; Jakaite, Livija; Nyah, Ndifreke; Novakovic, Dusica; Krzanowski, Wojtek
2018-08-01
The brain activity observed on EEG electrodes is influenced by volume conduction and functional connectivity of a person performing a task. When the task is a biometric test the EEG signals represent the unique "brain print", which is defined by the functional connectivity that is represented by the interactions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalization using autoregressive modeling minimizes the conduction components, and then the residuals are related to features correlated with the functional connectivity. However, the orthogonalization can be unreliable for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if the baselines required for estimating the residuals can be modeled by using relevant electrodes. In our approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm which we have made capable of discovering reliable models from multidimensional EEG data. In our experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method has correctly identified all the subjects and provided a statistically significant ([Formula: see text]) improvement of the identification accuracy. The experiments have shown that the proposed GMDH method can learn new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dontsova, K.; Steefel, C.I.; Desilets, S.
2009-07-15
A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled tomore » reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.« less
Lin, Tai-Chi; Zhu, Danhong; Hinton, David R.; Clegg, Dennis O.; Humayun, Mark S.
2017-01-01
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed. PMID:28928775
International Collaboration on Spent Fuel Disposition in Crystalline Media: FY17 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yifeng; Hadgu, Teklu; Kainina, Elena
Active participation in international R&D is crucial for achieving the Spent Fuel Waste Science & Technology (SFWST) long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) has developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY17 focused on the collaboration through the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2019) project.more » The DECOVALEX project is an international research and model comparison collaboration, initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. SNL has been participating in three tasks of the DECOVALEX project: Task A. Modeling gas injection experiments (ENGINEER), Task C. Modeling groundwater recovery experiment in tunnel (GREET), and Task F. Fluid inclusion and movement in the tight rock (FINITO).« less
NASA Astrophysics Data System (ADS)
Liu, Haiyun; Wang, Lei
2018-01-01
In this paper, a test structure for simultaneously determining thermal conductivity and the coefficient of thermal expansion (CTE) of polysilicon thin film is proposed. The test structure consists of two double-clamped beams with different lengths. A theoretical model for extracting thermal conductivity and CTE based on electrothermal analysis and resonance frequency approach is developed. Both flat and buckled beams are considered in the theoretical model. The model is confirmed by finite element software ANSYS. The test structures are fabricated by surface micromachined fabrication process. Experiments are carried out in our atmosphere. Thermal conductivity and CTE of polysilicon thin film are obtained to be (29.96 ± 0.92) W · m · K-1 and (2.65 ± 0.03) × 10-6 K-1, respectively, with temperature ranging from 300-400 K.
Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.
1996-01-01
An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.
Chen, Roland K; Shih, A J
2013-08-21
This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.
Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ
Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less
Complex conductivity of oil-contaminated clayey soils
NASA Astrophysics Data System (ADS)
Deng, Yaping; Shi, Xiaoqing; Revil, André; Wu, Jichun; Ghorbani, A.
2018-06-01
Spectral induced polarization (SIP) is considered as a promising tool in environmental investigations. However, few works have done regarding the electrical signature of oil contamination of clayey soils upon induced polarization. Laboratory column experiments plus one sandbox experiment are conducted in this study to investigate the performances of the SIP method in oil-contaminated soils. First, a total of 12 soils are investigated to reveal the influences of water and soil properties on the saturation dependence of the complex conductivity below 100 Hz. Results show that the magnitude of the complex conductivity consistently decreases with decreasing water saturation for all soils samples. The saturation n and quadrature conductivity p exponents tend to increase slightly with increasing water salinity when using a linear conductivity model. The saturation exponent increases marginally with the cation exchange capacity (CEC) and the specific surface area (Ssp) while the quadrature conductivity exponent exhibits a relatively stronger dependence on both CEC and Ssp. For the low CEC soil samples (normally ≤10 meq/100 g), the quadrature conductivity exponent p correlates well with the saturation exponent n using the relationship p = n-1. SIP method is further applied in a sandbox experiment to estimate the saturation distribution and total volume of the oil. Results demonstrate that the SIP method has a great potential for mapping the organic contaminant plume and quantifying the oil volume.
Robe Development for Electrical Conductivity Analysis in an Electron Gun Produced Helium Plasma
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Bitteker, Leo; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
The use of magnetohydrodynamic (MHD) power conversion systems, potentially coupled with a fission power source, is currently being investigated as a driver for an advanced propulsion system, such as a plasma thruster. The efficiency of a MHD generator is strongly dependent on the electrical conductivity of the fluid that passes through the generator; power density increases as fluid conductivity increases. Although traditional MHD flows depend on thermal ionization to enhance the electrical conductivity, ionization due to nuclear interactions may achieve a comparable or improved conductivity enhancement while avoiding many of the limitations inherent to thermal ionization. Calculations suggest that nuclear-enhanced electrical conductivity increases as the neutron flux increases; conductivity of pure He-3 greater than 10 mho/m may be achievable if exposed to a flux greater than 10(exp 12) neutrons/cm2/s.) However, this remains to be demonstrated experimentally. An experimental facility has been constructed at the Propulsion Research Center at the NASA Marshall Space Flight Center, using helium as the test fluid. High energy electrons will be used to simulate the effects of neutron-induced ionization of helium gas to produce a plasma. These experiments will be focused on diagnosis of the plasma in a virtually static system; results will be applied to future tests with a MHD system. Initial experiments will utilize a 50 keV electron gun that can operate at up to a current of 200 micro A. Spreading the electron beam over a four inch diameter window results in an electron flux of 1.5x 10(exp 13) e/sq cm/s. The equivalent neutron flux that would produce the same ionization fraction in helium is 1x10(exp 12) n/sq cm/s. Experiments will simulate the neutron generated plasma modeled by Bitteker, which takes into account the products of thermal neutron absorption in He-3, and includes various ion species in estimating the conductivity of the resulting plasma. Several different probes will be designed and implemented to verify the plasma kinetics model. System parameters and estimated operating ranges are summarized. The predicted ionization fraction, electron density, and conductivity levels are provided in for an equivalent neutron flux of 1x10(exp 12) n/cm2/s. Understanding the complex plasma kinetics throughout a MHD channel is necessary to design an optimal power conversion system for space propulsion applications. The proposed experiments seek to fully characterize the helium plasma and to determine the reliability of each measurement technique, such that they may be applied to more advanced MHD studies. The expected value of each plasma parameter determined from theoretical models will be verified experimentally by several independent techniques to determine the most reliable method of obtaining each parameter. The results of these experiments will be presented in the final paper.
Phase Field Modeling of Twinning in Indentation of Transparent Crystals
2011-09-01
agrees with observations from indentation experiments conducted from the 1930s to the 1970s [1, 5, 8, 11]. Long, lenticular -shaped micro-twins in...stress distributions favor formation of lenticular shaped twins, and that above a 24 Modelling Simul. Mater. Sci. Eng. 19 (2011) 085005 J D Clayton
An Information Theoretic Model for the Human Processing of Cognitive Tasks.
ERIC Educational Resources Information Center
Moser, Gene W.
An information-theory model of human memory was tested in thirteen experiments which involved children (six years and older) and graduate students. The subjects conducted science investigations in laboratory and non-laboratory settings, solved problems of electrical circuits, and participated in classroom science lessons. The tasks used involved…
Modeling the impact of roadway emissions in light wind, stable and transition conditions
This paper examines the processes that govern air pollution dispersion under light wind, stable and transition conditions by using a state-of-the-art dispersion model to interpret measurements from a tracer experiment conducted next to US highway 99 in Sacramento in 1981–1982 dur...
Modeling crop residue burning experiments and assessing the fire impacts on air quality
Prescribed burning is a common land management practice that results in ambient emissions of a variety of primary and secondary pollutants with negative health impacts. The community Multiscale Air Quality (CMAQ) model is used to conduct 2 km grid resolution simulations of prescr...
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.
2013-01-01
Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.
Text Summarization Model based on Maximum Coverage Problem and its Variant
NASA Astrophysics Data System (ADS)
Takamura, Hiroya; Okumura, Manabu
We discuss text summarization in terms of maximum coverage problem and its variant. To solve the optimization problem, we applied some decoding algorithms including the ones never used in this summarization formulation, such as a greedy algorithm with performance guarantee, a randomized algorithm, and a branch-and-bound method. We conduct comparative experiments. On the basis of the experimental results, we also augment the summarization model so that it takes into account the relevance to the document cluster. Through experiments, we showed that the augmented model is at least comparable to the best-performing method of DUC'04.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; SanSoucie, Michael P.
2017-08-01
Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.
NASA Astrophysics Data System (ADS)
Mota, F. L.; Song, Y.; Pereda, J.; Billia, B.; Tourret, D.; Debierre, J.-M.; Trivedi, R.; Karma, A.; Bergeon, N.
2017-08-01
To study the dynamical formation and evolution of cellular and dendritic arrays under diffusive growth conditions, three-dimensional (3D) directional solidification experiments were conducted in microgravity on a model transparent alloy onboard the International Space Station using the Directional Solidification Insert in the DEvice for the study of Critical LIquids and Crystallization. Selected experiments were repeated on Earth under gravity-driven fluid flow to evidence convection effects. Both radial and axial macrosegregation resulting from convection are observed in ground experiments, and primary spacings measured on Earth and microgravity experiments are noticeably different. The microgravity experiments provide unique benchmark data for numerical simulations of spatially extended pattern formation under diffusive growth conditions. The results of 3D phase-field simulations highlight the importance of accurately modeling thermal conditions that strongly influence the front recoil of the interface and the selection of the primary spacing. The modeling predictions are in good quantitative agreements with the microgravity experiments.
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; ...
2018-02-16
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and timemore » scales of cold-pulse experiments in tokamak plasmas.« less
The role of visual imagery in the retention of information from sentences.
Drose, G S; Allen, G L
1994-01-01
We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. Here, this Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and timemore » scales of cold-pulse experiments in tokamak plasmas.« less
Computation of design parameters and visualization of Goertler vortices
NASA Technical Reports Server (NTRS)
Verma, Alok K.
1984-01-01
A method for analyzing an airfoil regarding Goertler type instability was presented. A model for the visualizatin of Goertler vortices was designed and fabricated. A smoke generating apparatus was made to be used in the experiment. Experiments were conducted to photograph the vortices, however, the smoke generated was not enough to bring out the vortices.
ERIC Educational Resources Information Center
Art, Albert
2006-01-01
A model lift containing a figure of Albert Einstein is released from the side of a tall building and its free fall is arrested by elastic ropes. This arrangement allows four simple experiments to be conducted in the lift to demonstrate the effects of free fall and show how they can lead to the concept of the equivalence of inertial and…
ERIC Educational Resources Information Center
Caprano, Mary Margaret; Caprano, Robert M.; Helfeldt, Jack
2010-01-01
Little research has been conducted to directly compare the effectiveness of different models of field-based learning experiences and little has been reported on the use of the Interstate New Teacher Assessment and Support Consortium (INTASC) standards in establishing a formative assessment for teacher candidates (TCs). The current study used the…
The Effect of Blog Use on Self-Regulatory Learning of Prospective German Language Teachers
ERIC Educational Resources Information Center
Seyhan Yucel, Mukadder
2013-01-01
The purpose of the study was to examine the effect of blog use on self-regulatory learning of prospective German language teachers. The study is semi-experimental. Pretest-posttest, experiment control model was used. Blog activities were conducted as extensive beyond classroom activities only for the experiment group. As the data collection tool…
NASA Technical Reports Server (NTRS)
Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.
1981-01-01
Three experiments have been performed using a three-dimensional, spectral quasi-geostrophic model in order to investigate the sensitivity of ozone transport to tropospheric orographic and thermal effects and to the zonal wind distribution. In the first experiment, the ozone distribution averaged over the last 30 days of a 60 day transport simulation was determined; in the second experiment, the transport simulation was repeated, but nonzonal orographic and thermal forcing was omitted; and in the final experiment, the simulation was conducted with the intensity and position of the stratospheric jets altered by addition of a Newtonian cooling term to the zonal-mean diabatic heating rate. Results of the three experiments are summarized by comparing the zonal-mean ozone distribution, the amplitude of eddy geopotential height, the zonal winds, and zonal-mean diabatic heating.
NASA Astrophysics Data System (ADS)
Majeski, J. A.; Morris, H. W.
1990-01-01
An experiment using a full-scale model of an interceptor forebody configuration was conducted to determine the effectiveness of transpiration and film cooling on temperature control of an IR window during hypersonic flight. This experiment was conducted at a freestream Mach number of 10. The test total temperature was nominally 1100 K, and the test total pressure was nominally 50,000 KPa. The Reynolds number associated with these test conditions was 34.1 million/m. Results encompass pressure data, heat-transfer data, effect of upstream transpiration cooling, and film cooling effectiveness.
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
Banfield, Michelle; Randall, Rebecca; O'Brien, Mearon; Hope, Sophie; Gulliver, Amelia; Forbes, Owen; Morse, Alyssa R; Griffiths, Kathleen
2018-05-30
Consumer and carer involvement in mental health research is a growing and developing field. Whilst there has been policy and in-principle support for such involvement from governments around the world, lived experience researchers conducting academic research in partnership with other consumers and carers remains uncommon. The Australian Capital Territory Consumer and Carer Mental Health Research Unit is based at The Australian National University and employs academic researchers with lived experience to undertake research directly relevant to the needs of mental health consumers and carers with the aim of influencing policy and practice. In this study, we share our experience of developing and conducting research within ACACIA to provide a model for meaningfully engaging mental health consumers and carers throughout the research process. © 2018 Australian College of Mental Health Nurses Inc.
2013-11-11
ISS038-E-000269 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2013-11-11
ISS038-E-000263 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2016-09-15
pretest - posttest educational experiment with a control group and an original measurement instrument. Details of the treatment, which consisted of...promise of such an approach, a pretest - posttest educational experiment with a control group and an original measurement instrument was conducted...research question, a pretest - posttest experiment with a control group was designed. The research subjects were a representative sample of the
A propagation experiment for modelling high elevation angle land mobile satellite channels
NASA Technical Reports Server (NTRS)
Richharia, M.; Evans, B. G.; Butt, G.
1990-01-01
This paper summarizes the results of a feasibility study for conducting high elevation angle propagation experiments in the European region for land mobile satellite communication. The study addresses various aspects of a proposed experiment. These include the selection of a suitable source for transmission, possibility of gathering narrow and wide band propagation data in various frequency bands, types of useful data, data acquisition technique, possible experimental configuration, and other experimental details.
Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels
Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...
2015-12-22
The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Kaboli, S.
2016-12-01
The textbook stress strain curve has an elastic response followed by a yield point and then plastic flow. Typically in rock deformation experiments the observed `elastic' behavior deviates from the Young's modulus because the mechanical response of the loading frame and friction in the sample assembly and between moving parts of the loading frame cannot be easily corrected for. Stress strain curves generated in a D-DIA apparatus used in conjunction with synchrotron x-rays should not have these problems because the sample length is measured directly by radiography and the stress in the sample is measured from the sample itself by x-ray diffraction. However, the sample's `elastic behavior', in many instances, still deviates from what is expected. For example, in constant strain rate experiments on both polycrystalline San Carlos olivine and fayalite olivine conducted at a variety of temperatures (25 - 1200 C) and pressures (4 and 7 GPa) although we are able to use elastic plastic self-consistent (EPSC) models to describe the plastic behavior of the olivine we are not able to fit the initial elastic behavior for all but the lowest temperature experiments. To a first approximation it appears that samples are generally more compliant than their elastic properties would predict and that the degree of softening is temperature dependent. For D-DIA experiments which have been conducted at strain rates of 10-5 /sec, there are not enough data points to really clarify what is happening in the elastic portion of the experiment. Therefore, we conducted a suite of low strain experiments at 5 x 10-6/sec at temperatures ranging from 400 C to 1200 C. For each experiment we fit the diffraction data using EPSC models. We will present the results from our diffraction analysis as well as detailed microstructural analysis of the experimental samples using electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI). The relative degree of relaxation observed for each grain population in the diffraction data as well as to the predictions of the EPSC model combined with the microstructural data, will be used create a more comprehensive picture of how individual grains and various grain populations contribute to the low strain mechanical behavior of the polycrystal.
Free-to-roll tests of X-31 and F-18 subscale models with correlation to flight test results
NASA Technical Reports Server (NTRS)
Williams, David L., II; Nelson, Robert C.; Fisher, David F.
1994-01-01
This presentation will concentrate on a series of low-speed wind tunnel tests conducted on a 2.5 percent subscale F-18 model and a 2 percent subscale X-31 model. The model's control surfaces were unaugmented; and for the most part, were deflected at a constant angle throughout the tests. The tests consisted mostly of free-to-roll experiments conducted with the use of an air-bearing, surface pressure measurements, off-surface flow visualization, and force-balance tests. Where possible the results of the subscale tests have been compared to flight test data, or to other wind tunnel data taken at higher Reynolds numbers.
Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2015-12-01
This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.
Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, J. D.; Tonks, M. R.; Chockalingam, K.
2015-03-01
Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less
ERIC Educational Resources Information Center
Mitchell, James K.; Carter, William E.
2000-01-01
Describes using a computer statistical software package called Minitab to model the sensitivity of several microbes to the disinfectant NaOCl (Clorox') using the Kirby-Bauer technique. Each group of students collects data from one microbe, conducts regression analyses, then chooses the best-fit model based on the highest r-values obtained.…
ERIC Educational Resources Information Center
Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.
2014-01-01
Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…
A Positive Model for Reducing and Preventing School Burnout in High School Students
ERIC Educational Resources Information Center
Aypay, Ayse
2017-01-01
This study aims to develop and test the validity of a model limited to attitude towards the future and subjective well-being for reducing and preventing the school burnout that high school students can experience. The study is designed as a relational screening model conducted over 389 high school students. The data in this study are analyzed…
Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization
NASA Technical Reports Server (NTRS)
Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.
2014-01-01
Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Demasi, J. T.
1986-01-01
A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.
ERIC Educational Resources Information Center
Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph
2008-01-01
A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…
The Use of Coaches to Support Special Education Teachers: A Model of Effective Coaching
ERIC Educational Resources Information Center
Roper, Michelle M.
2014-01-01
A three part experiment was conducted to investigate the effects of coaching as a support for special education teachers, and the impact that coaching has on teacher behavior. First, 6 focus group dyad interviews were conducted utilizing a coach and special education teacher, for a total of 12 participants. The purpose of the focus group was to…
ERIC Educational Resources Information Center
Tavukcu, Tahir
2016-01-01
In this research, it is aimed to determine the effect of the attitudes of postgraduate students towards scientific research and codes of conduct, supported by digital script. This research is a quantitative study, and it has been formed according to pre-test & post-test research model of experiment and control group. In both groups, lessons…
An Iterative Method for Problems with Multiscale Conductivity
Kim, Hyea Hyun; Minhas, Atul S.; Woo, Eung Je
2012-01-01
A model with its conductivity varying highly across a very thin layer will be considered. It is related to a stable phantom model, which is invented to generate a certain apparent conductivity inside a region surrounded by a thin cylinder with holes. The thin cylinder is an insulator and both inside and outside the thin cylinderare filled with the same saline. The injected current can enter only through the holes adopted to the thin cylinder. The model has a high contrast of conductivity discontinuity across the thin cylinder and the thickness of the layer and the size of holes are very small compared to the domain of the model problem. Numerical methods for such a model require a very fine mesh near the thin layer to resolve the conductivity discontinuity. In this work, an efficient numerical method for such a model problem is proposed by employing a uniform mesh, which need not resolve the conductivity discontinuity. The discrete problem is then solved by an iterative method, where the solution is improved by solving a simple discrete problem with a uniform conductivity. At each iteration, the right-hand side is updated by integrating the previous iterate over the thin cylinder. This process results in a certain smoothing effect on microscopic structures and our discrete model can provide a more practical tool for simulating the apparent conductivity. The convergence of the iterative method is analyzed regarding the contrast in the conductivity and the relative thickness of the layer. In numerical experiments, solutions of our method are compared to reference solutions obtained from COMSOL, where very fine meshes are used to resolve the conductivity discontinuity in the model. Errors of the voltage in L2 norm follow O(h) asymptotically and the current density matches quitewell those from the reference solution for a sufficiently small mesh size h. The experimental results present a promising feature of our approach for simulating the apparent conductivity related to changes in microscopic cellular structures. PMID:23304238
Experiments in a three-dimensional adaptive-wall wind tunnel
NASA Technical Reports Server (NTRS)
Schairer, E. T.
1983-01-01
Three dimensional adaptive-wall experiments were performed in the Ames Research Center (ARC) 25- by 13-cm indraft wind tunnel. A semispan wing model was mounted to one sidewall of a test section with solid sidewalls, and slotted top and bottom walls. The test section had separate top and bottom plenums which were divided into streamwise and cross-stream compartments. An iterative procedure was demonstrated for measuring wall interference and for adjusting the plenum compartment pressures to eliminate such interference. The experiments were conducted at a freestream Mach number of 0.60 and model angles of attack between 0 and 6 deg. Although in all the experiments wall interference was reduced after the plenum pressures were adjusted, interference could not be completely eliminated.
NASA Astrophysics Data System (ADS)
Ha, Jong Heon; Jeen, Sung-Wook
2017-04-01
Groundwater quality change due to the leakage of CO2 in a shallow aquifer system is an important aspect of environmental impact assessment in a carbon dioxide capture and storage (CCS) site. This study evaluated geochemical changes in a shallow aquifer system resulting from leakage of CO2 through laboratory column experiments and reactive transport modeling. In the column experiments, two columns were set up and filled with the sediment from the Environmental Impact Test (EIT) facility of the Korea CO2 Storage Environmental Management (K-COSEM) Research Center. Groundwater, also collected form the EIT site, was purged with CO2 or Ar gases, and was pumped into the columns with the pumping rates of 200-1000 mL day-1 (0.124-0.62 m day-1). Profile and time-series effluent samplings were conducted to evaluate the spatial and temporal geochemical changes in the aquifer materials upon contact with CO2. The experimental results showed that after injecting CO2-purged groundwater, the pH was decreased, and alkalinity, electrical conductivity (EC) and concentrations of major cations were increased. The spatial and temporal geochemical changes from the column experiments indicate that dissolution of aquifer materials in contact with dissolved CO2 is the major contributor to the changes in groundwater geochemistry. The reactive transport modeling has been conducted to reproduce these geochemical changes in the aquifer system by incorporating dissolution of the dominant aluminosilicate minerals in the aquifer such as microcline, anorthite, albite, and biotite. This study suggests that pH, alkalinity, EC and concentrations of major cations are important monitoring parameters for detecting CO2 leakage in a shallow groundwater aquifer system.
Kishen, A; Vedantam, S
2007-10-01
This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.
NASA Astrophysics Data System (ADS)
Virgili-Llop, Josep; Zagaris, Costantinos; Park, Hyeongjun; Zappulla, Richard; Romano, Marcello
2018-03-01
An experimental campaign has been conducted to evaluate the performance of two different guidance and control algorithms on a multi-constrained docking maneuver. The evaluated algorithms are model predictive control (MPC) and inverse dynamics in the virtual domain (IDVD). A linear-quadratic approach with a quadratic programming solver is used for the MPC approach. A nonconvex optimization problem results from the IDVD approach, and a nonlinear programming solver is used. The docking scenario is constrained by the presence of a keep-out zone, an entry cone, and by the chaser's maximum actuation level. The performance metrics for the experiments and numerical simulations include the required control effort and time to dock. The experiments have been conducted in a ground-based air-bearing test bed, using spacecraft simulators that float over a granite table.
Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; ...
2016-06-14
In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less
Comparison of simulator fidelity model predictions with in-simulator evaluation data
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.
1983-01-01
A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - ABC Camerman in forground, Wayne Freedman ABC reporter, Jeff Brown (Ames-ASA), John Bluck (AMES PAO)
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - NBC Channel 11 Technology/Business reporter Scott Budman at the gun range (w/C Acosta in bkgrd)
2006-10-12
Ames holds a Media Day at the Hypervelocity Free Flight facility where Ames is conducting high-speed tests of small models of the agency's new Orion CEV to learn about stability during flight. The hypervelocity test facility uses a gun to shoot Orion models between 0.5 and l.5 inches (1.25 - 3.75 centimeters in diameter. The facility can conduct experiments with speeds up to 19,000 miles per hour (30,400 kilometers per hour) - Cesar Acosta, NASA photographer in forground and a news camera men taking shot of the gun facility
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less
A model of electron collecting plasma contractors
NASA Technical Reports Server (NTRS)
Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.
1989-01-01
A model of plasma contractors is being developed, which can be used to describe electron collection in a laboratory test tank and in the space environment. To validate the model development, laboratory experiments are conducted in which the source plasma is separated from the background plasma by a double layer. Model calculations show that an increase in ionization rate with potential produces a steep rise in collected current with increasing potential.
Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime
NASA Astrophysics Data System (ADS)
Dharma-wardana, M. W. C.
2016-06-01
We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.
Shamu, Simukai; Gevers, Anik; Mahlangu, B Pinky; Jama Shai, P Nwabisa; Chirwa, Esnat D; Jewkes, Rachel K
2016-01-01
Intimate partner violence (IPV) is a serious public health problem among adolescents. This study investigated the prevalence of and factors associated with Grade 8 girls' experience and boys' perpetration of IPV in South Africa. Participants were interviewed using interviewer-administered questionnaires about IPV, childhood violence, bullying, gender attitudes, alcohol use and risky sexual behaviours. Multiple logistic regression analysis was conducted to assess factors associated with girls' experience and boys' perpetration of IPV. Structural equation modelling (SEM) was conducted to assess the pathways to IPV experience and perpetration. Results show dating relationships are common among girls (52.5%) and boys (70.7%) and high prevalence of sexual or physical IPV experience by girls (30.9%; 95% CI: 28.2-33.7) and perpetration by boys (39.5%; 95% CI: 36.6-42.3). The logistic regression model showed factors associated with girls' experience of IPV include childhood experience of violence, individual gender inequitable attitudes, corporal punishment at home and in school, alcohol use, wider communication with one's partner and being more negative about school. We found three pathways from childhood trauma to IPV experience and perpetration in both models and these are through inequitable gender attitudes and risky sex, bullying and alcohol use. Prevention of IPV in children needs to encompass prevention of exposure to trauma in childhood and addressing gender attitudes and social norms to encourage positive disciplining approaches. : The trial is registered on ClinicalTrials.gov as NCT02349321. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Experiments and Modeling of G-Jitter Fluid Mechanics
NASA Technical Reports Server (NTRS)
Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)
2002-01-01
While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.
NASA Astrophysics Data System (ADS)
Zheng, Z. M.; Wang, B.
2018-06-01
Conventional heat transfer fluids usually have low thermal conductivity, limiting their efficiency in many applications. Many experiments have shown that adding nanosize solid particles to conventional fluids can greatly enhance their thermal conductivity. To explain this anomalous phenomenon, many theoretical investigations have been conducted in recent years. Some of this research has indicated that the particle agglomeration effect that commonly occurs in nanofluids should play an important role in such enhancement of the thermal conductivity, while some have shown that the enhancement of the effective thermal conductivity might be accounted for by the structure of nanofluids, which can be described using the radial distribution function of particles. However, theoretical predictions from these studies are not in very good agreement with experimental results. This paper proposes a prediction model for the effective thermal conductivity of nanofluids, considering both the agglomeration effect and the radial distribution function of nanoparticles. The resulting theoretical predictions for several sets of nanofluids are highly consistent with experimental data.
Non-idealities in the 3ω method for thermal characterization in the low- and high-frequency regimes
NASA Astrophysics Data System (ADS)
Jaber, Wassim; Chapuis, Pierre-Olivier
2018-04-01
This work is devoted to analytical and numerical studies of diffusive heat conduction in configurations considered in 3ω experiments, which aim at measuring thermal conductivity of materials. The widespread 2D analytical model considers infinite media and translational invariance, a situation which cannot be met in practice in numerous cases due to the constraints in low-dimensional materials and systems. We investigate how thermal boundary resistance between heating wire and sample, native oxide and heating wire shape affect the temperature fields. 3D finite element modelling is also performed to account for the effect of the bonding pads and the 3D heat spreading down to a typical package. Emphasis is given on the low-frequency regime, which is less known than the so-called slope regime. These results will serve as guides for the design of ideal experiments where the 2D model can be applied and for the analyses of non-ideal ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Sa V.; Athmer, C.J.; Sheridan, P.W.
Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the resultsmore » of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.« less
Statistical Methodologies to Integrate Experimental and Computational Research
NASA Technical Reports Server (NTRS)
Parker, P. A.; Johnson, R. T.; Montgomery, D. C.
2008-01-01
Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.
Computer-Based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention
ERIC Educational Resources Information Center
Chariker, Julia H.; Naaz, Farah; Pani, John R.
2011-01-01
A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a three-dimensional graphical model of the human brain and sections derived from the model, tools for exploring neuroanatomy were developed to encourage "adaptive exploration". This is an…
Accounting for Variability in Student Responses to Motion Questions
ERIC Educational Resources Information Center
Frank, Brian W.; Kanim, Stephen E.; Gomez, Luanna S.
2008-01-01
We describe the results of an experiment conducted to test predictions about student responses to questions about motion based on an explicit model of student thinking in terms of the cuing of a variety of different physical intuitions or conceptual resources. This particular model allows us to account for observed variations in patterns of…
Mental Visualization of Objects from Cross-Sectional Images
ERIC Educational Resources Information Center
Wu, Bing; Klatzky, Roberta L.; Stetten, George D.
2012-01-01
We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…
ERIC Educational Resources Information Center
Sinclair, Beth; Russell, Christina A.; McCann, Colleen; Hildreth, Jeanine L.
2014-01-01
Policy Studies Associates (PSA) is conducting a five-year evaluation of the implementation and impact of the national demonstration of a model for expanded learning time developed by "The After-School Corporation" (TASC). This model, called "ExpandED Schools," aims to transform the educational experiences of students in ways…
Growth of InSb and InI Crystals on Earth and in Microgravity
NASA Technical Reports Server (NTRS)
Ostrogorsky, A. G.; Churilov, A.; Volz, M. P.; Riabov, V.; Van den Berg, L.
2015-01-01
During the past 40 years, dozens of semiconductor crystal growth experiments have been conducted in space laboratories. The subsequent analysis of the space-grown crystals revealed (i) that weak convection existed in virtually all melt-growth experiments, (ii) de-wetting significantly reduced the level of stress-induced defects, and (iii) particularly encouraging results were obtained in vapor-growth experiments. In 2002, following a decade of ground based research in growing doped Ge and GaSb crystals, a series of crystal growth experiments was performed at the ISS, within the SUBSA (Solidification Using a Baffle in Sealed Ampoules) investigation. Te- and Zn-doped InSb crystals were grown from the melt. The specially designed furnace provided a side-view of the melt and precise seeding measurement of the growth rate. At present, under sponsorship of CASIS (Center for the Advancement of Science in Space, www.iss-casis.org), we are conducting ground-based experiments with indium mono-iodide (InI) in preparation for the "SUBSA II" ISS investigation, planned for 2017. The experiments include: i) Horizontal Bridgman (HB) growth and ii) Vapor Transport (VT) growth. Finite element modeling will also be conducted, to optimize the design of the flight ampoules, for vapor and melt growth.
Time limited field of regard search
NASA Astrophysics Data System (ADS)
Flug, Eric; Maurer, Tana; Nguyen, Oanh-Tho
2005-05-01
Recent work by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has led to the Time-Limited Search (TLS) model, which has given new formulations for the field of view (FOV) search times. The next step in the evaluation of the overall search model (ACQUIRE) is to apply these parameters to the field of regard (FOR) model. Human perception experiments were conducted using synthetic imagery developed at NVESD. The experiments were competitive player-on-player search tests with the intention of imposing realistic time constraints on the observers. FOR detection probabilities, search times, and false alarm data are analyzed and compared to predictions using both the TLS model and ACQUIRE.
ERIC Educational Resources Information Center
Reddy, Linda A.; Dudek, Christopher M.; Kettler, Ryan J.; Kurz, Alexander; Peters, Stephanie
2016-01-01
This study presents the reliability and validity of the Teacher Evaluation Experience Scale--Teacher Form (TEES-T), a multidimensional measure of educators' attitudes and beliefs about teacher evaluation. Confirmatory factor analyses of data from 583 teachers were conducted on the TEES-T hypothesized five-factor model, as well as on alternative…
ERIC Educational Resources Information Center
Merianos, Ashley L.; King, Keith A.; Vidourek, Rebecca A.; Hardee, Angelica M.
2016-01-01
The study purpose was to examine the effect alcohol abuse/dependence and school experiences have on depression among a nationwide sample of adolescents. A secondary analysis of the 2013 National Survey on Drug Use and Health was conducted. The results of the final multivariable logistic regression model revealed that adolescents who reported…
The Biggs and Moore Model in E-Learning: The Role of Motivation and Collaboration as Moderators
ERIC Educational Resources Information Center
Haverila, Matti J.
2012-01-01
The purpose of this paper is to report the findings of a research conducted to evaluate the effect of e-learning experience on students' perceived learning outcomes, and more specifically the role of motivation and collaboration as moderators between the e-learning experience and the learning outcome. The perceived learning outcome was measured…
Dynamic Clamp in Cardiac and Neuronal Systems Using RTXI
Ortega, Francis A.; Butera, Robert J.; Christini, David J.; White, John A.; Dorval, Alan D.
2016-01-01
The injection of computer-simulated conductances through the dynamic clamp technique has allowed researchers to probe the intercellular and intracellular dynamics of cardiac and neuronal systems with great precision. By coupling computational models to biological systems, dynamic clamp has become a proven tool in electrophysiology with many applications, such as generating hybrid networks in neurons or simulating channelopathies in cardiomyocytes. While its applications are broad, the approach is straightforward: synthesizing traditional patch clamp, computational modeling, and closed-loop feedback control to simulate a cellular conductance. Here, we present two example applications: artificial blocking of the inward rectifier potassium current in a cardiomyocyte and coupling of a biological neuron to a virtual neuron through a virtual synapse. The design and implementation of the necessary software to administer these dynamic clamp experiments can be difficult. In this chapter, we provide an overview of designing and implementing a dynamic clamp experiment using the Real-Time eXperiment Interface (RTXI), an open- source software system tailored for real-time biological experiments. We present two ways to achieve this using RTXI’s modular format, through the creation of a custom user-made module and through existing modules found in RTXI’s online library. PMID:25023319
Tang, Yuye; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang
2010-01-01
A hierarchical simulation framework that integrates information from all-atom simulations into a finite element model at the continuum level is established to study the mechanical response of a mechanosensitive channel of large conductance (MscL) in bacteria Escherichia Coli (E.coli) embedded in a vesicle formed by the dipalmitoylphosphatidycholine (DPPC) lipid bilayer. Sufficient structural details of the protein are built into the continuum model, with key parameters and material properties derived from molecular mechanics simulations. The multi-scale framework is used to analyze the gating of MscL when the lipid vesicle is subjective to nanoindentation and patch clamp experiments, and the detailed structural transitions of the protein are obtained explicitly as a function of external load; it is currently impossible to derive such information based solely on all-atom simulations. The gating pathways of E.coli-MscL qualitatively agree with results from previous patch clamp experiments. The gating mechanisms under complex indentation-induced deformation are also predicted. This versatile hierarchical multi-scale framework may be further extended to study the mechanical behaviors of cells and biomolecules, as well as to guide and stimulate biomechanics experiments. PMID:21874098
The Atmospheric Response to a Future Warming Deficit in North Atlantic SSTs
NASA Astrophysics Data System (ADS)
Gervais, M.; Shaman, J. L.; Kushnir, Y.
2017-12-01
As SSTs increase globally over the 21st century, global climate models project a significant deficit in warming within the subpolar gyre of the North Atlantic Ocean. This study investigates the impact of this warming deficit on atmosphere circulation. A series of large ensemble experiments are conducted using the Community Atmosphere Model 5 forced with specified sea ice and SSTs for the early (2010-2019), mid (2050-2059), and late (2090-2099) 21stcentury. SST and sea ice fields from the Community Earth System Model Large Ensemble experiment are used as boundary conditions for the control simulations. Experiments with either a filled or deepened warming hole are conducted by adding a SST perturbation field to these time-varying SST boundary conditions. Results from these experiments demonstrate that the warming hole has significant local and remote impacts on the atmosphere. Filling (deepening) the warming hole results in a local increase (decrease) in turbulent heat fluxes relative to the control run and consequentially an increase (decrease) in temperature in the overlying lower troposphere that spreads over Europe. There are significant impacts on the location and strength of both the North Atlantic and North Pacific jets as well as on the North Atlantic Oscillation. These impacts of the warming hole on both the mean state and variability of the atmosphere have important implications for sensible weather in the Northern Hemisphere and in particular over Europe.
Oscillating field current drive experiments in the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Blair, Arthur P., Jr.
Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.
Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite
NASA Astrophysics Data System (ADS)
Yang, X.; Cleveland, M.
2016-12-01
We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.
NASA Technical Reports Server (NTRS)
Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.;
1998-01-01
An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
Hyporheic less-mobile porosity and solute transport in porous media
NASA Astrophysics Data System (ADS)
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.
2017-12-01
Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.
Predictive modelling of flow in a two-dimensional intermediate-scale, heterogeneous porous media
Barth, Gilbert R.; Hill, M.C.; Illangasekare, T.H.; Rajaram, H.
2000-01-01
To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.To better understand the role of sedimentary structures in flow through porous media, and to determine how small-scale laboratory-measured values of hydraulic conductivity relate to in situ values this work deterministically examines flow through simple, artificial structures constructed for a series of intermediate-scale (10 m long), two-dimensional, heterogeneous, laboratory experiments. Nonlinear regression was used to determine optimal values of in situ hydraulic conductivity, which were compared to laboratory-measured values. Despite explicit numerical representation of the heterogeneity, the optimized values were generally greater than the laboratory-measured values. Discrepancies between measured and optimal values varied depending on the sand sieve size, but their contribution to error in the predicted flow was fairly consistent for all sands. Results indicate that, even under these controlled circumstances, laboratory-measured values of hydraulic conductivity need to be applied to models cautiously.
Research notes : modeling a composite reinforced bridge.
DOT National Transportation Integrated Search
2001-06-01
In 1998, Oregon Department of Transportation (ODOT) used fiber reinforced polymer (FRP) composites to strengthen the historic Horsetail Falls Bridge. Because this was the first experience with FRP composites, research was conducted to verify that the...
NASA Technical Reports Server (NTRS)
Weissman, D. A.; Li, Fuk
1988-01-01
The ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions was studied using experimental data from the FASINEX Experiment. This consists of RCS data from a Ku-band scatterometer mounted on an aircraft (10 separate flights were conducted), a wide variety of atmospheric measurements (including stress) and sea conditions. Theoretical models are tested. Where discrepancies are observed, revisions are hypothesized and evaluated.
The Experiences of Well-Being of Palliative Care Patients in Malaysia: A Thematic Analysis.
Beng, Tan Seng; Chin, Loh Ee; Guan, Ng Chong; Ann, Yee Hway; Wu, Cathie; Kuan, Wong Sook; Jane, Lim Ee; Khee, Saw Shier; Meng, Christopher Boey Chiong
2015-08-01
A qualitative study was conducted with semistructured interviews to explore the experiences of well-being in 15 adult palliative care inpatients of University Malaya Medical Center, Kuala Lumpur, Malaysia. The results were thematically analyzed. Six basic themes were generated (1) positive attitude, (2) positive cognitions, (3) positive emotions, (4) positive engagement, (5) positive relationships, and (6) positive circumstances. The Seeds Model was conceptualized from the analysis. This model may inform the development of interventions in the enhancement of well-being of palliative care patients. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Weissman, D. A.; Li, Fuk
1988-08-01
The ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of sea and atmospheric conditions was studied using experimental data from the FASINEX Experiment. This consists of RCS data from a Ku-band scatterometer mounted on an aircraft (10 separate flights were conducted), a wide variety of atmospheric measurements (including stress) and sea conditions. Theoretical models are tested. Where discrepancies are observed, revisions are hypothesized and evaluated.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.
2014-12-01
The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and fracture fill material. Nearly 50% of the sorbed Am was exchanged from the colloids to the fracture filling material in each of the three columns; whereas, less Cs and Pu was desorbed with each pass through a new column. Using a two-site kinetic model allowed for interrogation of desorption rates and dominant transport parameters.
Pore-scale and continuum simulations of solute transport micromodel benchmark experiments
Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...
2014-06-18
Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics, needed up to several days on supercomputers to resolve the more complex problems.« less
Kodama, Kentaro; Furuyama, Nobuhiro; Inamura, Tetsunari
2015-01-01
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure. PMID:26070119
A Preliminary Model of Insider Theft of Intellectual Property
2011-01-01
and Trzeciak The primary personality model used in CWB research is the Five Factor Model ( FFM ). The FFM includes dimensions of openness to experience...extraversion, conscientiousness, agreeableness, and emotional stability. After reviewing the literature on the FFM dimensions and CWBs, Salgado...found 44 studies conducted between 1990 and 1999 that examine the relationship between the FFM dimen- sions and deviant behaviors (17), absenteeism (13
Textile composite processing science
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Hammond, Vincent H.; Kranbuehl, David E.; Hasko, Gregory H.
1993-01-01
A multi-dimensional model of the Resin Transfer Molding (RTM) process was developed for the prediction of the infiltration behavior of a resin into an anisotropic fiber preform. Frequency dependent electromagnetic sensing (FDEMS) was developed for in-situ monitoring of the RTM process. Flow visualization and mold filling experiments were conducted to verify sensor measurements and model predictions. Test results indicated good agreement between model predictions, sensor readings, and experimental data.
World Ocean Circulation Experiment (WOCE) Young Investigator Workshops
NASA Technical Reports Server (NTRS)
Austin, Meg
2004-01-01
The World Ocean Circulation Experiment (WOCE) Young Investigator Workshops goals and objectives are: a) to familiarize Young Investigators with WOCE models, datasets and estimation procedures; b) to offer intensive hands-on exposure to these models ard methods; c) to build collaborations among junior scientists and more senior WOCE investigators; and finally, d) to generate ideas and projects leading to fundable WOCE synthesis projects. To achieve these goals and objectives, the Workshop will offer a mixture of tutorial lectures on numerical models and estimation procedures, advanced seminars on current WOCE synthesis activities and related projects, and the opportunity to conduct small projects which put into practice the techniques advanced in the lectures.
Stock market index prediction using neural networks
NASA Astrophysics Data System (ADS)
Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok
1994-03-01
A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.
NASA Astrophysics Data System (ADS)
Lee, Jung-Hyun; Sameen, Maher Ibrahim; Pradhan, Biswajeet; Park, Hyuck-Jin
2018-02-01
This study evaluated the generalizability of five models to select a suitable approach for landslide susceptibility modeling in data-scarce environments. In total, 418 landslide inventories and 18 landslide conditioning factors were analyzed. Multicollinearity and factor optimization were investigated before data modeling, and two experiments were then conducted. In each experiment, five susceptibility maps were produced based on support vector machine (SVM), random forest (RF), weight-of-evidence (WoE), ridge regression (Rid_R), and robust regression (RR) models. The highest accuracy (AUC = 0.85) was achieved with the SVM model when either the full or limited landslide inventories were used. Furthermore, the RF and WoE models were severely affected when less landslide samples were used for training. The other models were affected slightly when the training samples were limited.
Parameter identification of thermophilic anaerobic degradation of valerate.
Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini
2003-01-01
The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.
Psychophysically based model of surface gloss perception
NASA Astrophysics Data System (ADS)
Ferwerda, James A.; Pellacini, Fabio; Greenberg, Donald P.
2001-06-01
In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We use image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions of glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a psychophysically-based model of surface gloss, with dimensions that are both physically and perceptually meaningful and scales that reflect our sensitivity to gloss variations. We demonstrate that the model can be used to describe and control the appearance of glossy surfaces in synthesis images, allowing prediction of gloss matches and quantification of gloss differences. This work represents some initial steps toward developing psychophyscial models of the goniometric aspects of surface appearance to complement widely-used colorimetric models.
Finite Element Modelling of the Apollo Heat Flow Experiments
NASA Astrophysics Data System (ADS)
Platt, J.; Siegler, M. A.; Williams, J.
2013-12-01
The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.
Uncertainties in SOA Formation from the Photooxidation of α-pinene
NASA Astrophysics Data System (ADS)
McVay, R.; Zhang, X.; Aumont, B.; Valorso, R.; Camredon, M.; La, S.; Seinfeld, J.
2015-12-01
Explicit chemical models such as GECKO-A (the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) enable detailed modeling of gas-phase photooxidation and secondary organic aerosol (SOA) formation. Comparison between these explicit models and chamber experiments can provide insight into processes that are missing or unknown in these models. GECKO-A is used to model seven SOA formation experiments from α-pinene photooxidation conducted at varying seed particle concentrations with varying oxidation rates. We investigate various physical and chemical processes to evaluate the extent of agreement between the experiments and the model predictions. We examine the effect of vapor wall loss on SOA formation and how the importance of this effect changes at different oxidation rates. Proposed gas-phase autoxidation mechanisms are shown to significantly affect SOA predictions. The potential effects of particle-phase dimerization and condensed-phase photolysis are investigated. We demonstrate the extent to which SOA predictions in the α-pinene photooxidation system depend on uncertainties in the chemical mechanism.
Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan
2018-03-01
A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.
Polymer tensiometer with ceramic cones: a case study for a Brazilian soil.
NASA Astrophysics Data System (ADS)
Durigon, A.; de Jong van Lier, Q.; van der Ploeg, M. J.; Gooren, H. P. A.; Metselaar, K.; de Rooij, G. H.
2009-04-01
Laboratory outflow experiments, in combination with inverse modeling techniques, allow to simultaneously determine retention and hydraulic conductivity functions. A numerical model solves the pressure-head-based form of the Richards' equation for unsaturated flow in a rigid porous medium. Applying adequate boundary conditions, the cumulative outflow is calculated at prescribed times, and as a function of the set of optimized parameters. These parameters are evaluated by nonlinear least-squares fitting of predicted to observed cumulative outflow with time. An objective function quantifies this difference between calculated and observed cumulative outflow and between predicted and measured soil water retention data. Using outflow data only in the objective function, the multistep outflow method results in unique estimates of the retention and hydraulic conductivity functions. To obtain more reliable estimates of the hydraulic conductivity as a function of the water content using the inverse method, the outflow data must be supplemented with soil retention data. To do so tensiometers filled with a polymer solution instead of water were used. The measurement range of these tensiometers is larger than that of the conventional tensiometers, being able to measure the entire pressure head range over which crops take up water, down to values in the order of -1.6 MPa. The objective of this study was to physically characterize a Brazilian red-yellow oxisol using measurements in outflow experiments by polymer tensiometers and processing these data with the inverse modeling technique for use in the analysis of a field experiment and in modeling. The soil was collected at an experimental site located in Piracicaba, Brazil, 22° 42 S, 47° 38 W, 550 m above sea level.
Measurement of attachment-line location in a wind-tunnel and in supersonic flight
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Miley, Stan J.; Fisher, Michael C.; Anderson, Bianca T.; Geenen, Robert J.
1992-01-01
For the supersonic laminar flow control research program, tests are being conducted to measure the attachment-line flow characteristics and its location on a highly swept aircraft wing. Subsonic wind tunnel experiments were conducted on 2D models to develop sensors and techniques for the flight application. Representative attachment-line data are discussed and results from the wind tunnel investigation are presented.
ERIC Educational Resources Information Center
File, Carter L.
2013-01-01
This study was undertaken to understand whether a community or technical college chief business officer's career line influenced the lived experience of job satisfaction. This mixed method study was conducted in a two-phase approach using the Explanatory Design: Participant Selection Model variant. An initial quantitative survey was conducted from…
NASA Astrophysics Data System (ADS)
Sukhanov, D. Ya.; Zav'yalova, K. V.
2018-03-01
The paper represents induced currents in an electrically conductive object as a totality of elementary eddy currents. The proposed scanning method includes measurements of only one component of the secondary magnetic field. Reconstruction of the current distribution is performed by deconvolution with regularization. Numerical modeling supported by the field experiments show that this approach is of direct practical relevance.
Neuscamman, Stephanie J.; Yu, Kristen L.
2016-05-01
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less
Holography and thermalization in optical pump-probe spectroscopy
NASA Astrophysics Data System (ADS)
Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.
2018-04-01
Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?
Energy model for rumor propagation on social networks
NASA Astrophysics Data System (ADS)
Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang
2014-01-01
With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.
Capsule modeling of high foot implosion experiments on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Kritcher, A. L.; Milovich, J. L.
This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
Bayesian model calibration of ramp compression experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin; Hund, Lauren
2017-06-01
Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Capsule modeling of high foot implosion experiments on the National Ignition Facility
Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...
2017-03-21
This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less
Measurement and simulation of deformation and stresses in steel casting
NASA Astrophysics Data System (ADS)
Galles, D.; Monroe, C. A.; Beckermann, C.
2012-07-01
Experiments are conducted to measure displacements and forces during casting of a steel bar in a sand mold. In some experiments the bar is allowed to contract freely, while in others the bar is manually strained using embedded rods connected to a frame. Solidification and cooling of the experimental castings are simulated using a commercial code, and good agreement between measured and predicted temperatures is obtained. The deformations and stresses in the experiments are simulated using an elasto-viscoplastic finite-element model. The high temperature mechanical properties are estimated from data available in the literature. The mush is modeled using porous metal plasticity theory, where the coherency and coalescence solid fraction are taken into account. Good agreement is obtained between measured and predicted displacements and forces. The results shed considerable light on the modeling of stresses in steel casting and help in developing more accurate models for predicting hot tears and casting distortions.
Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J
2016-11-01
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
2014-06-01
systems. It can model systems including both conventional, diesel powered generators and renewable power sources such as photovoltaic arrays and wind...conducted an experiment where he assessed the capabilities of the HOMER model in forecasting the power output of a solar panel at NPS [32]. In his ex...energy efficiency in expeditionary operations, the HOMER micropower optimization model provides potential to serve as a powerful tool for improving
Chaotic electron transport in semiconductor devices
NASA Astrophysics Data System (ADS)
Scannell, William Christian
The field of quantum chaos investigates the quantum mechanical behavior of classically chaotic systems. This dissertation begins by describing an experiment conducted on an apparatus constructed to represent a three dimensional analog of a classically chaotic system. Patterns of reflected light are shown to produce fractals, and the behavior of the fractal dimension D F is shown to depend on the light's ability to escape the apparatus. The classically chaotic system is then used to investigate the conductance properties of semiconductor heterostructures engineered to produce a conducting plane relatively free of impurities and defects. Introducing walls that inhibit conduction to partition off sections considerably smaller than the mean distance between impurities defines devices called 'billiards'. Cooling to low temperatures enables the electrons traveling through the billiard to maintain quantum mechanical phase. Exposure to a changing electric or magnetic field alters the electron's phase, leading to fluctuations in the conductance through the billiard. Magnetoconductance fluctuations in billiards have previously been shown to be fractal. This behavior has been charted using an empirical parameter, Q, that is a measure of the resolution of the energy levels within the billiard. The relationship with Q is shown to extend beyond the ballistic regime into the 'quasi-ballistic' and 'diffusive' regimes, characterized by having defects within the conduction plane. A model analogous to the classically chaotic system is proposed as the origin of the fractal conductance fluctuations. This model is shown to be consistent with experiment and to account for changes of fine scale features in MCF known to occur when a billiard is brought to room temperature between low temperature measurements. An experiment is conducted in which fractal conductance fluctuations (FCF) are produced by exposing a billiard to a changing electric field. Comparison of DF values of FCF produced by electric fields is made to FCF produced by magnetic fields. FCF with high DF values are shown to de-correlate at smaller increments of field than the FCF with lower DF values. This indicates that FCF may be used as a novel sensor of external fields, so the response of FCF to high bias voltages is investigated.
Connors, P; Bednar, C; Klammer, S
2001-01-01
This study was conducted to identify factors that influenced milk-drinking behaviors of elementary school children in North Texas. Ten focus groups with a total of 41 children aged 6 to 11 years were conducted using a grounded theory approach. Based on the principles of Social Learning Theory, milk preferences and health beliefs were identified as personal factors that influenced drinking. Cafeteria rules, milk flavor, product packaging, modeling by adults, and shared experiences were environmental factors. The data suggest that school cafeterias can capitalize on their unique position to offer milk-drinking opportunities that children can share to combine nutrition education with sensory experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aviles-Ramos, Cuauhtemoc
A thermal decomposition model for PBX 9501 (95% HMX, 2.5% Estane® binder, 2.5% BDNPA/F nitro-plasticizer) was implemented by Dickson, et. al. The objective in this study is to estimate parameters associated with this kinetics model so it can be applied to carry out thermal ignition predictions for LX-07 (90% HMX, 10% Viton binder). LX-07 thermal ignition experiments have been carried out using the “Sandia Instrumented Thermal Ignition Apparatus”, SITI. The SITI design consists of solid cylinders (1” diameter × 1” height) of high explosive (HE) confined by a cylindrical aluminum case. An electric heater is wrapped around the outer surfacemore » of the case. This heater produces a temperature heating ramp on the outer surface of the case. Internal thermocouples measure the HE temperature rise from the center to locations close to the HE-aluminum interface. The energetic material is heated until thermal ignition occurs. A two–dimensional axisymmetric heat conduction finite element model is used to simulate these experiments. The HE thermal decomposition kinetics is coupled to a heat conduction model trough the definition of an energy source term. The parameters used to define the HE thermal decomposition model are optimized to obtain a good agreement with the experimental time to thermal ignition and temperatures. Also, heat capacity and thermal conductivity of the LX-07 mixture were estimated using temperatures measured at the center of the HE before the solid to solid HMX phase transition occurred.« less
Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E
2018-09-01
In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Berg, Steven J.; Illman, Walter A.
2012-11-01
SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.
Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling
NASA Astrophysics Data System (ADS)
Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain
2016-09-01
Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.
Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load
NASA Astrophysics Data System (ADS)
Hu, Yumei; Xiao, Yue; Jin, Xiaoqing; Zheng, Haoran; Zhou, Yinge; Shao, Jinhua
2016-11-01
Using the combination of experiment and simulation, the fracture behavior of the brittle metal named ADC12 aluminum alloy was studied. Five typical experiments were carried out on this material, with responding data collected on different stress states and dynamic strain rates. Fractographs revealed that the morphologies of fractured specimen under several rates showed different results, indicating that the fracture was predominantly a brittle one in nature. Simulations of the fracture processes of those specimens were conducted by Finite Element Method, whilst consistency was observed between simulations and experiments. In simulation, the Johnson- Cook model was chosen to describe the damage development and to predict the failure using parameters determined from those experimental data. Subsequently, an ADC12 engine mount bracket crashing simulation was conducted and the results indicated good agreement with the experiments. The accordance showed that our research can provide an accurate description for the deforming and fracture processes of the studied alloy.
Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis
NASA Astrophysics Data System (ADS)
Lorenzi, Bruno; Dettori, Riccardo; Dunham, Marc T.; Melis, Claudio; Tonini, Rita; Colombo, Luciano; Sood, Aditya; Goodson, Kenneth E.; Narducci, Dario
2018-05-01
Ideal thermoelectric materials should possess low thermal conductivity κ along with high electrical conductivity σ . Thus, strategies are needed to impede the propagation of phonons mostly responsible for thermal conduction while only marginally affecting charge carrier diffusion. Defect engineering may provide tools to fulfill this aim, provided that one can achieve an adequate understanding of the role played by multiple morphological defects in scattering thermal energy carriers. In this paper, we study how various morphological defects such as grain boundaries and dispersed nanovoids reduce the thermal conductivity of silicon. A blended approach has been adopted, using data from both simulations and experiments in order to cover a wide range of defect densities. We show that the co-presence of morphological defects with different characteristic scattering length scales is effective in reducing the thermal conductivity. We also point out that non-gray models (i.e. models with spectral resolution) are required to improve the accuracy of predictive models explaining the dependence of κ on the density of morphological defects. Finally, the application of spectral models to Matthiessen's rule is critically addressed with the aim of arriving at a compact model of phonon scattering in highly defective materials showing that non-local descriptors would be needed to account for lattice distortion due to nanometric voids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Kleeck, M.; Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; Willit, J.
A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling.more » In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.« less
Evaluation of snow modeling with Noah and Noah-MP land surface models in NCEP GFS/CFS system
NASA Astrophysics Data System (ADS)
Dong, J.; Ek, M. B.; Wei, H.; Meng, J.
2017-12-01
Land surface serves as lower boundary forcing in global forecast system (GFS) and climate forecast system (CFS), simulating interactions between land and the atmosphere. Understanding the underlying land model physics is a key to improving weather and seasonal prediction skills. With the upgrades in land model physics (e.g., release of newer versions of a land model), different land initializations, changes in parameterization schemes used in the land model (e.g., land physical parametrization options), and how the land impact is handled (e.g., physics ensemble approach), it always prompts the necessity that climate prediction experiments need to be re-conducted to examine its impact. The current NASA LIS (version 7) integrates NOAA operational land surface and hydrological models (NCEP's Noah, versions from 2.7.1 to 3.6 and the future Noah-MP), high-resolution satellite and observational data, and land DA tools. The newer versions of the Noah LSM used in operational models have a variety of enhancements compared to older versions, where the Noah-MP allows for different physics parameterization options and the choice could have large impact on physical processes underlying seasonal predictions. These impacts need to be reexamined before implemented into NCEP operational systems. A set of offline numerical experiments driven by the GFS forecast forcing have been conducted to evaluate the impact of snow modeling with daily Global Historical Climatology Network (GHCN).
Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments
Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...
2016-06-13
We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Navinder; Sharma, Raman
In the underdoped regime of the cuprate phase diagram, the modified version of the Resonance Valence Bond (RVB) model by Yang, Rice and Zhang (YRZ) captures the strong electronic correlation effects very well as corroborated by the ARPES and many other experiments. However, under a non-equilibrium transport setting, YRZ says nothing about the scattering mechanisms of the charge carriers. In the present investigation we include, in a very simplified way, the scattering of charge carriers due to antiferromagnetic type spin waves (ASW). The effect of ASW excitations on conductivity has been studied by changing combined life times of the includedmore » process. It has been found that there is a qualitative change in the conductivity in the right direction. The theoretical conductivity reproduces qualitatively the experimental one.« less
Conductive mechanism in manganite materials
NASA Astrophysics Data System (ADS)
Liu, Xianming; Zhu, Hong; Zhang, Yuheng
2002-01-01
We describe a model in which f(T)=M(T)/Mmax represents both the fraction of the itinerant electron density in the double-exchange (DE) theory and the magnetization σ in the current carrier density collapse (CCDC) theory. With this model, we have checked the DE and CCDC theories with our experimental results of the transport behavior. The DE theory yields agreement with the experimental resistivity excellently, in which the conductivity is the sum of the polaronic and itinerant electronic conductivity for the insulator-metal transition regime. The fitting curves of the resistivity by the CCDC theory deviate from the experiment seriously. This might be caused by the improper assumption of the temperature-dependent carrier density and the temperature-independent carrier mobility. Therefore, it is concluded that the DE theory is more suitable to explain the conductive mechanism in perovskite manganites.
Predicting Perceptual Success with Segments: A Test of Japanese Speakers of Russian
ERIC Educational Resources Information Center
Larson-Hall, J.
2004-01-01
A perception experiment involving a novel language pairing, that of Japanese as a first language (L1) and Russian as a second language (L2), was conducted with 33 Japanese learners of Russian to determine whether two phonological models could successfully predict patterns of perceptual difficulty with eight Russian segments. The Featural Model of…
ERIC Educational Resources Information Center
Chen, Baoguo; Zhou, Huixia; Gao, Yiwen; Dunlap, Susan
2014-01-01
The present study aimed to test the Sense Model of cross-linguistic masked translation priming asymmetry, proposed by Finkbeiner et al. ("J Mem Lang" 51:1-22, 2004), by manipulating the number of senses that bilingual participants associated with words from both languages. Three lexical decision experiments were conducted with…
Inverse estimation of parameters for an estuarine eutrophication model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, J.; Kuo, A.Y.
1996-11-01
An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less
ERIC Educational Resources Information Center
Lorton, Paul, Jr.
EXPER-SIM (Experiment Simulation) is an instructional approach (with supporting computer programs) which allows an instructor to build a theory based model of how data would occur if an experiment were actually conducted in a world where the theory held true. The LESS version of EXPER-SIM was adapted to run on the Hewlett-Packard 2000E timesharing…
ERIC Educational Resources Information Center
Judge, Sarah; Delgaty, Laura; Broughton, Mark; Dyter, Laura; Grimes, Callum; Metcalf, James; Nicholson, Rose; Pennock, Erin; Jankowski, Karl
2017-01-01
A team of six children (13-14 years old) developed and conducted an experiment to assess the behaviour of the planarian flatworm, an invertebrate animal model, before, during and after exposure to chemicals. The aim of the project was to engage children in pharmacology and toxicology research. First, the concept that exposure to chemicals can…
Recent Experiments with INQUERY
1995-11-01
were conducted with version of the INQUERY information retrieval system INQUERY is based on the Bayesian inference network retrieval model It is...corpus based query expansion For TREC a subset of of the adhoc document set was used to build the InFinder database None of the...experiments that showed signi cant improvements in retrieval eectiveness when document rankings based on the entire document text are combined with
Xylem anisotropy and water transport--a model for the double sawcut experiment
Paul J. Schulte; David G. Costa
2010-01-01
Early experiments with overlapping cuts to the stems of trees demonstrated that lateral flow within the stem must be possible to allow such trees to maintain water flow to their leaves. We present a mathematical approach to considering lateral flow in stems by treating the xylem as an anisotropic medium for flow and develop an expression of its conductivity in the form...
ERIC Educational Resources Information Center
Shernoff, Elisa S.; Lekwa, Adam J.; Reddy, Linda A.; Coccaro, Candace
2017-01-01
The purpose of this qualitative study was to examine teachers' attitudes and experiences with coaching. This study was conducted in advance of a planned randomized controlled trial of a coaching intervention to better align the model with teachers' needs and goals. Thirty-four K-5 general (n = 26), special education (n = 6), and educational…
Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston
2017-01-01
We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...
Large Scale Experiments on Spacecraft Fire Safety
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary A.; Minster, Olivier; Toth, Balazs; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Legros, Guillaume; Eigenbrod, Christian;
2012-01-01
Full scale fire testing complemented by computer modelling has provided significant know how about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation and technology development. This paper presents the objectives, status and concept of this project.
Large Scale Experiments on Spacecraft Fire Safety
NASA Technical Reports Server (NTRS)
Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu;
2012-01-01
Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being developed by an international topical team that is collaboratively defining the experiment requirements and performing supporting analysis, experimentation and technology development. This paper presents the objectives, status and concept of this project.
Modeling microbial products in activated sludge under feast-famine conditions.
Ni, Bing-Jie; Fang, Fang; Rittmann, Bruce E; Yu, Han-Qing
2009-04-01
We develop an expanded unified model that integrates production and consumption of internal storage products (X(STO)) into a unified model for extracellular polymeric substances (EPS), soluble microbial products (SMP), and active and inert biomass in activated sludge. We also conducted independent experiments to find needed parameter values and to test the ability of the expanded unified model to describe all the microbial products, along with original substrate and oxygen uptake. The model simulations match all experimental measurements and provide insights into the dynamics of soluble and solid components in activated sludge exposed to dynamic feast-and-famine conditions in two batch experiments and in one cycle of a sequencing batch reactor. In particular, the model illustrates how X(STO) cycles up and down rapidly during feast and famine periods, while EPS and biomass components are relatively stable despite feast and famine. The agreement between model outputs and experimental EPS, SMP, and X(STO) data from distinctly different experiments supports that the expanded unified model properly captures the relationships among the forms of microbial products.
The influence of particle shape on dielectric enhancement in metal-insulator composites
NASA Astrophysics Data System (ADS)
Doyle, W. T.; Jacobs, I. S.
1992-04-01
Disordered suspensions of conducting particles exhibit substantial permittivity enhancements beyond the predictions of the Clausius-Mossotti equation and other purely dipolar approximations. The magnitude of the enhancement depends upon the shape of the particles. A recently developed effective cluster model for spherical particles [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension as a mixture, or mesosuspension, of isolated spheres and close-packed spherical clusters of arbitrary size is in excellent agreement with experiments on well-stirred suspensions of spheres over the entire accessible range of volume loading. In this paper, the effective cluster model is extended to be applicable to disordered suspensions of arbitrarily shaped conducting particles. Two physical parameters are used to characterize a general suspension: the angular average polarizability of an isolated particle, and the volume loading at closest packing of the suspension. Multipole interactions within the clusters are treated exactly. External particle-shape-dependent interactions between clusters and isolated particles are treated in the dipole approximation in two ways: explicitly, using the Clausius-Mossotti equation, and implicitly, using the Wiener equation. Both versions of the model are used to find the permittivity of a monodisperse suspension of conducting spheroids, for which the model parameters can be determined independently. The two versions are in good agreement when the axial ratio of the particles is not extreme. The Clausius-Mossotti version of the model yields a mesoscopic analogue of the dielectric virial expansion. It is limited to small volume loadings when the particles have an extremely nonspherical shape. The Wiener equation version of the model holds at all volume loadings for particles of arbitrary shape. Comparison of the two versions of the model leads to a simple physical interpretation of Wiener's equation. The models are compared with experiments of Kelly, Stenoien, and Isbell [J. Appl. Phys. 24, 258 (1953)] on aluminum and zinc particles in paraffin, with Nasuhoglu's experiments on iron particles in oil [Commun. Fac. Sci. Univ. Ankara 4, 108 (1952)], and with new X-band and Kα-band permittivity measurements on Ni-Cr alloy particles in a polyurethane binder.
Mechanical properties of lunar regolith and lunar soil simulant
NASA Technical Reports Server (NTRS)
Perkins, Steven W.
1989-01-01
Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.
2016-01-01
Objective: Cognitive–behavioral models of chronic fatigue syndrome (CFS) propose that patients respond to symptoms with 2 predominant activity patterns—activity limitation and all-or-nothing behaviors—both of which may contribute to illness persistence. The current study investigated whether activity patterns occurred at the same time as, or followed on from, patient symptom experience and affect. Method: Twenty-three adults with CFS were recruited from U.K. CFS services. Experience sampling methodology (ESM) was used to assess fluctuations in patient symptom experience, affect, and activity management patterns over 10 assessments per day for a total of 6 days. Assessments were conducted within patients’ daily life and were delivered through an app on touchscreen Android mobile phones. Multilevel model analyses were conducted to examine the role of self-reported patient fatigue, pain, and affect as predictors of change in activity patterns at the same and subsequent assessment. Results: Current experience of fatigue-related symptoms and pain predicted higher patient activity limitation at the current and subsequent assessments whereas subjective wellness predicted higher all-or-nothing behavior at both times. Current pain predicted less all-or-nothing behavior at the subsequent assessment. In contrast to hypotheses, current positive affect was predictive of current activity limitation whereas current negative affect was predictive of current all-or-nothing behavior. Both activity patterns varied at the momentary level. Conclusions: Patient symptom experiences appear to be driving patient activity management patterns in line with the cognitive–behavioral model of CFS. ESM offers a useful method for examining multiple interacting variables within the context of patients’ daily life. PMID:27819461
Boyette, Lindy-Lou; van Dam, Daniëlla; Meijer, Carin; Velthorst, Eva; Cahn, Wiepke; de Haan, Lieuwe; Kahn, René; de Haan, Lieuwe; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; Meijer, Carin; Myin-Germeys, Inez
2014-11-01
Patients with psychotic disorders who experienced childhood trauma show more social dysfunction than patients without traumatic experiences. However, this may not hold for all patients with traumatic experiences. Little is known about the potential compensating role of Five-Factor Model personality traits within this group, despite their strong predictive value for social functioning and well-being in the general population. Our sample consisted of 195 patients with psychotic disorders (74% diagnosed with schizophrenia) and 132 controls. Cluster analyses were conducted to identify and validate distinct personality profiles. General linear model analyses were conducted to examine whether patients with different profiles differed in social functioning and quality of life (QoL), while controlling for possible confounders. Mediation models were tested to assess potential causal links. In general, patients with higher levels of self-reported traumatic experiences (PT+) showed lower QoL and more social withdrawal compared with patients with lower traumatic experiences (PT-). Two clusters reflecting personality profiles were identified. PT+ with the first profile (lower neuroticism and higher extraversion, openness, agreeableness, and conscientiousness) presented higher levels of QoL and better social functioning in several areas, including less withdrawal, compared with both PT+ and PT- with the second profile. PT+ and PT- with the first personality profile did not differ in QoL and social functioning. Mediation analyses suggested that personality traits mediate the relation between traumatic experiences and QoL and social withdrawal. Our findings indicate that personality may "buffer" the impact of childhood traumatic experiences on functional outcome in patients with psychotic disorders. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu
2017-10-01
We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the extraction of volatiles from the plume mantle by the ocean island basalt (OIB) magmatism.
Modeling duckweed growth in wastewater treatment systems
Landesman, L.; Parker, N.C.; Fedler, C.B.; Konikoff, M.
2005-01-01
Species of the genera Lemnaceae, or duckweeds, are floating aquatic plants that show great promise for both wastewater treatment and livestock feed production. Research conducted in the Southern High Plains of Texas has shown that Lemna obscura grew well in cattle feedlot runoff water and produced leaf tissue with a high protein content. A model or mathematical expression derived from duckweed growth data was used to fit data from experiments conducted in a greenhouse in Lubbock, Texas. The relationship between duckweed growth and the total nitrogen concentration in the mediium follows the Mitscherlich Function and is similar to that of other plants. Empirically derived model equations have successfully predicted the growth response of Lemna obscura.
An experimental investigation of the NASA space shuttle external tank at hypersonic Mach numbers
NASA Technical Reports Server (NTRS)
Wittliff, C. E.
1975-01-01
Pressure and heat transfer tests were conducted simulating flight conditions which the space shuttle external tank will experience prior to break-up. The tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel and simulated entry conditions for nominal, abort-once-around (AOA), and return to launch site (RTLS) launch occurrences. Surface pressure and heat-transfer-rate distributions were obtained with and without various protuberences (or exterior hardware) on the model at Mach numbers from 15.2 to 17.7 at angles of attack from -15 deg to -180 deg and at several roll angles. The tests were conducted over a Reynolds number range from 1300 to 58,000, based on model length.
Modeling of natural organic matter transport processes in groundwater.
Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M
1995-01-01
A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798
Particle size reduction of propellants by cryocycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whinnery, L.; Griffiths, S.; Lipkin, J.
1995-05-01
Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.
Theory of passive proton conductance in lipid bilayers.
Nagle, J F
1987-10-01
The large permeability of lipid bilayers to protons compared to other small ions calls for a special proton transport mechanism. At the present time, only mechanisms involving transient hydrogen-bonded chains of water can account for the experimental result that the conductance is nearly independent of pH. Three models involving transient hydrogen-bonded chains are discussed, including an outline of the kinetic calculations that lead to predictions of current versus voltage drop and current versus pH differences. These calculations can be compared to experiment to determine which, if any, of these models pertains to lipid bilayers.
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
Quantum Mechanical Modeling of Ballistic MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)
2001-01-01
The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.
Modeling Techniques for Shipboard Manning: A Review and Plan for Development
1993-02-01
manning levels. Once manning models have been created, experiments can be conducted to show how changes in the manning structure might affect ship safety...these predictions, users of the manning models can evaluate how changes in crew configurations, manning levels, and voyage profiles affect ship safety...mitigate emergency situations would provide crucial information on how changes in manning structure would affect overall ship safety. Like emergency
JPRS Report, Science & Technology China: Energy
1992-09-23
combined actual models and math - ematical models to conduct the research and established a total of nine actual models with boundary conditions supplied...10,000 ton-grade flotillas after the Three Gorges project is completed. Simulation experiments of actual passage of 10,000 ton-grade flotillas at...excavate the deep trench for the core wall of the weir for the second phase. Concrete tank cars, spreaders, and other equipment were also devel- oped
NASA Downscaling Project: Final Report
NASA Technical Reports Server (NTRS)
Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa
2017-01-01
A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA - 2 reanalyses were used to drive the NU - WRF regional climate model and a GEOS - 5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000 - 2010. The results of these experiments were compared to observational datasets to evaluate the output.
Development of a Scale-up Tool for Pervaporation Processes
Thiess, Holger; Strube, Jochen
2018-01-01
In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956
NASA Technical Reports Server (NTRS)
Ferraro, Robert; Waliser, Duane; Peters-Lidard, Christa
2017-01-01
A team of researchers from NASA Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, and Marshall Space Flight Center, along with university partners at UCLA, conducted an investigation to explore whether downscaling coarse resolution global climate model (GCM) predictions might provide valid insights into the regional impacts sought by decision makers. Since the computational cost of running global models at high spatial resolution for any useful climate scale period is prohibitive, the hope for downscaling is that a coarse resolution GCM provides sufficiently accurate synoptic scale information for a regional climate model (RCM) to accurately develop fine scale features that represent the regional impacts of a changing climate. As a proxy for a prognostic climate forecast model, and so that ground truth in the form of satellite and in-situ observations could be used for evaluation, the MERRA and MERRA-2 reanalyses were used to drive the NU-WRF regional climate model and a GEOS-5 replay. This was performed at various resolutions that were at factors of 2 to 10 higher than the reanalysis forcing. A number of experiments were conducted that varied resolution, model parameterizations, and intermediate scale nudging, for simulations over the continental US during the period from 2000-2010. The results of these experiments were compared to observational datasets to evaluate the output.
Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge
2015-11-20
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material.
Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge
2015-01-01
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material. PMID:28793682
NASA Astrophysics Data System (ADS)
El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.
2018-06-01
This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.
NASA Astrophysics Data System (ADS)
El-Qoubaa, Z.; Colard, L.; Matadi Boumbimba, R.; Rusinek, A.
2018-03-01
This paper concerns an experimental investigation of Polycarbonate and Poly (methyl methacrylate) compressive behavior from low to high strain rates. Experiments were conducted from 0.001/s to ≈ 5000/s for PC and from 0.001/s to ≈ 2000/s for PMMA. The true strain-stress behavior is established and analyzed at various stain rates. Both PC and PMMA mechanical behavior appears as known, to be strain rate and temperature dependent. The DSGZ model is selected for modelling the strain-stress curves while the yield stress is reproduced using the cooperative model and a modified Eyring equation based on Eyring first process theory. All the three models predictions are in agreement with experiments performed on PC and PMMA.
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Nihei, N.; Ueda, Y.; Moldrup, P.; Nishimura, T.
2016-12-01
The micro- and nano-bubbles (MNBs) have considerable potentials for the remediation of soil contaminated by organic compounds when used in conjunction with bioremediation technology. Understanding a transport mechanism of MNBs in soils is essential to optimize remediation techniques using MNBs. In this study, column transport experiments using glass beads with different size fractions (average particles size: 0.1 mm and 0.4 mm) were conducted, where MNBs created by oxygen gas were injected to the column with different flow rates. Effects of particle size and bubble characteristics on MNB transport in porous media were investigated based on the column experiments. The results showed that attachments of MNBs were enhanced under lower flow rate. Under higher flow rate condition, there were not significant differences of MNBs transport in porous media with different particle size. A convection-dispersion model including bubble attachment, detachment, and straining terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data. Further investigations will be conducted to understand bubble characteristics including bubble size and zeta potential on MNB transport in porous media. Relations between in model parameters in the transport model and physical and chemical properties in porous media and MNBs will be discussed.
NASA Astrophysics Data System (ADS)
Yang, Chungja
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.
NASA Astrophysics Data System (ADS)
Zhang, Guohe; Lai, Junhua; Kong, Yanmei; Jiao, Binbin; Yun, Shichang; Ye, Yuxin
2018-05-01
Ultra-low pressure application of Pirani gauge needs significant improvement of sensitivity and expansion of measureable low pressure limit. However, the performance of Pirani gauge in high vacuum regime remains critical concerns since gaseous thermal conduction with high percentage is essential requirement. In this work, the heat transfer mechanism of micro-Pirani gauge packaged in a non-hermetic chamber was investigated and analyzed compared with the one before wafer-level packaging. The cavity effect, extremely important for the efficient detection of low pressure, was numerically and experimentally analyzed considering the influence of the pressure, the temperature and the effective heat transfer area in micro-Pirani gauge chamber. The thermal conduction model is validated by experiment data of MEMS Pirani gauges with and without capping. It is found that nature gaseous convection in chamber, determined by the Rayleigh number, should be taken into consideration. The experiment and model calculated results show that thermal resistance increases in the molecule regime, and further increases after capping due to the suppression of gaseous convection. The gaseous thermal conduction accounts for an increasing percentage of thermal conduction at low pressure while little changes at high pressure after capping because of the existence of cavity effect improving the sensitivity of cavity-effect-influenced Pirani gauge for high vacuum regime.
Aerodynamic and torque characteristics of enclosed Co/counter rotating disks
NASA Astrophysics Data System (ADS)
Daniels, W. A.; Johnson, B. V.; Graber, D. J.
1989-06-01
Experiments were conducted to determine the aerodynamic and torque characteristics of adjacent rotating disks enclosed in a shroud, in order to obtain an extended data base for advanced turbine designs such as the counterrotating turbine. Torque measurements were obtained on both disks in the rotating frame of reference for corotating, counterrotating and one-rotating/one-static disk conditions. The disk models used in the experiments included disks with typical smooth turbine geometry, disks with bolts, disks with bolts and partial bolt covers, and flat disks. A windage diaphragm was installed at mid-cavity for some experiments. The experiments were conducted with various amounts of coolant throughflow injected into the disk cavity from the disk hub or from the disk OD with swirl. The experiments were conducted at disk tangential Reynolds number up to 1.6 x 10 to the 7th with air as the working fluid. The results of this investigation indicated that the static shroud contributes a significant amount to the total friction within the disk system; the torque on counterrotating disks is essentially independent of coolant flow total rate, flow direction, and tangential Reynolds number over the range of conditions tested; and a static windage diaphragm reduces disk friction in counterrotating disk systems.
Electrode Models for Electric Current Computed Tomography
CHENG, KUO-SHENG; ISAACSON, DAVID; NEWELL, J. C.; GISSER, DAVID G.
2016-01-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 Ω · cm were studied. Values of “effective” contact impedance z used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 Ω · cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an “effective” contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field. PMID:2777280
Electrode models for electric current computed tomography.
Cheng, K S; Isaacson, D; Newell, J C; Gisser, D G
1989-09-01
This paper develops a mathematical model for the physical properties of electrodes suitable for use in electric current computed tomography (ECCT). The model includes the effects of discretization, shunt, and contact impedance. The complete model was validated by experiment. Bath resistivities of 284.0, 139.7, 62.3, 29.5 omega.cm were studied. Values of "effective" contact impedance zeta used in the numerical approximations were 58.0, 35.0, 15.0, and 7.5 omega.cm2, respectively. Agreement between the calculated and experimentally measured values was excellent throughout the range of bath conductivities studied. It is desirable in electrical impedance imaging systems to model the observed voltages to the same precision as they are measured in order to be able to make the highest resolution reconstructions of the internal conductivity that the measurement precision allows. The complete electrode model, which includes the effects of discretization of the current pattern, the shunt effect due to the highly conductive electrode material, and the effect of an "effective" contact impedance, allows calculation of the voltages due to any current pattern applied to a homogeneous resistivity field.
Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel
NASA Astrophysics Data System (ADS)
Lewis, operating defective fuel B. J.; Thompson, W. T.; Akbari, F.; Thompson, D. M.; Thurgood, C.; Higgs, J.
2004-07-01
A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor.
Moving Base Simulation of an ASTOVL Lift-Fan Aircraft
DOT National Transportation Integrated Search
1995-08-01
Using a generalized simulation model, a moving-base simulation of a lift-fan : short takeoff/vertical landing fighter aircraft was conducted on the Vertical : Motion Simulator at Ames Research Center. Objectives of the experiment were to : (1)assess ...
The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform
NASA Astrophysics Data System (ADS)
Bhattacharya, S.
2018-02-01
Life science research on the Deep Space Gateway platform is an important precursor for long term human exploration of deep space. Ideas for utilizing flight hardware and well characterized model organisms will be discussed.
Appreciative Pedagogy: Constructing Positive Models for Learning.
ERIC Educational Resources Information Center
Yballe, Leodones; O'Connor, Dennis
2000-01-01
Appreciative inquiry, an approach focused on generation of a vision for an organization, may be adapted for management classes. Students and teachers conduct collaborative inquiry into successful experiences, creating positive images that generate positive action in the classroom. (SK)
Testing the Structure of Hydrological Models using Genetic Programming
NASA Astrophysics Data System (ADS)
Selle, B.; Muttil, N.
2009-04-01
Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Uccellini, Louis W.; Peterson, Ralph A.; Tuccillo, James J.
1987-01-01
Numerical experiments to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) using the assimilation technique developed by Gal-Chen (1986) modified for use in the Mesoscale Atmospheric Simulation System (MASS) model were conducted. The scheme is designed to utilize the high temporal and horizontal resolution of satellite retrievals while maintaining the fine vertical structure generated by the model. This is accomplished by adjusting the model lapse rates to reflect thicknesses retrieved from VAS and applying a three-dimensional variational that preserves the distribution of the geopotential fields in the model. A nudging technique whereby the model temperature fields are gradually adjusted toward the updated temperature fields during model integration is also tested. An adiabatic version of MASS is used in all experiments to better isolate mass-momentum imbalances. The method has a sustained impact over an 18 hr model simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit
The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report,more » we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.« less
Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan
2006-06-01
In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.
Systems-Oriented Workplace Learning Experiences for Early Learners: Three Models.
O'Brien, Bridget C; Bachhuber, Melissa R; Teherani, Arianne; Iker, Theresa M; Batt, Joanne; O'Sullivan, Patricia S
2017-05-01
Early workplace learning experiences may be effective for learning systems-based practice. This study explores systems-oriented workplace learning experiences (SOWLEs) for early learners to suggest a framework for their development. The authors used a two-phase qualitative case study design. In Phase 1 (spring 2014), they prepared case write-ups based on transcribed interviews from 10 SOWLE leaders at the authors' institution and, through comparative analysis of cases, identified three SOWLE models. In Phase 2 (summer 2014), studying seven 8-week SOWLE pilots, the authors used interview and observational data collected from the seven participating medical students, two pharmacy students, and site leaders to construct case write-ups of each pilot and to verify and elaborate the models. In Model 1, students performed specific patient care activities that addressed a system gap. Some site leaders helped students connect the activities to larger systems problems and potential improvements. In Model 2, students participated in predetermined systems improvement (SI) projects, gaining experience in the improvement process. Site leaders had experience in SI and often had significant roles in the projects. In Model 3, students worked with key stakeholders to develop a project and conduct a small test of change. They experienced most elements of an improvement cycle. Site leaders often had experience with SI and knew how to guide and support students' learning. Each model could offer systems-oriented learning opportunities provided that key elements are in place including site leaders facile in SI concepts and able to guide students in SOWLE activities.
The Utility of Gas Gun Experiments in Developing Equations of State
NASA Astrophysics Data System (ADS)
Pittman, Emily; Hagelberg, Carl; Ramsey, Scott
2016-11-01
Gas gun experiments have the potential to investigate material properties in various well defined shock conditions, making them a valuable research tool for the development of equations of state (EOS) and material response under shock loading. Gas guns have the ability to create shocks for loading to pressures ranging from MPa to GPa. A variety of diagnostics techniques can be used to gather data from gas gun experiments; resulting data from these experiments is applicable to many fields of study. The focus of this set of experiments is the development of data on the Hugoniot for the overdriven products EOS of PBX 9501 to extend data from which current computational EOS models draw. This series of shots was conducted by M-9 using the two-stage gas-guns at LANL and aimed to gather data within the 30-120 GPa pressure regime. The experiment was replicated using FLAG, a Langrangian multiphysics code, using a one-dimensional setup which employs the Wescott Stewart Davis (WSD) reactive burn model. Prior to this series, data did not extend into this higher range, so the new data allowed for the model to be re-evaluated. A comparison of the results to the experimental data reveals that the model is a good fit to the data below 40 GPa. However, the model did not fall within the error bars for pressures above this region. This is an indication that the material models or burn model could be modified to better match the data.
Frequency domain fluorescence diffuse tomography of small animals
NASA Astrophysics Data System (ADS)
Orlova, Anna G.; Turchin, Ilya V.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Balalaeva, Irina V.; Sergeeva, Ekaterina A.; Shirmanova, Marina V.; Kleshnin, Michail S.
2007-05-01
Fluorescent compounds for selective cancer cell marking are used for development of novel medical diagnostic methods, investigation of the influence of external factors on tumor growth, regress and metastasis. Only special tools for turbid media imaging, such as optical diffusion tomography permit noninvasive monitoring of fluorescent-labeled tumor alterations deep in animal tissue. In this work, the results of preliminary experiments utilizing frequency-domain fluorescent diffusion tomography (FD FDT) experimental setup in small animal are presented. Low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm was used in the setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Models of deep tumors were created by two methods: (1) glass capsules containing fluorophore solution were inserted into esophagus of small animals to simulate marked tumors; (2) a suspension of transfected HEΚ293-Turbo-RFP cells was subcutaneously injected to small animal. The conducted experiments have shown that FD FDT allows one to detect the presence of labeled tumor cells in small animals, to determine the volume of an experimental tumor, to perform 3D tumor reconstruction, as well as to conduct monitoring investigations. The obtained results demonstrate the potential capability of the FD FDT method for noninvasive whole-body imaging in cancer studies, diagnostics and therapy.
A drain current model for amorphous InGaZnO thin film transistors considering temperature effects
NASA Astrophysics Data System (ADS)
Cai, M. X.; Yao, R. H.
2018-03-01
Temperature dependent electrical characteristics of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) are investigated considering the percolation and multiple trapping and release (MTR) conduction mechanisms. Carrier-density and temperature dependent carrier mobility in a-IGZO is derived with the Boltzmann transport equation, which is affected by potential barriers above the conduction band edge with Gaussian-like distributions. The free and trapped charge densities in the channel are calculated with Fermi-Dirac statistics, and the field effective mobility of a-IGZO TFTs is then deduced based on the MTR theory. Temperature dependent drain current model for a-IGZO TFTs is finally derived with the obtained low field mobility and free charge density, which is applicable to both non-degenerate and degenerate conductions. This physical-based model is verified by available experiment results at various temperatures.
Krotofil, Joanna; McPherson, Peter; Killaspy, Helen
2018-04-02
Specialist supported accommodation services have become a key component of most community-based mental healthcare systems. While mental health policies highlight the importance of service user involvement in service development and care planning, there are no comprehensive literature reviews synthesising services users' perspectives on, or experiences of, supported accommodation services. This systematic review was undertaken to fill this gap. We searched electronic databases (January 2015, updated June 2017), conducted hand searches and used forward-backward snowballing to identify 13,678 papers. We inspected the full-text of 110 papers and included 50 of these in the final review. Data extraction and quality assessments were conducted. We used narrative synthesis to develop a conceptual model of service users' experiences that included structural, process, relational and contextual factors, such as the characteristics of the service, relationships with staff and other service users, the intensity and nature of support, the physical environment, and social and community integration. The review highlights the complex interplay of individual, service-level and community factors in shaping the lived experience of service users and their impact on personal identity and recovery. Our approach addressed some of the widely reported limitations of the quantitative research in this field, providing a conceptual model relevant to service user experiences across supported accommodation service types, population groups and countries. © 2018 John Wiley & Sons Ltd.
A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi
2007-07-01
A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature,more » pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)« less
Simulation of fluid flows during growth of organic crystals in microgravity
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Sutter, James K.; Balasubramaniam, R.; Fowlis, William K.; Radcliffe, M. D.; Drake, M. C.
1987-01-01
Several counter diffusion type crystal growth experiments were conducted in space. Improvements in crystal size and quality are attributed to reduced natural convection in the microgravity environment. One series of experiments called DMOS (Diffusive Mixing of Organic Solutions) was designed and conducted by researchers at the 3M Corporation and flown by NASA on the space shuttle. Since only limited information about the mixing process is available from the space experiments, a series of ground based experiments was conducted to further investigate the fluid dynamics within the DMOS crystal growth cell. Solutions with density differences in the range of 10 to the -7 to 10 to the -4 power g/cc were used to simulate microgravity conditions. The small density differences were obtained by mixing D2O and H2O. Methylene blue dye was used to enhance flow visualization. The extent of mixing was measured photometrically using the 662 nm absorbance peak of the dye. Results indicate that extensive mixing by natural convection can occur even under microgravity conditions. This is qualitatively consistent with results of a simple scaling analysis. Quantitave results are in close agreement with ongoing computational modeling analysis.
Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS
NASA Technical Reports Server (NTRS)
Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens
2007-01-01
Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.
NASA Astrophysics Data System (ADS)
Chebotarev, Alexander Yu.; Grenkin, Gleb V.; Kovtanyuk, Andrey E.; Botkin, Nikolai D.; Hoffmann, Karl-Heinz
2018-04-01
The paper is concerned with a problem of diffraction type. The study starts with equations of complex (radiative and conductive) heat transfer in a multicomponent domain with Fresnel matching conditions at the interfaces. Applying the diffusion, P1, approximation yields a pair of coupled nonlinear PDEs describing the radiation intensity and temperature for each component of the domain. Matching conditions for these PDEs, imposed at the interfaces between the domain components, are derived. The unique solvability of the obtained problem is proven, and numerical experiments are conducted.
The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15
NASA Technical Reports Server (NTRS)
Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.
2009-01-01
This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering systems involving capillary interface dynamics.
Amone-P Olak, Kennedy; Ovuga, Emilio
2017-05-01
Exposure to war is associated with poor psychosocial outcomes. Yet the effects of different types of war events on various psychosocial outcomes such as conduct problems remain unknown. This study aims to assess whether various war events differ in predicting conduct problems. Using data from an on-going longitudinal research project, the WAYS study, the current article examined the relationship between specific war events and conduct problems in war-affected youth in Northern Uganda (N=539, baseline age=22.39; SD=2.03, range 18-25). Regression analyses were conducted to relate each type of war experience to conduct problems. War categories of "witnessing violence", "deaths", "threat to loved ones" and "sexual abuse" were associated with reporting conduct problems. Multivariable models yielded independent effects of ''witnessing violence'' (β=0.09, 95% CI: 0.01, 0.18) and ''Sexual abuse'' (β=0.09, 95% CI: 0.02, 0.19) on conduct problems while "duration in captivity" independently and negatively predicted conduct problems (β=-0.14, 95% CI: -0.23, -0.06). Types of war events vary in predicting conduct problems and should be considered when designing interventions to alleviate negative consequences of exposure to war. Moreover, longer duration in captivity appear to protect war-affected youth from conduct problems. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Amone-P′Olak, Kennedy; Ovuga, Emilio
2017-01-01
Exposure to war is associated with poor psychosocial outcomes. Yet the effects of different types of war events on various psychosocial outcomes such as conduct problems remain unknown. This study aims to assess whether various war events differ in predicting conduct problems. Using data from an on-going longitudinal research project, the WAYS study, the current article examined the relationship between specific war events and conduct problems in war-affected youth in Northern Uganda (N=539, baseline age=22.39; SD=2.03, range 18– 25). Regression analyses were conducted to relate each type of war experience to conduct problems. War categories of “witnessing violence”, “deaths”, “threat to loved ones” and “sexual abuse” were associated with reporting conduct problems. Multivariable models yielded independent effects of “witnessing violence” (β=0.09, 95% CI: 0.01, 0.18) and “Sexual abuse” (β=0.09, 95% CI: 0.02, 0.19) on conduct problems while “duration in captivity” independently and negatively predicted conduct problems (β=−0.14, 95% CI: −0.23, −0.06). Types of war events vary in predicting conduct problems and should be considered when designing interventions to alleviate negative consequences of exposure to war. Moreover, longer duration in captivity appear to protect war-affected youth from conduct problems. PMID:28171768
NASA Technical Reports Server (NTRS)
Mahan, J. R.; Tira, N. E.; Lee, Robert B., III; Keynton, R. J.
1989-01-01
The Earth Radiation Budget Experiment consists of an array of radiometric instruments placed in earth orbit by the National Aeronautics and Space Administration to monitor the longwave and visible components of the earth's radiation budget. Presented is a dynamic electrothermal model of the active cavity radiometer used to measure the earth's total radiative exitance. Radiative exchange is modeled using the Monte Carlo method and transient conduction is treated using the finite element method. Also included is the feedback circuit which controls electrical substitution heating of the cavity. The model is shown to accurately predict the dynamic response of the instrument during solar calibration.
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
2013-04-05
ISS035-E-014971 (6 April 2013) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015900 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted several runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015679 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted a series of runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2014-07-23
ISS040-E-073120 (23 July 2014) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Reid Wiseman (out of frame), Expedition 40 flight engineer, conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-05
ISS035-E-014987 (6 April 2013) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015827 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted a series of runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2013-04-09
ISS035-E-015930 (10 April 2013) --- This is one of a series of close-up images photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Chris Cassidy (out of frame) conducted several runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
2014-06-27
ISS040-E-023287 (27 June 2014) --- This is a close-up image photographed during a run of the Burning and Suppression of Solids (BASS) experiment onboard the Earth-orbiting International Space Station. Following a series of preparations, NASA astronaut Reid Wiseman (out of frame), Expedition 40 flight engineer, conducted runs of the experiment, which examines the burning and extinction characteristics of a wide variety of fuel samples in microgravity. The experiment is planned for guiding strategies for extinguishing fires in microgravity. BASS results contribute to the combustion computational models used in the design of fire detection and suppression systems in microgravity and on Earth.
Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R
2013-05-31
We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.
Numerical experiments on short-term meteorological effects on solar variability
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.; Hansen, J. E.; Stone, P. H.; Quirk, W. J.; Lacis, A. A.
1975-01-01
A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model.
NASA Technical Reports Server (NTRS)
Kohl, R. E.
1973-01-01
The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.
Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Wagner, J. H.
1996-01-01
An experimental study was conducted (1) to experimentally measure, assess and analyze the heat transfer within the internal cooling configuration of a radial turbine rotor blade and (2) to obtain heat transfer data to evaluate and improve computational fluid dynamics (CFD) procedures and turbulent transport models of internal coolant flows. A 1.15 times scale model of the coolant passages within the NASA LERC High Temperature Radial Turbine was designed, fabricated of Lucite and instrumented for transient beat transfer tests using thin film surface thermocouples and liquid crystals to indicate temperatures. Transient heat transfer tests were conducted for Reynolds numbers of one-fourth, one-half, and equal to the operating Reynolds number for the NASA Turbine. Tests were conducted for stationary and rotating conditions with rotation numbers in the range occurring in the NASA Turbine. Results from the experiments showed the heat transfer characteristics within the coolant passage were affected by rotation. In general, the heat transfer increased and decreased on the sides of the straight radial passages with rotation as previously reported from NASA-HOST-sponsored experiments. The heat transfer in the tri-passage axial flow region adjacent to the blade exit was relatively unaffected by rotation. However, the heat transfer on one surface, in the transitional region between the radial inflow passage and axial, constant radius passages, decreased to approximately 20 percent of the values without rotation. Comparisons with previous 3-D numerical studies indicated regions where the heat transfer characteristics agreed and disagreed with the present experiment.
NASA Astrophysics Data System (ADS)
Maneta, M. P.; Simeone, C.; Dobrowski, S.; Holden, Z.; Sapes, G.; Sala, A.; Begueria, S.
2017-12-01
In semiarid regions, drought-induced seedling mortality is considered to be caused by failure in the tree hydraulic column. Understanding the mechanisms that cause hydraulic failure and death in seedlings is important, among other things, to diagnose where some tree species may fail to regenerate, triggering demographic imbalances in the forest that could result in climate-driven shifts of tree species. Ponderosa pine is a common lower tree line species in the western US. Seedlings of ponderosa pine are often subject to low soil water potentials, which require lower water potentials in the xylem and leaves to maintain the negative pressure gradient that drives water upward. The resilience of the hydraulic column to hydraulic tension is species dependent, but from greenhouse experiments, we have identified general tension thresholds beyond which loss of xylem conductivity becomes critical, and mortality in Ponderosa pine seedlings start to occur. We describe this hydraulic behavior of plants using a mechanistic soil-vegetation-atmosphere transfer model. Before we use this models to understand water-stress induced seedling mortality at the landscape scale, we perform a modeling analysis of the dynamics of soil moisture, transpiration, leaf water potential and loss of plant water conductivity using detailed data from our green house experiments. The analysis is done using a spatially distributed model that simulates water fluxes, energy exchanges and water potentials in the soil-vegetation-atmosphere continuum. Plant hydraulic and physiological parameters of this model were calibrated using Monte Carlo methods against information on soil moisture, soil hydraulic potential, transpiration, leaf water potential and percent loss of conductivity in the xylem. This analysis permits us to construct a full portrait of the parameter space for Ponderosa pine seedling and generate posterior predictive distributions of tree response to understand the sensitivity of transpiration, hydraulic tension in the plant, and percent loss of conductivity to environmental stresses.
NASA Astrophysics Data System (ADS)
Parris, B. A.; Egbert, G. D.; Key, K.; Livelybrooks, D.
2016-12-01
Magnetotellurics (MT) is an electromagnetic technique used to model the inner Earth's electrical conductivity structure. MT data can be analyzed using iterative, linearized inversion techniques to generate models imaging, in particular, conductive partial melts and aqueous fluids that play critical roles in subduction zone processes and volcanism. For example, the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment provides amphibious data useful for imaging subducted fluids from trench to mantle wedge corner. When using MOD3DEM(Egbert et al. 2012), a finite difference inversion package, we have encountered problems inverting, particularly, sea floor stations due to the strong, nearby conductivity gradients. As a work-around, we have found that denser, finer model grids near the land-sea interface produce better inversions, as characterized by reduced data residuals. This is partly to be due to our ability to more accurately capture topography and bathymetry. We are experimenting with improved interpolation schemes that more accurately track EM fields across cell boundaries, with an eye to enhancing the accuracy of the simulated responses and, thus, inversion results. We are adapting how MOD3DEM interpolates EM fields in two ways. The first seeks to improve weighting functions for interpolants to better address current continuity across grid boundaries. Electric fields are interpolated using a tri-linear spline technique, where the eight nearest electrical field estimates are each given weights determined by the technique, a kind of weighted average. We are modifying these weights to include cross-boundary conductivity ratios to better model current continuity. We are also adapting some of the techniques discussed in Shantsev et al (2014) to enhance the accuracy of the interpolated fields calculated by our forward solver, as well as to better approximate the sensitivities passed to the software's Jacobian that are used to generate a new forward model during each iteration of the inversion.
NASA Astrophysics Data System (ADS)
Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.
2012-10-01
The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Experimental basis for a Titan probe organic analysis
NASA Technical Reports Server (NTRS)
Mckay, C. P.; Scattergood, T. W.; Borucki, W. J.; Kasting, J. F.; Miller, S. L.
1986-01-01
The recent Voyager flyby of Titan produced evidence for at least nine organic compounds in that atmosphere that are heavier than methane. Several models of Titan's atmosphere, as well as laboratory simulations, suggest the presence of organics considerably more complex that those observed. To ensure that the in situ measurements are definitive with respect to Titan's atmosphere, experiment concepts, and the related instrumentation, must be carefully developed specifically for such a mission. To this end, the possible composition of the environment to be analyzed must be bracketed and model samples must be provided for instrumentation development studies. Laboratory studies to define the optimum flight experiment and sampling strategy for a Titan entry probe are currently being conducted. Titan mixtures are being subjected to a variety of energy sources including high voltage electron from a DC discharge, high current electric shock, and laser detonation. Gaseous and solid products are produced which are then analyzed. Samples from these experiements are also provided to candidate flight experiments as models for instrument development studies. Preliminary results show that existing theoretical models for chemistry in Titan's atmosphere cannot adequetely explain the presence and abundance of all trace gases observed in these experiments.
Finite element simulation of a novel composite light-weight microporous cladding panel
NASA Astrophysics Data System (ADS)
Tian, Lida; Wang, Dongyan
2018-04-01
A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.
ERIC Educational Resources Information Center
Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G. M.
2008-01-01
Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous…
Biomedical engineering support. Final report, June 15, 1971--June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolff, W.J.; Sandquist, G.; Olsen, D.B.
On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less
Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.
Yates, S R; Ashworth, D J
2018-04-15
Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.
Detached Melt and Vapor Growth of InI in SUBSA Furnace
NASA Technical Reports Server (NTRS)
Ostrogorsky, A. G.; Riabov, V.; Volz, M. P.; van den Berg, L.; Croll, A.
2017-01-01
Indium iodide (InI) is a promising wide energy band gap nuclear detector material. It is ideal for space experiments because it is non-toxic and has a relatively low melting point of only 351 degrees Centigrade. However, it has been established that melt-grown crystals contain a large amount of second phase inclusions/precipitates. The typical size of inclusions are 1 to 27 microns in diameter, while the volume fraction of all sizes is 300 to 600 parts per million. The SEM-EDS (Scanning Electron Microscopy / Energy Dispersive X-Ray Spectroscopy) analysis of the inclusions has revealed that they all contain oxygen and some contain carbon. At present, under sponsorship of NASA and CASIS (Center for the Advancement of Science in Space), we are conducting ground-based experiments with InI in preparation for the flight experiments to be conducted in the SUBSA (Solidification Using a Baffle in Sealed Ampoules) furnace in the Microgravity Science Glovebox at the International Space Station, planned for the summer/fall of 2017. Earth-based experiments include melt and vapor growth conducted in the SUBSA ground unit, measurements of the volumetric expansion coefficient of the melt, and measurements of the wetting angle of molten InI. Finite element modeling has been conducted to optimize the design of the flight ampoules. Alloying with Tl and Ga has given promising results.
NASA Astrophysics Data System (ADS)
Handley, John C.; Babcock, Jason S.; Pelz, Jeff B.
2003-12-01
Image evaluation tasks are often conducted using paired comparisons or ranking. To elicit interval scales, both methods rely on Thurstone's Law of Comparative Judgment in which objects closer in psychological space are more often confused in preference comparisons by a putative discriminal random process. It is often debated whether paired comparisons and ranking yield the same interval scales. An experiment was conducted to assess scale production using paired comparisons and ranking. For this experiment a Pioneer Plasma Display and Apple Cinema Display were used for stimulus presentation. Observers performed rank order and paired comparisons tasks on both displays. For each of five scenes, six images were created by manipulating attributes such as lightness, chroma, and hue using six different settings. The intention was to simulate the variability from a set of digital cameras or scanners. Nineteen subjects, (5 females, 14 males) ranging from 19-51 years of age participated in this experiment. Using a paired comparison model and a ranking model, scales were estimated for each display and image combination yielding ten scale pairs, ostensibly measuring the same psychological scale. The Bradley-Terry model was used for the paired comparisons data and the Bradley-Terry-Mallows model was used for the ranking data. Each model was fit using maximum likelihood estimation and assessed using likelihood ratio tests. Approximate 95% confidence intervals were also constructed using likelihood ratios. Model fits for paired comparisons were satisfactory for all scales except those from two image/display pairs; the ranking model fit uniformly well on all data sets. Arguing from overlapping confidence intervals, we conclude that paired comparisons and ranking produce no conflicting decisions regarding ultimate ordering of treatment preferences, but paired comparisons yield greater precision at the expense of lack-of-fit.
The Role of Implicit Negative Feedback in SLA: Models and Recasts in Japanese and Spanish.
ERIC Educational Resources Information Center
Long, Michael; Inagaki, Shunji; Ortega, Lourdes
1998-01-01
Two experiments were conducted to assess relative utility of models and recasts in second-language (L2) Japanese and Spanish. Using pretest, posttest, control group design, each study provided evidence of adults' ability to learn from implicit negative feedback; in one case, support for notion that reactive implicit negative feedback can be more…
ERIC Educational Resources Information Center
Fiorella, Logan; van Gog, Tamara; Hoogerheide, Vincent; Mayer, Richard E.
2017-01-01
The present study tests whether presenting video modeling examples from the learner's (first-person) perspective promotes learning of an assembly task, compared to presenting video examples from a third-person perspective. Across 2 experiments conducted in different labs, university students viewed a video showing how to assemble an 8-component…
ERIC Educational Resources Information Center
Rains, Stephen A.; Turner, Monique Mitchell
2007-01-01
This manuscript reports 2 experiments that were conducted to test and extend the work of J. P. Dillard and L. Shen (2005) examining the cognitive and affective processes involved in psychological reactance. In particular, the studies reported here (a) examined the best-fitting model of reactance processes and (b) tested 3 factors that may affect…
Kao, Tzu-Jen; Isaacson, David; Saulnier, Gary J.; Newell, Jonathan C.
2009-01-01
The conductivity and permittivity of breast tumors are known to differ significantly from those of normal breast tissues, and electrical impedance tomography (EIT) is being studied as a modality for breast cancer imaging to exploit these differences. At present, X-ray mammography is the primary standard imaging modality used for breast cancer screening in clinical practice, so it is desirable to study EIT in the geometry of mammography. This paper presents a forward model of a simplified mammography geometry and a reconstruction algorithm for breast tumor imaging using EIT techniques. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and is validated by experiment using a phantom tank. A reconstruction algorithm for breast tumor imaging based on a linearization approach and the proposed forward model is presented. It is found that the proposed reconstruction algorithm performs well in the phantom experiment, and that the locations of a 5-mm-cube metal target and a 6-mm-cube agar target could be recovered at a target depth of 15 mm using a 32 electrode system. PMID:17405377
The effect of energy accumulation and boundary slip on laminar flow between rotating plates
NASA Astrophysics Data System (ADS)
Wu, Zhenpeng; Zeng, Liangcai; Chen, Keying; Jin, Xiaohong; Wu, Shiqian
2018-02-01
The poor operating conditions of fluid lubrication equipment during the start-up process are due to the resistance of the high-viscosity lubricating liquid. Moreover, the excessive reduction in fluid viscosity due to the elevated temperature resulting from power consumption during prolonged operation is not conducive to the generation of dynamic pressure. In this study, we examine the effect of energy accumulation and boundary slip on the laminar flow of a liquid between a pair of rotating plates. The experiments are conducted using a rotary rheometer, with polymethyl methacrylate (PMMA) as the thermal insulation material and polytetrafluoroethylene (PTFE) as the slip drag reduction material, and a three-dimensional simulation model is established. This model is derived by combining the energy equation including the slip length and the heat conduction equation. Thus, the temperature changes over time are predicted by this model, and the model accuracy is verified by experiments. The results reveal the following points: 1) boundary slips function as a drag reduction mechanism for short-time continuous operation; 2) under prolonged operation, the slip reduces the extent of the oil viscosity decrease and clear control of the elevated temperature by the boundary slip is observed.
3D Traffic Scene Understanding From Movable Platforms.
Geiger, Andreas; Lauer, Martin; Wojek, Christian; Stiller, Christoph; Urtasun, Raquel
2014-05-01
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry, and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar, or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow, and occupancy grids. For each of these cues, we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.
Factors affecting smartphone adoption for accessing information in medical settings.
Tahamtan, Iman; Pajouhanfar, Sara; Sedghi, Shahram; Azad, Mohsen; Roudbari, Masoud
2017-06-01
This study aimed to acquire knowledge about the factors affecting smartphone adoption for accessing information in medical settings in Iranian Hospitals. A qualitative and quantitative approach was used to conduct this study. Semi-structured interviews were conducted with 21 medical residents and interns in 2013 to identify determinant factors for smartphone adoption. Afterwards, nine relationships were hypothesised. We developed a questionnaire to test these hypotheses and to evaluate the importance of each factor. Structural equation modelling was used to analyse the causal relations between model parameters and to accurately identify determinant factors. Eight factors were identified in the qualitative phase of the study, including perceived usefulness, perceived ease of use, training, internal environment, personal experience, social impacts, observability and job related characteristics. Among the studied factors, perceived usefulness, personal experience and job related characteristics were significantly associated with attitude to use a smartphone which accounted for 64% of the variance in attitude. Perceived usefulness had the strongest impact on attitude to use a smartphone. The factors that emerged from interviews were consistent with the Technology Acceptance Model (TAM) and some previous studies. TAM is a reliable model for understanding the factors of smartphone acceptance in medical settings. © 2017 Health Libraries Group.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.
2007-06-01
Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.
Children's experiences of dental anxiety.
Morgan, Annie G; Rodd, Helen D; Porritt, Jenny M; Baker, Sarah R; Creswell, Cathy; Newton, Tim; Williams, Chris; Marshman, Zoe
2017-03-01
Dental anxiety is common among children. Although there is a wealth of research investigating childhood dental anxiety, little consideration has been given to the child's perspective. This qualitative study sought to explore with children their own experiences of dental anxiety using a cognitive behavioural therapy assessment model. Face-to-face, semi-structured interviews were conducted with dentally anxious children aged 11-16 years. The Five Areas model was used to inform the topic guide and analysis. Data were analysed using a framework approach. In total, 13 children were interviewed. Participants described their experiences of dental anxiety across multiple dimensions (situational factors and altered thoughts, feelings, physical symptoms, and behaviours). Participants placed considerable value on communication by dental professionals, with poor communication having a negative influence on dental anxiety and the dentist-patient relationship. This study confirms the Five Areas model as an applicable theoretical model for the assessment of childhood dental anxiety. Children provided insights about their own dental anxiety experiences that have not previously been described. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Modeling nuclear processes by Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my
2015-04-29
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less
Modeling variability in porescale multiphase flow experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, Bowen; Bao, Jie; Oostrom, Mart
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulationsmore » are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.« less
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Lizee, Arnaud
1996-01-01
The object of this work, started in March of 1995, is to approach the problem of determining the transport conditions (and effects of residual acceleration) during the plane-front directional solidification of a tin-bismuth alloy under low gravity conditions. The work involves using a combination of 2- and 3-D numerical models, scaling analyses, 1-D models and the results of ground-based and low-gravity experiments. The experiments conducted in the MEPHISTO furnace facility during the USMP-3 spaceflight which took place earlier this year (22 Feb. - 6 Mar. 1996). This experiment represents an unprecedented opportunity to make a quantitative correlation between residual accelerations and the response of an actual experimental solidification system
TESTS OF INDOOR AIR QUALITY SINKS
Experiments were conducted in a room-size test chamber to determine the sink effects of selected materials on indoor air concentrations of p-dichlorobenzene (PDCB). hese effects might alter pollutant behavior from that predicted using similar indoor air quality models, by reducin...
Proceedings of the Thirteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.
Cortical bone drilling: An experimental and numerical study.
Alam, Khurshid; Bahadur, Issam M; Ahmed, Naseer
2014-12-16
Bone drilling is a common surgical procedure in orthopedics, dental and neurosurgeries. In conventional bone drilling process, the surgeon exerts a considerable amount of pressure to penetrate the drill into the bone tissue. Controlled penetration of drill in the bone is necessary for safe and efficient drilling. Development of a validated Finite Element (FE) model of cortical bone drilling. Drilling experiments were conducted on bovine cortical bone. The FE model of the bone drilling was based on mechanical properties obtained from literature data and additionally conducted microindentation tests on the cortical bone. The magnitude of stress in bone was found to decrease exponentially away from the lips of the drill in simulations. Feed rate was found to be the main influential factor affecting the force and torque in the numerical simulations and experiments. The drilling thrust force and torque were found to be unaffected by the drilling speed in numerical simulations. Simulated forces and torques were compared with experimental results for similar drilling conditions and were found in good agreement.CONCLUSIONS: FE schemes may be successfully applied to model complex kinematics of bone drilling process.
A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru
2009-02-01
A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.
Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction
NASA Astrophysics Data System (ADS)
Corpuz, Edgar De Guzman; Rebello, N. Sanjay
2017-08-01
The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.
NASA Astrophysics Data System (ADS)
Cao, Yanli; Lu, Xiaozuo; Wang, Xuemin
2010-04-01
The meridian is a concept central to traditional Chinese medical techniques such as acupuncture. There is no physically verifiable anatomical or histological basis for the existence of meridians. In Chinese medicine, the meridians are channels along which the energy of the psychological system is considered to flow. It has been proven that the resistance along the meridian channels is lower compared to other paths. Based on this knowledge, we proposed using electrical impedance tomography (EIT) to visualize the meridians of human being. A simplified three dimensional (3D) mathematical model of the forearm developed. Current was injected in the direction perpendicular to the cross-section where eight electrodes were equally placed around the surface of the forearm for the voltage measurements. The model was solved using Finite Element Method (FEM) and dynamic image was reconstructed using truncated singular value decomposition (TSVD) regularization method. The conductivity distributions were compared with different current injections, along the meridian channel and channels around respectively. We also conducted experiments on models and the meridians were shown in final reconstructed images.
Naidoo, Saloshni; Satorius, Benn K; de Vries, Hein; Taylor, Myra
2016-11-01
Bullying behavior in schools can lead to psychosocial problems. School-based interventions are important in raising student awareness, developing their skills and in planning to reduce bullying behavior. A randomized controlled trial, using a school-based educational intervention to reduce verbal bullying, was conducted among grade 10 students in 16 urban and rural schools in KwaZulu-Natal, South Africa in 2013. Baseline and postintervention questionnaires, developed using the Integrated Model for Behavior Change theoretical model, were used to assess changes in verbal bullying. Postintervention there were reduced verbal bullying experiences. Improved social norms and awareness of verbal bullying were associated with reduced verbal bullying experiences and behavior. Although less likely to bully others verbally, girls were more likely to experience verbal bullying. Students with no living father were more likely to bully others verbally. The study findings indicate that a school-based intervention can positively impact on verbal bullying experiences and behavior. © 2016, American School Health Association.
Tracer experiments in periodical heterogeneous model porous medium
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Delenne, Carole; Guinot, Vincent
2017-06-01
It is established that solute transport in homogenous porous media follows a classical 'S' shape breakthrough curve that can easily be modelled by a convection dispersion equation. In this study, we designed a Model Heterogeneous Porous Medium (MHPM) with a high degree of heterogeneity, in which the breakthrough curve does not follow the classical 'S' shape. The contrast in porosity is obtained by placing a cylindrical cavity (100% porosity) inside a 40% porosity medium composed with 1mm glass beads. Step tracing experiments are done by injecting salty water in the study column initially containing deionised water, until the outlet concentration stabilises to the input one. Several replicates of the experiment were conducted for n = 1 to 6 MHPM placed in series. The total of 116 experiments gives a high-quality database allowing the assessment of experimental uncertainty. The experimental results show that the breakthrough curve is very different from the `S' shape for small values of n, but the more n increases, the more the classical shape is recovered.
Puskaric, Marin; von Helversen, Bettina; Rieskamp, Jörg
2017-08-01
Social information such as observing others can improve performance in decision making. In particular, social information has been shown to be useful when finding the best solution on one's own is difficult, costly, or dangerous. However, past research suggests that when making decisions people do not always consider other people's behaviour when it is at odds with their own experiences. Furthermore, the cognitive processes guiding the integration of social information with individual experiences are still under debate. Here, we conducted two experiments to test whether information about other persons' behaviour influenced people's decisions in a classification task. Furthermore, we examined how social information is integrated with individual learning experiences by testing different computational models. Our results show that social information had a small but reliable influence on people's classifications. The best computational model suggests that in categorization people first make up their own mind based on the non-social information, which is then updated by the social information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheftman, D.; Krasik, Ya. E.
2011-09-15
Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecondmore » timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.« less
Risk-Based Fire Safety Experiment Definition for Manned Spacecraft
NASA Technical Reports Server (NTRS)
Apostolakis, G. E.; Ho, V. S.; Marcus, E.; Perry, A. T.; Thompson, S. L.
1989-01-01
Risk methodology is used to define experiments to be conducted in space which will help to construct and test the models required for accident sequence identification. The development of accident scenarios is based on the realization that whether damage occurs depends on the time competition of two processes: the ignition and creation of an adverse environment, and the detection and suppression activities. If the fire grows and causes damage faster than it is detected and suppressed, then an accident occurred. The proposed integrated experiments will provide information on individual models that apply to each of the above processes, as well as previously unidentified interactions and processes, if any. Initially, models that are used in terrestrial fire risk assessments are considered. These include heat and smoke release models, detection and suppression models, as well as damage models. In cases where the absence of gravity substantially invalidates a model, alternate models will be developed. Models that depend on buoyancy effects, such as the multizone compartment fire models, are included in these cases. The experiments will be performed in a variety of geometries simulating habitable areas, racks, and other spaces. These simulations will necessitate theoretical studies of scaling effects. Sensitivity studies will also be carried out including the effects of varying oxygen concentrations, pressures, fuel orientation and geometry, and air flow rates. The experimental apparatus described herein includes three major modules: the combustion, the fluids, and the command and power modules.
Missouri River Recovery Management Plan and Environmental Impact Statement
2014-04-11
Proficient in hydrologic and hydraulic engineering computer models, particularly ResSim and HEC - RAS ; working experience with large river systems including...to help study teams determine ecosystem responses to changes in the flow regime of a river or connected wetland. HEC -EFM analyses involve: 1...Description of the Model and How It Will Be Applied in the Study Approval Status HEC - RAS The function of this model is to conduct one-dimensional hydraulic
The Impact of Prior Deployment Experience on Civilian Employment After Military Service
2013-03-21
covariates men- tioned. Given the exploratory nature of this study, all defined variables were included. Model diagnostic tests were conducted and we...assessed model fit using the Hosmer–Lemeshow goodness-of-fit test . To identify the existence of collinearity, we examined all variance inflation factors...separation, and reason for separation and service branch were tested . Both interactions were significant at pɘ.10. Three models were built to examine
NASA Technical Reports Server (NTRS)
Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.
2016-01-01
An important goal for modern fluid mechanics experiments is to provide datasets which present a challenge for Computational Fluid Dynamics simulations to reproduce. Such "CFD validation experiments" should be well-characterized and well-documented, and should investigate flows which are difficult for CFD to calculate. It is also often convenient for the experiment to be challenging for CFD in some aspects while simple in others. This report is part of the continuing documentation of a series of experiments conducted to characterize the flow around an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Computation of this flow is easy in some ways - subsonic flow over a simple shape - while being complex in others - separated flow and boundary layer interactions. The primary set of experiments were performed on a 15.2 cm high, 45.7 cm base diameter machined aluminum model that was tested at mean speeds of 50 m/s (Reynolds Number based on height = 500,000). The ratio of model height to boundary later height was approximately 3. The flow was characterized using surface oil flow visualization, Cobra probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction magnitude and direction. A set of pathfinder experiments were also performed in a water channel on a smaller scale (5.1 cm high, 15.2 cm base diameter) sintered nylon model. The water channel test was conducted at a mean test section speed of 3 cm/s (Reynolds Number of 1500), but at the same ratio of model height to boundary layer thickness. Dye injection from both the model and an upstream rake was used to visualize the flow. This report summarizes the experimental set-up, techniques used, and data acquired. It also describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community.
Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S
2015-07-01
Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling framework provides a statistically coherent approach to estimating canopy conductance and transpiration and propagating estimation uncertainty into ecosystem models, paving the way for improved prediction of water and carbon uptake responses to environmental change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Simulations of the modified gap experiment
NASA Astrophysics Data System (ADS)
Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas
2017-01-01
Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.
FLORIDA TOWER FOOTPRINT EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
WATSON,T.B.; DIETZ, R.N.; WILKE, R.
2007-01-01
The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions atmore » midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.« less
Pasma, Jantsje H.; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C.
2018-01-01
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control. PMID:29615886
Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C
2018-01-01
The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This provides further evidence that the IC model is a valid description of human balance control.